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ABSTRACT

Structural optimization of structures with respect to their
shape and thickness distribution is studied using a variational
approach. The behavioral constraint is either the state of stress
or the stiffness.

The boundary value problems, derived using Optimal Control
theory, are solved with the parallel shooting technique. For stati-
cally determinant arches subjected to a uniform pressure, the
contribution of the shear force is included in the behavioral con-
straints to prevent the problems from being singular. For the
case of membrane shells of revolution supporting a combined
pressure and end traction loading case, solutions were obtained
up to a critical value of the load coefficient. A physical inter-
pretation of the singularity is obtained by including the possibility
of discrete rings in the formulation. A set of optimality conditions
for shells of revolution described by the bending theory, satisfying
a stiffness constraint, is derived. The problem is found to be ill
posed when the shear contribution is not included in the structural

operator.
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I. INTRODUCTION

The purpose of structural optimization is to provide system-
atic ways of obtaining "better' structures. In economically oriented
societies, one would like to minimize the cost likely to be associated
with the structure during its lifetime. Considering the price of the
material and the indirect cost associated with the weight of a struc-
ture, as for example the fuel needed for the transportation of
aerospace structures, the minimization of the material volume can
often be chosen as the primary objective. Furthermore the tradi-
tional design procedure of trial and error relies heavily on previous
experience in order to maintain the number of design and analysis
cycles as small as possible. In areas for which previous knowledge
is not readily available the structural optimization techniques pro-
vide the engineer with guidelines for the conception of the structures
and with a reference to evaluate the merits of the final design.

Since the early 60's the field of structural optimization under-
went a rapid development. A review article published in 1963 by
Wasiuntynski [1] describes the history of the field, starting with
Galileo. Barnett [2] in 1966 presented a survey of the important
design techniques and principles together with a number of significant
results. The review by Sheu and Prager [3] covers the progress
made between 1963 and 1968, An extensive reference list of the
recent areas of research is contained in the article by Niordson
and Pedersen [4].

Two reasons can be found for the extensive work for the

past 15 ycars in the field of structural optimization. The space
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prbgralns provided the designers with new challenges in which the
structural weight was much more critical than the construction cost,
Also the development of large computers made it feasible to automate
the design process. It was felt that the optimization procedures
would provide means of finding the best possible structures in those
domains for which previous experience was limited. But the day
where '"black boxes!" will design structural systems is still to come.

A structural optimization problem consists of finding the
"best' possible element in a given class of admissible designs.
One or several behavorial constraints characterize, in part, the
feasibility of a given design, Prager and Taylor [5] presented a
uniform method of treating problems of optimal design of sandwich
structures subjected to constraint on the stiffness, on the fundamen-
tal frequency or on the buckling load. Huang [6] treated the problem
of a solid circular plate supporting a uniform pressure with a stiff-
ness constraint. Niordson [7] analyzed the optimal elastic design
of solid beams with a prescribed natural frequency. Cases where
the buckling load is imposed have been treated by Budiansky and
Frauenthal [8] for arches, by Frauenthal [9] for circular plates,
and by Taylor [10] for sandwich columns. A general formulation
of the mass minimization of structures subjected to stress con-
straints has been given by Giraudbit [11]. A review and an assess-
ment of the state of the art in optimal aeroelastic design has been
presented by Stroud [12].

Having discussed some of the behavioral constraints entering

in the formulation of a structural optimization problem, let us
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review the mecthods of solution. An analytical formulation, using
the Calculus of Variations to obtain the optimality conditions can be
made when unknown design functions are chosen. Optimization of
simple structural elements only can be treated in this fashion due
to the highly non-linear character of the resulting differential equa-
tions. For large structural systems, an a priori discretization is
performed. The unknown design variables are reduced into a set of
parameters. They can be determined directly using the mathemati-
cal programming techniques of Ref. [13] , or indirectly by means
of optimality criteria, cf. Ref. [14]. An increase of the efficiency
of the mathematical programming techniques can be achieved by
using approximative concepts, cf. Ref. [15], or by utilizing the
geometric programming methods, cf. Ref. [16]. To size complex
structures a combination of the mathematical programming and the
optimality criteria approach is used in Ref. [17]° An important
difference exists between the analytical and the ''discretized' for-
mulations. The variational approach is concerned with finding the
optimal solution as the mathematical programming techniques
improve feasible designs. When the optimal solution does not
exist, a solution technique based on the second approach, may
yield a "'better" design even when there is no ""best' design. In-
vestigations using the analytical method are therefore necessary
to determine which classes of problems are, or are not, well posed.
The aim of this thesis is to investigate optimization problems in
which two design functions are unknown. One of our'objectives

is to determine formulations of the investigated cases, leading to
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well-posed problems. The behavioral constraint is either the state
of stress or the stiffness of the structure. A definition of the prob-
lems is given in Chapter II. The Optimal Control Theory and the
Shooting Techniques, described in Chapter III, are used respectively
to derive the optimality conditions and to solve the resulting two
points boundary value problems, Statically determinant arches of
unknown middle line shape, unknown thickness distribution and
unknown slope of the support are investigated in Chapter IV. The
study of membrane shells of unknown geometry, under a combined
edge and pressure loading case, is contained in Chapter V. In
Chapter VI the problem of determining the axially symmetric shells
of revolution, including the bending effects, is formulated. In eval-
uating the following work, one has to remember the assessment
made on the analytical approach by Niordson and Pedersen [4]:

"Due to the fact that the differential equations are often
highly non-linear and have no regular solution (singularities very
often appear at the boundaries) such problems may be rather cum-
bersome and tricky to solve and the whole field seems rather

unclarified. "
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II. DEFINITION OF THE PROBLEMS

The problem of determining structures of minimum material
volume can be defined as:

"In a given class of admissible structures, find the one

of minimum material volume. "
It is to be understood that only the definition of the class of admissible
structures will determine the optimal design. The minimization tech-
niques are only means of finding the solution,

The definition of the class of admissible structures should
specify:

a) the type of structures and the approximative theory used
to derive their governing equations

b) the geometrical constraints

c¢) the loading case

d) the imposed boundary conditions

e) the design requirements which constrain the design
variables.

The design variables constitute a set of parameters and of
functions with respect to which the minimization procedure is to be
performed.

In the present analysis, two types of design requirements
are taken into consideration. When the state of stress in the struc-
ture is constrained to be admissible, the problem will be referred
to as "'stress case.'" The work done by the prescribed external

forces on the structure is constrained for the "stiffness case."
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A general discussion of those two problems is included in
this chapter, for the purpose of deﬁning the minimization tools
needed to find their solutions,

2-1. Definitions -

Let us consider only structures which can be described using
one coordinate x only. Let s (x) be the set of design parameters.
Let u(x) and g (x) represent respectively the ficld of displacement
and the field of stress in the structure. Let E(x) and p (x) be
respectively the set of concentrated forces and the pressure
applied on the structure,

The governing equations of the structure provide the follow-
ing two operators:

a) the equilibrium equations

Ll('sv, u, F, R):O (2. 1)
b) the stress displacement relations

L,(g: 1, g) =0 (2. 2)

The boundary conditions are included in the operator L Let us

10
remark that, using approximations of the linear theory of elasticity,
the operators L1 and L2 are linear with respecttou, g, F and p,

but in general they are non-linear with respect to s

The material volume of the structure can be written as:

V= [v(g) dx . (2.3)

where the integral is to be evaluated on the entire structure,



2-2, Stress Case
Let us assume the existence of a function f(g ) which de-
scribes the state of stress at ecach point of the structure. An

admissible state of stress is defined as being such that:

f(g) < 0 (2. 4)

The problem of minimizing the material volume of a struc-

ture can be formulated as:

min V = [v(s) ds (2.5)
S

~

subjected to:

Li(s,u, E,p)=0 (2.6)
Lo(g,w, g)=0 (2.7)
f(g) < 0 (2.8)

To solve the present problem, optimality conditions which include
inequality constraints are needed.
2-3, Stiffness Case

Rather than requiring the state of stress in the structure to
be admissible, a limit on the displacements occurring during the
deformation of the structure can be imposed. This can be achieved
by requiring the work done by the external forces, during the defor-
mation process, to be equal to a given amount. In the previous
formulation, the average displacement of the structure, using the

applied loads as weighting functions, is prescribed., Let U(s,E,p)
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be the work done by the external forces. Its value is given by

1

U . E p) =5 {2E.u+ [p. wdx} (2. 9)

i

where the summation is to be made for all the concentrated external
forces, and the integral is to be evaluated over the entire structure.
The field of displacement u is obtained from the equilibrium oper-
ator Ll’

As it has been shown by Wasiutynski [18], the problem of
minimizing the material volume of the structure subjected to a
stiffness constraint is equivalent to the problem of minimizing the
work done by the external forces in which the material volume is
imposed as a constraint. For both problems the equilibrium equa-
tions have to be enforced.

The problem of minimizing the material volume of a struc-
ture can therefore be formulated in an alternate way as:

Min U :%{zg.g+fp.gdx} (2. 10)
S r~

~

subjected to:
L.,(g, », E, p) =0 (2.11)
Svig) ax = v, (2. 12)

To solve the present problem, optimality conditions which include
integral constraints are needed.
It is to be noted that, in the context of linear elasticity

theory, or of its approximations, the work done by the external
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forces is equal to the ctrain encerpy of the structure in ite equilibrium
configuration, This provides an altcrnete formualation found to be
convenient for statically determinant structures. In this particular
case the computation of the strain encrgy density which requires the
evaluation of the stregs field o cen be made without considering the
field of displaccment u. The equilibrium equations for statically

determinant structures can be expressed as:

L3(§,, g, k, E) = (2. 13)

The problem of minimizing the material volume of a statically deter-

minant structure can therefore be formulated in an alternate way as:

Min J = [ W (g)dx (2. 14)

subjected to:

L,g, 2. E,p) =0 (2. 15)
fv(rg) dx :VO (2. 16)

2-4. Summary

We have shown that the problem of minimizing the material
volume of a structure will involve inequality constraints for the
stress case and integral constraints for the stiffncsé case, The
method of deriving the optimality conditions and the numerical
techniques used to find their solutions are described in the following

chapter,
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CIIT. OPTIMALITY CONDITIONS AND METHOD OF SOLUTION

When the design variables consist of unknown functions,
rather than a set of parameters, the optimality conditions are ob-
tained by means of the Calculus of Variations, Due to the highly
non-linear character of the resulting system of differential equations,
the solution is generally obtained by numerical integration,

The Optimal Control Theory is used to derive the necessary
first order optimality conditions. This formalism was preferred to
the classical Calculus of Variations since it provides directly a
system of first order differential equations, well suited for numeri-
cal integration. The resulting Two Point Boundary Value Problems
are solved using the parallel shooting technique. A general purpose
computer code which can solve a one parameter family of n-point
boundary value problems was developed.

In order to define the terminology used in the sequel, the
first order optimality conditions are recalled. A detailed derivation
of them can be found in Ref, [19]. The parallel shooting technique
and the computer code capabilities are described in the second part
of this chapter. A general analysis of the numerical methods avail-
able for solving two points boundary value problems is given in
Ref. [20].

3-1. Optimality Conditions

The unconstrained minimization problem is first defined
and the corresponding set of first order conditions is derived. Opti-
mality conditions for different variations of the simplest problem

are then obtained.
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Unconstrained Minimivation

Let the governing equations of a physical system be:

dy

= :,f,(x,}i(x), u (x)) (3.1)
y is the state variables vector with m components

u is the control variables vector with n components.

The equations (3. 1) are called the state equations of the system.

Let us consider the following problem:

X

1
Min J = ¢(X(X0)’ y(x)) + L(x,z(X),}g,(X)) dx

u(x) 0

o =

subjected to

(3.2)
dx
I A&y ), »x) (3. 3)
y(xo) prescribed (a)

(3. 4)
y (Xl) not prescribed (b)

The objective function is J and L is the Lagrangian of the problem.

The first order necessary conditions for J to be a minimum

are obtained by requiring J to be stationary with respect to arbitrary

variations of the control variables u(x). Let us define



Toa+ [\ ey w - ax (3.5)
X
0 |

H=L+\. £ (3. 6)

where: a) )tT is a vector of m Lagrange multipliers which will
be chosen such that the coefficient of 6y (x) in &8J vanishes.

b) H is the Hamiltonian of the system,

The variations 6? of 'f are:

T 3¢ T 9 .\ T
8J = [8y(x0)+bl<:x 8y (xp) [8 (x4) A ]X:Xl 8y (xy)

O ~
*1 T T &
v f {Lg s ,gg} Su (x) + {LY FAA +H;}5y(x) dx]
x ~ ~
0
(3.7)
oL(x,vy,u)
where L21= —511:
Choosing the Lagrange's multipliers )&,T such that
d)\\‘T T
- =" [LX+): . iZ] (3.8)
the variation 8§J will vanish if:
T
T _ o
N = e (3. 10)

The Lagrange's multipliers are not specified at x = %, since y(xo)
is specified. It is to be noted that the previous conditions are only

sufficient conditions for J to be stationary because we assumed that

the defined Lagrange's multipliers do exist,
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Let us summarize the previous results:

a) Probiem

Min J = g(y(xg), y(x,)) + fle(x,y(X),g(x))dx (3.11)
u(x) X ~

subjected to

dy

a.}:{ = f(x, ZJ,R) . (3.12)
X(XO) specified (3.13)

b) First order optimality conditions are

H= L+ AL £ (3. 14)
H}% =0 - (3.15)
d_d/_b;;_r = - H (3. 16)
dy

= =iy, 0 (3. 17)
Z(XO) prescribed (3. 18a)

(3. 18b)

The equations (3. 15) define a set of n algebraic equations to compute
the control variables u. The equations (3.16), (3.17) along with the
boundary conditions (3. 18) define a two point boundary value problem.,
Due to their highly non-linear character, it is often not pos-
sible to solve directly the equations (3. 15). However they can be

used to generate a system of differential equations for the control
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variables u. Since (3.15) is satisfied for all x in [xo,xl] then

dH
b3
'—&—}z— =0 (30 19)
H L =0, x € ENEN (3. 20)
NIx:x

The equations (3. 19) reduce to:

du
Hyw = --[H. _+H__f-H

Wit Hy H_] (3. 21)

uyu S =
~

The equations (3. 21) determine dy /dx uniquely when:

H is not singular, i.e.:
uu
[aSda ]

det [H’g R (3. 22)

~

The set II of optimality conditions for the problem under considera-

tion, provided (3. 22) holds, can be written as:

du -1
— =-H [H _+H £ -H,y\ H ] (a)
dx PIRS P Ry ™ Ly
d)\\,T
o= = H (b) (3. 23)
dy,
& A=y ()
H . =0 (2)
"'!x:x"\
y (XO) specified (b) (3. 24)
M) = -2 ()
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The equations (3. 23) define a system of differential equations {or
which the boundary conditions (3. 24) are specified at different values
of x.

