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ABSTRACT 

We examine the consequences of short-range icosahedral order in metastable 

metallic alloys. There is evidence, both direct and indirect, for the existence of 

atomic clustering with icosahedral symmetry in supercooled liquid metals, meta­

stable metallic alloys, and large-unit-cell intermetallic compounds. It is observed 

that a variety of metallic alloys can exhibit a long-range ordered structure with 

icosahedral point group symmetry upon rapid quenching from the liquid. We have 

carefully examined one of these icosahedral phase-forming systems in an effort to 

understand how the long-range ordered solid develops from the liquid phase. Our 

studies show that the icosahedral phase nucleates homogeneously from the liquid 

during the rapid quenching process. 

We have developed a theory to explain qualitatively this observation. A model 

material is proposed, which is endowed with short-range icosahedral order broken 

up by defect structures. The thermodynamics of this model are described by a 

Ginzburg-Landau theory. The model displays a strong first-order phase transition 

from a high-temperature, heavily defected phase to a low-temperature phase with 

enhanced short-range icosahedral order. This transition is compared to our observa­

tions of icosahedral phase formation to fix the values of the theoretical parameters. 
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I. Evidence of Icosahedral Ordering in Metals 

Chapter 1 Introduction 

1.1 Historical Overview 

Until quite recently, little serious consideration has been given to the possibility 

of atomic clustering with icosahedral symmetry in condensed matter. The icosahe­

dron is one of the five Platonic solids illustrated in Figure 1.1. Because these five 

solids are the only regular polyhedra in three dimensions, Plato used them as the 

basis of his natural philosophy [Weyl, 1952]. It is interesting to note that despite 

the later belief that icosahedral symmetry is inconsistent with crystallography, the 

abstract notion of a dodecahedron (Figure 1.le) was first inspired by the shapes of 

pyrite crystals found by the ancient Greeks in Sicily [Weyl, 1952]. 

The symmetry group of the icosahedron includes twelve fivefold rotation axes 

passing through its opposite vertices. In classical crystallography, which assumes 

that all structures can be built up by a periodic tesselation of space with a single unit 

cell, global fivefold symmetry axes are impossible [Hamermesh, 1962; Kittel, 1976; 

Burns, 1985]. This fact is related to the observation that regular tetrahedra and 

icosahedra cannot be used to tesselate space without overlapping or leaving gaps 

[Zallen, 1983]. For this reason, the mainstream of condensed matter research has 

flowed away from consideration of fivefold and icosahedral symmetries in metallic 

systems. 

Despite the belief that icosahedral symmetry was not considered possible in 

metallic crystals, a number of workers maintained that small clusters of atoms 

with this symmetry could be found in liquid metals, intermetallic compounds and 

metallic glasses. This short-range clustering comes about because the icosahedron 

represents the highest local density and the lowest possible local energy structure 

for twelve atoms in contact with one [Frank, 1952]. Frank believed that icosahe-
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a) Tetrahedron b) Hexahedron 

c) Octahedron d) Icosahedron 

e) Dodecahedron 

Figure 1.1 Clusters of atoms having the symmetry of the five Platonic solids. 

These are the a) tetrahedron, b) cube (hexahedron), c) octahedron, d) icosahedron 

and e) dodecahedron. 
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dral groupings of atoms present nucleation barriers for crystallization of ordinary 

close-packed structures; hence, they are responsible for the extreme supercooling 

properties frequently observed in elemental liquid metals [Turnbull, 1950; Perepezko 

and Paik, 1984]. The pioneers of x-ray crystallography discovered that many in­

termetallic compounds have a large unit cell and basis. In performing structural 

refinements of these crystals, they found that many clusters of atoms in the ba­

sis have local icosahedral symmetry [Pauling, 1960; Samson, 1968; 1969]. Sadoc, 

Kleman and Nelson have developed a successful theory of metallic glass structure 

based on a frustrated packing of icosahedral clusters of atoms [Sadoc, 1981; Kleman 

and Sadoc, 1979; Nelson and Widom, 1984]. 

All of this work went relatively unnoticed until the tranquil world of crys­

tallography was shaken to its foundations by the discovery of a rapidly quenched 

aluminum-manganese alloy, which diffracts electrons with icosahedral point group 

symmetry [Shechtman et al., 1984]. This novel material, known as the icosahedral 

phase, has since been found in many other metastable alloys as well as in several 

equilibrium systems (a list is presented in Section 1.5). Although the atomic struc­

ture of this material has not yet been determined, it is a fundamental hypothesis of 

this work that icosahedral clustering plays a significant role in the formation and 

structure of the icosahedral phase. 

In the rest of this chapter we shall briefly review the accumulated evidence 

(both direct and indirect) of icosahedral ordering in metallic systems. Our objective 

is to show that icosahedral clustering is an important structural motif in certain 

liquid metals, intermetallic compounds and metallic glasses. 

1.2 Evidence of Icosahedral Ordering in Liquid Metals 

Metallic bonding favors configurations of atoms in which the number of nearest­

neighbors around a given atom is maximized [Pauling, 1960]. The bonding proper­

ties of metallic atoms are nearly isotropic, so the atom can be profitably modeled as 
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a sphere of some appropriate radius. The maximum number of equal size spheres 

that can be in contact with a given sphere is twelve [Frank, 1952]. Locally, this can 

be achieved in three different ways: face-centered cubic (FCC} packing, hexagonal 

close-packing (HCP) and an icosahedral cluster. Frank has noted that an icosahe­

dral grouping of thirteen atoms interacting through a Lennard-Jones potential has 

a binding energy 8.4% less than similarly sized clusters of face-centered cubic or 

hexagonal close-packing [Frank, 1952]. 

Hoare and Pal [Hoare and Pal 1971; Hoare, 1976] have calculated the mini­

mum energy structures of finite clusters of atoms interacting by central, two-body, 

Lennard-Jones interactions. They find that such clusters tend to grow in one of 

three modes: tetrahedral, pentagonal or icosahedral, rather than as FCC or HCP 

clusters. None of these minimum energy growth modes can be continued indefi­

nitely to fill all space (they suffer from "self-limiting growth" [Hoare, 1976]), so the 

clusters are referred to as "anticrystalline." This topological frustration (i.e., the 

inability to fill space with a minimum energy configuration) gives rise to interest­

ing effects when materials are constrained to adopt such growth modes in favor of 

crystalline growth. For instance, Tammann [see Hoare, 1976] has proposed that the 

rise in viscosity accompanying the glass transition in a supercooled liquid is due to 

the growth and mutual impingement of anticrystalline units in the liquid. 

Farges [Farges, 1973] has carried out experiments in which jets of inert gas are 

allowed to expand into a vacuum, and the resulting clusters of atoms are analyzed 

by electron diffraction. These results show that 500 atom clusters consist of a 

non-crystalline core (of the same size as the clusters calculated by Hoare and Pal 

[Hoare and Pal, 1971J) surrounded by an FCC cluster of the rare gas atoms. Thus, it 

appears that noncrystallographic clustering is preferred, up to a certain cluster size, 

in atom-by-atom growth processes. Harris et al. [Harris et al., 1984] have carried 

out experiments in which jets of inert gas are allowed to expand into a vacuum 
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and the sizes of the resulting clusters of atoms are analyzed. It is found that the 

clusters tend to have sizes corresponding to a few "magic numbers" of atoms. These 

magic numbers correspond closely to particularly stable "anticrystalline" clusters 

of Lennard-Jones atoms calculated by Hoare and Pal [Hoare and Pal, 1971]. The 

"magic number" clusters have noncrystallographic symmetries based on one or more 

shells of icosahedral or dodecahedral coordination. 

A number of investigators have observed a variety of prefreezing phenomena in 

liquid metal systems. Turnbull [Turnbull, 1950] and Perepezko and Paik [Perepezko 

and Paik, 1984] have supercooled elemental liquid metals (by eliminating hetero­

geneous nucleation sites) to 30-40% of the absolute melting temperature before 

crystallization begins by homogeneous nucleation. This deep excursion into the 

metastable regime implies the existence of relatively stable structures (at least more 

stable than crystalline nuclei) in the supercooled liquid. With these observations in 

mind, Frank [Frank, 1952] proposed that icosahedral clustering in the supercooled 

liquid metal is responsible for the deep supercooling. The icosahedral cluster is a 

low energy structure; its topological short-range order is somewhat different from 

that of FCC or HCP crystals. The atomic rearrangements required to transform 

the cluster into one of the common crystal packings are energetically costly and 

can be overcome only when they are done on long length scales. This requires 

a substantial structural fluctuation, which is likely to occur only at a certain de­

gree of supercooling (in the absence of a seed crystal). In other words, icosahedral 

clustering presents a nucleation barrier for crystallization of the liquid metal, thus 

explaining the observed supercooling properties. 

Ubbelohde notes that the specific heat CP of many metallic melts increases 

as the substance is cooled toward the melting temperature [Ubbelohde, 1965]. He 

attributes this rise to increasing formation of "anticrystalline" clusters in the liquid. 

Since anticrystalline clusters are energetically more stable than small FCC or HCP 
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clusters, the excess enthalpy released shows up as an increase in Cp. 

The picture of a liquid metal can be summarized as follows. One can think 

of a supercooled liquid metal (with heterogeneous nucleation sites for the close­

packed crystalline phases removed) as a system with both crystalline and anti­

crystalline nuclei forming at their respective nucleation frequencies. Depending 

upon the material, the driving force (i.e., degree of supercooling) will eventually 

favor the growth of a solid phase from one of the two types of nucleation sites. The 

solid phase that nucleates and grows will be either crystalline or quasi-crystalline, 

depending upon the growth kinetics. In cases of extreme and rapid supercooling, 

the liquid structure (with both crystalline and anticrystalline local order) will be 

frozen in, and the resulting solid is a metallic glass. 

1.3 Evidence of Icosahedral Ordering in Intermetallic Compounds 

It is known that many intermetallic crystal structures have large unit cells with 

many atoms in the basis [Samson, 1968]. To simplify the structural refinement of 

these crystals, Samson has developed a technique to represent the crystal basis as 

a packing of coordination polyhedra [Samson, 1969]. One of the most common 

coordination polyhedra in intermetallic compounds is that of coordination twelve, 

isomorphic to the icosahedron. Samson has identified several other common coordi­

nation polyhedra involving higher coordinations [Samson, 1969]. These include the 

Friauf polyhedra (coordination number ( CN) 16), the µ-phase polyhedra ( CN 15), 

the hexagonal prism and antiprism (CN 14) and a few other irregular polyhedra. 

Several representative large unit cell crystal structures are shown in Figure 

1.2. The AI12Mo crystal structure [Walford, 1964] (Figure 1.2 (top)) consists of a 

molybdenum atom at each body-centered cubic lattice site surrounded by an icosa­

hedral cluster of twelve aluminum atoms. An example of more extensive icosahedral 

clustering is the crystal structure of Mg32 (Zn, AI) 49 [Bergmann et al., 1957] shown 

in Figure 1.2 (bottom). This crystal also has a body-centered cubic lattice with an 
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Figure 1.2 Two large unit cell intermetallic compound crystal structures. Al 12Mo 

(top) has a BCC lattice with Mo atoms on the lattice sites surrounded by twelve 

Al atoms at the vertices of an icosahedron [after Walford, 1964]. Mg32 (Al, Zn)40 

(bottom) also has a BCC lattice with several shells of atoms in the basis having 

icosahedral symmetry [after Bergman et al., 1957]. 
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atom on each lattice site. Surrounding that atom are shells of atoms that sit on the 

vertices of an icosahedron, a larger dodecahedron, a still larger icosahedron and a 

final shell of atoms making up a truncated icosahedron with tetrahedral symmetry. 

It is interesting to note that the icosahedral phase is found in samples of rapidly 

solidified liquids with composition Al12Mo and Mg32(Zn, Al) 49. 

Examination of these and many other intermetallic compounds lead one to 

the following conclusion. When atoms are in the basis of a large unit cell metallic 

crystal (hence relatively free of crystallographic constraints), they may cluster into 

units having noncrystallographic symmetry. The fact that these noncrystallographic 

groupings are predominant in the basis is a reflection of their stability and simplicity. 

This is yet another reason why icosahedral clustering must be taken seriously in any 

theory of the structure of metals. 

1.4 Evidence of Icosahedral Ordering in Metallic Glasses 

Bernal's [Bernal, 1965] dense random packing of hard spheres was an early 

attempt to model the structure of a monatomic metallic glass. This model includes 

the qualitative features of a metallic glass with an isotropic, purely repulsive pair 

interaction. Since the model has no attractive term in the interaction potential, one 

does not expect to find an abundance of the low energy tetrahedral and icosahedral 

clusters in the structure. To go beyond these simplistic hard sphere packing mod­

els, a number of researchers have modeled the glassy state with more sophisticated 

interaction potentials by means of computer simulated quenches from the molten 

state. The structures resulting from the simulations can be used to calculate the 

diffraction pattern that is then compared directly with experiment. These simula­

tions also reveal a great deal of microscopic information about the metallic glass 

structure. 

