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ABSTRACT 

The linearized, two-dimensional flow of an incompressible 

fully turbulent fluid over a sinusoidal boundary is solved using the 

method of matched asymptotic expansions in the limit of vanishing 

skin friction. 

A phenomenological turbulence model due to Saffman 

(1970, 1 97Li) is utilized to incorporate the effects of the wavy boundary 

on the turbulence structure. 

Arbitrary lowest order wave speed is allowed in order to 

consider both the stationary wavy wall. and the water wave moving 

with arbitrary positive or negative velocity. 

Good agreement is found with measured tangential velocity 

profiles and surface normal stress coefficients. The phase shift 

of the surface normal stress exhibits correct qualitative behavior 

with both positive and negative wave speeds, although predicted 

values are low. 
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INTRODUCTION 

The understanding of the dynamics of the wind-induced 

growth of a small amplitude water wave is of great practical sig-

nificance. Although it has received considerable attention over the 

past hundred years, the problem has remained basically unsolved, 

principally for lack of inclusion of the effect of the wavy boundary 

on the turbulence structure of the wind (Miles, 1967). In this 

respect, it provides a valuable context in which to examine the 

ability of phenomenological turbulence models to predict the effects 

of mean streamline curvature. It is well known that lar ge changes 

in turbulence structure are produced by a relatively small mean 

streamline curvature; in fact, significant effects on shear stress 

and heat transfer can occur even for radii of curvature more than 

a hundred times the shear layer thickness (Bradshaw, 1973, see 

especially Table 1). 

This research concerns the two -dimensional flow of an 

incompres sible, fully turbulent fluid over a single Fourier com-

ponent of amplitude a, wave number k (== 21T/wavelength), and velocity 

l 2 
c (~ ± (g /k)2 for deep water gravity waves, where g = 9.8 m/ sec ; 

the case of a rigid wall (c == 0) is also considered). The maximum 

wave slope (ka) is taken to be small in order to effect a linearization 

of the equations of motion; observations of non-breaking oceanic 

gravity waves give values of ka between 0.025 and O. 30, with the 

maximum value predicted by Stokes being 0.45 (Kinsman, 1965). 

A turbulence model due to Saffman (1970) is utilized to predict the 

upper flow field and surface stresses. A subsequent modification 
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of the model equations (Saffman, 1974) to include relaxational 

behavior of the turbulence is also investigated. The lower flow 

is taken to be viscous and laminar, and is analyzed according to 

classical techniques by linearization in ka (Lamb, 1945). The 

linearized equations of motion in the upper fluid, together with 

their appropriate boundary conditions form a singular perturbation 

problem in a limit of vanishing skin friction. 
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PART I: BRIEF HISTOR Y OF MATHEMATICAL MODELS 

OF WIND-WAVE GENERATION 

The das sica1 Kelvin -Helmholtz treatm.ent (Lam.b, 1945) 

assum.es uniform. flow in the upper and lower fluids and predicts a 

m.inim.um. velocity difference for wave growth of 6.46 m./ s for air 

over water. At this difference, capillary waves of wavelength 

A = 1. 73 cm. first appear. For the growth of a gravity wave of 

A = 1 m., a velocity difference of at least 35.7 m./s (69.5 knots) 

is predicted as necessary. If this velocity is assum.ed sim.i1ar to 

that m.easured on a ship's deck, the wind would qualify as a hurri-

cane (Beaufort 12). An im.portant characteristic of this treatm.ent 

is that it yields a surface perturbation pr essure in perfect anti-

phase with the wave elevation (for stable waves). 

Jeffries (Lam.b, 1945) assum.ed there existed a com.ponent 

of surface perturbation pressure in phase with the wave slope given 

by 

2 
P = f3 P (U -c) 1 a 

where U = velocity at 00, y s{x, t) = a cos k{x-ct), P
a 

= density of air, 

and f3 = "sheltering" coefficient. It was hypothesized that this 

pressure com.ponent arose by m.eans of a separation of the flow on 

the leeward side of the wave (with respect to the flow at infinity). 

Neglecting the rate of work by surface shear as being unim.portant 

for wave growth, and accounting for viscous (lam.inar) dis sipation 

in the water, Jeffries obtained, by energy considerations, the 
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following criteria for growth of deep water gravity waves: 

2 
(U-c) c> 

4 \I g P 
w w 

13 Pa 
• 

No explicit means was given. however. for the calculation of 13 as a 

function of the flow characteristics. 

A mechanism was introduced by Miles (1957. 1959) to 

account for the component of surface perturbation pressure in 

phase with the wave slope for a wave progressing in the direction 

of the wind. Miles linearized the equations of motion in ka. as-

suming there was no effect of the wave on the turbulent Reynolds 

stres ses anywhere within the flow field. thereby obtaining the 

Orr -Sommerfeld equation as a description of the O(ka) dynamics. 

Viscous stresses governed the flow at the wave surface and critical 

layer (where the 0(1) wind velocity equals the wave speed). This 

"inviscid laminar model. 11 as Miles referred to it. yielded a solution 

for the amplitude and phase of the surface perturbation pressure for 

a logarithmic wind profile as a function of c/u* and kz O. where 
1 0 

u* == (,. / P )2.,. being the 0(1) surface shear and z being o wo a Wo 0 
the 0(1) roughness height of the surface. 

Benjamin (1959) extended the work of Miles by considering 

arbitrary wind profiles and wave velocity. 

In 1959. Miles generalized the Kelvin-Helmholtz instability 

(in which the entire perturbation surface pres sure is in phase with 

the wave elevation) for parallel shear flows. concluding that it 

was unlikely to occur for commonly observed wind speeds over 

water (Miles. 1959b). 
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However, in 1967, Miles critized the "inviscid laminar" 

''It now appears fairly clear, albeit less than 
certain, that the invis cid laminar model under
estimates the ener gy transfer from wind to waves 
over at least a significant portion of the spectrum 
for an open sea. " 

(Miles, 1967, p. 165) 

lIlt is conceivable that the consistent discrepancy 
between field observations and theoretical predictions 
(on the basis of the [inviscid] laminar model) of wave 
growth could be attributed to a consistent overestimate 
of Zc [the height of the critical layer]; however, this 
appears unlikely, and the most plausible conjecture 
is that the wave-induced turbulent Reynolds stresses 
are, in fact, not negligible over a significant portion 
of the gravity -wave spectrum. II 

(Miles, 1967, p. 168) 

(my underline) 

There have been several attempts since 1967 to account for 

the effect of the wavy boundary on the turbulent Reynolds stresses. 

Davis (1972) examined numerically two different models of the 

turbulence for the linearized problem, one patterned after the 

turbulence energy method of Bradshaw, Ferris, and Atwell (1967), 

and the other manifesting a viscoelastic constitutive relation for 

the turbulence. His results were inconclusive due to difficulties 

experienced in accounting for the boundary condition on the tangential 

velocity at the surface. Townsend (1972) treated the linearized 

problem using a turbulence model similar to that of Bradshaw, 

Ferris and Atwell (1967) and obtained rates of wave growth, based 

on calculated distribution of surface pressure, considerably less 

than experimental values. He further argued that the linearized 

approach would be valid only for ka < O. 10. 
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PART II: STATEMENT OF PROBLEM 

A. Asswnptions and Turbulence Model Equations 

The coordinate system is taken attached to the wave moving 

at speed c with respect to the lower flow. The surface is described 

by 

y = a cos kx • 
s 

To facilitate handling of the boundary conditions at the surface, 

an orthogonal curvilinear coordinate system (S, il, z) introduced 

by Benjamin (1959) is employed where 

-ky 
S.( x, y) = x + a e sin kx 

il(x, y) = y - a e -ky cos kx 

As Benjamin indicated, sand il are the same as the velocity potential 

and streamfunction for irrotational motion in an inviscid fluid over 

a sinusoidal boundary. It is easily verified that at the surface, 

223 
kil = (ka) cos kx + O(ka) 

The upper flow is taken to be fully-turbulent, two-dimensional 

and incompressible. In addition, the following assumptions are 

made: 

1) The flow is exactly periodic; e. g., for any dependent 

variable f( S, il) , 

f(S, il) = f(S + A, ill 

The variable s may ther efore be expanded in terms 

of the harmonics e inks, n = 0, I, 2, ••• , and the partial 



· .... .... 
~ til -7-

~ .... 0 
~ til U 
~ ~ , 

0 1/ 
I til U ~ 0 

1/ I u 
I (1j 

bJI I 

---\-
I 

1 
I / I 

I / 
I I --

- I / 
I --_I 

I-
I --I 

/ I--
I / 

bJI / I 
(Q) I 

~ ~ / -----~~- ~ 1 

- 1 
I --,- '0 - Q) 

I .... 
I (1j 

J..! I Q) 

I b.O 
b.O I (1j 

I ..... ~ 
Q) ril I 

'-<IN J..! Q) 
::I ..... I 

\ b.O (1j ..... u , 
~ U) 

\ \ ..... 
\ \ (1j 

u 
\ \ ..... .... 
\ \ J..! 

Q) 
\ \ (: \ \ 

\ \ 
\ \ 
\ \ 
\ \ 
\ \ 

\ \ 
\ \ 
\ \ 

~ 
\ \ \ 

0 \ 
, 

H 
" 

, 
~ \ \ 

\ \ 
\ 
\ 
\ 
\ \ 
\ , 



-8 -

differential equations governing the flow are reduced 

to the more tractable case of an infinite hierarchy 

of ordinary differential equations in Tl. To lowest 

order in ka, 

f (S, Tl) = f 0 (Tl) + 0 ( 1) as ka --+ 0, 

implying that the 0(1) mean flow (e. g., the flow in 

the limit ka --+ 0) is independent of streamwise position, 

a reasonable assumption in view of the slight down-

stream variation of quantities in a non-separating 

flat -plate turbulent boundary layer. Furthermore, 

in the presence of the wavy boundary, the 0(1) mean 

flow quantities, being functions of 11 alone, are 

effectively "bent" around the wave. 

2) ka «1. Only the O(ka) perturbation is obtained in 

this analysis; hence ka should be small for applica-

bility of the solution. As net ed previously, observed 

values of ka for unbroken water waves generally are 

les s than O. 3. 

3) 11* «a, where 11* is the sublayer scale of the 
o 0 

upper flow evident in the formula for the 0(1) mean 

velocity in the s-direction (see equation (3.11)): 

In the above, u* 
o 

1 

= (T /pf2, where T is the 0(1) 
wo wo 

surface shear, c = wave speed, and lC is von Karman's 
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constant, taken to be equal to 0.41 (Coles, 1968). 

For a sm.ooth surface, 'Tl* is proportional 
o 

to the viscous sublayer thickness, and is given by 

'Tl* o 
= -BK: 

e 

where V = kinem.atic viscosity of the upper fluid, 

and B = 5.0 (Coles, 1968). 

For a rough surface, 'Tl* is the "roughness 
o 

height. 11 

Throughout the analysis, the term. " sublayer 

scale" will be used to denote 'Tl* ' since both sm.ooth 
o 

and rough surfaces are considered. 

The as s um.pti on that 'Tl* «a will be seen to 
o 

effectively im.ply that the variation in the norm.al 

velocity and total shear stress (viscous plus turbu-

lent) across the sublayer is negligible. 

4) A« 0, where 0 = turbulent boundary layer thickness. 

The m.ean velocity profile utilized is logarithm.ic, 

which is a reasonable approxim.ation provided the 

scale on which the wave-induced perturbations 

decay (e. g., A) is sm.all com.pared to the boundary 

layer thickness. 

5) For c f 0, the upper flow im.poses only a slight per-

turbation on the speed of the water wave; e. g., Kelvin-

Helm.holtz instability is not considered. 
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In the case c i- 0, the lower flow is taken to be laminar, 

two-dimensional, incompressible and viscous and is analyzed 

according to classical techniques by linearization in ka (Lamb, 1945). 

A phenomenological turbulence model developed by Saffman 

(1970; 1974) is employed. The model specifies the following consti-

tutive behavior for the Reynolds stres s 

where v. 
1 

-'-I _ 2 e S J. -2 - v. v. - - .. - ~ g .. q - X .. 
1 J W 1J 1J 1J 

(2. 1) 

t t 1 (. t t ) . t 1 ·t . .th = 0 a 1ns an aneous covar1an ve OC1 y 1n 1 

direction 

= v. + v~, where the overbar represents an ensemble 
1 1 

average at fixed (S, fl, z, t) 

i 1 t . t 1 ·t . .th d· t· v = tota con ravar1an ve OC1 y 1n 1 1rec lon 

g .. 
1J 

J 

-v! v! 
1 J 

S .. 
1J 

e 

= gij v. 
J 

= covariant metric tensor 

J 
-1 

0 0 

0 
-1 

0 = J 

0 0 1 

= a(Sl n2 = 1 + 2ka e -ky coskx + O(ka)2 
a-(x, y) 

= covariant Reynolds stres s tensor 

1 - -= z(v .. + v .. ) = covariant rate-of-strain tensor 
1.J J,l 

= Ilpseudo -turbulence ener gy, II a dependent variable 

which is governed by a transport equation (see 

below) t 

t In a later development (Saffman, 1974), e has been directly 
identified with the turbulence energy, and differs by a constant 
factor from the "e" used in this analysis. 
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W = llpseudo-vorticity,11 resembling (but not jntended 

to be identical to) the root-mean-square fluctu-

ating vorticity of the large eddies and also governed 

2" 
q 

by a transport equation. 

