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Abstract

In this work, several low-order models are derived to describe and simulate fluid-structure interaction

problems with rigid bodies at a modest computational cost. The models are based on the inviscid

flow assumption such that potential theory can be used with, in some cases, point vortices in the

flow. Three general areas of application are considered. First, a thin airfoil undergoing small-scale

unsteady motions in the presence of a freestream flow is investigated. The low-order model that is

developed has only one ordinary differential equation for the fluid dynamic variables. This model is

used to briefly investigate vortex-induced flutter in the attached-flow regime and control of a free-

flying airfoil using synthetic jet actuators. Second, the vortex-induced vibrations of an arbitrary

bluff body in the presence of vortices, with or without a freestream flow, are considered. Several

examples of the canonical mass-spring-damper system for a circular cylinder and a flat plate are

given to demonstrate the use of the vortex-based model for these applications. Finally, the two-

body problem in a potential flow is addressed. A relatively simple solution specific to the doubly

connected domain is determined and its resulting force and moment are coupled to the rigid bodies

to investigate the mutual interactions between the two bodies. Aspects of drafting behind a forced

body, the role of the fluid in elastic collision, and flapping flight are discussed in this context.

Although a few specific examples and applications are given for each chapter, the main purpose of

the thesis is to present low-order potential flow methods that are applicable to a variety of situations.
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Chapter 1

Introduction

1.1 Motivation and background

Research of fluid-structure interaction (FSI) has been an increasing area of active research, especially

with the ever-growing computational power of computers. Historically, the study of fluid dynamics

and structural dynamics, except for isolated examples, have remained partitioned. Methods involving

the study of fluid dynamics have relied on approaches where the fluid is treated without regard to

the dynamics of the structure such that walls or boundaries are fixed or moving with a prescribed

motion. Likewise, the study of structural dynamics has been, for the most part, studied without

coupling to a fluid although all terrestrial structures are submersed in a fluid. Although, some

information can be inferred using partitioned approaches, such as acquiring steady forces that a fluid

applies on a structure and subsequently determining the structure’s response, a coupled approach

may be necessary to accurately describe, simulate, and analyze the FSI problem. When the fluid

and structure are coupled through their mutual boundary conditions, the problem at hand becomes

increasingly difficult and the resulting fluid and structural motion may not be obvious.

FSI is ubiquitous in nature and daily life. The fluid-structure coupling between many of these

situations becomes crucial for the understanding of the phenomena and few examples are given here.

The quintessential example of coupled FSI is the induced instability resulting in the collapse of the

Tacoma Narrows Bridge in 1940. In this instance, von Kármán determined that the structural

failure was coupled to the Kármán vortex street that was shed off the bridge and convinced the
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governor of Washington to halt reconstruction in favor of redesigning of the bridge (von Kármán

and Edson, 1967). It can be claimed that this event itself paved the path for the advent of new

fields of study that include bridge aerodynamics and vortex-induced vibrations, which continue to

be extremely active areas of research. Perhaps the oldest and most well studied FSI problem, the

fluttering of airfoils has been studied for nearly a century due to the emergence of powered flight. Its

stability boundaries have been determined based on assumptions of periodic response and potential

flow assumptions (Theodorsen, 1935) yet there are still many more avenues for research.

In addition, FSI is important for a variety biological and naturally occurring situations. The

fluttering of flags and falling cards/leaves have been a source of constant interest (Michelin et al.,

2008, Eloy et al., 2007). In internal biological flows, the FSI of bi-leaflet mechanical heart valves is

studied to show that aorta geometry has a drastic effect on the opening and closing of the leaflets

(Borazjani et al., 2010, Eldredge and Pisani, 2008). Fluid-structure interactions have also been

essential in the study of locomotion of various genus such as fish, insects, and birds to name a few

(e.g. Triantafyllou and Triantafyllou, 1995). Moreover, the interactions of several bodies in proximity

have been studied in an effort to understand coordinated motion and passive locomotion (Nair and

Kanso, 2007, Kanso and Newton, 2009).

Since fluid-structure interactions are pervasive in everyday life, it is essential to distinguish when

the coupling of fluid and solid motions is important for the solution of the problem. When the

fluid and structure problems can be separated, the problem is drastically simplified which leads to

computational savings. Consider a fluid-structure problem where a deformable structure is immersed

in a fluid. There are time scales associated with the internal dynamics of the structure (e.g. elastic

waves), the motion of the structure (e.g. period of a flutter oscillation), and motion of the fluid

(e.g. vortex turnover time or convective time). If the time scale associated with internal dynamics is

much smaller than both the time scales of the motions of the structure and the fluid, then the elastic

effects of the structure can be neglected and the body can be modeled as being a rigid structure.

Although the study of flexible structures is a major interest in general, this thesis is restricted to

the study of fluid interaction with rigid bodies.
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Now if the time scale of the structure’s rigid body motion is much greater than that of the time

scale of the fluid, then the fluid can be thought to be steady in the sense that the rate of change of

the fluid is much faster than that of the rate of change of the structure’s position and orientation

such that the unsteady motion of the fluid can be neglected because its effect is nearly instantaneous.

In this case, quasi-steady approximations can be used to determine forces and moments on the body

or bodies in place of solving the entire unsteady motion of the fluid in detail. The goal of this thesis

is to look at situations where this approximation cannot be made and thus the coupled problem of

the fluid and structure must be explicitly treated and solved with an unsteady model.

In many instances described above an incompressible assumption can be made without loss of

generality. Additionally, we can assume that the fluid is Newtonian so that the equations of motion

for the FSI problem for K rigid bodies can be written as

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u (1.1a)

∇ · u = 0 (1.1b)

d2xk
dt2

= Fk + Fe,k (1.1c)

d2θk
dt2

= Tk + Te,k (1.1d)

for each body k = 1, 2, . . . ,K where u is the velocity, p is the pressure, and Re is the Reynolds

number for the fluid. Each rigid body motion is completely chracterized by the location xk and

orientation θk. Fk, Tk, Fe,k, and Te,k are the force and torque due to the fluid (pressure and shear)

and external forcing, respectively. Fk and Tk are not only functions of the fluid variables but are

also implicitly functions of the solid variables themselves. The boundary conditions for rigid body

motion are

u(x) =
dxk
dt

+
dθk
dt
× (x− xk), for x ∈ ∂Dk. (1.2)

The most accurate method of predicting FSI of rigid bodies is to numerically solve equations

(1.1) subject to boundary conditions (1.2). Although there are many techniques to simulate these
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equations, two specific computational methods have been rather successful in the context of FSI. The

first uses body fitted grids to determine the fluid motion. In the case of rigid body motion, the flow

can be solved in a moving/rotating frame of reference for a single body (Wang, 2000). This cannot

be said with the introduction of several bodies. The second method to solve for the flow is to use

immersed boundary methods. Here a Lagrangian grid of the body is overlaid on top of the Eulerian

grid that is used for the solution for the fluid motion. The boundary conditions are interpolated

from the flow to the Lagrangian points and consequently a boundary forcing is required on the body

and is essentially diffused to the fluid in order to enforce the boundary conditions. Although initially

pioneered by Peskin (1972) there now exist various manifestations of this method (see Mittal and

Iaccarino, 2005, Taira and Colonius, 2007, for a review of various methods). To simulate FSI for rigid

bodies, both methods use a separate solver for the rigid body dynamics to partition the problem

into two distinct parts for each time step. Due to this fact, an iterative method is used to ensure

that the accelerations of the fluid and body are consistent, thus making the solution to the FSI

problem prohibitively expensive. When the mass ratio of the body compared to the same mass of

the displaced fluid is high, the numerical solutions of the fluid and rigid body dynamics can nearly

decouple from each other such that the iterative solver is unnecessary and an explicit solver can be

used in its place at a more modest computational expense. One must be careful about the strict

stability requirements on the time step in this case (Alben, 2008). When mass-ratios are low (or even

vanishing) however, special considerations are required to accelerate the iterative solver (Borazjani

et al., 2008). These low mass-ratio cases are extremely important for the study of vortex-induced

vibration of marine structures.

There are also several simplifications that can be made to reduce the computational expense that

seems to limit the effectiveness of simulating FSI at higher Re. For high Re, the viscous effects can be

neglected and thus equations (1.1) reduce to the incompressible Euler equations. This is equivalent

to interpreting that the increasing Re essentially confines the boundary layer to an infinitesimally

thin layer on the surfaces of the rigid bodies. Additionally, for structures with a long spanwise

symmetry one can effectively reduce the three-dimensional problem to two dimensions as a decent
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approximation. Even in cases where this is not strictly true some generalizations may quite possibly

be inferred from the two-dimensional dynamics.

In irrotational flow the solution to the two-dimensional Euler equations can elegantly be recast

in complex variables as determining an analytic complex potential, W = Φ + iΨ, such that u = ∇Φ,

where u satisfies the zero normal-velocity boundary conditions. Φ and Ψ are known as the velocity

potential and streamfunction, respectively. This greatly simplifies the problem to using the linear

superposition principle to add together individual elements of the flow. In the absence of vortex-like

structures, the solution can be determined without the need of solving any ordinary differential

equations. The most simple of these models is to use the potential to determine added-masses for

the treatment of a single accelerating body (Lamb, 1945, Newman, 1977). The treatment of the

FSI problem for this case in essence reduces to solving the rigid body dynamics equations with an

“added” mass that modifies the accelerations of the body. In the single rigid body case, the added-

mass is not time dependent. For several bodies, the coefficients are dependent on the instantaneous

configuration with respect to each other and thus are a function of time and are considerably more

difficult to treat (Kanso et al., 2005). A special case of the multiple body problem is studied in

Chapter 4.

