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ABSTRACT

The linearized, two-dimensional flow of an incompressible
fully turbulent fluid over a sinusoidal boundary is solved using the
method of matched asymptotic expansions in the limit of vanishing
skin friction,

A phenomenological turbulence model due to Saffman
(1970, 1974) is utilized to incorporate the effects of the wavy boundary
on the turbulence structure.

Arbitrary lowest order wave speed is allowed in order to
consider both the stationary wavy wall, and the water wave moving
with arbitrary positive or negative velocity.

Good agreement is found with measured tangential velocity
profiles and surface normal stress coefficients. The phase shift
of the surface normal stress exhibits correct qualitative behavior
with both positive and negative wave speeds, although predicted

values are low,
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INTRODUCTION

The understanding of the dynamics of the wind-induced
growth of a small amplitude water wave is of great practical sig-
nificance. Although it has received considerable attention over the
past hundred years, the problem has remained basically unsolved,
principally for lack of inclusion of the effect of the wavy boundary
on the turbulence structure of the wind (Miles, 1967). In this
respect, it provides a valuable context in which to examine the
ability of phenomenological turbulence models to predict the effects
of mean streamline curvature. It is well known that large changes
in turbulence structure are produced by a relatively small mean
streamline curvature; in fact, significant effects on shear stress
and heat transfer can occur even for radii of curvature more than
a hundred times the shear layer thickness (Bradshaw, 1973, see
especially Table 1),

This research concerns the two-dimensional flow of an
incompressible, fully turbulent fluid over a single Fourier com-
ponent of amplitude a, wave number k (= 2w/wavelength), and velocity
c (== (g/k)% for deep water gravity waves, where g = 9,8 m/secz;
the case of a rigid wall (c = 0) is also considered). The maximum
wave slope (ka) is taken to be small in order to effect a linearization
of the equations of motion; observations of non-breaking oceanic
gravity waves give values of ka between 0, 025 and 0, 30, with the
maximum value predicted by Stokes being 0.45 (Kinsman, 1965),

A turbulence model due to Saffman (1970) is utilized to predict the

upper flow field and surface stresses. A subsequent modification
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of the model equations (Saffman, 1974) to include relaxational
behavior of the turbulence is also investigated. The lower flow
is taken to be viscous and laminar, and is analyzed according to
classical techniques by linearization in ka (Lamb, 1945), The
linearized equations of motion in the upper fluid, together with
their appropriate boundary conditions form a singular perturbation

problem in a limit of vanishing skin friction,
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PART I: BRIEF HISTORY OF MATHEMATICAL MODELS

OF WIND-WAVE GENERATION

The classical Kelvin-Helmholtz treatment (Lamb, 1945)
assumes uniform flow in the upper and lower fluids and predicts a
minimum velocity difference for wave growth of 6,46 m/s for air
over water, At this difference, capillary waves of wavelength
A=1.73 cm first appear. For the growth of a gravity wave of

=1 m, a velocity difference of at least 35.7 m/s (69. 5 knots)
is predicted as necessary. If this velocity is assumed similar to
that measured on a ship's deck, the wind would qualify as a hurri-
cane (Beaufort 12)., An important characteristic of this treatment
is that it yields a surface perturbation pressure in perfect anti-
phase with the wave elevation (for stable waves).

Jeffries (Lamb, 1945) assumed there existed a component
of surface perturbation pressure in phase with the wave slope given
by

p, =B (U-c)® 8Ys
a e
ox

where U = velocity at oo, ys(x,t) = a cos k(x-ct), B, = density of air,
and B = '"'sheltering' coefficient., It was hypothesized that this
pressure component arose by means of a separation of the flow on
the leeward side of the wave (with respect to the flow at infinity).
Neglecting the rate of work by surface shear as being unimportant
for wave growth, and accounting for viscous (laminar) dissipation

in the water, Jeffries obtained, by energy considerations, the
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following criteria for growth of deep water gravity waves:
(U-c)%c > 4———V‘;ﬂi:W

No explicit means was given, however, for the calculation of B as a
function of the flow characteristics.

A mechanism was introduced by Miles (1957, 1959) to
account for the component of surface perturbation pressure in
phase with the wave slope for a wave progressing in the direction
of the wind. Miles linearized the equations of motion in ka, as-
suming there was no effect of the wave on the turbulent Reynolds
stresses anywhere within the flow field, thereby obtaining the
Orr-Sommerfeld equation as a description of the O(ka) dynamics.
Viscous stresses governed the flow at the wave surface and critical
layer (where the O(l) wind velocity equals the wave speed). This
"inviscid laminar model, '" as Miles referred to it, yielded a solution
for the amplitude and phase of the surface perturbation pressure for
a logarithmic wind profile as a function of c/u, and kz 0’ where
u*0 = (Two/pa)%’ TWO being the O(1) surface shea(.)r and z  being
the O(1) roughness height of the surface.

Benjamin (1959) extended the work of Miles by considering
arbitrary wind profiles and wave velocity.

In 1959, Miles generalized the Kelvin-Helmholtz instability
(in which the entire perturbation surface pressure is in phase with
the wave elevation) for parallel shear flows, concluding that it

was unlikely to occur for commonly observed wind speeds over

water (Miles, 1959b).
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However, in 1967, Miles critized the '"inviscid laminar"
model:

"It now appears fairly clear, albeit less than
certain, that the inviscid laminar model under -
estimates the energy transfer from wind to waves
over at least a significant portion of the spectrum
for an open sea."

(Miles, 1967, p. 165)

"It is conceivable that the consistent discrepancy
between field observations and theoretical predictions
(on the basis of the [inviscid] laminar model) of wave
growth could be attributed to a consistent overestimate
of z. [the height of the critical layer ]; however, this
appears unlikely, and the most plausible conjecture

is that the wave-induced turbulent Reynolds stresses
are, in fact, not negligible over a significant portion
of the gravity-wave spectrum.,"

(Miles, 1967, p. 168)

(my underline)

There have been several attempts since 1967 to account for
the effect of the wavy boundary on the turbulent Reynolds stresses.
Davis (1972) examined numerically two different models of the
turbulence for the linearized problem, one patterned after the
turbulence energy method of Bradshaw, Ferris, and Atwell (1967),
and the other manifesting a viscoelastic constitutive relation for
the turbulence. His results were inconclusive due to difficulties
experienced in accounting for the boundary condition on the tangential
velocity at the surface. Townsend (1972) treated the linearized
problem using a turbulence model similar to that of Bradshaw,
Ferris and Atwell (1967) and obtained rates of wave growth, based
on calculated distribution of surface pressure, considerably less
than experimental values, He further argued that the linearized

approach would be valid only for ka < 0,10,
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PART II: STATEMENT OF PROBLEM

A, Assumptions and Turbulence Model Equations

The coordinate system is taken attached to the wave moving
at speed c with respect to the lower flow. The surface is described

by

Ys = a cos kx .

To facilitate handling of the boundary conditions at the surface,
an orthogonal curvilinear coordinate system (£, m, z) introduced

by Benjamin (1959) is employed where

x +a e-ky sin kx

E(x,y)

y - ae ™ coskx

n(x, y)

As Benjamin indicated, € and n are the same as the velocity potential
and streamfunction for irrotational motion in an inviscid fluid over

a sinusoidal boundary, It is easily verified that at the surface,
kn = (ka.)2 coska + O(ka.)3

The upper flow is taken to be fully-turbulent, two-dimensional
and incompressible. In addition, the following assumptions are
made:

1) The flow is exactly periodic; e. g., for any dependent

variable f(§, n),

f(&,n) = £((E+xmn) .

The variables may therefore be expanded in terms

ink§g

of the harmonics e , n=0,1,2,..., and the partial
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differential equations governing the flow are reduced
to the more tractable case of an infinite hierarchy
of ordinary differential equations inn. To lowest

order in ka,

£(8, n) = £5(n) + o(1) as ka - 0,
implying that the O(1) mean flow (e. g., the flow in
the limit ka - 0) is independent of streamwise position,
a reasonable assumption in view of the slight down-
stream variation of quantities in a non-separating
flat -plate turbulent boundary layer. Furthermore,
in the presence of the wavy boundary, the O(l1) mean
flow quantities, being functions of m alone, are
effectively '""bent' around the wave.
ka << 1, Only the O(ka) perturbation is obtained in
this analysis; hence ka should be small for applica-
bility of the solution. As noted previously, observed
values of ka for unbroken water waves generally are
less than 0, 3.
n*o << a, where n*o is the sublayer scale of the
upper flow evident in the formula for the O(l1) mean
velocity in the £-direction (see equation (3.11)):

Uy

U= ——O-an(n/n* )-c
K 0

1
_ 2 .
In the above, u*o = (TWO/p) , where Two is the O(1)
surface shear, c = wave speed, and K is von Karman's
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constant, taken to be equal to 0,41 (Coles, 1968).
For a smooth surface, Ny 1s proportional

to the viscous sublayer thickness, and is given by

where Vv = kinematic viscosity of the upper fluid,
and B = 5.0 (Coles, 1968).

For a rough surface, m, is the 'roughness
height,"

Throughout the analysis, the term ''sublayer
scale' will be used to denote 7, , since both smooth
and rough surfaces are considered.

The assumption that n, << a will be seen to
effectively imply that the variation in the normal
velocity and total shear stress (viscous plus turbu-
lent) across the sublayer is negligible.

A << §, where & = turbulent boundary layer thickness.
The mean velocity profile utilized is logarithmic,
which is a reasonable approximation provided the

scale on which the wave-induced perturbations

decay (e. g., \) is small compared to the boundary
layer thickness.

For ¢ # 0, the upper flow imposes only a slight per-
turbation on the speed of the water wave; e.g., Kelvin-

Helmholtz instability is not considered.
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In the case c # 0, the lower flow is taken to be laminar,
two -dimensional, incompressible and viscous and is analyzed
according to classical techniques by linearization in ka (Lamb, 1945).
A phenomenological turbulence model developed by Saffman
(1970; 1974) is employed. The model specifies the following consti-

tutive behavior for the Reynolds stress

2
g o SRS, 6 - -
viv} 5 Si; %gij 9= %g5 (2.1)
where ] = total (instantaneous) covariant velocity in ith
direction

=%, 07 v:.:, where the overbar represents an ensemble

average at fixed (€, n, z, t)

v = total contravariant velocity in ith direction
ij
= V.
g J
gij = covariant metric tensor
il TR
=48 5 o
0 0 1
T = Em 1 + 2ka e_kY coskx + O(ka.)2
9(x, y)
-vi’ vji = covariant Reynolds stress tensor
Ska = %‘(‘7. .+v. .) = covariant rate-of-strain tensor
1J L) ) 1
e = ''pseudo -turbulence energy,' a dependent variable

which is governed by a transport equation (see

below).r

t In a later development (Saffman, 1974), e has been directly
identified with the turbulence energy, and differs by a constant
factor from the '"e' used in this analysis.
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w = ''pseudo-vorticity,'" resembling (but not intended
to be identical to) the root-mean-square fluctu-
ating vorticity of the large eddies and also governed
by a transport equation.

= . - 2 Fy

q = twice the turbulence kinetic energy = 2 vi' v

i=1
Xij = covariant ''relaxation' tensor, intended to account

for the deviation of the principal axes of the
Reynolds stress tensor from those of the mean
rate-of-strain tensor noted in flows with rapid
changes in the rate -of-_stra.in.
The transport equations for the turbulence quantities intro-
duced above are the following (Saffman, 1970, 1974) where the

familiar summation notation is used unless otherwise noted:

de =k _ ~{ ik 'z}? i
5tV = @eR S8 g g ew (2.2)
k5 e
+ 0 — 3 2 )s
g ( weJ)k 1
) =k _ - = ik jg.% 2
5t Wy Vo= ewlV v g g ) - By (2. 3)
ke
+ g’ (o " w,j),k
0X; 8S. .
- - s<_1.J 7E)-%
5t TNk - e\ TS kY ) b wxs; (2.4)

In the rate equations for e and w, the three terms on the right hand
side represent, respectively, generation, dissipation, and diffusion,
The constants @, @, B, o and 5 are evaluated by simple considera-

tions (Saffman, 1970) and are not optimized for any particular
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set of ﬂows.T Their values are restricted to

@ = 0.3

0.075 < a<0,106
5

g<p<1 (2.5)
T = 0.5
o = 1.0

Furthermore, as indicated by Saffman (1970), matching the law of

the wall boundary condition on the mean velocity requires

(E——a-a') — K (2. 6)

ag

(S

where K = Von Karman's constant, The above range of values

(2.5) yields

1
o NS
0. 380 < (%) < 0.475

The accepted value of 0,41 lies within this interval,

The transport equation for the relaxation tensor Xij manifests
the characteristics that an instantaneous change in Sij must leave
V:{_vj' unaltered, and that in a steady state, the principal axes of sij and
—v{_v.' are assumed to coincide. The constant ) is assigned the value
Y = 1 on the assumption that there is no significant approach to iso-

tropy in decaying anisotropic homogeneous turbulence (Saffman, 1974).

T In the original paper, (Saffman, 1970), a rate equation was written
for w“; for convenience of this analysis, the equation was written for
w and the constants in (2.5) and (2. 6) evaluated according to the pro-
cedure indicated in the original paper.
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In order to evaluate the relaxation model, the problem was
solved both with and without the relaxation hypothesis.

The remaining equations are:

Conservation of mass: \7,1; =0 (2. 7)

Conservation of momentum: (Sokolnikoff, 1967):

9V, .
hili; N . L | Jk[ e -
3 T eY 5 tm ighE |2 =8 Xijlk (% &9
where
- 1 2
=p + 3 p q = average mean normal stress,
5 = mean static pressure .