3 it = twice the turbulence kinetic energy = 6 v! v 
i=l 1 

'X].j = covariant l1re1axation 11 tensor, intended to account 

for the deviation of the principal axes of the 

Reynolds stress tensor from those of the mean 

rate -of-strain tensor noted in flows with rapid 

changes in the rate-of-strain. 

The transport equations for the turbulence quantities intro-

duced above are the following (Saffman, 1970, 1974) where the 

familiar summation notation is used unless otherwise noted: 

1 

oe -k " . f ik ~ 1,}2 at + e, k v = Q' el..2 Sij ~1, g g- - ew 

jk '" e + g (a - e, .), k 
W J 
- - ik j 1, i 2 

= Q'W (v. . v k n g g } - f3w 
1, J , lCJ 

jk e 
+g (a-w'·)'k 

W J 

(2.2) 

(2. 3) 

(2.4) 

In the rate equations for e and w, the three terms on the right hand 

side represent, respectively, generation, dissipation, and diffusion. 

The constants Q', a, f3. a and a are evaluated by simple considera-

tions (Saffman. 1970) and are not optimized for any particular 
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set of flows. t Their values are restricted to 

,....., 
a = O. 3 

0.075 < a < O. 106 

~ <13<1 

(J = 0.5 

(J = 1.0 

(2.5) 

Furthermore l as indicated by Saffman (1970), matching the law of 

the wall boundary condition on the mean velocity requires 
1 

(13 ~_a)2 = 

where Ie = Von Karman's constant. The above range of values 

(2.5) yields 

1 

O. 380 < (@ ~ -aI: < 0.475 

The accepted value of 0.41 lies within this interval. 

(2. 6) 

The transport equation for the relaxation tensor X .. manifests 
1J 

the characteristics that an instantaneous change in S .. must leave 
1J 

-v! v! unaltered, and that in a steady state, the principal axes of S .. and 
1 J 1J 

-v! v! are assumed to coincide. The constant r is assigned the value 
1 J 

r = 1 on the assumption that there is no significant approach to iso-

tropy in decaying anisotropic homogeneous turbulence (Saffrnan, 1974). 

t In the original paper, (Saffman, 1970), a rate equation was written 
for W2 ; for convenience of this analysis, the equation was written for 
wand the constant s in (2. 5) and (2. 6) evaluated according to the pro
cedure indicated in the original paper. 
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In order to evaluate the relaxation model, the problem was 

solved both with and without the relaxation hypothesis. 

The remaining equations are: 

Conservation of mass: 
-k 
v, k = 0 

Conservation of momentum: (Sokolnikoff, 1967): 

where 

= 1 ~ .+gjk[2~S . . -x .. J 
p , 1 W 1J 1J 'k 

- 1 "2 
~ = p + - p q = average mean normal stress, 

3 

p = mean static pressure. 

(2. 7) 

(2. 8) 

The equations are valid in fully turbulent regions only, as 

viscous diffusion has been neglected. 

The component s of the (instantaneous) vector velocity V. 
1 

are given by (Sokolnikoff, 1967, p. 122) 

1 

V. = v . /(g .. f2 (no summation on i) 
1 1 11 

For the coordinate system used, 

Since the averaged motion is two-dimensional, we may introduce a 

stream function satisfying (2. 7), given by 

1 

VI = J-"2 VI = tf) 
1 

V2 = J-"2 V 
2 = -'f.S 
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For convenience of representation, we define 

and define 

1 

U - VI = +J+2 '+' 
Tl 

1 

V - V 2 = - J+2 
'+'S 

1 

u! - V.I = V. -V. = V!/(g .. )2 
1 1 1 1 1 n 

The (physical) Reynolds stress tensor is then 

- u! u! 
1 J = 

1 
(no summation) 

Jg .. g .. 
11 JJ 

which for the coordinate system used becomes, on account of 

symmetry, 

J( -vi VI ) J (_VI VI ) 
1 2 0 

- u! u! = J (_VI VI ) J (-VI VI ) 0 
1 J 1 2 2 2 

0 0 -VI VI 
3 3 

B. Boundary Conditions 

(2. 9) 

It is easy to verify that the unit vectors in the (S, Tl) coordinate 

system are 

(1 + kae -ky cos kx)e - kae -ky sin kxe 
x y 

(1 + 2ka e -ky coskx+ (ka)2 e -2ky)i 

'" e 
Tl 

+ ka e-ky sin kx e + (1 + ka e -ky cos kx)e 
x y 

-ky 2 -2ky f (1 + 2ka e coskx +(ka) e . ) . 

and that the unit tangent and normal vectors (ee en) at the surface 

y-a coskx = 0 are given by 
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n 
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e - ka sin kxe 
x Yl 

2 -
(1 + (ka sin kx) )2 

ka sin kxe + e 
x Y 

2 1-
(1 + (ka sin kx) )2 

Therefore at y = a cos kx • 

'" e 
T] 

'" = e 
n 

+ 0(ka)2 

Since only the 0(1) and O(ka) dynamics will be considered. it is 

therefore possible to identify u and v at the boundary as the tangential 

and normal velocity to the surface. respectively. 

As the model equations are valid within the fully turbulent 

region only. boundary conditions must be applied asymptotically as 

T] approaches the edge of the sublayer. e. g •• as T] -+ 0 +. t Neglecting 

2 
terms of O(ka) • they are as follows: 

1 ) (2. 10) 

The derivation is given in Appendix I; the 

result is a consequence of the vanishing of the normal 

velocity at the surface. As will be seen, for the 

purposes of the analysis the right-hand side is negli-

gible. 

t The model equations are valid outside the sublayer (e. g. for 
T] » T]*). As will be shown. the sublayer scale is transcendentally 
small 0 compared to the scales on which the equations are solved. 
and hence the notation lIT] -+ 0+ 11 is used to refer to T] approaching 
the edge of the sublayer. 
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u'" (2. 11) 

where 

T]*(S) = local sub layer scale 

OkS 
Real (c O ka e

1 
) = orbital velocity of the lower fluid at 

the surface to O(ka). 

JT] -1. 2 
C = distance normal to the boundary= J 2 dT] +O(ka) 

o 

K = Von Karman's constant 

The above is the familiar Law of the Wall (Coles, 

Q u*(S) 

K C 

1956 ). 

(2. 12) 

As indicated by Saffman (1970), the law of the wall implies 

that near a solid surface with no transpiration (and outside of the 

sublayer), e and ware functions only of the local wall shear and 

distance normal to the wall. Dimensional analysis then requires 

W ex: 

and the proportionality factors arise from satisfying the model 

equations near the wall. 

where -u1 U z = physical Reynolds shear stress 

PllsFC = aluplitude of the O(ka) perturbation 

surface pressure. 

(2.13) 
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The derivation is given in Appendix II; as will be 

shown, for the purposes of this analysis the terms in 

brackets { } are negligible. 

Furthermore, all wave -induced perturbations are required 

to vanish as 'Il -> 00. 

The coupling of the upper and lower flows is provided by the 

condition that the normal stress and the O(ka) shear at the surface 

be continuous. As will be indicated later, it is not necessary to 

match the 0(1) mean surface shear since the unsteady 0(1) boundary 

layer which it generates within the lower fluid may be neglected 

over the time interval in which the O(ka) solution is valid. 

C. Previous Application of Model Equations 

The model equations have been applied with considerable 

success to a variety of cases of turbulent motion, including channel 

flow, Couette flow, the two -dimensional free jet and wake, the con-

tinuously separating boundary layer, and the boundary layer towards 

a line sink (Saffman, 1970; Govindaraju, 1970). In the case of 

turbulent Couette flow, a closed-form solution of equations (2. 1), 

(2.2), (2.3), (2.4), (2.7) and (2.8) may be obtained for the mean 

velocity 

1 u* 11 + sin( ~ S) I 
U(y) = "2 U + 2K l?!n 

w 1 _ sin( :!!:. Y. ) 
2 b 

-b<y<b 

where U · = velocity of upper wall (lower wall at rest) 
w 

b = half -width of channel 

(2. 14) 
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,. = wall shear 
w 

K: = Von KAnnc6's constant = 0.41 

The solution is valid outside the viscous sublayers at y = ± b. The 

relation between the friction velocity u* and wall velocity U
w

' 

obtained by matching to the law of the wall, is 

u 
w 

""""2 
u* { 2 bu* }" = K "i en (16hr) + en( 7) + BK 

where V = kinematic viscosity, B = constant in law of wall over 

smooth surfaces with value B = 5.0 (Coles, 1968) • . 

(2.15) 

The relation (2.15) is only slightly different from the corre

sponding one obtained using the rate equation for w2
• In that case 

(Govindaraj u, 1970): 

U 
w 

-2-

whereas 

u* { bU*} = If"" 0.077 +en(V-) + BK 

ien(16!-l) = 0.2415. 

(2. 16) 

As indicated in Govindaraju (1970), equation (2. 16) is in good agree-

ment with experiment. 

The velocity profile (2. 14) is plotted in Fig. 1, along with the 

data of Reichardt (1959) for a Reynolds number U b/V = 34, 000. 
w 
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PART III: SOLUTION OF THE EQUATIONS 

A. Introduction 

The Christoffel 3-index of the second kind for the (s. 11. z) 

coordinate system is given by (no summation on any index) 

where (S I, S2, S3) = (S. 11, 

1 

(hI' h2' h3) = (J-z, 

z) 

1 -z J , 

1 
- -2 OJ Ok 

(ho) 
1 

1 ) 

i f j 
000 = Kronecker delta =G 1J i = j 

O(h o )21 
] 

i 
Note that Sk is not a tensor since the coordinate transformation 

(x. y, z) -. (S, 11, z) is not affine. 

From the symmetry of the problem, it is clear that, to all 

orders in ka, 

-u1 u 3 = - u 2 u1 = 0 

and since SI3 = S23 := 0, therefore X
I3 

= X
23 

:= O. Furthermore. the 

definition 
_ 2: 
::= - q 

implies, from (2.1). 

which reduces to 

= o . (3. 1) 
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Clearly, symmetry of -v! v! implies X. · = X ..• 
1 J IJ Jl 

The full steady equations are: 
,. 
e S momentum: 

J('+'l1'¥.l1S - ts 'k1111 ) + i Js(t.~ +,+, .~) = 

- ~ ~ S + ~ a~ { J ('+' s s + 'k1111 )} + {~ ( ~ )} { 2 J '+'11 S + 't'Tl J S + '+' s J Tl } 

+ {a~ ( ~)} {J(''+'TlTl - '+'SS) + '+'r/Tl- ,+,;J s } 

(
aXll aX12) 1 

-J---as +aTj -'2JS(Xll+X22) 

,., 
eTl momentum: 

1 2 2 
J( - 'fTl'+'SS + '+'S '+'STl) + '2 Jt)('kTl + t S) = 

(3.2) 

- ~ ~Tl - ~ a~ {J(t.SS + '+'TlTl)} + {aas (~)}{J('¥.TlTl-t~s) +'+'TlJTl-'+'sJ s } 

Pseudo-Turbulence Energy: 

J,+, el='-J'lrl='e = 
'Tl ':> ':> Tl 

2 
4 ~ tTl S + i ('f Tl J S + 'lr s J Tl ) ] 

a e + 2 [J 'lrtl Tl + i ('lr Tl J Tl - '+'s J S ) ] [- J ts s + iN Tl J Tl - 'lr s J S ) ] 

+ [J'¥.ss + i (tsJs-'¥.TlJTl) ] 2+LJtTlTl+ i ('+'TlJTl-'+'sJs)]2 

a {,..., e } a {,..., e } - ew + J - cr - e + J - cr - e • 
as w S aTl W Tl 

1 
'2 

(3. 3) 

(3.4) 
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Pseudo -vorticity: 

J t w.,. - J t~ W = ''ll s ~ 'll 
1 

2 2 '2 

[J tss + i(tJ;Js-t'TlJ'll)] +[Jt'll'll+i(t'llJ'll- 'tsJ s)] 

aW 

2 a {e ') a{ e } 
- j3 W + J 8% a w "ls J + J a'll a W W'll • (3. 5) 

Relaxation Equations: 
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{( 
a a \ ( tJ F t _F J "") -) 

~ J '¥ - - t -) - 2 t -~ -~ ~ 
w n as ~ an sn J J ,I 

(3.8 ) 

(3. 9) 

As mentioned earlier, the problem was solved both with and 

without the relaxation hypothesis. The "no relaxation" case refers 

to the absence of X"" in the Reynolds stress constitutive relation (2. I), 
1J 

and therefore implies equations {3. 2} and (3. 3) with X"" set equal to 
1J 

zero, plus equations {3. 4} and (3. 5) for the transport of e and W. 

Note that, in general, the relaxation tensor does not appear explicitly 

in the rate equations for e and w. 

