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ABSTRACT

A theoretical study is performed to investigate the drag
experienced by vehicles travelling in tubes, the pressure distri-
bution and flow velocities resulting from the vehicle's motion.
The study deals with both the cases of vehicles accelerating from
rest in the tube and vehicles entering a tube at finite speed. The
effect of having a vent in the tube is also studied.

The unsteady compressible equations are used to describe
the flow in the tube. Before the boundary layer fills the tube, an
inviscid core-boundary layer formulation is used. However, it is
found that the simpler one-dimensional formulation is adequate
for describing the flow in the tube., The quasi-steady near -field
assumption agrees well with the unsteady near-field solution
except for the initial period of low velocities,

The solution is compared to that in which compressibility
is neglected, It is found that the effect of compressibility is not
large for short tubes, low blockage ratios and small velocities,
However, its importance increases as the values of these param-
eters increase. Compressibility may not be neglected during the

initial period in the case of vehicles entering tubes at finite speeds.
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I. INTRODUCTION

Trains moving in tubes experience drag forces which may be
orders of magnitude higher than when in free air. A knowledge of
such forces and their dependent parameters is essential in deter -
mining the tube optimal ventilation design as well as the moving and
braking powers., As passengers are to be found in stations along the
tube, a study of the air flow and pressure changes caused by the train's
motion is also of importance.

The piston action of the train causes the air in the tube to move
with a velocity which is dependent on the train speed and blockage
ratio. When in steady state, the tube and train friction forces are
the only cause of the drag, When in unsteady motion (acceleration),
the fluid particles are accelerated, causing an additional inertial drag
on the train. During the initial moments of a train's acceleration from
rest in a tube, simple compression waves raise the pressure in front
of the train, and simple expansion waves decrease the pressure behind
it, causing thrust and suction respectively at these two ends. The
waves reflect from the tube ends and interact with the train's forward
and rear ends affecting the pressure and drag. Viscosity, which is
the cause of frictional drag, has the effect of attenuating the strength
of the pressure waves propagating through the tube, thus decreasing
their effectiveness. Consequently wave drag and frictional drag are
coupled and in general may not be studied separately.

The problem of a train entering a tube at finite velocity is of
interest. In this case a sharp drag increase is experienced as the

tube stagnant air is suddenly met. The sudden motion caused by the
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entering train results in the propagation of a weak shock wave down
the tube, raising the pressure and producing a sudden air flow at
stations along the tube. A similar but less severe result occurs as

a train passes a vent shaft,

Previous work in this field includes both experimental and
theoretical efforts. Reference (1) describes experiments performed
in a water tunnel to measure forces on models intended to simulate
vehicles travelling in tubes. In this case the models were at rest with
respect to the tube wall, Water was preferred to air as a working
fluid, since the lower kinematic viscosity of the former allows the
experiments to be conducted at Reynolds number closer to those
attained in full-scale operations, The experimental portion of the
Qork reported in references (2, 3) consists of measuring the velocity
and thus the drag coefficient of spherical and cylindrical models
dropped through vertical tubes submerged in different test fluids
(water, glycerin, and others). The tubes used were 4-ft. long and
the Reynolds number, based on model diameter and absolute velocity,
varied from 1,0 to 5X105. Similar experiments are described in
reference (4). However, a longer tube was used (12-ft.) and higher
Reynolds numbers were achieved (2. 5X106). Reference (5) describes
experiments for measuring the drag and air flow resulting from the
motion of a small-scale train in a small-scale tunnel (300 ft. long,
1-ft. diameter), The geometry of the model vehicle was similar to
the corresponding full-scale geometry. Also, it was possible to con-
trol the vehicle's velocity profile (an electric motor was the source of

power driving the vehicle). However, as the experiments were
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conducted in air, full scale Reynolds number was not approached.

An experimental program has been conducted at the Jet Pro-
pulsion Laboratory in Pasadena (7, 8) for the purpose of obtaining
information about the aerodynamic characteristics of vehicles travel-
ling in tunnels under primarily equilibrium conditions. A family of
2-in. diameter vertical tubes of lengths 32-ft., 70-ft., 120-ft, was
constructed. Train models were launched through the tubes, using
gravity as a constant source of propulsive force. Using the three
facilities, data were obtained for a wide range of Reynolds number.
The 120-ft. facility had the capability of operating with either open,
restricted, or closed-end test sections. The ability to operate it at
ambient pressures from 0.1 atm. to 50 atm., made it possible to
gather data at Reynolds number as high as 4X106. Besides air, CO,
and Freon-12 were used in the experiments.

Theoretical work in the field includes the studies of references
(2, 3) which deal with the laminar steady flow that exists when a semi-
infinite cylinder moves at constant velocity in an infinite concentric
tube. Sajben (9) uses an incompressible, one-dimensional fluid model
to study the dynamic characteristics of vehicles moving in long finite
tubes. Reference (11) is an attempt to divide the solution into two
parts: a short time solution for the flow, steady in a coordinate sys -
tem fixed in the initial waves produced by a vehicle's sudden motion;
and a long time solution, steady in a vehicle-fixed coordinate system.
Only infinitely long tubes are considered. The previous work is con-
tinued by Hammitt in reference (13). In (14) the wave and friction

effects are decoupled. On that basis the problem of a vehicle moving
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in a finite tube is solved. Strom (15,16) uses a compressible, un-
steady one -dimensional model to describe the flow in the far-field in
a tube of finite length.

In the present work, a more detailed and realistic formulation
of the problem is presented. This includes investigating the problem
duringand after the boundary layer growth period. The effect of vents
is studied. The problem of a train entering a tunnel at finite speed is

investigated.
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II. THE PROBLEM OF A VEHICLE ACCELERATING

FROM REST IN AN UNVENTED TUBE

A. Formulation of the Problem

A vehicle accelerating in a tunnel from rest, causes compres-
sion and expansion waves to propagate in the tube ahead and behind the
vehicle respectively. The waves accelerate the tube air. The air flow
at a particular cross section may be considered one-dimensional and
inviscid immediately after the arrival of the initial wave at that position.
However, the non-slip condition at the tunnel wall causes a boundary
layer to develop. At a specific position, its thickness increases with
time until it completely fills the tunnel cross section (see Appendix B
for a rough estimate for the boundary layer growth). The waves propa-
gating from the vehicle, eventually reach the tunnel ends where they
are reflected towards the vehicle.

To investigate the problem at hand, the flow field is divided into
a near -field and a far-field. The near-field includes the annular region
between the vehicle and the tunnel, the nose region which extends a
few vehicle diameters ahead of the vehicle (see Appendix A), and the
base regionwhichis also assumed to extend a few diameters behind the
vehicle (see Figs. 1, 3). The far-field consists of the rest of the flow
region in the tube.

1. The Far-Field

To describe the flow in the far-field during and after the period
of boundary layer growth, two sets of equations are required.

a. Boundary Layver Growth Period

Figure (2) represents the flow during the boundary layer growth
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period. It indicates the notation used for describing the inviscid core
and the boundary layer,

As the flow in the tube is almost parallel, u* >> v*, the pres-
sure variations in the r* direction are negligible compared to those in
the X direction (the change of p*/p*AU#<2 across the boundary layer is
of order (6*/L*)2 ). Therefore the pressure is assumed constant at
each cross section. The flow Mach numbers involved are small
enough (M~0, 05) to make the density variation in the r* direction
negligible (AT /T across the tunnel is of order MZ). Therefore, the

density is assumed constant for each cross section. A similarity

profile is assumed for the boundary layer velocity distribution.

3k
e e P EE
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1
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In our analyses the flow in the tunnel is assumed to be axisymmetric.

The continuity and x-momentum equations are respectively
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We introduce the following dimensionless quantities:

* %k
X>=< r* a'O 8
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where

*x
L is the tube length

ES
W is the tube radius

*
Vo is the maximum vehicle velocity

® *
a, s Pys P, are the values of sound speed, air density and pressure
in the initial undisturbed state. Equations (1), (2) rewritten in

dimensionless form are
0 0 0
5t (pr) + Mo e (prv) + Mo e (pur) = 0 (3)

3] 0 9 2
5t (pru) + MO I (pruv) + Mo e (pru)

M
1 0 0
YM _ Ox (rp) + KO or (rT) (4)
o

The flow is assumed to be inviscid uniform flow with u = U (x, t) foxr

0 <r <R(x,t) =1 - 8§(x,t). The momentum equation becomes

N ~

5 = 5
pUt+MopUUx+yM P, 0 (5)
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In addition the core-flow is assumed to be isentropic (no shock waves
or very weak shock waves, if they exist, are assumed). Hence the

density and pressure variations are related by

dp = £ ap (6)

The effect of the boundary layer on the core flow is through the

continuity equation, which yields after integration across the tube:

P tM (L -B)pU_+M_(1-p)U p_
? ~
-M_ B, pU B =0 (7)

where
_ 2
ﬁl = 2(1—11)6 - (1-2 12)6

’ dp

1 _
o = 2(1-I;) - 2(1-2 L,)8

™
o=
i

The equation for the boundary-layer growth is obtained by integrating

the momentum equation with respect to r from R to 1:
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4)

By introducing the isentropic relation (6) into Eqgs. (5), (7) and (8)

we obtain

2
/ (l—ﬁ'l)
(1-p))U, + B VS + M UU_+ ——p P,
Y M P
TR
M B, U
o "1 _
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k p Y { :

Here U(x, t) is the average velocity at a cross section. It is related

to the core velocity ﬁ(x, t) by

U

U =
l-ﬁl

Equations (9) - (11) are three equations in the three unknowns U, p, &.
Proper combinations of the three equations may be taken, and lead to

the following system of equations:
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C( ) is the matrix whose elements are the coefficients of the com-

(a)

ponents of w .

in equations (12)-(14), and

Al@) @

Boundary and initial conditions are required to solve the above equa-

tions. The initial conditions are those of the undisturbed state

U(x,0) = 0 (16a)

p(x,0) =1 (16Db)

5(x,0) = 0 (16c)
At the tube exit the condition of constant pressure is satisfied

pll,t) = 1 (17a)

At the tube entrance the condition of zero boundary layer thickness and

the adiabatic energy equation are satisfied

5(0,t) = 0 (17b)

0,t 12 2
iiO,t; + L= MO U0 = 1 (17¢)

where p(0,t) = p(0,t) 1/y (isentropic relation)
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b. Fully Developed Flow Period:

The boundary layer continues its growth and it eventually
fills the tube cross section (provided the cross section considered
is far enough from the rear tube end). When this happens, a new set
of equations is used to describe the flow. Besides continuity and
momentum, the equation of energy is also considered. If we neglect
the v’}= velocity, the governing equations are:

continuity:

% o E I
)+ = (rpu) = 0 (18)
ox

9 ES
—— P
xX-momentum:

0 L 3 9 % %k %2
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Eliminating T from the energy equation and writing the equations in

dimensionless form, they become

3 9 B
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where q = q /p::< v

Let U (x,t) be the velocity at the tube centerline, and let

u(x, r,t) _ g(r)
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Define

1
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0
} 2
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0
1 3
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Assuming the pressure and density do not vary with r at a specific

cross section, and integrating equations (22)-(24) across the tube, we

get
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Introducing the average velocity

U(xt) = 2 E, Ulxt)

and taking proper combinations of equations (25)-(27) we arrive at

the following set of equations
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The above equations constitute a system of the form
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X

ponents of w in equations (28)-(30), and

A (b

The above equations never apply to the flow at the tube entrance

(6 =0 at x =0)., We therefore need only to consider the tube exit.