3-1-2. Problem Depending on an Unknown Coeificient

Problem:
*1
min T = [ "Lixy (), ux), a) dx (3. 25)
u(x), a x ~
~ 2
dy
subjected to: c_lg =f(x,vy,4,0a) (3.26)

The previous results can be applied by considering the extended

state vector y :

L
y = (3.27)
a
The state equation associated with Yt 18°
dy
m+1
= -0 (3. 28)

Since the value of ym+l(x is not specified, the admissible

o)
6ym+l(X0) are not zero. The optimality conditions are given

by (3. 23) and (3. 24) where the Hamiltonian H is given by:

N T
H=L+)\ .£+Xm+lx(0) (3.29)
The boundary conditions on X\ are:
m+1
)\m+l(x0) = )\m+1(x1) =0 (3. 30)
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3-1-3., Some State Variables Prescribed at x = x

1
Problem:
*1
Min T = o(y(xg), ye) + [ LGy, w) dx (3.31)

subjected to:

yi(xo) prescribed , iel
yj(xl) prescribed , jeJ

The optimality conditions (3. 15) to (3. 17) hold, provided the system

is controllable. The boundary conditions are in this case:

Yy (XO) prescribed iel (3.32)
__ _9

o) = By ) k¢ I (3. 33)

yj(xl) prescribed jelJ (3. 34)
_ 99

Note: If the state variables must also satisfy a constraint
Lp(x(xo), X(Xl)) =0, the boundary conditions can be obtained by

adjoining y to ¢ with a Lagrange's multiplier v
:; =@+ vy (3. 36)

The boundary conditions become
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Yi(XO) prescribed iel (3.37)
- . Op oy

Ny () = [‘Wk(xo) + v ayk(XO)] k gf 1 (3. 38)

yj(xl) prescribed je J (3. 39)
_ O N ‘

N, ) = [__ayﬂ(xl)’w ayf(xl)] JZ¢J (3. 40)

by (%) y(xq)) =0 (3. 41)

3-1-4. Problem with an Integral Constraint

Problem:
*1
Min  J =o(y (x,), yx)) + [ " Lix,y,u) dx (3. 42)
u(x) ~ ~ X ~
subjected to:
dy
= -y, (3. 43)
*1
f gx,y,u)dx =c (3. 44)
Xq ~

The previous result can be applied by considering the extended

state vector

<

(3. 45)

<l
0

ym+ 1
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The state cquation associated withy . is:
m+l
dy
- c:lr;wl = glxy,n) (3. 46)
The boundary conditions on Vsl 27
ymﬂ(xo) =0, Vr1&q) = ¢ (3. 47)

The Hamiltonian of the problem becomes
H:L+L-f+xm+lg(x,z,g) (3. 48)

Since the state variable Vsl does not appear in the Lagrangian L

is:

and the state equations (3. 43) the governing equation for xm+1

d)\n‘nLl

ax -0 | (3. 49)

The boundary conditions on \ are unspecified since the values of

m+1

are given., The Lagrange's multiplier \ appears as an

Ym+1 m+1

unknown constant, Its value is to be determined from the satisfaction
of the integral constraint (3. 44).

3-1-5. Problem with Inequality Constraint

Problem
*1
Min J = [ " L(x,y,p dx (3. 50)
(%) X ~

subjected to:

-d?g- :f(X,Y,}&) (3. 51)

Clx,y,u) €0 . (3.52)



_19_
Lef H* be defined as:

H =L+ AL .o (3. 53)

~

The variations of J given by (3.7) are:

67 = [ H..su () dx (3. 54)

The constraint (3. 52) is said to be '"'effective'' on an arc of the solu-

tion if:
Clx,y,u) =0 (3.55)

When the strict inequality is satisfied the constraint is said to be
""not effective. '’

In order for J to be a minimum, we must have § T2 0 for all
admissible variations of the control variable,

When the constraint is effective, the admissible 6y are such
that:

Xl S
Cpedn <0, [ 'H .sudx 20 (3. 56)

o
*0
A sufficient condition of optimality is obtained by introducing a non-

negative Lagrange multiplier n such that

H +nC, =0 (3. 57)

~ ~

When the constraint is not effective the class of admissible
6u is not restricted by the constraint. The optimality conditions

(3. 15) hold.
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A set of optimality conditions analogous to the equations (3. 15)
and (3, 16) can be obtained by a transformation of the inequality con-
straint (3, 52) into an equality constraint using an additional control

variable p such that:
Cx,y,u)+p =0 (3.58)

The Hamiltonian H is obtained by adjoining to (3. 53) the equality con-

straint (3.57) using a non-negative Lagrange's multiplier n

H=L+ )\rl.,iJrn[C(x,y,g)wLpz] (3.59)

~

3-1-6. Summary

The {irst order optimality conditions recalled in this section
are only sufficient conditions. However, the first order conditions
are nothing but necessary conditions for a solution to be optimal.
To determine whether or not a solution corresponds to a local mini-
mum a second order sufficiency condition, the convexity condition,
will be used. In addition a restricted perturbation of the solutions
will be performed in some cases.
3-2. Shooting Technique

The shooting technique is a general method to solve systems
of first order ordinary differential equations for which the boundary
conditions are specified at several points., The technique is first
illustrated for the simplest case of a two points boundary value prob-
lem. The capabilities of the general shooting program are then

described.
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3-2-1. Method

Problem 1:

Find the solution of

dy
5 =L, y (x))

with the boundary conditions

yi(XO) = a; i€l (pconditions) (b)

yj(xl) = b,

(n equations)

j j € J (n-p conditions) (c)J

(a)

(3. 60)

The present problem is not an initial value problem since

some of the initial conditions are not specified, i.e.,

y, (%) unspecified k g1 (n-p values)

(3. 61)

However the solution of problem 1 can be obtained from the following

initial value problem.

Problem 2

Find the solution of

dx - i,(X, X(X))
with the initial values

¥, (%g)

1]
o

iel

|
O]

Vi) = 5y kg1

where the initial values sy are such that

(@) )

> (3. 62)
(b)
(c) J
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Let u(x, sk) be the solution of problem 2. It will be a solution of

problem 1 iff

55, ) = e, 5,) “ by =0 jed, kI (3. 64)
The function & of the unknown initial values Sk is called the ''mis-
match'' function. Problem 1 is reduced into an initial value prob-
lem, where the initial values Sk must be determined from the
solution of the n-p algebraic equations (3. 64).

The algebraic equations are solved with the Newton-Ralphson's

method, which requires the solution of a sequence of initial value

problems 2 where:
¥y Bxg) =ty k g1 (3. 65)

The approximation ‘cvkJrl of the solution 51 is obtained from the

1%

previous iterate tk using:
0%,
j v+l vy oV .
———ask (1:k tk) = @(tk) jeld, kQ/I (3. 66)
where:
0%, ay.(x,)
i j 1 .
= jeJ, k&I (3. 67)
88k ayk(xo) ¢

The gradient of the final values yj (xl) with respect to the unknown
initial values yk(xo) is obtained by integration of the variational

system of (3. 62a):



dx ayk (XO) 8yﬁ ayk(xo)
with the initial values: > (3. 68)
0 if k+#14
Byﬂ
—_— = (b) J
9y (%)
1 if k=14
93,
Therefore the evaluation of asJ requires the integration of (n-p) X n
k

linear differential equations.

The solution of the two points boundary value problem 1 is
obtained by solving a sequence of initial value problems 2. The
total number of differential equations to be solved for each iteration
is n + n (n-p). The iterative process requires an initial guess tl(z
of the unknown initial values.

Remarks:

a) The choice of the initial guess of the unknown initial
values should be made carefully, especially when the solution of
problem 1 is not unique.

b) Due to the exponential character of the solutions of the
variational system (3. 68), and to reduce the numerical errors, the
integration interval [XO,xl] is divided into subintervals called
shooting intervals. Initial values are guessed at each starting point
of the shooting intervals. The solutions are matched at each final
point of the shooting intervals. This variation of the previous

method is called parallel shooting technique., The following
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diagram illustrates the method.

where:

*3 %2 *4 *]
X0 XZ, xl are the shooting points
X3 X, are the matching points

[XO,X3], [XZ’X3]’ [XZ’X4] and [X4’Xl] are the

shooting intervals,

3-2-2. General Shooting Program

When using the shooting method, most of the programming

effort is spent to construct the variational matrix (3. 64) for each

particular problem., To alleviate this practical problem, a general

computer program was realized. It utilizes the parallel shooting

technique to solve the following problem:

ol o ol
Wlls:‘ N|2*<

"

J

%0

with the boundary conditions:

Ymk

~

hix,y,a,Y) =g q integrals (c)

(Xk) prescribed (d)

fxvy,4a,7) n equations (a)

g (X’ Y ’ };1_,: ,G\-J, ‘Y) m equations (b)




y. (Xk) not prescribed (e) (3. 69)
Ik

ynz(zﬂ) prescribed (f)

y. (z,) not prescribed (g)
i, £

Niy; Gy ¥y (2) <O )

where:

X0 k=1, ...K are the shooting points

Zy £ =1, ...L are the matching points

Q is a vector of unknown coefficients

Y is a parameter with respect to which a one parameter
family of problems is defined

w a vector to be evaluated on the solution

N(yjk(xk), Yiﬁ(zl)) = 0 is a set of non-linear equations to be
satisfied by the solutions.

The set of diffe.rential equations (3. 69a), (3. 69b), the integrals

(3. 69c), as well as their variational system, are specified by a
user's written subroutine. The non-linear conditions (3. 69c) are
also defined by a subroutine. The boundary conditions and the
characteristics of the different shooting and matching points are
specified by data cards. The program was found to be very con-

venient since the number of shooting and matching points could be

modified as needed with a minimum amount of work.
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3-30 Summary

The optimization problems of the following sections will
consist of these three steps:

a) definition of the problem

b) derivation of a set of differential equations with boundary
values prescribed at several points

c) resolution of the resulting n-points boundary value prob-
lems using, in general, the shooting technique. It is to be noted
again that only the first step, i.e., the definition of the problem,

will determine the solutions,
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IV. ARCH STRUCTURES

The problem of determining the optimal thickness distribution
only of beams or arches of known geometry has been studied exten-
sively in the past. Huang [21] treated the case of circular sandwich
beams for the stiffness case. For sandwich sections, the bending
and the extensional rigi'dities of the cross section are linear functions
of the face sheet thickness, Giraudbit [11] investigated the case of
a clamped circular arch with a solid cross section subjected to a
stress constraint.

In this chapter the problem of determining the thickness dis -
tribution, the shape of the middle line and the slope of the support
of statically determinant arches of minimum material volume, satis-
fying either a stress or a stiffness constraint, is treated. The
applied load is a uniform preésure normal to the middle line of the
structures. One of the objectives is to determine whether or not
thé best geometry is such that the bending moment vanishes every-
where for the optimal structure.

A formal problem definition is first given, The optimality
problem for a stiffness constraint is then investigated., The shear
force contribution is included in the strain energy definition. The
same problem is then treated for the stress constraint case. The
shear force contribution is also taken into account in the failure

criterion,



-28-

4-1. Problem Definition

Let S be the set of arches such that:

a) their governing equations include the effects of the shear
stress.

b) they are subjected to a uniform pressure normal to their
middle line and have simple support type of boundary conditions.

c) they satisfy either a given stress or a gi{fen stiffness con-
straint.

d) their length is 2L, their shape is such that ;(o) = }—r(ZL) =0
and they have a constant unit width.

We seek the middle line shape y(x), the thickness distribution
t(x) and the slope of the support s of the element in S of minimum

material volume.

s =tan ¢

4-2. Equilibrium Equations
Since the arches are simply supported, the normal force N,
the bending moment M and the shear force T can be computed

directly from the three equilibrium equations of a plane structure.



s = tan ¢

For symmetric arches with respect to x = L«

F- PL - x_, . l.y )
N—\/__i[y,;((f D -+ 3] (a)

4y, £
T . PL rx . = _l.y
T = _2[(L D+y,-+71)] (b)f (4. 1)
— 2r1,y.2 . ¥ X2 X
M=pL  [3)+ £+ 30 -1 (c)

Note that the solution (4. 1) satisfies the simply supported boundary

conditions since

= Hl =0 (4. 2)

—g ——i Z =y, — =8
XTI %) TLe 2T Vex %37
- _ _ (4. 3)
N T M
N=-or, T==, M=z 4
pL pL pLz

the equilibrium equations (4. 1) reduce to:
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N = —/— [/,Z(x—]) - (—+ Ll)] (a) )
‘422 3
T2
T= 1 [x-1)+ 7y (=t z)] (b) ? (4. 4)
\/lJrz2 3
2
. 2@ 1 2
MZSZI+E§+§X—X ) )

A shape on which M = 0 everywhere, hereafter referred to as

""membrane design,'' is a circular arch defined by:

1 1 x2
(ZI)M == Z-Jr —-—Z—+ 2(x - "2—) (4. 5a)

when > 0.
“3
On such a design, the shear force T vanishes and the normal trac-
tion N is constant
2
N=- A1+ (=) (4. 5b)
A
3

4-3, Optimal Arches with a Stiffness Constraint

Since the structure is statically determinant the strain
energy of the structure, in its equilibrium configuration, is used

as the objective function J.

2L [ =2 2=2 =2
= +B°T M\, . = —
T3] <i‘ﬁ:‘%—+ﬁ> RS (4.6)

E ..... material Young's modulus

A=t..... cross section area
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3 . o
I= T2 cross section moment of inertia
2 E . .
B” = -61’ ... where G is the material shear modulus and k

is a coefficient to take into account the real
distribution of the shear stress in the cross
section,
Note that the width of the structure does not enter in the previous
expressions since it is assumed to be constant and unity.
The material volume VO is used as a constraint
2L
vy = J AV + gr‘,i dx (4.7)
0
Upon introduction of the previously defined dimensionless

variables (4. 3) and of:

™~

t =T (2L (4. 8)

(o]

the dimensionless objective function J and the volume constraint

reduce respectively to:

2 2, .2..2 2, .2
J:%f N +p™T JrlZaM 1+z2dx (4. 9)
t 3 2
0 t
2 2
[ tN12f ax =2 (4. 10)
o ,
2L2
where: a = 7 characterizes the length to the thickness ratio of
0

a straight beam of uniform thickness satisfying the volume con-

straint:

J = aJ (4.11)
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4-3-1., Formulation

Because of the symmetry in the imposed boundary conditions

the problem can be formulated as:

1 /2, 22 2 2
Min J = [ <N L, 2o >‘\/1+z§ dx (4.12)
0 ¢

subjected to:

i) the material volume constraint
1

J o tV1+aZax =1 (4.13)
0 .

ii) the state equations

dz1
dx %2 (2)
(4. 14)
dz
3 _
T 0 , (b)
iii) the equilibrium equations (4. 4)
iv) the boundary conditions:
zl(O) =0 zl(l)unknown
(4. 15)
z 3(0) unknown z3(1) unknown

Note: a) the unknown parameter Zy is treated as a state variable
bounded to be constant by (4. 14b). b) the symmetry condition 22(1):0
cannot be inforced directly since z, is not a state variable. It will be
a consequence of the boundary conditions since the symmetry infor-
mation is contained in the equilibrium equations (4. 4).