Additionally, quasi-steady models have been proposed in place of determining the unsteady flow

around the bodies. The most prominent example of this is the use of the Kutta-Joukowski theorem

to predict that the unsteady forces, F , on a single body will be ρfUΓ0 where ρf is defined as the

density of the fluid, U is the velocity associated with the body, and Γ0 is the circulation around

the body. The circulation itself must be determined either by applying a Kutta condition or using

some empirical information. For example Lighthill (1973) predicts the lift due to the Weis-Fogh

mechanism in insect flight using quasi-steady values of Γ0.

However, one of the shortcomings of this method is that it does not capture the required un-

steadiness in myriad situations where vortex-body interactions and vortex shedding are important

phenomena. Ideal point vortices (i.e. point singularities of vorticity) provide an ample represen-

tation of pre-existing and shed vortices and are conveniently accommodating to the potential flow
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representation. They can be easily added to the potential and in general require a solution of an or-

dinary differential equation to determine its motion. Even with the added complexity of introducing

point vortices, the equations that represent the fluid in (1.1) are reduced to the solution of a finite

number of ordinary differential equations as opposed to solving a partial differential equation as in

the higher order methods presented above. Several studies have considered the body-vortex interac-

tion in the context of dynamical systems and the transition to chaos (Borisov et al., 2005, Roenby

and Aref, 2010). Shashikanth (2005) even reduced the general N -vortex, single-body problem to

become Hamiltonian in structure under special circumstances.

In cases involving viscous separation a sufficient model must be developed to capture its salient

features. For bodies with sharp edges, a quite natural model is to have the fictitious boundary

layer separate from the edge and form a sheet-like structure of concentrated vorticity. The vortex

sheet representation is first used by Clements (1973) to model flow separating from a square-based

section. The method is more rigorously pursued recently by Jones (2003) and Shukla and Eldredge

(2007) for fixed and flexible plates with prescribed motion. Unfortunately, the solution for the sheet

strength usually involves a non-trivial solution to an integro-differential equation which for FSI must

then be coupled to the equations of motion for the bodies (e.g. using the Birkhoff-Rott equations,

see Saffman, 1992, Pullin, 1978). A more simple model that is conducive to limiting the number of

fluid variables was previously proposed by Edwards (1954) and Brown and Michael (1954), among

others, where the entire vortex sheet is fundamentally rolled into a single vortex. After several years,

this method is then diligently employed to study and control some aspects of flow separation off a

semi-infinite and finite plate (Cortelezzi and Leonard, 1993, Cortelezzi et al., 1994, Cortelezzi, 1995,

1996). Many of these techniques are also adopted and extended by Michelin and Smith (2009b) for

use in several aspects of FSI.

The reduction of the problem to the use of discrete point vortices reduces the problem to solving

several ordinary differential equations with algebraic constraints (e.g. Kutta condition, conservation

of circulation). Because of the simple mathematical representation of the problem using discrete

point vortices, standard methods can be used with little trouble to integrate the coupled FSI problem.
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Chapters 2 and 3 specifically address the coupled FSI in the presence of pre-existing and shed

vortices. Specifically, many characteristics of Chapter 3 are drawn from work of Cortelezzi (1992)

and Michelin and Smith (2009b).

This thesis focuses on introducing several low-order methods for the FSI with rigid bodies that

can be further used in a more rigorous manner to analyze and understand the stability and non-linear

behavior of the system. For now, a few examples are given along with the methods to demonstrate

the use of these techniques. The goal is to develop low-order models that describe several aspects of

FSI but at very modest computational cost. For example, these methods are ideal for use in rapid

prediction, optimization, and model-based feedback control design.

1.2 Thesis outline

This thesis is divided into three main chapters, each covering a distinctly different FSI situation

with a specific low-order potential model to combat the problem. To this end, Chapters 2-4 can

stand individually with little reference to one another. Although the author has made a modest

attempt to keep the notation consistent between all chapters, there may be small discrepancies that

may occur between them.

In Chapter 2 we derive a low-order model for a thin airfoil undergoing small-scale unsteady

motions in the presence of a freestream flow. The method is additionally coupled to the rigid body

dynamics and used to characterize some aspects of vortex-induced flutter. In addition, the model is

extended to account for synthetic jet actuators to control the free flight of the airfoil.

Chapter 3 discusses the development of a model for the vortex-induced interactions of an arbitrary

solid body with vortices either generated or pre-existing in the flow. This is specifically applied to

interactions of bluff bodies in the presence of freestream. Two specific examples are given in the

context of canonical vortex-induced vibration.

In Chapter 4 a method to handle the doubly connected two-body problem in a potential flow is

derived. The method is then coupled with the motion of the bodies. This method is used to analyze

the interaction of two cylinders due to the forcing of both, one, or neither of the cylinders. A second
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example of two flat plates flapping is presented to demonstrate some aspects of unsteady bi-wing

flight.

Finally, in Chapter 5 we offer some concluding remarks and reiterate the main contributions of

this thesis. Several future directions of research are discussed for each specific model presented in

Chapters 2-4.
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Chapter 2

A simple discrete-vortex model for
the non-uniform motion and
control of a thin airfoil

2.1 Introduction

Two-dimensional unsteady airfoil theory for incompressible flows has had a history that spans nearly

a century. The primary motivation for this work stems from a long interest in the prediction of

unsteady forces and moments for the control of aircraft and aeroelastic phenomena, for example the

flutter of aircraft wings. Although two-dimensional potential theory is a major simplification over

actual aerodynamics of thin bodies, it nevertheless gives insight into the underlying aerodynamic

mechanism of unsteady aerodynamics. The simplifications in complexity lead to a tractable problem

that can usually be handled by standard mathematical approaches and limited computing resources.

Because of the simplicity in two-dimensional potential theory, pioneering work was conducted

by Wagner (1925) to predict the initial response of an airfoil impulsively started from rest. This

work was extended by Glauert (1929) for predicting the force and moment on an oscillating airfoil,

but was left unfinished until it was first published with a complete solution by Theodorsen (1935).

Part of the general solution to the oscillatory problem is given by an analytical expression that

relates the effect of wake circulation on an airfoil lift in the frequency domain by the aptly called,

Theodorsen function. Similarly, several European researchers developed theories (Küssner, 1936,

Kassner and Fingado, 1936). Garrick (1936) later showed that Wagner’s indicial function is related
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to the Theodorsen function through a Fourier transform. Jones (1938) soon developed an operational

treatment for general airfoil motions in the Laplace plane based on on Fourier-integral superposition

of linear results for simple harmonic motion. Concurrently, von Kármán and Sears (1938) also

developed a more consistent method based on the integral equations resulting from a continuous

vortex sheet and Sears (1941) applied the method to several applications. An effective and thorough

review of the theories of Wagner, Theodorsen, Jones, and von Kármán theories can be found in

Bisplinghoff et al. (1955).

More recently there has been renewed interest centered on using finite approximations of Wag-

ner and Theodorsen functions. In particular, Edwards et al. (1979) derived generalized Theodorsen

functions relating motions of the circulatory part of the airloads to the motion of the airfoil and ap-

plied it to subcritical and supercritical flutter conditions. Peters (2008) gives additional information

on several finite state models predicting forces and moments in the frequency domain although one

major drawback of these methods is that they cannot be integrated in a fully coupled simulation of

the FSI. In addition, the models are rather mathematically complicated and in most cases are only

manageable for prescribed or assumed oscillatory motions.

The goal of this chapter is to create a low-order model for arbitrary thin airfoil motion and show

its efficacy in applications to various fluid-structure phenomena. Furthermore, this study addresses

the introduction of synthetic jet actuators for which a new model can be implemented for the control

of an airfoil. Because of this, it is chosen to use discrete vortices to model the mean effect of the

actuators. First, a tractable and simple aerodynamic model is presented to predict the forces and

moment on a thin airfoil undergoing arbitrary motions in the absence of any actuation. This model

is reduced to the solution of a single non-linear ODE and is validated with both experimental results

and detached-eddy simulation numerical testing. Next, using this simple model, the onset of vortex-

induced flutter of plunging and pitching airfoils is examined. Specifically, several examples are

given including one showing a multi-modal transient response. Lastly, the control of an airfoil with

synthetic jet actuators is investigated more closely. An actuator model is created and compared to

experimental results in an experimental apparatus that simulates free flight of an airfoil. A simple
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Figure 2.1: Schematic of the unsteady vortex dynamics model of an airfoil undergoing arbitrary
motion in the presence of a freestream velocity. We note that the vortex strenghts Γi will have
alternating sign although here they are depicted to clarify the convention that positive circulation
results in a vortex that rotates in the counter-clockwise sense.

feedback scheme is then used to control the aforementioned vortex-induced vibrations highlighting

one of many potential uses for the low-order model.

2.2 Aerodynamic model formulation

Here a model that is capable of predicting the forces and moments on a two-dimensional airfoil in

motion is developed. The work in von Kármán and Sears (1938) lays the foundation of non-uniform

motion of a thin airfoil by using the basic concepts of vortex theory available to an aeronautical engi-

neer without much of the “unnecessary mathematical complications” that are commonly associated

with the theories derived in the works of Theodorsen (1935) and Wagner (1925) among others. The

theory presented here has been generalized to account for any airfoil motion as long as it remains

small amplitude, as explained in Section 2.2.1, but closely follows the theory outlined in von Kármán

and Sears (1938) to make it as concise and clear as possible.

Consider the incompressible flow around a thin airfoil of chord length c in a free-stream with an

upstream velocity U∞ that flows from left to right. The airfoil undergoes an arbitrary motion in

both plunge and pitch defined by the body variables yb and α, respectively. The pivot point for the

rotational degree of freedom is located at x = −a as shown in Figure 2.1. We model the unsteady
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Figure 2.2: Schematic of the quasi one-dimensional simplification of Figure 2.2 after the application
of assumptions given in Section 2.2.1.

motion of the airfoil by allowing the shear layer to separate into the wake as discrete and singular

elements of vorticity with circulation strength Γj at location zj = (xj , yj).