There the condition of constant pressure is satisfied

p(L:t) = 1

(32)
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2. The Near-Field

The near-field flow (see Figs. 1, 3) which surrounds the vehicle
is of a very complex nature. In this region boundary layers extend
from both the vehicle and the tunnel surfaces. A detailed theoretical

analysis of the boundary layers in the annular region and the wake
behind the vehicle is a complex task., Experimental investigations
dealing with the tube -vehicle problem are mainly interested in esti-
mating the drag experienced by bodies moving in tubes. This is done
by measuring the body's velocity profile (in case of a body propelled

by its own weight) or by other methods which do not involve a detailed
study of the flow in the near-field. With no data available for the flow
in this region, we make simplified but reasonable assumptions to model
the flow there. The three sub-regions composing the near-field are
discussed below.

a. The Nose Region

The nose region flow is that occurring between stations (1) and
(2) in Fig. (3). Noting that this region extends for a small distance
in the X-direction (see Appendix A) over which the velocity is a rapidly
changing function of X, it is clear that the changes in flow variables
with respect to time are negligible in comparison to corresponding
changes with respect to the space coordinates, provided that no abrupt
changes (e. g. impulsive motion) occur. In vehicle fixed coordinates,
the pressure gradient on the nose surface is negative in the flow direc-
tion, indicating that no separation occurs., Also the friction effect
over such a short distance is negligible. In light of the above arguments,

it is reasonable to use a frictionless, compressible, quasi-steady



17~

formulation (in vehicle fixed coordinates) to describe the flow in the

nose region. We therefore relate the flow at stations (1) and (2) by the

equations of continuity, the adiabatic energy equation and the isentropic

relation. They are respectively

1.2 2 P o) . B -2 P2

1——2 M) (V-U))" + = = Z—-z M (V-U,)" + == (33b)
Py © P2

pl Ply = PZ sz (330)

where V = V()

u, = u(xi(t), t)

p; = plx(t), t)

'O
n

; P (x;(t), t)

a4 = vehicle cross sectional area

tube cross sectional area

b. The Annular Region

This region extends between stations (2) and (3) as seen in

Fig. (3). Although the flow here is of a complex nature, simplifica-

tions may be introduced when noting the following., In this region the

annular gap between the vehicle and the tube is small compared to the

tube diameter. The flow speed relative to the vehicle surface is in

general larger than the flow speed in the far-field. The above factors,

in addition to the fact that boundary layers extend from both the vehicle
and tube surfaces, indicate that the time required for the effect of

viscosity to be felt across the annular gap is small with respect to
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the corresponding time in the case of far-field flow. We therefore

do not consider an inviscid region (corresponding to the far-field
inviscid core) in the annular region. Moreover, the flow in this region
is represented by a one dimensional compressible model with friction,

governed by the following equations of mass, momentum and energy.

ap 9 i}
5 T My 3z (PU) = 0 (34)
9 9 2y, 1 9p _
ot (PUV+ M, 53 (PUD TN 5x = Ram (35)
9 1 p 2 U’ 5 1 p...2U
“a?[p( e S R o *Moa:[PU(«/-l el NN
1 9p _
-y a - Rap (36)
where l ‘
M., pUlUl M
PP A + =2 £ 4% ov.u)|v-ul
AM K(1-0) k ‘vh T-0
am3
RaE = % T Qratvo 9y
; .
M
[o) AN O
t = £ F— p(v-U)|V-UlV

Here f and f are the vehicle and tube friction factors in the
vh TA

annular region.

Proper combinations of equations (34)-(36) lead to a system of

the form

-‘-.VYt(C) + cle) E(C) _ .f_(C) (37a)
or

witl = pled g lod 4 gl (37b)
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where
W(C) =
P
¢ (©) - ]
£ Ran/P
(c)_ |, () _ -
L= = | 7Y-1MRyp - MRy, U)
(c)
I ’ !
and . -
1
MoU 7y Q
o
e YM_p M U 0
Mop 0 M U
Using the transformation
t
X = x- [M_ vihat'
0 0

i = t

equations (34)-(36) are rewritten in vehicle fixed coordinates.

2p 9 .
5T T Mo 3x (PU,) = 0 (38)
2 OV, 2 oy, L 0p _
o1 (PUy) * P a7 * Mo ax (PUL) 43T 3% = Ram (39)
2
M
5 . 1 o 2 2 oV
-E)—'Z-['-(‘y(y—l)p+ 2 va)+MovaTI‘
Mo Mo3 3 2
TR T Ve T P SR My V Ry (40)
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where Uv = U-V
is the flow velocity in vehicle fixed coordinates.

In previous studies the flow in the annular region was assumed
to be quasi-steady in vehicle fixed coordinates. Such an assumption
neglects the time derivatives in equations (38)-(40), reducing them to

steady state equations in vehicle fixed coordinates.

- 41
dx (va) 0 (41)
d 2

4 _ 2
ax My P Uy +o5—) = Ray (42)

M M3
d 0 0 3 2
A AT PU el s Ry My VR g (43}

The argument given to justify the quasi-steady assumption for situations

in which the vehicle length, Lv << L, the tube length,is that the time

h
required for the near-field to adjust to steady state after a pressure
perturbation is much shorter than that required by the far-field.
However, this argument is not a convincing one.

As will be explained later, the solution to our problem is
obtained numerically., The far-field is divided into a net with spacings
At and Ax in the t and x directions respectively (At is less than Ax but
of the same order). Let us now consider two cases of vehicles accel-
erating in tubes. In the first, (case (a)) (Fig. (4b)) the vehicle length
L

<< Ax and LV A << L. Inthe second, (case (b)) (Fig. (4b)) the

vha
vehicle length L

h

~ < - .
vhb Ax and Lvhb < L. At the time interval
t-1 <t<gt 3 the vehicles are assumed to be travelling with constant

velocity Vn-l' At time tn a velocity increment A Vn is assumed, so

that the vehicles move with a velocity



in the time interwval bt <t<t The velocity increment A Vn

+1°
causes pressure waves to propagate through both the far- and near-

fields. In case (a), at time tn many pressure waves will have

+1
passed through the annular region, and the disturbance will have been
weakened considerably. It is therefore reasonable to make the quasi-

steady assumption. However, in case (b) at time tn 1 the pressure

%
wave will have travelled approximately one length Lvhb through the
annular region. In this case it is not justifiable to make the quasi-
steady near-field assumption, A rough estimate to compare the un-
steady terms (first two terms in eq. 39) to the frictional terms
(right hand side of eq. 39) in eq. (39) may be obtained by integrating
the equation over the vehicle's length, The rate of the variation of

p is small with respect to the rate of velocity variations, We there-
fore neglect variations in density, This leads to the following ex-
pression for the ratio of the force required to accelerate the air in

the annular region to the force required to overcome the wall friction.

ouU
v

unsteady forces _ 0T
frictional forces

M_T
ey L-Ulvl/o (v-u)|v-ul]

Here fTA and fvh are assumed to be equal, and

i TR

The above ratio may be rewritten as

S %
unsteady forces W {tea) aUv

i} 1
1 1 - '3 3
frictional forces — y*2 ¢ ar" [-U|u|+/5 (v-U)|V-U|]
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from which we may conclude that an increase in the values

of f and V: lead to an increase in the frictional terms, while
an increase in the vehicle's acceleration causes an increase in
the unsteady terms. For V: = 100 ft. [secs; f= 0,02, ¢ = 0,65

and a vehicle acceleration of 5 ft/sec2 the above ratio ~ 0.1,

c. The Base Region

Although experiments investigating the flow in this region
have not been conducted, we rely on the results of experiments
having some aspects in common with this flow to construct a
simplified model.

In vehicle fixed coordinates (Fig. 3) the flow goes through
a sudden enlargement in cross sectional area at station (3).
Unsteady flows in pipes with cross sectional area changes were
investigated by Benson and his co-workers (Reference (17)).
Though their geometrical configuration is different from that
under consideration, their results are of interest,

Their experiments were conducted on flows in pipes of
small diameters (~ 2'"). They found that quasi-steady conditions
may be assumed at the regions of sudden area change. In
steady flow it was found that the location of the pressure re-
covery plane increases with the upstream pressure and velocity.

For tube area ratios of 0.25 and 0,56 the recovery planes were
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respectively in the neighborhood of 5 diameters and 3 diameters
downstream of the enlargement area. This distance in the
unsteady case was found to be 35 to 50 percent of the corre-
sponding steady state case. Although the flow close to the
enlargement area is three-dimensional and the one-dimensional
equations do not accurately predict the pressure there, this
region is not long (few tube diameters), Comparing their ex-
perimental results with theoretical results based on one-
dimensional flow, Benson and his co-authors concluded that
the region of three-dimensional flow (downstream of the enlarge-
ment) may be neglected when calculating the overall wave action,
and for these calculations the plane of recovery may be fixed
in the plane of the enlargement,

Other experiments of interest deal with the flow near the
base for bodies of revolution in free air (References (18)-(21)).
Measurements indicate that the pressure on the base of a body
in free air is approximately constant, It is proportional to the
dynamic pressure of the outside flow, and it depends on the body
length, shape, and its surface conditions. Measurements of
base pressure for different bodies indicate that the value of the
base pressure coefficient (defined as the difference between base
and ambient pressure divided by the dynamic pressure) is in
the neighborhood of -0.2, In reference (20) Chevray studied
the wake behind a six-to-one spheroid for Reynolds number equal

to 2,75 X 106. His measurements indicate that beyond a distance
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of 2D (where D is the maximum body diameter) downstream of
the body the pressure varies negligibly with r. At 18D downstream
of the body, the maximum velocity deficit in the wake was about
10 percent.

Though the above experimental results do not apply to the
problem under consideration, enough similarities between the flows
involved in the two cases lead us to rely on the above results for
some of the assumptions we make for the base region under consider-
ation. We define a base pressure coefficient
Pp-P;

C = 1'_———"—2
zp(V-U,)

pPB

We assume that the flow is quasi-steady between stations (3) and (4)
in vehicle fixed coordinates (see Fig. (3)). Moreover we assume
that the length of the base region is small compared to the tube
length. The flows at stations (3) and (4) are related through the

equations of continuity, momentum and adiabatic energy. They are

respectively
P4P3 2 - 2
2 = py(V-Uy) {1 ro( BB 1) |- o, v-up?  (45)
y M
(0]
o 2  P3 el . 8 2 P4
Lz MZ (V-1 )¢ +== =0 L2 M (v-1, )" +—= (46)
o 3 P3 2 o 4 Py

d. Vehicle Drag

The aerodynamic resistance experienced by a vehicle travel-

ling in a tube includes the skin friction drag which basically results
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from the frictional forces between the fluid and the vehicle surface
in the annular region., The pressure drag is the result of pressure
forces on the vehicle (nose and base).

The average flow velocity U in the annular region is generally
negative. Therefore the relative velocity between the flow and the
vehicle surface is larger than its corresponding value for an uncon-
fined vehicle. Consequently, the skin friction drag is generally
greater for a vehicle when travelling in a tube than when travelling
in free air., Moreover, we note that in the case of vehicles travel-
ling in tubes, the frictional forces acting on the fluid in the annular
region contribute to the pressure drag, as the pressure in this
region causes a corresponding drop in the base pressure, and there-
fore a higher pressure drag.

3. The Contact Surface

Part of the flow passes through the near-field before it enters
the far-field behind the vehicle (the fluid between the vehicle and the
contact surface in Fig, 1). When in the near-field, friction acts on
the flow. Therefore, after it becomes part of the far-field, the
isentropic relations initially assumed to relate the pressure and
density there do not apply. Moreover the flow passing through the
wake becomes mixed and may no longer be described by the inviscid
core model, The flow in the wake region is complex. However,
representing it by the fully developed model is a better approximation
than the inviscid core model, We therefore assume that a dividing
surface exists in the rear far-~field (referred to as the contact sur-

face). It divides the fluid which passed through the near-field from
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the rest of the rear far-field. It is assumed to be travelling with
the average flow velocity, with equal pressure and average flow
velocity on both its sides, but a change in density, The governing

relations at the contact surface are therefore given by

dx
ct _ U
dt B ct
Uct A Uct r Uct
Pet g - pct r

Where ( )ct denotes conditions at the contact surface and ( )ct >
( )ctr respectively denote flow conditions upstream and downstream
of the contact surface.

4, The Unsteady Flow Equations

The far-field unsteady flow equations (15a, 3la) and the near-

field unsteady flow equations (37a) are all of the form

w, + Cw = f
~t ~ —~
where
(2) . .
w (far -field boundary layer growth period)

= y(b) (far -field fully developed flow)

<

y(c) (near-field annular region)

Similar definitions apply to C and f. In each of the above three
cases matrix C has three real distinct eigen values, indicating that
the equations we are dealing with are of hyperbolic type and may be

transformed to characteristic coordinates, The characteristic
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directions at a point are obtained by finding the eigen values of the

matrix C. Solving the equation
lc-a1] = o

or

3, .2 ~
NN K ENK, HKy =0

where Kl, KZ’ K.3 are the corresponding coefficients for the former

equation, we get

K
[Ta 0 1
)\I = 2,-'5 COS§'-—3——
o ) S K1
)\II = - -gcos§+A/-a sin 3 - 5=
P— K
a : 1
)‘III -,\/-—3-cos—-,,/-a sin 3 - 3
where
P o .3
NS Nt LS
= tan
-
2
s & 2
a = F(3K,-K")
= i(2K3 9K. K. + 27 K2)
P - 21 . 12 3

)\I, )\II’ )\HI respectively correspond to the right going, intermediate
and left going characteristics, The corresponding eigen vectors are

obtained by solving the equation

[c-»1T 2 =0, k=1, II, I

where [ ]T denotes the transpose of a matrix. The unsteady flow
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equations may now be written in characteristic coordinates

dw

2K (%)« (E} —i(w)) = 0 k =1, II, II (482)

along the corresponding characteristic curves

dx

'?E' = )\k (E) k =I, II, ITI (48b)