The equations are valid in fully turbulent regions only, as
viscous diffusion has been neglected.
The components of the (instantaneous) vector velocity Vi

are given by (Sokolnikoff, 1967, p. 122)

1
2

V; = vi/(gii) (no summation on i)

For the coordinate system used,

-
[NIC

+3 +3 -1 _-+2 3
(VI,VZ,V3)=(J avl,J sz, V3)=(J' 2 ,J v ,v )

Since the averaged motion is two-dimensional, we may introduce a

stream function satisfying (2. 7), given by

o=

o
<l
I

<

vy =

¥y =

1
("
(W
<l
1

2 "*’g
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For convenience of representation, we define

u = \_fl = +J+% ‘Vn
- +1 (2.9)
v = V2= -J° \l'g
and define
= 1
SRR TN

The (physical) Reynolds stress tensor is then

1wl 1 s | :
ot L B Benan Tk 7 B (no summation)
I Ve, )

ii

3j

which for the coordinate system used becomes, on account of

symmetry,
J'(-v'lv'l) J(-v'1 vé) 0
-ui' uj' — J(-v'lvé) J(-vé v'z) 0
oo gpac |
0 0 v3V3

B. Boundary Conditions

It is easy to verify that the unit vectors in the (§, 1) coordinate

system are

(1 + kae kY cos kx)éx - kae &Y sinkxéy

o>
1l

g (1 + 2ka e—ky coskx+(ka.)2e-2ky)E
tkae XY ginkx& + 1+ P kx)é
P = R T
n (1 + 2ka e XY coskx +(ka)® e “KY)2

and that the unit tangent and normal vectors (ét, én) at the surface

y-a coskx = 0 are given by
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~

€ -kasinkxé
X Y

8 = =
1 4 s sinkx))e

ka sinkxé + @&
X Y

an g 2.5 :
(1 + (ka sinkx)")?

Therefore at y = a coskx,

ét + O(ka)2

eg

& =& + Ofka)® .
n n

Since only the O(1) and O(ka) dynamics will be considered, it is
therefore possible to identify u and v at the boundary as the tangential

and normal velocity to the surface, respectively.

As the model equations are valid within the fully turbulent

region only, boundary conditions must be applied asymptotically as

n approaches the edge of the sublayer, e.g., as n — O+. 4 Neglecting
terms of O(ka)z, they are as follows:
1) v~O(ka u, kn, e°) +Ofka c kn, e <) (2.10)
0 0 0

The derivation is given in Appendix I; the
result is a consequence of the vanishing of the normal
velocity at the surface. As will be seen, for the
purposes of the analysis the right-hand side is negli-

gible,

T The model equations are valid outside the sublayer (e.g. for

N >> nx.). As will be shown, the sublayer scale is transcendentally
small Y compared to the scales on which the equations are solved,
and hence the notation ''n - o' is used to refer to n approaching
the edge of the sublayer.
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u,(€) .
2) u~— P/ﬂ(n (g)> - ¢ + cQkae "5 (2.11)
e
where
T_(8) 2
u,(€) = ( il )2, Tw(g) = local wall shear

n*(g) = local sublayer scale

Real (cQ ka elkg) = orbital velocity of the lower fluid at
the surface to O(ka).

n._.1
¢ = distance normal to the boundary:j J 2dn +O(ka)2
o

K = Von Karman's constant

The above is the familiar Law of the Wall (Coles, 1956).
@ u,(g)

~ 2
3) e~a u,(g) , W~ e (2.12)
As indicated by Saffman (1970), the law of the wall implies
that near a solid surface with no transpiration (and outside of the
sublayer), e and are functions only of the local wall shear and

distance normal to the wall, Dimensional analysis then requires

u,(€)
eocui(’i), w = ,Z s

and the proportionality factors arise from satisfying the model

equations near the wall,

—— : P .
4) - uiu'2~ui(§) " {O(kakn* oike Z1|SFC, O(kakn, uy e °)
0 P 0 0
+O(kakn, c° e'F& )} (2. 13)
0
where -u'1 u) = physical Reynolds shear stress

p1|SFC amplitude of the O(ka) perturbation

surface pressure,



=] T=
The derivation is given in Appendix II; as will be
shown, for the purposes of this analysis the terms in
brackets { } are negligible.

Furthermore, all wave-induced perturbations are required
to vanish as n - .

The coupling of the upper and lower flows is provided by the
condition that the normal stress and the O(ka) shear at the surface
be continuous. As will be indicated later, it is not necessary to
match the O(1l) mean surface shear since the unsteady O(1l) boundary
layer which it generates within the lower fluid may be neglected

over the time interval in which the O(ka) solution is valid.

C. Previous Application of Model Equations

The model equations have been applied with considerable
success to a variety of cases of turbulent motion, including channel
flow, Couette flow, the two-dimensional free jet and wake, the con-
tinuously separating boundary layer, and the boundary layer towards
a line sink (Saffman, 1970; Govindaraju, 1970)., In the case of
turbulent Couette flow, a closed-form solution of equations (2. 1),
(2.2), (2.3), (2.4), (2.7) and (2. 8) may be obtained for the mean

velocity

Uly)=z U_ +

™
U zZ8) -b<y<hb (2.14)
2 b

where Uw velocity of upper wall (lower wall at rest)

b half-width of channel
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[

(’rw/p) g wall shear

c
*
1

Von Kdrmdn's constant = 0, 41

>
1]

The solution is valid outside the viscous sublayers at y = + b, The
relation between the friction velocity u, and wall velocity Uw’
obtained by matching to the law of the wall, is

U bu

Y .
= = = {4m(16/7%) +on(=2) + Bx (2.15)

where v = kinematic viscosity, B = constant in law of wall over
smooth surfaces with value B = 5.0 (Coles, 1968)..

The relation (2.15) is only slightly different from the corre-
sponding one obtained using the rate equation for wz. In that case

(Govindaraju, 1970):

UW u, bu*
— = Tc—{0.077 +@n(T)+BK} A (2. 16)
whereas

Lo16/7°) = 0.2415 .

As indicated in Govindaraju (1970), equation (2.16)is in good agree-
ment with experiment.

The velocity profile (2. 14) is plotted in Fig. 1, along with the

data of Reichardt (1959) for a Reynolds number Uw b/v = 34, 000.
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PART III: SOLUTION OF THE EQUATIONS

A, Introduction

The Christoffel 3-index of the second kind for the (g, n, z)

coordinate system is given by (no summation on any index)

2 2 2
ri_lléam L1 T o)
. pd 2 . . . - . .
jk (hi)Z ij 8§k (hi)Z ik 5 EJ (hi)Z jk g el

2

where gL g%, €3 = (& n 2)

1 4

o 2 2

(hlo hz: h3) - (J ’ J ) 1)

0 i#j

6.. = Kronecker delta =
Y 0 i=j

Note that I:jlk is not a tensor since the coordinate transformation
(%, y, z) — (€, 1, z) is not affine,
From the symmetry of the problem, it is clear that, to all

orders in ka,

-u! ut ' = -yl yl =
uy u3 u; ug 0
and since S13 = SZ3 =0, therefore X13 = X23 =0, Furthermore, the
definition
= 2
- Pyl = o
viv q
implies, from (2.1),
gljx.. =0

1)

which reduces to
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Clearly, symmetry of -vi' vjI implies Xij = Xeso

.
The full steady equations are:

~

eg momentum:
TV -V )+ g evl) =
nns SNt 28V " VE
1 e O
Lo 225 T0eg + ¥} + {5 (52T Vg + 4 Te 42 T, )
g (S {0y - Ve + T, vt }
oYX X
- 3(52 +W12) aERTSPRRCPY (3.2)
En momentum:
I~ g F ¥ e 5 Tl #H2F =
MYEE EYEn' " 2 nitn g

A 5E 13(4ge * ‘l’nn)} oz () {J(‘Vnn"vig) wn‘Tn"l’%JE}

* {'aaTq(e;)}{- 23 Vg~ Ve T - ¥ Jg}

oy oy
12 22) Ry |
-3( T 2 I (X + %) L
Pseudo-Turbulence Energy:
r 2 Y&

S N

.

~ 1 .
Te {4234+ 30, T 4T [T ¥t He T, - ¥ T

1 - 2. T E _ 2
+ [‘W@@ Faligly \kan)} HCRT A "’%“Ig)]

_ew+J%{'g¢e—deg} +J%8%eﬂ} . (3. 4)
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Pseudo-vorticity:

‘”’n"’g J\l/w =

(NI

[‘T Vg + 2lgTeV, n)] [‘T m* 20474 EJE)JZ
aw 9 q

" 2
+ [J\l/ng + 'g(\l(nJg ”’g Jn)]

\

g &
-ﬁw +J8§ e {o-—w

Relaxation Equations:

X ax
(n"ﬁél Ve Tlnl>+x11(‘qu = J) Xlz(“’-an’““'ng) =
v J Vv, J
TE{ (¥, 2% - % n>(2\"g e )
s W wanH e
Vi, el N
+f—u{‘l'nn""€§ T -LJE}{ “’an"l’ng}""wXu

9% 9x
12 12
30T~ Ve 5ro

VI oy J
= 1{ (%me - team M tee + - =5}

v J V. J
e N mn _ ‘E°E _
+w{\ynn Yee * — T H‘W’a Ve I,

—{z Yle Ve m{\y;r +¢5J§}-'wa12

(3.5)

(3.6)

r=) *X1a M Te = VeT, ) + Hgy Xpp) (4T, +¥eTg) =

(3.7
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) *Xaz (e = VT ) 4 Xip (4T, +4eT) =

U JR 0
f_oJ{<\l’n_§—§-\l’§ 5%)('”’%' T%rg . %n)

e

vV J V_J
e f_ ..n & __Em - 1
=12 vgn T % {\l/_nJg \I(an),
v J V_J
e B nn_ _E & L o=
9y 9y
33 33% e
J(%‘ég_'wg a_n>"“°x33 (3.9)

As mentioned earlier, the problem was solved both with and
without the relaxation hypothesis, The '"no relaxation' case refers
to the absence of Xij in the Reynolds stress constitutive relation (2.1),
and therefore implies equations (3. 2) and (3. 3) with Xij set equal to
zero, plus equations (3.4) and (3. 5) for the transport of e and w.
Note that, in general, the relaxation tensor does not appear explicitly

in the rate equations for e and w.

B, The O(l) and O(ka) Equations and Boundary Conditions

The assumption of exact periodicity in § motivates a solution
for the various dependent variables in terms of their harmonics
eilnkg, n=0,1,.s ., The effect of the wavy boundary, manifested

in the derivatives of the Jacobian appearing in the equations, indicates

that the expansion should proceed as follows:
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v =y +kae'™ y () + Oa)?, where dg\i]—o- = U(n)
u  =U+kae S (n) +eee
v = kaeikg vl(n) t oo
B o= s, +kae™ S g (n) +een
P = By(n) +kae S B (n) + -
e = ey(n) +kae " NMm) + ... (3.10)
© = wy) +kae' S win) + ...
X357 ol + kaelk® gy (M) + oo
S = gy tkael S mm) e
ug () = u, +kaeCu, +e.s
0 1
n*(g) = n*o + ka ej‘kg n*l + oo
@ = @l tkadEP T

where the real part of the right side is implied, the quantities
\yl(n), Ql(n), etc., being complex, in general.
The boundary conditions near n = 0 may be expanded as

follows, neglecting terms O(ka)z:
1) -ik ka \|,1 ~ O(ka kn*o u*o) + O(ka kn*o c)

ike v "
2) U+ka 6> (L +Ue ™My —Qpp () - ¢
dm K n*o
'kg u*l u*o n*l 5
1 1 _13_ _ |
+ ke {K Q/n(n*) L+ =)+ eq
0 0
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3) et ka otk5 NN'&'uf + kaelkE(ZEu* Ml
0 1 0

ik .
w0+kae1k’ W ~ ﬂo + ka g2 0(_1+1)

4) Utilizing U' =dU/dn

2
e € d \j
S N G e L 2U'e‘k”-2kUe'k“>Z
2 a Wo %o dn S
T 1X12

p
w, +OfKaKp, —2EC )
0 0o P

e ¥
9 W tkael

Wo

Zu*
~ u,k2 + ka elkg

+ O(ka kn,, u;:‘o)+ Ofka knye c?)

Substitution of the expansions (3. 10) into the equations (3. 2)

through (3. 9) yields the following:

~
eE momentum:

o~ d 1%
0(1). O = aTﬂ-<w—0 ! -0X12>
0(ka): ik{y] U~y U u?} -
o e e
o 3, d % N _ W 0, n .2 -kn
-k o U - g e - Ky r2e ™ U}

e
0 ; ' -kn
) =ik pyy- X3 - 28 o),

2 -kn d
+ 2(k Y -e kU)d_ﬁ(E)

< -kn
-ike T(g%11 T ooX22)
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~
e,rl momentum:

: - 1 & '
0(1): O=- = & - oX},
O(ka): K2y - ke MUt -

1 . eo( 3 " -kn )
_3Q1+1%k \yl-k\yl-Zke g’
+1kU'_(__.-—)-12k<\yl+Ue ) (—)

“o g Wy
e P P I e + )
1X12 ~ 1X22 0X22 oX11 7 oXz2’
Pseudo turbulence energy:
o~ , d ,~ % _,
1): O = ae U-e0w0+ (0 — e

0 (75, %0

O(ka): ik (NU - ¥, e}) =

Tey (v + K vyt ze'k"‘ U'-2ke ¥ U) + T UN

e
~ [] 0 N - _W- ]

e
sz k”—d-(-.(le')}
W dn ‘w 0

Pseudo vorticity:

e

. . d 0
0(1): O=duw,U ‘3“’0+3dn(w0“’0)
O(ka): ik(UW -y, w(;)=
" o ~-kn 1
{wo(\y +2 U N . Uke )+WU}-2[5wOW

ko{—- —W +w—(z)(£0 -—) o]'k :.—?W+2 -kn(_;i_[w_o d]}
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Relaxation Equations:

0(1): oXij = © fori=1,2,3;j=1,2,3

-kn
. . - 2 eO( [l U'e > ~
O(ka): ikU 1Xll-—ZUk B?) \1/1-——k—-+Ue -)\wo 1X11

e U(y,'+ k%y,) + 20e™*N(U'-kU)

ikU %), = ik w—(:) )
- Uy
- X %12 W
ikU (x,, = + 2U K% :—8(\1{1’ - Hl—k“ﬁ . Ue—kn) - Ywg 1%z
gy = ©

In the above 0(ka) relaxation equations, we have used the result

that Oxij = 0.