The Hamiltonian H of the system is obtained by adjoining to

its Lagrangian the material volume constraint (4. 13), the state
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eq:uations (4. 14) by means of the Lagrange's multiplicers A4, A and

l’

)\3,, The state variables are 7y and Z3 and the control variables are

z. and t,

2
2, .22 2 2
g - (N +p°TS | 12M% +)\4t)\/l+zz

t t3 2

+ A,z

122 T A3%(0) | (4. 16)

4-3-2, Optimality Conditions

The first order optimality conditions are:

2 2.2 2 2
~ _ N“4B“T°  36M“a 2 N\
Ht—<l4 > 7 > 1+zZ_O (a)
t t
2 2 2 2.2 z
H :(121\4a N“+B“T ”t) 2 ? (4. 17)
Z 3 t 4
2 t 1452
“2
2 2 oN 2., 9T ) _
AT 1+2<N———8Z +pTaz>_o (b)
2 2
dx 2
1 4 ..24Ma (z +_),/1+Zz
b'e A 3 1 2
1 t 3
N .2 T ’ N\
t23 - 2%z, ¢ (a)
(4. 18)
dx
3 2 2
—_—=-H 1 M a 2
dx z,= — [24 —5— 2z, Vl+z] }
z t
3
_ 2N 2 T
Tzt ®)

The material volume constraint (4. 13) and the state equation (4. 14)
are also part of the optimality conditions. The previous conditions

define the set I of optimality conditions.
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The boundary conditions are:

atx =0
ZI(O) =0 N l(0) unknown (a) )
z3(0) unknown )\3(0) =0 (b)
at x = 1 ) (4.19)
zl(l) unknown N 1(1) =0 (c)
2,3(1) unknown )\3(1) =0 (d)J

Note that the condition (4. 19c) is implied by (4. 17b) when 22(1) =0,

To avoid the difficulty of solving (4. 17a) and (4. 17b) for the

control variables z, and t the following set of equations is used to

generate a differential equation for z

>
dH h
t _ _ R o®
4 =0 , H, =0 x, x€ [0,1]
> (4. 20)
dH
“2
=0 s H =0 atx =1
dx z
2 y

dz

Solving (4. 20) for dxz and t, keeping only the positive root for the

thickness, one obtains:

B, + ‘[Ber 144M2a2)\

1 1 4

t = (a)
2)\4
(4. 21)
2

dz T"B.+B

2 _ 2,3/2 2 73
dx - (1+Zz) N ——C——— (b)
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where Bl = N2+-£32T2 _ (a) )
12M o2 2 2
B, = ~z (4°-3) + B (b) } (4. 22)
2 2 2
12M 2\ (72m 2
B, - <...._29_ b 2-p )(————23— ¢ N ) (c) )
t ¢
c= M2 C, + 8% c (2))
2 2 2
c, - 243 [721\{2 a_ N2(1+352)+T2(3+52)] (b) ? (4. 23)
t t
C, = (N2+T2)2 (c) )

The equivalence between the systems of equations (4. 17) and
(4. 22) hold only when the Jacobian of (4. 17), which is proportional to

C, does not vanish, i, e.,

2
H_ -(th ) # 0

C ~H,
272 2

t (4. 24)

Theorem 4-1

If the effects of the shear forces are not taken into account

in the strain energy density, i.e., 62 =0, then C = 0 whenever M = 0,

Proof
2 240 2:72M%2% 2 2
(4. 23) and B :o:}c:-T“M[——Z—_+N+3T] q.e.d.
t t

This case is undesirable since the Hamiltonian H becomes locally

linear in the control variable Z e Under these conditions it can be

dz
shown that in order for dxz to remain finite (i. e., the radius of

curvature of the middle line to be non-zero) the traction N has to
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vanish. A physical interpretation could be found from the fact that
when f = 0 a penalty on the system is set for only N and M but not
for the shear force T. When M = 0, the condition N = 0 implies that
all the force is transmitted to the structure as a shear force. This
difficulty was alleviated here by including the contribution of the
shear force into the strain energy density.

Since )\l does not appear in (4. 22) and because the boundary
condition (4. 19c) is satisfied setting zz(l) = 0, the optimality condi-
tions reduce to the equations (4. 21), (4. 18b) along with the material
volume constraint (4. 13). In the boundary conditions (4.19), (4. 19¢)

is replaced by z,(1) = 0. This defines the set II of optimality con-

2
ditions.
4-3-3. Straight Design

Theorem 4-2

The straight design defined by:
Zl(X) =0 N ’Z—; =0
satisfies all the optimality conditions.

Proof

Since z(x) =0 ¥V x € [0,1], 2,(x) =0
By virtue of (4. 4), N =0,
Furthermore (4. 18b), (4.19b) imply that )\3 = 0 which satisfies (4. 19c).
The thickness distribution is obtained from (4. 22a) and )\4 is com-

puted from the material volume constraint (4, 13) which reduces to:

fl\/D + \AD% 4+ oD, dx = y2X (4. 25
5 1 1 T hge Dy dx =y, - 25)

2 2 x2
where Dl = B7(x-1)", D2 = 144(—2— - x)

2
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The integral equation (4. 25) can be solved easily by taking an arbi-
trary value of )\4a2 and then deduci.né, from the evaluation of the
integral, the values of )\4 and az.

4-3-4, Membrane Design

Theorem 4-3

The membrane design defined by (4. 5) does not satisfy the
optimality conditions.

It is most convenient to use, for the present proof, the
original set of optimality conditions. If z, as defined by (4.5) were

a solution then

z

(417 = 2 +2nt —2 =0 (4. 26)

Vl+z§

ar
1 2N

(4. 183-) é F = -1-:—— (4° 27)
Since 7z, (x) > 0 Vx, x € [0,1], (4. 26) implies that A () < 0
Vx, x ¢ [0,1]. But (4.5b) implies that N< 0 Vx, x ¢ [0,1] there-

1N
fore according to (4. 27) ?E{—l < 0. This is a contradiction since

A (1) = 0. q.e.d.

It is to be noted that the derivatives of A, given respectively
by (4. 27) and the derivative of (4. 26) differ only by their sign.

The membrane designs are a one parameter family of designs
with respect to the slope of their support. Let us seek in that sub-
class of admissible designs the '"'best'' element according to our
stiffness criterion. We consider t and z3 to be respectively an un-

known function and an unknown parameter. The shape 2 and its
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derivative z, are two known functions of zg defined by (4.5). The
optimality condition (4. 17a) remains valid, and a direct minimiza-

tion of the strain energy with respect to Z3 is performed,
(4. 17a) = — = )\4 (4. 28)

The volume constraint and the objective function become respectively
! 2
[ N V1 + 28 ax = yxo (4. 29)
0 2 4

Vit+z- dx = ) (4. 30)

R N Sy
—Ot 2 4

Therefore )\4 has to be minimized with respect to z The evaluation

3
of the integral (4. 29), after substitution of the value of N defined in

(4. 5b) yields:

yx, = a sin”1 (1) (4. 31)
Va
wherea =1 + (—}—)2
Z
3
Noting that: sin 1L = tan”! (25) (4. 32)
Ve
one obtains:
-1
dyx 2tan "z
A 1 3
= [ ———2 1 1] (4. 33)
3 23 3

A stationary value, here a minimum, of Y)\4 is obtained for the posi-

tive root of:

z, ¥ 0 (4. 34)
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The minimum was found to be:

Y)\4 = 1.3800, )\4:1.9044—

(4. 35)

at - 0.4290

23

4-3-5, Results

Since no closed form solutions beside the straight design
were found, a numerical solution of the two point boundary value
problem defined by the set II of optimality conditions was performed.
The integration was performed up to C].Z = 8, the value at which
numerical difficulties occurred due to the sensitivity of the solution
with respect to the unknown initial slope ZZ(O)° The results for the
middle line shape, the thickness distribution, and the slope of the
support as well as the initial slope of the structures are plotted
respectively in figure 1 through 3 for different values of a and ﬁz =
2.5. The value of the objective function corresponding to the straightv
designs, the optimal designs and the ''best'' membrane design are
plotted on figure 4,
4-3-6., Conclusion

For the shape and the thickness optimization of simply sup-
ported arches, subjected to a uniform pressure, satisfying a stiff-
ness constraint, it has been found necessary to include the effects
of the shear force contribution in the strain energy definition. Two
families of local optimal solutions have been found. The straight
design which satisfies all the necessary optimality conditions was
not found to be a global minimum for the achieved numerical solu-

tions. A one parameter family of optimal designs, with respect to
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an average thickness to length ratio (:11—) was generated. Although
the "'best'' membrane design does not satisfy the optimality condi-
tions, it represents for practical values of a(a > 5) a very good
approximation to the '"'best'' design,

4-4, Optimal Arches with a Stress Constraint

The approximative two-dimensional state of stress used for
the present analysis is defined as follows:

a) On an element normal to the middle line of the arch the
stress vector is composed of a normal stress ¢,, due to the normal
force N and the bending moment M, and of a shear stress 7 due to
the shear force T.

b) On an element parallel to the middle line, the normal
stress is zero and the shear stress is - 7.

The normal stress gt is a linear function of the distance v

from the middle line

— Mv N t _— _ t
==+ =, - Z<ys<-=
%=1 tx: "zSVSs3 (4. 36)
-t-—3
where I = 13 : cross section moment of inertia
A =1 : cross section area

Note: the width of the section does not appear in those formulas
since it was assumed to be a unit constant.
Although theoretically this is not true, the shear stress 7

is assumed to be a constant on the cross section.

7=

SIE]

P

N
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where 38 is a coefficient which can be used to study the influence
of the shear stress on the solution. |

The maximum shear failure criterion defines the admissible
state of stress. At each point of the cross section, there exists a
direction for which the shear stress is maximum. The state of
stress is said to be admissible if the magnitude of the maximum
shear is less than or equal to a given limit valué ;adm" Given our
approximative state of stress:

‘/otz(—\? v 47°

)
max 2

(4. 38)

Since the magnitude of the tensile stress, in a given cross section,
is maximum at the top or bottom fiber, the stress criterion can be

formulated as:

2

1 6M | — 2 T -2
E—_E(—E_—wLN) +p —tT <4 Tadm (a)
(4. 39)
— 2 2
1 6M < 2 T -2

Our assumption on the shear stress distribution 7 in the cross sec-
tion was made in order to avoid the search of the location of the
fiber in a cross section for which the shear has its largest value,

The material volume is the objective function J.

2L
T-[ \/1+§,§ ax | (4. 40)
0
Upon introduction of the dimensionless variables defined by

(4. 3) and of
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2T
adm (4. 41)

t
t=f —5

the objective function (4. 40) and the stress constraint (4. 39) reduce

respectively to

2
=3[ ¢ 1+~z§ dx (4, 42)
0
2 2.2
_12—(—-——6MY+N) + BT 1s<o
t t £
(4. 43)
2 2.2
Lz(ﬁ’i\/[_y-N)Jrf’g -1<0
t t
where
— LZ
=2 J (a)
adm (4. 44)
2T
adm
= —20 b
Y o (b)

For large values of v, referred to as the load coefficient, the

applied pressure is small with respect to the admissible maximum

shear.
Since the result cannot depend on the sign of the pressure,

it will be taken as positive, Therefore we will limit our investi-

gations to the case v> 0, and El— = 0,

3
4-4-1, Formulation
Because of the symmetry in the imposed boundary condi-

tions, the problem can be formulated as:

1
MinJ = [ tVl+z) dx (4. 45)
0

subjected to:
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i) the state equations

dz]
T T %2 ()
(4. 46)
dz
3 .
= 0 (b)
ii) the stress constraints:
1 6My 2 2 T2 2
t t
(4. 47)
2
1 6My 2 2T 2
— g "N B -1t p, =0 (b)
t t
iii) the equilibrium equations (4. 4)
iv) the boundary conditions
zl(O) =0 zl(l)unknown
(4. 48)
z3(0) unknown z3(1) unknown

Note. a) the unknown slope of the support is treated as a state
variable bounded to be a constant by (4. 46b).

b) the inequality constraints (4. 43) have been transformed
into the equality constraints (4. 47) by introducing two additional
control variables My and My A stress constraint (4, 46) will be
said to be "effective' when its corresponding Py (i =1,2)is zero.

The Hamiltonian H of the system is obtained by adjoining
to its Lagrangian the state equations (4. 46) and the stress constraint
(4. 47) by means of the Lagrange's multipliers )\l’ )\3, n

The state variables are 2y and Z5e The control variables are t,

and N3
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2 2
1 [6M - 2 T 2
+ nz [__2_ (T_Z. - N) + ﬁ '—2- - ]. + P.z] (4a 4‘())

Optimality Conditions

The first order optimality conditions are:

Hui = 2p.m; = 0 i=1,2 ()N
SR ou s P OMy OMY Ny - 2
t - Z2 t 3t By
L2, emy MYy - 2 b) \(4. 50
t 3t F2 >( - 50)
tz 2n
H = 2 . 21 [(65’[7 + N) 8N + B T——;’T]
2 ,/HZS t 2 2
N, 6 My ON 9T
t (~ N)———+[3T——a +XAy=0 (c)/
t 2 Z2
dx, 2n
i My | eMy 6y M , 8N
T H, T2 [(t N e e
1 t i i
. @r T | 2, EMY ) by oM ___)+ 2y T
L5 -z T T oz, Bz,
i=1or 3 (4.51)

The stress constraints (4. 47) are also part of the optimality
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conditions. Since they result from the transformation of the inequality
constraints (4. 43), their associated Liagrange's multipliers must be

non-negative on an optimal solution. The boundary conditions are:

atx =0
z,(0) =0 X, (0) unknown (2)
z,(0) unknown X5(0) =0 (b)
atx =1 >(4—. 52)
z,(1) unknown (1) =0 (c)
2,(0) unknown N(1) =0 (d)J

As for the stiffness case, the condition (4. 52c) is implied by the

symmetry condition:
z,(1) =0 (4. 53)

Two constraints enter into the problem, therefore three
cases should be considered:

a) case where no constraint is effective

b) case where one constraint is effective

c) case where two constraints are effective

Theorem 4-4

At every point of the optimal structure, at least one stress
constraint has to be effective,

Proof

Let us suppose that no stress constraint is effective, i.e.,

that py# 0 and p, # 0. Then (4. 50a) implies that np =M, which
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contradicts (4. 50b).

The previous theorem rules out the first possibility, as ex-
pected from physical considerations. Since the structure is statically
determinant, a change of thickness at a point does not affect the
values of M, N and T at the other locations. Therefore if the value
of the thickness at a point was higher than the one required to satisfy
the stress constraints, it could be reduced until one constraint
becomes effective.

Theorem 4-5

A feasible state of stress for which the stress constraint

(4. 47a) is effective, is such that

NM = 0
Proof

Let us suppose NM <0. Then the constraint (4. 47b) is
violated. ’ q.e.d.

Theorem 4-6

When two constraints are effective, then either N = 0 or
M =0.

Proof

When the two constraints are effective, then By =My = 0.
The two constraints (4. 49) imply that NM = 0. A segment of arch
on which N = 0 everywhere is, from (4. 4a), a straight line. Using
(4. 4b), M is found to be non-zero on such an arc, except at x = 0.

q.e.d.
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When two constraints are cffective, the shape and the thickness dis-
tribution are fully determined by the stress conditions. However
the optimality conditions will determine whether or not such struc-
tures are optimal.

4-4-3, Membrane Design

Theorem 4-7

The '"best'" membrane design, i.e., the membrane design
with % = 0, 429 satisfies all the optimality conditions provided
y = 1/3. |

We will first show that any membrane design satisfies all

the optimality conditions, except the boundary condition on ) For

3
a membrane design M =0 Vx,x € [0, 1]. Therefore the two stress
constraints are effective and T = 0.