2.2.1 Assumptions

Several assumptions are made so that a simple, closed-form, low-order model can be created to

predict the forces and moment on a thin airfoil. The assumptions are listed and explained as

follows:

1. The flow is considered high Reynolds number flow so that the boundary layer is sufficiently

thin and the viscous effects can be neglected. Furthermore, it is reasonable to assume that

the fluid remains irrotational except at the discrete points zj . This allows us to use the

potential flow description for the fluid. However, this leads to a conundrum since it is well

known that forces and moments depend largely on the vortex-like structures that arise from

viscous separation. Another view of the problem is to model the viscous boundary layer as

an infinitesimally thin vortex layer, which is still a solution to the Euler equations, and allow

this layer to separate into the flow at one or several discrete points (the details of separation

are discussed in Section 2.2.4). This pseudo-viscous mechanism allows us to introduce inviscid

vortex structures, whether represented by the sheet or several discrete point vortices, into the
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flow while retaining the simplicity of the invicsid representation. The most natural separation

point is at the trailing edge of the airfoil and in this research this point is chosen as the location

where circulation is released into the fluid domain.

2. Motions of the thin airfoil are considered small-amplitude so that the leading-edge separation

does not occur. This means that the characteristic motions must be h/c� 1 and ḣ/U∞ � 1

where h is a characteristic length of the maneuver (in pitch this translates to α � 1 and

α̇c/U∞ � 1 where the over-dot represents taking the time derivative of the quantity of inter-

est). Even when this is not the case, evidence in Lewin and Haj-Hariri (2005) suggests that for

a range of high frequency parameters (say with reduced frequency k > 5, where k = 2πcf/U∞

and f is the frequency of oscillation) the leading edge separation, although present, becomes

reabsorbed into the boundary layer and subsequently separates off the trailing edge. The lead-

ing edge separation in these instances does not affect the lift and moment characteristics as

severely as the trailing edge separation. In addition, the small-amplitude assumption allows

another drastic reduction in complexity. For small-amplitude motions, the departure of any

wake vortex elements in the transverse direction are considered small and thus the effect of

its transverse motion can be justifiably neglected. Thus the wake vortex dynamics can be

sufficiently restricted to their advection in a single dimension and the bound vorticity can be

adequately restricted to lie on the x-axis.

3. It is assumed that the leading-order unsteadiness of the thin airfoil can be modeled by the

motion of a flat plate. To take into account the effects of thickness and camber, the lift and

moment are modified in a quasi-steady fashion, that is, steady characteristics versus angle

of attack (AOA) are superimposed on the unsteady results for non-ideal airfoil shapes. This

allows a general theory that is applicable to the entire class of thin airfoils with very minor

modification using tabulated data, for instance, from Abbott and Deonhoff (1959).

These assumptions allow us to solve the drastically simplified problem depicted in Figure 2.2

where the flat-plate airfoil and its subsequent separated vortex elements now effectively lie on the
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x-axis. The schematic given in Figure 2.2 is not entirely one-dimensional because the boundary

condition is applied on the vertical velocity such that the bound circulation reads

1

2π

∫ c
2

− c2

γ(s)

x− sds = vb(x) + vv(x), on
c

2
< x <

c

2
(2.1)

where the function vb is the apparent vertical velocity due to the body motion and instantaneous

AOA and vv is the velocity induced by any shed vortices. Note that the integral equations for

the sheet strength are evaluated in the principal value sense. Furthermore, if there are N discrete

vortices in the wake at any time, the bound circulation can be decomposed into

γ(x) =

N∑

j

γj(x) + γ0,t(x) + γ0,r(x) (2.2)

so that γi(x) satisfies the boundary condition for an individual vortex in the wake, γ0,t(x) satisfies

the boundary condition due to plunging motion and the free-stream, and γ0,r(x) satisfies the bound-

ary condition solely due to rotation around its mid-chord, x = 0. It is also understood that the

distributions are all functions of time since the problem is unsteady at heart. We have elected to

drop the time dependence from the expressions for the bound circulation strengths understanding

that they are indeed a function of time.

2.2.2 Bound vortex circulation

Consider a discrete wake vortex that has separated from the plate with circulation Γj located at

x = xj . The details of its creation will be addressed later in Section 2.2.4. From assumption 2 in

Section 2.2.1, the vortex remains forever on the x-axis and only convects in the x-direction. The

influence of this wake vortex on the airfoil will result in the creation of a distribution of circulation

around the airfoil, γj(x), to satisfy the boundary condition that no flow penetrates the plate, i.e.

1

2π

∫ c
2

− c2

γj(s)

x− sds =
Γj

2π(x− xj)
, on

c

2
< x <

c

2
. (2.3)
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In addition, to uniquely determine a solution to the boundary value problem, we apply the

Kutta condition (see Crighton (1985) and references therein for various manifestations), which in

its simplest form states that the flow must leave the trailing edge of the airfoil smoothly. The

application of the Kutta condition forces

γj

(
x =

c

2

)
= 0 (2.4)

and uniquely determines γj(x).

The formula for the bound circulation density on the surface of the airfoil that satisfies both the

boundary condition (2.3) and the Kutta condition (2.4) is found in von Kármán and Sears (1938)

and is given as

γj(x) =
Γj

π(xj − x)

√( c
2 − x
c
2 + x

)(
xj + c

2

xj − c
2

)
. (2.5)

Equation (2.5) is derived by using conformal mapping and using the fact that the vortex lies on the

x-axis. The amount of circulation bound to the airfoil due to this distribution is

∫ c
2

− c2
γj(x) dx = Γj

(√
xj − c

2

xj + c
2

− 1

)
. (2.6)

Note that the circulation of both the vortex and its bound circulation gives a net circulation due to

the enforcement of the Kutta condition. In comparison to other proposed methods, such as those

given in Graham (1983), Cortelezzi (1996), and Michelin and Smith (2009b), the bound circulation

presented here changes with position of the wake vortex. In these specific cases, the Milne-Thomson

(1968) circle theorem is used to model the separation and this produces an exact opposite bound

vortex on the body. When using the circle theorem, the strength of the nascent vortex is most easily

determined by the explicit application of the Kutta condition since the conservation of circulation is

automatically satisfied. Here we have chosen to model the separation such that each element satisfies

the Kutta condition instead, and thus the conservation of circulation is applied to determine the
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strength of the nascent vortex. This is just another example of the non-uniqueness in the treatment

of potential flow problems. With the application of both the Kutta condition and conservation of

circulation (discussed in Section 2.2.4) all approaches should yield identical results under the same

assumptions.

2.2.3 Quasi-steady bound circulation

Airfoil translation and rotation lead to an additional term that is deemed the quasi-steady bound

circulation about the airfoil. These circulation distributions due to airfoil motion are denoted γ0,t(x)

and γ0,r(x) for “translation” and rotation, respectively, and represent associated circulation densities

in the absence of wake vortices. For the “translational” term, a non-zero vertical velocity of the

airfoil measured from the mid-chord, ẏ− aα̇−U∞ sinα, must be matched by an equal fluid velocity

to satisfy the no through-flow condition. Here the term “translational” is used loosely because the

terms that have no x-dependence have been lumped together. In this specific boundary condition

the free-stream component and additional rotational component are added, so that γ0,r(x) results

from a pure rotational motion at the half chord, x = 0. Assuming the small angle approximation

sinα ≈ α, we require γ0,t(x) to satisfy

1

2π

∫ c
2

− c2

γ0,t(s)

x− s ds = ẏ − aα̇− U∞α, on− c

2
< x <

c

2
(2.7)

where the integral is taken using principal-value integration. We find that γ0,t(x), satisfying (2.7)

and the Kutta condition, is

γ0,t(x) = 2 (ẏ − aα̇− U∞α)

√
c
2 − x
c
2 + x

(2.8)

from which we obtain the circulation moments

Γ0,t =

∫ c
2

− c2
γ0,t(x) dx = πc (ẏb − aα̇− U∞α) (2.9a)
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∫ c
2

− c2
xγ0,t(x) dx = − c

4
Γ0,t (2.9b)

∫ c
2

− c2
x2γ0,t(x) dx =

c2

8
Γ0,t. (2.9c)

Similarly, airfoil rotation about the mid-chord produces an airfoil velocity −α̇x to be matched by a

velocity induced by the circulation distribution γ0,r(x). Thus it is required that

1

2π

∫ c
2

− c2

γ0,r(s)

x− s ds = −α̇x, on− c

2
< x <

c

2
. (2.10)

The solution satisfying (2.10) and the Kutta condition is

γ0,r(x) = −2α̇

√
c2

4
− x2 (2.11)

from which we obtain the moments

Γ0,r =

∫ c
2

− c2
γ0,r(x) dx = −πc

2α̇

4
(2.12a)

∫ c
2

− c2
xγ0,r(x) dx = 0 (2.12b)

∫ c
2

− c2
x2γ0,r(x) dx =

c2

16
Γ0,r. (2.12c)

The total bound quasi-steady circulation can be found by adding (2.9a) and (2.12a) to obtain

Γ0 = Γ0,t + Γ0,r = πc
(
ẏb −

(
a+

c

4

)
α̇− U∞α

)
. (2.13)

2.2.4 Wake vortex dynamics

A few physical laws govern the wake vortex dynamics. First, the system must obey the conservation

of total circulation (i.e. if the configuration starts with zero circulation at ∞ then it remains with
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zero circulation) therefore we have

Γ0 +

N∑

j=1

Γj

√
xj + c

2

xj − c
2

= 0. (2.14)

We recall that the total circulation due to a separated vortex and its associated bound circulation

is not zero and therefore contributes the second term in 2.14.