B. The O(1} and O(ka} Equations and Boundary Conditions 

The assumption of exact periodicity in S motivates a solution 

for the various dependent variables in terms of their harmonics 

±inkS "f d e • n = 0, I, • ••• The effect of the wavy boundary, man1 este 

in the derivatives of the Jacobian appearing in the equations, indicates 

that the expansion should proceed as follows: 
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ikS 2 dtO 
t = to (T)) + kae t 1(1l) + O(ka), where dT) == U(T)) 

u 

v = 'kS 
kae

1 
VI (T)) + ••• 

~ = 'kS ~ 0 (T)) + kae
1 ~1 (T]) + • •• 

p = PO('r\) + kae
ikS 

PI (T]) + ••• 

e = ikS e
O

(!)) + kae N(T]) + ••• 

w = 'kS Ub (T)) + kae
1 

W(T)) + ••• 

X .. :::I OX .. (T]) + kae 
ikS 

1 X .. (T]) + ••• 
1.) 1J 1J 

'kS 
-u! u! = o 'r. . (T]) + ka e

l
l 'T' •• (T]) + • • • 

1 J 1J 1J 

u*(S) 
iks + ••• = u* + ka e u* 

o 1 

T]*(S) 
ikS + ••• = T]* + ka e T]* 

o 1 
""""2 ~Io +kaeikSqzll 

+ ••• 
q = 

where the real part of the right side is implied, the quantities 

tl (T)), ~ 1 (11). etc. being complex, in general. 

The boundary conditions near T) = 0 may be expanded as 

follows, neglecting terms O(ka)2: 

(3.10) 
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ik~ ,..., Z ikE: ,v 

3 ) e 0 + ka eN", a u * + ka e . (Z a u * u * ) 
010 

ik~ 
WO+kae w--

4) Utilizing U' == dU/dfl 

~ 
~ (N - eO w) + ~Q.( dZ'+'l + k Z,+, + ZU'e -kf1..Zk ue- kfl\( 
a W 0 Wo dT,z 1 } ( 

- 1X 1Z , 

Substitution of the expansions (3.10) into the equations (3.2) 

through (3.9) yields the following: 

e~ momentum: 

0(1): 0 = ~ (eO U' X ) 
dn Wo - 0 1Z 

O(ka): ik{ '+'i U - '+'1 U' + e-
kfl 

U
Z

} = 
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'" e momentum: 
'I] 

0'(1): 
1 I I 

o = - p ~O - OX22 

O(ka) : U k 2 'f'l - k e -k'l] U2 = 

- ~ t' + i eO (k3 'f' - k'f' II _ 2 k e -kn U I) 
P 1 Wo 1 1 

Pseudo tur bulence energy: 

O( 1): 
e 

-, d - 0 , o = neO U -eOWO + d'l](cr Wo eO) 

O(ka): ik (NU - 'VI eO) = 

Pseudo vorticity: 

O( 1): 
2 d eO 

o = ~ Wo U
I 

- 13 Wo + v d'l] (W
O 

WO' ) 

O(ka) : ik(UW - 'f'l (.1'0)= 

{ -kn -kn } n WO('f l l + 2 Ule - Uke ) + WU I 
- 2/3 (tJO W 

{
d [eO I eO N W 'J 2 eO -k d reO J} +0 - -W +-(- --)l.IJ -k - W+2e 'I]-L-l.IJ

' d'l] Wo Wo eO Wo 0 ttb dl1 Wo 0 
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Relaxation Equations: 

O( 1): 

O(ka) : 

In the above O(ka) relaxahon equations, we have used the result 

that OX . . == o. lJ 

c. Solutions of the 0(1) equations 

By inspection, a solution of the 0(1) equations satisfying all 

boundary conditions is: 

w = o 

__ 2 
a u l{c 

o 

o 

(3. 11) 
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Tne 0(1) turbulent stresses are 

OT11 ::: OT22 = OT33 - 1 q
2

1 - - 3" 0 
t 

The solutions are valid within the fully tur bulent region only 

(e. g., 'll» 'll* ), since viscous effects have been neglected. 
o 

D. Solution of the O(ka) equations 

(3.12) 

The solution of the O(ka) equations is facilitated by defining 

(Benjamin, 1959) 

The convective term in the mean perturbation vorticity equatlOn, 

obtained by taking the curl of the momentum equation, is, in terms 

ik ~ {t I U _ t U I + U2 e - k'll} _ ik U (k 2 '¥ - k e - kTl U) 
Q'll 1 1 1 

= ik { U ( '¥ ~ I _ k 2 '¥ 1) - u" '¥ 1 + 2 U U 'e - kT1} 

In terms of S('ll), this becomes 

ik r U (S" - k 
2 

S) - U II S } 

which is simJ.lar to the convective term for the perturbation stream 

function in a cartesian coordinate system. Hence the Ue -k'll k- 1 

term IS a measure of the curvature effect on the perturbation 

t In a recent modification of the model equations (Saffman, 1974), 
allowance has been made for the inequality of normal turbulent stresses 
in a boundary laye r. Further reference to this modification will be 
made in Part IV. 
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strearnfunction '+'1. 

Dl. The O(ka) Pseudo- Vorticity and O(ka) Mean Vorticity Equations 

The O(ka) momentum equations may be corn bined to form 

the O(ka) mean vorticity equation. As eO is independent of Tl. the 

O(ka) pseudo tur bulence energy equation provides an explicit relation 

between Wand the derivatives of Sand N. Then, too. the O(ka) 

relaxation equations afford a relation between IX .. and the derivatives 
IJ 

of S. Substitution of these quantities into the O(ka) mean vorticity 

equation and the O(ka) pseudo-vorticity equations. and use of (3.11). 

yields the following pair of linear. fourth-ordered. coupled homo-

geneous ordinary differential equations for Sand N: 

Pseudo- Vorticity 

(3. 13) 
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Mean Vorticity: 

+ 

+ 

r--------~--------------~ 

I i k H3 { u( d S _ k 2S) + 1 S} I = 
I ~ -;-z I 
I ~ 7'1 I 

~-----------z---------------~ 

+ I {_ 4 k 2 I( H3} d S + {_ 4 k 2 I( H3} d S I 
I 7'1 d2 dn I L ___________ ~ _______________ J 

(3. 14) 

dS 
dn 

S 

1------------4-------~--------=-----2---------1 

I - b 1 7'1
2 ~ - 5 b 1 7'1 ~ + t K:i U - b2} ~ I 

I H 3 dn dfl a d-n 1 
+1 I 

I u* dN{ 2 i 2 k I<: - I} { 2 4 2 iK 3 ( 1 -\'1.. 
I 0 + dn 3b1k 7'1+ ,,-,2 (U+if) + b 3k +b 1k 7'1 + ,,-,2k 7'1 -Z2+U)J I 
, a a ICkn 1 
I -I 
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where 
c 

1 = (a 2j3a)cr b9 ~-...... """:'---'-- - (J 

a 
...... 
a 

b
4 = ol(a 

bS = 2(a - 13 a)a = -2b since 1(2 = (13 a - a)/o I( 4 

b
6 

001(2 
bll 

(a-2 13 a) = = ...... l(a a 

b
7 

o 2 
b12 2ao = - (20 I( -a) = ...... 

a 

b13 
1'a = -1(-

For the "no relaxation" case. only those terms in the mean 

vorticity equation which are enclosed within the dotted boxes are 

considered; the pseudo-vorticity equation is the same for either 

case. 

D2. The Pertur bation Limit k'l1* -+ 0 o 
The solution of equations (3. 13) and (3 . 14) is complicated 

by the presence of the logarithm ill the coefficients of the various 

derivatives of Sand N. Various techniques were attempted. in-

cluding the coordinate transformation 'l1 = ~k'l1. but no closed form ...... 



-31-

solution valid for,,* «" < 00 was achieved. For this reason, an 
o 

asymptotic solution of (3.13) and (3.14) was obtained in the limit 

Physically, the assumption that the upper flow imposes only 

a slight perturbation on the wave speed c suggests that the amplitude 

of the O(ka) average mean normal stress at the edge of the sublayer 

be finite in the limit k,,* ... 0; e.g., 
o 

~ 1 (0 +) 

P I < 00 
(3.15) 

In particular, it can be shown (Lamb, 1945) that an inviscid, potential 

flow with constant velocity U over a deep water gravity wave alters 
00 

1 

the free wave speed c = (g/k)Z by a factor 
w 

1 

P 1 )'I 
2 

ka p c w w 

where Pw = density of lower fluid, and P 1 is the am t'litude of the 

perturbation surface pressure, given by 

2 
P 1 = ka p (U 00 -c) • 

This suggests further that the 0(1) velocity must remain 

finite, at fixed k", as k,,* ... 0: 
o 

Subs ti tuting, 

lim 

k,,*O'" 0 

k" fixed 

lim U = V O(k,,) < 00 

k,,*O'" 0 

k" fixed 

u>,.< u. 

{ _0 0n(_1 ) + _°0n(k,,) _ c} = 
K k,,* K 

o 

(3.16) 
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Clearly, since c -+ Co < 00, 

as kr]* -+ 0, where U o is a positive (because u* is defined positive) 
o 0 

constant, the notation implying approach to zero through positive 

values, and 

Vo = U o - Co = constant (assumed non-zero). 

It is of note that the 0(1) velocity tends to a constant V 0 on the scale 

of A. as kf]* -+ O. 
o 

Defining 

1 

the velocity may be expressed as 

u* o 
U = -1<:-

and hence (3. 16) implies 

as kf] -+ 0 
*0 

(3. 17) 

(3.18) 

From (3.-18), it is apparent that the limit considered is a 

limit. in which the skin friction vanishe s. For a smooth surface, 

= 
-BK: e -+ 0 

and the limit may be visualized as one in which both u* and V -+ 0 , 
o 

k and a being fixed with ka « 1. 
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Denoting 

e 1 = 1 + 
-+ 0 as 

then from (3. 17) 

1 1 = e I 
1 e = ctc Co (l +0 (1 » 0n(l/k1l* ) 1 -

u * 0li (1 /k1l * ) 1 - V 0 ( 1 +0 (1 » 0 o 0 

e e I 
Vo 

(1 + 0(1» (3. 19) = 
Vo - Co 

Clearly, k1l* ..... 0 implies I e I -+ 0, where the sign of e depends on the 

sign of Vo. 
o + Note further that (V 0 -cOle -+ 0 and 

Hypotheses (3.15) and (3.16) are verifiable a posteriori 

(see Part lIIc). 

(3. 20) 

The mathematical importance of the relation (3. 18) between 

u* and e for solving the equations (3. 13) and (3.14) in the limit 
o 

k1l* -+ 0 may be illuminated as follows. From the equations and 
o 

boundary conditions, it is clear that a dependent variable, such as S, 

may be expressed as 

S = A u* f(k1l, k1l* ' c/u* ; a, Q, 13,··· 
o 0 0 

= A u* F(k1l, e, c/u* ; a, Q, 13,···) 
o 0 

For c -J 0, there are two small parameters: e and u* / c. In order 
o 

to obtain a limit process expansion of F on the scale of A, for 
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example, to all orders in a single small parameter (say e), the 

relation between u* /c and e must be known. As shall be indicated, 
o 

since (3. 18) is an as ymptotic, not an exact, relation, the solution 

for c I: 0 cannot be determined uniquely to all orders in e. Finally, 

for c == 0, it is clear that no relation is needed between u* and e, 
o 

since 

S = A u* F(kT), e; a, a, 13,···). 
o 

The equations (3.13) and (3.14) and their boundary conditions 

form a singular perturbation problem in the limit kT)* -+ O. For ex-
. 0 

ample, the ratio of the term in d
4

S/dT) 
4 

to that in d
2

S/dT)2 on the scale 

of A in the pseudo-vorticity equation is 

= O(e) -+ 0 as kT)* -+ 0 
o 

D3. Determination of Inner and Outer Scales 

Let the variables be non-dimensionalized as follows: 

Inner Region: S = L~ u~ S i 

N (uk )2 
-i 

= N 

Li * T) = T) 
1 

Outer Region: S = L~ u~ SO 

N (u~)2 -0 
= N 

T) = L
O 
1 T) 

where the velocity and length scales are to be chosen such lhal S 1 

and 'Ni are 0(1) in the inner limit, defined as 
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limit 
E: -+ 0 

11 * fixed, 

and similarly for the outer s cales in the outer limit. 