C. Solutions of the O(l) equations

By inspection, a solution of the O(1) equations satisfying all

boundary conditions is:

U=—Kg-0/n(—n—>-c
M
0
e = H ol
= £
0 0
(3.11)
wo— Eu*o/K'n
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Tne O(1) turbulent stresses are

N S t
011 %0722 T 033 T -3 11
5 (3. 12)
012 = “x

The solutions are valid within the fully tur bulent region only

(e.g., n>>n, ), since viscous effects have been neglected.
0

D. Solution of the O(ka) equations

The solution of the O(ka) equations is facilitated by defining

(Benjamin, 1959)
v, = S(n) + Ue ™ M/k

The convective term in the mean perturbation vorticity equation,

obtained by taking the curl of the momentum equation, is, in terms
of \yl
.. d ! 2 -kn 2 -kn
lkHF{WIU"I'lU"FUe }-ikU(k \yl-ke U)
. " 2 -kn
=1k{U(\yl-k \]/l)-U"\yl+2UU'e }
In terms of S(n), this becomes
ik{U(S" - k%S) - U"s)
which is simuilar to the convective term for the perturbation stream

function in a cartesian coordinate system. Hence the Ue =M 11

term 1s a measure of the curvature effect on the perturbation

t In a recent modification of the model equations (Saffman, 1974),
allowance has been made for the inequality of normal turbulent stresses
in a boundary layer. Further reference to this modification will be
made in Part IV.
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streamfunction \|/1 .

Dl. The O(ka) Pseudo-Vorticity and O(ka) Mean Vorticity Equations

The O(ka) momentum equations may be combined to form
the O(ka) mean vorticity equation. As e, is independent of 1, the
O(ka) pseudo turbulence energy equation provides an explicit relation
between W and the derivatives of S and N. Then, too, the O(ka)
relaxation equations afford a relation between lxij and the derivatives
of S. Substitution of these quantities into the O(ka) mean vorticity
equation and the O(ka) pseudo-vorticity equations, and use of (3.11),
yields the following pair of linear, fourth-ordered, coupled homo-

geneous ordinary differential equations for S and N:

Pseudo-Vorticity
4 3 b 2
ats a3s [ 5 . ~=7d%s 2.dS
byn—3 +2by = +| = -ikaT|—5 + [2b, k"] 3=
dm dm dn
u* i 2
. “zb“k 4 3~y _ ik@
+[—-—-b ktn -1 k373 -—2]s
b . Kn
4 3 2
2 a¥N 43N [ 2.2 . a°N
+b, 2 S8+ sb, n L8 4 [bo-2b, KPP ibg an]—-z- (3. 13)
dn dn dn

b .
+ [_nz - 5 by kPn - ikb) T~ 22X

10 1 dn

~ ib, .k 2=
_ick , 0 ,Ta .2 42_(. 3_‘11_ku>] _
+[ +—2+—?f k+b6kn + U 1b8kn = —'&' N=O

~

a n n
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Mean Vorticity:

U e #u = = x a1 = . |
\ 3 d“s 2) 1 } |
|1kH{U<—2—kS + =8} =
[ ] ‘ |
i2by .,k b2, k T | .4
3 13" =2 . "13 d“s
{- kn 07+ — U > } 2 (3. 14)
k™n dn
=2
6k by, U" ;12D 4% b2 2 e 3
+{-2xU3+ k13 +(k13+ 2213)U+ 131 4d°s
M M k“n kzﬂz dn3
2
2K b 2b%, Kk ib
2 kkn O -(14b13nk+-—)ﬂ‘2 ( n13+ 2133 + 1§>ﬁ£dzs
+ 2 k™ n kn ——
-21b13 ¢ 4b13 )dﬂ
K‘knz k n
2Kk2U3+(2 _16b13nk)02+(_4nb13 12b13k+ , i2b 5
~2 n 2 n 2 .3
n n Kn kn ds
+ 2 . o
_2b13 . 12b13 n
ﬂr K-k;',’
2
12 ib,k b K:k 2b
-nk4nﬁ3+(12b Kk~ —25)02+( + o™ ol T
n 3
n n Kn
+ 5 S
+4b13 -1b13 -12b13k i 2
3 K‘kn4 ¢ nZ Kn3
F e a0 sk e 2. ¢ 5  an sa |
t{-a e} iS+ {Laf e} E
| dn dn |
O S e L S S Pl
_____________ 1 - T T T T3, el m N 42— T
2 d°N d°N ikkn T d“N
oy Y b T

————— ————————— —— ——— ——— ————————————— ———————————



where

7 13
H=U = =
1 C
0 = U/u =—m(_ﬂ_)-__
/o Ko \Ny Uy
0
'EKZ/E’Z bg = {otajk
a
~ 2
40 K 1 T
e b = (@-2Bajg _
a 9 ~
a
~ 2
1 20K ~
St b = (20K +GK)
oKa

M: --Zb4 since KZ = (Ba-a)/o

K
~ 2 ~
ook b = (a-Zﬁa)
~ 11 — ~
a K a
S 2 G A
— (20K " -a) b, = 2a0
a
X9
b13 K

For the ''no relaxation' case, only those terms in the mean

vorticity equation which are enclosed within the dotted boxes are

considered; the pseudo~vorticity equation is the same for either

case.

D2. The Perturbation Limit kn*o-' O

The solution of equations (3. 13) and (3. 14) is complicated

by the presence of the logarithm in the coefficients of the various

derivatives of S and N. Various techniques were attempted, in-

cluding the coordinate transformation n = fnkm, but no closed form
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solution valid for n, << 1 <o was achieved. For this reason, an
asymptotic solution of (3.13) and (3. 14) was obtained in the limit
kn, - 0.
0

Physically, the assumption that the upper flow imposes only
a slight perturbation on the wave speed c suggests that the amplitude
of the O(ka) average mean normal stress at the edge of the sublayer
be finite in the limit kn*o - 0;e.g.,
tim, #1007

NS 3.15
knz¥ e l % kel

In particular, it can be shown (Lamb, 1945) that an inviscid, potential
flow with constant velocity Um over a deep water gravity wave alters

1
the free wave speed gL (g/k)* by a factor
Py 3
(- ——)
ka p_c
W W

where p = density of lower fluid, and P, is the amplitude of the

1

pertur bation surface pressure, given by

>

Pl = kap (Uoo-c

This suggests further that the O(1) velocity must remain
finite, at fixed kn, as kn, - 0:
0

lim U = Vo(kn) < o0 (3.16)
kﬂ*0~ 0

kn fixed
Substituting,
1i NS 0
im -
kny 0 {= %<kn* ) + oontin) - e} = Vg
0

kn fixed
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Clearly, since c - o <w, u, ~ ——m— =0

Yo o (1/Kmy )
0

+

as kn, - 0, where U, is a positive (because u
0 . *o0
constant, the notation implying approach to zero through positive

is defined positive)

values, and
VO = U0 - ¢y = constant (assumed non-zero) .

It is of note that the 0(1) velocity tends to a constant VO on the scale

of \ as k‘r]* = 0

0
Defining
€ = — . i (3.17)
@n'\ ck/u )
kN € *0
0
the velocity may be expressed as
b Y
U = KOP/,Z kncK/u 5 _Kg'(é+%kn)’
kn, e *0
0
and hence (3.16) implies
u, ~KV.e as kn, - 0 (3.18)
*o o *o

From (3.718), it is apparent that the limit considered is a

limit. in which the skin friction vanishes. For a smooth surface,

and the limit may be visualized as one in which both u, and v=10,
0

k and a being fixed with ka << 1,
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Denoting
€| = 1 - 0 as kn* -0 5
in(1/kn,, ) 0
0
then from (3.17)
LT 1 e 1
= K . T+o(1))
o1 kg )| 1 - — o
K I ~ e
0 S t ”*0) T,(1+o(1))
U
¢ = &' 52— (1 +0(1) . (3.19)
0~ o

Clearly, kn, = 0 implies lel - 0, where the sign of ¢ depends on the
0

sign of V(. Note further that (Uj-c )e = 0" and

U
kn*o —— {- (Uo(ico) -;- 1+ o(1))} ) (3. 20)

Hypotheses (3.15) and (3.16) are verifiable a posteriori

(see Part IIlc).
The mathematical importance of the relation (3. 18) between

u, and € for solving the equations (3.13) and (3, 14) in the limit
0

kn, — 0 may be illuminated as follows. From the equations and
0
boundary conditions, it is clear that a dependent variable, such as S,

may be expressed as

)]
]

Au, f(kn, kn, , c/u ;oz,?f, B,eee)
*0 0 *o

Au, F(kn, €, c/u* s a, ?{, B,eee)
0

*o

For c # 0, there are two small parameters: € and u, /c. In order
0

to obtain a limit process expansion of F on the scale of A, for
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example, to all orders in a single small parameter (say €), the
relation between u, /c and € must be known. As shall be indicated,
since (3.18) is an agymptotic, not an exact, relation, the solution

for ¢ # 0 cannot be determined uniquely to all orders in €. Finally,

for ¢ =0, it is clear that no relation is needed between u, and €,

0

since

S = )\u* F(knge;a: ?;: p:'..)'

0
The equations (3.13) and (3.14) and their boundary conditions
form a singular perturbation problem in the limit kn, - 0. For ex-
ample, thé ratio of the term in d"‘S/dT]4 to that in dZS/od'r]2 on the scale

of A in the pseudo-vorticity equation is

O) - o()-0 askn, -0.
(%) -

D3. Determination of Inner and Outer Scales

Let the variables be non-dimensionalized as follows:

Inner Region: S = L]é u1S o
N o= @l )2 ©

i *

n=5Ln
Outer Region: S = Lg ug §0
N = (ulel)2 ﬁo

0 —

no= L) |

where the velocity and length scales are to be chosen such that st

and N are O(l) in the inner limit, defined as
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limit
e =0
‘n* fixed ,

and similarly for the outer scales in the outer limit.

From the boundary condition on e, clearly

: u .
N *o

As the equations (3.13) and (3. 14) are linear, only the ratio

2 L oyt
kL, u_ u*0 /(u.N) is significant, and we may choose

Asthe mean 0(1) velocity profile (3.11) introduces no boundary layer

thickness, the outer length scale

The inner length scale must therefore satisfy the condition

0 - -
L,>>1'>m, or kn, <<kL!'<<1. (3.21)
1 1 * * 1
0 0
The boundary condition (2.10) on the normal velocity
Yy ol
R B - / v _ =
lim (kL S" + Te Wy o O(<=. e Ug Co€>

1
n- 0 Vo©

can be rewritten, noting the right side is transcendentally small in

€, as

® : %k
g1 _}]%—anLJi—é—?/nn +o(lyasm—0

1
kL2 Ke

From the requirement (3.21), it can be seen that
on (kL] )
!——i—l —f> 0 as € —>» 0,
€
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by the following argument,

Assume that i

M&LI)
,—l—'l —> 00 as kﬂ* =05
= 0
€
Then i
kL
1 1 U
) ") (32) = (1 +o(1))
0 0 o €
———g— = lt——r =1+ | =
(kL] ) n (k L)) in (kL))

However, kLl1 - 0+, hence f/flkLll-' -0} kLil/kT],°= - 400, hence
0

Q/n(kL;/kn* ) 7 +0, and the ratio above must be negative, which is a
0

contradiction. Thus, provided
L mxpLi g o
€ 1

we may take

i_ 1
kL, = [, -
The case
i 1
Pkal = Ja
i cK/u,,‘0
implies L. = n e =1 e
1 *0 C
A careful analysis of this situation was made. For S < 0, this
length scale is not allowed, as it violates the condition kn, << kLJi .
0
For o > 0 and V0 < 0, it is also unallowed, as it violates the condi-

tion kLii << 1, For <o > 0 and V0 > 0, it was found that, using such
an inner length scale, it was impossible to match the inner and outer
solutions, succeeding terms in the inner expansions of S and N
becoming larger and larger in order of € in any intermediate

(matching) limit., This length nc is the so-called critical height,



since U(k'r]c) = 0,
Noting U = O(1/¢) in the inner limit, the pseudo-vorticity

equation becomes

Ao B b . e
ES ~ —
b, 51—§4+2b4 i-§3+[—i-ia(kLll)U d——i—z
dn dn n dn
~ i3 == T i3 =
to(l) -iakL) TS - (kL] eN =0

where, by choice of length and velocity scales, S and N are O(1)

in the inner limit, Clearly, therefore

A similar investigation of the mean vorticity equation in the inner

limit yields the same result, both with and without relaxation.
The matching of the inner and outer expansions of S and N

implies that, with the velocity scale, u*o, the proper outer length

and that the proper outer velocity scale

scale for S is, again, LE,

for N is u, .
%
0

D4. The Perturbation Expansions and O(ka) Boundary Conditions

The presence of log |€| in the mean velocity on the inner

scale implies the following expansions:

Inner:
St -stiemle|st +esite?al|e|st
-0 1 2 3
2 i, 24
+€ Qm|e|S4+€ Sg +ee¢ (3. 22)
=i i i
N' =Ny + eﬁ/nlelNl +ooee

: . *
where S}/, le are functions of n .
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Outer:
=0 _ O 0 0. ...
S _So+eﬂ/n|elsl+esz+
=0 0 0 0
N —N0+€Q/n|€|N1+€N2+--- (3. 23)
0 0 . ~
where Sl,’ Nz are functions of 1 .