Next, in point-vortex dynamics, the convection velocity of each vortex depends on the mutual

influence of other vortices in addition to the influence of the body. Since the amplitudes of the

motions are assumed to be small and at a low reduced frequency, the convection of a free vortex

can be assumed to not be modified by the presence of other vortices. To first order this assumption

leads us to model the motion of all but the most recent of the free vortices to move with speed U∞,

i.e.

dxj
dt

= U∞, forj ≥ 2. (2.15)

The vortex nearest to the body (always indexed j = 1) is being fed circulation and moves with speed

dx1

dt
= U∞ −

(
x2

1 − c2

4

x1Γ1

)
dΓ1

dt
(2.16)

where we have used a conservation of impulse argument to correct its motion due to the change

in its circulation. This is much like the corrections that have been used in Brown and Michael

(1954), Cheng (1954), Rott (1956), and more recently Cortelezzi (1992) and Michelin (2009), but in

this one-dimensional analogue the correction gives an initial lift characteristic that agrees well with

Wagner’s impulsive start solution.

Naturally, since the flow is at high Reynolds number, the strength of the vortices can be assumed

to remain constant except for the nascent vortex where its strength is being modified from the
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separating shear layer originating from the trailing edge. For free vortices,

dΓj
dt

= 0 forj ≥ 2, (2.17)

i.e. Γj remains constant once it is released from the trailing edge. The strength of the nascent vortex

is determined by the conservation of circulation. Therefore, from (2.14)

Γ1 = −
√
x1 − c

2

x1 + c
2


Γ0 +

N∑

j=2

Γj

√
xj + c

2

xj − c
2


 . (2.18)

This now begs the question: when does a vortex become a free vortex? Since a vortex cannot

“unwind,” the magnitude of its circulation strength cannot ever decrease. This means that a vortex

only gets stronger or equivalently that Γ̇1 does not change sign while the vortex is being fed circu-

lation from the trailing edge. Say the rate Γ̇1 changes sign at t = te, then we model the physics by

introducing a new vortex such that the discrete vortices get re-indexed as Γj+1(t+e ) = Γ1(t−e ) and

xj+1(t+e ) = x1(t−e ) after which the nascent vortex gets reinitialized as Γ1(t+e ) = 0 and x1(t+e ) = c
2 .

2.2.5 Aerodynamic lift and moment

We derive the lift and moment from using the conservation of linear and angular impulse. The total

fluid impulse in the y-direction, Iy, is given by

Iy = −ρf



∫ c

2

− c2
xγ(x) dx+

N∑

j=1

Γjxj


 (2.19)

where γ(x) = γj(x) + γ0,t(x) + γ0,r(x) is the total distribution of circulation about the airfoil and

ρf is the fluid density. Using (2.5), (2.19) becomes

Iy = −ρf



∫ c

2

− c2
xγ0(x) dx+

N∑

j=1

Γj

√
x2
j −

c2

4


 . (2.20)
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The lift on the airfoil is defined as

L = −dIy
dt

= ρf
d

dt

∫ c
2

− c2
xγ0(x) dx− ρfU∞Γ0 −

ρfU∞c
2

N∑

j=1

Γj√
x2
j − c2

4

(2.21)

where we have used Equations (2.14)-(2.16) to remove time derivatives on Γj and xj . The first term

on the right-hand side of (2.21) leads to the so-called added mass terms due to airfoil acceleration,

the second term is the quasi-steady lift, and the remaining sum represents the lift due to vortices in

the near wake. In the absence of body motion, the lift due to the wake is a weakly decaying function

that goes like O (1/t) as time increases. Upon substitution of (2.9), (2.12), and (2.13), Equation

(2.21) becomes

L = ρfπ

(
−c

2

4
ÿb − U∞c ẏb +

ac2

4
α̈+ U∞c

(
a+

c

4

)
α̇+ U2

∞cα

)
− ρfU∞c

2

N∑

j=1

Γj√
x2
j − c2

4

. (2.22)

Similarly, to derive an expression for the moment acting on the airfoil, the conservation of angular

impulse is employed. The total angular impulse, A(s), at a distance s upstream of the mid-chord of

the airfoil is given by

A(s) = −ρf

2



∫ c

2

− c2
(x+ s)2γ(x) dx+

N∑

j=1

Γj(s+ xj)
2


 . (2.23)

The counter-clockwise moment on the airfoil, M(a), about the pivot point distance a upstream of

the mid-chord is given by dA(s)/dt evaluated at s = a, where one must take into account that

ds/dt = −U∞. Thus we find that

M(a) =
ρf

2

d

dt



∫ c

2

− c2
x2γ(x) dx+

N∑

j=1

Γjx
2
j


+ U∞Iy + aL. (2.24)

After substitution of and considerable algebraic manipulations using (2.9), (2.12), and (2.13), Equa-



21

tion (2.24) can be expressed as

M(a) = aL+
ρf

2

d

dt

∫ c
2

− c2

(
x2 − c2

8

)
γ0(x) dx− ρfU∞

∫ c
2

− c2
xγ0(x) dx

+
ρfU∞c2

8

N∑

j=1

Γj√
x2
j − c2

4

− ρf

2




(
x2

1 − c2

4

) 3
2

x1

dΓ1

dt


 . (2.25)

It is recommended to neglect the last term of this expression above to agree with the classical

result that the lift force due to wake vorticity acts at the quarter-chord point of the airfoil with

no additional moment. Recall that the conservation of impulse is used to derive the velocity of the

nascent vortex. There are simply not enough variables to satisfy the conservation of y component

of linear impulse, conservation of angular impulse, and the Kutta condition with the adjustment

of a single vortex (three governing equations and two variables, Γ1, x1). Since we do not conserve

the angular impulse we choose to ignore this last term to correct this oversight. Further applying

Equations (2.9) and (2.12) to (2.25) yields

M(a) = aL+ ρfπ

(
U∞c2

4
ẏb +

c4

128
α̈− U∞ac2

4
α̇− U2

∞c
2

4
α

)
+
ρfU∞c2

8

N∑

j=1

Γj√
x2
j − c2

4

. (2.26)

Upon non-dimensionalizing Equations (2.22) and (2.26) the lift coefficient CL = 2L/(ρfU
2
∞c) is

CL = π

(
− c

2U2∞
ÿb −

2

U∞
ẏb +

ac

2U2∞
α̈+

2a+ c

U∞
α̇+ 2α

)
− 1

U∞

N∑

j=1

Γj√
x2
j − c2

4

(2.27)

and the standard moment coefficient (with pitch up being positive) CM = −2M(a)/(ρfU
2
∞c

2) is

CM (a) = −a
c
CL + π

(
− 1

2U∞
ẏb −

c2

64U2∞
α̈+

a

2U∞
α̇+

1

2
α

)
− 1

4U∞

N∑

j=1

Γj√
x2
j − c2

4

. (2.28)

Note well that when all time derivatives are negligible, we recover two classical results for steady

aerodynamic theory. From the Equation (2.27) the steady state lift reduces to CL,∞ = 2πα. Fur-

thermore, if the moment is measured about the quarter-chord, i.e. a = c
4 , then the steady state
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moment reduces to CM,∞
(
a = c

4

)
= 0.

2.2.6 Integration in time

One may notice that the integration of (2.16) and (2.18) is not straightforward due to the inherent

singularity at t = te, the time at which a new nascent vortex is formed. To circumvent this problem,

we outline a new strategy to determine xj and Γj with no approximations. From the conservation

of total circulation (2.14) we define a new variable

G(t) ≡ Γ1

√
x1 + c

2

x1 − c
2

= −Γ0 −
N∑

j=2

Γj

√
xj + c

2

xj − c
2

(2.29)

that can be considered known up to time t. In addition, (2.16) can be rearranged as

d

dt

(
Γ1

√
x2

1 −
c2

4

)
=

x1Γ1U∞√
x2

1 − c2

4

=
x1GU∞
x1 + c

2

. (2.30)

Defining

H(t) = Γ1

√
x2

1 −
c2

4
(2.31)

Equation (2.30) can be written as

dH

dt
=

2H + cG

2(H + cG)
GU∞ (2.32)

where (2.29) and (2.31) are used to rewrite

x1 =
2H + cG

2G
(2.33)
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and

Γ1 = G

√
H

H + cG
. (2.34)

Integrating (2.32) in place of (2.16) numerically is now straightforward. At every time step we check

to see whether Γ̇1 changes sign, and if a creation event occurs, the integration returns to the previous

time t = t−e and creates a new vortex as described in Section 2.2.4.

2.2.7 Quasi-steady camber and thickness corrections

For non-idealized airfoils, Equations (2.27) and (2.28) must be adjusted to take into account the

effects of a finite thickness and/or camber. These corrections can be modeled to be quasi-steady in

the sense that the main source of unsteadiness originates from the fluid dynamics for a flat plate-like

airfoil. For instance, in numerical experiments performed with a more sophisticated discrete vortex

model the wake structure is nearly independent of the shape of the airfoil as long as the separation

occurs at the trailing edge.

From experimental evidence, the steady state lift for a thin cambered airfoil is nearly CL ≈ 2πα

in the attached flow regime (for several examples see the database in Abbott and Deonhoff (1959),

pg. 449-670). As a result, the coefficient of lift is simply adjusted by its α = 0 lift, CL,0 to read

C ′L = CL,0 + CL.

As for the moment, since the aerodynamic center is near the quarter-chord for thin airfoils, it can

be assumed that the moment coefficient has no direct dependence on the AOA and therefore the

coefficient of moment can simply be adjusted by its quarter-chord value to read

C ′M, c4
= CM,0 + CM, c4

where CM, c4
= CM (a = c

4 ).
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Integrate Equation (2.16) with algebraic 
constraint (2.18) for vortex        . 