Let us compute the two Lagrange's multipliers n and u

from the optimality conditions. -

2
(4.4 = =1 (4. 54)
t
(4.5b) => t=VI+ (;1—)2 (4. 55)
3
21 2n
(4.50b) => Tl- n __t_z . \11+z§ (4. 56)
tz
(4.50¢) and (4.5a) =» A, = 2 - (x-1) (4. 57)
1+Zf2£
dx,

(4.57) = TG - 1 (4.58)
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Using (4.51) withi = 1, (4.56) and (4. 58) one obtains:

2n 2n
1 2 1 J 2
; t T3y V7 (4.59)

(4.59) and (4.56) define a system of two linear equations for u and

", which has the following solution:

t l+z§ 1
Ny = —g— (Lt 5 (a)
(4. 60)
t Vl+z§ 1
n, = —g—= (1 -5 (b)

when 0< vy < % then M, < 0 which indicates that the membrane design
1

is not optimal. When v> 3

the membrane design of minimum material volume, i.,e., satisfying

then n, > 0 and n, > 0. In this case

also the boundary conditions on )\3, is a local optimum. This solu-
ticn corresponds to the "best'" membrane defined in section 4-3-4,
The slope of the support is given by ;15 = 0,429 and the material
volume is 1. 3800.

4-4-4, Straight Design

Theorem 4-8

The straight design Zl(X) =0, 21—3 = 0 satisfies all the opti-
mality conditions for all values of v.
For the straight design N = 0, the two constraints (4. 47) are

effective.

2.2 4 22
(4. 47) => t:\/‘3 T +\/62T t 144 My (4.61)
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where T and M are given by the equilibrium equation (4. 4):

2
X
Tex-1, M=% -x (4.62)
2n 2n 2 2
1 6
(4.500) = (— + —2) 1+ MV o (4. 63)
t

Using (4.51) with i = 1 and the boundary condition )\2'(1) = 0 one obtains:

dx
- =0 = A\ x) =0 (4. 64)
(4.50c) => 21{n, - nz}[éi‘gy T]=0 (4. 65)

Since M and T are not identically zero for all x in the interval [O, 1]:

t

2.2
4(1+§31§f1—
t

from (4.51) with i = 3 shows that )\3(x) =0,

(4.63) and (4.65) => n; =n, = (4. 66)

A direct computation of )\3
Therefore the straight design satisfies all the optimality conditions,
The material volume of the straight design VS can be com~

puted by quadratures using (4.61) and (4.62), A lower bound of the

material volume is obtained when B = 0.

[Velgoo = V37 (4. 67)

The straight design corresponds to a local optimum, but it
cannot be a global optimum for all values of v, since the material
volume associated with the '"best" membrane design is independent

of v,
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4-4-5, Designs with One Effcctive Constraint

The membranc design ccased to be a local optimum for y < —:1;
because Mo the Lagrange's multiplier associated with the stress con-
straint (4. 47b) became negative. This gives an indication that better
designs, on which the constraint (4. 47b) is not effective, might be
found. Let us give a physical interpretation of the previous argu-

ment. On a membrane design:
z,(x) = [zl(X)]M, M=0, N<O
A direct substitution in (4. 4c) for the case —Zl— > 0 shows that:
3

a) if z,(x) > [zl(x)]M then M > 0

b) if z,(x) < [zl(x)]M then M < 0

Therefore the length of the middle line of an arch on which M > 0
everywhere, cannot be shorter than the one of the membrane design
having the same initial slope. A study of the one parameter family

of designs:
z.{x) = [z (x)] + € xz(—Zx+3)
1 1 M

showed that the '""best'" membrane design was improved for € < 0

and vy < ')/2 < % . The decrease of the material volume was obtained
even though there was an increase of the average thickness of the
arch, due to the bending moment. However the decrease in the

middle line length more than compensated for the increase of the

average thickness. For the investigated family of designs, M X N
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is positive when € < 0, These were the determining factors for
investigating the case where only ’ch.e constraint (4. 47a) is effective,
When the constraint (4. 47a) only is effective, the optimality

conditions are obtained from the ones defined in the section 4-4-2

setting
by =M, =0 ’ (4. 68)
an Vl+z§
(4. 50b) = = . (4. 69)
1+ 61\/3“’ 5 LA N)
t

When the state of stress constrained by (4. 47a) only is feasible,
2n
1

theorem 4-5 and (4. 69) imply that < > 0.

To avoid the difficulty of solving the constraint (4. 47a) and
the equation (4. 50c¢) for z, and t, total derivatives of those equa-

tions with respect to x are used to generate a system of two linear

dz
equations for —gé and HX_Z . The total derivative of the stress con-

straint (4. 47a) with respect to x can be written as:

dz

dt 2 .
B, gz * B, 3~ =B, (4.70)
where
B, = 4t3-2t(;32T2+N2) - 12 MNy (a) )
2t° 2. 6My
B, = - T [N(1-%) + 2] (b) ? (4.71)
14z
2
2 (.2.2 2
By = 2T V1+z; [B™t" + 6V N + 367"M] (c) J
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The conditions (4.50) can be expressed as:

tzz
H = + DC +X, =0 (a) )
z 1
2 1+z2
2
an
where D = - (b) ? (4. 72)
T M 2
C= — 221 Na-pH)] ()
t(1+zz)

The total derivatives with respect to x of D and C are respectively:

dz

ap . dt 2 N
ax Prax "Pram TPs (a)
D% 18My ,8My
where; Dl = ) ( T T N) (b)
Z ot
1+z, P (4.73)
Z
L . _D 2 _ 6My [ N ©
2 - = 57,
\/1+z2 vlJrzz
2. 6y ,12My
133_13'1“3(t £ N) (@ J
dz
ac . dt 2 N
= " Ci1@mtCra TG (2)
where C. = - T [IZMV +N(1“f32)] (b)
1 7 LT
t (l+zz)
C,= —t (- MY (Ny2Ts)
27 05 £ 2
2 (4. 74)
(1-8% (TZ-NZ-ZTNZZ)] (c)
1 6 .2 2
Cy= ———— [ (T%M) + N(1-p)] (d)

\ll+z§
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The total derivative with respect to x of the condition (4. 50c) can be

written as

de dz
2 _ p dt _2 _ -
&= Tt e " Fs=0 (4. 75)
where
Z2 N
F. = + DC. +D.C (a)
1 — 1 1
\}l+z2’
2
B t

F, = — 5375 + DG, + D,C (b) ? (4.76)

(1+zz)

d)\l J
F3: —75;-DC3-D3C (c)
dx
1 D[ 6My 6 11 1
= Tt [‘*“t +N) (- Az ¢ o) )
3 1~I—z2
2
Z
— | (4.77)

Vl+z§

The relation (4, 77) is derived from the condition (4, 51) with i = 1.

The conditions (4. 70) and (4. 75) define a linear system of equations

dz, dt
for —— and == which has a unique solution when
dx dx
GEBIFZ-BZFI;&O (4.78)

The solution is given by:

dz, B F, -B,F
dx - G (a)

_ : (4.79)
dat B,F,-B,F,
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Theorem 4-9
If B =0 then G = 0 whenever M = 0,

Proof

The thickness can be computed directly from (4. 47a)
(4. 80)

tZ:Nz

A direct evaluation of the variables defined by (4. 71) through (4.77)

gives:
B, = 2N%, B, = - 2N N7
1 2 .
“2
z
D =Virz2, D, =0, D,= —2_
l+z2
2
c - _NT__ C == — NT
t(1+25) t°(1+25)
C. = 1 {T% 27Nz -N?}
2 2.2 2
t(1+z.)
2
z
F - 2 NT
2 2 2
1+z2 t 1+ 2
_ t 12 2
F,= W [14rtz (T™-TNz,-N%)]
2
Using (4. 78) to evaluate G, one finds:
2 2
_ 2N 2 2,2, N
G_-———m[t N“+T"® (1 7)]
(1+zz) t
G =0

Therefore by virtue of (4. 80) :
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The shear force contribution was introduced into the stress
criterion to insure that g% and ;{— can be uniquely determined from
the equations (4. 70) and (4. 75).

The system of equations (4.79), along with equation (4. 51)
with i = 3 define the set II of optimality field equations. The boundary
conditions are given by (4.52), where (4. 52¢) is replaced by (4.53).
The initial value of the thickness is given by the stress constraint
(4. 47a) evaluated at x = 0. This defines the set II of optimality con-
ditions.

Numerical solution of the set II of optimality conditions was
first performed for v =.3 using a direct shooting technique as de-
scribed in Chapter III. The unknown initial values were zZ(O) and

~—1— . The matching conditions were zz(l) = )\3(1) = 0. Due to the

z
3
peculiar changes in the unknown initial conditions from one iteration

to the next one, this search method was abandoned. A direct com-

putation of Zz(l) and )\3(1) as a function of zZ(O) and ZL was performed
3
for different values of ¥ and B = 2. Figure 6 shows the loci of the

points 1in the (ZZ(O)’ ZL) plane for which either z2(1) =0 or )\3(
3

A solution of our problem, which must satisfy both conditions, is an

1) =0.

intersection point of the two loci. For v =.25 the figure 6a

shows that no intersection point exists. When vy = . 3 there exist
two intersection points A and B as shown on figure 6b. The point
A corresponds to a local minimum of the material volume, but the
point B is neither a minimum nor a maximum. As Y was increased
up to the value 1/3, the point A moved toward point C which repre-

sents thc best membranc design. For ¥ = 0. 35 only one intersection
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point B of the two loci was found as shown on figure 6c. The prob-
lems encountered during the iterative search can be explained by
the fact that the solutions correspond to the intersecction points of
two curves which are almost tangent when vy =. 3,

When cne constraint only is effective, the number and the
character of the solutions to the optimality conditions depend on y
in the following manner:

a) v< y* : no solution. It was found that ’)/* =0.27 for B = 2.

b) y* <y < %; : two solutions. Only one of which corresponds
to a local minimum of the material volume.

c) v > % : one solution which is not a local minimum.

To verify these surprising results, the problem of determin-
ing the ''"best'' parabolic arch satisfying the stress constraints (4. 47)
was investigated. The thickness t(x) is considered as an unknown
function. The initial slope of the structure zZ(O) and the slope of
the support are two unknown parameters. The dependence of the
solutions on the parameter ¥, when one stress constraint only is
effective, was found to be similar to the one of the general problem.

Remark: In the previous analysis we considered the cases
where the same set of constraints was effective on the entire struc-
ture. Theoretically solutions on which several sets of constraints
are effective on different arcs of the solution should be investigated.
Two types of switching points could exist:

a) switching point between an arc on which the two con-
straints are effective and an arc on which only one constraint is

effective,
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b) switching point between an arc on which one of the two
stress constraints is effective and aﬁ arc on which the other stress
constraint is effective,

A detailed analysis of those cases was not performed, since they can
be ruled out on physical considerations, When one constraint is
effective, its associated Lagrange's multiplier is positive, It indi-
cates that no branching to another type of arc will be locally improv-
ing as long as the other constraint is of course not violated. This
was found to be verified during our numerical computations. -

4-4-6. Results

Figure 5 shows the value of the material volume as a function
of v for the different types of solutions. The numerical computa-
tions were made for the case § = 2.0,

The straight design is a local optimum for any value of v,
and corresponds to the global minimum for y < Y+., The ''best'!
membrane design is a local optimum for vy > 1 and corresponds to

3

the global minimum for vy > V+, When one stress constraint only is

effective, solutions to the optimality conditions exist when vy > y> .
1
3

minimum. The values of Y+ and 7> obtained in our computations

The local minimum found for 7/* <Y < 5 did not appear to be a global
are respectively y* = 0, 27 and V+ = 0.44. These values are functions
of the coefficient .
4-4-7. Conclusion

The influence of the shear force was introduced in the defini-
tion of the admissible state of stress., The maximum shear was used

as the failure criterion, introducing two stress constraints,
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For the considered cases the global optimum was obtained
when the two stress constraints were effective. It was either the
"hest'' membrane design, when the load coefficient v is larger than
”y+, or the straight design when v < 'y+, Furthermore the ''best'’
membrane design ceased to be a local optimum for ¥ < é—

When only one stress constraint was effective, two solutions

to

of the optimality conditions were shown to exist for ’)/a‘ <y < % One

of these only was a local minimum, Wheny > V* one solution of

this tvpe did exist, but it was neither a maximum nor a rrﬁnimum.
Although for practical applications the ''best'' membrane

design corresponds to the minimal material volume design, it has

been shown that other solutions to the optimality conditions do exist.
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V. SHELL STRUCTURES: "MEMBRANE THEORY"

The problermn of determining the shape and the thickness
distribution of shclls of revolution, subjected to axisymmetric loads,
described by the membrane theory, received some consideration in
the past. Chan [22] investigated the case of shells of revolution
under edge loading for both a stress or a stiffness constraint, and
found an analytical solution for the case of an edge traction which
did not satisfy the ''natural' boundary conditions., Stroud [23]
treated the case where the shell is subjected to end tractions and
a normal pressure with a stress constraint. Using a Ritz method
to determine the unknown coefficients of the assumed trigonometric
series for the shape, non-convergent cases were found. The same
problem is reformulated here, but with an emphasis on the influence
of the boundary condition definition on the optimality conditions,

A formal problem definition is first given. The optimality
problem for a stress constraint is investigated for the case of a
combined edge and normal pressure loading case. The influence of
including the possibility of discrete rings in the formulation is then
investigated. The same problems are then treated for a stiffness
constraint.

5-1. Problem Definitions

Let S be the set of shells of revolutions such that:

a) the governing equations are derived from the membrane
theory of shells

b) they support axisymmetric end tractions and a pressure

normal to their middle surface (different classes of problems
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depending on the definition of the end tractions will be investigated)
c) they satisfy cither a given stress or stiffness constraint
d) their length is 2L and their end radii are Ty
We seek the shape T(X) and the thickness distribution T(X) of
the element in S of minimum mass.
5-2. Equilibrium Equations
When a shell is described using membrane theory, the prin-
cipal stress resultant n. and HZ can be computed directly from the

1

two equilibrium equations:

dn T, —

1 X = —
o IS Eg
dx T
T,—— n n

'xx 1 2 _

_25/2 - +p =0 (5. 2)
4z, 2 TVIT, S

'x

When the applied pressure, p, does not vanish the following

dimensionless variables can be introduced:

Tr = T X _E
"L *Ti
(5. 3)
n n.
nl = 1 R nz = 2
2 2

The equilibrium equations (5. 1) and (5, 2), in terms of the

dimensionless variables, become:

L% [nyon,)] (5. 4)
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2 ]/ - 2 +y =0 (5. 5)
(14r, ) r \J1+r,
X
where v = _Z_E (5. 6)
o

5-3. Optimum Membrane Shell with Stress Constraint

The Von Mises yield criterion is used to défine the admis-
sible state of stress. The objective function and the optimality
conditions are first derived for a combined edge and pressure load-
ing case. Several classes of problems in which the normal pressure
vanishes are investigated. Numerical solutions for the combined
loading case are presented which show that the problem becomes
singular for some range of the parameters,

The Von Mises yield criterion is given by

R W, T 4+T% < o°T (5. 7)

where o, is some experimentally determined critical stress such
as the yield stress. Upon introduction of the previously defined
dimensionless variables and:

20

t = Sl (5. 8)
Pr

the Von Mises conditions reduces to
nz-nn+n26t (5.9)

The material volume is taken as an objective function J

for the present problem:
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X . +21L

0 2077 A1+ 7,2 a% (5. 10)

X

o
0

It reduces in dimensionless form to:

2
J = {) rt Viery o dx (5. 11)
where
_ 5 PT
J = 27L° J (5.12)
a

5-3-1. Formulation:
The mass minimization of membrane shells of revolution
for a stress constraint can be formulated, in dimensionless varia-

bles as:
2
Min [ rt Yl+r, 2 dx (5. 13)
: 0 x

subjected to:

i) the state equations

dr N

a= = r’X (a)

dr,X

T - Trxx (b) ? (5. 14)
dn1 r,X

& =+ [pym,l (c) J

ii) the constraints

T, n, n,
XX - + v =0 (a)
a+r, 232 2 NIix, 2

(5. 15)
2 2 2 .2
ny - mn, N, opt o=t (b)
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where p is an additional control variable introduced to transform the
inequality constraint (5. 9) into an equality constraint according to
(3.58),

iii) the boundary conditions (different classes will be investi-
gated later since they do not influence the optimality field equations)

The Hamiltonian H of the system is obtained by adjoining to

its Lagrangian the state equations (5. 14) and the coﬁstraints (5.15).