The scalar parameters of the flow are also functions of €,

and are expanded as follows:

Yy
1 _
= = 5o tenle|s, +ebp 4.
c = c0(1+eP/n|e|A1+€ A2+'--)
e = CO(QO+eP/n|e|Ql+eQZ+---) (3. 24)
N
1'1——1 = ﬁo+eﬂn|e|}1 teg, +ooo
*
0
b
_0 _ e(l+e mle|Aa, +...)
KV 1

0

Note that, in general, the 6., ., 3 are complex, whereas the A, and
p e i i

Ai are, by definition, real., Furthermore, the 941 are determined by

the nature of the surface, If it is aerodynamically smooth, then

Vv -BK
Ny(8) = m)e

where V is the kinematic viscosity of the upper fluid, and B = 5.0
(Coles, 1968), and therefore

;n:-ﬁn n=0,1,2, 20 ,

For an oceanic water wave, the surface is nearly aerodynamically
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rough at typically observed wind speeds (R. W. Stewart, 1961), and
the determination of the variation of roughness along the surface
requires further hypotheses than presented herein.

As indicated previously, the Ai are not specified by this
analysis, and serve only to indicate explicitly, for ¢ # 0, the order
at which certain expansions become indeterminate.

The boundary conditions on the O(ka) quantities as 1 = 0 may
be rewritten as follows:

1) No normal velocity at the wall
—i *
S'~-%- -%Q/nn + 0(1) (3. 25)

2). Law of the wall behavior for the tangential velocity

c.Q c.b

=i
By e {-tar 2 5+ T2+ 00}
dn kn 0 0

60+61 o
+¢l|elom|e] {———+—K—\-/.— (Q,-Q,A +61+A160-A160)}
0

K 1
inn* § c
Fo 207N 8 S
tele|l{q-F% t——*t% +K’Tr0 (@, - DpA, + 624“/\260“"‘250)}
+ o(1) plus terms of higher order in €, (3. 26)
+1 €>0
where sgn(e):{ 1 €<0

3) Law of the wall behavior for € and w

ﬁi~za‘(60+e@n|e|al+e5 $eee) +0(1) (3. 27)

2

and utilizing the relation between W and the derivatives of N and S,

the boundary condition on W becomes
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=i .o~ - - 0
d S*Z + 23 —ixz e|e|<d_N*+n*—-d §2> -
dn P dn dn
+ 6*2 ; elel - (6, +efnle| 6, +--r)
Kn Kn
1
t+o(—3x) (3.28)

n

4) Shear stress

As indicated, the terms in brackets { } in equation (2. 13),
according to (3.15) and (3.20), are transcendentally small in €,
Hence, using

No relaxation:

2=1
&
S tele] (8y +etnle]s, +0en)
dn n
+ o(1)
(3.29)
With relaxation:
2=1
=d°S 1 =
: U + S
2=1 *2 *2
*)d~S d K €
Kn 5 " N 3 g ~ +—§-+e|e|(60+---)
dn (ﬁ._ 13 ) n
Sk
le|n

+ o(1)

The non-dimensional pseudo-vorticity equation (3.13) is,

omitting superscripts on S and N:

(see next page)
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Inner scale:
3= b d2§

4_.
*d°S d’s 5 .~ =1
0 = b,n == +2b, & +{-—--1a|e|U ==
4 *4 % % J *
dn fan* g dn*
>
= A a“b
+2b, ez-és—*+{-1a'l:2| + *11 €2-1a|e|€ T-b, et }S
dn K N
%2 d*N d3N 2, %2 a2 |
+byN ——;‘4+5b6n +{b -ib |e|n U-2ben | =5,
dn dn dn
b .
+{—2*-ib10|e|ﬁ-12 |e|-5b e? *}dN
n o dn
+e el 2 ib .
g € =2 11 = 1i0 |e
= - = U -—=% le]T-= J‘é‘ .
+%ez+1bn|e|3U+b n*2 ¢4
~ 8 6
a -
159
(3. 30)
Outer scale
4— 3 b 2= =
0=b, 795 425,45 1 {L33T+2}45 42, 8
dn d n d dn
~2
a b e 3=
= 11 ~ 2d N d™N
+{-1aU+ b }S+ebn + 5b, en —
2 6 gnq 6 a3
f ~2) d“N & by ~ i20¢) dN
+ L-1b8n61}+eb7 -2b €M J——-+{ ib10€U+———--5b6 N-=—2= }'f:
n a dn
i ™ b
g€ , O€ Rkt B |
{ =, S 6 ib ~ ]}N

an @
(3. 31)
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) i2b 4Kk b2 2
{ sxH3  168b5 4 ( 13 13 )_ 2bys | 435
- + \ g U
(
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The mean vorticity equation (3. 14) is:

Scale:

Kn U i2b, 3T +b13KU}d4§
%
le| e” le]°n dn*4

*ez |e|3n*2 +'€|3n*2 dﬂ*3

2

2 5 3\
2kby, 2bi. K ib
+ 2Kn |e|U3+<-l4b13K— * )ﬁz+ (- ¥ tyr 3t Z)U
J n e n lel nlel” % >d2§
. 2 *2
_12b13 +4b13 dn
L K€2n*2 ﬂ*3l€|3 J
. 2 ! w
(ZKI - iBb K = 4KbT, i2b . , 12D
= S ey e U S T g R 2
$55 { u le n le|n n lelkn®n e
an . 2
12b13 2b13
T2 %37 *2
ke eln
% B [ 2 )_ B4
-K e|lU+(i2b, ,Ke -
nlel ( e n* Ieln3 leln ki le? _
+ . 2 . 8
+<1b13 N bigklel 2ppe )— Bins =
ES % %k
n*2 n leIn®3 kn*3|e| kn*2  |e|kin
a1 &1 P - w8
| -akn¥e|m3dS - ax|e|n? L, : (3. 32)
: dn dan |

(continued on next page)
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, 4— 3= 2=\ !
(-eblﬂ*Zd_l:z}'Sbﬁn L +{1K2n e|e|T-b,e d*l\ZI |
dn dn” an .
|
. |
N A2 clel@s 1} £, &
o dn ,
|
3 5 %2 ik 1 2—} '
kJr{b3€ +bye’n C+ lele ( %, 1€ U N J :
Quter region
T e A 1
(0SS -8 v L 5] 0 -
~ N, =1 '
! n K |
2
b-_K -
{_ KF T2 +i2b T+ =2 T 2
n dn
] 2
iBKb i2b 4K b 2b
& AmBETET '1‘12+( L2 ~213)U+ ok S
n n n (IR
2 2
2K b 2b-_K ib
( s —
ZKnU3-(i4b13K +%)U2+<- ~13+ ~133 + ~213>U 2
< L n n n ds
+ , al
i2bj; 4D, d
— —
\s W% M 2
- i6b, K i 4Kb%.  i2b i2b .\ -
26T + (‘ ~13 +£2>U2 +(' ~zl3 TS =2 4 fz' ~3}3>U
= e 4 ke ds
¥ 5 aF
2bl, 42b, d
: n KN A
Ao =3 1 2
_ k% T3+ T2 (+1i2b, K "F]'-—"F]TB) (3. 33)
ib Kb2, 2b2, K = Sk
R ER IR )
n n n aki
2 . ;
O s Tk T T
?{3 K'ﬁA K?’]JZ Kz'ﬁ?’ J (Continued)
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(Equation (3. 33) continued)

. 3 4’5 3 a8 o T
| -4K‘I’] H --’:—2' - 4K H- — |
| dn dn ~
: L a g 3N | [iKkTe a’N | !
| - b, e S - 5b,Me <3 +L~g U’bze}T |
i 3 dn dn o d '
¥ H [
! - I
I +{3b €n+12Ke }dN |
|
I |
| 2  ik7[ e - b,
| t 1€ by tb e+ 5 (—=,+€ U N J
: 1 o Kn |
[T, o= . B
where

ib

H - T - 12
n

*
LK(I-Fe in|e| + efnn”) Inner scale

—lK- (1 +ebnm) Outer scale

D5. Analysis of the Equations on the Inner and Outer Scales

The substitution of the inner expansions into the equations

yields the following:

Inner Mean Vorticity Equation Inner Pseudo-Vorticity Transport
2
d-s
: i G Zs, -
O(1): NR: W =0 2S0 =

R QISO =0
where '"NR," "R'" imply the ''no relaxation'' and ''relaxation"models,

respectively, and
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. 2
* i2b b, sgn(e), .4
‘gi = <_ H? sgn(e) + K13 + 13 = ) d*4
K n dn
2 sgn(e) . 16P13 4bf3sgn(e) 23 2bf3
+(' 7 * T *2 ) %3 +( %3 sgn(€) %
K K n dn n
i[_l ibl3sgn(€)]3) d2
“KLE T * *
n dn*?
+ 3 b ~ 2
* d d 5 < al d
@ = b1 — + Eby ——g +{—-1sgn(€)—}-——-
4 * % K %
2 -k an E dn 3 n an 2

The only solution satisfying both the inner w-equation and

either inner mean vorticity equation is

dZSO/dn*Z = 0

which, with (3.25) and (3. 26) yields

i 1
Sy = ~F (3. 34)
2
d”s
Ofe tn|e|): NR: 1l - o Ls, =0
: *2 2 1
dn
R:gas1 = 0
which becomes
i _ 1
Sl - - E’ . (30 35)
as
] 2 _ 1 _ _idsgn(e)
G4 NR: 5=ty S, = - 3R
dn Kn K™n
R @5, - - i (Lo DAY 2sgnie)
’ - 2 %2 \K * 3 %3
1°2 k2 5 3n

where the solution for So has been used. In either case, the solution

is



which yields, with (3.25), (3.26), (3.28) and (3.29),

S

_ * cA cnb
L . L 080y *
2 = "% *tE\bpt

00
0 v, + v, >‘n sgn(e) (3. 36)

The outer equations to O(€) are as follows, omitting the

superscript "'0'":

Outer Mean Vorticity

Outer Pseudo-Vorticity Transport

a’s, i 45, No
O(l1) NR:'TZ-S():O 0=+ T<—~2-+SO>+~_2
dn dn ak
d®s,
R: e il S0 =0
dn
Thus, since the perturbations must vanish as ?’]J - 00,
Sg = O e "
> .~ (3. 37)
0 < i =N
NO = -i2a KCoe
where CO is a complex constant,
Matching with (3. 34)
1
Co = - %
a’s
O(etnl|el): NR: —— -8, =0 2
4 i@ (95, By
2 °=+T< ) +Sl>+_2
d S1 dn ak
R o il S1 =0
any
0 _ -1 0 _ ..~ -n
S1 = Cle 5 N1 = -i2a ClKe (3. 38)
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The O(e) outer mean vorticity equation with no relaxation is

'( 2.5,)
o
d2s ds a°N, 24N

- — - a2 12 (’ﬁ g +'HN0>
dn dn dn dn

(dso i
———-s)+— g =
-~ o/ t==2 50
dn kn

2

yielding

~

0

_n e+n ~
O(e) NR: S2 = Cze +—K—E1(2n), (3. 39)

o0
e-x

[ = .
X

20

n

where El (2?{)

The O(€) outer mean vorticity equation with relaxation is:

d S 1S0

i idn7m 0
’T( &2 'sz> ( &2 'So) 2

a*s d s0 _ d s0 s,
4 dn dn dn

. 4Ny N N
+ = (n . + 2 - 4 N0n>
dn dn

whose solution is, again,
~ 47
. 0 _ -n , e ~
O(e) R: S2 = Cze + = El(Zn) (3. 40)

The O(e) outer pseudo-vorticity equation is

uy G B sy 17 48, b5 i3
0=byF —F +2b, —L-Tx 2 +( o)

(zzn?{ ibg® ibll)
o\~ 2 T % —
ak
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yielding

~2 ~
~~2 -
ND = - (25a%% + 22 )M (3.41)
n

-i23* {e+” E,(2f) + C, ke +(7/nn e”}

The expansions for S must be matched at O(e), not at
O(el?/nle | ), since € S; is O(eln |€ I) in the "matching" or 'intermediate'
limit, At O(¢), the matching variable Qng = kn (Cole, 1968) is found
to satisfy

le] << ¢ << |e|%

and the following results are obtained-r
MY cnd

00 0%0
6. + + =1 (3.42)
g v,
G, = 0
C, = g@n2+y), y=0577.. =Euler's constant

The inner equations to higher order are:

Inner Mean Vorticity Inner Pseudo-vorticity transport
a®s, d%s a’s,
o(e % e ): NR: —5 +—, = 0 .9,’s -—sgn(e) = = 0
dn dn dn
R: ZS, = 0

Thus, using (3.25) and (3. 26),
s = 0 (3. 43)

k x> 2 .3 3
El(x)~-0mx-y+x- = - = xWnx +0(x") as x—0

4 3
y=0.577o-o



o(cm|e)):
dZS4 dZS‘2 dZS1 S1
NR + + + = 0%
*2 *2 %2 T %2 ’
dn dn dn n
2 2
L~ d~s S d”s
s —ﬂsgn(e ){Ihzn*_—l_ +—L +__£}=0
2 3 *2 " ¥ %2
e an™® n*% " an

and the O(e /n | € | ) inner mean vorticity equation with relaxation is

o(e?m|e]): R:

: 2 < 2
Py .l<l 1b13sgn(e)>3[sl +d SZJ i3 <'_l 1b13sgn(€) )
14 " KAE T #*  JlTET ¥ |2l &« . 3
n n dn K n
2 i 2 4
*
. d S2 S0 3™ sgn(e) 14b13 b13 sgn(e) \d SZ
¥2 T w2 ) t\ - 2 % * * *4
dn n K K n dn
i12b,, 4b°_sgn(e)\d3s, 2b% sgn(e) a%s
6 sgn(e) + 13+ 13 2 + 13 2
+ |- 2 * *2 * * *
K Kn n dn™*3 n*3 dn 2
. 28gnle) oo L35y = 0
2 n*3 1 0
n
Again, the solution is identical either with or without
relaxation:
a%s
4 0
dn*z
thus

st =ign_(€_){5 46, +2(Q -0 A +5, +N.6 -A.5 )}n* (3. 44)
PO AT R T s T T T R s A .