Convect constant strength vortices (        ) 
at constant velocity.

Create vortex

Yes

No

Check Γ̇1 = 0?
Γ1 = 0

x1 = c
2

Calculate lift and moment 
using Equations (2.27) and 

(2.28).

j ≥ 2

j = 1

Figure 2.3: A block diagram summarizing the low-order model.

In what follows, the prime notation is dropped with understanding that we are dealing with the

corrected values of lift and moment as presented above.

2.2.8 Summary of the low-order model

A block diagram summarizing the model is given in figure 2.3. To numerically simulate the model,

only one ordinary differential equation for the nascent vortex velocity, (2.16), must be integrated

with the constraint given by the conservation of circulation, (2.18). Equation (2.16) is replaced by

(2.32) to circumvent the singularity resulting from the introduction of a new vortex at the trailing

edge of the flat plate airfoil. All free vortices convect with constant strength and at the freestream

velocity therefore the locations of these vortices are determined analytically. At every time step, one

must check whether a new vortex is created based on the shedding criteria Γ̇1 = 0. If Γ̇1 changes

sign, then a new vortex is formed, the simulation is reinitialized to account for the formation of

a new vortex, and the simulation resumes. At any instant in time, the force and moment can be

determined from Equations (2.27) and (2.28). If necessary, the lift and moment are modified to

account for thickness and camber effects as discussed in Section 2.2.7.
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(a) (b)

Figure 2.4: Depicted in (a) is the experimental model of the airfoil with modular synthetic jets
attached and (b) is the experimental setup to allow for plunge and pitch control in an open-return
wind tunnel facility at GTRI. Image is adapted from Muse et al. (2009).

2.3 Validation of the low-order model

The low-order model is compared to experimental results and numerical results of a NACA 4415

airfoil undergoing impulsive and sinusoidal pitch and plunge. This airfoil has been chosen primarily

due to its use at Georgia Technical Research Institute (GTRI) in Atlanta as the test bed for current

and future flow control experiments. The nominal values used here are CL,0 = 0.4 and CM,0 = −0.1.

2.3.1 Comparison with experiments

The experiments are conducted in an open-return low-speed wind tunnel having a square test section

measuring 1 m on each side using a modular airfoil fitted with endplates to limit its three-dimensional

effects. The airfoil model is depicted in Figure 2.4(a) and has a chord length of c = 0.457 m. The

wind tunnel model executes commanded flight maneuvers in two-degrees of freedom (pitch about

the quarter chord, a = 0.25c, and plunge) that can either be controlled by the combination of a

torque motor and linear vertical slides as schematically drawn in Figure 2.4(b) or by synthetic jet

actuators (as discussed in Section 2.5). Furthermore, the setup and control algorithms effectively

remove the parasitic mass that comes from the necessary instrumentation. More information on the
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experimental setup and its control strategy can be found in Muse et al. (2008b) and Muse et al.

(2009).

For steady state measurements, the moment and lift are given by the torque motor and linear

slide load cells. When steady, measurements of the moment and lift are accurate with less than

1% error. An extension to the unsteady case is made for accurate estimation of the instantaneous

aerodynamic pitching moment and lift force during dynamic maneuvering. The moment is estimated

by using the dynamics equation

M = Iα̈− Te (2.35)

where I is the measured moment of inertia and Te = Kmum is the commanded motor torque with Km

and um being the motor torque gain and command input to the controller, respectively. The moment

of inertia is identified experimentally with less than 10% error. Angular acceleration α̈ is measured

with an angular accelerometer and its accuracy degrades with increasing pitching frequency and

therefore limiting the pitching frequency to fpitch < 1 Hz. Estimation of the aerodynamic lift can be

done in a similar fashion but due to the several factors in the experimental design, the lift force is

much less accurately measured and, like the moment, its accuracy degrades with increasing plunge

frequency, fplunge. Because of this, the plunge mechanism is locked to remove the effects of inertia

and the lift force is measured directly from the load cell.

For the experimental test, the airfoil is pitched near quarter-chord at a free-stream Reynolds

number, Re = 9× 105, with a prescribed trajectory,

α = αmax sin

(
kpitchU∞

c
t

)
(2.36)

where the amplitude, αmax, and reduced frequency, kpitch =
2πcfpitch
U∞

, are both functions of time.

As seen in Figure 2.5(a), a sinusoidal chirp signal is fed into the experiment such that the reduced

frequencies spanned range from 0.057 < kpitch < 0.068 (0.60 Hz < fpitch < 0.71 Hz). The angular

speed of the airfoil is kept constant. Given in Figure 2.5(b) is the comparison of lift and moment

between the model and experimentally measured quantities. The agreement between the experimen-
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Figure 2.5: Comparison with experimental results for lift and moment for a NACA 4415 airfoil
pitching about its quarter chord. (a) Input data (in radians) from experiment (dotted, unfiltered α̈).
Frequencies range from 0.057 < kpitch < 0.068 (0.60 Hz < fpitch < 0.71 Hz). (b) Experimental and
model response: current model; experiments. Experimental results for CM were filtered
with a Butterworth filter to remove high frequency noise. Experimental results for CL are nearly
identical to the model results (Tchieu et al., 2008).
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Figure 2.6: Comparison with high fidelity numerical simulations for lift and moment for a NACA
4415 airfoil purely pitching about its quarter chord with kpitch = 1.256 and 0◦ < α < 2◦: ,
current model; , DDES.

tal measured lift and the model lift is excellent. The experimentally measured moment (low-pass

filtered), shows slight departures from the model although the magnitude, frequency, and phase of

the dominant mode of oscillation is very well predicted. The differences between the two might

possible originate from the excessive noise in measuring the angular acceleration and using these

results in Equation (2.35). The agreement seen here is typical for frequencies fpitch < 1Hz.

2.3.2 Comparison with delayed detached-eddy numerical simulatons

Due to the limitations of the experimental facilities, numerical simulations are used to validate

models in situations not realizable by experimentation. In particular, higher pitch and plunge rates

are investigated. The numerical simulations presented here are computed at the University of Texas

at Austin using delayed detached-eddy simulations (DDES) by Lopez (2009). The DDES scheme

is a hybrid non-zonal Reynolds-averaged Navier-Stokes and large-eddy simulation scheme based

on the detached-eddy simulation model. For more information on the simulation, see Lopez (2009).

Simulations are run at a free-stream Reynolds number, Re = 9×105, closely matching the conditions

of the experiment.

Figure 2.6 shows the comparison between the numerical simulation and the low-order model
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Figure 4.7: Eddy viscosity (top) and vorticity field (bottom) at Re = 9 × 105 and
α = 0◦. (modified NACA4415)

tions the slope is slightly negative. In this case Cd results are in very good agreement

with experiments.

Figure 4.11 shows a comparison of the computational results between the un-

modified and modified NACA4415 profile. While the Cl curve slope is not strongly

influenced by the geometrical modification of the airfoil profile, there is a radical

change to the Cm curve slope. Changes in ∂Cm

∂α
have been observed experimentally

by De Salvo et al [37] with similar actuators but on a different airfoil section. An

important numerical parameter that can be computed from these results is ∂Cm

∂Cl
at low

angle of attack, which is related to the location of the aerodynamic center of the wing

81

Figure 2.7: Vorticity field from DDES simulation demonstrating small-scale vortices shed off the
non-sharp trailing edge (Lopez, 2009).

pitching sinusoidally at a fixed frequency, kpitch = 1.256, which is more than two orders of magnitude

higher than the experimental case. The agreement here is acceptable given the simplifications made.

We notice that the simple low-order model cannot capture the small-scale oscillations that lie on

top of the gross lift and moment signatures. These high frequency oscillations can be explained by

vortex shedding off the non-sharp trailing edge in both the numerical simulations and the experiments

(although the sensors lack the resolution to resolve this) as seen in Figure 2.7. This causes small

amplitude von Kármán street to be shed from the trailing edge for all our operating conditions and

typically introduces a small asymmetry in the small-scale waveform due to its turbulent nature. Of

course, the low-order model cannot capture such an effect because of the prior assumptions made

in Section 2.2.1, but the model does capture the salient features, primarily reproducing the lift and

moment amplitudes, phase, and phase shift at the dominant frequency. The small-scale oscillations

in this case are considered negligible because under the standard operating conditions, the variations

in lift and moment due to the von Kármán street are |∆CL| < 0.05 and |∆CM | < 0.01 and at a

frequency that is to high to garner a response when coupling with the fluid-structure interaction of

the rigid structure.

Figure 2.8 similarly shows the comparison for a fixed plunge angular frequency where the airfoil

heaves sinusoidally with an amplitude h =
yb,max

c = 0.2. Again, the same trend is seen where we

have the small scale von Kármán shedding producing a small scale, high frequency signature in the

lift and moment. The results are still quite satisfactory in producing the essential characteristics in

the lift and moment due to the plunging motion.



30

C
L

C
M

Ut/c

5 10 15

5 10 15

-0.2

-0.1

0

-1

0

1

Figure 2.8: Comparison with high fidelity numerical simulations for lift and moment for a NACA
4415 airfoil purely pitching about its quarter chord with kplunge = 1.256 and h = 0.2: , current
model; , DDES.