From the boundary condition on e, clearly 

As the equations (3. I 3) and (3. 14) ar e linear, only the ratio 

2 
kL2 Us u* I(~) is significant, and we may choose 

o 
i 

u s 

As the mean 0(1} velocity profile (3. 11) introduces no boundary layer 

thickness, the outer length scale 

o -1 
L = k . 1 

The inner length scale must therefore satisfy the condition 

o i i 
Ll » Ll »11* or k11* «k Ll « 1 • 

o 0 

The boundary condition (2. 10) on the normal velocity 

U o 1 

lim (k L ~ S i + U e - k11) = 0 (.: E:' ~ U 0 - c 0 €) 
11-+0 0 

(3. 21) 

can be rewritten, noting the right side is trans cendentally small in 

E:, as 

.. IIi 1 * 
kLl. S- '" - - - -km k L - -km 11 + 0(1} as 11 -+ 0 

2 ICE: IC 1 IC 

From the requirement (3. 21), it can be seen that 

i 

I km (k
1
L 1 ) I 

--1+ 00 as E: ~ 0, 

E: 
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As sume that 

Then 
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U 
(~)!.(1 +0(1)) Vo E: 

1 + --------~------
(J;n (k L~ ) 

.... 1 

However, kL
i 

-+ 
1 0+, hence (J;n k L~ .... -00; kLi/k,,* -+ +00, hence 

o 
(J;n(kL: /k,,* ) -+ +00, and the ratio 

o 
contradiction. Thus, provided 

1 - -
E: 

we may take 

The case 

above must be negative, which is a 

A careful analysis of this situation was made. For Co ~ 0, this 

length scale is not allowed, a s it violate s the condition k" * «kL~. 
o 

For Co > 0 and V 0 < 0, it is also unallowed, as it violates the condi-

tion k Li «1. For Co > 0 and V 0 > 0, it was found that, using such 

an inner length scale, it was impossible to match the inner and outer 

solutions, succeeding terms in the inner expansions of Sand N 

becoming larger and larger in order of E: in any intermediate 

(matching) limit. This length" is the so-called critical height, 
c 



since U(k 11 ) = O. 
c 
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Noting U = 0(1/8 ) in the inner limit, the pseudo -vorticity 

equation becomes 

*d
4

S d
3

S [bS .'" i r ld
2

S 
b 4 11 ~4 + 2 b 4 ~3 + "* -1 a(k Ll)UJ ~2 

d11 d11 11 d11 

-2 
~ (k Li)3 8 N = 0 + 0(1) 

where, by choice of length and velocity scales, Sand N are 0(1) 

in the inner limit. Clearly, therefore 

kLi = 181 

A similar investigation of the mean vorticity equation in the inner 

limit yields the same result, both with and without relaxation. 

The matching of the inner and outer expansions of Sand N 

implies that, with the velocity scale, u* ' the proper outer length 
. 0 

scale for S is, again, L~, and that the proper outer velocity scale 

for N is u* • 
o 

D4. The Perturbation Expansions and O(ka) Boundary Conditions 

T he presence of log 181 in the mean velocity on the inner 

scale implies the following expansions: 

Inner: 

2 . 2· 
+ 8 0n 18 I S ~ + 8 S~ + ••• (3. 22) 

-i i I I i N = NO + 80n 8 NI + ••• 
i . * 

where S ~' N~ are functions of 11 • 
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Outer: 

-0 0 I I 0 0 S = So + 8 Rm 8 Sl + 8 S2 + •.• 

NO = N~ + 8 Rm l81 N~ + 8 N~ + ••• (3. 23) 

where 
o 0 

S J/ N 1, ar e functions of Tl . 
T he scalar parameters of the flow are also functions of 8. 

and are expanded as follows: 

u* o 

c = Co (1 + 8 Rm l81 Al + 8 A2 + ••• ) 

cO = cO(OO + 8 Rm 1810l + 8°2 + ••• ) 

'r1* 
1 

'r1* o 

u* 
K.J = 8 (1 + 8 Rm l81 Al + ••• ) 

o 

(3. 24) 

Note that. in general. the 0 .• 0 .• ~ are complex. whereas the A. and 
111 1 

Ai are, by definition. real. Furthermore, the 3i are determined by 

the nature of the sur face. 1£ it is aerodynamically smooth, then 

where \) is the kinematic vis cosity of the upper fluid. and B = 5.0 

(Coles. 1968), and therefore 

~ =-0 
dn n 

n=0,1.2, •••. 

For an oceanic water wave. the surface is nearly aerodynamically 
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rough at typically observed wind speeds (R. W. Stewart, 1961), and 

the determination of the variation of roughnes s along the sur face 

requires further hypotheses than presented herein. 

As indicated previously, the A. are not specified by this 
1 

analysis, and serve only to indicate explicitly, for c 1- 0, the order 

at which certain expansions become indeterminate. 

The boundary conditions on the O(ka) quantities as T'] --+ 0 may 

be rewritten as follows: 

where 

1) No normal velocity at the wall 

+ 0(1) plus terms of higher order in E:. 

+1 
s gn (E:) = { _ 1 

E: > 0 

E: < 0 

3) Law of the wall behavior for E: and W 

N
i 

'" 2 -;; (0 0 + E: R;n I E: I 0 1 + E: 0 2 + • • • ) + 0 (1 ) 

(3. 25) 

(3.26) 

(3. 27) 

and utilizing the relation between Wand the derivatives of Nand S, 

the boundary condition on W becomes 
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d
2

S
i 

2· crK (dN *d
2
-) +€ Sl+ 8181 - +T] 2 

dT] *2 ~ 2 dT] * dT] *2 

+~ + ~(Oo+80n1€IOl + ••• ) 
KT] KT] 

1 + 0(*) (3. 28) 
T] 

4) Shear stress 

As indicated, the terrus in brackets [ } in equation (2. 13), 

according to (3.15) and (3.20), are transcendentally small in 8. 

Hence, using 

No relaxation: 

* d 2Si 
KT] 

dT] *2 

With relaxation: 

+ ~ + 8181 (00 + 80n181ol + ••• ) 
T] 

+ 0(1) 

+ 8* + 8 18 1 (0
0 

+ ••• ) 
T] 

+ 0(1) 

(3.29) 

The non-dimensional pseudo-vortici'ty equation (3. 13) is, 

omitting super scripts on Sand N: 

(see next page) 
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+8 181 

Outer scale: 
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8
2 

-2 ibll 1 1- ia 
....., U --*- 8 U--:::-
a ~ a * ~ -N hl} 

*2 4 + b 6 ~ 8 

.....,2 

{
a b 11 ....., i a } _ .....,2 d 4N ....., d 3N 

+ - 1· a U +....., b 1'1 S + '" b 1'1 + 5b 8 1'1 - 4 ' 1 - .....,2 '" 6' 1 ~ 6' 1 d;:;,3 
~ K~ d~ 'I 

(3. 30) 
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The mean vorticity equation (3.14) is: 

Inner Scale: 

+ dS 

* d" 

+ 

(continued on next page) 

(3. 32) 
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{ 3 5 *Z i K * I I 1 Z- } -+ b 3 E: + b 1 E: T) +""Z T) E: E: (-*Z + E: U) N 
Q KT) 

Outer region : 

,----------2-::::------------, 
I + i H 3 [U ( d S _ S) + _1_ Sl I = 
. ""Z ""Z, I dT) KT)-L ______________________ J 

""-3 -Z 1 Z 
- K T) U + U (+ iZ b Il -;::; -~ ) (3. 33) T) T) 

(ib l3 KbI3 ZbI3 K 
3 )- S + + -- +-- + -- U ,....Z "" ",,3 

K 113 
T) T) T) 

2 i b
13 

iZb
13 

4b
13 Z 

+ ~ - K~ - ""Z KZYi'3 (Continued) 
T) K T) 
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(Equation (3. 33) continued) 

---------------------------------------~ I 2--
I - 4 K Tl H 3 d S _ 4K H 3 dS /' 

",,2 "" 
I ~ ~ I 
I 

+H
3 

{ "" 2 .i.I£.1i ( € -)} -+ € b 3 + b I € T) + "" 2 -:::2 + € U N 
a KT) 

~---------------------------------------
where 

H = U 

Inner scale 

Outer scale 

DS. Analysis of the Equations on the Inner and Outer Scales 

The substitution of the inner expansions into the equations 

yields the following: 

Lnner Mean.,Yorticity Equation 

d
2

S 
0(1 ) : NR: 0 = 0 

dT) *2 

R: !ZISO = 0 

Inner Pseudo-Vorticity Transport , -

!Z S = 0 2 0 

where llNR." "R II imply the Ilno relaxation ll and Ilrelaxationltmodels. 

re-spectively. and 
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( 
* i 2 b 13 bi3 S gn(8») d 4 

~ = - T]2 s gn (8 ) + I<: + * ~4 
I<: T] dT] 

2 sgn(e:) 

1<:2 

i6b13 4bi3 s gn(8» ) d 3 (2bi 3 
+ * + *2 ~ + ~ sgn(8) 

I<:T] T] dT] T] 
+ 

The only solution satisfying both the inner w-equation and 

either inner rn.ean vorticity equation is 

which, with (3. 25) and (3. 26) yields 

Si 1 = - K 0 
(3. 34) 

0(e: 2r1 \8\): 
d

2
S 

1 0 ~Sl 0 NR: --*2 = = 
dT] 

R: ~l Sl = 0 

which becorn.es 

(3.35) 

0(8) NR: 

where the solution for So has been used. In either case, the solution 

is 
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1 
= 

which yields. with (3.25). (3.26), (3.28) and (3.29), 

i !l/n. * 1 ( cOrlO cOo 0) * 
S2 = -::;p- + if 00 + --V + V- '11 sgn(e) 

o 0 
(3.36) 

The outer equations to O(e) are as follows, omitting the 

superscript 110 11 : 

Outer Mean Vorticity Outer Pseudo-Vorticity Transport 

0(1 ) 

Thus. since the perturbations must vanish as 'il-- 00, 

"-' 

SO 
0 = C e - '11 

0 

NO ",2 -11 
= -i2a KCOe 0 

where Co is a complex constant. 

Matching with (3. 34) 

d 2S 
O(e!l/n.\el): NR: 1 --

drr2 

d
2

S 
R: 

1 

drr2 

SO 
1 = C e-'I1 

1 

1 
- if 

- Sl = 0 

- Sl = 0 

NO 
1 = 

2 
ia (d Sl ) N 1 

0=+7 --;::z+Sl +,:-z 
d'l1 aK 

",2 C K e-'I1 - i 2 a 
1 

(3. 37) 

(3. 38) 
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The O(e) outer m.ean vorticity equation with no relaxation is 

2 2 
o (d 8 2 ) oRIn '" (d 8 0 ) ° 

+2:. -- - 8 + ~ -- - 8 +2.... 8 = 
I( dT;'2 2 I( dT;' 0 1(1l2 0 

2 2 
'" d 8 0 d8 0 i ('" d NO 2dNO '" ) 

- 41( 11 --;::-z - 41( ---:::::- + ",2 11 --;:z + --;:::- + 11 NO 
dl1 dl1 a dl1 dl1 

yielding 

O(e) 

00 

where == J 
2Tj' 

whos e solution is. again. 

O(e) R: 

-x 
e 
-- dx. 

x 

+ 

(3. 39) 

(3.40) 
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yielding 

(3.41 ) 

The expansions for S must be matched at O(e:), not at 

0(e: .0n 1 e: I), since e: S~ is 0(e: .0n I e: I) in the "matching'J or 'intermediate" 

limit. At O(e:), the matching variable CT)C = kT) (Cole, 1968) is found 

to satisfy 

1 

1 e: 1 « C « 1 e: 12 

and the following re suIts are obtained t 

°0 + 
cortO 

+ 
cooo 

1 (3.42) v;- ~= 

= 0 

1 = if ~2 + y), y = 0.577. •• ;;:; Euler's constant 

The inner equations to higher order are: 

Inner Mean Vorticity Inner Pseudo-vorticity transport 

d 2S d
2

S 
3 1 

NR: ~ +--*2 = 0 
dT) dT] 

R: ~S3 = 0 

Thus, using (3.25) and (3.26), 

o (3.43) 

t x 2 2 3 3 
El (x) ~ - .0n x - Y + x - 4" - 3" x 21'!x + O(x } as x -. 0 

y = 0.577 ••• 
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NR: 

and the 0(8
2 .en 18 I) inner mean vorticity equation with relaxation is 

0(8
2

.en 181): R: 

_ i(.!._ ib13Sgn(8»)3[~ d
2

S 2 ] _i3 (~_ ib13sgn(8) )2 
21 S 4 K K * *2 + *2 2 K * • 

'11 '11 d'l1 K '11 

• (d
2

S 2 So) (_ 3'11*sgn(8) i4b13 b l ; Sgn(8»)d
4

S 2 
*2 + *2 + 2 + + * *4 

d'l1 '11 K K '11 d'l1 

. 2) 3 2 2 

( 

6 s gn (8 ) 1 1 2 b 13 4 b 1 3 s gn (8 ) d S 2 2 b 1 3 s gn (8) d S 2 

+ - ",2 + * + *2 ~ + *3 ~ 
J\, K'I1 '11 . d'l1 '11 d'l1 

2 sgn(8) (Sl + 2S
0

) = 0 
K2 '11*3 

Again, the solution is identical either with or without 

relaxation: 

f!:lUS 

(3.44) 

The perturbation pseudo-turbulence energy first appears at 

0(8 2 ) in the inner expansion. Specifically, the 0(8
2

) inner pseudo 

vorticity transport is 
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d
2

S 
£t2S 5 - i~ sgn(€) (0n rt *~ + 

d'l') 
(3.45) 

+ 

The 0(€2) inner mean vorticity equation without relaxation is 

+ 

+ 

(3. 46) 

where knowledge of lower order solutions has been used. 