In the case of the one-dimensional unsteady equations used
to describe the near-field flow in the annular region, simple expres-
sions are obtained for the characteristic directions and for the flow

equations along them. They are

du , dp _ (c) (c)
YM WPP Fr ta = YMpe £+

along

dp _ yp dp _ f(C)

dt p dt 3
along

dx _ _

;g R UM

- e U 4 dp _ = e} , Je)
along

dx _

F* T Mp s UMo'wﬁE

Similar expressions may be obtained for the far-field charac-
teristic equations, However, the nonuniform velocity profile assumed

there, leads to more complex equations. The same assumption
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causes a slight change in the characteristic directions when com-
pared to those of a uniform flow, If we assume the function f(n)

(previously used to define the velocity similarity profile) is of the

form
1

fm) = n°

then for large n (n is of order 10 for flows under consideration) we

find that
9 B .
A = MU+ /p + o(1)
n
M U [1+0O¢( ;1]- )] (boundary layer growth period)
)\H =

M_UL1 + 0(-—15)] (fully developed flow)
n
- /B 1
- M U ,/p + O(nz)

)\I’ )\III correspond to the pressure waves travelling in the upstream

and downstream directions, and )\II corresponds to the fluid particle

path.
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B. Method of Solution

1e The Far-Field

The set of far-field equations we are dealing with is of

the form

W = Aw + £ (49)

and may be suitably solved using the Lax-Wendroff method which
is of second order accuracy. The x-t diagram is divided into

a net, with uniform spacings Ax, At in the x and t directions
respectively., Solutions are obtained at the nodal points (xj, tn+1)

(points marked x in Fig. 5) where

xJ = jAx J€3n+1
tn+1= 20x+nlt ns 0 ) sss;: N

The condition j € jn+1 is satisfied only if the four nodal points
(Xj’ tn+1)’ (xj-l’ tn), (xj, tn) and (Xj+1’tn) lie in the same far-field
sub-region (forward far-field or rear far-field ahead of contact
surface or rear far-field behind contact surface). y(xj, tn+1) which
we denote by ~WJ’ St may be represented by Taylor's series int, in

terms of w?’ ' and its derivatives. Using this expansion (neglecting

terms of order At3) and the governing equation (49) leads to the
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following representation of \EJ’ il in terms of \EJ’ ™ and its x-deriva-

tives,

wj, n+l _ Wj,n

—~

+ ot [Aw _+£]07
At2 jy 1
+—2—{A[Agx+j_]x+At1vx+£t}

The vector —£t and the mth column of matrix At are evaluated by

—~

(A ) = (Ay ) [Aw_+f]

—~

where matrices f and (A ). are respectively the Jacobians of
~w *m ' w

—_— —~

f and A,  with respect to w. When performing numerical calcula-
—~ m —_~

tions, the x-derivatives are approximated by difference quotients.,

This gives
. 2
j, ntl At
¥ Yo T &Yyt 5,
where
v = Wi
~0 =il
dm Eﬁ-l,n _Yz_]-l,n .
5y = & T h = *E
Xz = -Jap YXpp t¥as
j¥l,n j.n
. - W - W
v = AJ:n AJ+E:n s =
~21 2
A x

- 1
- AJ—'é_Jn m

o} 1€
{

whB oG-l dtin _ g-in }

A x Ax
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Wj+1, n _ Wj-—l, n

—~

j,n
AT

v
~22 2 A x

Wj+1, n_ Wj—l, n

—_— —~—

F P

v Lf ]j’n Al
23 W 2 Ax

where the m’Ch column of matrix Ag’ s given by

jtl, n j-1,n
w . - W .

2 Ax
Jidd n)

j»n _ LhaBY
Bamly ™ = (Ay)y [AJ’ .

1
15y A,

Ag j»n

denotes A(: w + 3 w

~

. _]; . »
A)"2: ™ genotes A(%wJ 1,n+%WJ,n)

—~ _~

etc,

In choosing the net spacings At and Ax, we are limited by the
stability condition, which requires that ‘)\l < %x{ for each eigen value
X of A,

In Fig. (5) nodal points (Xj’ tn+1) marked 0 fall close to the
contact surface or to the near-field far-field interface. In such cases
the information is not known at the appropriate nodal points in the
previous time step. Therefore the solution is not obtainable through
the use of the above finite difference method. The methods of char-
acteristics are applied,

The Method of Characteristics:

The unsteady flow equations were written in characteristic
form in equations (48), For the purpose of numerical calculations

the equations are approximated by

k,— j,ntl _k B — 1 _ -
L - [w -w - (tn+1 tk)f—(l"-)] =0 k=1, 11, IIT (50a)
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X - X = (t, 41 = ty) A (W) k=1 II, III (50b)

where

€1
0

and g,_'k denotes the solution at the point (Xk’ tk) which is obtained by
linear interpolation between points at which the solution is known

(see Fig. 6a). Equations (50) reduce the problem of finding the

J,n

solution w o at point (Xj’ tn ) to solving a set of algebraic non-

+1

linear equations of the form

G(W) = 0
where §, Bl )
Y
xX
w o= | !
*11
- X111 .

The above system is solved by iteration. Newton's method
is used. A big advantage of this method is the fact that the conver-

gence is of second order (i.e. the error in any iterate is proportional

(o)

to the square of the previous error) provided the initial iterate W

is sufficiently close to the root W of the equation

This method involves the calculation of the Jacobian G, of E_} with

w

—

respect to W, as the V+1 iterate is given by

—

W(\H‘l) = W(V) - [gw(}y-(\)xj'l g(y(v))
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We point out that the approximate equations (50a, 50b) are of

second order accuracy. Therefore their use is consistent with using
the Lakx-Wendroff method which is of the same accuracy.

Solution at the Boundaries:

The solution at the nodal points falling on the boundaries x = 0
and x = L is obtainable by satisfying the boundary conditions in addition
to the far-field characteristic equations (48), where k = III (see Fig.
6b) in the case of the boundary x = 0 and k = 2, 3 (see Fig. 6c) in the
case of the boundary x = L., The characteristic equations are written
in their approximate form (50). Combined with the appropriate

boundary conditions a nonlinear system of algebraic equations is

obtained
SW) = 0
where _
o, n+l
=
w = (at boundary x = 0)
*111
J, n+l
.
W = Xp (at boundary x = L)
L *I

and again each set is solved by iteration.

Solution at the Contact Surface:

To find the position of the contact surface and the flow vari-

ables on both its sides at time t the conditions of pressure equality

n+l1’

and the equality of average flow velocity on both its sides are satisfied,
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In addition (see Fig. 6d) its position at time t is determined by

+1
XS(tn-!—l)—XS(tn) U(X5(tn+1)’ tn+l) * U(XS (tn)' tn)

At . 2

and the far-field equations are satisfied along characteristics Ia, i

behind it and IIb, I].Ib ahead of it. The above equations and conditions

form a set of nonlinear algebraic equations. Solving them by iteration
the position X5(tn+1) of the contact surface and the flow properties on

both its sides at time tn are determined.

=1

Solution for Flow Caused by Initial Waves:

The two strips shown in Figs. (5) and (7) represent the flow at
stations along the tube for a very short period after the arrival of the
initial wave. In these regions U << 1, We let

a =1+ M, a
where a << 1. Then the governing equations for the first approximation

are

2 — % N
71 at+(l +BI)UX-U[31 éx— 0
a 2 —
Ut + '}’Tl- ax = 0
U, 6 +B U, = - 2 M T
F51 t 1 7t K o o
Recognizing that
B, 6 = d ‘s, =
1 X - plx an ‘31 t = Blt

We combine these equations to obtain

(U+y—2_1— a) + (U+

a) = %-hi T

t v-1 X
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( 1-1p1A ko= - Moo
(U——y—zz—l- E)t-(U-;f—r‘a)X= %Mo—r

or
-a(-i%—(UwL —772:—;) - %MOTO along %};:— = 4 (51)
a(lt-( fél U) = —%Mo T, along %}ti = 0 (52)
_&(%:_(U_)_/%—l- a) = %Mo T, 2long %-},i— = -1 (53)

Consider points (a), (b) (Fig. 7) lying on a line g—t}—(- = -1 and points

(b), (c) lying on a line oE o 1. From equations (51) and (53) the

dt

solution at point (b) is approximated by

UC ;C MO
Ub - N v-1 T (ch Atbc " Tha 4 tba)
g y-1 g“-c y-1 Mo
ap = Ut 5 + 5 (T Bt Tha Btha!
where
T4 T
ij Z
At,. = t. -t
ij i

In the regions of initial waves, for typical values of our problem the
last term in the above expressions for Ub and I—Ib is negligible with
respect to the first two terms. Therefore the friction term is neglected

when determining the flow properties. The one dimensional acoustic

equations are used
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d 2 - . dx
E(U-l-;-—i a)=0 along =5 = 1
d 2 = dx _
aft-' (U —‘)7:—]?- a) = 0 along aF - -1
Then the boundary layer thickness is determined using the equation
p
1 2
TV U) = - — M T °
1- [31 ¢ K o o

2. The Near-Field

The vehicle length is assumed to be of order Ax or less,

Therefore to find the solution at points (Xl(

b byl ) B gl

tn+1 n+l n+l

(x3(t ), t ) and (x4(t ), the following equations are to be

n+l n+l n+1l )s tn+1

simultaneously satisfied, The nose equations (33), the base equa-

tions (44)-(46), the far-field equations along characteristics Ia, IIb,

IIIb (see Fig. 6e) and the near-field equations along characteristics

(IIa', IIIa', Ib). The characteristic equations are written in their ap-
proximate form (50) and again the problem is reduced to solving a

set of nonlinear algebraic equations of the form

G(W) = 0
Wl g b Bpgy) )
LESILNS LY
!-V(x3(tn+l)’ tn+1)
¥Rl i bt
where W= X a /

I
X2
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This is done by iteration.

If the contact surface is close behind the vehicle, the near-field
solution and the solution at the contact surface are found simultaneously
(see Fig., 6f). For cases in which the near-field is treated as quasi-
steady in vehicle fixed coordinates, the near-field unsteady equations
are replaced by the steady equations (41)-(43), which are approximated
by the use of finite quotients.

C. Numerical Calculations and Results

1, Choice of Parameter Values

A number of parameters are involved in the vehicle -tube

problem., We discuss them below.

The Flow Velocity Profile:

Turbulent flows in rough pipes have a velocity profilke which is
less uniform than corresponding flows in smooth pipes. In reference
(25) it is seen that the velocity distribution across a rough pipe is very
well represented by a power formula, where the exponents are 1/4
or 1/5 at Reynolds number 106. Available experimental data for
velocity profiles in tubes usually deal with incompressible steady
flow. For our unsteady calculations we rely on such available data
and study the effect of its wvariation on the solution of the problem.
Therefore we assume that the flow similarity profile is represented

by a power law,

1
n

1
1]

f(n) M (Boundary layer growth period)

1
11

Ch s e

g(r) (l-r)n (Boundary layer fills tube cross section)
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Logarithmic profiles are often used to represent the velocity
distribution across a tube cross section. However, the fact that it
and the power profile are very close to each other and noting that the
equations we are dealing with are obtained by integrating the flow
equations across the tube, we expect that the effect of using a log-

arithmic profile instead of a power profile would be negligible.

Friction at the Tunnel Wall:

For turbulent flow in smooth pipes the friction factor

T
f =
1o U

is a decreasing function of the Reynolds number., For rough pipes

it is a function of the Reynolds number. However, at high Reynolds
numbers (above 104) curves in reference (25) reveal that the variation
becomes small. In our problem we are dealing with rough tunnels
and as the flow Reynolds number is higher than 104 except for a
negligible period, the tunnel friction factor is assumed to be constant
for a specific example, The effect of its variation on the problem
solution is studied in different examples. We may point here that

the friction factor was found to be about 50% larger in unsteady flow

in smooth pipes than its corresponding value for steady flow ‘(Ref. 17}

Other Parameters:

In the examples below the vehicle is assumed to begin its
motion from rest at x = 0,3, It is assumed to accelerate at a constant

value of 5 ﬂ:/sec2 until it reaches a final speed, after which it travels
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at constant velocity., The parameter values given below are a repre-

sentation of vehicle-tube systems and unless otherwise specified they

are used in the calculations.

Tube length = 10, 000 ft
Vehicle length = 300 ft
Vehicle radius = 6 ft
Blockage ratio = 0.65
Tube friction factor = 0. 02
Vehicle friction factor = 0. 02
Base pressure coefficient = =0.15
Vehicle acceleration = 5 ft/sec2
Vehicle final speed = 100 ft/sec
Initial vehical position X = 0.3

n (for flow velocity profile) = 6

Heat transfer through the tunnel wall is neglected (tunnel wall is

assumed to be insulated),

2. Results

a, General Observations and Discussion

The travelling time of the vehicle in the tube is divided into
three distinct periods., Period (A) is that in which the vehicle accel-
erates, During this period the vehicle must provide the force required
to accelerate the far-field air column in addition to the force required
to overcome the frictional forces experienced by the far-field air.
These forces appear as a drag force acting on the vehicle, During

this period a large pressure drop is observed along the near -field,
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As the vehicle reaches its final velocity the aerodynamic forces acting
on it are reduced, as the aerodynamic drag becomes essentially the
force required to overcome the frictional forces experienced by the
far-field flow. The drag component resulting from accelerating the
air disappears. Period (B) is that period beginning when the vehicle
reaches its final velocity, In this period a transition occurs from the
conditions required to accelerate the far-field air and overcome the
frictional forces to new conditions only required to overcome the
far -field frictional forces, Period (C) follows period (B). In this
period the flow conditions approach steady state conditions. However,
steady state is never reached. In (C) the variations occurring in the
values of drag and other properties is small with respect to the vari-
ations occurring in periods (A) and (B).