The state variables are r, T, N and the control variables are

1
r’xx’ t, n2 and p.
T,
H = rt l‘il,x +Klr,x+>x21,x}{ K3 = [nl_nz]
T n n
'xx 1 2 2 2 .2 2
Ml 2.3/2 =, TV ]+ my[ny-nynginy £
(1+r, ) I+r,
x x
(5. 16)
5-3-2, Optimality Conditions
The first order optimality conditions are:
_ _ - N\
HH~ZT]2p.—O »(a)
H, = r\h+r,i ~2n,t = 0 (b)
(5. 17)
n,n >
Hr = A2+ __1.__1__ =0 (c)
* xx (1+r, 2)3/2
x
T, n,
an = 7\3 + nZ[an-nl] - Ny = 0 (du




dAa T n
1 _af 2 ’ 2 -
T T He TN L g [nyeny] -y 5 (2)
r \ltr,
X
dx trr n.-n
2 _ ' x 172
& T, T Mt s
l+r,X
31‘,Xr,Xan Trx
‘o [ i n ] (b)
1 2
(l—i-r,z)s/2 1‘(1+r,2)3/2
x X
dx3 K3r,x [ ] Ty x
— =_-H = - M 2n. -n - My — (c)
dx n T 2 1 72 1 -
1 (141, 3)3/2
x
(5. 18)J

The state equations (5. 14) and the constraints (5. 15) are
also part of the optimality conditions. Note: Since the equality
constraint (5. 15) results from the transformation of the inequality
(5. 9), n, should be non-negative.

Let us eliminate the unknown Lagrange's multipliers My My

and compute the control variables from the optimality conditions.

i) (5.17.b) = a) Ny = 0 only if r =0 (a)
b) t=0 only if r =0 (b) (5. 19)

r 1+r,X )

h #0 = (c

c) when r M, o
ii) (5.17.a) and (5.19.¢) = p =0 (5. 20)
A (14, 2)3/2

iii) (5.17.¢c)andn;# 0 =5 7, = x (5. 21)

n

1



] >t2 l'f'l‘,z " )31 T’X -
iv) (5.17.d) = n, = > Ny - —— - (a)
T 1 2
T I+r,
x
1
(5.15.) and (5.20) =5 t = [nf-n n+n’]" (b)
n, l+r 2
(5.15.a) and n1¢0 = r, = __? ] x —l—(1+r,2)3/2
XX 1’11 * T nl X
(c)
(5. 22)-
v) d>\1 1o lJrr’x r,X —
T )LZ n_l 5 - 7&3 [nl-n2] -t l+r,X (a)
T
d)xz N [3r,xr,xx ) T, _1;1_2_]
’x
n,-n rtr,
+ )L3 lr z _ (b)
l4r,
x
d)'3 r’XX r’X r 1+l‘,i
._._dx :KZ nl + >\.3 T - >t [an-nz] (C)_
vi) -g; = T, (a) N
dr,X
a5 T Trxx (b) > (5. 24)
dn1 T,
i ol LR PY B y

5-3-3, Case wherep =90
Despite the fact that the previous non-dimensionalization

was performed for the case p # 0, the optimality conditions for the
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case p = 0 are obtained from (5. 19) through (5. 24) setting ¥ = 0 in

(5. 22c¢) only and using the following as a definition for the dimension-

less variables:

1 2 x T
Mo T eEr "2 eEs o T T
a’o a’o L
(5. 25)
t =t J=27L%r. T .y = 2L
T 0
0 g

Several types of problems can be considered depending on the
definition of the boundary conditions for the values of nl(O) and nl(Z).
They cannot be specified independently of each other since they have

to satisfy the overall equilibrium equation:

rn rn
_1__' B} L l -0 (5. 26)
2 2
\/1+r,x %=0 1+r,x <=2

a) Problem 1

Let the magnitude of the end traction n; be specified at x = 0.

Its direction will be aligned with the slope of the structure at x = 0,

£(0) = r(2) = 2 n,(0) = F (5. 27a)
y

r,X(Z), nl(Z) are unknown but satisfy (5. 26). The
boundary conditions on the Lagrange multipliers derived from

are:
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A, (0), A,(2), X (0) are unknown, h
vn] .
X,(0) = _.Bi._’
(1+r,i)3/2 x=0
(5. 27b)
-vn] r,X >
X,(2) = — ’
2
(1+ ,2)3/2 )
X
B - Vvr
5(2) = ’
\/l+r,x x=2 J

where v is the Lagrange's multiplier associated with (5. 26).
b) Problem 2

Let the magnitude of the axial projection of the end traction

n, be specified at x =0, i.e.,
n (0) = F Vir, 200), x(0) =1(2) = 2
x Y
r,X(O), r,X(Z) and nl(Z) are unknown but satisfy (5. 26)
which reduces here to: (5. 28a)

nl(Z) = F 1+r,x(2) since r(0) = r(2)

The boundary conditions on the Lagrange's multipliers derived from
are:
ll(O), AI(Z) are unknown

Fr, (0)

(5. 28b)
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A, (2) Y RS

1

o

(5. 28Db)

K3(2) = v, )

where V1 and v, are respectively the Lagrange's multipliers asso-
ciated with the boundary conditions on nl(O) and 111(2).

c) Problem 3

Let the magnitude of an axial force be defined on the boundary.
Whenever the slope at the ends of the structure is not zero a ring,
satisfying the same stress constraint as the remaining part of the
structure, will be added to support the load R not taken by the shell,

n

R 1

To our previous integral objective function, discrete terms
corresponding to the possible end-rings must be added. The cross
section A of a ring supporting a radial force R per unit length for

our stress constraint is:

x - __ 0 (5. 29a)
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The volume VI

2 of the ring is:

. 2rr- IR
VR = (5. 29b)

[0}
a

O™

Upon non-dimensionalization according to (5. 25) our dimensionless

objective function becomes:

2
7 =220 F|r, (0)] + 2@ Flr,_(2)]r jo reV1er, Zax (5. 30)

the boundary conditions are:

r(0) = r(2) =

<} v

r,X(O), r,X(Z) are unknown (5. 31)

nl(O) =F 1+r,>2§(0) and nl(2) = F Vl+r, 7(2)

The variation of 6J due to admissible variations of the value

of the state variables on the boundary is given by:

83 = r2(0) F {{r,X(O) + br,_(0)]-]r,_(0) |}
+rl2) F {lr,x(zj + o1, (2)|-]r, _(2) [}

+ 4,0 bx, _(0) - A,(0) b1, _(2)

anl(O) anl(Z) 5
+ KB(O) -a—r-;(.o_) 6r,x(0) - )\3(2) -5-17’_;—(27 6r,X( ) (5.32)

Let us suppose r,X(O) <0 and r,X(2)> 0

2 Fr, (0)
then 63 = {-r%(0)F+ ,(0) A0 Zx Y e, (0)
\/1+r,}2§(0) (5. 33)
2 Fr, (2)
P E @ e x a2
2
1+r, #(2)
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The boundary conditions on 7\2 and A3 must be such that the coeffi-
cients in (5. 33) of the arbitrary 6r,X(O) and 6r,x(2) vanish., Similar
conditions would be obtained for r,X(O) < 0 and r,X(Z) > 0. Let us
now suppose that r,X(O) =r, (2) =0. Because of the absolute values,

two cases must be considered

i) 6, (0)>0, &r, (2)>0
67 ={r%(0) F + X, (0)} br, (0 + {+2(2) Fox,(2)} 6, _(2) (5. 34a)

ii) 6r,X(O) <0, 6r,x(2) <0

57 = {-r2(0) F- (00} (87, ) +{r 2 2)F+ 2, (2)} (-67, (2)

X
(5. 34b)
In order to have §6J = 0 for all admissible perturbations of the bound-

ary conditions we must have:
2 2
0] < O F, |)@]<r@F (5. 35)

It is to be noted that here the solution is not stationary with respect
to the end slopes when the strict inequalities are satisfied.

d) Problem 4

The class of admissible structures is restricted to the subset
of S having a given initial and final slope. The end traction is also
given., For a symmetrical case the boundary conditions on the state

variables are

r,X(O) = —r,X(Z) = o (5. 36a)
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nl(Z), determined from (5. 26), is considered given. (5. 36a)

The boundary conditions on the Lagrange's multipliers derived from

(3. 32) are:
7&1(0), A

Theorem 5-1

2) are unknown, (5. 36b)

The function r(x) = r(0) generates a solution of problem 3

but not of problem 1 or problem 2.

It is also a solution of problem

4 provided the imposed initial and final slopes are zero.

Let us first show that the field optimality equations are sat-

isfied.

(5. 22¢) =>
(5. 24a) =>

(5. 22b) =

(5. 232) =

(5. 23c) =

(5.23b) =

1
Ir
r:
x+K3
n K.n
1 _ 371 _
+)\3—r——>>t2—(r Kl)X+K2
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Liet us now substitute the solutions for )&1, >‘2’ /\3 in (5. 22a) which

is the last equation to be satisfied,

Ky
- _ 1 - -
(5. 22a) = n, =30 {( = Kl)x+KZ}
This will be satisfied iff:
n
1
K, == X, (a) )
Kzt
$ng = 5 (b) (5. 37)
n,r
1
i.e., iff AZ =K {c)

2

7

Let us now verify that the boundary conditions are not satisfied for
problems 1 and 2.

i) Problem 1

(5. 27b) => AZ(O) = ?&2(2) =0

(5. 37c) = KZ =0 |
but this contradicts (5. 37b). q.e.d.
The proof for problem 2 is identical.
ii) Problem 3
Let us now show that the boundary conditions are satisfied
for problem 3. Since the cylinder satisfies r,X(O) = r,X(Z) =0 and
n)(0) =n,(2) = F, then from (5.37) A, = K, =} Fr%, which implies
that the qonditions (5. 35) are satisfied. q. e.d.
iii) Problem 4
Since the boundary conditions on the Lagrange's multiplier

are arbitrary in this problem, the curve r(x) = r(0) is a solution
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provided that the imposed slopes are zero.

Theorem 5-2

The curve r(x) = K cosh x-1 generates a solution of problem

K

4, provided that the boundary conditions are compatible with such a

solution. It is not a solution of problems 1 through 3,

Proof:

Let us first remark that the shape under consideration cor-
responds to the surface of revolution of minimum area of length 2

and of end radii

2 1
7 —KcoshR—

A detailed discussion of this problem is given in Ref, [19]0

Using the shape under consideration in the equilibrium equa-

tions (5. 4) and (5. 5) one obtains:

n, (x) =n,(x)

(5. 38)

dn1

dx =0

Upon substitution in the optimality conditions the following solution

for the Lagrange's multipliers is obtained:

1 X+C -1 \
Ay = e Kt ———— +281nhT
Kcosh——
sinh —_1
_ 1 2 x+cC K _ 1
>tZ_ZKt[K 2 x-1 xlil > (5. 39)
cosh™ —— osh =
K
1 Kzt x-1 x=-1  xtc
A3 = - E————-n1~ [mnh ® cosh = + = )
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where ¢ is a congtant of integration to be determined from the bound-
ary conditions on the Lagrange\'s multipliers. Because of the sym-
metry of the shape under consideration the following symmetry

relations must be satisfied:
A6 = -2 (2ex)

X, () = A, (2m%) > (5. 40)

Xyx) = -2y (2x) /

Those relations imply that ¢ = -1,

i) Problem 1
(5. 27b) = )\2(0) = - AZ(Z)

(5. 40) =>» A,(0)

T
>
N
N
S’
I
o

which is not satisfied in (5. 39). q. e. d.
ii1) Problem 2
(5.40) and (5.28b) = v, = -v,

The remaining part of the proof is identical to the one for problem 1,
iii) Problem 3
Since r,X(O) # 0, the boundary conditions implied by (5. 33)
are applicable here. A direct substitution shows that they are not
satisfied.
iv) Problem 4

Since the boundary conditions on the Lagrange's multipliers

are arbitrary in this problem, the curve r(x) = K cosh }—{R——l is a
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solution provided that it exists and that the imposcd slopes are com-
patible with such a solution,
5-3-4. Case where p+ 0
When the applied pressure on the shell is non-zero, closed
form solutions of the optimality conditions were not found. Numeri-
cal solutions are sought only for the case of shells with a prescribed
zero initial slope in the interval x ¢ [O, 1].
The end traction per unit length on the shell is supposed to be
formed of two parts:
i) the traction a pressure vessel head would transmit to the
shell when subjected to the pressure p : % PT
ii) an additional, externally applied load per unit length of
circumference F_O’ not associated with the pressure., A parameter
w which describes the loading is defined as:
2F,
br,

(5. 41)

Let us solve the equations (5. 22) for the control variables t,

n2 and Ty s defining:
1 ?LZ 1+r,}2< r,X
g — . -——1;—-—+A3 r) (5. 42)
2 1
r\/1+r,x
2
When g~ < 1 then:
3n'.f
t= 3 5 (a)
l-g
n, = 3 n, - gt (b) (5. 43)
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n, 1+r,§ Y (1+r, %)3/2
r, = -2 . % (5. 43)
XX nl Tr nl

Equations (5. 43) along with equations (5. 23) and (5. 24) define a
system of differential equations for which the boundary conditions

are:

at x =0
T -2 A, unknown (a) )
Y 1
T 0 )LZ unknown (b)
n, = 1+ w A3 unknown (c)
atx = 1 ? (5. 44)
r unknown Al =0 (d)
T, = 0 )\2 unknown (e)
n, unknown Ay = 0 £y

The numerical results for r(x), t(x), nl(x) and nZ(x) are
presented in figures 7 throughl8 fory =1.0, ¥ =1.5and vy = 2.0
respectively with different values of the load coefficient w. The
material volume is plotted in figure 20,

Discussion of the results for ¥ = 1.5

For large values of w, i.e., when the additional end traction
is large with respect to the applied pressure, the optimal structure

tends, as expected, to a cylindrical shell, which is the solution of
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problem 4 in the previous section. As w decreases a neck down
appears in the shape of the structure and both the values of the

thickness t and of the hoop stress n, increase necar the middle of

2
the shell. Finally, numerical solutions could not be obtained for
w< 0.25. Figure 19 gives a plot of the value of [gl atx =1 as a
function of w.