4bi3 s gn(€)} d
2

S 2 {2sg n(€) _ i2b13 } dS2 _ 2sgn(€) 

+ *3 d *2 + 2 *2 ... *3 d * ... 2 *3 S2 
'I') 'I') 1\ 'I') "'I') 'I') "Tl 

+ 

* . b 2 b
2 

{ 
4sgn(€) 0n'l') 1. 13 + ~ g (€ ) _ 3 sgn(€)} S + 

+ - 2 *3 -~ *3 s n 1\2 *3 0 
1\ 'I') I\Tl Tl Tl 

. (1 i b 13S gn(€»)2 ( d
2

S2 SO) + 
21 0n Tl * if - * d *2 + *2 
1\2 Tl 'I') Tl 

(3.47) 

(Continued on next page) 
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(Equation (3.47) 

Even in the simpler case of no relaxation no closed-form 

solution was obtainable for ~ and ~ in terms of known functions. 

The higher order outer equations are: 

Outer Mean Vorticity 

d
2

S 

Outer Pseudo Vorticity Transport 

2 iQ( d S3 ) 1 

R: 

Thus 

3 
--::2 -
d'll 

dZS 
3 -:::;z -

d'll 

S = 0 3 +7 ...... 2 + S3 +'::-2 N3 = 0 
d'll aK 

...... 2 -'Il = - i2a KC
3

e 

where knowledge of lower order solutions has been used. 

(3.48 ) 

(3.49) 

At 0(8 2 ), there is, as on the inner scale, a marked difference 

between the II no relaxation" and "relaxation" models. The 0(8
2

) 

outer mean vorticity equation without relaxation is 

o 
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NR: 

-f1{ iZK "'} + e +--;::::;- + ZK(ZO'-O') 
1'1 

yielding, for no relaxation, 

NR: S~ = e -11 {C
5 

- i K£,n11 - K:(Za - O')Yi'} 

El (2Tl)/11 r '" • Z} e +f1 SOO El (x) 
- K t + £,n 1'1 + Y + £,n Z + 1 K - -K - x dx 

211 
00 

J 
+x 

e El (x) 
dx 

x (3. 50) 

2f1 

However, the 0(8
2

} outer mean vorticity equation with relax-

ation reduces to 

obtaining 

'" 00 
e+1'1 J El(x) 

- K x 
211 

Note that the term 

'" 00 +x 
-1'1 J e Ex 1 (x) dx __ e_ 
K 

211 

,...., '" 
- iK.0n11 e-1'1 - iK E

l
(2f1}e+1'1 

dx 

is not present in (3.51). In general, C
5 

and C\ will be different. 

(3. 51 ) 

The experience of matching at 0(8) would certainly caution 

against matching at 0(8
2 

£,n21 8 I) or 0(8
Z

.0n 181> in S. Due to the 



-53-

difficulty of the O(8
2

) inner equations,· S~ is not known; thus, complete 

matching at O(8
2

) is not possible. 

It is possible, however, to determine C 3 and C 4 (for both the 

Ilno relaxation ll and Ilrelaxation ll case), as follows. Consider matching 

S at O(8
2

). Clearly, the contribution from S~ and S~ can only be can

celled by terms in Si. Inspection of (3.34), (3.35), (3.36), (3.43) 

and (3.44) indicates that {S~}4 do not affect S~ or S~. Fromthe 
k=O 

nature of the solutions S~ , S~, it is clear that, to their respec-

tive lowest orders (e.g., 8
2

017.
2 181 C

3 
and 82

w.I8\C
4

)' they cannot 

be affected by {S~} 00 • Thus, they can only be cancelled by S~, and 

2 2 k=6 2 2 * i 
clearly, C

3
8 017. 181 can only be matched by a term 8 !2Jri '11 in S5' 

2 I I 2 * andC
4

8 f2n 8 byaterm ,,-,8017.'11. 

However, 8
2 

017. '11 * = 8
2 

w.C '11C - 8
2 

f2n I 8 I 

8
2

017.
2

'11 * = 8
2
w.

2
C '11,- 28

2
w.C '11

C
w. I8 I + 8 2 w.2~8 \ 

o 22 2 II 2 and thus S5 must match the 8 !2Jri C'11C,8 (w.C'11C)m 8 , and 8 WC'11C behavior. 

However, from (3. 50) and (3. 51) , 

S~ '"'" O{l) as 1l--> 0 

for both the Rand NR cases. As surning the matching proceeds 

satisfactorily at O(8
2

). NR & R: C
3 

= C 4 = 0 • 

D6. The Inner and Outer Solutions for Sand N 

We therefore have the following: 
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Inner Expansions: 

Both cases: 

Si = _!. _E:2n1E:1+E:{_2n11* + 1 * } 
i'C i'C i'C"if 11 sgn(E:) 

s~ and N
i 

were not obtainable in closed form. 

Oute r Expansions: 

-0 
S 

-0 
N 

No relaxation: 

2 
+E: '" 00 

_ e +11 J E 1 (x) 
i'C x 

271 

Relaxation: 

-11 00 

dx - .;-J 
211 

+x 
e El (x) 

dx 
x 

(3.52) 

(3.53) 

(3.54) 

(3.55 ) 
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An approximation to S(Tl,8), uniformly valid to 0(8) for 

Tl 8 (0 t, 00), can be constructed in the usual fashion by adding the inner 

and outer expansions and subtracting the common part (Cole, 1968). 

It is of interest that the outer expansion contains the inner expansion 

to 0 (8'), and that therefore the composite expansion to 0(8) is simply 

the outer expansion to that order. Judging from the complexity of the 

0(8
2

) inner equations, it is doubtful that such a situation will persist 

to 0(8
2

). The inner solution for S is genuine, however, in the sense 

that the outer solution for S is incapable of satisfying all the boundary 

conditions on S and its derivatives to lowest order at Tl * = 0 t. 

E. Surface Stresses and Flow Variables 

An important characteristic of the flow is the magnitude and 

phase of the O(ka) surface normal stress. It is easily derived that 

the jump in the total mean normal stres s across the sublayer is 

(see Appendix II) 

2 ikS 2 ikS 
= O(u* kTl* kae )to(c kTl* kae ) 

o 0 0 
across 
sublayer 

By definition (see (2.8)), 

However, from (2. l) and (3. 1 0), 

= i 2 k eO (dS t U' e - kTl )_ 
1 TIl Wo dTl k 

. eO (dS U' e - kTl ) 1 21 
IT 22 =-12k wO dTl t k -lX22-'3 q 1 

1T 33 = - t qz-b 

(3.56 ) 
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which. with the boundary condition on the tangential velocity yields. 

+ as n --+ 0 (e. g •• the edge of the sublayer) 

+ + + 1 211 1 T 11 (0 ) = 1 T 22 (0 ) = IT 33 (0 ) = - 3" q + 
n=O 

1 

(3.57) 

Hence 

+ - + + 
~ 1 (0 ) = PI (0 ) - PIT 22(0 ) 

which. neglecting molecular viscosity in the fully turbulent region. 

is the complex amplitude of the O(ka) mean normal stress at the edge 

of the sublayer. Noting that the right side in (3.56) is transcenden

+ tally small compared to ~ 1 (0 .8) by (3.20). we obtain the fact that the 

O(ka) mean normal stress at the wave is 

ikS + 
kae ~ 1 (0 ;8) • 

One method of evaluating ~ 1 (0+;8) is to simply substitute the 

inner expansions for Sand N into the O(ka) es-momentum equation. 

* and take the limit as n --+ O. This furnishes 

+ u 2 
~I(O ;8) _( *0) {I 80n181~ Co ] 
--- - - - '2- 2 I+oO+ol+y-(OI-OOAI+oI+AIoO-AIoO) 

P 8 K K 0 

+ O(8)} (3.58) 

u* t 
where. unfortunately. the (~) 0 (8) term is not capable of evaluation 

since it requires knowledge of various derivatives of N~ and s~. Note 
~ 1 (0+ • 8) 

the supposition that be finite as 8 --+ 0 is consistent with 
P 

the above relation using (3. 18). 

Another method to determine ~ 1 (0+;8) is through integration 

of the O(ka) e -momentum equation. which can be written in the form 
n 
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1.. dqi 1 _ 2. d {. eO (dS Ute -k11) }. eO -k 
- d11 -Uk S-lkl T12-ci -12k- ci+ - X +12k-U'e 11 

p 11 \.. Wo 11 k . 1 ;2 Wo 
V 1 

T + - qzl (3.59) 
1 22 3 1 

The final term. on the right side arises from. the fact that lT12 is the 

com.plex am.plitude of the O(ka) physical (not covariant) turbulent 

Reynolds stress. In particular 

,....., 2 
N (J Ie '!] 

1 T 12 = -:::: - ,.....,2 
Cl' Cl' 

where the last term. is - 1 X
12

• 

(3.60) 

For the no relaxation case. the 1 X12 and 1 X22 term.s are neglected. 

and the appropriate expansions us ed. 

For the relaxation case use of the boundary condition on the 

tangential velcocity as 11 -+ 0 and the condit jon that all perturbations 

and their derivatives m.ust vanish as 11 -+ 00 gives 

+ qi 1 (0 • 8 ) 

P 

00 

= f U k
2 

Sd11 

o 

00 

ik J IT 12 d11 + i 2 u*2 
o 0 

(3.61) 

In the no relaxation case. the sam.e boundary condition as 11 -+ 0 and 

the assum.ption that dS/d11 = 0(":') as 91-00 (which is quite reasonable. 
11 

since S m.ay be expected to decay exponentially to all orders in 8--see 

(3.53» yield (3.61). 

The integrals in equation (3.61) m.ay be evaluated by dividing 

the range of integration into the intervals (0. ~ 11~) and (~11~. 00). the 
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ranges over which, respectively, the inner and outer expansions are 

assumed to be uniformly valid approximations (Lagerstrom and 
1 

Casten, 1972). Note that from (3.42), 181« C « 1 8 12 • 

Consider the "no-relaxation" case first. Using (3.60), we 

obtain 

Cl1C u* 2 

NR: -ik f 1'1"12. dl1 = (~) 0(82) 

o 
This result utilizes the boundary condition on N, and the fact that 

N~ is bounded, independent of 8, for ll*-€[O, (0), since N~(O) = 2;°0, 

N~(oo) = N~(O) = +i 2Q'2, and the differential equation for N~ has no 

* * singular points except 11 = 0 and 11 = 00. Thus, for example, 

(3.62) 

and 

Succeeding integrals involving N~, 
2 

i 
N 2' etc. are certainly expected to 

be o(u* ). 
o 
Furthermore, since 

'" 

I 2 { irle- l1 
NR: 1'1" 1 2 t = u*O - 8 

au er 
scale 

+ i(2Q'-a)e -T;' + irl~+T;'El(21l>+(Y~2)e-1o(8)}' 
(3.63) 

(3.64) 

Employing (3.52) and (3.53), we obtain the result 
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00 

f Uk2S dll = (u*O) 
2 

{ __ 1 + e: [2(Y +0n 2)] + O(e: 2 )} 
o e: K: 2 K: 2 . 

NR: (3. 65) 

where the 0(e:
2

) terms involve C
5

, which could not be evaluated. 

Thus for no relaxation, 

NR: (3. 66) 

Utilizing the expansion for u* in (3.24), it is clear that 

+ 0 
<PI(O ;e:) 

lim 
e:~ 0 p 

which is identical to the result for a potential flow with velocity V 0 

over the wavy wall. This lowest order behavior is expected, as in 

the limit e: ~ 0 the 0(1) velocity on both inner and outer scales ap-

proaches VO. 

It is notable that, to O(e:), the phase shift of the O(ka) surface 

normal stress is due to the turbulent Reynolds shear. 

Comparing (3. 58) and (3.66), we obtain 

a relation that will also be shown to hold in the relaxation case. 

Consider the relaxation case. Again, from (3. 52) and (3.53). 

where the 0{e: 2 ) terms involve C
S

' which could not be evaluated. It 

can be shown that in the relaxation case (see Appendix Ill), 

~llc u*O 2 2 
R: - i J I T I 2 dfl = (-e:-) 0 (E: ) 

o 



R: 

FurtherrrlOre. since 

IT 12\outer 
scale 

-60-

[H(2bI3K+ 2;-a) e -1l + 0(8) } 

i b K 
{I + 8 (kl'f1 _ ",13 )} 

1l 
therefore (see Appendix IV) 

R: 

00 

-ikJ ITI2 d1l = (U:O)2 (2b
I3

K + 2a_a)8
2 + o(8l) 

C1lC 

Hence. for the relaxation case. 

R: 
+ 

cp 1 (0 ;8) u*O 2 {I 2E:{y +072 2) 2 I = (-) --2 + 2 + 0(8 )J 
P 8 K K 

(3.67) 

(3. 68) 

(3.69) 

Note that the phase shift at 0(8) has been lost with the inclusion of the 

relaxation effect. 

The normal Reynolds stresses within the flow may be readily 

determined. In general. 

1 2\. (dS Ule -k1l\ 
1 T 22 - '3 q 1 = + 12k K u* 1l d1l + k ) -

o 

1 T 33 = -; q 211 

On the out er scale ('f1» 8): 

(3. 70) 



R: 121 ITll +'3 Q 1 = 

+ 0(8) 

(3. 73) 

It is of interest to note that l to the extent the inner expansions are 

known l they are contained within the respective outer expansions. 

Furthermore, the NR expansion on the outer scale is an order of 

magnitude (in 8) greater that the R expansion. 