Fig. (10) shows the variation of pressure with time at the
forward and rear far-field, near-field interfaces (xl(t) and x4(t)) and
the forward and rear ends of the annular region (xz(t) and x3(t)).
Initially the pressure at all the above stations has its undisturbed
value Po' As the vehicle accelerates (period A) the pressure values
at the two forward stations (x1 (t) and xz(t)) increase with time while
the corresponding values at the rear stations (x3(t) and xz(t)) decrease
with time. The gap between the pressure values at the forward and
rear stations continues to increase until the acceleration period comes
to an end. The flow velocity in the annular region is negative (Fig.
(12)). Its magnitude increases with time (relative to both the tunnel
and the vehicle) during the acceleration period, Therefore the pres-

sure drop due to friction in the annular region increases during the
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period (A) as observed above. At the end of this period the magni-
tude of the flow velocity in the annular region decreases slightly
(period B), then it approaches a constant value (period C). A corre-
sponding slight pressure drop is observed between the annular region
ends (B), after which differences in pressure at the near-field sta-
tions approach constant values (period C).

As the vehicle approaches the forward tunnel end the lengths
of the air columns ahead of it and behind it respectively decrease
and increase with time. This causes a corresponding increase and
decrease in the pressure drop in the rear and forward far-fields re-
spectively., Consequently, a continuous drop occurs in the near-field
pressure as the vehicle approaches the tube end. This is observed
more clearly in Fig., (11) which shows the pressure variation along
the tunnel for different times. (The steeper pressure gradient at
t* = 20 secs, is due to the additional inertial forces during the accel-
eration period.)

In Fig. (10) it is seen that the largest contribution to the pres-
sure drop in the near-field occurs in the annular region., As will be
seen later this causes a major part of the drag experienced by the
vehicle. Fig. (12) which depicts the velocity variation with time at
the four near-field stations reveals that the flow in the tunnel ahead
and behind the vehicle moves with a sizeable velocity (~ 0.5 of the
vehicle velocity). The friction forces experienced by the air column
in the tube must be overcome by the vehicle which is effectively push-
ing this column and therefore appears as additional drag., The nega-

tive flow velocity in the annular region is also of sizeable magnitude
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(~ 0.5 of the vehicle velocity). This causes a large relative velocity
between the vehicle and the air surrounding it, increasing the skin
friction drag on the vehicle,

The effect of the above observations on the drag experienced
by vehicles travelling in tubes becomes clear by examining the
drag coefficient curves of Fig. (13). For CD the maximum vehicle

o

ES
velocity Vo is used as the normalizing velocity

Drag

CD=

\ >:<
o (% p: VOZ) X (vehicle c.s. area)

b3
For CD the instantaneous vehicle velocity V is used as the normal-

izing velocity

_ Drag
CD =

1 3k X2 .
(3 Po V 7) X (vehicle c.s. area)
During the acceleration regime the drag increases monotonically

(curve for C It reaches its maximum value at the maximum

Do)'
velocity, then it decreases gradually and approaches a constant value.
The drag coefficient CD is seen to decrease monotonically with time
throughout the vehicle's journey. As the unsteady effects diminish

it is seen that the value of the drag coefficient is close to 15. This

is a large value when compared to the corresponding CD value of
approximately 2 for the vehicle when travelling in free air,

It was mentioned above that although steady state conditions
are approached in period (C) they are never reached. This is clear
from Fig. (13) which shows a slight continuous decrease in drag
throughout period (C), and from Fig. (12) which shows a slight

continuous increase in flow velocity throughout period (C). (Note the

increase in flow velocity reduces the pressure drop along the annular
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region and therefore causes a corresponding reduction in the vehicle
drag). The reason that steady state conditions are not reachable is
due to the friction forces acting on the far-field flow, It is well known
that the velocity of steady state flows in pipes with friction increase
continuously as the end of the pipe is approached. So even if we
assume that the far-field is in steady flow, the fact that the vehicle
moves along the far field indicates that flow properties at the vehicle
will continuously change.

*
The drag forces D acting on a vehicle travelling in a tube

%
F

sk
pressure drag Dp is further divided into three components. For the

are divided into a skin friction drag D_, and a pressure drag D:. The
flow conditions resulting from the vehicle's motion in the tube, D:a

is the pressure drag which would result if there were no friction
forces in the annular region (i, e. if there were no pressure drop along
the vehicle length). D:b and D:c are the drag components resulting
from the pressure drop in the annular region due to the frictional

forces on the tunnel wall and the vehicle surface respectively, For a

vehicle travelling in a tube the total drag experienced

% % %*
D = DF + Dp
where D* = D* + D* + D*
P pa pb pc

However, for a vehicle travelling in free air the corresponding drag

= —3% —
D D D*

where D =
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Therefore when a vehicle travels in a tube two additional components
% S % x
D', and D._ are added to the drag components D_, and D__. More-
pb pc F pa

%k £ - —
and D to D> and D reveals that each
F pa ¥ pa

of the former two is greater than its corresponding component ex-

s

% =
perienced in free air. DF is expected to be higher than DF because

the flow velocity in the annular region is negative, Therefore, the

over a comparison of D

relative velocity between the vehicle and the surrounding flow is
greater for a vehicle travelling in a tube than the corresponding case
of travel in free air. Consequently the frictional forces are greater

for the first case than the second, and

* —
>
DF DF

* —3%
When comparing Dpa and Dpa we note that the base pressure in both

the confined and unconfined cases is respectively given by

¥ kg *® k% 2
and
=k =k * %2
Pp. = Py +2C pP ¥
recognizing that
*
U2 < 0
CpB< 0
&
P; < P
— %k %
P2 = P =P

leads to the conclusion that

sk —3%
Pg < Py
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and therefore

* =%

D
pa pa
Fig. (14) shows the contribution of each of the components

discussed above to the total drag of the vehicle. It is seen that the
pressure drag contribution to the total drag is larger than the skin
friction drag contribution. It is also seen that the pressure drop in
the annular region due to the vehicle friction composes a major part

of the pressure drag.

b. Effect of the Parameters on the Solution

In this section solutions for different parameter values are
obtained, The effect of varying the parameter values on the solution
is discussed. In each case only one parameter is allowed to vary; the
rest retain the values given above. In Figs. (15)-(22) the effect of
changing the parameter values on the drag coefficient is shown.,
Tables (1)-(3) respectively show the effect of parameter changes
on the flow pressure, velocity and the relative values of the drag
components at the beginning of the period (C). In general it was
observed that this period begins at a time close to 30 seconds after
the vehicle begins its motion. Therefore unless otherwise specified
the values in the tables are those for t* = 30 seconds, Calculations
made for obtaining the curves of Fig. (17) assumed a quasi-steady
near -field assumption, All other Figs, were calculated taking the
unsteady wave effect into account in the near-field calculations.

The difference between both cases is discussed later.
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Blockage Ratio:

The blockage ratio has a strong effect on the flow properties
and the drag (Fig. 15). An increase in blockage ratio results in an
increase in the magnitudes of both the far-field and the near -field
flow velocities. The increased far-field flow velocity requires larger
forces to be exerted by the vehicle, both to accelerate the air and
overcome the frictional forces. This appears as a drag increase.
The large (in magnitude) annular velocity accompanied by the small
annular cross sectional area results in large pressure drops which
contribute greatly to the pressure drag D;.

The blockage ratio value strongly affects the value of the total
drag experienced by the vehicle and the relative values of the drag
components to the total drag., The rise in the annular region pressure
drop for large values of 0 increases the ratio of the pressure drag
components due to annular pressure drop (D:b and D:c) to the total
drag., This is increased from 41, 1% for a blockage ratio of 0.45 to
76.1% for 0 = 0.8. However, the skin friction drag component D;
is affected in a reverse manner (D’;/D* = 45,5% for o = 0,45 and
D;/D* = 16, 7% for 0 = 0.8). As the blockage ratio decreases the
contributions of D:b and D;C continue to decrease and they vanish
completely as 0 = 0. As expected a large blockage ratio severely
increases the total drag. (For 0 = 0,45 and ¢ = 0, 8 the maximum

values for CD respectively are ~ 10 and 35).
o

Vehicle Length:

An increase in the vehicle length causes a corresponding in-

crease in the resistance experienced by the air flow inthe annular region,
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The effect of this is to reduce the magnitude of the flow velocity
there, and consequently increase the far-field flow, The reduced
near-field flow tends to decrease the pressure gradient in the
annular region, and therefore the pressure drop. However, the
increased vehicle length has the reverse effect. It tends to increase
this pressure drop because of the increased area of the frictional
surface, The latter effect is the dominant and it causes an in-

3 S
and D,

crease in the contribution of both the drag components DF pe

The total additional drag experienced by a long vehicle as compared
to a short one is essentially the force required to overcome the
increased frictional forces acting on the higher far-field velocity.

Fig. (16) compares the drag coefficient CD for different vehicle
o
lengths, As seen, the maximum value of CD increases from 15 to
o

26 for an increase of vehicle length from 150 ft. to 600 ft, Table (3)
shows that the base drag ratio to total drag is increased as the

vehicle length is reduced.

Tube Length:

The resistance experienced by the far-field flow increases
with the tube length, Therefore the far-field velocity decreases as
the tube length increases. Consequently the magnitude of the flow
velocity in the annular region increases with the tube length, This
produces an increase in the annular region pressure drop and conse-
quently a larger drag is experienced by the vehicle.

Fig. (17) shows the drag coefficient curves for three different
tube lengths of 5, 000 ft,, 10, 000 ft, and 20, 000 ft. For the first two

tubes the vehicle begins its motion at x = 0. 3. For the longest tube
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the motion starts at x = 0,15, (Since the initial vehicle position for
each of the two longer tubes is xa’ = 3, 000 ft., this choice allows us
to compare the effect of the position of the forward tube end on the
solution.) As expected the curves indicate the increase in drag with
tube length, It is interesting to compare the wave effect in the three
cases, All three curves coincide for approximately the initial three
seconds of motion. Until that time the solution is the same as that for
an infinite tube, since the initial waves reflected from the tube ends
have not yet reached the vehicle in any of the three cases. At ap-
proximately tai< = 3 secs, the compression wave reflected from the
rear tube end arrives at the vehicle for the 5, 000 ft. tube case. This
causes a reduction in the slope of the drag curve compared to the
corresponding slopes for the two longer tubes. At t* ~ 7 seconds

the expansion wave reflected from the forward tube end arrives at
the vehicle, This causes an additional reduction in the slope of the
drag curve. The curves corresponding to the longer tubes coincide
until t* ~ 14 secs, Until that time the solution is the same as that
for a semi-infinite tube, since the initial compression wave reflected
as an expansion wave from the far tube end has not yet reached the
vehicle, At t* ~ 14 secs. this wave reaches the vehicle in the
medium length tube. Only then does a difference occur between the
slopes of the curves corresponding to the two long tubes., The re-
flected wave has a stronger effect for the 5, 000 ft. tube than for the
10, 000 ft, tube. This is due to the attenuating effect of friction on
the wave strength., The third curve (20, 000 ft, tube) has a different

profile from the first two. This is due to the fact that the reflected
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expansion wave arrives at the vehicle after the end of the acceleration
period. Therefore, at the end of acceleration the flow properties

at the vehicle behave as if the tube is semi-infinite. And the argu-
ment previously used for the drag reduction at the end of period (A)
applies here no longer. Although the rate of drag increase is reduced
at the end of period (A), a continuous rise in the drag is observed.
This is due to the fact that a vehicle in a semi-infinite tube must
continuously supply the force required to push a fluid column con-
tinuously increasing in length with time. Therefore, although the
drag force due to accelerating the far-field air column vanishes at
the end of the accelerating period, a force is required to overcome
the frictional forces on a continuously increasing frictional surface
area. This causes the continuous increase in drag until the reflected
expansion wave reaches the vehicle.