Briant and Burton [Briant, 1976; Briant and Burton, 1978] have performed 

molecular dynamics simulations of a model monatomic liquid interacting through 
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a Lennard-Jones potential. During a rapid quench of these computer liquids, they 

have observed icosahedral clustering in groups of thirteen and 55 atoms. They come 

to the conclusion that icosahedral clusters are quite prominent in metallic glasses 

for the following reasons: (i) A similarity in the scattering structure factor of amor­

phous metals and the thirteen-atom icosahedral cluster, (ii) The direct observation 

of icosahedral clusters in his computer simulated glasses, and (iii) The ability of 

icosahedral clusters to form in atom-by-atom growth processes (e.g., thin-film evap­

oration) because of their energetic stability. 

To extract more information from these computer simulations of monatomic 

Lennard-Jones liquids, Steinhardt, Nelson and Ronchetti [Steinhardt et al., 1981; 

1983J defined a set of bond orientational order parameters. Every nearest-neighbor 

bond, with a midpoint at f', makes angles O(f') and </>(f') with respect to some fixed 

global direction. The value of the order parameter is given by the set of numbers, 

(1.1) 

where Yim are the (three-dimensional) spherical harmonics, with -1 ::; m ::; 1. Since 

Q1m (f') is not rotationally invariant, i.e., it depends on the choice of fixed global 

direction, Steinhardt et al. defined the quantity, 

(1.2) 

where ( Q1m (f)} denotes the average of Q1111 (f') over all the bonds in a given volume 

of the sample. 

Systems with cubic rotational symmetry have large values of Q4 whereas those 

with icosahedral clustering show large values of Q6 [Steinhardt et al., 1981; 1983]. 

Steinhardt et al. evaluated these order parameters for a supercooled Lennard-Jones 

liquid and noted a dramatic increase in the value of Q6 , and a much more modest 

increase in Q4 , during the quench. The observed increase in the icosahedral bond-
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orientational order parameter began a flurry of activity in the theory of metallic 

glasses. 

Nelson [Nelson, 1983a; 1983b], building on the ideas of Kleman [Kleman and 

Sadoc, 1979J and Sadoc [Sadoc, 1981J, later proposed that supercooled liquid metals 

and metallic glasses can be thought of as systems with defective icosahedral bond 

orientational order. This theory predicts a scattering structure factor in close agree­

ment with those obtained experimentally on elemental amorphous thin metal films 

[Sachdev and Nelson, 1984; 1985]. Like most other theories of disordered systems, 

Nelson's metallic glass model rests on the concept of frustration [Toulouse, 1977]. 

As we see in Figure 1.3, five perfect tetrahedra wrapped around a common edge will 

leave a deficit angle of about 7°. If one assigns atoms to each of the vertices in this 

figure, it is clear that one of the atoms will not be in the potential energy minimum 

of all of its neighbors (in fact, it has two equivalent choices). This local topological 

frustration is responsible for the global topological disordering in a material with 

atoms that prefer local tetrahedral coordination. 

All of the computer simulations discussed above have been performed on model 

monatomic systems. Yet, it is known that all metallic glasses that are stable at 

room temperature are made up of two or more elements. To address the problem of 

alloy glasses, Hafner has constructed realistic computer models of the simple metal 

glasses Ca10Mg30 and Mg10Zn30 and has evaluated their bond angle distribution 

functions [Hafner, 1982; 1985]. This function f(O) represents the probability that the 

directions from a central atom to two of its neighbors form an angle 0. By examining 

this function for the metallic glasses studied, Hafner concludes that there are a 

large number of near-icosahedral and defected icosahedral coordinations in their 

structures [Hafner, 1982; 1985]. 

At the moment, computer simulations provide the only direct evidence for 

noncrystallographic clustering in metallic glasses. Despite this, the idea that a 
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Figure 1.3 Five regular tetrahedra wrapped about a common edge do not close 

but instead leave a deficit angle of about 7° [after Nelson, 1983b]. 
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frustrated packing of icosahedral units is responsible for metallic glass formation 

has proven to be very fruitful. 

In summary, Sections 1.2-1.4 have shown that when atoms in a metal are free 

from crystallographic constraints (e.g., in the basis of a large unit cell intermetallic 

compound, in a liquid metal, or in a metallic glass), they tend to group into low 

energy noncrystallographic clusters. This structural motif must be taken into con­

sideration if one wants to understand the structure and dynamics of noncrystalline 

metals. 

1.5 The Icosahedral Phase 

Direct experimental evidence of the existence of long-range icosahedral order 

in condensed matter came with the discovery by Shechtman et al. [Shechtman et 

al., 1984] of the icosahedral phase. This phase is remarkable because it diffracts 

electrons with the point group symmetry of an icosahedron (see Figure 1.4). This 

point group is unique in condensed matter, and because of its global fivefold sym­

metry, it is inconsistent with the tenet of classical crystallography, which states that 

a perfect crystal is made up of a periodic tiling of a single packing unit. 

The icosahedral phase was originally discovered in a rapidly quenched binary 

alloy of composition Al86Mn14 • It has been found subsequently in rapidly quenched 

binary Al-(Cr, V, Mo, Ru, W, Re) alloys [Bancel and Heiney, 1986j, Pd60 U20 Si20 

[Poon et al., 1985], Ni-Ti-V [Zhang et al., 1985], Fe-Ti [Dong et al., 1986], Al-Cu­

Li [Ball and Lloyd, 1985], Mg32 (Al, Zn) 49 [Ramachandrarao and Sastry, 1985] and 

V-Ni-Si [Kuo et al., 1987]. The icosahedral phase appears to be an equilibrium 

peritectic compound in the Al-Cu-Li, Al-Cu-Mg, Al-Zn-Li and Al-Zn-Mg ternary 

systems [Cassada et al., 1986]. 

Several models have been proposed for the atomic structure of the icosahe­

dral phase. Levine and Steinhardt [Levine and Steinhardt, 1984] propose that the 

icosahedral phase is a quasi-crystal composed of two distinct unit cells with special 
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Figure 1.4 A set of electron diffraction patterns obtained from an icosahedral 

Al-Mn alloy by Shechtman et al. The accompanying stereographic projection of 

the icosahedral point group shows that the rotation angles between high symmetry 

diffraction axes exactly match those of an icosahedron [after Shechtman et al., 1984]. 
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relationships between their edges that produce long-range icosahedral orientational 

order. Socolar et al. !Socolar et al., 1985] have proposed a generalized crystallog­

raphy in which all non-crystallographic symmetries can be accommodated with the 

use of quasi-periodic tilings of two appropriately chosen unit cells. 

An alternative structural model of the icosahedral phase has been proposed by 

Stephens and Goldman [Stephens and Goldman, 1986J. In their model, the icosa­

hedral phase is a "glassy" agglomerate of icosahedral units (clusters) that join up 

face-to-face or vertex-to-vertex so as to preserve long-range orientational order be­

tween icosahedra. Because of topological frustration, these icosahedral units do not 

fill space, so there is translational disorder as well as a need to introduce interstitial 

(primarily octahedral) groupings of atoms to fill in the gaps. Both the icosahe­

dral quasi-crystal and icosahedral glass models reproduce the electron diffraction 

experiments of Shechtman et al. [Shechtman et al., 1984]. 

Pauling [Pauling, 1985] has proposed a third model for the structure of the 

icosahedral phase. He suggests that a twentyfold twin of a large unit cell cu­

bic crystal is responsible for the observed electron diffraction patterns. Pauling 

later suggested that a very large unit cell crystal with extensive icosahedral order 

in the basis can produce pseudo-icosahedral electron diffraction patterns [Pauling, 

1987]. A series of experiments, including dark-field [Shechtman and Blech, 1985] 

and high-resolution [Hiraga et al., 1985] transmission electron microscopy imaging, 

high-resolution x-ray diffraction [Bance} et al., 1985] and convergent beam electron 

diffraction [Bendersky and Kaufman, 1986] are all inconsistent with Pauling's mod­

els. All of the accumulated experimental evidence on the icosahedral phase suggests 

that it is a true noncrystallographic state of solid matter (i.e., the symmetry of this 

material is not among the 230 known space groups for crystals). 

There are several interesting problems that have not yet been solved concerning 

the icosahedral phase. First, the atomic structure of the icosahedral phase has yet to 
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be determined. This has not been done because the techniques of traditional crys­

tallography are of little value when dealing with quasi-periodic structures. Initially 

it was not even clear if a quasi-periodic structure could produce a diffraction pattern 

with sharp and distinct peaks, as is observed in x-ray, electron and neutron diffrac­

tion experiments. Since sets of parallel diffracting planes of all possible d-spacings 

can be found in quasi-periodic structures, it would appear that reciprocal space is 

completely filled with diffraction spots. The resolution of this dilemma comes from 

considering the three-dimensional, quasi-periodic structure as a projection of a six­

dimensional simple cubic lattice onto an appropriately oriented three-dimensional 

hyperplane [Kramer and Neri, 1984]. A similar projection is made in reciprocal 

space, where it is found that the best fit to experimental data occurs when the 

structure factor associated with a diffraction spot decreases exponentially with its 

projection distance [Elser, 1986]. A complete calculation of the diffraction intensity 

requires knowledge of the atomic basis associated with each quasi-lattice site. So 

far, it has proven impossible to find the correct basis [Bak, 1986]. 

A second set of interesting problems concerns a comparison of the physical 

properties of amorphous, icosahedral and crystalline materials at the same compo­

sition. For instance, we would like to know if any new collective phenomena (e.g., 

phonons, superconductivity, and magnetism) are associated with the unique point 

group symmetry and structure of the icosahedral phase. We have performed electri­

cal resistivity measurements of icosahedral, amorphous and crystalline aluminum­

ruthenium thin films between 4.2K and room temperature [Anlage et al., 1987]. We 

find that the magnitude and temperature dependence of the resistivity of icosahe­

dral Al-Ru is most similar to that of amorphous Al-Ru and distinctly different from 

that of crystalline Al-Ru at the same composition. 

A third question of interest concerns how and why the icosahedral phase forms 

from the liquid, vapor, or solid states. Understanding the formation conditions will 
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allow one to predict which alloys will display the icosahedral phase and give some 

clues about their atomic structure and properties. 

This thesis is devoted primarily to the third question. In Part II we shall discuss 

experimental work on a particular icosahedral phase-forming system: the binary al­

loys of aluminum and ruthenium. From this study we come to the conclusion that 

the icosahedral phase nucleates homogeneously from the rapidly supercooled Al-Ru 

liquid. In Part III we consider the thermodynamics of a model material that is 

endowed with icosahedral short-range order. Since we have seen that icosahedral 

clustering is a structural motif in certain metals, it is of interest to see if that kind 

of ordering can be extended to a global scale. It is shown that this predominantly 

icosahedral material can display a phase with enhanced short-range icosahedral ori­

entational order. This phase is separated from a high-temperature, heavily defected 

phase by a strong first order phase transition. We compare this phase transition 

to the liquid-to-icosahedral phase transition produced during the rapid quenching 

experiments discussed in Part II and use some of our experimental results to fix the 

parameters in the theory. 
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II. Observations of Icosahedral Phase Formation 

Chapter 2 Experimental Procedure 

In this chapter we discuss the techniques used to prepare and characterize 

samples containing the icosahedral phase. We have concentrated this experimental 

effort upon the aluminum-ruthenium icosahedral phase-forming system. 

2.1 The Aluminum-Ruthenium Icosahedral Phase-Forming System 

Of the many icosahedral phase-forming systems mentioned in Section 1.5, we 

have chosen one to study in detail. The binary Al-(Mn,Cr,Fe) are the most fre­

quently studied systems. Since we were initially interested in studying the super­

conducting properties of the icosahedral phase, the presence of 3d transition metals 

posed the problem of magnetic moment formation at low temperatures. For this 

reason the Al-Ru binary system was chosen, Ru being a 4d transition metal, not 

prone to isolated moment formation. 

From a metallurgical point of view the Al-Ru system is simpler than the Al-Mn 

system. In Section 3.1 we shall see that the Al-Ru system has relatively few equilib­

rium phases that compete for formation with the metastable icosahedral phase. The 

same region of the equilibrium Al-Mn phase diagram has five intermetallic phases 

[Taylor, 1960]. Hence, the Al-Ru icosahedral phase has proven relatively easy to 

form. We have prepared the Al-Ru icosahedral phase by means of liquid quenching 

(Anlage et al., 1987aJ, mechanical alloying [Anlage and Schwarz, 1987b] and in thin 

film form [Anlage et al., 1987c]. 

2.2 Sample Preparation 

For the phase diagram studies discussed in· Chapter 3, bulk ingots of various 

compositions were produced. In this section we describe the alloying and rapid 

quenching techniques used to prepare the samples. 
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2.2a Alloy Preparation 

Ingots were produced by starting with high purity elemental metals. The 

ruthenium was initially in powder form, 99.95% pure (obtained from the Johnson­

Matthey Company). To deoxidize this material, the powder was statically com­

pressed into pellets. The pellets were then placed onto a water-cooled "silver boat" 

enclosed in a high purity argon atmosphere. Induction heating was used to simul­

taneously heat the ruthenium pellets and a piece of high purity zirconium, placed 

on the silver boat a few inches away. After this treatment, the ruthenium pellet 

changed from a dark gray to a silver gray color. 