The perturbation pseudo-turbulence energy first appears at
O(ez) in the inner expansion. Specifically, the O(€2) inner pseudo

vorticity transport is
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2
.~ d™s S
* 2 2
ft’s - 1= sgn(e) (z)mn — + —*2) (3. 45)
dn n
~2 4 3
a“b .~ d' N d™N
11 ia %2 0 0
+ (Zb + - = sgn(e% + sgn(e) {b n ——s= +5b +
4 * K 0 6 *4 %
n dn 6 an*3
. % 2
1b8‘n sgn(e)\d N0 b9 1blosgn(€) dN
(b - ) *z*(—*' K ) 0}—0
7 3 an

The O(ez) inner mean vorticity equation without relaxation is

2 2 4 3
+i(d55 P e R ) = A Bkl S Sl IR
* % ¥2/ ~ ~ Nz *
AN a2 St ® . 1 %3
2
ikn¥sen(e) . \¢ No
H( 5 b, )—53 +
dn
. dN
+ 12sgn(e) 90 (3. 46)
[o% dn

where knowledge of lower order solutions has been used.

The O(ez) inner mean vorticity equat1on with relaxation becomes

) 3
. b, ,sgn(e) S d S 14b
if1 *P13%8 ) 2 { 31 sgn(e) 13
s (- —2—) {By- % -2en” - ;
'r] K K
2
sgn(e) i 12b 4 b, ,sgn(e)
13 } Tr {( 6sg (€) 13 *
e T + 34 onm +
*4 * %2
1'1 K:'f'l
. o .
12b13 2b13sgn(€) d S sgnie) sgn(e) 'q 1b13
+ * T %2 + %3 T E
Kn 4 dn™> ‘' 4 Kn
2 4
. 4b13sgnm)}_d S . { Zsgn(e) __12b13 dS2 .n@) < g
*3 * 2 %2 *3 * *3 T2
n dn 2 k“n K dn k% n
2
* ib 2b
4sgn(e)in 13 13 3 sgn(e)
3y = sgn( L3ﬂ -—%T t =3 sgn(e ) - 2 *3]-8 +
“n T 2, 42 S
13, # (b - O (25 40 £ (D
" gE C

(Continued on next page)
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(Equation (3. 47) continued)

4 3 2
a*n d>N * d°N
. 3| b2 =g -sbyn* 3 + (gl )2

p ibysegné) dn dn @ dn

_1.(E - s a =
i2 sgnle) o J
+ = %
o dn

Even in the simpler case of no relaxation no closed-form
solution was obtainable for ij and SS1 in terms of known functions.
The higher order outer equations are:

Quter Mean Vorticity Outer Pseudo Vorticity Transport

2 2
d“s iy/d4S
oo e ): NR:—,:,73-S3=° +l£i(——~23+s3)+}2N3=0
d?s,
R:'—:Z—"S?’:O
dn
Thus
0 _ -n - -n
S3=Cye ) N;=-i2a"KC,e (3. 48)
2
5 dS4
Ofle|): NR: — -5, =0 4
~2 4 3 d™s
o +E( 4+S>+-1—ZN=O
dZS4 K an 4/ "z 4
R: ——-§, =0
dn

where knowledge of lower order solutions has been used.

i -n ) -n
. 8, =Cge n N, = -i2&KkC e (3.49)
At O(ez), there is, as on the inner scale, a marked difference

between the '"no relaxation' and ''relaxation' models. The 0(62)

outer mean vorticity equation without relaxation is
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NR: —= - S, = {e NE @™ +eNm7+ ('y+0122)e—n}
2 5 2 1
n Kkn
+e M {+125 | 2k (25ma)}
n
yielding, for no relaxation,
NR: sg = e'n{c5 - iKkonm - K(z’&‘-a)’ﬁ'}
"‘ o]
Eq(2 +n E. (x)
—-1—(—-?—)3—{+0/zzn+y+@n2+1wz} }1( dx
2
e_jﬁ' 0 e-!-X El(x)
- s I ———x——— dx . (3. 50)
2n

2 . . . .
However, the O(¢ 7) outer mean vorticity equation with relax-

ation reduces to

2
d~Ss ~
__;_52.. - 8 = o + (y+0/n2)e_ﬁ}
dn K
e 2k(23 - @)
obtaining
- E @™
R: S5 = {C - K(2a- a)n} — @nn +y +0n2)
+x
+T] ®E (x) -7 X g (x)
e 1 e 1
- X L = X -7 L‘T—" dx (3.51)
27 27

Note that the term

~ ~

ik e N - ik El(z?{)e”‘

is not present in (3.51). In general, C5 and 85 will be different.

The experience of matching at O(€) would certainly caution

against matching at O(e2 @n2|€ |)or O(ez&zle l) in S. Due to the
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difficulty of the O(ez) inner equations,’ Si5 is not known; thus, complete
matching at O(ez) is not possible.
It is possible, however, to determine C3 and C4 (for both the
'no relaxation' and ''relaxation'' case), as follows. Consider matching
S at O(ez). Clearly, the contribution from Sg and SZ can only be can-

celled by terms in S'. Inspection of (3. 34), (3.35), (3.36), (3.43)

. 4
and (3.44) indicates that {Si‘(} do not affect Sg or SZ. From the
k=0
nature of the solutions Sg , 82’ it is clear that, to their respec-

tive lowest orders (e. g., 62 Q/ﬂ2|€| C3 and €20/n|€|C4), they cannot

N
be affected by {sl }
ki
k=6 .
2,2 2,2 %, i
€70n"|€| can only be matched by aterm e 4" m in S, ,

. Thus, they can only be cancelled by Si5, and

clearly, C3

3
and C4ezﬁm|e| by a term ~ e2mn’,

*
However, ¢ 2 nn

tl

ezﬁmgng - €2€/n|€l

e dnn

e%rg ne- 26%0ng neimle]| + e ulle

and thus Sg must match the ezﬁxnz Cng, eZ(QnCﬂC)@n le], and E:Zﬁxngng behavior.

However, from (3.50) and (3.51),
0 ~
S5 ~0O(l) as -0
for boththe R and NR cases, Assuming the matching proceeds
satisfactorily at O(ez), NR&R: C,=C, =0,

3 4

D6. The Inner and Outer Solutions for S and N

We therefore have the following:
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Inner Expansions:

Both cases:

%
-7 E
gl _ _%:_ _%T(J_e_l..*.e{_@'{]—_-}— %-T] sgn(e)}

2 sgn(c) €0 *
+e“m|e z {60+61+.\K(Ql-QOA1+61+A160-A160)}T|

+ 0(e?) (3.52)

Sl5 and -ﬁl were not obtainable in closed form.

Outer Expansions:

No relaxation:

-n ~ +;:]‘
-0 e (y +9n2) -m e ~
STo= -y e{lk‘_e % El(Zﬂ)}

_?]J - ~ o~ El(Zhﬁ)e+n N .
e (cs_iwmn - K(2a-a)n) - ————K————(ann +y +in2 + iK)
2
+ ~ +

) T E e e Epx)

- dx - I dx

K . X K J_ x
2n 2n

3

+ o3 |e]) (3.53)

Relaxation:

5 5 A

=0 e +0n2) -m e ~

S = - % +€{(:Z'—T€——le + n EI(ZT])}
~ E. (2R)et

_‘r] ~ ~ ~ _ 1
e (C5— K(2a-a)n) m

@nm +y +0n2)

~ ~ + O(e3m3|e
T o0 E. (x) e 00 e+xE (x) ( ‘ I
e I 17 4x . f 17" ax (3. 54)
- K _ % X K - .

2n 27

2 .2

+€2

X

~2
+g_a_)e"n
n (3. 55)
~ n ~ - ~ R 2
- 235%™ E,(2n) + (v +on2)e” " + 007 e ”]} + O(e“)

50 = +12&“2e'”+e{- (2T a“«
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An approximation to S(n,€), uniformly valid to O(e) for
ne (O+, ©), can be constructed in the usual fashion by adding the inner
and outer expansions and subtracting the common part (Cole, 1968).
It is of interest that the outer expansion contains the inner expansion
to O(€), and that therefore the composite expansion to O(e) is simply
the outer expansion to that order., Judging from the complexity of the
O(€2) inner equations, it is doubtful that such a situation will persist
to 0(62). The inner solution for S is genuine, however, in the sense
that the outer solution for S is incapable of satisfying all the boundary

—_ £
conditions on S and its derivatives to lowest order at M = O+.

E. Surface Stresses and Flow Variables

An important characteristic of the flow is the magnitude and
phase of the O(ka) surface normal stress, It is easily derived that
the jump in the total mean normal stress across the sublayer is

(see Appendix II)

A{pl_-:l—Tzz kaeikg i %%} = O(uiokn*okaeikg)+O(c2kn*0kaeikg)
subleyex (2,56}
By definition (see (2. 8)),
&,(m = py(n) +1§pq_2‘1(n)
However, from (2.1) and (3.10),
1711 = iz“;%(%* U_'i-ﬁ>' %11 3 ;2—|1
1722 = ‘iZk:_g G%Jf U_'ic_ki)' 1%22” Tl,' ;2_‘1
1738 = ~ ;‘ az—|1
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which, with the boundary condition on the tangential velocity yields,

asn- ot (e. g., the edge of the sublayer)

2 O 1 2
1711007 = 1 Tp2000) = 3T55(07) = - 5q ll ¥ (3..57)
y 10

Hence

1]

8,(0") = p,(0") - p 7, (0")

which, neglecting molecular viscosity in the fully turbulent region,

is the complex amplitude of the O(ka) mean normal stress at the edge
of the sublayer. Noting that the right side in (3.56) is transcenden-
tally small compared to @1(0+, €) by (3. 20), we obtain the fact that the

O(ka) mean normal stress at the wave is

Kkaell> 5 (0%e) .

One method of evaluating @1(0+;€) is to simply substitute the
inner expansions for S and N into the O(ka) gg-momentum equation,

*
and take the limit as n —> 0. This furnishes

§1(0+;€) u* ‘ 1 ebinle
. :( _ ){ o —UK [1+5 +8 +V (Q -0y A +6 +A 6 ):l

+ o)} (3.58)
11*0 2
where, unfortunately, the (-—e——>0(€) term is not capable of evaluation

since it requires knowledge of various derivatives of NS and S]é. Note
8 (0%, ¢)

the supposition that 2 be finite as € = 0 is consistent with

the above relation using (3. 18).

Another method to determine ¢ 1(O'i-;e) is through integration

of the O(ka) 'én-momentum equation, which can be written in the form
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as
L "1 - T d{_ eO(dS Ute KN e
e . .4 /. )_ } 0., -k
=T S-ik; T ,- 5 12kw0 -t oS HiZk—Ute n
5 Y < 0
. 3.59
1722t 3 9|3 i

The final term on the right side arises from the fact that 1712

complex amplitude of the O(ka) physical (not covariant) turbulent

is the

Reynolds stress. In particular

P 2 —
_N Tk dN d°N .2 ikknTN
11 % 8 = (E*n_z'k"N)“ e
o a dn o
I d°s 2
(USS + Uks - U"s)
- Ku* n d"']
. u
0 ib *
i kn (3.60)

h is - X
where the last term is 1712

For the no relaxation case, the 1X12 and 1X22 terms are neglected,
and the appropriate expansions used.

For the relaxation case use of the boundary condition on the
tangential velcocity as n = 0 and the condition that all perturbations
and their derivatives must vanish as 1 = « gives

3 (0%, ¢)

o0 0
2 . 5 2
5 = jUk SdT]-lkIIledT] +12u* (3.61)

0 0 0

In the no relaxation case, the same boundary condition as N = 0 and

the assumption that dS/dn = of é) as M=o (which is quite reasonable,

n
since S may be expected to decay exponentially to all orders in €--see
(3.53)) yield (3.61).

The integrals in equation (3. 61) may be evaluated by dividing

the range of integration into the intervals (0, ¢ ng) and (C ng, o), the
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ranges over which, respectively, the inner and outer expansions are
assumed to be uniformly valid approximations (Lagerstrom and
Casten, 1972). Note that from (3.42), |e| << ¢ << |e|%.

Consider the '"no-relaxation'' case first., Using (3.60), we

obtain
Cng u,, 2
NR: -ikf 173298 o (72) ole>)
0

This result utilizes the boundary condition on N, and the fact that

NB is bounded, independent of €, for n*-el:O, ), since Nib(O) = 2'560,
Nt)(oo) = Ng(O) = + 2372, and the differential equation for N%) has no
* *
singular points except 1 = 0and N = w. Thus, for example,
Cﬂg 5 Cng y i
f Ndn = ug j (NB + eP/nlelNll +eoe)dn (3. 62)
0 0 0
cn
G 1 Ui : L 2
and |u,f f NE T | < max |N}|uf cne = ol ) = (—=2)o(c%)
0 9o 0<n*<ow0 0 0

Succeeding integrals involving Nll, le, etc., are certainly expected to

be o(u: Yo
0

Furthermore, since

~

~ _'r] ~ ~ ~
2 2 >~ ~ - ~ -|- ~ -
NR¢ 4T19 =, {--”ee—+ i(20-a)e ”+2n|} nEl(znyr(yw/nZ)e T]]+0(e)]».
outer 0
scale (3. 63)
thus 2 s, " A ,
NR:+12u*20-1kJ‘C llednz (_e_) {+1Ze +€ (Za-w-16‘y)+o(e )}

(3. 64)

Employing (3.52) and (3.53), we obtain the result



-59-

*
NR: f Uk®sdn = (—>) {- =+ e[-z-(lig-”—zl} O(ez)} (3. 65)
0 K K :
where the O(ez) terms involve C5, which could not be evaluated.

Thus for no relaxation,

+
8. (0";5¢) Ug 2
i 1% °? o 0 { 1 [ZgZWmZ) . ] 2}
NR: i o I (—-—-—e ) -F+e 2 +i2 |+ O(e™) (3. 66)
Utilizing the expansion for u, in (3.24), it is clear that
0
8 (075¢) 5
lim ————— = - Vo
e=0 p

which is identical to the result for a potential flow with velocity 2
over the wavy wall, This lowest order behavior is expected, as in
the limit € = 0 the O(1) velocity on both inner and outer scales ap-
proaches VO.