For a semi-infinite tube we expect the solution to behave in
the following manner, Initially as the vehicle accelerates, com-
pression and expansion waves respectively propagating ahead of the
vehicle and behind it, cause the air in the tube to flow and a pressure
gradient occurs. After the vehicle reaches a steady velocity the
growing column of air flow in the far-field results in larger frictional
forces. This tends to produce a rise in the far-field pressure drop
along the tube, An equal pressure drop occurs in the near-field
(see Fig. 11). However, for this to happen an increased flow velocity
(in magnitude) must occur in the near-field, This implies a reduced
velocity in the far-field, and consequently a reduced pressure

gradient there., This continues until the near-field pressure drop
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reaches its maximum value which occurs as the far-field velocity
approaches zero., As this happens the pressure gradient along the
far-field approaches zero. The far-field pressure upstream of the
vehicle approaches the ambient pressure, while the pressure down-
stream of the vehicle approaches a constant value exceeding the
ambient pressure by the pressure jump along the near-field., For

the case of zero far-field flow the value of CD (for our example)

o
is approximately 70. (This is calculated assuming incompressible
flow).

Vehicle Skin Friction Factor:

An increase in the vehicle roughness (skin friction) causes
a corresponding increase in the resistance experienced by the air
flow in the annular region. The magnitude of the flow velocity there
is reduced while an increase occurs in the far-field velocity, Also
an increase in both the near-field pressure drop and the drag forces
occurs. These are the same observations made for increasing the
vehicle length, Tables (1)-(3) and Figs. (16), (18) reveal the strong
similarity between the effect of vehicle length and the vehicle skin
friction on the solution, We note that an increase in the value of
either is equivalent to an increase in the total skin friction force
acting on the vehicle surface, and therefore the similarity in their
effects,

Tube Skin Friction Factor:

Increasing the tube roughness (friction factor) has the same
qualitative effects on the pressures, velocities and drag as those

produced by an increase in tube length, Fig. (19) gives the drag
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coefficient curves for three different values of fT. It is interesting
to note that as the value of fT is increased the two periods (B) and
(C) become less distinct from each other. The reason for that is
that for large values of fT the major part of the vehicle drag during
the acceleration period is due to the frictional forces acting on the
far-field flow and not to accelerating that flow. Therefore, when
the acceleration comes to an end no substantial reduction occurs in

the drag.

Base Pressure Coefficient:

From Fig. (20) and Tables (1)-(3) we see that varying the
value of the base pressure coefficient CpB from -0, 075 to -0, 30
causes only small corresponding variation in the solution. For the
vehicle length considered (300 ft.) only about 10% of the total drag is
due to the nose-base effect. The major portion of the drag is due to
annular frictional forces. However, the contribution of the nose-
base effect increases as the vehicle length is decreased (20% for
150 ft. long vehicle).

Maximum Vehicle Velocity:

In our examples we assumed that the vehicle travels at a
constant acceleration (5 ft. /secz) during period (A). The initial

*
increase in slope of the curves for U, and U4 (t <10 secs)in

1
Fig. (12) indicates that the far-field flows with an increasing accel-
eration initially. For the rest of period (A) the acceleration be-
comes nearly constant. This is approximately 3 ft/secz. During

%
the acceleration period, for V0 = 75 ft/sec, 100 ft/sec, 150 ft/sec.,

k% ESE
the respective values for U;g(t \YAY t(t ) vary between 0,27, 0,32,
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0. 39 at the middle of this period to 0,39, 0,45, 0.50 at the end of
it. The far-field velocity continues to increase during period (B)

and as shown in Table (2), U, reaches the values 0.46, 0.48, 0,51

1
£
at the end of that period for the above given values of Vo. The

velocities Ul’ UZ’ U3, U4 at the end of period (B) (see Table 2) do

not vary appreciably with changing the maximum vehicle velocity,

3 U, increase in magnitude

with the vehicle's final velocity, Correspondingly the pressure drop

ES ES
Therefore, the velocities Ul’ (3 ]

in the annular region and the total drag increase as the final vehicle
speed is increased.

Fig. (21a) compares the drag coefficient CD for different
o

ES
values of Vo’ It is seen that the lower values for CD (the max-

max

imum value of CD ) correspond to the higher final vehicle velocities.
o
This may be explained in the following manner, Let us consider the

flow for times large enough so that we may assume that the flow

e g " * * . 3
acceleration in the tube is constant (= S 8 ) where 6 is the vehicle's
acceleration and S is a constant, The flow in the far-field is approx-

imated by an incompressible flow with velocity

%k £ k%
UF = C1+Se £

%
where C1 is a constant, During the acceleration period, the drag

experienced by the vehicle is proportional to the forces required to

accelerate the far-field flow in addition to the frictional forces

U
acting on that flow, The former force is proportional to 5 and
dt
. *
the latter is proportional to UFZ. We therefore conclude that
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where C, is a constant, Therefore higher values of C corre-

als
B

spond to lower values of Vc;.

D max
o]

Comparing the slopes of the C curves in period (C) we find

D
o

that it increases in absolute value as Vo* increases. This is due to
the higher far-field flow velocities (and therefore Mach number)
corresponding to the higher Vj values, and therefore the greater
effect of compressibility which leads to the increased slope. In
Fig. (21b) in all three cases, the drag is normalized by the inter -
mediate final speed (100 ft/sec), This figure allows us to obtain a
better idea about the effect of the velocity on the drag.

It is of interest here to point out the scaling laws and the
dimensionless similarity parameters related to the train-tube
problem., Let us assume that a vehicle travels in a tube of length
I.,', Its acceleration is given by 8™ and its final speed is V:. We
now consider a small-scale model which is geometrically similar
to the above full-scale tube-vehicle system, We assume that the
friction coefficients for the model surfaces are equal to the corre-
sponding full-scale coefficients. We are at liberty to choose the
model tube length L:‘n (and thus the model size) and the final vehicle
velocity of the model V: v For both the solutions of the model

and the full-scale system to be similar, the value of the model's
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ES
vehicle acceleration em in the period (A) must be chosen such that

L* e* L

5 & 5 m “m L 0

the similarity parameter ( ——z—) and ( —-——;2—)
Vo m o

Moreover, the scaling of the time follows the relation

LS ¥
v v
.k om _ * o
t, =t —% =t —5
L L
m

In addition to the above (in order to achieve the same compressibility

effect) the equality of Mach numbers must be satisfied

* *
Vo Vom
M = — =
* *
% a a
o om

where ( )m indicates model properties. If the above scaling laws

are satisfied, the curves for C VS, ts and CD VS, ts coincide.

D m
o o
Here
D*
Dm = gl
o 1p X (model vehicle c.s. area)

om om
In investigating various aspects related to the problem of
vehicles travelling in tubes, experiments are conducted using small-
scale equipment, In order that the information obtained from such
experiments be useful and applicable to full-scale systems, the
above (scaling) conditions must be satisfied. The equality of the
Reynolds number was not mentioned here, since we assumed that
the surface friction coefficients are equal in both the model and
full-scale systems., This can be approximately achieved by a proper
choice of the model surface roughness, Otherwise the model's
Reynolds number must be controlled by such methods as pressuri-

zation and the employment of gases other than air. To achieve
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the equality of Mach numbers, a small-scale model may be used
*

£
=V ). However, the model
om o

in air with the same V:: value (V
acceleration is required to exceed the corresponding full-scale
acceleration, If the model is operated at lower velocities, a
working gas other than air must be properly chosen. We may add
that for cases where the compressibility effects are not of signifi-

cant importance (e.g. low vehicle velocities), the condition of

Mach number equality may be neglected.

Far-Field Velocity Profile:

It is seen from Fig. (22) that the velocity profile has a
negligible effect on the solution., The velocity profiles were of
the form

1
- = fm)=n", n=4, 6, 10
For the case n = 4 the boundary layer began to fill the tube
at approximately 17 seconds from the beginning of motion.,
For the case n = 10 the corresponding time was approximately
12 seconds. It is therefore also concluded that the difference
between the solution using a potential core formulation or

just assuming the flow is fully developed to begin with is

negligible.
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c. Comparison of Different Flow Models

Except for the tube length comparison, all the above examples
were calculated using an unsteady near-field formulation, At the
initial instants of the motion (~ 2 seconds) the flow in the annular
region is assumed to be inviscid and the friction effect there is
neglected. Afier this period the full equat‘ions are solved taking
account of both the friction and wave effect,

The Quasi-Steady Near Field Assumption:

Fig. (23) compares the unsteady near-field solution to the
quasi-steady near-field solution for a vehicle 600 ft. long. It is
seen that both solutions give almost identical results except for the
initial moments of the motion where the frictional forces in the near-
field are weak and the wave effect is dominant. This leads to the
conclusion that except for a small initial period the frictional effects
in the annular region are much stronger than the wave effects, and
therefore the latter may be neglected (quasi-steady near-field
assumption). It is also clear that the initial difference in the re-
sulting solution does not affect the solution at later times.

The Slug Theory:

This theory assumes a one-dimensional incompressible
uniform flow formulation for both the far-field and the near -field.
This formulation leads to an ordinary differential equation solvable
numerically,

Fig, (24a) compares our solutions to that obtained by the slug

theory for parameters of standard values., The overestimation of
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drag predicted by the slug theory during period (A) is due to the
instantaneous and abrupt changes that take place in the far-field
(infinite sound speed). For example, the whole far-field air
column is abruptly accelerated unlike the compressible solution
in which the accelerated column increases its length gradually.

The underestimation predicted in period (B) is also due to the lack

of waves, In period (C) the slug theory predicts a constant value

for the drag (i.e. steady state is actually achieved). This is due to

the assumed incompressibility of the flow. The‘bim%ortance of com-

* . L*, 8(U"‘/*ao)
ot

in the wave effect occurs as the latter two quantities increase. For

*
pressibility increases with U /a . Anincrease

O

low values of the above quantities, it is adeguate to use the slug
ES3 3

(U /ao)
at”

parameters discussed above, For example, increasing the value

*, 0%
theory. The quantities U /ao and are related to the

of Vo increases the flow Mach number, while an increase in 0,

% ¥, %
Lvh’ fvh results in a corresponding increase in both (U /ao) and
* X
(U /a_)
——5— . Fig. (24b) is an example for the increased disagreement
ot

between the compressible flow solution and the incompressible slug

model in the case of a long tube (20, 000 ft, ).
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III. THE PROBLEM OF A VENTED TUNNEL

A, Formulation of the Problem

Vents are usually found in train tunnels, The vent effectively
reduces the tunnel length and thus the aerodynamic resistance exper -
ienced by the train is reduced. We consider here a tunnel with one vent
along its length. The flow through the vent depends on its position rela-
tive to the vehicle, When the vent is ahead of the vehicle the vent pres-
sure (inside the tube) is higher than the ambient pressure P This
pressure difference results in an outflow through the vent, which con-
tinues until the train approaches the vent. As the vent becomes in the
annular region, a gradual reduction in its pressure occurs. The flow in
the vent is reversed after its pressure becomes equal to ambient, as the
lower pressure results in an inflow through the vent.

Experiments were conducted at DSI (Reference 6) to study steady
flow in vented tubes. From this investigation coefficients and constants
found to be appropriate for describing vent flow were defined. In the
following equations subscript (a) denotes flow conditions upstreamofthe

vent and subscript (b) denotes conditions downstream of the vent.

C
(———A—%ﬂ’- U.>0 (54a)
= K vt
Pa ™ Py o
1 Boclh
zp, U M vy .
a vt o _ A251 U <0 (54b)
vt
K
where
Ua. B Ub
5 (vent in far -field) (55a)
U _ vt
ot =
Ua, - Ub
- (1-0) (vent in annular region) (55b)
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o = vent cross sectional area divided by tunnel cross
sectional area
The constants
K

O

K, = 0,965

1..05

The values of the coefficients CApso and CApsi depend on the geometry
at the vent shaft, For existing subway vent shafts, their values vary
between 5.0 and 15,0,

The experiments showed that for inflow and outflow through
the vent, there is respectively a pressure drop and rise between
stations (a) and (b). This agrees qualitatively with pressure changes
predicted by Bernoulli's equation for the case of inviscid flow. The
magnitude of the difference between the pressures at stations (a) and
(b) was found to be equivalent to the pressure drop over a few tunnel
diameters and is neglected here. We therefore assume that

P, = Py (56)

The flow atthe vent is quite complicated and the inviscid core and

boundarylayer formulationdoes not applythere. Moreover, the results
obtained in Part (II)indicate that the flow velocity profile has a negligible

effect onthe soluticn and that the inviscid core and boundarylayer formu-

lation may be replaced by a fully developed flow formulation from the be-
ginning of the motion with no noticeable error resulting, Therefore, in

order to study the effect ofthe vent we shall assume that the flow is fully

developed and uniformat any cross section., We also use the relation
pa = pb (57)

The quasi-steady near-field assumption is used for calculations in

this section.
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B. Method of Solution

The same methods of solution used in the problem of an un-
vented tube are used here. The only additional feature here is the
solution at the vent itself, The vent flow is related to the flow in the
tube through the far-field equations along characteristics I, II, III
(see Fig. 8). The characteristic equations are written in their ap-
proximate form (50) and when combined with the above equations
governing the vent flow, the problem for finding the flow variables

at the vent is reduced to solving an algebraic system of equations

Gw) = o
where
W(Xa’ tn+1) _
LA RAMPED
w = Sy
11

This is solved by iteration,

If the vehicle is close to the vent as shown in Fig. (8) at time
tz, then the vent and near-field equations are solved simultaneously.
At time t3 the vent is in the near-field and therefore the vent flow is
related to the far-field indirectly through the far-field equations along
the characteristic curves leading to the vehicle as shown in the

figure,
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C. Numerical Calculations and Results