The 99.999% pure aluminum (obtained from the Johnson-Matthey Company) 

in the form of rods, 0.25 inches in diameter, was etched in a 90% HN03 , 10% HF 

solution to remove the surf ace oxide layer just prior to alloying. In the equilibrium 

phase diagram study, the Ru and Al were placed in an alumina crucible, which was 

heated in an electrical furnace inside a glove box containing argon gas. A dynamic 

purification system circulated the argon gas at a rate of 40 cubic feet per minute 

and maintained partial pressures of 0 2 and H2 0 at levels below 1 part per million. 

The alloy casts were slowly cooled in the furnace. 

In the non-equilibrium phase diagram study, the elements were placed in an 

alumina crucible enclosed in a high purity (99.9999% pure) static argon atmosphere. 

The elements were then heated inductively until they were alloyed. 

2.2b Rapid Quenching 

Rapid quenching of a liquid was first used to produce bulk amorphous metallic 

alloys by Klement et al. [Klement et al., 1960J. Later, Pietrokowsky [Pietrokowsky, 

1963] developed the piston and anvil technique to rapidly solidify drops of molten 

metal (see Figure 2.1). In this apparatus, an alloy charge is first melted inductively 

in a fused silica crucible. The liquid metal falls as a drop and interrupts a light 
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Figure 2.1 Schematic diagram of the piston and anvil rapid quenching apparatus. 

A metal charge is melted by RF heating in a fused silica crucible and allowed to 

drop vertically. When the drop interrupts the light beam, the trigger, D, allows the 

piston, B, to meet the anvil, A, just as the drop arrives [after Mehra, 1984]. 



-20-

beam on its way down. A photodetector senses the passage of the drop and triggers 

the pneumatically loaded piston to drive into a stationary anvil. Both piston and 

anvil have a copper-beryllium alloy disc on their exposed surfaces. The liquid 

drop is caught just as the piston and anvil meet, causing the drop to spread out 

and rapidly solidify into a foil 30-50 microns thick. Models of the piston and anvil 

quench process show that quench rates on the order of 105 to 106 K/sec are achieved 

[Kroeger et al., 1982]. 

2.2c Mechanical Alloying 

For the equilibrium phase diagram study, the Al-Ru alloy ingots were mechan­

ically alloyed for nine hours in a Spex 8000 table-model mixer mill. The mixer 

mill was used to produce a fine powder from the alloy ingots. The powders could 

then be conveniently analyzed by x-ray analysis and by differential thermal anal­

ysis. The mixer mill is illustrated in Figure 2.2 [Schwarz et al., 1985]. An alloy 

powder or mixture of elemental powders is placed in a canister along with six 1/2 

inch diameter balls. The canister, lid and balls are made of either hardened steel or 

tungsten carbide. The canister is sealed with a cork ring inside the flowing argon 

atmosphere described in Section 2.2a. The canister is loaded into a holder, which 

is connected by means of a universal joint and belt to a motor. When the motor 

is running, the canister executes a rapid and irregular figure-eight motion, with 

maximum speeds on the order of 20-30 meters/sec. The powder inside the canister 

is intimately mixed and mechanically deformed by being trapped during collisions 

between the balls or between a ball and the wall. 

2.3 Sample Characterization 

Once a sample has been prepared, a series of tests must be performed to de­

termine which phases are present. In this section we discuss these sample charac­

terization techniques. 
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Figure 2.2 The Spex 8000 Mixer Mill used for mechanical alloying experiments. 

A hardened steel canister containing Al-Ru powder and six hardened steel balls is 

shaken in an irregular figure eight motion by means of a motor [after Spex Indus-

tries]. 



-22-

2.3a X-ray Diffraction 

Piston and anvil quenched foils are ideally suited for analysis by means of x­

ray diffraction. As shown in Figure 2.3, the flat sample is placed in the center of 

a focussing circle with the x-ray source and detector on the circle. X-rays undergo 

Bragg diffraction from parallel planes of atoms in the sample. All crystalline and 

quasi-crystalline materials have a unique and distinctive collection of Bragg diffrac­

tion peaks arising from their structure. Figure 2.4 shows a typical x-ray pattern of 

an Al86 Ru14 piston and anvil quenched alloy. This sample contains the icosahedral 

phase (broad peaks) as well as the Al-Ru solid solution (narrow peaks). 

X-ray diffraction experiments were performed on a Philips 8-28 diffractometer, 

a Debye-Scherrer camera and a Scintag Pad-V (J - 28 diffractometer. In all cases 

Ni filtered Cu Ka radiation was used. 

2.3b Differential Thermal Analysis 

Thermal analysis of the alloys was performed on a Perkin Elmer Differential 

Thermal Analyzer (DTA) for temperatures ranging up to 1400°C. The DTA was 

equipped with alumina sample holders and run in a computer-simulated differential 

scanning calorimetry mode. All runs were performed in a purified argon atmosphere 

flowing at a rate of 10 to 15 cm3 /min. 

Thermal analysis was used to determine transition temperatures and latent 

heats for transitions between phases of the samples. The samples used were initially 

mechanically alloyed powders or mixtures of elemental powders. 

2.3c Atomic Absorption Spectroscopy 

Several Al-Ru ingots used in the nonequilibrium phase diagram study were 

analyzed by means of atomic absorption spectroscopy. This analysis provided an 

independent composition determination and was performed by the International 
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Figure 2.3 The Philips vertical goniometer used for x-ray analysis of rapidly 

quenched Al-Ru alloys. An x-ray tube anode line source produces an incident beam 

through divergence Soller slits to illuminate the specimen. The Bragg diffracted 

beam leaves the specimen at the angle of incidence and proceeds through a receiving 

Soller slit to the detector [after Philips Corporation]. 
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Figure 2.4 An x-ray diffraction pattern of a piston and anvil quenched Als6Ru14 

alloy. The diffraction peaks can be indexed to an Al-Ru solid solution (sharp peaks) 

and icosahedral Al-Ru (broad peaks). The icosahedral phase diffraction peaks are 

labelled with the indexing convention of Bancel et al. [Bancel et al., 1985]. 
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Technology Corporation. The composition determinations made by atomic ab-

sorption spectroscopy, energy dispersive x-ray analysis (Section 2.3d) and in alloy 

preparation are all in agreement to within 2 at% Ru. 

2.3d Electron Microscopy 

Samples to be studied by transmission electron microscopy (TEM) must first be 

thinned down to electron transparency ( <lOOOA). Two techniques were employed 

for doing this. Most of the sample thickness reduction is done by electrochemical 

polishing on a Fishione jet electropolisher. Samples were cut into 3mm diameter 

discs and thinned to electron transparency with a solution of methanol and perchlo­

ric acid at -40°C. The samples were then ion-milled at a shallow angle to remove 

organic deposits and oxides left over from the chemical thinning process. A VCR 

dual-gun argon ion-mill was used for this purpose. 

The TEM work was performed on a variety of instruments, including a Siemens 

Elmiskop I operated at lOOk V, a Philips 400 scanning transmission electron micro­

scope (STEM) operated at 120 kV, a JEOL 200CX STEM operated at 200 kV with 

a Kevex x-ray analysis unit as well as a Philips EM430 STEM operated at 300 kV 

and equipped with an EDAX energy dispersive x-ray analysis unit. Through the 

manufacturers' software, the intensities of the Al K peaks and Ru L peaks were 

determined and converted into chemical concentrations by a standardless thin-film 

analysis technique. The thin-film analysis assumes that the electron beam passes 

through the sample with only a small amount of spreading, so that the x-ray ab­

sorption and secondary fluorescence can be ignored. Quantitative analysis was 

performed only on areas of the sample where the thin-film condition was satisfied. 

Energy dispersive x-ray analysis was performed at selected spots as well as on a line 

of spots through an icosahedral particle and into its neighboring matrix. 

For the equilibrium phase diagram study, scanning electron microscopy (SEM) 

was performed with a Cam-Scan Series 4 SEM. Standardless energy dispersive x-ray 
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analysis was performed on as-cast alloy ingots, using a Kevex x-ray analysis unit 

through a 20 µm thick Be window. 
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Chapter 3 Experimental Results and Discussion 

The Al-Ru icosahedral phase-forming system has been chosen to study the 

conditions under which the icosahedral phase forms from the melt. To better un­

derstand the results of the rapid quenching experiments, it proved necessary to 

determine the equilibrium Al-Ru phase diagram in the region where the rapid 

quenching experiments took place. In Section 3.1 we present the results of this 

determination. In Section 3.2 the rapid-quenching nonequilibrium phase diagram is 

presented. This is followed by a discussion of the mobility of ruthenium during the 

rapid quench, leading to the conclusion that ruthenium segregation to the growing 

icosahedral particles takes place through the liquid phase. 

3.1 The Equilibrium Al-Ru Phase Diagram 

Figure 3.1 presents the recently determined equilibrium Ali-xRux phase di­

agram for x < 25 at% [Anlage et al., 1987]. This region of the phase diagram is 

where the Al-Mn icosahedral phase is found to form [Shechtman et al., 1984] and 

where the Al-Ru icosahedral phase is also expected to form. There are three com­

pounds in this region. The Al-Ru face-centered cubic solid solution extends out to 

approximately 0.03 at% Ru [Varich and Lyukevich, 1973]. The A~Ru compound is 

orthorhombic with space group Cmcm [Edshammar, 1968]. The morphology of the 

AlaRu compound is shown in a scanning electron micrograph (SEM) image (Fig­

ure 3.2) of an as-cast AlsoRu2o ingot. The Al13 Ru4 compound is monoclinic with 

space group C2/m [Edshammar, 1965]. Figure 3.3 is an SEM micrograph showing 

Al13Ru4 crystals in the same as-cast Als0 Ru20 ingot. 

From Figure 3.1 we see that the Al-Ru solid solution eutectic is at 652°C, 

approximately 8°C below the melting temperature of elemental Al. The Al6 Ru 

compound melts peritectically at 723°C into Al13 Ru4 and an aluminum-rich liq­

uid. In the course of the thermal analysis measurements it was observed that 
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Figure 3.1 Equilibrium phase diagram for the Al-rich end of the Al-Ru system. 

Solid symbols represent measured values. 
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Figure 3.2 A scanning electron micrograph showing Al0 Ru crystals in the as-cast 

Als0Ru20 alloy. 
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Figure 3.3 A scanning electron micrograph showing Ali3 Ru4 (faceted crystal in 

center) in the as-cast Al80Ru20 alloy. 
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growth of the Al6 Ru phase was easily suppressed upon quenching from the two­

phase liquid+Al13Ru4 region above 723°C. Al6 Ru must grow peritectically through 

a reaction between the relatively stable Al13Ru4 intermetallic and an Al-rich liquid 

at 723°C. This growth is nucleated heterogeneously at the surface of Ah3Ru4 crys­

tals, but because of the low reaction temperature does not proceed to completion 

on laboratory time scales. This is illustrated in Figure 3.4, which shows that a 

thin boundary layer of Al6 Ru has formed between Al13Ru4 and the (subsequently 

solidified) Al-Ru solid solution, despite a relatively slow quench rate of 1 K/min. 

The growth of Al6 Ru is limited by diffusion of Ru out of Al13Ru4 and must also 

take place at low temperatures. Hence, growth of this phase will be relatively easy 

to avoid during a rapid quench of the liquid to room temperature. 

The Ah3Ru4 compound melts peritectically at 1403°C into an Al-Ru liquid 

and an unknown Al-Ru compound. These high-temperature product phases could 

not be investigated carefully because they exist at the extreme limits of the thermal 

analysis equipment. 

From work on the Al-Mn icosahedral phase [Krishnan et al., 1986], it is known 

that the Al-Ru icosahedral phase is expected to have a composition of about 

Al80Ru20 • Because the growth of Al6 Ru is largely suppressed at moderate quench 

rates, there are only two intermetallic compounds competing for formation with the 

metastable icosahedral phase during a rapid quench of the liquid. The Al-Ru icosa­

hedral phase should then form over a relatively wide (2 to 23 at% Ru) composition 

range after a rapid quench. 

3.2 The Nonequilibrium Al-Ru Phase Diagram 

Rapid quenching experiments have been performed on a series of Al 1-xRux 

alloys for x=2.5, 5, 7.5, 10, 12.5, 14, 15 and 20 at% Ru. The results of all of these 

experiments can be summarized on a single nonequilibrium phase diagram, shown in 

Figure 3.5. Also shown, in dotted lines, is the equilibrium phase diagram presented 
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Figure 3.4 A scanning electron micrograph showing the structure of an Al00Ru10 

ingot after cooling in the calorimeter at the rate of 1 K/min. Peritectic formation 

of AlaRu is evident at the boundary between Al13 Ru4 and the Al-rich matrix. 
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in Section 3.1. All of the compositions shown in this diagram have been measured, 

but most of the temperatures shown are schematic. For instance, the liquidus curves 

shown are depressed by several hundred degrees below the equilibrium liquidus to 

represent the undercooling expected to occur during a rapid quench of the liquid. 