A physical interpretation of the condition ,g! = 1 can be
found by including the possibility of a ring if T, #0atx =1, in

a similar manner as for problem 3 in the previous section. The

boundary conditions on the Lagrange's multipliers )\2 and )\3 atx =1

become:
if T =0 then: ’A , < rzn (a)
'x ) 2 1
{5. 45)
Ay =0 ()
if r, <20 then:
x
1 7\2 l+r,2’ r,
_ [ -£ Z 4, —2j+1=0 (5. 46)
> n, T 3 r
r Vl+r,
x

The left hand side of (5. 46) corresponds to g as defined in (5. 42),
i.e., g+l =0
if r, >0 then: g-1 =

X .

Therefore, the optimal structure would present a discrete ring at

x = 1 when Igl = 1.
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5-3-5. Conclusion

We have shown the influence of the boundary conditions, on
the shape function r(x), on the optimality character of the cylindrical
shell when the applied pressure vanishes.

For the combined edge traction and applied pressure loading
case, numerical solutions of the optimality conditions were found up
to a critical value of the load coefficient w where a discrete ring
would appear at the middle of the shell. However it was not possible
to {find those solutions on which the slope at the middle of the struc-
ture would be non-zero.

The problem of a membrane shell was also treated by
Stroud [23]. In his treatment the shape was expanded in a trun-
cated trigonometric series symmetric about the center (x = 1).
Stroud then found solutions for the series coefficients for a range
of values of wand Y. The results showed an oscillatory behavior
of the thickness for the case where w =0.2, ¥ = 1.5. An explanation
of the oscillatory behavior of his results for this case can be found
from the fact that his truncated expansion is attempting to represent
a discontinuity in slope at the center as well as what would appear
to be a ring. In Stroud analysis this would take the form of an
infinite thickness (finite area ring) at x = 1. From the formulation
above, it is clear that for w< .25 (Y = 1.5) the formulation of the
problem without a ring leads to an ill-posed problem. One would
suspect that the inclusion of a ring at the center, as in the previous
section, would alleviate this problem. Attempts to do so were

unsuccessful,
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When the membrane theory is used as a model of the shape
to perform both a shape and a thickness optimization, with a stress
constraint, the possibility of discrete rings has to be included in
the formulation. However a critical analysis of the results would
be necessary since the compatibility of the displacements between
the ring and the remaining part of the structure would not be neces -
sarily satisfied.

5-4. Optimum Membrane Shell with a Stiffness Constraint

Since the stress resultants n, and n, can be computed directly
from (5. 1) and (5. 2), the strain energy, in the equilibrium config-
uration, is used as an objective function and the material volume is
imposed as a constraint. A detailed discussion of the case p =0 is
not repeated, but the same results hold as for the stress case.

The optimality conditions are derived for a combined edge and
pressure loading. Numerical solutions, for the case of a zero
imposed initial slope, are presented which show that again the prob-

lem becomes singular for some range of the parameters.

The strain energy of the structure is given by:
-2 _— -

x,t2L n,-2v n.,n_+n

T=1 [0 2 L 12 2?\/1+?,§-d§ (5. 47)
X
0

Et

where E is the material Young's modulus.

The material volume is:
x . +2L
V=7 artN1+r2ax (5. 48)
X
0

Upon introduction of dimensionless variables defined by (5. 3) and of:
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= AT (5. 49)

the objective function and the material constraint reduce respectively

to
2 2
2 n;-2vn.n. +n. —
T A2 e, 2 oax (5. 50)
0 P-4
2 2
[ rtNLr, 2 ax =2 - (5.51)
X
0
where
2 rv. 2 3.2
= P 0 (27L7)
T=28 p Tl g (5. 52)

5-4-1., Formulation
Because of the symmetry in the imposed boundary conditions
the problem can be formulated as:

1 n2-2vn n +n2
Ming = L2 2 iy, ? ax (5. 53)

0 t

subjected to:
i) the material volume constraint

1
[ rt \)1+r,§ dx = 1 (5. 54)

0

ii) the state equations

dr _ 3

d—.}-{— - r’X (a')

dr,X

= =T, (b) P (5. 55)
dnl T,

dx ~ 1 [nl_n2] (c) J
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iii) the constraint

Trxx 72
T 72.3/2 - + 7Y =0 (5. 56)
(1+r’x) r \[11"1‘, .
X
iv}) the boundary conditions:
2
r(0) = 7 r(l) unknown
r,X(O) =0 r,X(l).:O
nl(O) =1+ w nl(l) unknown

The Hamiltonian H of the system is obtained by adjoining to
its Lagrangian the state equations (5.55), the material volume con-
straint (5. 54) and the constraint (5.56). The state variables are

r, r, , n, and the control variables are r, , tand n..
! X 1 XX

2
nz—Zvn n +n2
H = 1 12 2 er+r,2+>& rt l+r,2
t X 4 X
T,
+ 7&1_ T + kzr,xx— )\3 - (nl—nz)
n, r, n
+ny 1 xx 2 +y (5.57)
(1+r, 2)3/2 r Vl+r, 2
x x

where k4 is the Lagrange's multiplier associated with the material

volume (5. 54).
5-4-2. Optimality Conditions

The first order optimality conditions are:
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n;la—?.vn]nz»{-ng -
Ht o (2 TAy=0 (a)
"
e~ 2t m (e, 372" 0 (b)
r, 2(n,-vn
an = )~3 13—( + ( Zt X r ].+1,>2{ -, 1 =0 (c)

(5. 58)J
Using (5. 58a) the Lagrange's multipliers }\l, AZ, K3 are given by:

dx AT n
1 __ 0 37x 2 _ " 2 -
el Hr e 27t4t 1+r,X (a)
by 2 2
r I+r,
. x
d>\2 A
il -H = -Al + == (nl—nz) +
x
3n1r, r’xx n‘2 r,X r,X
5! 5 572 377 ) T gt > (b)
(1+r, ) r(l+r, ) i+r,
x x x
dx 2(n,-vn.,) r,
3 e DG A A x
el _Hnl = T r 1+r,X + K3 =
r,
_ XX (c)
L — -
(11, %)
(5. 59)]

The volume material constraint (5, 54), the state equations (5. 55)

and the constraint (5.56) are also part of the optimality conditions.
Eliminating the unknown Lagrange's multiplier Ny and

solving (5. 58) for the control variables one obtains if n. # 0 and

1
2
g <A4.



1 T, A, l+4r, 2
g = — S A g .___2_ - =
———r 3 r n r
Zr\/;r s ~ 1
x
n]z(l—v )
t=Y— (a)
2
A4~g
n2 = vn:l - gt (b)
dr, n, lir, y(1+ ,§)3/2
d= " - (a)
X ny T ny
dnl Ty
Tx T 7 (oyny) (b)

1
>

dx n I+ r
1 2 ’x ’x 2
= 2n; Tz M 2 ()AL,

A/ 2
d)\z (an T, 3“)/r,X 1+r,X)

~== = - A z -
dx 1 72 ny T n,
A3 Ty o
+ —= (nl—nz) - 2A4rt -
l+r,
x
ar, A, /n. l+r, y(1ir, 3372
3 2 2
& “ao\n, ¥ T T . tA
1 1 1

(5. 60)

(5.61)

(5.62)

CHR

(c)
(5. 63_)_‘

(5. 64)
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The boundary conditions are:

atx =0 r(0) :$ Ai(O) unknown (a) N
r,, = 0 )&2(0) unknown (b)
n, = I+ A3(O) unknown (c)
(5. 65)
atx =1 r(1) unknown )Ll(l) =0 (d)
r,X(l) =0 )(Z(l) unknown (e)
nl(l) uknown k3(1) =0 ) J

The value of l4 is determined by the satisfaction of the material
volume constraint (5. 64),
5-4-3, Results

The numerical results for r(x), t(x), nl(x) and n,(x) are

2
presented in the figures 21 through 28 fory =1.0and 1 = 1.5 re-
spectively with different values of w and v = 0.25. The strain
energy value is plotted in figure 30.

The dependence of the optimal structure on the load coef-
ficient w follows the same trends as for the stress constraint case.
A plot of %—Z is given in figure 29 for the casey =1, 5,

A physical interpretation of the condition g2 = A4 can again
be found by including the possibility of a ring if r,xqé Datx =1,
in a similar manner as of problem 3 in the previous section.

Let A be the dimensionless cross section of the ring at

x = 1, The modified objective function augmented of the modified

material constraint by means of its Lagrange's multiplier )\4 is:
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n,rr, 1 n%~2vn

ksl +1‘.12

172

1 x)z

t

- [

+k4

O"’

1
(rA - [ rt
0

Vl%—r,i dx-1

where A> 0 iff T, + 0

Let us compute the variation §J of our objecti

rVHr,i dx
(5. 66)

ve function for admis-

sible variations &r(1), 6r,X(1) and 6n1(1) satisfying the overall

equilibrium equation of the shell:

1 ~-r(0)w4.£LQ
> ‘ T or(l) r(0)
Vl+r,
x x=1
1 nlrr, 2
6J = -——< > + A, (]| 8A
A% z 4
l+r, x=1
x
n,rr,
+ ;%( ! X) —Als 6r(1)
I+r 2 Jx=1
’x
2r
1 32 'x
+ zz'r ny - Azz 6r,X(U
(1+r, ) x=1
X
> r,Xr 2
l+r, x=1
x

Since a relation between Az(l), k3(1) and k4 is

(5. 67)

(5. 68)

sought it is sufficient

to consider the variations of J, called §J, with respect to A and

r,x(l) only, where 6n1(1) is expressed as a function of 6r,x(1) using

the constraint (5. 67),



2 32 Ty T ™ )
+ [Xr Dl 'T—:l. > - KZ“K3 2‘] 6I’,X(]) (5. 69)

In order to have &6J = 0 for arbitrary Gr,x(l) and A, which are ad-
missible when A> 0, the following relations giving respectively the
cross section area of the ring and the boundary condition on KZ and

)k3 must hold:
n.rr 2
_1_2< __1___>i> l =2, (5. 70)
A \}l+r,i

)&2 1+r,i T, 1 2
i X =
;(n - + l3 = > § K4 (5.71)

2rV1+r,}2{ x=1

The left hand side of (5.71) corrésponds to gz as defined by (5. 60).

Therefore the optimal structure would present a discrete ring at
x=1if g2 =2 "

5-4-4. Conclusion
As for the stress case, numerical solutions of the optimality
equations were found up to a critical value of the load coefficient w,

where a discrete ring would appear at the middle of the shell. How-

ever it was not possible to find these solutions,
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VI. SHELIL STRUCTURES WITH BENDING EFFECTS

In Chapter V we treated the optimum design of axisymmetric
membrane shells for either a stress or a stiffness constraint., In
the present chapter we study the optimization problem of axisymmet-
ric shells, including the bending effects in their description, for a
stiffness constraint,

The governing equations of shells of revolution subjected to
axisymmetric loads are first obtained using Koiter's best linear
theory of shells, modified according to [24], to include the effects
of shear deformation. The objective function and the optimality
conditions for the mass minimization of shells subjected to a stiff-
ness constraint are derived. It is then shown that the problem can
be ill-posed.

Problem Definition

Let S be the set of shells of revolution such that

a) their governing equations include the bending and shear
effects

b) their length is 2L and their end radii are r

c) they support axisymmetric end tractions and a normal
pressure to their middle surface

d) they have prescribed boundary conditions

e) they satisfy a given stiffness constraint in their equilib-
rium configuration.

We seek the shape r(x) and the thickness distribution t (x) of the

element in S of minimum mass.



6-1. Governing Equations

The detailed derivation of the governing equations of shells
of revolution subjected to a normal pressure p and axisymmetric end
loads is contained in Appendix A,

The three equilibrium equations, the strain measures-stress
resultant relations and the strain measures-displacement relations
are combined to obtain a system of 6 first order linear ordinary

differential equations:

dg,  __ _
dx
where:

i) B is a 6 x 6 matrix, function only of the meridianal curve
T(x), its derivative ?,; and the thickness t. The com-
ponents of B are given in Table 6-1I.

ii)

-
«... axial displacement
W .... radial displacement
T .... axial force per unit length
z, = (6. 2)
¢ «+.. Trotation of the normal
m .... bending moment per unit length
R .... radial force per unit length

The sign conventions used for the variables are best illus -

trated in Figure 31,
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Let N,

components of the stress resultant and displacement vectors.

N

ol

=)

€]

nl

i

-p

_8()._

(6. 3)

Q, Gp and §n be respectively the in-plane and normal

6-2. Objective Function Definition

Since it is not possible to evaluate the stress resultants

(6. 4a)

(6. 4b)

(6. 4c)

(6. 4d)

without computing the displacement field when the bending effects

are included in the description of the shell behavior, the work done

by the external forces during the deformation is used as the objec-

tive function J.

+ W

2

(6.5)
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where:

i) VVI: the work done by the applied pressure on the shell

middle surface is given by:

x.+2L
wo =1 (07 i ow I ¢ T dx (6.62)

n

the work done by the prescribed edge loads is given

W, =% [2rr {S WT+s, wWR+ s mef], Lol
0

-3 [2nr{S WT+5,WR+S_Tmo}]
: T R m x (6. 6b)

0

Sp =0 if F is not a prescribed edge load

S 1 if F is a prescribed edge load

F

The constraints to be-imposed on the system are as previously, the
prescribed volume of the material in the structure and the state
equations which include the shell governing equations,

6-3. Non-dimensionalization

Upon introduction of the following dimensionless variables,

u w 2
YT pr ’ VT pr ’ ?= pr
0 3 0 3 0 2
EV, mL EV, wl Ev_ b
J— —_— m
T - T , R - K ’ o -
pr pr pr
0 0 0y,
2 2 2
t _ X _ T
t = s X—-L ’ r_L

( - )
5
2L (6.7)



..()1 -
the dimensionless governing equations, the objective function and the

volume constraint depend only on the two following parameters:

3 2
i) a? =12 2oLl (6. 8)
Vo

which characterizes the ratio between the membrane and bending

stiffnesses.
which characterizes the shell "aspect ratio, "

The dimensionless objective function J is given by:

12y E =
J:—Q—ZX——Z——J (6.10)

p VO
The dimensionless governing equations are
dz

~

e (6.11)

o

X

where the components of z correspond to the dimensionless compon-
ents of z. The components of B and f are described in Tables 6. 2
and 6. 3.
6-4, Optimality Conditions

The Hamiltonian, H, of the problem is constructed by adjoin-
ing to the Lagrangian the state equations and the volume constraint

by means of Lagrange multipliers.,

~ ~ ~

H=a+A g+ 3 [Bg+L] +nr, (6.12)

where:
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i) oaca vt VN1t 2
v X

i) AT < [-r, rir{0{ 0,010

X

-

]

(6.13)

(6.14)

iii) X7 : Lagrange multipliers associated with the governing

state equations (6.11),

iv) m : Lagrange multiplier associated with the shape state

equation.

v) )xv : Lagrange multiplier associated with the material

volume constraint.