2.4 Vortex-induced flutter of a simple two degree of freedom

system

Consider a spring supported flat-plate wing section shown in Figure 2.9 with the a spring and damper

acting in the y-direction (ky, by) as well as in the angular direction (kα, bα). The model presented

above is applied to simulate the onset of vortex-induced flutter in the attached flow regime. The

dynamics of the system are modeled as

m∗bÿ
∗
b + S∗xα̈+ b∗y ẏ

∗
b + k∗yy

∗
b = CL (2.37a)

I∗αα̈+ S∗xÿ
∗
b + b∗αα̇+ k∗αα = CM (a) (2.37b)

where the equations of motion are non-dimensionalized following Leonard and Roshko (2001) with

y∗b =
yb

c
, t∗ =

tU∞
c
, m∗b =

mb
1
2ρfc2

, I∗α =
Iα

1
2ρfc4

, S∗x =
Sx

1
2ρfc3

,

b∗y =
by

1
2ρfU∞c

, k∗y =
ky

1
2ρfU2∞

, b∗α =
bα

1
2ρfU∞c3

, k∗α =
kα

1
2ρfU2∞c2

.
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Monday, September 13, 2010

Figure 2.9: Schematic of the vortex-induced flutter of a flat plate airfoil. The point at which the
spring-damper is attached is also the pitching axis (refer to Figure 2.2).

The static imbalance, Sx, results from a body not pitching about its center of mass and for a flat-

plate wing section this can be reduced to Sx = mba assuming that the center of mass is near the

mid-chord (Naudascher and Rockwell, 1994). Additionally, for a flat plate, the mass moment of iner-

tia can also be analytically expressed as Iα = mb

(
a2 + c2

12

)
. It is noted that non-dimensionalization

in this fashion is different from the traditional formulation (for example see Williamson and Go-

vardhan, 2004) but as explained in Klamo (2007) the non-dimensionalization with fluid dynamic

parameters are compatible with the traditional formulation. In what follows the (∗) is dropped with

the understanding that all values are in their non-dimensional form.

Upon substitution of (2.21) and (2.26) into Equations (2.38) and (2.39), the motion of the airfoil

is dictated by two additional ordinary differential equations

(
mb +

π

2

)
ÿb + (by + 2π) ẏb + kyyb +

(
Sx −

aπ

2c

)
α̈

+

(
1 +

2a

c

)
πα̇+ 2πα = − 1

U∞

N∑

j=1

Γj√
x2
j − c2

4

(2.38)

(
Sx −

aπ

2c

)
ÿb +

(
c− 4a

2c

)
πẏb +

(
Iα + π

(
1

64
+

a2

2c2

))
α̈+

(
bα +

aπ (4a+ 3c)

2c2

)
α̇

+

(
kα +

π (4a+ c)

2c

)
α = − 1

4U∞

N∑

j=1

Γj√
x2
j − c2

4

. (2.39)

Equations (2.38) and (2.39) must be integrated with the model presented in Section 2.2 to give the
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CASE mb a/c Iα ky kα
(a) 10 0.50 3.33 1 1
(b) 10 0.25 1.46 1 1
(c) 10 0.00 0.83 1 1
(d) 10 -0.25 1.46 1 1
(e) 1 0.25 1.46 1 1
(f) 100 0.25 1.46 1 1
(e) 100 0.50 33.33 100 100

Table 2.1: Legend and list of parameters for various cases presented in figures 2.10 and 2.11.

response of the system.

Although many studies revolve around determining the general stability of the system (e.g. the

lowest U∞ = Ũ∞ such that the airfoil remains flutter free), due to the large parameter space, it is

nearly impossible to come to any general conclusion. In particular, Bisplinghoff et al. (1955) could

only draw a few generalizations after conducting several parametric studies using a fully periodic

response assumption. In addition, the highly non-linear behavior of the wake vortices makes it

difficult to determine a closed form solution to the problem such that a definitive stability analysis

can be performed. Instead, the focus here is to look at a few key responses to highlight the transient

and multi-modal behavior of vortex-induced flutter.

We take a look at undamped structures such that both by and bα are set to zero. Typical

aircraft structures have mass ratios mb = O(10 − 100) and stiffnesses, kα = O(0.1 − 100) and

ky = O(0.1− 100).

Figure 2.10 gives several responses due to artificially induced gust in the y-direction with a list

of parameters for these cases given in Table 2.1. The gust is modeled in the simulation by setting

the initial condition ẏb = 0.05, i.e. 5% of the free-stream velocity.

In cases (a)-(d), the pitching axis is gradually moved from the leading edge towards the trailing

edge, thus also changing its mass moment of inertia, Iα. It is observed in 2.10(a) when held at the

leading edge, the vibrations in the structure are stable for this set of parameters. As one moves

back towards the quarter-chord, Figure 2.10(b), the oscillations are further suppressed. When the

pitching axis is moved to the mid-chord and further, Figure 2.10(c) and 2.10(d), the configuration

becomes unstable and for short times the model predicts an instability. Generally, if the center of
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Figure 2.10: Various model simulations of vortex-induced flutter of a flat-plate airfoil. See table 2.1
for legend.
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Figure 2.11: Case (e), a multi-modal response of a fluttering flat-plate airfoil with high stiffness.
Structural parameters are m = 100, a/c = 0.5, Iα = 33.3, ky = 100, kα = 100.

mass of the airfoil lies behind the pitching axis, the system is stable, more so near the quarter-chord.

As an example, in figures 2.10(e) and 2.10(f), the mass ratios are adjusted. For a mb = 1, the

oscillations disappear as the wake dynamics act in such a way that nullifies the motion of the airfoil

when compared to Figure 2.10(b). On the other hand, when the mass ratio is increased as in 2.10(f),

the oscillations seem to become larger and more persistent possibly because the wake cannot produce

large enough forces and moments to counteract the inertia of the system since the both systems are

initialized with the same “gust” vertical velocity.

It is interesting to note that in cases (a)-(f), there seems to be only one dominant frequency

(dependent on the input parameters) which is typically greater than the natural frequency of the

bending mode and below the natural frequency of the torsion mode. Because of this, the use of

analyses that assume a single frequency for the combined bending-torsion mode can be used to

investigate the stability of fluttering airfoils (Bisplinghoff et al., 1955). For more stiff structures, as

seen in Figure 2.11, the response may include two frequencies. As the body becomes increasingly

stiff, the body begins to oscillate near the natural frequency of the bending mode (f∗ = 0.17) as well

as the frequency of the torsion mode (f∗ = 0.59). The existence of two frequencies can be clearly

seen by taking a look at the frequency content of yb in Figure 2.12. This is due to the coupling
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Figure 2.12: FFT of the response in Figure 2.11 plotted versus non-dimensional frequency.

between the two modes. Pitching downward (upward) causes the airfoil to dive (rise) accordingly

therefore the pitching mode is apparent in the plunging response (which is not a sub-harmonic of

the primary plunge mode).

2.5 Control of a two-dimensional airfoil

Here we make a closer investigation of the setup at GTRI of free-flying NACA 4415 airfoil outfitted

with synthetic jet actuators to allow for in flight maneuvering. The current model is extended and

applied to control the motions of the airfoil. The experiments are conducted by Muse et al. (2009)

with aid from the thesis author in all experiments presented in this chapter.

2.5.1 Setup

The airfoil is controlled unconventionally and solely by synthetic jet actuators that span the entire

wing at a specific chord location. A synthetic jet actuator consists of a cavity where one side

comprises of a piezo-electric membrane that vibrates at a specific frequency that is proportional to

the input voltage to cause a pulsed jet exiting the orifice on the opposite side of the membrane.

This produces a zero-mass jet that carries momentum in the direction of its orientation and thus the

device does not require a supplying reservoir of fluid (Smith and Glezer, 1998, Glezer and Amitay,
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2002). A majority of research associated with synthetic jets revolves around controlling separation

over bluff bodies or airfoils at high AOA (Amitay, 2000). It is claimed in Amitay and Glezer (2002)

that the use of synthetic jets at frequencies more than an order of magnitude higher than the natural

frequency can completely reattach the flow on stalled airfoils at moderate AOA with a relatively

small momentum injection, although some propose that this is due to an unintentional tripping of

the boundary layer (Greenblatt and Wygnanski, 2000). More recently, synthetic jets are used in

the low AOA regime to virtually shape the airfoil to give it better aerodynamic characteristics for

control authority (Glezer, 2005). This specific application shows promise in providing a substantial

change in lift and moment by trapping small pockets of vorticity near the trailing edge (DeSalvo and

Glezer, 2004, 2005). This control technique provides an alternative to using conventional control

surfaces such as ailerons and elevators in the attached flow regime. The resulting effect is modeled

in this section.

For this specific configuration, actuators are placed both on the suction (SS) and pressure side

(PS) of the airfoil. We fix the location of the actuators at xC/c = 0.45 measured from the mid-chord

for both the SS and PS actuators. Since the synthetic jet actuators are distributed equally along the

airfoil’s span, it is assumed that the spanwise effect is such that the synthetic jets can be considered

two-dimensional although there are slight departures from this seen in experiments.

2.5.2 Modeling ZMF synthetic jet actuators

Figure 2.13 shows a plot of the normalized vorticity for a synthetic jet acting at a location near

the leading edge of a modified circular arc airfoil with an oncoming freestream velocity from a prior

experiment (Glezer and Amitay, 2002). The airfoil consists of a circular cylinder with two flat

sections forming the trailing edge of the airfoil. The field of view of the particle-image velocimetry

window is shown by the inset and is zoomed in near the leading edge of the airfoil. In particular,

Figure 2.13(c) shows that the time-averaged field exhibits a noticeable concentration of clockwise

vorticity that appears to be “trapped” in the time-averaged-sense (i.e. the time-scale relevant to

the flow) immediately following the actuator downstream. This trapped vorticity is modeled as
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Figure 2.13: Normalized vorticity plots at non-dimensional forcing frequency of Stact = 4.0 and
non-dimensional momentum coefficient Cµ = 5.1× 10−2 over the leading edge of a modified circular
arc airfoil for (a) the baseline case, (b) phased-averaged, and (c) time-averaged (Glezer and Amitay,
2002). The arrow indicates the location of the synthetic jet actuator. The window of the field of
view is given by the inset image.

a macro vortex element that is held stationary to represent the localized confinement observed in

experiments. Thus we place a control vortex located at x = xC to reproduce the effect of the

actuator. When the SS actuator is turned on, a negative (clockwise) vortex is formed. When the

PS actuator is turned on, a positive vortex is formed. The circulation of the control vortex depends

on the control variable, uC, for example,

dΓC

dt
= J(uC,ΓC).