As expected, the growth of Al6 Ru was so strongly suppressed by the quench that 

none was observed (i.e., below the detection limit of x-ray analysis, <1 %) in any 

of the rapidly quenched alloys. 

The nonequilibrium phase diagram shows three phases; an Al-Ru solid solution, 

which extends to 2.4 at% Ru (our measured value is somewhat less than the 3.2 at% 

Ru determined from x-ray analysis by Varich and Lyukevich [Varich and Lyukevich, 

1973]), the icosahedral phase, and the compound Al13Ru4 [Edshammar, 1965]. The 

composition of the icosahedral phase was determined to be approximately 19 at% 

Ru from x-ray chemical analysis of the grains in rapidly solidified Ah-xRux for 

0.025 ::::; x ::::; 0.10. We have represented the icosahedral phase as a compound with 

a wide phase field, since it is known to be somewhat tolerant of chemical disorder 

[Schaefer, 1986]. Energy dispersive x-ray line scans through the icosahedral particles 

showed some enhancement of Ru concentration near the centers of the particles. 

For this reason, the icosahedral phase region in Figure 3.5 widens slowly at lower 

temperatures. However, the difference in composition between the edge and center 

of the particles was 2.5 at% Ru, which is only slightly greater than the resolution 

of these measurements. 

Changing the quench rate of the liquid will change the features of the non­

equilibrium phase diagram in Figure 3.5. Decreasing the quench rate has the ef­

fect of replacing the icosahedral phase with the decagonal phase [Bendersky et al., 

1985a]. The decagonal phase has a tenfold symmetric quasi-periodic structure in 

two dimensions and is periodic in the third [Bendersky, 1985b]. A further decrease 

in the quench rate results in the formation of crystals in accordance with the equi-
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Figure 3.5 Schematic piston and anvil non-equilibrium liquid quenching phase 

diagram for the Al1-xRUx system for x < 25 at% Ru. Dotted lines indicate the 

equilibrium phase structure as determined by Anlage et al. [Anlage et al., 1987]. 

Vertical dotted lines show the AI0 Ru and Al 13 Ru4 phases. A dotted region in the 

upper right corner shows equilibrium between another Al-Ru compound and the 

liquid phase. 
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librium phase diagram, Figure 3.1. An increase in the quench rate results in the 

formation of a metallic glass [Bendersky and Ridder, 1986}. In fact, Bendersky and 

Ridder use their experimental results to arrive at the following conclusions: (i) The 

icosahedral phase forms by homogeneous nucleation in the liquid during a rapid 

quench, {ii) The possible topological similarities between the liquid and icosahe­

dral phase can explain the low nucleation resistance of the icosahedral phase, and 

{iii) An Al-Mn glass may not be a configurationally frozen liquid but instead, a 

nano-icosahedral phase. 

In Part II of this thesis we arrive at the same conclusion as point {i). In Part III 

we shall discuss a model of a predominantly icosahedral material that uses point {ii) 

as its starting hypothesis (i.e., that there is a similarity in the short-range structure 

of the liquid and icosahedral phase). Conclusion (iii) is the concept that originally 

motivated this research (i.e., that a theory of the structure of metallic glasses can 

be based on a frustrated packing of noncrystallographic structures), but will not be 

discussed here. 

Because many of the rapidly quenched Al-Ru samples contained three phases, 

we cannot represent the results of our experiments on a single equilibrium or 

metastable equilibrium [Perepezko and Boettinger, 1983} binary phase diagram. 

One must apply a few simple rules to understand and use this nonequilibrium 

phase diagram. First, the diagram can be used only to determine the solid end 

products that would result from a rapid quench (by the piston and anvil method) 

of the liquid down to room temperature. Secondly, any solid phase that forms in 

the course of the quench will be preserved at lower temperatures. This means that 

solid phases will accumulate during the quench, since they do not have time to 

decompose into their "equilibrium" products at lower temperatures {unless they 

transform polymorphically). 

As a simple application of these rules, consider the results of a rapid quenching 
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experiment performed on an Al80Ru20 liquid. Upon quenching the liquid from high 

temperature, the first solid phase to form is Al 13 Ru4. This phase forms during 

the excursion through the two-phase liquid+Ali3Ru4 region. Upon further cooling, 

the Al-Ru icosahedral phase will form exclusively from the liquid. The result of 

the quench is then a two-phase mixture of Al13Ru4 and Al-Ru icosahedral phase. 

Close examination of this diagram shows that it is impossible to obtain a single 

phase icosahedra] AJ-Ru sample through rapid quenching by the piston and anvil 

technique. 

The horizontal tie line representing the peritectic formation temperature of 

icosahedral Al-Ru is estimated from the nonequilibrium melting measurements of 

Knapp and Follstaedt [Knapp and Follstaedt, 1987a]. In their experiments, thin 

films of single phase icosahedral Al-Ru are produced on a sapphire substrate [Foll­

staedt and Knapp, 1987a; 1987b] and then rapidly annealed by a scanning electron 

beam. The films are annealed and quenched at rates of~ 5 x 106 K/sec and 2 x 106 

K/sec, respectively, so that no solid state transformations are possible [Knapp and 

Follstaedt, 1987a]. By carefully controlling the peak temperature achieved in the 

films and observing the resulting microstructure, Knapp and Follstaedt have de­

termined that the temperature at which the free energy of the Al-Ru liquid equals 

the free energy of the icosahedral Al-Ru solid is 1230±40°C [Knapp and Follstaedt, 

1987b]. This temperature, sometimes referred to as T 0, represents the temperature 

at which the solid icosahedral Al-Ru undergoes polymorphic melting. We have used 

this temperature as an upper bound of the icosahedral Al-Ru peritectic point. 

The fact that To represents an upper bound on the peritectic formation tem­

perature of icosahedral Al-Ru can be seen from Figure 3.6. At T=To, the system 

is a two-phase mixture of Al13 Ru4 and Al-rich liquid, with compositions and con­

centrations given by the common tangent shown. The Al81 Ru 19 icosahedral phase 

has a Gibbs free energy well above the common tangent. At T = Tp < T 0 , the 
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Figure 3.6 Schematic Gibbs free energy versus Ru composition for liquid Al-Ru, 

icosahedral Al-Ru and Al13Ru4 . The icosahedral phase begins to form peritectically 
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Als1 Ru19 free energy first breaks through the common tangent and it begins to 

form peritectically. 

3.3 Ruthenium Segregation to the Icosahedral Grains 

By examining the microstructure of rapidly quenched Al-Ru alloys, we can 

deduce an interesting fact about how the icosahedral phase forms from the liquid. 

3.3a Sample Morphology 

The icosahedral phase was found by TEM or x-ray analysis in all of the rapidly 

solidified alloys studied. Figures 3.7 and 3.8 show the general morphology of two of 

these rapidly solidified alloys. Analytical STEM analysis of the icosahedral phase 

particles showed that they contain concentrations of ruthenium well above the nom­

inal composition of the alloy, and the surrounding matrix is depleted in ruthenium. 

The particles in rapidly quenched Al90 Ru10 (Figure 3.7), Alo2.5 Ru1.s and 

Al9sRu5 , show the characteristic rosette structure seen in most other Al-transition 

metal icosahedral phase-forming systems. On the other hand, particles of the icosa­

hedral phase in Al97.5 Ru2.5 (Figure 3.8) do not form rosettes, but have a simple 

equi-axed shape. This change in morphology is explained by the eutectic feature in 

Figure 3.5. The rapidly quenched alloys Ali-xRux with 3 < x < 14 at% Ru will 

form the icosahedral phase directly from the Al-rich liquid, and subsequently form 

an Al-Ru solid solution at a lower temperature. For the Alo1.5 Ru2.s alloy, how­

ever, the Al-Ru solid solution forms first. The Al-Ru icosahedral phase then forms 

at a lower temperature in the "puddles" of excluded Ru in the frozen Al matrix. 

This lower formation temperature and the constrained geometry accounts for the 

difference in shape of the icosahedral particles. 

X-ray diffractometry (XRD) of rapidly solidified AlsGRu14 showed the presence 

of both the Al-Ru icosahedral phase and the Al-Ru FCC solid solution. An XRD 

pattern of rapidly quenched Al85 Ru15 showed that Al, the Al-Ru icosahedral phase 
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--0.1 pm 

Figure 3. 7 Bright field image from piston and anvil quenched Alo0Ru10 showing 

the rosette shaped icosahedral particles surrounded by aluminum matrix. An arrow 

shows the approximate location where the fivefold diffraction pattern (inset) was 

obtained. 
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Figure 3.8 Bright field image from piston and anvil quenched Al0u;Ru2.5 showing 

the equi-axed icosahedral particles surrounded by an aluminum matrix .. 
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and A}i3Ru4 were all present in substantial amounts. Finally, XRD analysis of 

rapidly quenched Al80Ru20 revealed that the alloy is mostly Al13Ru4 with a smaller 

amount of icosahedral material. In all of the alloys studied, we have never found an 

example of single phase icosahedral phase material being made by liquid quenching. 

3.3b Ruthenium Segregation 

The strong segregation of Ru to particles of the icosahedral phase implies a 

large diffusivity for Ru in the melt. If we define a diffusion length r.i such that all 

Ru in excess of the matrix solubility diffuses over this length to a particle of the 

icosahedral phase, we have the relationship 

(
Xi - Xo)l/3 

rd = rp ' 
x-xo 

where rp is the radius of the (spherical) icosahedral particle, Xi is its concentration 

of Ru, x is the Ru concentration in the bulk alloy, and x0 is the solubility of Ru in 

the AI matrix. Through x-ray chemical analysis we have found the concentration 

Xi =0.19 for all alloys with Ru concentrations, x, between 0.025 and 0.10. We have 

measured rp for the largest particles found in TEM micrographs of each alloy. (The 

size distribution of icosahedral particles is rather sharp and is skewed towards small 

particle sizes. For diffusion analysis, we chose to consider the largest particles 

because it is most likely that they formed early and were least affected by the 

diffusion fields of neighboring particles.) We find that the volume of the largest 

icosahedral phase particles present increases linearly with Ru concentration x. A 

value of xo=0.024 was determined as the concentration at which the volume of 

icosahedral phase particles extrapolates to zero (i.e., the concentration at which 

only the Al-Ru solid solution is present). From the formula above, we calculate 

rd ~ 0.5 µm for all alloy compositions between x = 0.025 and x = 0.10. Assuming 

a diffusion time of 10-4 seconds during the rapid cooling [Kroeger et al., 1982], 
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we deduce a diffusivity for Ru on the order of 10-5cm2 /sec. This high diffusivity 

indicates that the icosahedral phase forms directly from the liquid. 

3.4 Conclusions 

The high diffusivity of Ru during icosahedral phase formation in the rapid 

quench implies that the Al-Ru icosahedral phase grows directly from the melt. From 

Figure 3.1 one sees that the Al-Ru icosahedral phase nucleates first from the melt 

for alloys Ali-xRux, with 3 :::;: x :::;: 14 at% Ru. With the absence of pre-existing 

nuclei, this means that the icosahedral phase nucleates homogeneously from the 

melt. 

In Chapter 1 it was shown that many metallic systems display noncrystallo­

graphic, and in particular, icosahedral, clustering on atomic length scales. It may be 

that icosahedral clustering occurs in supercooled liquid Al-Ru and the icosahedral 

phase nucleates from the larger fluctuating clusters. Is this kind of short-range order 

a necessary prerequisite for the formation of an icosahedral phase? We shall answer 

this question in Section III by examining the thermodynamics of a predominantly 

icosahedral material, i.e., one that is endowed with short-range icosahedral order. 



-43-

III. A Theory of Icosahedral Phase Formation 

Chapter 4 The Predominantly Icosahedral Material 

4.1 Icosahedral Short-Range Order and Icosahedral Phase Formation 

In Chapter 1 it was mentioned that extensive icosahedral clustering has been 

observed on the atomic length scale in large unit cell intermetallic crystals. Icosa-

hedral clusters are also believed to exist in supercooled liquid metals and rapidly 

quenched metallic glasses. Since the icosahedral phase is normally formed upon 

rapid quenching of the liquid, it may nucleate on the icosahedral clusters present in 

the supercooled liquid. If this is the case, then icosahedral clustering is a necessary 

prerequisite for formation of the icosahedral phase. 

In Part III, we shall discuss a model material which is endowed with only 

short-range icosahedral order, in analogy with a supercooled liquid metal. We shall 

study the behavior of this model material as a function of temperature and show 

that there exists a high-temperature, disordered phase as well as a low-temperature 

phase with enhanced short-range icosahedral order. The behavior of this model is 

then compared to the measurements presented in Part II, and numerical values for 

several key quantities will be calculated. 

The results of Part III are summarized in a paper delivered to the International 

Workshop on Quasi-crystals, held in Beijing, China, during September, 1987 [An­

lage, 1987]. In Appendix I, we give a brief review of the curved space description 

of amorphous materials. Our concept of a predominantly icosahedral material is 

based on the curved space description of an icosahedral metallic glass. 