Since the only two control variables are r,

order optimality conditions are given by

H = a +AT z+AT[B
r, r, ~Nr, <~ T,
x x x x
T
Ht_ar+A' Bt£_0
d)
T
dx—_B AR
dn oo AT, AT[B s ]
dx T r~ ~ r~ ~r
dz
a;:Bz'{‘i
dr _ .
dx =~ T’x

1
ftr\/1+r,2x dx =1

(o]

and t the first
X

(6.15a)

(6. 15b)

(6. 15c)

(6.15d)

(6.15e)

(6. 15f)

(6.15g)

where (6. 15f) and (6. 15g) are respectively the dimensionless shape

state equation and the volume constraint.
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Instead of solving the two nonlinear equations (6. 15a and b)

for T, and t, the following equivalent set of equations (6.16) is used
dr,

to generate the two linear equations (6.17) in o and I
dH
T,
e =0 , Hr,X =0 for some x¢ [0,1] (6. 16a)
dHt
o =0, Ht =0 for some xe¢ [O,l] (6.16b)
d
r’
x
¥ dx = g (6.17)
dt
dx
where
H H
r, r, tr,
x 'x x
iy F = (6.18a)
Htr, Htt

is the matrix of the second variation of the Hamiltonian with respect
to the control variables

A tr
H = %+ AT B,

r, T, (1”’:;)372 , T,z (6. 18b)

>tVM"X T
Htr = — + A Br tz (6.18c)
l+r,2
x
T

H = A Bz (6.18d)



N DY RN S SO S
~ ~ FA 1 ~2~ A% enoen
I+r,
i) g = % (6. 19a)
MW EL-xr, Visr?
~ v X x _J
D = [BBr, - Br, B+B_ - Brr, . ] (6. 19b)
xX X X X
L;= BL, -B £ (6. 19c¢)
X X
_ T T
L,= A, —ér, P Tt Br’ A-B AL (6.19d)
X X X
E = [BB, - BB - B, T ] (6. 19¢)

The content of the different matrices is described in Tables 6. 4

through 6. 10.

Let us remark that the system (6.17) can be solved only if

2

det [F] =H_ H - (H )7 # 0 (6. 20)

tt "r, =, tr,
X 'x X

which is the condition for the original system (6. 15a and b) to have
an isolated solution.
6-5. Boundary Conditions

After the derivation of the optimality equations of the previous
section we now have to derive the boundary conditions on the state
variables and the corresponding Lagrange's multipliers.

The boundary conditions at x = 1, i.e. , at the middle of the
shell will be classified as a '""symmetry condition, " but the boundary

conditions at x = 0 will depend on the type of support. -



i) Symmetry Conditions

at x = 1:
u = 0 A 1 unknown N
w unknown A 5 = 0
T unknown A 3= 0

= 0
Q@ ?x4 unknown > 6. 21)
m unknown 7&5 =0
R =0 A 6 unknown
T unknown n =0

/

(H ) = 0 is satisfied if r, (1) =0

r, x

x x=1

t is obtained from (Ht)le =0
i1) Free end condition:
at x = 0:
The prescribed forces are
T =1 +w, m =0, R =0 (6. 22a)

where w is a load coefficient identical as the one defined in (5. 41),

The work done by the edge loads is:

—[%{uTi-WRer(p}]

x=0

The corresponding boundary conditions are:

(6. 22b)



u unknown

W unknown

T = I+w
7 unknown
m =0
R=0
2
r ==
Y

T, and t are unknown,

. r _r )
7&1 = yT—,y (1+w)
T
KZ—-,);"R:O
A 3 unknown
T
>u4—;)7m = 0

A - unknown
by 6 unknown

n  unknown

iii) Simply supported edge boundary conditions

at x = O:

a) The prescribed edge forces are

T=14+w ,

b) The work done by the prescribed edge loads is

N [% {uT 4 m"’}]x:o

c) The boundary conditions are:

u unknown
w =0
T = 1+w

@ unknown
m =0
R unknown

r =

<

A 2 unknown

by 3 unknown
T

7\4 = 7 m =0

)y 5 unknown

K():O

} (6. 23)

n unknown J

(6. 24a)

(6. 24b)

(6. 25)
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iv) Clamped edge boundary conditions
at x = 0: |
a) the prescribed edge load is
T=1+ow ' (6. 262)
b) the work done by the prescribed edge ].o;d is
- [${uT}]X:O | (6. 26b)

c) the boundary conditions are:

nknown A, = 2T =< (1+o) )
u unknow 155 =5
w =0 py 2 unknown
T = 1+w A 3 unknown

> (6. 27)

o =0 )L4 unknown
m unknown A 5 = 0
R unknown A 6 = 0 J

6-6. Solution for the Lagrange's Multiplicrs Ao

Theorem 6-1:

When forces or homogeneous displacement boundary condi-

tions are imposed, the following set of relations hold:

I - r - _ X

7\1~YT, AZ—YR, )\3~ yu
(6. 28)

T T __r

A4-—,Y~rn, >x5~-7<p, Aé* yw

Proof: It can be seen by inspection that the Lagrange mul-

tipliers A and the corresponding combination of statc varia-
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bles satisfy the same set of ordinary differcntial equations.,
If the imposed displacement boundary conditions are
homogenecous, then the boundary conditions on the Lagrange's
multipliers and the corresponding combination of state vari-
ables are identical,
The equality (6.28) follows from the uniqueness of the
solution of the two points boundary value problem for the
z, vector, q. e, d.

6-7., Characteristics of I

Theorem 6-2: Let the hypothesis of theorem 6-1 hold. Then the

matrix F is not positive definite,

Proof: Since Ht and Hr vanish on the solution we can add any of
’x
their combinations to the components of F without changing the value

of its determinant.

By substitution one obtains:

Vl+r, 2 >

H =- —— [N (1-v%) + BZQZ]
t
2 ' r, 2 2 2
239 102 Ve, 2 m? - 3(UE t ¢
4 b4 T
t 2 2
a l+r,X
Ve 5 2
- 5 w +)\Vr l+r,X =0 (6.29)

r
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Y _ 2 B 2.2
T {Hl’xr’x 5/2} - N 377 [Q%(1-v©)+p°N ]
(1+r, ) t(l+r, )
x
2 2 3 (2-4r 2)
. 4a (1-vI)m® 2 ¢ 'x’ 2 g
3 3/2 2 2 572 ¢ (6.30)
t 2 a’r 2
(lI+r, ") (I4r, ™)
x
y 2V1+r,i >
lZa 2 t 2
+ =2 1) Viir, 2 m? - X ¢ (6.31)
t a2 l+r,2
r Trx 2 2 2
LS| - ) = [B-(1-v9] NQ
L 22
’x t 14+r,
2 ¢ r
6t P3¢
“ T (14,9
x
Upon evaluation one obtains
2 2 2
r 8 2 (1-v5) 2 2 2
() XdetF:-%—m ( Z{N [(1-vT) + 3p“]
t I4r,
x
2 2 2 6a2 2 2
+ QY[3(1-v)+p“] + ~— m"(1-v )}
t
2p° 2, 2. 2.2
F 2P 1) nEiQ?d
4 2
t (l+r, )
X
202 2 20 2 . 2.2
+ > 5> {B [(—4—|—8r,x) Q -3r,x N +6r,XNQ]

ar (l+r,X)

+(1-v?) [N%(-4+81, %) - 31, 2N%-6r, NQ]}
X X X
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2
+ 248?(1-\/ )2 qupZ
rtT(l+r, )
X
4 2
4 o'r
12t ’x
a'r l+r,
X
For a free end such that
N(0) =Q(0) =m(0) =0 (6. 34)

det F <0 atx =0

Furthermore the symmetry conditions imply that det F> 0 at x = 1,
Therefore 3 X*,X*€ [O, l] D det F « = 0. At x* equation (6. 19)

cannot be solved. Since det F is notXa positive definite form in the
variables m,N,Q and ¢, F is not a positive definite matrix, q. e.d.

Remarks:

a) Using the transformation
r(x) = r(0) + y(x)

and taking the limit of the equations as r(0) - ® similar equations
to the arch optimality equations are recovered.

b) An attempt to solve the two points boundary value prob-
lem for the case B = 0, i.e., when the shear contribution is not
taken into account, was unsuccessful,

6-8. Conclusion
In chapter IV we treated the optimality problem of arch

structures for a stiffness constraint. It was shown that the problem
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A microscope glass slide is cut in half along its length.
The cut side is sanded smooth and one end is tapered (Fig. 7).
Platinum films are baked into the front face of the slide, indium
contacts are soldered from the front face to the back, and then
copper wires are soldered to the indium contacts on the back
face. The flat end of the slide is epoxied perpendicular to the
test section bottom flange (Fig. 5).

The films are several hundred Angstroms thick, ~ .03~
inch high, and ~ .5-inch wide. Room temperature resistances
range from 300 to 600 ohms and the resistances are roughly 30%
lower at 4.2°K. Film height and the distance between films are
measured on a Kodak optical comparator. Repeatability of the
film separation distances (4 - 5 cm) is within % . 1% for six
measurements taken over three months. The slide is perpendic-
ular to the flange to within + .5 of a degree. The cross sectional

area of the slide represents 3.2% of the tube cross section.

B.3.g. Additional Instrumentation

Thermocouple and thermistor data are taken using a multi-
function meter* capable of reading five significant figures. The
voltage output of the films is amplified a thousand times and

displayed on an oscilloscope’%. A time-mark** is made on each

* Hewlett-Packard; Model 3450A.
¥ Tektronix; Model 555 dual beam using type "L" plug-ins.

#% TUsing a Tektronix Time Mark Generator; Model 180A.
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VII, CONCLUSION

The material volume minimization with respect to the shape
and the thickness has been investigated for three types of structures
subjected to either a stress or a stiffness constraint. The optimality
conditions have been derived using the Optimal Control Theory, and
a general purpose computer program solving n-points boundary value
problems with the parallel shooting techniques has been developed.

The inclusion of the contribution of the shear force in the
strain energy density or in the failure criterion was found sufficient
to obtain well-posed problems when dealing with statically determi-
nant arches. For the stiffness problem, a membrane design, i.e.,
a structure on which the bending moment is identically zero, does
not correspond to the optimal structure. However it was found to
be a very good approximation of the "best' design for practical
cases. When the maximum shear failure criterion is imposed, the
""best'" membrane design corresponds to the true optimum for prac-
tical values of the load coefficient., However the number of solutions
of the first order optimality conditions was found to depend on the
value of the load coefficient,

The optimization problems of membrane shell were investi-
gated for the cases of edge traction only and combined edge loads
and pressure. For the detailed discussion of the influence of the
boundary conditions on the optimality character of the cylindrical
shell, when edge tractions only are applied, the possibility of dis -
crete rings was included in the formulation., Solutions for the

combined loading case were obtained up to given values of the load
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coefficient, The singularity which scems to appear then could also
be physically interpreted by including the possibilily of a discrete
ring at the middle of the shell in the formulation,

When the shear force contribution is not taken into account
in the governing equations of shells, derived using the bending theory,
the material volume minimization problem with a stiffness constraint
was found to be ill-posed. However the inclusion of the shear force
contribution does not seem sufficient to always obtain a well-posed
problem,

Evidence has been shown that a modification of the governing
equations of the structures to include some of the effects judged
insignificant in structural analysis may transform an ill-posed
optimization problem into a well-posed problem. Furthermore
the inclusion of discrete elements in the formulation of the varia-
tional problems has been found helpful to interpret the singularities
which appeared. A systematic investigation of these two techniques
will contribute toward the clarification of the analytical approach in

structural optimization.
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APPENDIX A
GOVERNING EQUATIONS FOR AXISYMMETRIC
SHELLS OF REVOLUTION INCLUDING BENDING EFFECTS

In this appendix the governing equations for axisymmetric
shells of revolutions are derived first using Koiter's ""best! linear
theory. The equations are then modified to take into account the
shear deformation,
1. General Linear Shell Equations

The middle surface of the shell, in a three-dimensional
Euclidean space is described using the vector field ;;(xa) depending
on two variables only: the surface coordinates.

The base vectors, along the coordinate lines are given by:

or,
a = — =r, : (A. 1)
~a a a

ox

The normal unit vector to the tangent plane is:

a . Xa
EJ:__I__i__ (A.Z)

1°2;

w

The reciprocal base vectors ,3;1 are such that

ga, "1[3: ég (A. 3)
a%.n =0 (A. 4)

Let aa[_3 and baﬁ be respectively the covariant components of

the metric and the curvature tensor of the middle surface

aaﬁ:ga.gﬁ (A.5)
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bapzr’\l" r,ap (A,é)

The covariant derivative of the covariant components of a surface

vector is:

=u, B~ Aaﬁ u, (A.7)

u

a|p
where Aﬁﬁ are the Christoffel symbols of the second kind

kL (A, 8)

A =22 2yq, 8t 20,0 2ab, )

1-1. Strain Measure-Displacement Relations

Let u and w be respectively the covariant components and
the normal component of the displacement vector of a point of the
middle surface., The covariant components of the linearized strain

tensor are given by:

1
qu:_Z—.(uo.,BJruﬁla) —baﬁw (A.9)

The covariant components of the change in curvature tensor po.f3 are

_ 1 1K _ K
p(16 = 2(¢alﬁ+¢ﬁ|a bawKﬁ bﬁwi{a) (A. 10)
where
i) ¢, are the covariant components of the rotation of the
normal

_ K
rpa—w,a+baul{ (A.11)

ii) W, are the covariant components of the linearized rotation



tensor in the middle surface

=5 (u ) (A, 12)

oo =

a’(i B’a

w
Ka

1-2. Equilibrium Equations

, be respectively the components of the in-

p

pPlane stress resultant and of the stress couple tensors,

Let n and m
af a

The in-plane and normal equilibrium cquations are respec-

tively:
af 1 ta KB B __aK a _ Bk,
[n t o (b, m""-bm )],ﬁ+me lﬁ_o (A, 13)
mPlp ~bep 1P b =0 (a1

‘where p is the pressure normal to the shell middle surface,
1-3, Stress-strain Relations

The following equations relate respectively the stress resul-
tant tensor to the strain tensor and the stress couple tensor to the

change in curvature tensor:

= _ K
Vop = A [(1+v) Dap " V34p n, ] (A. 15)
= aP af K
1rn(16 =D [(l-v)p + va pK] (A. 16)
where
A= L
Et
— ET>
D = 2
12(1-v™)
t : shell thickness
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2. Axially Symmetric Case without Torsion

2-1. Coordinate System

w
]

The components of the metric tensor are:

all:l’ aZZ:r, a = a =0

S azzz%, al? .21
Ir

op
[

[on
n
1

2 2
B2 =48, = 5
1 — -

App =711,

2-2. Choice of the Unknowns

When there is no torsion applied to the shell then:

P : circumferential angle

(A. 17)
(A, 18)
(A. 19)
1 1
Dor My,



~111-

1 1 . . .
Por V5 and ¢, are zero. Since we arc seeking a first order system
of differential equations, the following variables are taken as un-

knowns:

u,

p 1
W = W

n
N = n}

(A. 20)

4 = 901
M = mi
Q = -m

2-3. Equation for Uy oy
The strain displacement relations (A. 9) and the strain strain

relations reduce to:

1
Y1 7% 1

oo

2 1 N o1
Y, = 5 % bZW = A(n vnl)