From recent experiments, it seems as though the formation time of the control vortex is much less

that the convective time scale, then the control vortex follows the functional form, ΓC = ΓC(uC), with

a possible dependence on the AOA as well. The determination of this function will be addressed in

Section 2.5.3. In addition to this, the near trailing edge region slightly violates the Kutta condition as

seen in both computations and experiments. Given in Figure 2.14(a) is a recent DDES computation

from Lopez (2009). Not only is the airfoil pressure affected by the actuator device, but it also

experiences shift near the trailing edge that affects the global pressure distribution around the

airfoil. Note that the peaks around 2x/c ≈ 0.6 in the computational result are due to the actuator
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Figure 2.14: Numerical and theoretical evidence for shift in Kutta condition for an airfoil at α = 8◦.
(a) The shift in Kutta condition as seen numerically from Lopez (2009). (b) The theoretical shift in
Kutta condition for a Joukowski airfoil. Legend: , baseline case, no actuation; , suction
side actuation turned on; , pressure side actuation turned on.

geometry and remained unmodeled since their effect does not change the lift and moment drastically.

In Figure 2.14(b) an added bound circulation is added to the Kutta condition to cause a similar

effect although it violates the requirement that there should be a stagnation point at the trailing

edge. It is found necessary to add an additional bound circulation such that the Kutta condition is

shifted slightly to match the computational and experimental results.

The distribution of circulation on the airfoil to satisfy these constraints can be written as

γC(x) = ΓCδ(x− xC) +
εΓC

π
√

c2

4 − x2
(2.40)

where ε is a fitting parameter. Note that this point distribution of circulation on the airfoil rep-

resented by the first term violates the necessary boundary conditions, but its effect is small since

the size of the vortex is also small. The effect of the actuation is local and it can be argued that it

locally changes the near boundary condition as well. The second term adds a uniform rotation of

the flow that slightly shifts the Kutta condition to allow for fluid to wrap around the trailing edge.

It is only present for the control vortex and is absent in all subsequently shed vortices.
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The circulation created from the actuation is given by

∫ c
2

− c2
γC(x) dx = (1 + ε)ΓC

and its moment is

∫ c
2

− c2
xγC(x) dx = xCΓC.

We must make the appropriate changes to the conservation of circulation so that it now reads

(1 + ε)ΓC + Γ0 +

N∑

j=1

Γj

√
xj + c

2

xj − c
2

= 0. (2.41)

The integration scheme in Section 2.2.6 must be modified so that (2.29) now reads

G(t) ≡ −(1 + ε)ΓC − Γ0 −
N∑

j=2

Γj

√
xj + c

2

xj − c
2

. (2.42)

All other quantities in Section 2.2.6 remain the same and are treated in the same manner.

Due to the addition of the control vortex the lift and moment equations are also slightly modified

to include the effect of the actuation so that (2.27) and (2.28) become

CL = π

(
− c

2U2∞
ÿb −

2

U∞
ẏb +

ac

2U2∞
α̈+

2a+ c

U∞
α̇+ 2α

)
− 1

U∞

N∑

j=1

Γj√
x2
j − c2

4

− 2 (1 + ε) ΓC

U∞c

(2.43a)

CM (a) = −a
c
CL + π

(
− π

2U∞
ẏb −

c2

64U2∞
α̈− a

2U∞
α̇− 1

2
α

)
− 1

4U∞

N∑

j=1

Γj√
x2
j − c2

4

+
2xCΓC

U∞c2
.

(2.43b)
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Figure 2.15: Change in lift versus the change in moment due to a control input for various con-
trol input strengths (−1 < uC < 1) and AOA (−10 < α < 10): ◦ experiments; linear fit,
∆CL/∆CM, c4

= −2.5.

2.5.3 Static fitting for the shift in Kutta condition and trapped vortex

strength

Two things must be modeled before proceeding. Static tests are performed to find both the parameter

ε and the relationship between voltage input, uC to the trapped circulation strength, ΓC. First, ε is

determined by performing experiments (performed by the thesis author and A. Kutay, from GTRI)

to measure the change in moment and lift solely to the actuation. In steady state, from Equations

(2.43),

∆CL
∆CM, c4

=
(1 + ε)

(1 + ε)ac + xC

c

represents the ratio of the change due to an input in control vortex strength ΓC(uC, α) for fixed α.

From experimental data given in Figure 2.15, it appears the slope depicted is nearly constant for all

conditions when varying the control input from −1 < uC < 1 and AOA −10 < α < 16. This is not

only true for the current configuration but for several configurations where the actuator locations

are changed (Brzozowski, 2009). The slope of the least squares linear fit of the data provided in
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Figure 2.16: Relationship between ΓC, uC, and α. A positive voltage turns on the SS actuator
(negative turns on the PS actuator). Both actuators cannot be simultaneously on.

firgure 2.15 is ∆CL/∆CM, c4
= −2.59. Solving for ε (recall a/c = 1/4 and xC/c = 0.45) leads to

the value of ε = 2.31. This parameter is held constant for all operating conditions as long as the

configuration of the airfoil remains the same.

A functional relationship for ΓC(uC, α) is attained using the same data for generating Figure

2.15. Note, the actuators are not simultaneously turned on because of the specific configuration of

the actuators. There are actuators both ont he PS and SS side of the airfoil and turning them both

on at the same power level at the same instant produces negligible control authority. Therefore

a convention is chosen such that uC > 0 turns on the SS actuator and uC < 0 turns on the PS

actuator. From (2.43b) we can determine from steady data the necessary vortex strength to be

ΓC

U∞c
=

∆CM, c4
(u, α)

2
(
a
c (1 + ε) + xC

) . (2.44)

The functional relationship is plotted in Figure 2.16. The dependence on α is slight compared to the

dependence on uC for moderate AOA, −10 < α < 10, nevertheless its dependence is retained to help

counteract the unmodeled effects of leading edge separation. We also note that the dependence in
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Figure 2.17: Comparison of test bed simulation with experimental results. (a) Input command signal
given to both the simulation and the experiment (Tchieu et al., 2008). (b) Airfoil response due to
control input: current model; experiments.

uC. From this data, a lookup table is used to acquire ΓC for simulation of the equations of motion.

2.5.4 Comparison between experiments

The model equations with the control vortex effects are compared to the experimental setup. For

this case, the airfoil is controlled by the torque motor to hold a specific AOA but with a loosely tuned

controller such that a sufficient control input produces an obvious response in the AOA of the airfoil.

A simulation of the model is created in Matlab Simulink to include the airfoil dynamics described

by the model presented in Section 2.2 with the additional actuator model described in Section 2.5.2 in

addition to the dynamics of the experimental setup depicted in Figure 2.4 undergoing pure pitching

airfoil motion. A Simulink schematic and details of the numerical model for the dynamics of the

experimental setup can be found in appendix A.
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The controller is first set to hold the airfoil at α = 3◦. Several doublet commands are given to the

synthetic jet actuators, each of different duration as seen in Figure 2.17(a), and since the controller

is non-aggressive, the airfoil moves substantially. The experimental response (red) and the model

response (blue) are given in Figure 2.17(b). The model equations do a very good job of simulating

the experimental response. A major difference between the simulation and the experiments is that

the airfoil tends to relax to its original position at a much faster rate. This can be attributed to the

unmodeled and excessive damping in the experimental apparatus (Muse et al., 2009).

2.5.5 Simple feedback for reduction of vortex induced oscillations

It has been shown in Section 2.4 that under specific conditions an airfoil will undergo non-stalled

vortex-induced vibrations in the attached flow regime for a sudden change in AOA which may

eventually lead to separation and the onset of stall. In this section, the reduction of such vibrations

is investigated using the actuators modeled above. Assuming that α of the airfoil can be exactly

measured, a simple control law is proposed such that

uC = −KCα̇. (2.45)

The control can be saturated thus |uC | < 1 at any time. The control strategy is applied to case (f)

in table 2.1 in an attempt to stabilize the system. Seen in Figure 2.18 is the response of the system

when the gain is set to KC = 1. The control gain is lightly tuned in this case and with feedback,

the airfoil is capable of maintaining its stability.

A more sophisticated control strategy is more difficult to design for this case, as the model is

still very highly non-linear due many factors, namely the creation of new vortices. Though not the

primary interest of this author a further application using adaptive control with a linearized version

of the current model applied to the GTRI experiments is found in appendix B.



44

y
∗ b

α
[d

eg
]

u
C

t∗
0 50 100 150

-1

0

1

-5

0

5

-0.05

0

0.05

Figure 2.18: Simple feedback is used to reduce the induced vibrations on a airfoil in case (f) in
figure 2.1.

2.6 Conclusions

A one-equation aerodynamic model has been created to address the issues related with the fluid-

structure interaction of an idealized flat-plate airfoil subject to a free-stream flow. The major

assumptions that are in play here are that the airfoil is at very high Reynolds number and that the

airfoil does not experience any leading edge separation at any instant thus providing a simplified

model for the wake dynamics. The wake dynamics and airfoil circulation distributions are then used

to generate expressions for lift and moment. The resulting equations for lift and moment are then

adjusted accordingly for application to airfoils with thickness and camber.