4.2 The Physical Picture 

The model of a predominantly icosahedral material {PIM) consists of two com­

ponents. These are the order parameters which describe the two kinds of ordering 

present in an icosahedral material. 
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Icosahedral Order 
Defects 

Figure 4.1 Schematic physical picture of the predominantly icosahedral material. 

Regions of high local icosahedral order are separated by linear defect structures. 
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To help visualize the theory, a schematic diagram of a PIM is shown in Figure 

4.1. The PIM is characterized by small regions in which the atoms cluster into units 

having short-range icosahedral symmetry. These regions need not be thirteen-atom 

icosahedral clusters; several shells of atoms with icosahedral symmetry are also 

possible. Such clusters are commonly found in alloy systems with two or more 

atoms of different sizes. We shall define an icosahedral order parameter as having a 

large value in the vicinity of these icosahedral clusters. Since the icosahedral units 

cannot pack together to fill space, there must be some regions between them where 

there is little or no icosahedral order. In Section 4.4 we shall see that these regions 

are, in fact, linear features and will be called disclination lines, since they represent 

a rotational anomaly about the line. Thus a PIM can be succinctly described as 

regions of local icosahedral order broken up by defect line structures. 

Unlike melting, where grain boundaries, interfaces and surfaces catalyze the 

phase transition, the freezing of a predominantly icosahedral material can be prof­

itably modelled as a defect-mediated phase transition. Using the icosahedral order 

parameter and its defects, we can construct a theory for the thermodynamics of a 

PIM in analogy with the Ginzburg-Landau (GL) theory of superconductivity. In the 

GL theory, one expands the energy of the system near the transition temperature in 

powers of a "small" order parameter, and includes terms for the energy associated 

with any external fields that may be present. The Ginzburg-Landau theory of PIM 

exhibits a first order phase transition between a high-temperature disordered phase 

and a low-temperature ordered state. We shall study this transition and the two 

phases which it separates. 

4.3 Local Icosahedral Order Parameter 

A local icosahedral bond orientational order parameter has been developed by 

Steinhardt and Nelson. The first step is to identify the bonds (with midpoint f) 

between a given atom and all of its neighbors. A simple set of order parameters can 
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be defined as the spherical harmonics Yi.m (f) of each bond with respect to a fixed 

coordinate system [Steinhardt et al., 1981]. When these quantities are averaged over 

all the bonds in an isotropic liquid, one expects all of the (Y1,m) to vanish except 

for Y0 ,0 • For a system with cubic point group symmetry, one finds non-zero values 

for (Y4.m), (Yo,m), (Ys.m), etc. [Nelson and Toner, 1981]. In the thirteen-atom 

icosahedral cluster, one finds the first non-zero order parameters with Y G,m • A 

somewhat more sophisticated local orientational order parameter, which takes into 

account both orientational and translational order, was later developed by Nelson 

and Widom, using the curved space description of amorphous materials [Nelson and 

Widom, 1984]. As discussed in Section 1.4, five perfect tetrahedra wrapped around 

a common edge will leave a deficit angle of about 7° (see Figure 1.3). If space can be 

curved in such a way as to close up this deficit angle, then a tetrahedral tesselation of 

space may then be possible. Nelson used such a tesselation, originally proposed by 

Coxeter [Coxeter, 1973], known as polytope {3,3,5}. The Schlafl.i symbol [Coxeter, 

1973] for a tetrahedron is {3, 3}, denoting an object with three equilateral triangles 

that meet at a single point (in 3-dimensions). Polytope {3, 3, 5} is a regular object 

with five perfect tetrahedra meeting along a common edge (in 4-dimensions). 

Atoms can be assigned to the 120 vertices of polytope {3, 3, 5} to produce a 

tetrahedral tesselation of curved 3-dimensional space. Figure 4.2 shows an "ex­

ploded view" of polytope {3, 3, 5}, made by taking 3-dimensional cross sections at 

different values of the fourth coordinate. This ideal tesselation consists of a central 

atom surrounded by icosahedral, dodecahedral, larger icosahedral and icosidodeca­

hedral shells. The environment of each vertex of polytope {3, 3, 5} is equivalent, and 

this local environment will represent what we expect to find in an ideal icosahedral 

material. 

We now introduce a quantitative measure for comparing a local configuration 

of atoms to the ideal structure of polytope {3, 3, 5}. Nelson and Widom [Nelson 
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Figure 4.2 Polytope {3, 3, 5} seen in an exploded view as a series of 3-dimensional 

cuts through the 4-dimensional sphere S3 (represented as a semicircle on the left). 

As the fourth coordinate, z, varies from 2 to 0, the cuts reveal a point (z=2), an 

icosahedron (z=r), a dodecahedron (z=l), a larger icosahedron (z=r- 1 ), and an 

icosidodecahedron (z=O). 
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and Widom, 1984] proposed that a given atom and its nearest-neighbors be pro­

jected onto the surface of the 4-dimensional sphere 83 based at the site of interest. 

This projection is then compared to a polytope {3, 3, 5} of the same radius. A 

quantitative measure of how closely these two structures agree can be made by 

comparing the expansion coefficients of the projected particle density p(u) in terms 

of the 4-dimensional spherical harmonics Y n.mpu:i 

p(u) = L Qn.m1m:i Y:.m1m:i (ft), (4.1) 
11.1111111:1 

where ii is a point on the sphere S3 , n is the principal quantum number and -n/2 :::; 

m 1 , m2 :::; n/2. Since the 4-dimensional spherical harmonics are orthonormal on the 

sphere S3 , we can invert to find the expansion coefficients 

The order parameter Q11.mt1n:i can be compared to that of the ideal icosahedral 

structure of polytope {3, 3, 5}, to determine the degree of local icosahedral ordering 

present at the site. Nelson and Widom [Nelson and Widom, 1984] have constructed 

a quantity analogous to the scattering structure factor for polytope {3, 3, 5}. As 

with Bragg scattering from an ordinary crystal, there is a discrete set of reciprocal 

lattice vectors having non-zero scattering intensity from polytope {3, 3, 5}. The first 

such non-zero scattering amplitude is for n=12 [Nelson and Widom, 1984], so that 

Qi2.1111111 , is a special term in the density expansion (4.1). Because of this, we shall 

use Qi2,mim:i (-6:::; mi,m2:::; 6) as our local icosahedral order parameter. 

4.4 Disclination Lines 

The experimentally observed crystalline structures that are the most similar 

to an ideal predominantly icosahedral material are the intermetallic Frank-Kasper 

(FK) phases. The FK phases are simply defined as topologically close-packed in-

termetallic compounds with exclusively tetrahedral interstices between the atoms 

[Sinha, 1972]. Of course, many of these tetrahedra are distorted and irregular. 
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Figure 4.3 An icosahedral cluster of atoms and the Voronoi construction for the 

central atom. 
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0ne can define nearest-neighbor coordination polyhedra using the Voronoi 

method in real space. Figure 4.3 is a nearest-neighbor Voronoi construction for an 

atom in an icosahedral cluster of atoms. With this construction, one can uniquely 

define the nearest-neighbors of a given atom. Once the nearest-neighbors of the 

atom are defined, the coordination polyhedron is formed by the lines joining the cen­

ters of atoms in the nearest-neighbor shell. Because the FK phases have exclusively 

tetrahedral packing configurations, one finds that all faces of the nearest-neighbor 

polyhedra will be triangular (although the triangles may be irregular), and that the 

polyhedron can be broken up into a collection of tetrahedra [Sinha, 1972]. In the 

case of Figure 4.3, the central atom is a common point for the twenty tetrahedra 

that make up the nearest-neighbor coordination polyhedron. Each nearest-neighbor 

bond is a common edge for a discrete number of tetrahedra. In the case of an 

icosahedral coordination, there are exactly five tetrahedra wrapped around every 

nearest-neighbor bond emerging from the central atom. 

Frank and Kasper identified four different kinds of coordination polyhedra in 

the FK phases; coordination number 12 (CN12), CN14, CN15 and CN16 [Frank 

and Kasper, 1958; 1959]. In all of these coordination polyhedra there are only two 

kinds of nearest-neighbor bonds, those surrounded by either five or six tetrahedra. 

Some metastable structures also involve nearest-neighbor bonds surrounded by only 

four tetrahedra. These three types of nearest-neighbor bonds are illustrated in 

Figure 4.4. Bonds surrounded by four or six tetrahedra are not found in icosahedral 

environments and are in the minority in the FK structures. These "anomolous" 

bonds are referred to as disclinations since they represent a rotational anomaly in 

the structure (i.e., a deviation from five in the number of tetrahedra around the 

bond). Since one tetrahedron is either present or missing along these bonds, they 

are referred to as =F72° disclination lines (72° being the dihedral angle of a regular 

tetrahedron). 
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Figure 4.4 The three types of nearest-neighbor bonds; 0°, -72° (extra tetrahe­

dron inserted around the bond) and +72° (missing tetrahedron) disclinations [after 

Nelson, 1983b]. 
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Figure 4.5 The Kasper polyhedra (CN14, CN15, CN16) and Bernal holes (CNlO, 

CN9, CNS) along with their representations in terms of disclination lines [after 

Nelson, 1983b]. 



-53-

All of the coordination polyhedra commonly found in known intermetallic com­

pound crystal structures and in metallic glass models are tabulated in Figure 4.5. 

These polyhedra have an equivalent representation in terms of the anomalous discli­

nation lines, also shown in Figure 4.5. It can be shown that these lines form con­

tinuous networks that permeate the solid [Nelson, 1983b]. An example of such a 

continuous network is that for the A15 (A3B) structure (Figure 4.6). Here, the A 

atoms sit in CN14 sites, whereas the B atoms are all in CN12 sites. The disclination 

lines that run through the A atom coordination polyhedra form three mutually per­

pendicular non-intersecting arrays that end only at the surfaces or grain boundaries 

of the crystal. An icosahedron is composed of twenty distorted tetrahedra which 

meet at a single point. All of the nearest-neighbor bonds of the central atom are 

surrounded by five tetrahedra, so a disclination line must connect only two atoms 

that are not in icosahedral symmetry sites. Disclination lines, in fact, provide an 

alternative shorthand notation for describing the structure of metals. 

The physical picture of a predominantly icosahedral material is now complete. 

The icosahedral order parameter Q12 gives a quantitative measure of the degree of 

local icosahedral ordering in the material. Regions of strong icosahedral ordering 

are broken up by disclination lines, which link atoms that are not in icosahedral 

environments. In the next chapter we shall develop a theory for the thermodynamic 

properties of a predominantly icosahedral material. 
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Figure 4.6 The A15 (A3B) structure with disclination lines running through the 

A atoms in three mutually perpendicular directions [after Sinha, 1972]. 

: 
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Chapter 5 Thermodynamics of a Predominantly Icosahedral Material 

To model the physics of a predominantly icosahedral material (PIM), we shall 

draw upon its close analogy to the Ginzburg-Landau theory of type II superconduc-

tors. Once this analogy has been established, the PIM theory will have been seen to 

have many non-linearities, which make it nearly impossible to attack analytically. 

A numerical study of the model is performed by discretizing the theory, using the 

well-established techniques of lattice gauge theory. 

An alternative derivation of the field theory of a predominantly icosahedral 

material may be found in Appendix IL This appendix elaborates on the theory 

presented in Sections 5.1 and 5.2. 

5.1 Ginzburg-Landau Theory of Superconductivity 

In the Ginzburg-Landau (GL) theory of superconductivity, the order parameter 

is the complex scalar electron condensate wave function t/J. The external field that 

interacts with the condensate is the magnetic field H. The free energy functional 

for a superconductor is [Tinkham, 1975], 

F = _1_ I (-ih'\7- e* A)t/J 12+aIt/;12+IH12+1It/J13+!,6It/;14 + ... , (5.1) 
2m* c 87r 2 

where m* and e* are the effective mass and charge of the electrons, A is the vector 

potential associated with the field H, and a, ,6, 1 are, in general, temperature-

dependent parameters. This energy expansion is valid near the phase transition 

where I t/J I is small. 

Superconductors are characterized by their diamagnetic properties. This is ob­

served through the Meissner effect, i.e., the sudden exclusion (either total or partial) 

of magnetic flux from the bulk of the material as it becomes superconducting. Type 

I materials are characterized by their perfect diamagnetism in the bulk. A type II 

superconductor exists in the mixed state, characterized by a partial penetration of 
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Figure 5.1 Comparison of the type II superconductor and a predominantly icosa­

hedral material. 
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magnetic flux into the bulk !Rose-Innes and Rhoderick, 1978a]. Although Ginzburg-

Landau theories are ordinarily used to describe second order phase transitions, the 

free energy expansion of Equation (5.1) will exhibit a first order phase transition in 

the presence of an external magnetic field !Rose-Innes and Rhoderick, 1978b]. 

5.2 Ginzburg-Landau Theory of a Predominantly Icosahedral Material 

Figure 5.1 illustrates the analogy between a type II superconductor described 

by the GL theory and our physical picture of a predominantly icosahedral material. 