The expres sion for <l? 1 (T);8) on the outer scale l obtained either 

through the eS momentum equation or by integrating the e
1l 

momentum 

equationl is 

ip 1 (Ti'; 8 ) u* 0 2 -1l I. '" + '"V "'? 11J 
NR: p = (-8-) - :2 + K82 L(y+0n2)e-1l -e 1l E1.(2Ti')-0nTi'e- 1l

+i2K"""e-

+0(8
2

) 

(3. 74) 



-62-

Another quantity of interest is the so -called Ilwave -induced II 

Reynolds stress. In this instance, it is conveniently defined as 

(see (2.9», 

2'1T 

- <~ ~) - i'1TJ
o 

(u(S,Y']) - U(Y']» v(S,Y'])dkS 

The two models exhibit dissimilar behavior; specifically, on the 

outer scale, 

NR: - <~~) 
-2Y'] ~ E (2f) 

2 { e 1 '" -2Y'] 1 } = (u* ka) - 2lf" Imag(CS ) + 22-nY'] e + 2 + 0(1) 
o 

+ 0(ka)3 

-2f) } 
R: - <~~) = (u* ka)2 {- e 2K: Imag(C

S
) + 0(1) + 0(ka)3 

o 

The complex amplitudes of the O(ka) perturbation velocities 

are 

where the 0(8
2

) terms involve S~ • 

u* 
_ _0 { 1.. _ e 2-n I e I + O(e)} Inner: u l - 8 K: K 

-i u* 2 
O{ e2-nlel * 2} vI = -8- -2 K: sgn(8)Y'] + O(e ) 

where the unwritten terms involve S~ • 

(3.7S) 

(3. 76) 

Again, to the order in the inner solutions indicated, the inner solu-

tions are contained within the outer solutions. 
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F. Solutions of the Lower Flow and Calculation of Scalar Constants 

In order to calculate the various scalar constants appearing 

in (3. 24) for c f. O. the lower flow field must be treated. In the 

following. the subscript "w" refers to the lower fluid; in keeping 

with the previous convention. similar quantities corresponding to 

the upper fluid are not subscripted. 

The following assumptions are made: 

I) The lower flow is two-dimensional. viscous and lam.inar. 

Although generally quite valid for laboratory studies, the 

assumption of laminar flow is questionable for oceanic application. 

2) ka« 1 

As in the upper flow. the O(ka) dynamics are solved. The 

analysis provides the wave amplitude with a temporal behavior of 

the form 

nt 
a (t) = A e ( 3. 7 7 ) 

where n and A are both real. Clearly. the solution will be valid 

for a time interval of order n -1. As with the other scalar quantities 

in (3.24). n has an expansion of the form 

(3.78) 

The -2 \) k 2 term is the viscous decay rate for a free wave. In the 
w 

limit of 8 -+ 0 the phase shift of the O(ka) surface normal stress 

vanishes and therefore. neglecting Kelvin-Helmholtz instability, 

there can be no wave growth. Thus. the leading term on the right 

side of (3. 77) is 0(8). 
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3} kh» 1 and 'J k/c «1, where h = depth of lower fluid w w 
1 

and C w = (g/k}2; e. g., only deep water gravity waves are considered. 

For typical laboratory studies of wind-generated water waves 

(R. H. Stewart, 1970; SheITldin and Hsu, 1967), c Iv k > 10+4 
w w ' 

+5 and for deep water gravity waves, c Iv k > 10 for A. > 1 ITleter. 
w w 

For siITlplification of the analysis, h is taken as infinite, and V k/ c 
w w 

of order € (typical values of € for data considered were between 

o. 1 and O. 3). 

4. At t = 0, the lower O(l} horizontal velocity is spatially 

uniforITl and equal to -c. As will be indicated later, this enables 

the 0(1) ITlean surface shear to be neglected. 

5} The upper flow iITlposes only a slight perturbation on the 

water wave. As will be shown, this iITlplies 

and rules out Kelvin-HelITlholtz instability a priori. For wind

generated water waves, .J?.. = 1.22 10-
3

• FroITl (3. l7), it is 
Pw 

apparent that V 0 is essentially the velocity at kll = I, which is 

generally of the saITle ITlagnitude as c • 
w 

The equations of ITlotion in the upper flow (3. 2) to (3.9» 

neglected tiITle variations. These can be taken into consideration 

through use of (3. 77) and (3. 78). The effect, however, is insignifi-

cant. 
-0 

The expression for N 2 has an added terITl 

B .J?.. e4l 
Pw 
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where B is a num.erical constant of order I, and pIp = 1. 22 10- 3 
w 

(for air -water). Similarly, term.s with factors of pI p are added 
w 

o 0 0 i i 
to S5 and N 5, and to the equahons for S5 and NO. The expressions 

+ (3.66) and (3.69) for qi 1 (0 ;8) are unchanged to the order given. 

The analysis of the lower fluid is essentially that given in 

Lam.b, Q 349, and will therefore not be repeated here. The only 

significant differences are 1) the O(ka) shear stress along the sur

face is m.atched with that of the upper flow = 2 p u* u* ka e ikS ; 
1 0 

2) the norm.al sfc. stress is m.atched with -qi 0 - ka e ikS qi 1 (0+;8); 

3) surface tension effects are neglected. 

From. the velocity tangent to the surface we obtain the com.-

plex am.plitude of the O(ka) orbital velocity as 

i(n+2 v k 2 ) 2v k 
c + w _ i w (1 + ~ _ 

C w C w k C w Cw v k 2 
cO 

w 

(3. 79) 

where, by a convention of the analysis, the real part of 
1 

(1 n i c )"Z 0 °t o 
0 d th t th t b to t +:-:-i:2k - v k 1S POS1 1ve, 1n or er a e per ur a 10ns 0 

Vw w 
the flow field vanish as y -> -00. 

Matching of the norm.al surface stress, together with the 

other boundary conditions, yields the following relation between 

+ 
qi 1 (0 ;8), c, and n: 

o = 
+ qi1(0 ,E:) 

2 
pw Cw 

-{1 
2 321 

( 
n+2 v k 0 )~ (v k)2( 0 n+V k )"Z + w _ ~ +4...::!:!- _~+ w 

kc c c c kc 
w w w w w 

u *1
u

*0 ( 0 51 { (v k)l( 0 n-1-k2v )~} -S + 2:E.... 1-2....::!:!- _ ~ -1- w 
2 c kc c c k c 

(3.80) 
C w w w w w w 
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Utilizing (3. 78), (3. 10) and the NR solution (3.66) for <P 1 (0 +;8) we 

obtain 

NR: k Ie + 0(8) (3. 81) 

where the second terITl is proportional to the iITlaginary terITl in 

(3.66)" 

c = c O(1 + 8 kml 8 I 1\1 + 8 1\2 + ••• ) 

where 
1 

C
w 

(1 V 0 2)2. 1 

Co = _L(_) c = ± (g/k)2 
Pw Cw w 

1\1 = _L A (V 0)2 
Pw 1 Co 

1\2 = (V 0 )2 L - (0n2 + 'Y - A ) 
Pw Co 2 

cO = Co + 0(1) 

and thus, froITl (3.40), 

= 

The square root in Co is taken positive, the sign of c being indicated 

by the sign of c • 
w 

Several characteristics are apparent in the above. First, 

the solution is not unique to all orders, since too few equations 
v,2 

exist to specify all the constants. Secondly, the terITl 8 L _0_ k f( 
Pw Co 

in (3.81) iITlplies a generation effect for V 0 c
w

> 0 (e. go, waves 

ITloving in the direction of the wind with U o > cO) and a daITlping 
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effect for V 0 C w < 0 (e. g., waves moving faster than U
O

' or waves 

moving in opposite direction to the wind). 

In the previous analysis, the 0(1) shear stress at the surface 

was not matched. it in fact being assumed zero. As the 0(1) surface 

shear acts to set up a non-uniform current in the lower fluid, such 

an as~umption is warranted provided that the current generated during 

the time interval over which the analysis is valid is small compared 

to -c. Assuming the O( 1) horizontal velocity is -c throughout the 

lower flow at t = O. a non-uniform current is generated in a time 

interval of O(h 2 tv ) (Lamb, 1945, 9 334). The ratio of this current 
w 

development time scale to that of viscous decay is 

2 
~ (v k 2 ) = (kh)2 » 1 
v w 

w 

Since the induced surface current cannot exceed O(V 0) "'" U(kll = 1) 

without the surface shear changing appreciably. it is therefore clear 

that the 0(1) sur face shear may be neglected. 

G. Stationary Wall 

In this case. from (3.42). (3.66) and (3.58), 

and. as mentioned previously. the expansion (3.24) for u* is not 
o 

utilized. 
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PART IV : COMPARISON WITH EXPERIMENT 

The theoretical results have been compared with the experi-

mental data of Kendall (1970), Shemdin and Hsu (1967), and Sigal 

(1971). The principal characteristics of these studies are listed 

in Table 1. 

A. u(S, Tl) 

In Figures 2 through 4, the total velocity u(S, Tl) in the 

S-direction (3.75) at various constant values of Tl is compared with 

the data of Sigal, which has been transformed to the (S, Tl) coordinate 

system. 
-5 2-3 

The values kTl* = 6.91 X 10 , c f = 2(u* /U ) = 2.98 10 
0000 

are used, corresponding to the mean velocity profile obtained at the 

same Reynolds number and position in the wind tunnel with a flat 

lower surface. 

As can be seen, the theory predicts both the phase and ampli-

tude of the u-fluctuations with accuracy. 

It is evident from (3. 75) that the u-fluctuations are dominated 

::;{)'" by SO(Tl). The outer mean vorticity equation (3.33) can be written 

as 

(3.82 ) 

e 
-T) 

The left-side (convective terms) are O(e -2), whereas in either case 

-2 
the mean vorticity generating terms on the right are 0(8 ). Hence, 
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-0 
So is an "inviscid" terrn. as we expect since. to lowest order. 

the O(ka) norm.al surface stress is that of a potential flow. 

B. v(S. TJ ) 

In order to facilitate com.parison with the data of Kendall. 

the velocity in the v-direction at constant values of y is plotted in 

Figures 5 and 6. using equation (3. 76). The values of k'r1t: and u* Iv 
o 0 00 

are from. Table 3 of Kendall (1970). Note that the wave speed is non-

zero. 

It is apparent that the am.plitude is predicted within 20%. 

although the phase is in error by approxim.ately 35
0 

at both elevations. 

The velocity in the y-direction. ~(x. y). is related to u(s. Tl) by 

~(x. y) = 
u* 

o 

using 

-ky I -ky I - ka e sinkx u(S. Tl) u*O + (1 + ka e coskx)v(S.Tl) u*O 

J -ky 2 -2ky 
1 + 2 kae coskx + (ka) e 

ikS 2 
u = V(Tl) + kae u I (Tl) + O(ka) 

ikS 2 
v = kae vI (Tl) + O(ka) -ikae ikS (kS+ v e - kTl) 

and 

thus 

e
ikS 

= e
ikx 

+ O(ka) 

e -ky = e -kYJ + O{ka) 

and therefore. to O(ka) 



where 

~(x, y) = 

u* o 

-71-

. k ikx kS 
-1 ae . k ikx 8 = - 1 ae -e 

"" 
SO = _e-

K

71 
+ e{(y~.en2)e-Tl+e+71:1(2Tl)}+O(e2) 

It is evident that the measured phase 

imaginary term in 8 0 
at 0(£), e.g., 

-0 

shift of ~(x, y) implies an 

-0 
in S 2. If there was a term 

in S 2 of the form 

+i( positive function of Tl) (3. 83) 

the theoretical curve would be shifted towards the experimental data 

(e. g., the maximum in ~(x, y) would move from kx = -rr/2 towards 

• 0 
kx = -55 ). Considering again the outer mean vorticity equation 

(3.82), the diffusion terms on the right side, using (3.63), (3.70), 

(3.67) and (3. 71) are 

"" 

NR: Diffusion terms 
,..., i 2e-T] = +2(2'"a-a)e -71 + __ _ + 0(1) 

R: Diffusion terms = 0(1) • 

-0 This therefore implies that, contrary to our expectations, S 2 is 

also an "invis cid II term. Note that in the no relaxation case, 

ITI2/u; and (IT 11 +; q211)/u; are each O(e-
l
), but their 

o 0 
0(£ -1) contributions to the diffusion terms exactly cancel. It is 

reasonable to infer from this that the phase of ~(x, y) is sensitive 

to the predictions of the Reynolds stresses, a result that will be 

considered later in detail. 

In Figs. 7 through 9, comparison is made with the data of 

Sigal (c == 0). The amplitude is predicted within 10'% at all three 
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elevations, although the phase is in error by approxim.ately 4 0
• 

Note that the m.easured profile is again shifted downstream. with 

respect to the theoretical predictions. 

C. Reynolds Stres ses 

Figures 10 through 12 indicate the data of Sigal (1971) for 

the Reynolds shear stress in the (S, T]) coordinate system. and the 

theoretical calculations using the relaxation and no relaxation 

m.odels. The theory im.plies that the 0(1) Reynolds shear (3.12) is 

2 
equal to p u* throughout the flow; however, the turbulent boundary 

o 
layer thickness in Sigal's experim.ent was a fraction of the wave-

length, and the [0(1) Reynolds shearJ/(i pU
2

) at kT] = 0.262 and 
00 

-3 -3 
0.524 was 2. 25 10 and 2.0 10 • For this reason, the values 

2 -3 -3 
2 (u* Iu ) = 2. 25 10 and 2.0 lOwer e us ed in the calculations o 00 

of the Reynolds stress at kT] = 0.262 and 0.524, respectively, using 

(3.10), (3.12), (3.63) and (3.67). 