It is notable that, to O(e), the phase shift of the O(ka) surface
normal stress is due to the turbulent Reynolds shear,

Comparing (3.58) and (3.66), we obtain

c

0 =
+61+V_(01'Q A1+61+ /\160-A160)-0,

1+8
0 0

0

a relation that will also be shown to hold in the relaxation case.

Consider the relaxation case. Again, from (3.52) and (3. 53).

0

f Uk?sdn = (u*°> {——+ [M]m(e )}

where the 0(62) terms involve 85, which could not be evaluated, It

can be shown that in the relaxation case (see Appendix III),

cn
r & s Ugy 2
R: -iJO 1T12 40 = (—g-o—) o(e?)
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Furthermore, since

~

{+i(2b, K+ 2a-a)e ™ + Ofe) }
R: v = uf L3 (3.67)
) 1 12)outer * ib ! ¢

K
scale 0 {1+€<2/,1Pﬁ- ~13 >}
n

therefore (see Appendix IV)

% U 2

R: -ikf T dn = (=2 <(2b13K + 25-a)e? + o(€2)> (3. 68)
Qng

Hence, for the relaxation case,

+
él(O ;€)

“ +Im2) 2.
R: —— - (=%) {-—— ! +0(e?)] (3. 69)

Note that the phase shift at O(¢) has been lost with the inclusion of the
relaxation effect.
The normal Reynolds stresses within the flow may be readily
determined, In general,
—_— —_— -kn
1 2 _ 1 27 _ . (g§ Ule — '\
1T11 73 2y T 4T -3 4 1‘“2“‘1*0” ant T/ 1%

172
1733 "3q'1 .

2 m
-5 Wiy (0 o _ E (Zﬂ)
NR: T +%~q2 = +i2K —él{n i li_jD 11+n———-——-7

+0?} (3. 70)



2 2 ~
—— K -
R T +_1_ 2 _ 2 b13u*0 [en + i
111 3 1 EELTPLN K <2y,
{1 +e<0/nn- -~ )f L 13
n
+n ~
e 'E.(2n) -M
te -ﬁLfci”ﬁz_)e'M Kl - +_L+1§”m + 0(e?)
KR Kn Kb
13
(3. 71)
and on the inner scale (= O(¢)):
02 n*
— % 2
. 172 . 0 {esgn(e)_emielsgn(e) 2}
NR.1T11+3ql1—+12K = 3 = + O(€) [ (3. 72)
2K2b13u2*
R: .7 +121_l— 0 1,3 +€Q’”|€‘(ki--1
1'11°3 1~ ib, .sgn(€) K "2 K /
31 -———1—?’-17———-K+em|e|+eﬁ/nn* LE P13
n
+ O(e)
(3. 73)

It is of interest to note that, to the extent the inner expansions are
known, they are contained within the respective outer expansions.
Furthermore, the NR expansion on the outer scale is an order of
magnitude (in €) greater that the R expansion,

The expression for Ql(ﬁ;e) on the outer scale, obtained either

through the 6. momentum equation or by integrating the ¢ momentum
g g q y g g n

equation, is
& (Me)  uy, 2 -n AN o~ ~-T -
NR: — = ( 60) - 25 +%[(y+m2)e”-e”El(zn)-mne”ﬁznze ”J
ke K

+ O(ez)
(3. 74)



-62-
Another quantity of interest is the so-called "wave-induced
Reynolds stress. In this instance, it is conveniently defined as

(see (2.9)),
2w

- @YY = - z%;fo (u(E, M) - VM) v(E, n)dKE .

The two models exhibit dissimilar behavior; specifically, on the

outer scale,

Rl ~ E (2m)
NR: -{Gv) = (u* ka)z{ Imag(C)+ o0nm e 21’]+ 12 +o(1)}

O(ka)>

R: -{uv) = (0 ka,)'2 {— e—z'i- Imag(CS) + o(l)} + O(ka,)3
0

The complex amplitudes of the O(ka) perturbation velocities

are
Outer: = — {\ <_(_&}ff’ﬁ)in +5='—|-(-——E1(2n)>+0(€2)} (3. 75)
iu ME @) Fe
on
v - 0{ [(y+ 2) M . 1 e K"/”*J:I+0(e2)} (3. 76)

where the O(ez) terms involve S0 .

Inner: ] { L_oceilel, o)

—111

0{ 2€ "’”lelsgn(em + O(e )}

where the unwritten terms involve 815 .
Again, to the order in the inner solutions indicated, the inner solu-

tions are contained within the outer solutions,
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F'., Solutions of the Lower Flow and Calculation of Scalar Constants

In order to calculate the various scalar constants appearing
in (3.24) for ¢ # 0, the lower flow field must be treated. In the
following, the subscript '"w'' refers to the lower fluid; in keeping
with the previous convention, similar quantities corresponding to
the upper fluid are not subscripted.

The following assumptions are made:

1) The lower flow is two-dimensional, viscous and laminar.

Although generally quite valid for laboratory studies, the
assumption of laminar flow is questionable for oceanic application.

2) ka<<1

As in the upper flow, the O(ka) dynamics are solved, The
analysis provides the wave amplitude with a temporal behavior of
the form

alt) = A ™ (3.77)
where n and A are both real. Clearly, the solution will be valid
for a time interval of order n_l. As with the other scalar qﬁantities

in (3.24), n has an expansion of the form

2
n+2vwk :€n2+o(€) (3. 78)

The -2 \)Wk2 term is the viscous decay rate for a free wave. In the
limit of € - 0 the phase shift of the O(ka) surface normal stress
vanishes and therefore, neglecting Kelvin-Helmholtz instability,
there can be no wave growth, Thus, the leading term on the right

side of (3. 77) is O(e).
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3) kh>> 1 and \)Wk/cW <<'1, where h = depth of lower fluid

1
" and c¢ g/k)?; e.g., only deep water gravity waves are considered,

w (
For typical laboratory studies of wind-generated water waves

4

’

(R. H. Stewart, 1970; Shemdin and Hsu, 1967), c_/V_k > 10"
and for deep water gravity waves, cwlvwk > 10Jr5 for X > 1 meter,
For simplification of the analysis, h is taken as infinite, and \)Wk/cW
of order € (typical values of € for data considered were between
0.1 and 0, 3).

4., Att = 0, the lower O(1) horizontal velocity is spatially
uniform and equal to -c, As will be indicated later, this enables
the O(1) mean surface shear to be neglected,

5) The upper flow imposes only a slight perturbation on the
water wave, As will be shown, this implies

V.2
BE—<—E'Q ) <<1
w W

and rules out Kelvin-Helmholtz instability a priori. For wind-

generated water waves, £ = 1,22 10-3. From (3.17), it is

W
apparent that VO is essentially the velocity at kn = 1, which is

generally of the same magnitude as c_.
w

The equations of motion in the upper flow ((3. 2) to (3.9))
neglected time variations, These can be taken into consideration
through use of (3.77) and (3. 78). The effect, however, is insignifi-

cant. The expression for Ng has an added term

B L &

Pw
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where B is a numerical constant of order 1, and p/pW =1,22 10-3
(for air -water)., Similarly, terms with factors of p/pW are added
to S(S) and Ng, and to the equations for S; and N0 . The expressions
(3.66) and (3. 69) for §1(0+;6) are unchanged to the order given.

The analysis of the lower fluid is essentially that given in

Lamb, § 349, and will therefore not be repeated here. The only

significant differences are 1) the O(ka) shear stress along the sur-

face is matched with that of the upper flow = 2 p u*lu:ﬁ< ka elkg;
0

2) the normal sfc.stress is matched with -@0 - ka elkE @1(O+;e);
3) surface tension effects are neglected.

From the velocity tangent to the surface we obtain the com-

plex amplitude of the O(ka) orbital velocity as

. 2 1

cq o imr2v kS 2v k N fe \3

— I — +—————T<'-——~——' -1 c 1+ —'—2" v k

‘w Sw ‘w w v k w

W
U Uk NS | N
_12(1_)__1___2(3_4_%{) 1_(1+_n__ 10) (3. 79)
P’ c 2 VNS Cu Vel vk
W

where, by a convention of the analysis, the real part of
1
n ic Yz . i s . .
- t
<1 + N k) is positive, in order that the perturbations to

the flow field vanish as y = -,
Matching of the normal surface stress, together with the

other boundary conditions, yields the following relation between

@1(O+;e), c, and n:

@(0 +2\)k . v k3, . n+v k%
1cC W i1cC W
c = - {“( ars >}+4(c )('T+“kc )
pW W W W w
U 4 Sk 3 . n“lkz\)
+z(-—9-)—————12°< >{1 z(——;”><-c——» W>} (3. 80)
pw C W

w
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Utilizing (3.78), (3.10) and the NR solution (3. 66) for @1(0+;e) we

obtain

O

v
NR: n = —2vwk2 PR A KK + o(c) (3. 81)

Py ©

o

where the second term is proportional to the imaginary term in

(3. 66),
c=cyl tetnfe| Ay +ehy +ees)
where .
V, 2.\% 1
- _p (9 ) - z
€o Cw<l pw(cw) ' Cw *(g/k)
A% 2
Ay o= == A (_9>
pw €0

b, = F’i (%’-)2 €2 +y - A,)

c

"

o + o(1)

and thus, from (3. 40),

(2]

0
l-V_
0

& =
0 o
14,
0

The square root in < is taken positive, the sign of ¢ being indicated
by the sign of €t
Several characteristics are apparent in the above. First,

the solution is not unique to all orders, since too few equations
Vo

exist to specify all the constants. Secondly, the term ¢ £ = kK
w 0

in (3. 81) implies a generation effect for V >0 (e.g., waves

OCW

moving in the direction of the wind with Uy > co) and a damping
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effect for V0 Sy < 0 (e.g., waves moving faster than UO’ or waves
moving in opposite direction to the wind),

In the previous analysis, the O(1l) shear stress at the surface
was not matched, it in fact being assumed zero. As the O(l) surface
shear acts to set up a non-uniform current in the lower fluid, such
an assumption is warranted provided that the current generated during
the time interval over which the analysis is valid is small compared
to -c. Assuming the O(1) horizontal velocity is -c throughout the
lower flow at t = 0, a non-uniform current is generated in a time
interval of O(hZ/\)W) (Lamb, 1945, § 334). The ratio of this current
development time scale to that of viscous decay is

h2

v
w

2 2
(Vwk ) = (kh)" >>1

Since the induced surface current cannot exceed O(VO) =Ukn =1)
without the surface shear changing appreciably, it is therefore clear

that the O(1) surface shear may be neglected.

G. Stationary Wall

In this case, from (3.42), (3.66) and (3.58),
5§, = +1

6, = -2

and, as mentioned previously, the expansion (3. 24) for u, is not
0

utilized,
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PART IV: COMPARISON WITH EXPERIMENT

The theoretical results have been compared with the experi-
mental data of Kendall (1970), Shemdin and Hsu (1967), and Sigal
(1971). The principal characteristics of these studies are listed

in Table 1,

A. u(E,n)

In Figures 2 through 4, the total velocity u(g, n) in the
€-direction (3. 75) at various constant values of 1 is compared with
the data of Sigal, which has been transformed to the (g, ) coordinate

system. The values kn, =6.91 X 10—5, = 2(u, /U ) = 2.98 10—3

are used, correspondingqco the mean velocity prof11e obtained at the
same Reynolds number and position in the wind tunnel with a flat
lower surface,

As can be seen, the theory predicts both the phase and ampli-
tude of the u-fluctuations with accuracy.

It is evident from (3. 75) that the u-fluctuations are dominated

by 58(?]‘). The outer mean vorticity equation (3. 33) can be written

as
2 T
— 2= s _ .la° 2 1712
.g(d_,vsz-§>+ex?{z‘"1 dfﬁz(l'rlz/“*o)* 7z (3.82)
dn *0 J
1——
T, .+ = g2 ~
cod (IO,
dn ui
0

-2 . .
The left-side (convective terms) are O(¢ ), whereas in either case

. -2
the mean vorticity generating terms on the right are o(¢ ). Hence,
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—0
So

the O(ka) normal surface stress is that of a potential flow.

is an '"inviscid'" term, as we expect since, to lowest order,

B. v(§,n)

In order to facilitate comparison with the data of Kendalli,

the velocity in the y-direction at constant values of y is plotted in

Figures 5 and 6, using equation (3.76). The values of kn, and u, /Uoo
0

0
are from Table 3 of Kendall (1970). Note that the wave speed is non-
zero,

It is apparent that the amplitude is predicted within 20%,

although the phase is in error by approximately 35° at both elevations.

The velocity in the y-direction, ’{rJ(x, y), is related to u(g, n) by

- _ -ky . ~ky
Ssy) ka e sinkx u(g, 'r])/u*0+ (1 +kae coskx)v(g,’n)/u*o
u
>kO Jl + Zka.e—ky coskx + (ka.)2 e"Zky
using
u = UM) + kae'™° u (n) + O(ka)®
. 1 : _
v = kaelK v, (M) + O(ka)® = -3%2 Ve = _ikae XS ks+Ue EM)
and
kS | KX 5(ka)
e XY = &K, o(ka)
thus
YEuY) - 4 ikaelkS ¢ KN G - ikaeikg(k-s- +ﬁe‘k”) + O(ka)®
u*O “*0

and therefore, to O(ka)



X!X—’L) = -ikaelkx _k_§__ = ~1i kae1kx __S__
U, " e
0 0
where N "
-0 e (y+0r2) -7 T E{(27) 2
S° = - % +€{—L—K e +—-_—.___.Kl }+O(e).

It is evident that the measured phase shift of ;:(x, y) implies an
imaginary term in §0 at O(e), e.g., in -S-(Z) . If there was a term

in §g of the form

+i( positive function of 7) (3. 83)

the theoretical curve would be shifted towards the experimental data
(es g, the maximum in ’;(x, y) would move from kx = -1m/2 towards
kx = -550). Considering again the outer mean vorticity equation
(3.82), the diffusion terms on the right side, using (3.63), (3.70),

(3.67) and (3. 71) are
~ -n i 2e”"
NR: Diffusion terms = +2(2a-a)e +—— +0o(l)
iyl

R: Diffusion terms = O(1) .