Both theories contain order parameters to describe the long-range order. This order 

is disrupted by linear defects on which the icosahedral order parameter goes to zero. 

Table 5.1 outlines the detailed analogy between the GL and PIM theories. 

Using Table 5.1 as a guide, an energy expansion for the PIM can be written 

down in analogy with Equation (5.1) 

F = ~ L I DµQ12,m 1
2 +o: LI Qi2.m 1

2 +~ IF µv 1
2 +higher order terms. (5.2) 

01 Ill 

The first term in Equation (5.2) involves the covariant derivative, 

DµQ12,m = L [8m,m 101L - iK(Aµ)m,m'] Qi2,m 1 , 

Ill 1 

where K is the coupling constant between the order parameter and disclination line 

fields, and m represents the set { m1, m2}. In analogy with the vector potential of 

the magnetic flux lines, Aµ is the vector potential associated with the disclination 

lines. The third term in Equation 5.2 accounts for the self-energy of the disclination 

line network. As with the electromagnetic contribution to the total energy of a type 

II superconductor, this term involves the absolute square of the tensor, 

In a superconductor, the commutator between different components of the vector 

potential is zero; i.e., the magnetic field is Abelian, meaning that magnetic flux lines 
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Table 5.1 The formal analogy between the Ginzburg-Landau theory of supercon­

ductivity and the gauge field theory of predominantly icosahedral materials (PIM). 

Ginz burg-Landau 

Condensate Wavefunction, t/J 

Abrikosov Flux Lattice 

Meissner Effect 

PIM 

Icosahedral Order Parameter, Qi2.m 1 m 1 

Disclination Line Network 

Disclination Flux Exclusion 
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PIM will be expelled (at least partially). This exclusion of disclination line flux 

will permit long-range ordering to occur in the icosahedral order parameter field. 

Thus the Meissner effect will be analogous to a transition from a high-temperature 

disordered PIM (or liquid) to a low-temperature phase with enhanced short-range 

icosahedral order. 

A more formal derivation and explanation of Equation (5.2) may be found in 

Appendix II. 

5.3 The Discretized Theory 

We can investigate the equilibrium thermodynamics of a predominantly icosa-

hedral material, starting from the partition function 

z = L e-{1 J <l
3

x F(Qu.m(x),A), 

states 

where the sum is over all possible configurations of the order parameter and discli-

nation line fields. This quantity can be effectively calculated using a Monte Carlo 

sampling technique, since only those field configurations near the equilibrium con-

figuration will make significant contributions to the sum. To implement the Monte 

Carlo sampling technique, the energy expansion in Equation (5.2) must be made 

discrete. This is accomplished by using the techniques of lattice gauge theory. 

In recent years, lattice gauge theories have been developed as a means of study-

ing the complicated non-linear properties of the quark-gluon plasma [Rebbi, 1983]. 

In this approach we use a discrete space-time approximation, with the matter field 

placed on the lattice sites of a 4-dimensional hypercubic lattice and the gauge field 

transporters on the links between the sites. We determine a discretized energy 

functional in terms of the lattice site and link variables. The partition function 

and any thermodynamic quantities and order parameters can then be calculated 

approximately by means of Monte Carlo sampling. 
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In this approach we use a discrete space-time approximation, with the matter field 

placed on the lattice sites of a 4-dimensional hypercubic lattice and the gauge field 

transporters on the links between the sites. We determine a discretized energy 

functional in terms of the lattice site and link variables. The partition function 

and any thermodynamic quantities and order parameters can then be calculated 

approximately by means of Monte Carlo sampling. 

The discrete version of the PIM theory can be constructed in direct analogy 

with lattice gauge theory. A discrete cubic lattice is introduced with the icosahedral 

order parameter (Q12 ) on the lattice sites and the disclination line potential (A) on 

the links between the sites. Next, a discretized version of Equation (5.2) is written 

in terms of the lattice site and link variables. 

The covariant derivative term of Equation (5.2) can be easily expressed as the 

difference between the order parameter at site j and the order parameter at site i 

transported back to j (under the influence of the neighboring disclination lines). A 

simple form for this is 

where a is the lattice parameter, and the sum is taken over the nearest-neighbors i of 

site j. The quantity Uji = eiA( xi~x 1 
Ja is called a transporter because multiplication 

by this quantity represents the effect of the disclination lines on the order parameter 

as it is moved from Xi to Xj. The transporter embodies the effect of the disclination 

lines on the order parameter as the order parameter is moved about in space. 

Following Wilson [Wilson, 1974], the third term in Equation (5.2) can be writ­

ten as a sum over plaquettes (i.e., elementary squares of links in the lattice) of a 

function of disclination field transporter products 

(1 - Re Tr(Uo)), 
plaquC'ttes a 
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where U0 is the product of transporters around an elementary square of the lat-

tice, and the trace can be taken in one of several matrix representations of the 

transporters. 

The discretized energy expansion finally becomes 

I n.n. j 
m1 m2 

1 

3 
f(Ua)+ higher order terms, 

plaquettes o 

(5.3) 

where f(Ua) is a function (to be chosen) of the trace of a plaquette product of 

disclination field transporters. 

5.4 Phase Structure of the Predominantly Icosahedral Material 

A Monte Carlo sampling of all the possible configurations of the order pa-

rameter and frustration fields in a calculation of the partition function would be 

astronomically time consuming. In order to reduce the number of available states, 

and the computational labor, we are compelled to reduce the number of degrees of 

freedom available to the site and link variables. These simplifications are physically 

motivated. 

As noted in Section 4.4, all of the defect lines present in topologically close-

packed intermetallic compounds are simple -72° disclinations (i.e., one tetrahedron 

has been added to a nearest-neighbor bond). Analysis of the Bernal holes in metallic 

glasses show that in addition to the -72° disclinations, there are mainly + 72° 

disclination lines present [Nelson, 1983a; 1983b]. With these observations in mind, 

we can restrict the number of possible defect lines to just the disclinations, and 

then among those we shall consider only the 0° (i.e., no disclination) and ±72° 

disclination lines. The spectrum of self energies per unit length that we have chosen 

for the disclinations is given in Table 5.2. The energy-per-unit length of a Kasper 

(-72°) disclination line is called E1. Since the Bernal ( +72°) disclination line is 
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Table 5.2 Values of the energy-per-unit length of all disclination lines used in the 

Monte Carlo simulations. 

Disclination Line 

oo 

- 72° (Kasper) 

+72° (Bernal) 

Energy-per-Unit Length 

(units of E1) 

0 

1.0 

1.1 
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found in metastable structures, it is given a slightly higher (10%) energy-per-unit 

length. This spectrum of self-energies represents our choice of the function f in 

Equation (5.3). 

By considering only the 0° and ±72° disclination lines, and ignoring all the 

other possible defect lines discussed in Appendix II, we hope to reduce the number 

of degrees of freedom available to the system, and still retain the essential physics 

of a predominantly icosahedral material. 

As a consequence of considering only disclination line defects, we can also 

make an important simplification to the order parameter field. Since disclinations 

are defect lines labelled in the form (1, l) E Y' x Y' (where Y' is the double group of 

the icosahedron) [Nelson and Widom, 1984], they can rotate the order parameter 

into only a limited number of new states. Hence, it is not necessary to include the 

entire manifold of the order parameter field in the computation. Because of this, 

we shall simplify the manifold of the order parameter to be just the group Y'. 

In the Monte Carlo simulations of a predominantly icosahedral material, we 

shall consider the order parameter and defect line fields to be independent stochastic 

variables. In an effort to disentangle the physics of the defect lines from that of the 

icosahedral order parameter, we shall consider a predominantly icosahedral material 

with only defect lines, ignoring the order parameter. This model describes a material 

with varying densities of icosahedral clusters, ignoring the possible correlations in 

the orientation of neighboring clusters. It is described by just the third term in 

Equation (5.3). 

The numerical model of a predominantly icosahedral material is now complete. 

On the lattice sites is an icosahedral order parameter field, which can take on values 

given by elements of the discrete double group of the icosahedron Y'. Between the 

sites there exist disorder field transporters whose plaquette products U0 are also 

elements of the group Y'. We have used a Monte Carlo sampling algorithm to 
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Figure 5.2 Cyclic annealing treatment of a 163 lattice with only disclination lines 

present. The internal energy of the disclination lines (in units of Ei) is plotted 

against the dimensionless inverse temperature EI/kn T. 
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study the phase structure of this model material. 

5.5 Results 

In this thesis, we shall consider only the simplest version of the PIM model. 

Consider a PIM with only disclination lines present (i.e., ignore the icosahedral order 

parameter Q 12). This model describes the density of icosahedral short-range order 

in the PIM. By ignoring the icosahedral orientational order parameter Q12 , we will 

not see a phase transition to the long-range orientationally ordered icosahedral solid. 

This long-range ordered solid is expected to be either an equilibrium Frank-Kasper 

phase or the icosahedral phase. 

Nevertheless, this simple model already displays some interesting and non­

trivial behavior. The presence of a disclination line means that a set of atoms 

on that line are not surrounded by an icosahedral cluster. Hence, the disclination 

line density is a measure of the extent of local icosahedral site symmetry in the 

material. In what follows, we shall examine a PIM described by only the third term 

in Equation (5.3). 

In order to distinguish two phases of the model, which are separated by a 

transition, we must evaluate several numerical order parameters. The simplest 

order parameters to evaluate are the average internal energies calculated in Equation 

(5.3). We examine the first and third terms in Equation (5.3) separately. The third 

term of Equation (5.3) is just the energy associated with the defect line threading 

through the plaquette, averaged over the entire lattice. 

To deduce the phase structure of the PIM model, we must evaluate order 

parameters that distinguish all of the phases. The phase transitions are then recog­

nized as points where the order parameter or its derivatives are discontinuous. These 

phase transitions can be found most conveniently by performing a cyclic annealing 

treatment on the model and monitoring the order parameter and its temperature 

derivative. Once a phase transition is found, it can be isolated and characterized 
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Figure 5.3 Disclination line internal energy (in units of Ei) is plotted against Monte 

Carlo update number for a 163 lattice with only disclination lines on the links. 

These annealing treatments are carried out both above and below the transition 

temperature. 
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by performing mixed initial configuration runs near the transition temperature. 

Figure 5.2 shows a cyclic annealing run between .BE1 ( = EI/kn T) = 0 to 2.4 

and back to 0. The order parameter is the internal energy (in units of E1) due to 

just the disclination lines (i.e., the third term in both Equations 5.1 and 5.3). In 

this version of the model the disclination lines alone produce the observed first order 

transition around .BE1 ~ 2. The transition was isolated by starting the system in a 

mixed initial configuration. A half block of the lattice links were set to the identity 

element (i.e., no disclinations are present through the plaquettes) and the links in 

the other half block were assigned randomly. The system is then annealed for a 

long period of time until the entire lattice settles into one of the two competing 

states. Such annealing treatments have been used to place limits on the transition 

temperature, 2.02397 < (.BEi)c < 2.02398 (see Figure 5.3). 

The high-temperature phase is characterized by a high density of disclination 

line defects. This high density of defects implies that many of the atomic sites are 

not icosahedral symmetry sites. This high-temperature phase may then represent a 

liquid or cubo-octahedral crystalline solid. On the other hand, the low-temperature 

phase has very few disclination lines, implying that most of the atoms sit in icosa­

hedral environments. However, it is known that a finite density of disclination lines 

must always be present in a real material [Nelson, 1983b]. Nelson estimates that the 

mean number of tetrahedra around the nearest-neighbor bonds of a real material 

must be approximately 5.1, rather than 5.0 as in a disclination-free phase. The 

low-temperature phase of the predominantly icosahedral material model does not 

satisfy this requirement. In fact, this freezing transition is equivalent to studying 

the transition from a randomly curved space (high-temperature phase) to the uni­

formly curved space of polytope {3, 3, 5} (low-temperature, disclination-free phase). 

A more realistic low-temperature phase will be found if an "external curvature field" 

is applied to the system. This must be done to ensure that the ground state phase 
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has an average of 5.1 tetrahedra surrounding the nearest-neighbor bonds. 

The model predicts a phase transition from a high-temperature (icosahedrally) 

disordered phase to a low-temperature phase with extensive icosahedral site sym­

metry. Although the low-temperature phase cannot be said to be the icosahedral 

phase, it does have a high density of CN12 coordination sites. The identification of 

an icosahedral phase will come only when the correlations of both the disclination 

lines and the icosahedral order parameter are examined. With these reservations, 

in Chapter 6 we shall compare the calculated phase transition of a PIM with icosa­

hedral phase formation from the melt, and fix a value for the parameter E1 in the 

theory. 
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Chapter 6 Comparison of Theory and Experiment 

6.1 Fixing Theoretical Parameters 

By comparing the results of annealing treatments on the model predominantly 

icosahedral material (PIM) with experimental results for icosahedral phase forma­

tion, we can fix the parameter E1. The first order phase transition observed in the 

PIM model is qualitatively similar to the formation of the icosahedral phase from 

a rapidly quenched liquid metal. Anlage et al. [Anlage et al., 1987] have estimated 

that the peritectic formation temperature of icosahedral Al-Ru is about 1500K. Us­

ing the calculated value of (,8E1)c, we find that E1 ~ -! e V /nearest-neighbor bond 

distance is the energy-per-unit length of a Kasper disclination line in Al-Ru. 