Several results are evident. First, the data clearly indicate 

both significant non-linear (higher harm.onic) effects, and a region 

of separation (zero shear stress) within the flow near the wall. 

Secondly, the no relaxation m.odel predicts the m.agnitude of the 

shear stress with reasonable accuracy, but not the phase, whereas 

the relaxation m.odel predicts the phase accurately at larger values 

of 11 while not accounting for the am.plitude. It is of note also that 

the O(ka) shear is decaying on the scale of 6, while the theoretical 

values decay on a scale of A(== 3.66) due to the assum.ption of an 

infinite log profile. 
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The im.portance of relaxation within the flow can be illum.i-

nated by the following. The tim.e scale of the turbulence is, by 

(2.4), (twf l = w- l
, while the tim.e required for a fluid parcel to 

experience a com.plete cycle of the fluctuating rate of strain is 

A/V('ll). The ratio of the reaction tim.e of the turbulence to this 

convection tim.e is, for c = 0, 

Ratio = 
-1 

W 

A V-I 
= 

For the values of fl in Figs. 10 through 12, we have 

!l Ratio 

o. 157 0.64 

0.262 1. 14 

0.524 2.5 

The O(ka) rate of stra1."n kaeikS S" th t 1 1 12 1.S, on e ou er sca e, 

u .-..-

kaeikS lS12 = ka coskS ;O{_ 2~-'ll + 2 [('Y +w2)e-fl + tflEl(in)]+O(l)} 

which is in anti-phase with the wave. The above argum.ent would 

im.ply that for 11 sm.all, the O(ka) Reynolds stres s should be roughly 

in phase with the corresponding Reynolds O(ka) rate of strain, and 

as fl increases, a significant phase shift should occur. The data 

of Sigal (Figs. 9 through II) indicate the m.axim.um. of the Reynolds 

o .-..- 0 .-..-
shear m.oving from. ~ 225 at 'll = 0.157 to 270 at 'll = 0.524. 

The defect of the relaxation m.odel is its failure to predict 

the correct am.plitude of the Reynolds shear at large 11, and its in-

ability to account for the close phase relation between the rate of 

strain and the Reynolds stress at low fl. As a result, the relaxation 
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model generates no contribution to the surface normal stress at 

2 
0(8) or O(€:" ) (see (3.67), (3.68». 

In a recent modification of the model equations, Saffman 

(1974) has included additional terms representing a non-linear 

interaction between the mean vorticity and the rate of strain 

in both the constitutive equation for the Reynolds 

stress ( 2. 1 ) and the relaxation equation 

(2.4). As a result, the model is capable of accounting for the in-

equalities in the normal Reynolds stresses in a constant shear-stress 

boundary layer (compare (3.12». The equations become (in cartesian 

coordinates) 

~ 

-u.1 u.1 = 2A ~ S .. - 23 e 0 .. +~ (e. k S.k + 8.k S.k)O - X .. (3.84) 
l. J W l.J l.J wc. l. m J J m l. m l.J 

DX·· 
--2l = 
Dt (3.85) 

~ 
where 8 .. 

k 
is the cyclic tensor, A = 1. 0, and 0 is the mean vorticity. 

l.J m 

The quantity e is identified directly with the turbulence kinetic energy, 

and A is a constant with value 0.09. In order to roughly estimate 

the effect of the additional terms, the solutions obtained previously 

were substituted into the right-side of (3.84). The outer shear 

stress was changed to the lowest order, indicating one might expect 

significant changes. 

As Kendall (1970) did not measure the normal Reynolds 

stress in the y-direction, the turbulent shear stress must be com-

pared in the (x, y) coordinate frame. The transformation is 



-75-

{ 
ikS } 2 

T xy = OTl2 + ka Real( ITl2 e ) [1 - 2 sin f] 

+ {OTll -OT22 + ka Real ([ ITll-IT22JeikS} sincp coscp 

where cp is the angle between e
S 

and ex 

I 

sincp = - ka e -ky sin kx {I + 2 kae -ky coskx + (kae -kY)2f"2 • 

The model equations utilized predict OTll -OT22 == 0 (see (3. 12», 

whereas in a flat plate zero pressure gradient turbulent boundary 

layer the ratio OT22 / 0Tll varies from approximately 0.25 to 0.50 

for y /8 ~ (0. I, O. 7) (Hinze, 1959). t As -ul u2/~ is ro~ghly O. 075 

in a flat plate boundary layer for y 18 -e: (0. I, 0.8). the comparison with 

the data of Kendall is therefore somewhat qualitative. 

Fig. 13 indicates both the relaxation and no relation cases, 

using (3.12), and the same calculations assuming OT22 = t OTII = 
12* = -"2(O.Ol)U (Kendall, 1970, p. 277). The contribution from the O(ka) 

00 

normal stresses ITU and lT22 was less than 5% of that due to TI2(~' T1, 

ka). It is apparent that the no-relaxation case reasonably predicts the 

amplitude of the O(ka) component of the shear in anti-phase with the 

wave, which is one s~urce ofthe phase shift in 91
1
(0+;8) (see equation (3.61». 

t See above, p. 77. 

* It is possible that the ordinat e o~ Fig. 13 of Kendall has been in
correctly labeled as "_2 < u'V' '>!U • II As the edge of the sublayer 
is approached from above, lh~ Rey'fi'olds shear stress should fluctu
ate about a mean which is approximately u~. Since 

C = 2(u !U )2 = 4. 5x 10- 3 for U = 5. 5 m~s (Table 2 of Kendall), 
f * 00 00 2. 

it is poss~ble that the ordinate should read "- <u~ V?!UOO.II In F1g. 13, 
both cases are shown. 



-76-

D. Phase Shift of the Surface Normal Stress 

In the limit of e: -+ O. the O{ka) normal stress at the surface 

is exactly in anti-phase with the wave. It is reasonable. then. to 

define the phase shift relative to kx = -'IT. a positive shift ~p imply-
1 

ing a shift downstream with respect to the wave trough. 

For the no relaxation case. from (3.66) 

~ = tan -1 I + 2 e: 1(2 + 0(e:
2

) + 20 (ka)2 I 
PI 1 - 2(y+w2)e: + O(e: ) + 0(ka)2 

It is clear from (3.81) that the phase shift ~ is directly 
PI 

responsible for the generation term in n. where a = Ae
nt

• The net 

drag on the wavy surface in the x-direction due to the normal surface 

stress (including all higher harmonics) is 

ka 
= - c sin~ 

2 PI PI 
(3.86 ) 

where c is the amplitude coefficient of the fundamental harmonic 
PI 

of the surface normal stress: 

d . 3 ikx Note that ~ epends non-lInearly on ka through terms cc (ka) e 
PI 

in the expansion for ~ (S. 1l). 

The data of Sigal indicate a value of ~ between +30 and 
PI 

o +4.5 • based on his calculated value of CD and the maximum and 

p -5 
minimum measured values of c Using kll* = 6. 91 10 (e: = 0.104; 

PI 0 
see part IVA) the no relaxation model predicts +2.6

0
• 

The phase shift ~ , vs. 
PI 

cK /u* for the data of Sherndin & Hsu 
o 
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(1967) is presented in Fig. 14. The theoretical predictions of 

Miles (1959a) are also shown. Although the no relaxation ITlodel 

predicts the correct qualitative behavior with c, it underestiITlates 

-' by 100 _200 f 15 "'/ IjJ or • :-:;: cn. u* 
PI 0 

:-:;: 4. o. Part of this dis crepancy 

can perhaps be attributed to higher order terITls in 8 - -indeed, 8 in-

creases froITl 0.216 to 0.347 as cK/u* grows froITl 1. 5 to 4. O. 
. 0 

The data of Kendall (1970) are plotted in Fig. IS, along with 

the theoretical predictions of Miles (1959a), and the calculations of 

the no relaxation ITlodel. using the values of kTb:c and u* /U frOITl 
000() 

Table 2 of Kendall (1970). The theory ITlanifests the correct quali-

tative behavior with cK/u* over a wide range of both positive and 
o 

negative wave speeds. As Miles' theory relies on the existence of 

a critical layer within the flow field. it is inapplicable for c ~ O. 

The theory also indicates qualitatively the observed downshift of the 

r/J vs. cK/u* curve with increasing Reynolds nUITlber. However. 
PI 0 

it clearly underestiITlates the phase shift. As in the data of SheITldin 

and Hsu. 8 increases with increasing wave speed, and at large 

positive wave velocities (cK/u* ~ 2. 5). higher order terITlS in 8 
o 

will be significant. Further ITlor e. non-linear effects ITlay be iITl-

portant in Kendall's data (ka = 0.196); Townsend (1972) has argued 

that the linear approximation fails for ka ~ 0.10. Nevertheless, 

the data near c = 0 appear to indicate that the no relaxation model 

is lacking a positive terITl of 0(8) in tan r/J 
PI 

FroITl (3. 61 ). 

+ I u 2 II 00 I ~ ( 0 ; 8 ) * 0 1 J ,...., -,...., 2 roo 1 T 1 2,...., 2 
I = -2 if. (l+8wYl)S dYl - i8 J -2-dYl + i2€ 

P 8 0 0 u* o 
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For the no relaxation case. we obtained «3. 65). (3.64» 

As indicated in (3.83). the discrepancy between the predicted and 

measured values of the phase of ~(x. y) could be accounted for by a 

-0"-' 
term in S 2 (11) of form 

+i(positive function of fl) . 

Clearly. such a term would also add a positive term of O(~) to tan q, • 
, PI -0,,-, 

As was shown previously. the phase of S 2(11) is sensitive to the 

functional form of the O(ka) Reynolds stresses. and it is consistent 

to conclude that the underestimation of rI> is due. in part. to mis
PI 

prediction of the O(ka) Reynolds stresses. 

In addition. both the relaxation and no relaxation models 

predict (see (3.57» 

1 ::7"1 '" + 1 T 22 +"3 q 1 ..... 0 as 11 ..... 0 • 

thus the contribution from :11 (IT 22 + ; q2ll) to <P 1 (0+;8) is zero 

(see (3.59». As in a constant-stress flat plate boundary layer. one 

does not expect equality of the O(ka) normal Reynolds stresses at 

the edge of the sublayer; however. the contribution to <P 1 (0+;8) would 

2 2 2 
be O(u* ) = (u* /8) 0(8 ). 

o 0 
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The variation of c with wave speed for the data of Kendall 
PI 

is indicated in Fig. 16. The no relaxation case predicts the 

pressure coefficient within 15% for -0.4:;;; c/U :;;; 0.4. For com-
00 

parison, c for a potential flow of velocity U -c is also presented. 
PI 00 
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PART V: CONCLUSIONS 

The following conclusions can be drawn: 

1. Both the relaxation and no-relaxation models accurately 

predict the O(ka) horizontal velocity. 

2. Neither the relaxation or no-relaxation models adequately 

represent the O(ka) turbulent Reynolds stresses. A more suitable 

relaxation hypothesis (such as (3.84) and (3. 8S}) is needed. 

3. The no-relaxation model predicts the correct qualitative 

behavior for the phase shift of the surface normal stress for a wide 

range of positive and negative wave speeds; quantitative predictions 

are deficient due to inadequate representation of the turbulent 

Reynolds stresses and higher order effects in 8 and ka. 

4. Both the relaxation and no-relaxation models accurate! y 

predict the coefficient of the fundamental harmonic of the sur face 

normal stress over a broad range of positive and negative wave 

speeds. 
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Appendix I: The charge in the normal velocity across the sublayer 

Consider the wavy surface to be smooth. From continuity 

(utilizing the notation of (2. 9) ), 

k'r] 

v(s, 'r]) = _J+t J a~s lr-t u)dk'r] 
k'r]s 

k'r]s = kr] I = (ka)2 cos
2

kS + O(ka)3 
y=a coskx 

where 

and 
-k'r] 2 

J(S, 'r]) = 1 + 2 kae coskS + O(Ka) • 

As sume that, within the sublayer 'r]s :S: 'r] :S: 'r]sL ' 

'r]sL == 'r] I «a, 
Edge of sublayer 

(
Cu*) ikS 2 

u = u*(S) f ---v - c + kae dl + O(ka} 

where 

(I. 1) 

where 
ikS -k'l"l -k('l"l_'l"l) 

, = 'r]-'r] + a e e 'IS(e 'I 'IS -1) + a O(ka) is the 
s 

distance normal to the surface; f(C+) is a universal function, inde

pendent of u*/kV, with f(o) = 0; and dlkae
ikS 

is the orbital velocity 
o 

at the surface. 

where 

Now 

+ + kv f + + 
('r] f( 'r] » dk'r] = u* U- ('r]sL) 'r]sL 

1 *0 
+ 

where'r]sL is a constant, and k'r]sL 0:: kV/u*O. 