1. Choice of Parameter Values

To demonstrate the vent effect on vehicles travelling in tubes
a numerical example is given. Except for the value of n, the values
of the parameters are the same as those given on page (40). (The
flow is assumed to be uniform here. Therefore n — o). In addition

the following vent parameters are assumed

Vent position X4 = 0.6
Ot ‘ = 0,75
CApsi = ¥
CApso = 7

2. Results and Discussion

Figs. (25)-(27) show the variation of the pressure, flow
velocity and the drag coefficient with time for the case of a vehicle
travelling in a vented tube. Before the vehicle reaches the vent, the
above properties change with time in a similar pattern to that ob-
served for an unvented tube. However, a reduction in both the
annular region pressure drop and the drag experienced by the
vehicle occurs due to the vent. The pressure at the vent is greater
than the ambient pressure. Therefore an outflow occurs through the

vent and the flow velocity U, after (downstream) the vent is less than

b
the flow velocity Ua before (upstream) the vent. As the vehicle passes
the vent a change in the flow properties occurs. The relatively slow
flow ahead of the vent is suddenly compressed causing a compression

wave to travel down the tube. This is reflected as an expansion wave

at the forward tube end. While the vent is in the annular region, a
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continuous drop in its pressure occurs., At some point this pressure
becomes equal to ambient. Then as it continues to decrease, the
vent flow is reversed and the velocity downstream of the vent ex-
ceeds that upstream. The pressure at the vehicle's forward end
continues to increase until the reflected expansion wave reaches the
vehicle. After that the normal pattern for the variation of pressure
with time in an unvented tube is observed here,

Fig. (27) shows the variation of the drag coefficient with time,
In addition to the initial drag increase which is due to the acceleration
of the air in the tube, a sudden increase in drag as the vehicle's
forward end passes the vent is observed. As the vent comes into
the annular region, its venting effect is gradually reduced until its
pressure becomes equal to ambient, At that point there is zero vent
flow and the maximum drag is experienced. As the vehicle continues
its motion by the vent, the pressure drop at the vent produces an
inflow and the venting effect is felt again. This causes a reduction
in the drag until the rear end of the vehicle passes the vent, An
increase in drag is then observed, This is the same increase which
would occur if the tube were semi-infinite, The fact that the tube is
of finite length is not felt until the reflected expansion wave reaches
the vehicle and causes a drop in its drag.

In Fig. (28) the drag coefficient for a vehicle travelling in a
vented tube is compared with the corresponding drag coefficient for
a vehicle travelling in an unvented tube, The vent effect is seen to
reduce the drag to 78% before the vent is reached and to 70% after the

vent is passed. However, at the vent itself the drag exceeds that of
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an unvented tube, The reason for the increased reduction in drag
after the vent is passed is that for our example the tube length after
the vent is less than its length before the vent, Therefore, the tube's
effective length is reduced after the vehicle passes the vent,

In the same figure a comparison is made between the present
solution and that obtained by the slug theory. In addition to the
observations previously made about the slug theory solution in the
case of an unvented tube, this theory predicts an extra large drag
as the vehicle passes the vent., There is also an abrupt decrease in
drag after the vent is passed. Both of these observations are due to

neglecting the wave effect in the slug theory.
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IV. THE PROBLEM OF A VEHICLE
ENTERING A TUNNEL AT FINITE SPEED

A. Formulation of the Problem

A vehicle approaching a tunnel causes a slight disturbance to its
air just before the nose enters the tunnel, As the nose enters the flow
is continuously compressed until the nose is completely in the tunnel,
As shown in Appendix (A) the influence of the nose is not expected to be
felt in the tunnel until it becomes very close. The nose itself is short
and the time required for it to complete its entry is short, The manner
in which the air is compressed in this short initial period (~ 0.2 seconds)
depends on the geometry of the nose. However we have not been con-
sidering such details in this study, and recognizing that the change of
pressure with respect to the undisturbed pressure is small (~ 0.1) we
can conclude that replacing the continuous compression wave by a shock
wave would give negligible error (the entropy increase for a weak shock
wave is of the third order with respect to its strength).

Determining the Inititial Shock Strength

The initial shock strength is determined when the vehicle nose
is completely inside the tube and station (2) (the beginning of the annular
region) is at the tube entrance (see Fig. 9b). The equations governing

the flow properties behind the shock wave are

Lo e €s 1 :
u, = y+1 IA0< ) C2> . (5%}
S
1 2
Py = a1 By ey =¥ 11} (59)
2 1
Py = U, {60
Lo M
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where ¢, 1is the dimensionless shock speed

E 3
C
S
s *
a
o]

and variables with subscript z indicate properties immediately behind
the shock wave, The shock wave is assumed to be close to the vehicle

and flow properties behind the shock are matched to those at station (1).

Conditions at station (1) are governed by the nose region relations

(equations 33a, 33b, 33c) in addition to the condition

Ps = 1 (61)

The above shock relations and the nose region equations combined
with condition (61) are solved for the initial properties behind the shock,

the initial shock speed and the flow properties at station (2).

Interaction Between the Shock Wave and the Characteristics:

As the shock propagates down the tube with a speed less than that
of the characteristics behind it, an interaction between the shock and
the characteristics is expected. This produces changes in the shock
strength and consequently its velocity. The new shock strength is found
by determining the pressure on the characteristic curve at the point of
its intersection with the shock. The new shock velocity is calculated

from equation (59).
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The Near-Field:

As the vehicle proceeds into the tunnel equations (37) governing
the flow in the annular region are applied between stations (2) and the
tunnel entrance. After the whole vehicle completely enters the tunnel,
the base region equations (44)-(46) are applied in addition to the nose

and annular region equations,

The Far-Field:

The far-field flow is governed by the same far-field equations

derived for the problem of a vehicle accelerating in an unvented tube.

B, Method of Solution

The same methods of solution used in the problem of an unvented
tube are used here. The only additional feature here is the solution as
the vehicle enters the tube. Fig. (9a) at time ty shows the near -field
and far -field characteristics along which the corresponding flow equations
are solved in combination with the equations governing the flow in the

nose region. At time ty in the same figure the vehicle is completely

inside the tube and the characteristic curves are also shown in this case.

Ce Numerical Calculations and Results

In the numerical examples of this section a vehicle is assumed
. * :
to be travelling at 2 constant speed Vo' It enters the tunnel at time
%

t = 0. Unless otherwise specified the same geometrical parameters

given on page (40) are assumed here.
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Results and Discussion:

Fig. (29) shows the pressure variation with time at the
four stations xl(t), xz(t), x3(t) and x4(t). The initial pressure rise
ahead of the nose is due to the shock wave. As the vehicle pro-
ceeds into the tunnel a continuous increase in the pressure at the
two forward stations xl(t) and xz(t) is observed. This is due to
the increasing length of the annular region and therefore the in-
crease in the pressure drop along it. As the base enters the tube,
the annular pressure drop continues to increase, however at a
lower rate than the initial period, This increase is due to the
semi-infinite tube length effect which results in a velocity drop
in the tube and an increase in the magnitude of the velocity in the
annular region. The pressure ahead of the vehicle continues to
increase until the expansion wave reflected from the tube's forward
end arrives at the vehicle, Then the pressure drops and a pattern
similar to that of period (C) in the problem of a vehicle accelerating
in an unvented tube 1is observed here,

In Fig. (30) the pressure distribution is shown along the
tube at different times. At t* = 4 secs. and t* = 8 secs, the shock
wave is propagating towards the tube's forward end., It is clear
that its strength is not noticeably affected as it propagates down
the tube, The curve for t* = 12 secs, shows the pressure distri-
bution in the tube, as the reflected expansion wave propagates
towards the vehicle.

The drag variation follows a similar pattern to the pressure

variation ahead of the vehicle, In Fig. (32) an initial large drag is
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observed due to the initial compression of the air at the tube's
entrance., The drag increases at a high rate until the vehicle is
completely in the tube. After that the drag continues to increase
at a lower rate, until the reflected expansion wave arrives at the
vehicle, reducing the drag to the values observed in the final period
(C) of a vehicle accelerating in an unvented tube.

In Fig. (32) a comparison is made between the solution for
the entry problem and the slug theory solution for the same case.
The latter solution does not include the shock wave which is part
of the compressible solution., The vehicle is assumed to accelerate
all the air column in the tube instantaneously as it enters the tube.
This causes the sharp increase in drag predicted by the slug theory.
Unlike the compressible solution, the fact that the tube is of finite
length is felt instantaneously. Therefore a sharp drop in the drag
is observed immediately after the vehicle completes its entry into
the tube.

Solutions obtained in this section assume nonsteady near -
field flow, They were compared to the solution assuming the near -
field to be quasi-steady and no noticeable difference was found.

Effect of the Parameters on the Solution:

Tables (4) and (5) show the effect of changing the values of
the parameters on the pressure and the drag,.

Blockage Ratio:

Increasing the blockage ratio has two effects which contribute
to increasing the value of the maximum drag experienced by the

vehicle. The initial shock wave strength increases with the blockage
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ratio, indicating a corresponding increase in the initial dr.
Moreover, the large pressure drop in the annular region ¢ a
high blockage ratio vehicle causes the rate of drag variation to
increase with blockage ratio during the initial unsteady periods
t* < t;k (see Fig. 29). Therefore, the value of the drag before the
vehicle is affected by the expansion wave is much larger for high

blockage ratio vehicles as compared to low blockage ratio vehicles.

Vehicle Length:

The length of the vehicle does not affect the value of the
i b
shock strength, However, the initial period 0 < - ts (see Fig. 29)
in which the drag increases at a very steep rate is prolonged and
%

thus contributing to a large maximum drag value att = tJ..

Tube Length:

The length of the tube does not affect the initial drag value
% * . .

or the value at t = ty (in the examples given here). However, an
increase in the tube length causes an increase in the value of the time
% . :
tj at which the reflected expansion wave arrives at the vehicle.
Therefore, the increased length of this period in which the drag in-
creases at a positive rate results in a corresponding increase in
the maximum drag value,

Other Parameters:

The drag increases with the vehicle skin friction factor as a
result of the increase in the annular region pressure drop. An
increase in the tube skin friction coefficient also causes an increase
in drag, as the flow in the tube experiences higher r«:istance

which must be overcome by the vehicle. The value of :i:e base
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friction coefficient is seen to affect the drag slightly, An increased
velocity results in a stronger shock wave and a higher drag, How-
ever, the value of the drag coefficient CD drops as the velocity

o
increases,
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V. CONCLUSIONS

Vehicles travelling in tunnels experience drag forces which
are much higher than those experienced in free air. The major drag
component results from the annular region pressure drop which is
primarily due to the frictional forces on the vehicle surface. The
nose-base contribution to the drag is small, However, it increases
in importance as the vehicle length decreases. The blockage ratio,
vehicle length, tube length, tunnel and vehicle skin friction and the
vehicle velocity affect the drag experienced by the vehicle strongly.
For vehicles of lengths considered here (~ 300 ft. ) the drag is a weak
function of the base pressure coefficient, The flow velocity profile
in the far-field has a negligible effect on the solution,

For vehicles accelerating from rest, the wave action in the
near -field is strong only for a small period of the initial motion
(~ 2 seconds). As the vehicle velocity increases, a flow with nega-
tive velocity of large magnitude relative to the vehicle causes a large
pressure drop in the annular region due to the large frictional forces
there. The frictional effects in the annular region become dominant
and the wave effects become negligible,

The wave effects in the far-field are more important than in

the near-field. The effect of compressibility in t’r:xke fa;lbr—field flow
« O(U /ao)
’ ’ —‘_“—”;5:—' .
o ot
The effect of including the boundary layer and potential core

increases with the quantities U*/a*, f
o

formulation on the solution is negligible. Therefore, a fully devel-

oped flow formulation since the beginning of motion may be assumed.
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Except for the period in which the vehicle passes a vent
and a following period whose duration depends on the length of the
tube portion downstream of the vent, the flow properties at the
vehicle and the drag experienced by it follow a similar pattern to
that of an unvented tube. However, their values indicate a decrease
in the tube effective length, resulting in a reduction of drag. At the
vent itself the vehicle suddenly experiences a large drag when it
meets the slow moving air in the forward section of the tube.

The slug theory overestimates the sharp drag increase ex-
perienced at the vent and underestimates the drag in the period
immediately following. This is due to the infinite speed of sound
assumed in that theory.