The latent heat of the freezing transition can be estimated from Figure 5.3. We 

find that AHc ~ 0.8E1 {since .!l{PV) = 0). With the above value of E1, the latent 

heat amounts to about 0.2 eV /site in Al-Ru. Richards' rule [Swalin, 1962] says that 

the latent heat per site for ordinary melting of a typical elemental metal is about 

0.2 eV /site. This agreement is fortuitous for several reasons. First, the absence of 

disclination lines in the low-temperature phase means that it has an unphysically 

low entropy. Correcting this will decrease the calculated value of A He. In addition, 

the phase transition does not include the contribution that wil1 come from the long­

range ordering of the icosahedral order parameter Q12 . When this is included, it 

will increase the calculated value of AHc. 

6.2 Summary and Conclusions 

There is substantial experimental and theoretical evidence for the existence of 

icosahedral local order in many metallic systems (both solid and liquid). Icosahedral 

clustering was conceived as a speculative explanation for the supercooling proper­

ties of liquid metals and the formation of metallic glasses. It received experimental 

substantiation through a number of different observations, including the identifica-
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tion of icosahedral coordination shells in large unit cell crystals and the existence 

of rapidly quenched alloys with icosahedral point group symmetry extending over 

substantial length scales. Computer simulations of small metallic clusters have also 

provided clear evidence for local icosahedral ordering. 

We have observed the formation of a long-range ordered icosahedral phase from 

a rapidly quenched liquid metal. In an attempt to explain this observation, we 

propose a model predominantly icosahedral material (PIM). This PIM is endowed 

with short-range icosahedral order just like that believed to exist in supercooled 

liquid metals. To describe the structure of a predominantly icosahedral material, it 

is most convenient to replace the atomic structure with the equivalent coordination 

polyhedra and then analyze the statistical character of these polyhedra. One then 

finds that most of the nearest-neighbor bonds (which pass through the face centers 

of the coordination polyhedra) are defined by five tetrahedral clusters of atoms 

that share a common edge. Most of the remaining nearest-neighbor bonds are 

surrounded by four or six such tetrahedral clusters. The latter, anomolous bonds, 

are called disclination lines and they form a continuous network, which permeates 

the material. We now regard the predominantly icosahedral material as a uniform 

"icosahedral backround" (where the nearest-neighbor bonds are the common edge 

of five tetrahedral clusters) interrupted by disclination line defects. 

The theory can be formalized by introducing Nelson's local icosahedral order 

parameter. The local atomic configuration is projected onto the surface of the 

four-dimensional sphere S3 and compared to the ideal local icosahedral structure of 

polytope {3, 3, 5}. The local icosahedral order parameter takes on values from a lim­

ited manifold of states. By physical arguments, we find that the ±72° disclinations 

are the most interesting defects in a predominantly icosahedral material. 

Drawing on ideas from field theory, we can replace the line defects by a disorder 

field. A line defect is uniquely described by the product of disorder field transporters 
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on a loop around the line. The field theory reduces the structure of a PIM to an 

order parameter field and an associated disorder field. 

By analogy with the well-known gauge theories of physics (in particular, the 

Ginzburg-Landau theory of superconductivity), we propose a free energy functional 

to describe the PIM. Once the theory is constructed, it is then straightforward to 

investigate the equilibrium thermodynamic properties of the system by means of a 

modified Monte Carlo lattice gauge theory analysis. The theory predicts a first order 

phase transition from a high-temperature (icosahedrally) disordered phase to a low­

temperature phase with a high density of icosahedral atomic environments. Because 

the low-temperature phase has some of the properties of an icosahedral phase, we use 

the results of the theory to give a qualitative description of the liquid-to-icosahedral 

phase freezing transition. The energy-per-unit length of a Kasper disclination line 

in Al-Ru is found to be approximately :i eV /nearest-neighbor bond distance. 
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Appendix I The Curved Space Description of Amorphous Materials 

Over the past 10 years, a conceptual theory of metallic glass structure has 

been developed, based on the axiom of local icosahedral clustering in metals. The 

development has been led by the seminal works of Sadoc and Kleman. Their ideas 

about the structure of noncrystalline materials can be (quite generally) summarized 

as follows [Sadoc, 1981; Kleman and Sadoc, 1979]; 

1. There is a well defined local order in noncrystalline materials. 

2. There is an incompatibility between the symmetry of this local order and the 

properties of Euclidean space (i.e., topological "frustration"). 

3. Appropriately chosen curved spaces can be tesselated (i.e., filled without leaving 

any gaps or holes) with a unit cell having the forbidden local order symmetry. 

4. The disorder which is present in noncrystalline solids is due to the projection 

(i.e., flattening process) from curved space to Euclidean space. 

In the particular case of an icosahedral metallic glass structure, the well defined 

local order is that of an icosahedral cluster. An icosahedral cluster of thirteen atoms 

is energetically favored over similarly sized clusters of cubo-octahedral symmetry 

[Frank, 1952]. The incompatibility of icosahedral symmetry with the properties of 

Euclidean space is well known [Hamermesh, 1962; Kittel, 1976; Burns, 1985]. The 

competition between a minimum energy configuration of atoms and the necessity 

of filling space without leaving holes is a form of topological frustration, and can 

force the material into a noncrystalline state. 

Kleman and Sadoc [Kleman and Sadoc, 1979] recognized that an appropriately 

chosen curved space could be tesselated with an icosahedral "unit cell." In three­

dimensional Euclidean space, five perfect tetrahedra wrapped around a common 

edge do not close, but leave a deficit angle of about 7° (see Figure 1.3). By choos­

ing the appropriate radius, the surface of the sphere S3 (which is a finite, curved 

three-dimensional space) can be curved just enough to close up this deficit angle 
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and produce a perfect icosahedral tesselation. The curved space that Sadoc chose 

is a decoration of the four-dimensional sphere 83 with a collection of vertices, each 

of which has a perfect icosahedral coordination shell. Its name, polytope {3, 3, 5}, 

describes in Schoenflies notation a regular object having five tetrahedra ( {3, 3}) 

wrapped around every nearest-neighbor bond (see Figure 4.2). In fact, one can 

use the mean number of tetrahedra wrapped around a nearest-neighbor bond as a 

measure of the local "curvature" of space. Polytope {3, 3, 5} represents the ideal 

frustration-free packing of equal size spheres with minimum potential energy (as­

suming two-body, central forces) and will serve as a standard to which we compare 

the local structure of an icosahedral metallic glass. 

The atomic structure of a real metallic glass can be obtained by projecting 

the ideal structure of polytope {3, 3, 5} onto Euclidean space. Kleman and Sadoc 

[Kleman and Sadoc, 1979] proposed that this projection could be accomplished by 

introducing defect structures to "de-curve" the space (i.e., to change the average 

number of tetrahedra wrapped around the nearest-neighbor bonds). These defects 

are called disclination lines and are coincident with nearest-neighbor bonds that in­

volve a deviation from five in the number of tetrahedra wrapped about the bond (see 

Figure 4.4). In an icosahedral coordination shell, all of the nearest-neighbor bonds 

emanating from the central atom are surrounded by five tetrahedra. A - 72° ( + 72°) 

disclination line corresponds to that nearest-neighbor bond being surrounded by six 

(four) tetrahedra (72° being the dihedral angle of a regular tetrahedron). By adding 

an appropriate density of disclination lines, one can effectively change the local cur­

vature of space and "flatten out" polytope {3, 3, 5} into Euclidean space. 

Thus in the Sadoc-Kleman view, a metallic glass is described as a set of par­

tially overlapping polytopes flattened out into Euclidean space by the introduction 

of disclination lines. This flattening process will destroy any translational order in 

the final projection, but it will preserve orientational order. Thus, in its simplest 
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form, the Sadoc-Kleman theory is naturally suited for orientationally ordered non­

crystallographic materials such as the icosahedral phase, but not for a more highly 

disordered structure like a metallic glass. For a review of work on the curved space 

description of amorphous materials, see the paper by Venkataraman and Sahoo 

[Venkataraman and Sahoo, 1985]. 
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Appendix II A Field Theory of Local Icosahedral Order in Metals 

In this appendix we shall develop a structural description of predominantly 

icosahedral materials by focusing on the most disordered metallic solid, the metallic 

glass. A description of the structure of a metallic glass in terms of the detailed 

arrangement of all the atoms is an overwhelmingly complex task, and once it is 

completed, may not provide any unique insight about the material. We must find 

a way of organizing the structure of the glass to reduce the number of degrees of 

freedom needed to specify it completely. In this appendix, our premise is that a 

predominantly icosahedral material can best be described as a uniform icosahedral 

backround whose structure is locally like that of polytope {3, 3, 5}. In addition, 

disclination line defects must be present to accomodate the difference in curvature 

between Euclidean space and the curved space of polytope {3, 3, 5}. The properties 

of the material are then largely determined by the interaction and dynamics of the 

defect lines. 

We can achieve an approximate description of an icosahedral metallic glass 

structure by two routes, one being more physical than the other, but both using 

the curved space description of noncrystalline materials (see Appendix I). The first 

(and more physical) approach involves replacing the atomic structure with a set of 

nearest-neighbor polyhedra and then focusing our attention on all nearest-neighbor 

bonds in these polyhedra not surrounded by five tetrahedra, regarding the rest of the 

material as an undistorted backround. A second route is more formal and involves 

the use of polytope {3, 3, 5} as a model of the local atomic structure in a glass. An 

icosahedra] order parameter can be defined at every atomic site in the metal by 

projecting the local atomic configuration onto a sphere S3 and comparing it with 

polytope {3, 3, 5}. We apply homotopy theory to the order parameter manifold and 

find a large set of stable line defects, including the familiar disclinations. Thus, 

by this formal route, we arrive at a more general description of the stable defects 
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present in a predominantly icosahedral material. 

A2.1 Physical Description 

Frank and Kasper [Frank and Kasper, 1958; 1959] identified a large class of 

compounds with exclusively tetrahedral interstices, now commonly referred to as 

the Frank-Kasper phases. They also identified a set of four coordination polyhe­

dra commonly found in these intermetallic crystal structures (called CN12, CN14, 

CN15, CN16). These coordination polyhedra are labelled by the number of nearest­

neighbors surrounding the central atom. The polyhedra contain a majority of 

nearest-neighbor bonds surrounded by five tetrahedra {the CN12 polyhedron has 

exclusively fivefold coordinated bonds emanating from the central atom). The other 

nearest-neighbor bonds are surrounded by six tetrahedra and hence can be identi­

fied with -72° disclination lines (i.e., an extra tetrahedral wedge has been inserted 

around the nearest-neighbor bond). Bernal [Bernal, 1965] has analyzed the struc­

ture of monatomic hard sphere potential models of metallic glass and identified three 

additional common polyhedra (called the Bernal holes), CNS, CN9 and CNlO. In 

these polyhedra, some of the nearest-neighbor bonds have had a tetrahedral wedge 

removed, hence they become +72° disclination lines. It can be shown [Nelson, 

1983] that the positive and negative disclination lines form a continuous network 

which permeates the structure (for an example, see Figure 4.6). Thus, to a first 

approximation, the atomic structure of a metallic glass can be replaced by a set 

of coordination polyhedra. The next approximation is to replace the polyhedra 

with just the disclination lines between atomic sites, regarding the fivefold nearest­

neighbor bonds as "normal." The atomic structure has now been replaced with a 

network of lines along anomalous (i.e., non-fivefold coordinated) nearest-neighbor 

bonds. This system has many fewer degrees of freedom than the original structure 

and will serve as our physical description of a predominantly icosahedral material. 
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A2.2 Formal Description 

One can arrive at essentially the same description of a predominantly icosahe-

dral material as in Section A2.1 by much more formal (and general) means. Consider 

again the atomic structure of a metallic glass. We wish to define an icosahedral or-

der parameter by comparing the local configuration surrounding a particular site 

with that surrounding the vertex of the ideal structure of polytope {3, 3, 5}. To do 

this, Nelson and Widom [Nelson and Widom, 1984] suggest that the nearby atoms 

be projected onto the surf ace of a sphere 83 based at the site of interest and com-

pared directly with a polytope {3, 3, 5} of the same radius. A quantitative measure 

of how closely these two structures agree can be made by comparing the expansion 

coefficients of the projected particle density p(u) in terms of the four-dimensional 

spherical harmonics Yn.m 1 m 2 ; 

p(u) = L Q11.m1m2 Y~.11111112 (ft), (A2.1) 
11.11111112 

where u is a point on the sphere S3 , n is the principal quantum number and -n/2::; 

m 1 , m2 ::; n/2. Since the four-dimensional spherical harmonics are orthonormal on 

the sphere 83 , we can invert to find the expansion coefficients; 

(A2.2) 

The order parameter Q11 .m 1 m 2 can be compared to that of the ideal icosahedral 

structure of polytope {3, 3, 5}, to determine the degree of local icosahedral ordering 

present at the site. Nelson and Widom [Nelson and Widom, 1984] have constructed 

a quantity analogous to the scattering structure factor for polytope {3, 3, 5}. As 

with Bragg scattering from an ordinary crystal, there is a discrete set of reciprocal 

lattice vectors having non-zero scattering intensity from polytope {3, 3, 5}. The first 

such non-zero scattering amplitude is for n=12 [Nelson and Widom, 1984], so that 

Qi2, 11111112 is a special term in the density expansion of Equation {A2.1). Because 
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of this, we shall use the 13 x 13 matrix Qi2,m 1 m 2 , -6 :S mi,m2 :S 6, as the local 

icosahedral order parameter. 