Since we expect 

-82-

I df{T) +) I . + + 
dT) + to be bounded m 0 < T) < T)sL ' 

u* kT) 
o ITlax df r -kT) l)dkT) ~u* - . _ (l-e )dkT) 

o k-v lnsL dl1+ "0 

ITlax I df I ( (ki) 
2 

+ 0 (kT) ) 3 ) 
dT)+ 

Sinrilarly, 

kT) 

I J ~ -kT) u* f{T) +)d kT) I ~ u* ITlax I f{T) +) I (kT) + O{kT)2) 
000 

and kT) 

I (cO + c e -kT))d kT) = cO kT) + c{l-e -kT) 
o 

Thus, writing kT)* = kT) L 0: ~ , and using the fact that 
o s u* 

o 
u* = O{u* ), and cO = O{c) , 

1 0 

( ~ ) = k ikS {O(u* kT)* ) + O{c kT)* )} • 
V ':>, T)sL ae 0 0 0 

(I. 2) 

For a rough wavy wall, the functional forITl of the tangential 

velocity within the sublayer is not known, since it depends on the 

shape of the roughness eleITlents, and (I. 2) is taken as an assuITlption. 
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Appendix II: The change in the stresses across the sub1ayer 

Consider the curvilinear coordinate system in Fig. II wherein 

(dX. dY) are incremental lengths parallel and normal to the wall. 

respectively, and u and v are the corresponding average velocities. 

The equations of motion within the thin roughness layer, 

making the boundary layer approximation, are the following (Goldstein 

(1938)): 

au + Bv +~ = 0 ax ay R 

au au 1 
2 

£!..+~ u ax + v ay +~ = ap + v ~ +!. 
R P ax ay2 p ay Rr 
2 

1 ( av ) + 
u 
If = - p P - J.L ay 

where T = - p u'v' is the turbulent shear stress 

P = P + pv,2, p is mean (static) pressure 

R = radius of curvature of surface 

-1 = (-ka k sin kx + • • • ) 

Writing 
ikX 2 

u = uO(Y) + kae u 1 (Y) + O(ka) 

v = ikX kae v (Y) + ••• 
1 

ikX 
T = T 0 (y) + kae T 1 (y) + ••• 

ikX 
P = PO(y) +kae Pl(y) + ••• 

the boundary conditions are 

u(X, 0) = -c + kae
ikX 

cO + O(ka)2 

veX, 0) = 0 

T (X, 0) = 0 
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Sub stituting, 

a ( duO + T 0p(Y» ,. ddPyO = 0 o = ay v dY 

. k Z 1 d (p dv 1 ) 
1 U o = - P dY 1 - IJ. dy 

Thus 

duO 
v-

dy 
+ 

T o(Y) 

p = 

Writing for the 0(1) velocity (assuming a sm.ooth surface), 

( 
Yu* ~ u =u f--O-c o *0 v 

we have 
dV

l (P -IJ.-) 
6. 1 dy Z Jl Z 

= -i u* k~ f (C )dC p o 0 0 
Across . Zk 

sublayer - 1 c 1'1*0 

The integrals are independent of k 1'1* ; thus 
o 

dV I 
A (P 1 -1J. dy) Z 
w = - i u* k1'1* i} 1 + i Z u* k1'1* i} Z c 

p 0 0 0 0 

Across 
sublayer 

where i}I' i}Z are real constants. 

Using the notation of (3. 10), 

. Z k 
- 1 C 1'1* 

o 

(II. 1) 

(II. Z) 

. ikS J Z Z} 
= -1 kae k1'1* f* i}1- Z u* c i}Z+ c 

o 0 0 
Across 
subIa er 
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Since kT] '" exp(- _U_o __ ) 
*0 (U 0 -cO)€: 

+ where (UO-c O)€: -> 0 , the change in the total norrn.al stress across 

the sublayer is transcendentally small corn.pared to any of the terrn.s 

. ikS + 1n kae cp 1 (0 ;e). 

Sirn.ila r 1 y, 

d dUI 'f 1 duO dv 1 i k 2k 
dY (v dY + p) = vI dY - Uo dY +-p-P1(y) - i p'f O(Y) 

where 
dU l 'f 1 

v dY + P is the corn.plex arn.plitude of the total O(ka) kine-

rn.atic shear stress. 

Then 
kT]* 

( 
dUI 'fpI) . I 0 

6. V dy + = +2:. PI (kY)dkY 
p 0 

Across 

kT]* 

2J 0 -i- 'fO(kY)dkY 
P 0 

sublayer kT] 

J *0 ( duO 
+ vI dkY o 

Now, using (II. 2), 

and since 

k'I"J 
i J *0 (; P 11 ) - PI (kY)dkY = O\k11* - SFC 
p 0 0 p 

'fO(y) 
0:5:-

p 
:5: u; in sublayer (as d 2u

O
/dy2 :5: 0 in sublayer 

o 
of a flat plate zero-pressure-gradient boundary layer), 

k11* J 0 
o 

Also 
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using (1. I) • 

Furthermore, 

and assuming in sublayer (for smooth wall), 

) + (")k ikX + O(ka)2 , - c c •• ae 

u u 2 2 
I 0 dkY = O(u* kTl* ) + O(c kTl* ) • 

000 
Thus 

( 
dUI T I ) 

!::. v-- + - = 
dy p 

Across 
sublayer 

( 11.3) 

As indicated, the change in the complex amplitude of the total O(ka) 

kinematic shear stress across the sublayer is transcendentally 

small compared to any of the terms in ITI2 (Tl). 

For a rough wavy wall, the functional form of the tangential 

velocity within the sublayer is dependent on the shape of the rough-

ness elements, and (II. 2) and (II. 3) are taken as assumptions. 
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Appendix III: Contribution of the Inner Shear Term 

to Surface Normal Stress--relaxation included 

From (3.60), 

As before (3.62), 

, - '" 2",2 '" 2 J ~ {I +0" ~ 7J - 0"",1< }d'T;' = 0(1). 
o Q Q Q 

Similarly , , 
I J 0 N T1 u dr;' I = I J 0 N T1 (/1< )( 1 + e: En T1)d 'ill 

1 

Since IE: 1« <:« IE: 12 (see (3.42)). 

Also , ,- -
J d ("'2 dN '" -) '" ",2 dN --::: 1'"] --::: - 1'"] N d 1'"] = 1'"] -;:;- - 1'"] N 
o d1'"] d1'"] d1'"] 0 

= 0(1) 

o 

Now in the inner region, 

U (d
2

S 2-) S 
= 2 --*2 + E S + ~*2 

E: d1'"] KE: 1'"] 

= _1 Id2~ _.!.+s gn(E:)+O(l)j 
E:K d1'"]*2 K K1'"]* 
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Now, d2~ /d11 *2 is not known. However, from the boundary condi

tion on - uJ. U z (equation (3. 29}), it can be shown that 11*2d2S~/d11*2->O 
* *2 2 i *2 as 11 -> O. Furthermore, 11 d S5/dT1 should tend towards 

,,-,2 2 0 ,,-,2 * 
11 d S5/d11 as 11 -> 00, and from (3.51), 

2 0 
112 d S5 -> 0 as 11 -> 0 • 

dl1Z 

Inspection of the equations for S~ and N~ ((3.45) and (3.47)) indi

* cates that the only singular points are 11 = 0,00. Hence we replace 

*2 2 i *2. . * I I 11 d S5 /d11 by 1ts maX1mum absolute value for 0 ~ 11 ~ C / E: 

(which is independent of E:), and write 

, . *2 2 i *2 "-' If -1 K: sgn(8) 11 d S5/d11 d11 

o b
13

K: sgn(8)+i11*(1+8 0n Ie 1+807111*) 

I I *2 2 i *2 ~ b max" d SS/d11 1 C 
13 

= 0 (1) • 

Similarly, since r = 0(8) 

0(1 ) 

Finally, it is easy to show that 
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= 0 (1) 

* 
-1/28 -1/28 

e e * by dividing the integration into 0 ::; 11 ::; -8- and -8-::; 11 ::;, 

when 8 > 0, and by simply using 1 + 8.0nTl ~ 1 for 0 ::; Tl ::; C when 8 < O. 

Thus, 
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Appendix IV: Contribution of Outer Shear Term to Surface 

Normal Stres s - relaxation included 

From (3.61) and (3.67), 

00 

-i I 1 T 12 dll = 
CYlC 

Now 

00 

+ 2 "'- ) Jf e -x + O(E:) }dx 
0'0' 'b K 

CYlC {l + E:(.0nx_
1 

x
13 ~ 

J
OO -x 

e dx JOO i b
13 

K e -x dx 

= 1 + 0 (C) + E: ( i b 13K ) 

C x .1+E: (.0nx - x ) 

The cases E: > 0 and E: < 0 must be considered separately. Note that 
1 

I E: I « C « I E: rz « 1. 

Case I: E: > 0 

First, we show that E:.0nC = 0(1), as follows: 

a ) E:.0n C ."". 00 

As sume 1E:.0nC I .... 00 as E: .... 0 • 

.0n(ci/E:) 1 
Then = 1 + -+ 1 (IV. 1) 

.0n r;, E: .0n r;, 

But,» E:» e-l/E:, :::}, e 1/ E: .... +00, andtherefore.0n(Cel/E:) .... +oo. 

However, since, .... 0, .0n C .... - 00. This contradicts the result (IV. 1), 

and :. E:.0n....,.. 00. 
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b) 8 0nC f. 0(1) 

Assume 8 0n C = A + 0(1), A is real, A f O. 

Then C = exp(~(1+0(1))) and C« 1 ~ A< O. 

However C» 8 ~ A> 0 ~ contradiction and A == O. 

Hence 8 0n C = 0(1). 

Now for 8 > 0, C :-:;; x < 00, 

1 + 8 0nx ;;::: 1 + 8 0n C 

and therefore, since C » 8 , 
00 

~ ~ f ::x;:, = ~ (\\+eO~'J\ = 0(1) 

C 

Similar 1 y, 
00 

0nx e dx 1 -x 

Thus for 8 > O. 
00 

f (e -x i b 13 ~ = 1 + 0 (1 ) 

C 1 + 8 0nx - x -) 

Case II: 8 < 0 

Divide the regions of integration into two: 

-1/28 -1/28 
and e :-:;; x < 00. For 8 < 0 and C :-:;; x :-:;; e , 

-1/28 I 
1 + 8 0nx C: 1 + 8 0n e = 2. • 



and 

Now 

-1/2e 

e Ie ( e -x d~ b1l \ 

, x l+e(wx - x ) ) 

00 

e f -x 

Also -1/2e e 

J wx e -x dx 

e -( ~~i b--:"13 K: ) 
, 1 +e (wx - x ) 

and 

Thus for e < 0, 

J
oo -x 

e dx = 

and therefore, for \ e \ -+ 0, 
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::; ¥+ (1 +0(1)) = 0(1) 
( 2) 

00 

::; J e -x dx = 0 (1 ) 
b

13 
K: 

-1/2e 
e 

1 e-1/2.f, 

::; 2\ e \ {-J wx e -xdx + J wx e -x dX]-

, 1 

::; 2\e \ {y + 2E
1
(1) + 0(1)} = O(e) 

= 0(1) 

1 + 0(1) 

~ 2 2} + 2a-a)e + o(e) • 
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Appendix V: A Note on the Critical Layer 

It is important to distinguish between high Reynolds number 

laminar flow and fully turbulent flow over a sinusoidal boundary 

with small slope. For the former case. the O(ka) mean vorticity 

equation can be written as (Benjamin. 1959) 

which is recognized as essentially the Orr-Sommerfeld equation, 

written in (S. T) coordinates. Solutions for the high Reynolds number 

laminar case have been given by Miles (1957, 1959) and Benjamin 

(1959). The dynamics are governed by the inviscid terms (Rayleigh 

equation) except at the critical layer, where the Rayleigh equation 

is singular and viscous stresses are important, and at the boundary, 

where viscous stresses must be included to satisfy the no-slip 

condition. 

However, for the fully turbulent case. the molecular stres ses 

are unimportant outside the viscous sublayer, and the O(ka) mean 

vorticity equation is, using Sa££man's turbulence model, 

2 
= _i.(d lT12 

k 2 
dT) 

d 2 -kT) 
+ 2 - I TIl + i 4 u>,'c e 

dT) 0 

u* 
where U = ~ 0n ("R;o) - c, and 1 T12, I TIl are the complex amplitudes 



-95-

of the O(ka) turbulent Reynolds stresses (see (3.10». 

It is not reasonable to as surn.e a priori that the turbulent 

Reynolds stresses are unirn.portant except at the critical layer 

vis -a-vis the larn.inar case. The critical layer is a pertinent 

rn.athern.atical characteristic of the Orr -Sorn.rn.erfeld equation; for 

our analysis involving the lirn.it of vanishing skin friction, it held 

no particular significance. This result is not unique to our inves

tigation. For exarn.ple, Townsend (1972) indicated in his nurn.erical 

study of fully turbulent flow over a sinusoidal boundary that the 

critical layer held no special irn.portance, either. In fact, for rn.any 

of his calculations, the critical layer lay outside his range of 

nurn.erical integrationl lying between the wavy sur face and his inner 

boundary conditions which were taken at a position outside the 

viscous sublayer. 
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