The solution for the problem of a vehicle entering in a tube
at finite speed can be divided into three distinct periods. In the first
period a sudden increase in the vehicle's drag is observed due to the
propagation of a shock wave down the tube as the nose enters the
tube. This is followed by an increase in drag at a high rate until the
vehicle is completely in the tube. In the second period the drag
continues to increase at a lower rate. The drag increase here is
due to the semi-infinite tube length effect. In the third period the
reflected expansion wave reaches the vehicle producing a drag re-
duction. Then a pattern similar to that of the final period of a vehicle

accelerating in an unvented tube is observed here.
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The slug theory predicts an overestimated value for the drag
in the initial period, This suddenly drops giving an underestimated
value in the second period. The slug theory in the third period gives

a closer estimate to the true drag.
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TABLE 1

Pressure Values at the Beginning of Period (C)Jr

Perturbed Value of Perturbed P, P, P3 Py
Parameter Parameter
None 1.0368 | 1. 0255 0.9676 0.9725
o) 0.45 1.0102 § 1.0032 0. 9850 0. 9894
o 0.80 1.0946 | 1,0812 0. 9359 0. 9392
Loy, 150 ft. 1.0261 | 1,0116 | 0.9723 | 0.9784
Ljh 600 ft. 1.0510 | 1.0427 | 0.9624 0. 9661
L* L 5, 000 ft. 1.0183 | 1.0101 0.9721 V. 9755
LT 120, 000 £, 1.0798 | 1.0639 | 0.9733 | 0.9803
fvh 0,01 1.0283 | 1.0146 0.9718 0.9776
fvh 0.04 1.0495 | 1,0410 0.9611 0, 9649
fT 0.01 10215 | 1,0131 0.9748 | 0.9784
fT 0.04 1.0615 | 1,0476 0.9569 | 0.9630
ch -0.075 1.0366 | 1.0252 0.9670 | 0.9726
CpB -0. 300 1,0371 { 1.0260 | 0.9687 | 0,9722
y* T 75 ft/sec 1.0220 | 1.0153 | 0.9821 | 0.9849
Ll 150 ft/sec 1.0626 | 1.0394 | 0,9133 | 0.9239
% (velocity 1/4 1.0368 | 1.0255 | 0.9676 | 0.9724
profile power) 1/10 1,0368 | 1.0255 0.9676 0.9725
T Values correspond to t* = 30 sec. in general
Tt Values correspond to t* = 25 sec,
tt+ Values correspond to t* = 40 sec.,
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TABLE 2

Flow Velocity Values at the Beginning of Period (C)T

Perturbed Value of Perturbed U1 U2 U3 Uél
Parameter Parameter
None 0.4801 -0.4970] -0.5868 | 0.4455
o 0.45 0.2711] -0. 3318 -0.3573| 0.2552
o 0. 80 0.6964 -0,5313| -0.7652| 0.6465
Lf:h 150 ft. 0.4096 -0, 7042| -0, 7715 | 0. 3811
Fol} 600 ft. 0.5558 -0.2763| -0.3882 | 0.5147
g ot 5, 000 ft. 0.5552 -0.2783| -0.3273 | 0.5359
L¥ 20, 000 ft. 0.3943| -0, 7489 -0. 9048 | 0. 3347
£ . 0.01 0.4263| -0, 6550| -0.7263 | 0. 3969
f o 0. 04 0.5490| -0.2961| -0, 4058 | 0.5085
£ 0.01 0.5464| -0, 3037| -0.3571 | 0.5255
£ 0.04 0.4288|-0.6474]| -0. 7968 | 0.3723
s -0, 075 0.4790{-0.5003| -0.5908 | 0, 4444
O -0. 300 0.4824|-0,4904 | -0.5788 | 0. 4475
v;" Tt 75 ft/sec 0.4649(-0.5360] -0.5908 | 0.4437
V:‘ Tt 150 ft/sec 0.5106(-0.4206 |-0.6126 |0.4375
117 (velocity 1/4 0.4800/-0,4973 | -0,5871 | 0. 4454
profile power) 1/10 0.48021-0,4968 | -0.5866 | 0,4455

T, T1, t11 have the same meaning as in Table 1.
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TABLE 3

Ratio of the Drag Components to the Total Drag

at the Beginning of Period (C).r

Parameter | 2 papertarbed) pi/p¥| DL /D" | DL/D" | DL /D
None 0.278 | 0.111 | 0.078 | 0.533

o 0.45 0.455 | 0.134 | 0.033 | 0.378

o 0. 80 0.167 | 0.072 | 0.094 | 0.667

L::h 150 it. 0.239 | 0.195 | 0.100 | 0.466

Lj;h 600 ft. 0.310 | 0.067 | 0.033 | 0.590

Pl ) 5,000 ft. 0.289 | 0.117 | 0.039 | 0.555

L* ™t 1 20, 000 . 0.267 | 0.111 | 0.111 | 0.515

1 0.01 0.224 | 0,176 | 0.100 | 0.500

E & 0.04 0.320 | 0.060 | 0.040 | 0,580

B 0.01 0.300 | 0.114 | 0.041 | 0,545

£ 0. 04 0.244 | 0.094 | 0.106 | 0.556
Cop -0.075 0.255 | 0.100 | 0.078 | 0.539
B ~0. 300 0.278 | 0.128 | 0.072 | 0.522

v:‘ Tt 75 ft/sec 0.278 | 0.111 | 0,078 | 0.533

Ty 0 150 ft/sec 0.278 | 0.100 | 0.078 | 0,544

L (velocity 1/4 0.278 | 0.111 | 0.078 | 0.533
profile power) 1/10 0.278 | 0.111 | 0.078 | 0.533

T, t1, t1t have the same meaning

as in Table 1.
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TABLE 4

Pressure Values for the Entry ProblelnJr

Perturbed Value of Perturbed | p(x,(0), 0) { p(x,(t.), t.)] p(x,(t;), t.)
1 Rl L ¢ ) e
Parameter Parameter

None 1. 0286 1. 069 1,087
o 0. 45 1.011 1.027 1. 029
(o} 0. 80 1. 052 1,119 1:183

L 150. £t; 1. 026 1. 054 1. 065
vh

Lok 600 ft. 1. 026 1.090 1. 112
vh

L* 5,000 ft. 1. 026 1. 069 1. 077

L3* 20, 000 ft. 1.026 1. 069 1,107

f 0.01 1.026 1. 058 1. 071

vh

£ 0. 04 1.026 1. 083 1,111

vh

fT 0. 01 1. 026 1. 065 1. 075

fT 0. 04 1. 026 1.078 1.109

CpB -0. 075 1.026 1. 069 1. 087

CpB -0. 300 1.026 1. 069 1. 088

Vg 75 ft/sec 1.016 1. 046 1. 054

Vg 150 ft/sec 1. 053 1.123 1.178

1 Refer to Fig. (29) for notation.
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TABLE 5

Drag Coefficient Values for the Entry ProblemT

Perturbed Value of Perturbed C~ (0) C. ) C.. t:)
D D "1 D IR
Parameter Parameter o o) o)
None 5. 664 18. 319 23.769
o 0. 45 3.425 9. 960 10. 636
o 0. 80 9. 933 26, 464 42. 881
L*Vh 150 ft. 4, 664 13. 897 17. 457
L*vh 600 ft. 7.664 24, 235 3L+ DILT
L 5. 000 ft. 5. 664 18. 319 20.597
L 20,000 ft. 5. 664 18. 319 2y (8T
;3 0.01 4, 664 14, 623 18.187
vh
i 0. 04 7.664 22: 111 31. 660
vh
fT 0..01 5. 664 17.475 20.728
fT 0. 04 5. 664 19. 680 28. 683
CpB -0.075 5.589 }18. 257 23, 642
CpB -0. 300 5.814 18,322 24.010
V:E; 15 ft/sec 5,935 21,232 25. 367
Vz‘; 150 ft/sec 5.274 14.596 22, 307

1-
Refer to Fig. (29) for notation.
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Fig. 4b

Fig. 4 Sketch of the Effect of the Vehicle Length
on the Quasi-Steady Near-Field Assumption
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Fig. 7 The Initial Wave Region



-91-

£
i 2o
g M\
x4(ﬂ
x, (t)
t /

1 ” /f\ 1/|\at

t
1-At
/ / Beioed]l *ny

X X

Fig. 8 x-t Diagram for a Vehicle Travelling in a Vented Tube



92

A t)x(t)x t)x()

\\///

b At 4
[

/ Expansion
wave

—
—

Shock wave

1-At

Fig. 9a x-t Diagram for a Vehicle Entering a Tube

2 1

[ | =—}— Shock wave

Fig. 9b The Position for Determining the Initial Shock Wave Strength




SwIl ], Y1 UOljelIRA 9Inssaxd oyl (o[ ‘Sid

(spuodeg) swtg,

0S 0h O€ 0c 0l 0

o

(3 Ix)d

*

UO1}RID[ODD® JO PU

(D) potxag V_Am: @oﬁomle?; POLIST — >

p—

S0° 1 00" 1 S6°0 06°0
2inssexd ssojuolsuswIlg

01°1

S1°1



-94-

0°1

oaqn], 9yj SuoTe UoelIBA dinssoid oyl [ 'Si1d

X

8°0 L0 9°0 S'0 h°0 €0

*8098 (07 = %3}

0oo" 1 SL6°0 0S6°0
2Inssald sso(uolsudwWl(]

Sc0° 1

0s0°1



-95-

0L

09

owl ], Y3ls uorjeriep A310079A amold oyl 20 'S1d

(spuodag) swtg

0S 0h 0€ 0c

_ ” _ _

0°0 L g t- 5§ i
£310019 A ssouorsuswuI(g

S U

01



-96-

0L

oS

SwilL Yyt UolelIivA judrdyzeo) Sexq oYL €1 *Sig

(spuodeg) swt],

0S Oh O€ 0c

| _ _ _

0°02 001 b0
Jua10133200) Sei(

0°0€

0°0h



8=

sjusuodwo) Sexq oyl %1 °*S1d

(spuodag) swu g,

0L 03 0s 0h o€ 0c 0l 0
[ _ _ ] _ | |
*Q\m*a |
*Q\um*Q R
*Q\o_a*a
*Q\mm*m

8°0 h*0 ¢'0 0°0
8ex( 1ejor/3usuoduwo) Ser(

8°0

01



-98-

oL

jud1d1yye0) Sex  oyj uo onyey o93eydorg ayj yo 30953 YL 61 Sy

(spuooeg) auu ],

09 0S Ch 0€ 0c

_ | _ [ |

0°0

0°0€ 0°0c 0°01

0°0h



-99..

Jua1d13390D Sex( oy uo Y3SUST SIDIYSA 9Yy3 jo 3095 oYL 91 *Sid

(spuodoag) swty

0oL 0S 0S ) 0€ 0c

l _ _ _ _ _

93 05T = T
17 00€ = T
009 = T

0°0

0°0€E 0°0c 0°0l

0°0h



-100-

jue1o1zzeo) Sexd 9Y3 uo ySuer] aqny, 9yj yo 39973F YL LT *Sid

(spuodag) auwut]

08 0L 0S QS Ch 0€ 0c 01

[ _ _ _ _ _ _ _

13 000G = %71

33 00001 = %71

37 00002 = %71

]

0°0€E 0°0¢ 0°01

0°0h



jua1d1yye0) Sex@ 9Yj UO I030' UOIIDOLI T UINS O[OIYSA 9U} JO 30973F oYL 81 °S1d

(spuodag) suwut g,

0oL 08 0S Oh O€ 0c 01
X _ | _ _ [ _
10°0= 13
- 20°0= '3
50°0= 3

0°0

0°0€ 0°0c 001

0°0h



0L

09 0S

(spuooeg) sw L

Oh

0€

0c

Jud1d1y390) Jea 9yj} uo 10308 doﬂo«ah uIyS oqnJ, 9y} O 39933 9yl 61 °“Sid

0°0="7%

-102-

0'6= "7

$0°0 =

0°0

0°0€ 0°0c 0°0l

0" 0h



-103-

Jud1213390D Sex( 9Y) UO JUSIDIFI0D dINSsaxg oseg oy} JO 3I09FH oYL 0z *Sid

(spuodeg) auut ],

oL 0s 08 Oh 0g 0c 0l 0
[ | [ [ [ [ | S
(e}
o
o
d
6L0°0- = 5D
0€ *0- = %9
N
=) Q
o
w
_ Q)
o
¢

L
0°0h



JuaLdFe0) Fex( oYy uo AIID09A S[DIYSI A wnwixe 9Y3} JO 39953 °yl, ®1Z *Sig

(spuodsg) surt
0oL 09 QS Oh 0€ 0c 0l 0
[ [ | _ [ [

"098/37 0G1 = %A

-104-

AS /3 GL = %A

0°0

0°0€ 0°0¢c 001

0°0h



~-105-

oL

Jus1d13300) SeI PAFIPON 92U} UO
£3120T9 A PTP1YSA WNWIXRN 9Y3 jo 3095 YL q1Z *S1d

(spuodag) swi],

0S 0S Oh O€ 0c 01

_ _ _ [ 1 _

098/ "5 GL = %A

095/ *17 00T = wA

098/ *37 06T = wA

0°0

0° 01

0°0z
z(001/§3A) s

0°0€

0°0h



JUSTIUFI0D Bex( Syp U0 oI £II00TOA Pratg-Ied 9y JO I99JFH oYL zZ 514

(spuodsg) awur,

0L 09 0S Oh 0€

0c

[ _ _ _ _

019y =u

-106-

0°0

0°0€ o B°0c 0° 01

0°0h



-107-

uo1In{os 9y} uo uonpdwnssy PIOLI-IBON Apedjg-1seny ay3 Jo 319911 9YL €2 *Sid

(spuodeg) sy,

0L 0S 0S Oh OE 0c 01

e _ _ _ _ _ _

\

PIo1I-1edaN Apedig-1senyy

PIetd-Ie3aN
Apeojsup

A
‘3 009 = £*J..