The object used to define the icosahedral order parameter, polytope {3, 3, 5}, 

has as its symmetry group Ga 7200 element subgroup of 80(4) [Nelson and Widom, 

1984]. Because any of the operations of the group G can be applied to polytope 

{3,3,5} and give the same value for the order parameter, there is some internal 

freedom in our description. We can systematically exploit this internal freedom in 

two ways. First we shall use homotopy theory to enumerate the types of defects 

present in the icosahedral medium [Mermin, 1979; Nelson and Widom, 1984]. Then, 

in Section A2.4, we shall use this internal symmetry as the basis for a physical theory 

of the properties of an icosahedral metallic glass. 

In preparation for an analysis of the stable defect structures in an icosahedral 

metallic glass, we must represent the order parameter manifold as a simply con­

nected coset space. The symmetry group of the sphere S3 is 80(4). The symmetry 

group of the order parameter, (A2.2), is that of S3 reduced by the symmetry group 

G of polytope {3, 3, 5} (i.e., this is the group of operations which will take any 

value of the order parameter into any other possible value). Thus the symmetry of 

the order parameter is the coset space S0(4)/G. The combination algebra of line 

defects (point defects and wall defects are not stable) in this medium is given by 

the fundamental group of the order parameter symmetry group [Mermin, 1979]; 

11\(80(4)/G) = 7ri(SU(2) x SU(2)/G'), 

where G' is the lift of G into SU(2). Hence [Nelson and Widom, 1984], 

7ri(S0(4)/G) = Y' x Y'. 

Thus the combination algebra for line defects in an icosahedral medium is given by 

the product group Y' x Y', where Y' is the 60 element icosahedral point group lifted 

into SU(2) {i.e., the double group of the icosahedron). The elements of Y' x Y' can 
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be labelled by (l,r) where l and r are seperately chosen from the group Y'. All 

elements of the form (l,l) are disclinations [Nelson and Widom, 1984], and a subset 

of these are the -72° and +72° disclinations identified in Section 4.4. 

We now have a formal description of the structure of an icosahedral metallic 

glass. At each atomic site there is an icosahedral order parameter which has been 

calculated by projecting the surrounding structure to S3 and comparing it with the 

structure of polytope {3, 3, 5}. On the nearest-neighbor bonds between sites are 

defect lines which are parameterized by the elements of the group Y' x Y'. We 

suspect that most of the physically relevant defect lines will be just the positive and 

negative disclination lines found from the analysis of intermetallic compounds and 

metallic glasses in terms of the Kasper polyhedra and Bernal holes respectively. 

A2.3 The Disorder Field 

We have found that the defect lines of our theory of an icosahedral metallic 

glass are parameterized by elements of the group Y' x Y'. The defect lines are 

identified by looking at the change in the order parameter upon circumnavigating 

the line along a closed path C (see Figure A2.l(a)), 

Q ( _, ) Traverse C (l } { _, } 
12,m1m2 Xo --+ 'r Q12.m1m2 Xo , (A2.3) 

where (1,r) E Y' x Y' is a rotation applied to the matrix Q12,m 1m 2 • Suppose that the 

plane curve C is broken up into a series of paths along the coordinate axes (see Figure 

A2.1 (b)). We can think of moving the order parameter around this plaquette and 

evaluating it at each corner. The net change in the value of the order parameter 

upon completing the loop parameterizes the defect line which passes through it 

[Toulouse and Kleman, 1976; Kleman, 1977]. Another way to look at this process is 

to SUppOSe that moving from Site i to Site j in the direction e/L involves multiplication 

of the order parameter by a "transporter," (Uii),L. The result of this multiplication 

of the order parameter at site i is then the value of the order parameter at the site 
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c 
(a) 

defect line 

( b) 

defect line 

Figure A2.l a) A closed plane curve C which surrounds a line defect in the 

predominantly icosahedral material. b) A discretized version of the closed plane 

curve C. The order parameter is defined on the sites i, j, etc., and the frustration 

field transporters, Uij, etc., exist on the line segments between sites. 
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j. Upon traversing the loop, the net change in the order parameter is (see Figure 

A2.l(b)), 

(A2.4) 

In analogy with the gauge theory of electromagnetism, each transporter can be 

written as the exponential of a vector potential, which we shall call A; 

(A2.5) 

where Xij is a representative point somewhere on the line between i and j, and a 

is the distance between i and j. The change in the order parameter can then be 

written as; 

Q (__, ) Travers(' C if, .A.df (__, ) 
12.mpn:;i Xo - e c Qi2.m11112 Xo (A2.6) 

By Gauss' theorem, the circulation of the potential A around the loop C is associated 

with the flux of a field, which we call the "disorder field," through the loop. 

Q ( __, ) Trav('rS(' C i( flux of disord('r field through C, Q ( __, ) 
12,m1m2 Xo - e · 12,m1m2 Xo 

From studying the defect algebra of the icosahedral order parameter, we know 

that the change in the order parameter upon circulating in a loop is an element of 

the group Y' x Y'; 

Q ( __, ) Travers(' C ( __, ) 
12,m1m2 Xo - g Qi2,m1m2 Xo 

{A2.7) 
where g E Y'xY' 

From Equation (A2.4) we see that this group element g is the result of a product of 

transporters, Uij, etc. Since these transporters must be closed under multiplication, 

have an inverse ((Uij); 1 = (Uji)-µ) which is also a transporter, have an identity 

element, and obey an associative law, they too are elements of the group Y' x Y'. 

We have now replaced the icosahedral order parameter defect lines with a dis-

order field and its associated transporters. The field theory of icosahedral metallic 

glass now consists of two parts: 
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1. An icosahedral order parameter field Q 12,m 1 m, (x) (with a symmetry group 

S0(4)/G) defined on atomic sites in the glass, 

2. A disorder field, represented by order parameter transporters U (which are 

elements of the group Y' x Y') between the atomic sites. 

This formulation of icosahedral metallic glass structure is now very similar in 

form to gauge field theories of strongly interacting elementary particles [Creutz, 

1983; Rebbi, 1983]. In these field theories, the order parameter represents the 

state of the particle (chosen from a manifold of states) at a given point in space­

time. The gauge field acts to rotate the order parameter as it is moved through 

space. The strengths of the coupling between the order parameter and the external 

field and between order parameters on neighboring sites determines the equilibrium 

properties of the system. 

A2.4 Gauge Theories and the Free Energy Functional 

Local gauge invarisystem. 

A2.4 Gauge Theories and the Free Energy Functional 

Local gauge invariance is a demand made upon a theory that the description 

of a state (e.g., whether a spin is "up" or "down") be chosen independently at each 

point in space-time [Moriyasu, 1983]. Local gauge invariance allows us to choose 

arbitrarily which direction is "up" at each point in space without reference to any 

other point. The rule for comparing choices at different locations is provided by 

the "connection." In our theory of predominantly icosahedral materials, disorder 

invariance means that all physical expressions must be invariant under local changes 

of the line defect group parameterization. The line defect parameterization group 

now acts as our gauge group. In a gauge theory, one has a matter field (analogous 

to the icosahedral order parameter) and a gauge field (analogous to the disorder 

field) to provide a connection between sites where the matter field is defined. 
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Toulouse [Toulouse, 1977] developed the idea that local frustration can be in­

troduced into a theory of glasses with the aid of a gauge field. Several authors have 

previously proposed gauge theories of metallic glass structure. Rivier and Duffy 

[Rivier and Duffy, 1982] proposed a gauge theory of glass based on the gauge group 

Z2 . Kleinert [Kleinert, 1984] modeled the glassy state by introducing quenched 

random disorder into the low-temperature phase of his gauge theory of dislocation 

melting. These two theories suffer from an overly simplified description of the de­

fects that one expects to find in a real metal. Neither of these theories started 

from the basic assumption that frustrated icosahedral local ordering is responsible 

for the global disorder of the material. Hence the defects (and the gauge groups) 

used in these theories are oversimplified, leading to an incomplete description of a 

metallic glass. Our work differs from these primarily in that the gauge group is 

different, hence our description of icosahedral order and defects are novel. For a 

review of work on gauge theories of glasses, see the paper by Venkataraman and 

Sahoo [Venkataraman and Sahoo, 1986]. 

We can proceed to construct a gauge theory analogy for the theory of icosa­

hedral metallic glass by using the analogy with one of the simplest gauge theories; 

the Ginzburg-Landau (GL) theory of superconductivity [Anlage, 1987] (see Figure 

5.1). In the GL theory, the order parameter is the complex scalar electron conden­

sate wave function t/;. The external field, which is coupled to the condensate, is 

the applied magnetic field H. The free energy functional for a superconductor with 

condensate wave function t/J in an external field H is [Tinkham, 1975], 

1 * 1:H1 2 1 
F = -1(-ih\7 - :__A)t/Jl2 + alt/Jl 2 + - + 11t/Jl3 + -.Blt/Jl 4 + ... (A2.8) 

2m* c 87r 2 

-where m* and e* are the effective mass and charge of the condensate particles, A 

is the vector potential associated with the field H, and a, ,B, / are temperature 

dependent parameters. Note that this expression is invariant under the global 

phase change t/J ---+ t/;e-i.P. The order parameter space is a unit circle in the complex 



-84-

plane. Using homotopy theory [Mermin, 1979], one finds that the gauge group of 

the condensate wave function is Z (e.g., the group of integers under addition). This 

is the gauge group of the magnetic flux quanta in the bulk superconductor. 

The first term of Equation (A2.8) represents the kinetic energy of the con-

densate and contains the covariant derivative for a charge moving in the presence 

of an external electromagnetic field. This term is invariant (in a stronger sense 

than above) under the spatially dependent substitution t/J ---+ t/Je-it/>(x), providing 

A ---+ A - t~c V </>. The fact that the free energy is invariant under this dual trans­

formation means that the order parameter has a "hidden" gauge symmetry. The 

second and third terms of Equation (A2.8) represent the self energy of the conden-

sate and the external magnetic field respectively. 

In Table 5.1 we present a detailed analogy between the GL theory of supercon­

ductivity and the gauge field theory of predominantly icosahedral materials. The 

free energy expansion analogous to Equation (A2.8) for an icosahedral metallic glass 

in terms of the icosahedral order parameter is; 

111 Ill (A2.9) 

~IF µv 1
2 + · SO( 4) invariant higher order terms, 

where K and a: are elastic constants and m stands for the pair (m1 ,m2 ). The 

covariant derivative in the first term is, 

DµQ12,m = L [ 6m,m'8µ - iK (Aµ)m,m' ] Qi2,m'' (A2.10) 
in' 

where K is a coupling constant between the order parameter and disorder fields, and 

the vector potential is, 

(3 

L a,L Oa(f) (L~121 )m.111'· (A2.ll) 
a = 1 

The Ou(f) are spatially dependent Lie angles and the L~121 are the six S0(4) gener­

ators which are required to perform all possible rotations on the order parameter. 
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The Lie angles simply specify the spatial variation of the local gauge (or disorder) 

parameterization. The covariant derivative is, by definition, unchanged under a 

transformation of the gauge (or disorder) parameterization in the model. 

The second and higher order terms in Equation (A2.9) represent the energy 

of the icosahedral order parameter field. The third term involves the disorder field 

tensor; 

(A2.12) 

and represents the self energy of the disorder field. The combination algebra (given 

by the group Y' x Y') of the line defects in this icosahedral medium is non-Abelian, 

i.e., the result of combining two line defects depends on the order in which they 

are combined. This means that defect lines often will not pass freely through one 

another (i.e., upon crossing they may develop an umbilical line), hence the disorder 

field tensor (Equation (A2.12)) will have a non-zero commutator. Higher order 

terms in Equation (A2.9) must be invariant under the operations of S0(4) since the 

total free energy functional should not depend on the details of how the tangent 

sphere S3 is oriented to calculate the icosahedral order parameter (A2.2). 

The free energy functional (A2.9) has several sensible physical properties. High 

defect line concentrations are discouraged by the presence of the disorder field tensor 

term (analogous to H2 /87r term in the Ginzburg-Landau theory of superconductiv­

ity, Equation (A2.8)). Also, parallel icosahedral order parameters on neighboring 

sites are encouraged by the second term in Equation (A2.9). This will insure the 

presence of long range orientational order at low temperatures. Finally, the covari­

ant derivative ensures that the order parameter field does not change its value on 

very short length scales. 
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