This therefore implies that, contrary to our expectations, §(2) is
also an "inviscid'' term. Note that in the no relaxation case,
lleluiO and (1'!‘11 + §§5 1)/u>2k0 are each O(e_l) , but their
O(e-l) contributions to the diffusion terms exactly cancel, It is
reasonable to infer from this that the phase of ?;(x, y) is sensitive
to the predictions of the Reynolds stresses, a result that will be
considered later in detail,

In Figs., 7 through 9, comparison is made with the data of

Sigal (¢ = 0). The amplitude is predicted within 10% at all three
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elevations, although the phase is in error by approximately 4°,
Note that the measured profile is again shifted downstream with

respect to the theoretical predictions.

C. Reynolds Stresses

Figures 10 through 12 indicate the data of Sigal (1971) for
the Reynolds shear stress in the (§, M) coordinate system and the
theoretical calculations using the relaxation and no relaxation
models, The theory implies that the O(1) Reynolds shear (3.12) is
equal to p uio throughout the flow; however, the turbulent boundary

layer thickness in Sigal's experiment was a fraction of the wave-

2

oo) at kn = 0,262 and

length, and the [O(1) Reynolds shear]/(% pU
0.524 was 2, 25 10_3 and 2,0 10-3. For this reason, the values
2(a, /U_)* =2.25 107> and 2.0 107> were used in the calculations
of th(()a Reynolds stress at kn = 0,262 and 0.524, respectively, using
(3.10), (3.12), (3.63) and (3.67).

Several results are evident, First, the data clearly indicate
both significant non-linear (higher harmonic) effects, and a region
of separation (zero shear stress) within the flow near the wall.
Secondly, the no relaxation model predicts the magnitude of the
shear stress with reasonable accuracy, but not the phase, whereas
the relaxation model predicts the phase accurately at larger values
of  while not accounting for the amplitude. It is of note also that
the O(ka) shear is decaying on the scale of §, while the theoretical

values decay on a scale of A(= 368) due to the assumption of an

infinite log profile,
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The importance of relaxation’ within the flow can be illumi-
nated by the following. The time scale of the turbulence is, by
(2.4), (Tw)~1 = wdl, while the time required for a fluid parcel to
experience a complete cycle of the fluctuating rate of strain is

A/U(n). The ratio of the reaction time of the turbulence to this

convection time is, for c = 0,

—1 "~
. w ~
Ratio = T = TIN %(n/n* )
AU 2na 0

For the values of T in Figs. 10 through 12, we have

~

n Ratio
0.157 0.64
0. 262 1.14
0,524 2.5
The O(ka) rate of strain ka,e:.Lkg 1512 is, on the outer scale,
) * - ~ o~
kae k> Sy, = ka coskE 79-{- 28y Z[(7+M2)e_n+e+nE1(2'r]):]+o(1)}

which is in anti-phase with the wave, The above argument would
imply that for ?‘]J small, the O(ka) Reynolds stress should be roughly
in phase with the corresponding Reynolds O(ka) rate of strain, and
as M increases, a significant phase shift should occur. The data
of Sigal (Figs. 9 through 11) indicate the maximum of the Reynolds
shear moving from ~ 225° at 'ﬁ = 0,157 to 270° at ’ﬁ = 0. 524.

The defect of the relaxation model is its failure to predict
the correct amplitude of the Reynolds shear at large ?f, and its in-
ability to account for the close phase relation between the rate of

strain and the Reynolds stress at low T. As a result, the relaxation
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model generates no contribution to the surface normal stress at
O(e) or O(e"z) (see (3.67), (3.68)).

In a recent modification of the model equations, Saffman
(1974) has included additional terms representing a non-linear
interaction between the mean vorticity and the rate of strain
in both the constitutive equation for the Reynolds
stress (2.1) and the relaxation equation
(2.4). As a result, the model is capable of accounting for the in-
equalities in the normal Reynolds stresses in a constant shear-stress
boundary layer (compare (3.12)). The equations become (in cartesian

coordinates)

[
vn e e _2 Ae -
u; uj = 2A o Sij 3 e 61j +—;2 (eikm Sjk + ejkm Sik)Qm Xij (3. 84)
Dx.. g
i _,pe D ‘e g D i}
Bt - AL Doyt 2 m Dt Ci1em Sik * ikm Sk - 95 (3.85)
where eijk is the cyclic tensor, = 1.0, and Qm is the mean vorticity,

The quantity e is identified directly with the turbulence kinetic energy,
and A is a constant with value 0,09. In order to roughly estimate
the effect of the additional terms, the solutions obtained previously
were substituted into the right-side of (3.84), The outer shear
stress was changed to the lowest order, indicating one might expect
significant changes,

As Kendall (1970) did not measure the normal Reynolds
stress in the y-direction, the turbulent shear stress must be com-

pared in the (x, y) coordinate frame. The transformation is
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_ ik%} .2
Ty {0T12 + ka Real( T, e ") [1 -2 sin“9]

_ ik%} .
+{0T11 o2z * ka Real ([ 1'|'11-1'1'22]e sin® cos®
where © is the angle between 'ég and gx

(éx A ég = +3Z sin®) and

1
- - - -
sin® = - kae ky sinkx{l + 2 kae ky coskx + (kae kY)Z} .

The model equations utilized predict =0 (see (3.12)),

0117022
whereas in a flat plate zero pressure gradient turbulent boundary
layer the ratio 0T22/0T11 varies from approximately 0,25 to 0,50
for y/6 < (0.1, 0. 7) (Hinze, 1959).Jr As -?l'a"zlaf is rouighly 0.075
in a flat plate boundary layer for y/6 € (0.1, 0, 8), the comparison with
the data of Kendall is therefore somewhat qualitative.

Fig. 13 indicates both the relaxation and no relation cases,
using (3.12), and the same calculations assuming OT22 = % 0’1'11
= -1(0.01)U% (Kendall, 1970, p. 277)." The contribution from the O (ka)
normal stresses 1'\'11 and 1’1'22 was less than 5% of that due to Tl 2(%, n,
ka). It is apparent that the no-relaxation case reasonably predicts the

amplitude of the O(ka) component of the shear in anti-phase with the

wave,which is one source ofthe phase shiftin @1(O+;€) (see equation (3.61)).

See above, p. 77,

It is possible that the ordinate on, Fig. 13 of Kendall has been in-
correctly labeled as ''-2 < u’vt'>/U°o .'" As the edge of the sublayer
is approached from above, 'the Reynolds shear stress should fluctu-
ate about a mean which is approximately ui . Since

C, = 2(u, /UQO)Z = 4.5x 107> for U_ = 5.5 m/s (Table 2 of Kendall),

2 .
it is possgble that the ordinate should read '"- <u1': vé>/U°o.” In Fig. 13,
both cases are shown.
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D, Phase Shift of the Surface Normal Stress

In the limit of € = 0, the O(ka) normal stress at the surface
is exactly in anti-phase with the wave, It is reasonable, then, to
define the phase shift relative to kx = -, a positive shift ¢p1 imply -
ing a shift downstream with respect to the wave trough.

For the no relaxation case, from (3.66)

)2

4 - tan] 12¢k% + 0(e?) + O(ka
= tan 2 2
Py 1 - 2(y+m2)e + O(€“) + O(ka)

It is clear from (3. 81) that the phase shift ¢p is directly
1

responsible for the generation term in n, where a = Aent. The net

drag on the wavy surface in the x-direction due to the normal surface

stress (including all higher harmonics) is

ka .
C = — ¢_ sing (3. 86)
Dp 2 Py Py

where Cp is the amplitude coefficient of the fundamental harmonic
1
of the surface normal stress:

2

c. = ka<ﬁ1(0+)ét(0+) + O(ka)2>/%pr

P

Note that ¢p depends non-linearly on ka through terms « (ka,)3 eikx
1

in the expansion for & (g, n).

The data of Sigal indicate a value of ¢p1 between +3° and
+4, 50, based on his calculated value of CD and the maximum and
minimum measured values of cpl. Using 11{31’]* = 6.91 10'5 (¢ = 0.104;
see part IVA) the no relaxation model predicts +2. 6°.

The phase shift dp' Vs, cK/u* for the data of Shemdin & Hsu
1 0
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(1967) is presented in Fig., 14, The theoretical predictions of
Miles (1959a) are also shown. Although the no relaxation model
predicts the correct qualitative behavior with ¢, it underestimates
dpl by 10°-20° for 1.5 < CK/u*O £ 4,0, Part of this discrepancy
can perhaps be attributed to higher order terms in €--indeed, € in-
creases from 0,216 to 0,347 as cK/u*0 grows from 1.5 to 4, 0.

The data of Kendall (1970)a.re plottedin Fig, 15, along with
the theoretical predictions of Miles (1959a), and the calculations of
the no relaxation model, using the values of kn*oand u*O/Uoo from
Table 2 of Kendall (1970), The theory manifests the correct quali-
tative behavior with cK/u*0 over a wide range of both positive and
negative wave speeds. As Miles' theory relies on the existence of
a critical layer within the flow field, it is inapplicable for c < 0,
The theory also indicates qualitatively the observed downshift of the
¢ vs. CK/u* curve with increasing Reynolds number. However,
it ilearly unde(:)restimates the phase shift, As in the data of Shemdin
and Hsu, € increases with increasing wave speed, and at large
positive wave velocities (cK/u* > 2.5), higher order terms in €
will be significant, Furthermore, non-linear effects may be im-
portant in Kendall's data (ka = 0.196); Townsend (1972) has argued
that the linear approximation fails for ka > 0.10. Nevertheless,

the data near c = 0 appear to indicate that the no relaxation model

is lacking a positive term of O(€) in tan Q‘p .

1
From (3-61)9
+ u2 00
& (o ;e) * ~ o~ P 4T ~
R S _.70 %- f(l+e@mn)5dn-ie23 1122 <iﬂ+i-2€2
p € ’0 0 uy

0
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For the no relaxation case, we obtained ((3.65), (3.64))

1 2€(y+én2 2
-}—C-Z+—J12——) + O(e“)

K

1 ~
k—f(l +e0nT)SdR

+iZe +O(e2)

o ,T
-3 ezj 1 212 a5
0 u,
0
As indicated in (3, 83), the discrepancy between the predicted and

measured values of the phase of 'x\;(x, y) could be accounted for by a

term in §g(’ﬁ') of form
+i(positive function of 'ﬁ) .

Clearly, such a term would also add a positive term of O(€) to tan ¢
t 1
As was shown previously, the phase of §g(1’}) is sensitive to the

functional form of the O(ka) Reynolds stresses, and it is consistent
to conclude that the underestimation of §_  is due, in part, to mis-
prediction of the O(ka) Reynolds stresses.1

In addition, both the relaxation and no relaxation models
predict (see (3.57))

2| ~0 as F-o0",

1
1722t 3 .

. . d 1 & + .
— T = .
thus the contribution from ar, (1 22 + 3 1 ) to @1(0 i€) is zero
(see (3.59)). As in a constant-stress flat plate boundary layer, one
does not expect equality of the O(ka) normal Reynolds stresses at
the edge of the sublayer; however, the contribution to @1(0+;e) would

2 2 2
be O( ) = (u, /)" O(e™).
¢ P *o
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E. cp1

The variation of ¢. with wave speed for the data of Kendall
1
is indicated in Fig, 16, The no relaxation case predicts the

pressure coefficient within 15% for -0.4 < c/Uoo < 0.4, For com-

parison, cp for a potential flow of velocity Uoo—c is also presented,
1
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PART V: CONCLUSIONS

The following conclusions can be drawn:

1. Both the relaxation and no-relaxation models accurately
predict the O(ka) horizontal velocity,

2. Neither the relaxation or no-relaxation models adequately
represent the O(ka) turbulent Reynolds stresses. A more suitable
relaxation hypothesis (such as (3.84) and (3. 85)) is needed.

3. The no-relaxation model predicts the correct qualitative
behavior for the phase shift of the surface normal stress for a wide
range of positive and negative wave speeds; quantitative predictions
are deficient due to inadequate representation of the turbulent
Reynolds stresses and higher order effects in € and ka.

4. Both the relaxation and no-relaxation models accurately
predict the coefficient of the fundamental harmonic of the surface
normal stress over a broad range of positive and negative wave

speeds.
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Appendix I: The charge in the normal velocity across the sublayer

Consider the wavy surface to be smooth., From continuity
(utilizing the notation of (2. 9)),
kn
+l 8 _l
v(gE,m) = -J ZI m“({f 2 u)dk'n
kn

where  kn_ = kn = (ka)® cos® kE + O(ka)>
y=a coskx

and JE,N)=1+2 kae-kn coskg + O(I(a)z.