0°0

0°0c 0°01

0°0€

0°0h



-108-

0oL 03

Lz09YyL 8niS Y3 03 uounios oy3 yjo uosiredwod epz *Sid

QS

(spuodag) sw],

Oh o€

0c

Lxo9y1 8nig

N\

3 000 0T = %71

mo1 g orqissaxduwon) st

0°0¢

0°0

00t

0°0€

0°0h



KxooyJ, 8n1g oY3 03 uolinios 9ayj yo uostxedwon qpz ‘Std

(spuodag) swt],

oL 03 0S Oh o€ 0c

-109-

_ | _ _ _

Lxo9y] 3nis

N\

mo1d o1qissaxdwo)

37 000 ‘02 = %1

0°0

0°0c 0°0l

0°0€

0°0h



aqn], POJUd A ® JO 9s®D S} I0J
owul], Yl UOI}RIIBA 2InSsdaxd ayl Gz °‘S1d

0L 03 0s

(spuodag) awn g,

0 0€ 02

01

AR _ _

-110-

97101y2A
9Y} S9YO®BDI 9AEM
uolsuedxs pajldoTydyY W

jusA ay3 sossed
pu® IeaI s ,9[OIYS2A 7

MOTJ JUSA OIDZ ¥

jusaA 9yj3 sassed
pus juoxjy s,9101ysA [

Uo1}eI9[900® JO PUF 1

_ _ |

£ 1

00" 1
2INSSAIJ $SI[UOISUIWIL(]

06°0

S6°0

o1°1 SO° 1

ST



°qnI pajus A e jo 958D U3} 10 SWIL YIIM uonerIep A319079A MOLd YL 97 °S1d

(spuo2eg) sawt],

0L 09 08 Oh 0€

0c

_ _ _ _ |

J" (14(1¢x)n

(3(3)¢x)n

-111-

- | S S—

Augavx:u

(3(3) 'x)n

0°0
£310019A ssajuolsuswl(g

gl .5 I

s 0-

S°0

0°1



oqn L PRIUSA ® JO @seD 9yj I0J dwil], Y}tm UOljeIIRA JUd1DIFFe0D) Sexd oYyl .z °*Siq

(spuodeg) suny,

0L 03 0S 0h o€ 0c 01

| _ ! [ [ _ _

-112-

0°n

0" 0f 0°0¢ 0-0T1

0°0h



-113-

sjua1d1yy90D Sex( jo uosixedwon gz °*Sid

(spuooog) s,

0L 03 0S 0h 0€ 0c

_ [ [ [ _ _

agqnj} PI3jusA ® I0J UOIIN]OS Axoa1y 3nig

aqnj pPajuUsAU[] |

0°0

0°0€ , 0702 0701

0°0h



weTqord AXjuy ayj I0F dWLL YIM 2INnssdIdg Jo uonelrIeA YL 62 *S1d

(spuodag) swry

0L 03 0S 0h 0€ 0c 01 0
I | _ _ 1 _ |

(34(3)¥x)d

(3°(3)7x)d

(3°(3)%x)d

-114-

(34(3) [x)d

PTOIYOA SY} SOYdEIL .
oAem uolsuedXa pPajOI[FOY ‘%I = %}

aqn) 9yj SI9IUD 9SBQ §,SOTOIYSA '3 = %3 —

aqn} 9y} SISIUS 9S0U §,9[PIYIA 0 = *?

SO 1 00" 1 S6°0 06°0
2INSSIIJ SSI[UOISUBWIL(]

01°1

S1°1



warqoxg Lxjus Y3 X0y ¥qnJ, 33 Suote uoIjeIIBA 2INSS3Ig 9YJI (¢ 311

X

0" 1 60 8°0 L0 80 2 H h'0 €0 ¢'0 I'0 0°0

_ | _ _ I _ 4" _ 1 _

-115-

*8098 § = *u

S6°0

00" 1

2anssoaxd sSI[UOTISUIWII(

SO° 1

01°1



-116-

0S

(spuodag) awt ],

0h

0€

weTqord Axjul 9yj 103 oW Yilm uoljeriep £310079A mold YL 1€ *810

0c 01 0

(‘M Ex)n

(3(1)°x)n

(337 x)n

(33 'x)n

0"l-. 5'i

80~

£310079 A ssauolsuswWII(d

0°0

B

0°1



we1qold Axjuf 9yj 10§ dWILL YI1m uoljelIeA Jua1dijyeo) Sexd 9yl 2€ °Sid

(spuodeg) aw ]

0L 09 0S Oh o€ 0c 01

N _ | _ _ _ |

-117-

0°0

o_0°0¢C 0°01

0°0€

0°0h



sjua1d1yye0) Sex( jo uosizedwon ¢¢ *81d

(spuodag) swu L,

oL 09 08 Oh o€

-118-

0c 01 0
_ _ _ _ _ I _ e
o
o
o
n)
o
o
o
W
-
Axo9y3 8n1s o

0°0h



-119-
APPENDIX A

Potential Solution of the Steady Tube-Vehicle Problem:

Using a point source and a point sink on the axis of a cylindrical
tunnel, Lamb (Ref. 1A) solved the problem of a body (the Rankine
"Ovoid') placevd in a cylindrical wind tunnel. His solution is in terms
of an infinite series involving Bessel functions. The convergence of
the series is slow as the body is approached and becomes unsuitable
for calculations close to the point sources. Watson (Ref. 2A) ex-
pressed the previous series in a new form which is convergent for

*
x and r values satisfying the condition

2 2

- +(x-—xs)2 < 4W

r, X are respectively the radial and axial coordinates. The source
position is given by (xS ,0) and W is the radius of the tunnel, We
are interested in finding the flow properties in the vicinity of the body.
However, as the distance between the point source and the point sink
placed on the x-axis is in general great enough so that Watson's series
may not be applied, we consider solving the problem by using a distri-
bution of ring (band) sources and sinks on the tube wall,

We are considering axially symmetric flow. We therefore
deal with the Stokes' stream function {¢ In terms of this stream function

the axial and radial flow velocity components are respectively given by

r or
v :-;1_ -a—l
r 0x

Symbols in this Appendix represent dimensional quantities
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Fig., (1A) represents a ring source of radius RR and width
X %X with its axis coincident with the x-axis., Consider a point
(%, r) lying on the circumference of disc (c) having radius r and
centered at point (x, 0). The value (2mw}) at point (x, r) due to the ring
source is equal to the volumetric flow rate discharged through disc (c).
This flow rate is found by considering the contribution of the line
source ab. The total discharge due to the ring is then found by
integrating the contributions of all such elements comprising the

ring. The following expressions are obtained., We represent the

ring source strength density ((ft3/sec)/ft2) by P.

Viine = V(% 15 %, %4, Rp, P) =

ring R’

R
P z{i {J(r+RR)2 4 (x-xs)2 E

r-RR (x- X ) s=1
’ ,j(r+RR)2+(x-x )2 Er+RR)F PR r+R r]}
s

R
\llring = (X: 1‘; xo: Xl, R-R: P) =
2
R |x-x | s=1
R { T s 1
P ke R + E} 5 ¥ =R
™ B RR k s=0 R
u(x, r; x4, X, Rps»P) =
R s=1
R 1 }
P = F , = RR

SRR+ (x-x )
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V(X, r; XO: xl: RR: P) =

N (x-x_) pRo - =1
41;: / rR {ks xrxs [RE;: TI- F:]}s ?

s=0
< RR
w(x 1; Xy X1 RR’ P) =
=1
P f gt eoxg) 5"
“T— JT sgn(x-x_) - F} s
49 s RR -
r= RR
where
R 4r RR
kg = e \2
r+Rp (x-xs
4r R
aZ - RZ
(r + RR)
F = F(3, k) (elliptic integral of the first kind)
E = E(%, ks) . (elliptic integral of the second kind)
" = ﬂ(lzf- ozz, k) (elliptic integral of the third kind)
s=1
{cp}s:() ol leva,lua.ted at s=1-co|eva1uated at s=0

The corresponding expressions for the stream function and the velocity
components at a point (x, r) due to a point source of strength Q at

point (x, 0) are

X-X
Q s

v = Yo x, Q) = -

source A/I'Z & (X‘-XS)Z



o =R
u(x, r;x_, Q) = 7=
s 4 [rZ M (x—xs)z ]3/2
(@) b
vix, rix_, Q) = 7=
S 4q [rZ + (X-XS)Z ]3/2
and for a uniform flow with velocity u = —Uoo
r2
Vx,r) = -U -
u = U
00
v = 0

We assume 2n ring (band) sources of equal width are located
on the tube wall which is of radius w (see Fig, 2A). In addition a
source and sink of strengths #Q are symmetrically located on the
x~-axis with respect to the plane x = 0, To find the ring source den-
sities P(i) and the point source strength Q, n+l linear algebraic
equations need to be solved, n equations represent the condition that
a single streamline coincides with the tube wall at n different points.

The final equation specifies the vehicle's radius in the plane x = 0,

The equations are given by

2n

(i) "
=1 \pring * Vsource Veink = ©

at (ijW): j= 1, 2: see, 1N

2n : U

(i) _ .2 o
2 \yring * Wsource 3 ‘Vsink = & 2
f=i

at (0, R_)
v
The body surface is that at which

v = 0
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The pressure p at a point is given by

p-poo u2+v2
N U2=1‘ 2
2 P - o

Figure (3A) depicts the body shape (the surface r = RB(x)
satisfying the relation ¥ = 0) resulting when the blockage ratio
(RV/W )2 = 0.7. Inthis case the point source and the point sink were
located on the x-axis with respective coordinates 5 and -5, Both
figures (4A) and (5A) which depict pressure and velocity variations
across the tube indicate that the effect of the body on the uniform

flow in the tube extends only a short distance ahead of the body.
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APPENDIX B

A Rough Estimate for the Boundary Layer Growth in the Tube

An idea about the time required for the boundary layer to fill the
tube is obtained by considering a simple flow model, An incompressible
flow is assumed to begin its motion from rest in an infinitely long tube.
A boundary layer extends from the wall in the y-direction (see Fig. 1B),
decreasing the radius R*(t)”) of the uniform inviscid core with time.
The velocity distribution u*(r*, t*) in the boundary layer is related to the

LI
core velocity U(t ) through the relation

%k k% %k
1-1-:%;1;——";;1J=f(ﬂ), n = L
U () &

%
where 6 is the boundary layer thickness, and

*
W is the tube radius
*
The average flow velocity U*(t ) is assumed to be known,

We introduce the following dimensionless quantities

%k ES U*
T - X = ¥ "o
r o= = X = = L S 3
w W w
% %
a = 2 T = v
=T e - % %2
UO pOUO

*
where Uo is the final value for U*(t*).

The momentum equation in dimensionless form is
= x —
Lem=2eh+ e
ot ot

(t) Starred symbols represent dimensional quantities.
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Integrating across the tube we get

1

T g =25 1B
B, U+ By 5 T 2T (1B)
where To = T (W, t)
= 2(1-1.)6 - (1-21,)6°
Py = ] 2
7 _ dpl
B = —p— = 2(1-I;) - 2(1-21,)8
1
1, = [ f(n)dn
(o)
1
L, = [ £(n)dn
(o)

Substituting the relation

into equation (1B) we get
= P 2
-ﬁl Ut(l-pl)-ZTO (1 "‘31)

(i} pl'

The above equation is integrated numerically for a few examples.
The average flow velocity U*(t*) is assumed to increase with a constant
acceleration e* for t* < 20 seconds, after which the flow is assumed
to move with the final average velocity U:. The velocity profile £f(n)

is assumed to be of the form

fm) = n

and the wall is assumed to have a friction factor
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We take W* = 8 ft.

Figures (2B), (3B), (4B) respectively show the rate of boundary
layer growth for different values of the parameters e*, n, fT. It is seen
from these estimates that the time required for the boundary layer to
fill the tube is of order 20 seconds. This is comparable to the period
of vehicle acceleration in which the maximum drag is experienced. It

seems, therefore, of importance to investigate the effects of the boundary

layer growth period.
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