By elimination, one obtains

T 1-r 2 T
:_A—(l-vz)nl—v 1u +[-—v 1 + 11:’W
1 r 1 r T

u

1,1
ql—r,f
(A. 21)
2
r, 1-r,
n2 = 2y 1 u. + 1W + vn (A. 22)
2 N 1 1 r 1
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2-4. Equation for w, 1
The differential equation for w is obtained from the definition

of the rotation of the normal ¢4

1 (A, 23)

2-5, Equation for P11
The differential equation for ?1 1 is obtained from the
change of curvaturc-rotations relations (A, 10) and the change of

curvature-stress couples rclations (A, 16) which reduce to:

1 =, 1 2
mj =D [p] +vp;] (A. 24)
2 —r 2 1

my =D [p5 +ve] (A. 25)
L. A. 26
P1 =911 (A. 26)

Ty
P2 = Tt % (A. 27)

1 T
1,17 57017V N (A.28)
2 s
m, = D —= (1-v )g01+vml (A. 29)

2-6. Equation for n} 1

The two in-plane equilibrium equations (A. 13) reduce to one

equation giving
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2 T 1-1 r
1 1,51 1 g ’ ’
ny 4= :(——-17—) ul-l = % . ! W= ~l (1-v) nj
; A A I
r
11 =
t = Q=0 (A. 30)
1- 2
T

2-7, KEquation for 111% 1
The equation for mi 1 is obtained from the definition Q

which is in fact the moment equilibrium equation.

r
T=-m% = -m- Sl 12
Q = my| = m1,1+ - [ml mz] (A.31)
2 r
1 | 2 ' 1 1
my oy o= - + - ) D(l-v™) o - (l-v)ml (A.32)

2-8. Equation for Q, 1

The equation for Q, 1 is obtained from the normal equilibrium

equation (A, 14)

1
N T r 1 x >
1

Ol
1

)
1
o
>
w
w

3. Inclusion of the Shear Deformation

The deformation due to the shear force can be taken into
account by removing the assumption that a normal to the middle
surface in the undeformed configuration will remain normal in the

deformed state of the shell. The definition of the rotation of the

normal (A. 23) is changed to:



— r’
W, ., = ¢+ Bz 9; 11 u (A. 34)
1 1D) 1
1*1,1
2 E - . .
where B~ =k T o G is the material shear modulus and k is a

coefficient to take into account the real dis-
tribution of the shear stress in the cross

section,

4. Transformations of Equations

Two transformations are still required to obtain the desired
equations:

a) substitute the axial and radial components of the stress
resultants and displacements

b) take the derivatives with respect to the axial coordinate
x instead of s,

Let us define:

r(x(s)) = r(s) (A, 35)
T —— [@ -r,_w ]
- — - P ’x 'n
I4r, =
X
We —L1 [+T T 4w ]
—) x p n
I4r, =
* (A, 36)
— 1 —_ — =
T = -—-—2—--— [N -I‘,EQ]
\ll+?,—
xX
— 1 —_ e
R = — [r.. N +Q]
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F u ... axial displacement
W radial displacement
T axial force per unit length
z = (A. 37)
P ... rotation of the normal
m bending moment per unit length
!
R ... radial force per unit length
Then the previous equations reduce to:
dz . [ z+ I (A. 38)
dx
where the components of B are given in Table 1.
N
0
L= | "% (A. 39)
0
“P
_ J

It is to be noted that B is a function of t, T, T, 5 but not of ?,;}—{ )
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Fig.6¢c ¥ =0.35

OPTIMAL ARCH STRESS CONSTRAINT
FIG.6 LOCI OF Z,(1)=0,A,(1)= 0



-123-

0w 10

00 O

0'1=4

81

(0)d/d  4dBHS
INIBHLISNGTD  SS341S
T1dHS  INBHEWIW  THWILdD 2 9l

X
9"0 9°0 h*0 2°0 0°0

_ | | _

08°0

l
S8°0
CO0dd/d  3dBHS

|
06°0

I
S6°0

33 3

00°1



-124-

0°1

Ol

A

L SSANMIIHL
INIBHLSNGD SSAHILS
T13HS  INBHEWAW  TTIBWILd0 89l

X
9°0 h*0 2°0 0'0

(4}

_ | |

0°0

|
00° 1

1 SSINMIIHL

00°¢

I
00°€



-125-

O1=4£ C(OYIN/IN INBLINS3Y SS3IYIS
INIHYIGNDD  SS3HIS
713HS  INBHGW3IAW  THWILdD 6914

X
8°0 S'0 h'0 20
m _ ! ! n

o
o

o
=3

6°0 G680 8°0

COYIN/ZIN INYLTING3Y SS3YILS

G6°0

¢'0=m
m.0u3'J'

8'0=m

01



-126-

. oo
o OO

I

¢N INBL1INSdY SS4LS
INTBHISNDD  SSJYLS
113HS  INBHEWAW  TBWILdD OI'9ld

X
8°0 9°0 h*0 2°0 0°'0

| ] _ |

o
.
o

01

0°¢

3 33

¢N LNBLINS3H SS3HLS

0°€



=127~

Gl1=4A (0Jd/d  ddJHS
INTHHLSNDT  SSdYIS
T1dHS  INGHEWIW  TTHWILdD 11914

01 | m.vw 0°0

m “ o
120=0 nwu/q
£0=m W
H0=m | Imﬂo(
9'0=m
8°0=m

0°1



G| =4 1 SSINMIIHL
INIBYISNGD SS341S
T13HS  INBYGW3IW  THWILD 21914

X
01 S'0 0°0

g0

|
0°¢

1 SS3INMITHL

0" h

L20=m

0°S



..12(/)..

g1=A CO)IN/IN 1INH1INS3Y SS3IHILS
INIHY1IGNGD SS3Y1S
T73IHS  IANHYEWIW  THWILdD <€I9ld

X
01 S'0 0°'0

~w o
Le'C=m © 0
: -
moua/ =
w
oo

., (o]
b'O=m =
&
9'0=m =
80=m — ————————_ D
l
=
—1o N
o=
ax
o
v/

I



~130-

Gl1=4A

¢N  INBLINSdd SS3d15
INTHHLISNDT  SSHLS
113HS  INBHAWAW  THWILdD w19l

X
S*0 0'0

-

L2 0=m

0°0

0°¢

0°h
¢N INYLINS3H SS3HILS

0°S



-131-

G0

072 = (00d/d  4dUHS
INTHH1ISNBD  SS4d1S
173HS  INBHEW3IAW  TBWILdD SOl
01 m.vM 0'0
n [ o
mT T~ _

01



-132-

02=4A 1 SSANMIIHL
INIHYISNDD SS3IYILS
TI3HS  INBYIWIW  THWILdD 919l
0°1 | m.vm 0'0
i I M
G 0=m




~133-

02=A

o1

COVIN/IN  INHLINSdY SS3HILS
INIBALSNDT  SSJd1S
T13HS  INBYHEWAW  THWILdD 21914

X
S'0

o
o

g'0=m
30 =M~

8°0

i
3

6°0 6°0

0°1
COYIN/IN LINYLINS3Y SS3HIS

0°t

I

I



-134-

O¢

g1

A

¢N  INBLINS3Y SSIYLS
INIHBALSNDT  SS441S
T1dHS  INBHEWAW  THWILdD 81914

X
S'0 0'0

0°0

| \

0°¢

0°h
¢N ING1INS3H SSIHIS

0°9



1.0
I
0.9
0.8 [~ Y=2.0
0.7 - Y=1.5
Y=10
0.6
1 | | |

0.5

0.0 02 04 06 08

3n2 .
| |
= — . 5.43-a
t= = Y ( )

OPTIMAL MEMBRANE SHELL
STRESS CONSTRAINT

FIG.19 |g| AS A FUNCTION OF w



13-
1.0
0.9 1~
| l | 1
O- 80.0 0.2 0.4 0.6 0.8
w

Material Volume Optimal Shell

Material Volume Cylindrical Shell

OPTIMAL MEMBRANE SHELL
STRESS CONSTRAINT

FIG.20 MATERIAL VOLUME



~137-

g1

(0)d/d ddGHS
INTHH1SNDT SSINSJILS

T1dHS  INBHHWAW  THWILdD 1€791d

80

9°0

X

h'0

¢'0

0'0

c0GC=m

M A
QO

non
3 3

|

|

@
O
]
3

0°1

o
o0

(0Xd/d  3dUHS



01:=A L SSINMIIHL
INIBHISNDD SSINAHILS
713HS  INBYEGWIW  IHWILJO 22914

X
01 8°'0 S0 h'0 ¢'0 0°'0
i I | | I °
o
i —
80=m
~ g0=m
Py & 0=m —_—
— =1 H
1 O
o
GO00=m =
=
m
w
w
N
MU||_

0°€



~139-

0'1=A  C(OYIN/IN INHLINSIY SSIYIC
INIHYLSNDD SSINSATLS
TI3HS  INBHEWIW  THWILLO €2914

X
G'1 8°0 9°0 n"0 2'0 0°0

_ | I ! _ o
w

S00=m

20=m""
£ 0=m

g'0=m

01
COJYIN/IN  INBLINS3Y SS3HIS

r-



-140 -

O1=4

¢N  INHLINS3H SS3HIS
INITBdLSNUD SSANJATLS
113HS  INBHEWAW  THWILdD +29ld

X
0°i - 8'0 9°0 h'0 ¢'0 0'0

| | I | [ o

o
w
l
N D
_ L m
2'0=m Cw
m.ougl\\\\ S
e
¢ 0O=m m
=
5
|||_
Aem 2
GO0 0= =

o
o=
)

g8



Gl =4 (0Od/d ddBHS
INTBHLSNDOD SSINALAILS
173HS  INGYHEWIW  TTHWILdD  S2 9l

X
o.xﬁ/ 8°0 g0 h'0 2'0 0°'0
Ge'C=m | | | i | o
0
% 0=Mm

w
€I
¢0=m %
m

_Jo
o 0
~
hue)
N\
80=m o
N/

0°1



£ 1 SSINMITHL
INTBHLISNOT SSANALILS
T13HS  INBYIW3IW  THWILde 92 O

Gl

0°1 8°0 S°0 h*0 Z'0 0°0C

)
—
e——
o

0

0°1

1 SSINMITHL

I
0°¢

0°€



gl1=£4 C(OJXIN/IN INHLINSJd SSJd1S
INTHH1ISNDT SSANAJILS
113HS  INBHAWAW  THWILdD Le91d

X
01 8°0 3°0 h'0 2'0 0'0

] _ | _ _ o
w

COYIN/IN  INYLTINS3H SS3HLS

I

[



G

= A

—

¢N  INBL INSdd SSI4LS
INTBHLISNDD SSANA4ILS
113HS  INGHEWdW  1IBWILdD 82914

X
8'0 9°0 h°0 2°0 0'0

_ _ m ]

0°0

-

0°h 0°¢
¢N  INYLINS3H SS3HLS

g°s

0°8



I.O\ =

0.5

I¢]

&

0.8 |— y=1.5

y=1.0

0.7 —

0.6

0.6 | | | 1
00 0.2 0.4 0.6 0.8

w

_. /\/ ny (i"’ 14 2 )
t N4a-g?
OPTIMAL MEMBRANE SHELL

STIFFNESS CONSTRAINT

FIG.29 19l AS A FUNCTION OF w

Ve



1.O
T 20
y=1.5

0.9

0.8 | | | |

C.0 C.2 0.4 0.6 0.8
W
y= Strain Energy Optimal Shell

Strain Energy Cylindrical Shell

OPTIMAL MEMBRANE SHELL
STIFFNESS CONSTRAINT
FIG.30 STRAIN ENERGY



: E‘;@W,R
! A
_ll{ g/eﬁ,m

wn,Q
up /9’),”\
N

FIG.31 SIGN CONVENTIONS



148~

7 I\
z"’) @/ ~
3 ! j
4, ! N l
K0l e 7
= % - n
+ + o ! >
( xr - - — (L84 -\!L
- & len '
[ Vf*"-' '
~N X —
“~
fe >
+ ]
~/
Ix
"’ﬂ jfie
i
~
d';‘ %
e
1% IS
“'_’f e Zi+
] A ‘qx
| x|
,L\ L
¢
(B P
K oamxj X
S <
X 4 ! >’
u'..‘g; fe {L‘&; A 2
S
alls % ||z I | I 7
L ~ I
et [
x
" {“f
>|1c- > & p
| | ‘|«
<

12(1-v%)

=N

Matrix



g X1peN 2-9 @I9'L

\

; 4 i
(a=1)%7 — A MD.«#
k¥4
4 dp.:>uvo J
|\ - (A-1) %7 = |~ KT *
J &3 .% u
¢l 4
SHNGA D p XA —
al\\.\/ T z
/ J
ﬂ|@\ -
| N -
1,8 *Ganiu _ MNQ;A.B-_L. S .
%S+ xwwluh«.bvm ?
‘i-x!_ XC
IER®ER N Rt
s I's
x«Q.r:,u J - X EH_ n-




H

Table 6-3 Vector f



-151-~

Tq xrayel $-9 °o1qe]

S I\
(A1) - *uq
Jd mn\.v.l.v.n._«vo
(1) [Gaern |
20+ A 3 J
xry Ad)l-vlﬂm lel -
z
A
-~
m. 29 -
Amo.f.wu?.).._vw M:Qlaa\rr:.w J
W€ au+_vu N\mn ‘luu “
Y
EET R EETrE
X 39 ...:» ! Ca-1)- wu\%f_.:un




-152-

2
¥

g XKTI3eN

§-9 91a®],

]

¥ -
.n.w..._ _ ?.«) _Nn

Al

m,smT.?)-_gwow
23*+1A 59

e

2

mu&..m.u)l_v\w
9+1\ 3

xYy -

M.Na - AN> l_vw.
1541043

¥

‘Dll

{8 26+Ga-10}
294N 3

ﬂll




-153-

7 {50 +1) o3
ﬁ.ﬂ)l—-v dv

f0-252).9 +
(F4-2)(za-1}

uf39+19
]

m.«Q..A.QT.:w
25(23+1) 9
X € -

,M,NQ = (-1 vw.

R
YN\MﬂNL.&.:u

XOg-

{Ga-2)0+
(1~ %4 2)Cz 41}
Y N\.ﬂh%«sf—.f.vﬂ

!




-154-

X

£

I
w@ XI13eN L-9 °219BL

e
N\m z L....v N..WWW
(Fa+2)*a 3¢

ZI+N 3

%y ﬂ.«)lv«ﬁW-|

1=9 -

??_uiuc‘&m M.u& (e vw
304103 e 29419
X.m__ o _ [

- {29+ 0~
ﬁﬂQ (e Gw. nM)..S.w
.u\a%mud +1),3 % ﬂ\mn EX )23

) *0

— -




-155-

P xwaen 8-9 2iqeT,

X
‘_"\
li

7P
29739
‘ q
.ML.LTD?..WWINJ
mhiﬂm,s“ﬂ {id-a-n}
vﬁwm Z9+ mmm»
X\L N
.FQ ..Mw\, - ; .PQ wo .57:.»
.a..i?mu_ 204
X.U oN \'

&




-156 -

g XLIJeW 6-9 14-]

MQ.I?N -

z3+) NVML
21299 "




-157-

b4
o ¢

g X113eIN 01-9 °igel

<zJ

——

(a-1)

|

~
>
1
-
~/

Gl 23+1) cugp
WD XS 3z

2
A

-|L




	thesis-20100927_0001
	thesis-20100927_0002
	thesis-20100927_0003