Assume that, within the sublayer N =n < Ng1, * where

n =N <a,
sL Edge of sublayer
Cu .
u = uy(€) f( —T)ﬁ) - ¢ +kae'*® ¢ + O(ka)? (1. 1)
where ¢ = n-Ng +a eikg e-kns(e-k(n-ns) -1) + a O(ka) is the

distance normal to the surface; f(§+) is a universal function, inde-

kE

pendent of u*A(V, with f(o) = 0; and c{lkae'" " is the orbital velocity

0

at the surface,

Expanding the integrand using (3.10) yields, to O(ka),

kn u,
. ik : d +.+ df 0, -k
v =-i kae" EJ‘ u, -—+(f(’r] m )+u* — v (e T]-1)
0 1dn 0 dn
- e-kn Uy, f(ﬂ+) +c + e-kn c dkn
0
Nux
+ 0
where n = 5 .
Now
kn
d +., + kv + +
u, — M £{(n))dkn=u, — f(n_; )N
fO *1 d'ﬂ+ *1 u, sL.” ‘sl

where nZL is a constant, and knsL o kV/u_*O.
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+
Since we expect di(n ) to be bounded in 0 < n+ < 'q+ ,
d'r]+ sL
kn Uy Y kN
- 0 -k
f U, —di+——-9 e XN - 1)dkn Su, — 11;18:; df [\(l—e My dkn
0 "0dn kv 0 kv anti¥o
"%, af |/ gn)® 3
= Uy o max —+‘< > + O(kn) >
0 dn
Similarly,
<M + 2
l e My, fnh)awn | < u, maxltm®)]an + 0
0 0 0
and

kn
J‘ (cQ + ce_kn)dkn = ckn + c(l-e_kn)
0

Thus, writing kn*o = anL & 11;: » and using the fact that
0
u, = Ofu, ), and c2 = O(c),
1 0
- alikE{O@, Kn, )+ Ok, )} . (1.2)
v(E, nSL) = kae *O *0 *0 }

For a rough wavy wall, the functional form of the tangential
velocity within the sublayer is not known, since it depends on the

shape of the roughness elements, and (I, 2) is taken as an assumption.
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Appendix II: The change in the stresses across the sublayer
Consider the curvilinear coordinate system in Fig. II wherein
(dX, dY) are incremental lengths parallel and normal to the wall,
respectively, and u and v are the corresponding average velocities.
The equations of motion within the thin roughness layer,

making the boundary layer approximation, are the following (Goldstein

(1938)):

gu , 0v , v _
5— + ——-Y + ﬁ, = 0
2
du ou uv 1 9P 9 u 1 0T , 27
Ume tVam + = =-= S= +v & o e
X oY R p 90X BYZ 0Y = Rp
2
v L( - a_v_)
TR G p P-u oY
where T = -pu'v' is the turbulent shear stress
P=p+ pv'z, p is mean (static) pressure
= radius of curvature of surface
= (-ka k sin kx + ---)_1
Writing
ikX 2
u = uO(Y) + kae ul(Y) + O(ka)
v = kaelkX vl (Y) + s 00

T = To(y)+ kaelkx'rl(y)+---

k

P = Po(y)+kaei XPI(y)+---

the boundary conditions are
u(X,0) = -c + kae1kX cQl + O(ka)2
v(X,0)=0
T(X,0)=0
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Substituting,
0 _ —?-— (Vduo +T0(Y)>. dpo - 0
oY dy p T ody
dv dv
. o a. svn2 1 4 ( 1>
1ku1+dy_ 0; 1ku0_ "o & Pl udy
du . du T, .
; _9_ ik _d_( 1 1), i2kTo(y)
1ku0u1-l-vldy-—p Pl+d.‘i de +p)+ 5
Thus
du T A(y)
0 0 2
YV ——  + = u (IT. 1)
*
dy p 0
Writing for the O(1) velocity (assuming a smooth surface),
(59
Ung = Uy - C
0 0 v
we have dvl
(P-4 =) 1 1
AL dy’ :_iuz*kn*f £2(C)dc tiZcu, kn, f £(C)dC
P 0o 00 0 “0°0
Across . 2
sublayer ~ € k'ﬂ*o
- The integrals are independent of kn, ; thus
dv1 0
P+ ) -
p———F = -iuy kn, 9 +i2u, kn, S c
P o Yo ! o Yo 2
Across . 2
sublayer e k"’l*o
where 191, 292 are real constants,
Using the notation of (3.10), (IT. 2)
51 ik ov . ik§ f2 2}
A{( i 1”I‘Zz)ka,e - \)-é-ﬁ- = -ikae kn*o Lu*o 191-2u*0c 192+c
Across
sublayer
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Yo
Since k’r]* ~ expl| ~ —————
0 (Uo-co)e

where (UO—CO)E: - 0+, the change in the total normal stress across
the sublayer is transcendentally small compared to any of the terms
in kaelkg ®, (o+;€).

Similarly,

du T du dv .
d ] 1, 0 1 ik . 2k
V)i " Yoaw T Rt

T oY)

du T
where Vv —d—%— + pl is the complex amplitude of the total O(ka) kine-

matic shear stress,

Then
kn
*o

i . 2
= + = JI P, (kY)dkY - -—I T (kY )dkY
ol P 15 Tokv)

Across
sublayer

kn* dv1
+ f ( 1de Y de)de

Now, using (IL. 2),

k),

—f Op L (kY)dKY = O<kn*

Pll
0

SFC>
T (y)
0
5 < u,

and since 0 < in sublayer (as dzuo/dY2 < 0 in sublayer
0
of a flat plate zero-pressure-gradient boundary layer),
|
0 _o0 2
J — dkY < kﬂ* u
o P o *o

Also
KT Ly

kn v
Id}t@( du d—vl\)= u.v ! 0+ ZiJ 0u u,dkY .
lde Yo dkY 0’1 0 0 170
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ug v, = O(uZ kn, ) + O(c® kn,, ) using (I.1) .
0 0 0 0
Furthermore,
2 u; ug < u(z)-o—u?

and assuming in sublayer (for smooth wall),

Y u, (X) . 2
u = u*(X) f(———j:—-——) -c+ cha.e1kX * Ofka)”,
kn,
Zlfo U1%0 kY = Ofuf kn, )+ O(c?kn, ).
0 0 0
Thus
du T P
A(v—l P2 = O(kn* ——-L——l SFC )+ OmZ km, ) (11.3)

Across >
sublayer + Ofc k'r]* )

0
As indicated, the change in the complex amplitude of the total O(ka)
kinematic shear stress across the sublayer is transcendentally
small compared to any of the terms in ;T;,(n).
For a rough wavy wall, the functional form of the tangential
velocity within the sublayer is dependent on the shape of the rough-

ness elements, and (II. 2) and (II. 3) are taken as assumptions.
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Appendix III: Contribution of the Inner Shear Term

to Surface Normal Stress--relaxation included

From (3. 60),

T ~ 2. 2 2 - ~.2 ~ 2
(2L g2 0 0 B e )
Yo « @ a « @ dn - dn
° {Ud2§/d~2 G5+ -L §}
i1 N TYUS Vi
T e 1b
(ﬁ_ ~13>
n
As before (3.62),
¢
= ~ 252 o~ 2
f§{1+°£l_ s }dfﬁ= o(l) .
0« o o
Similarly
¢ \
— ) e —_—~ 1 ~ o~
If NﬂUdﬂl='I Nn(EE)u—feMnmn!
0 0
2 2
< max ‘N|(—%— - lel(g—z')(pfﬂg-%)>= o(1)
le |k 0==C

1
Since l€| << { << |€|E (see (3.42)).

Also
¢ — e ¢
[LFED5R)F =T 55| =om)
0 dn dn an 0 0
Now in the inner region,
2= S =
=/d”S 3 l = U /d’S 2= S
U(——-—+S>+—:S: -——+es>+T
dr o ? (dn*?‘ ke n™?
2.1
d
% 1, s806), o0
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Thus in inner region,

5 {I_J (%577 - §) + L 's‘}
K

Kn
- ib =
— 13
(U - =)
2.1 n ¥
*2 (d”S 1 €
{2 (L2, - 5) + L) o)

- iK sgnie) dn F 5

b, oK sgn(e) +in (1 +ebnle|+etmn)

i %
Now, d2551 /dn 2 is not known, However, from the boundary condi-

——— % i %
tion on - ul' u'2 (equation (3.29)), it can be shown that n 2dZSlS/dn 2--»0

% * i *
as N — 0. Furthermore, 7N 2 d‘2 S]é/d'r] 2 should tend towards
~2 ~ %
N d2 Sg /d1’]2 asmn — o, and from (3.51),
2 0
?]»2 d—2§5 - 0 as ?]J—' 0.
dn
i

Inspection of the equations for S5 and N ((3.45) and (3.47)) indi-

0
*
cates that the only singular points are n = 0, x. Hence we replace

* i * £
n 2 d2 815 /dn 2 by its maximum absolute value for 0 = n < Q/|€|

(which is independent of €), and write

I

i %k ~
¢ -ik sgn(e) n*? a®si/an™? &5 2

% i *
< L max|n 2d2815/d1”| C

® %
0 b, Ksgn(e)+n (1+ebn|e | +eonn™) P13
= o(l).
Similarly, since CZ = o(e)
- - i n* dfﬁ . CZ
| E % | < bk 2 = o)
0 by ;% sgn(e) +im (1+eon|e|+eonm’) 13" ¢

Finally, it is easy to show that
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¢/lel

J

iJeIsgn(C)n*Z dn* = o(l)
X *
K sgn(e)+in (1+€@n|€|+€?/ﬂ’ﬂ )}
-1/2¢ -1/2¢

by dividing the integration into 0 =n < < and ¢ =

0 {b13

st s
when € > 0, and by simply using1 4+ €fnM 2 1 for 0 <7 < { when ¢ < 0.

Thus,

u
( :°2M€%.

¢ ~
fo 1712 dn



-91-

Appendix IV: Contribution of Quter Shear Term to Surface

Normal Stress - relaxation included

From (3.61) and (3.67),

0
o0
-X
_iJ. [Ty W = ul (2b) & + 2 3-a) Le +O<€i)b}dXK
cn 0 13 }
C gng {1 + e (fnx-~ " )
Now
00 o0 -x
-x ib, Ke 7 dx
d 1
/ € i’él K>:1+O(g)+e/ 3 Y
J 3 f 13
C l+€<?mx- ” c x<l+€(0/nx— = ))
o0
e nx e * dx
- ib13K
1+e <Q/fzx— )
C x

The cases € > 0 and € < 0 must be considered separately., Note that

1
le] << ¢ << Jelz << {.

Case I: >0

First, we show that ¢ /nC = o(l), as follows:
a) € =+

Assume ‘e@zzgl—’oo as €~ 0.,

1/e
Then 2 ) _ L (IV. 1)
on g €éng
But { >> ¢ >> e'”e, = e +o0, and therefore %(Celle)*”roo-

However, since { = 0, /n{ = -w. This contradicts the result (IV.1),

and .. € én > o,
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b) € £ O(1)

Assume € /n{ = A + 0o(l), Ais real, A # 0.

Then ( = exp (%(1+o(1))) and { << 1 =2 A <O,

However { >> ¢ = A> 0 = contradiction and A = 0,

Hence € = o(1).
Now for e > 0, { < x< w0,

1 +ethnx=21+ebnC

and therefore, since { >> ¢,

% o0
ef st < Efe-xdx _e (1L+0@) _ |
x<1+e(ﬁ/nx_1_111_3£)> ¢ 1 +etnC C (1 +enC)
¢ = {
Similarly,
0

-X 1 0
e'/‘ brxe dx < £ {— j onx e dx +I nx e-xdx}
¢ 1

) +A<mx_1b13K> 1+e0nC
¢ ) x
= {y+zgu)+qn}=omh
1+enC
Thus for € > 0,
0
-xX
T = 1 + o(l) .
¢ 1+ €(P/nx— 13K)
X

Case II: ¢ <0

Divide the regions of integration into two:

-1/2¢ -
and e 12 < x< o, Fore<0and§,sx$el/2?

-1/2¢

l+ehmx=14+elne =':.

-1/2¢
{ £x<e

(1)
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Now
-1/2¢
e
. e xd);b " < _J%L--i— (1 +o(1)) = o(1)
¢ x(1+€(ﬁ/nx - }13 )> (-f)
and
oo

o0
e e *
€f : SJ—E—T—dx=O(1)
% 3

ib, K
13 1
72 (1+€(.0//zx--—;———-)) Z1/2¢
Also  -1/2e ) e—l/ae
ef bnx e dzcb % SZ‘G‘{-j@nxexdx+f@nxedej’
13 )
c <1+€(ﬂnx———-—x ) g 1
< 2|e] {‘y+2E1(1)+o(1)} = O(e)
and
e ]
~-X -X
. nx e d;;'T < j xQ/n)éeK dx = _ o(1)
j (1 o nsn 13 ) o 1/2¢ 13
z1/2e te nx- ———)
Thus for € < 0,
o0
-X
/ e dx = 1+o0(1)
ib, K
¢ 1+€(@nx— 13 >
X

and therefore, for |€l -0,

00 u, 2
-if T d'ﬁ' {2 {(Zb K + 2’5[-01)6:2 + o(ez)}
112 € 13 :

Cﬂg
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Appendix V: A Note on the Critical Layer

It is important to distinguish between high Reynolds number
laminar flow and fully turbulent flow over a sinusoidal boundary
with small slope. For the former case, the O(ka) mean vorticity

equation can be written as (Benjamin, 1959)

2
U<i—§--k28> -‘-i——UZs -
dn dn
iv [ats 2d4%s . .4 1 atu U\ -k
‘T{“‘z 2k —7+ks+<k‘——4' ”—3> }
dn dn m

which is recognized as essentially the Orr-Sommerfeld equation,
written in (€, 1) coordinates. Solutions for the high Reynolds number
laminar case have been given by Miles (1957, 1959) and Benjamin
(1959). The dynamics are governed by the inviscid terms (Rayleigh
equation) except at the critical layer, where the Rayleigh equation
is singular and viscous stresses are important, and at the boundary,
where viscous stresses must be included to satisfy the no-slip
condition,

However, for the fully turbulent case, the molecular stresses
are unimportant outside the viscous sublayer, and the O(ka) mean

vorticity equation is, using Saffman's turbulence model,

2
2 2 ., deT
o5 100) - LU0 )
d L 2 -kn
4-2-(—1?]— lTll +14u*0e
u*
where U = ——Q/n(—TL) - ¢, and 1'1'12, 1T11 are the complex amplitudes

n *(
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of the O(ka) turbulent Reynolds stresses (see (3.10)).

It ig not reasonable to assume a priori that the turbulent
Reynolds stresses are unimportant except at the critical layer
vis-a-vis the laminar case. The critical layer is a pertinent
mathematical characteristic of the Orr-Sommerfeld equation; for
our analysis involving the limit of vanishing skin friction, it held
no particular significance. This result is not unique to our inves-
tigation. For example, Townsend (1972) indicated in his numerical
study of fully turbulent flow over a sinusoidal boundary that the
critical layer held no special importance, either. In fact, for many
of his calculations, the critical layer lay outside his range of
numerical integration, lying between the wavy surface and his inner
boundary conditions which were taken at a position outside the

viscous sublayer,
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