The model is compared to experiments performed at GTRI and high-fidelity simulations at

University of Texas, Austin of a NACA 4415 wing section at high Reynolds number. The results

are quite promising given the number of assumptions used to simplify the model. For low reduced

frequencies in pitch and plunge, the model gives a good prediction of the aerodynamic lift and

moment. For high reduced frequencies, the agreement is still quite acceptable although the small

scale vortex shedding could not be captured from the simplicity of the model.

Given here are just a few of the problems that can be confronted with this model. The flutter
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problem is addressed using the model to show, as an example, the use and implementation of the

model for fluid-structure interaction. Several examples of stable and unstable flutter phenomena are

given. Additionally, a multi-modal response is shown for very stiff structures that may break single

bending-torsion mode assumption used for classical flutter analyses.

We note that the model presented here is based on the assumption that no leading edge sepa-

ration occurs. When large-scale leading edge separation occurs, the model does a marginal job of

representing the dominant features in the fluid mechanics and thus does not accurately capture the

lift and moment on the airfoil. This may occur when the airfoil performs maneuvers at high angle-

of-attack or at very fast pitching and plunge rates. In addition, the model becomes less applicable

when the thickness and camber of the airfoil exceed the thin airfoil limit becuase the body may have

separation bubbles on the pressure and suction side. This causes a large departure from the thin

airfoil theory that is formulated here because these separation bubbles are unsteady in nature.

The aerodynamic model is further extended using the concept of trapped vorticity to model

the synthetic jet actuators used in this specific application of airfoil control without conventional

control surfaces. The augmented model is then implemented in a simulation of the experimental

apparatus at GTRI and its comparison to experimental results give very good agreement. With

this validated model, a simple feedback algorithm is used to suppress the vortex-induced vibrations

of a thin airfoil. Even when the airfoil undergoes unsteady flutter, the lightly tuned algorithm can

stabilize the system. Further application of the model in the context of adaptive control can be

found in appendix B.

We note that a more advanced model for the sythetic jets may be formulated for future imple-

mentation to help aid with the discrepancies between the model and the experimental results. For

a more accurate response, the time dependence of the control vortex must be explicitly treated. In

addition, the control vortex may be much more than a function of the control voltage such that it

depends on the state of the fluid dynamics and the shape (e.g. camber) of the airfoil. At this point,

the only reasonable method, without resorting to modeling each pulse period of the synthetic jet

or accounting for specific configurations of the airfoil, is to determine this dependency is through
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empirical relations.
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Chapter 3

An inviscid low-order model for
the vortex-induced vibration of
bluff bodies

3.1 Introduction

The ubiquitous nature of vortices in many natural flows have led to various studies of the vortex

dynamics in the past with many using low-order models to provide physical understanding of the

fluid dynamics in free space and near rigid, stationary boundaries. For high Reynolds number two-

dimensional flows, one can expect vortices to behave as compact structures that lose their definition

only over large non-dimensional times due to the slight viscosity. Therefore potential point vortices

make an excellent simplification to the fluid dynamics problem by reducing the complexity of the

governing equations by several orders of magnitude in comparison to direct numerical simulation

techniques of the viscous Navier-Stokes equations. Several studies have investigated stationary bluff

body flows using point vortices with varied success including studies of vortex shedding behind a

square-like section (Clements, 1973), the investigation a flat plate at high angle of attack (Sarpkaya,

1975), and the modeling of separation behind a circular cylinder (Sarpkaya and Schoaff, 1979).

In these instances, the evolution vortex sheet-like structure is essentially simulated by introducing

individual point vortices at each time step at geometrically convenient and or empirically calculated

separation points.
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Cortelezzi et al. (1994) and Cortelezzi (1996) further simplified these models by introducing

varying strength vortices that followed the so-called Brown-Michael correction (Brown and Michael,

1954, Rott, 1956, Cheng, 1954, Bryson, 1959). Instead of shedding vortices at every time step, a set

of ordinary differential equations is derived for the entire system leading to a system with analytical

solutions for starting flow and a system that can be numerically integrated using standard methods

when more vortices are present. This further reduced the complexity and ad-hoc corrections that

were introduced in previous methods.

Until recently the treatment of coupled fluid-structure intereaction (FSI) between point vortices

and a single rigid body have not been rigorously treated. Jones et al. (2005) and Shukla and Eldredge

(2007) use a vortex sheet representation with the corresponding Birkhoff-Rott integro-differential

equation and derived a model to determine the FSI between falling cards and the deformation of a

heaving flexible plate, respectively. Moreover, the equations of a body interacting with one or more

pre-existing point vortices in an ideal, two-dimensional fluid are derived in Borisov et al. (2007a) as

an extension of Ramodanov (2002) and Borisov et al. (2005) following a dynamical systems approach,

in addition to the concurrent work performed by Shashikanth (2005). Roenby and Aref (2010) used

a similar approach and investigated the integrability of such equations in the context of transition to

chaotic motion. Furthermore, Michelin and Smith (2009b) studied the FSI generated by a general

sharp-edged body with the Brown-Michael correction in order to study the broadside fall of a thin

plate among other studies of FSI (Michelin et al., 2008, Michelin and Smith, 2009a).

In this chapter, we develop a general method to treat the FSI of a bluff body in the presence

of a freestream flow and/or multiple vortices. It is chosen to also concentrate on the canonical

two degree-of-freedom spring-damper system model of vortex-induced vibration since it is one of

the simplest FSI to consider and has various implications in the study of FSI. Previous models of

vortex-induced vibration relied heavily on empirical data (Gabbai and Benaroya, 2005, Benaroya

and Gabbai, 2008). In many cases, such as wake-oscillator models, the fluid dynamics are nearly

non-existent in the description of the model itself. The present model will provide better insight

into the interactions of vortices with the canonical mass-spring-damper system for vortex-induced
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Figure 3.1: Schematic of a body interacting with N point vortices in the physical-plane and the
mapped-plane. As an example, two variable strength vortices are illustrated with an attached
dotted line to indicate vortex shedding and growth of the vortex. (a) z-plane. (b) ζ-plane.

vibration.

Two specific geometries are more closely investigated. First we consider the case where a circular

cylinder interacts with pre-existing vortices in the flow with and without a freestream flow. The

introduction of vortices is not addressed in this situation because the inviscid shedding off smooth

bodies is an ongoing research topic that is difficult to model. In the case where the freestream is

present, we specifically investigate how the vortices excite the modes of oscillation and what kind of

responses can be expected.

In the second case, the FSI of a flat plate with vortices is given as an example. The application

of a new vortex shedding model is used for this flow. As a test, we first apply the shedding model

to a stationary plate and see the resultant vortex motion and shedding cycle to gain confidence in

the fluid dynamics. Following this, we apply the model to a vortex-induced vibration case to see a

sample response of the system due to the modeled vortex shedding.
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3.2 General formulation

Consider the problem as depicted in Figure 3.1(a) in the z-plane where N point vortices of strength

Γn and location zn interact with a rigid two-dimesnional solid with centroid location z0 and orienta-

tion defined by θ. Of the N vortices, P vortices are considered to have varying strengths to represent

circulation shed from the body (in Figure 3.1(a) these vortices are shown with the attached dotted

lines). The body is allowed to translate at velocity ż0 and rotate at an angular rate Ω = θ̇ based

on the interactions with the vortices and the freestream flow. We seek an incompressible, inviscid

potential flow solution for the fluid in an unbounded domain such that the boundary conditions on

the body’s surface, ∂D0, are satisfied. To accomplish this, conformal mapping is used to transfer the

problem at hand from the physical plane to a more manageable configuration in the mapped-plane

(ζ-plane) as depicted in Figure 3.1(b).

3.2.1 Conformal map

The conformal map that takes the circle, |ζ| = a, in the mapped-plane to the the physical boundary

in the z-plane with centroid located at z0 and orientation θ can be written as

z = z0 + eiθg(ζ). (3.1)

For now, we restrict g(ζ) ∼ ζ as z → ∞. More specific examples of the function will be given in

sections 3.3 and 3.4.

3.2.2 Boundary conditions and associated potentials

The solution for the complex potential is a linear combination of the individual contributions due

to the flow generated by the translation of the body, Wt, the rotation of the body, Wr, the free

stream, Wf, and each vortex, Wn,v. For the translational potential, the required boundary condition

is such that the normal velocity is exactly balanced by the normal velocity of the body. In complex
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notation, this reduces to

Re

[
−idW

ds

]
= Re

[
−iż0

dz

ds

]
(3.2)

where s is taken along the body. After integrating (3.2) with respect to s and noting that Re [−iWt] =

Im [Wt] it is found that the streamfunction satisfies

Im [Wt] = Im
[
ż0z
]
, on ∂D0. (3.3)

This is another manifestation of the common Schwarz problem and when transfered to the mapped-

plane on |ζ| = a, it can be solved by using the Poisson integral formula (or with subtle geometric

formulas). The solution to (3.3) given in terms of ζ is

Wt = U (ζ − g(ζ)) +
a2U

ζ
(3.4)

where U = −ż0eiθ.

Similarly for the rotational potential, it is required that

Re

[
−idWr

ds

]
= Re

[
iΩ (z − z0)

dz

ds

]

and upon integration, the potential satisfies

Im [Wr] = Im

[
−iΩ

(
1

2
zz − zzk

)]
, on ∂D0. (3.5)

The solution for Wr in terms of ζ is not obvious and must be found on a case to case basis depending

on the mapping function g(ζ) in (3.1). For now, the solution satisfying (3.5) is denoted

Wr = wr(ζ). (3.6)

Several examples of such potentials can be found in appendix C.
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For the freestream and vortex potentials, it is required that the streamfunction satisfies the no

flow-through condition

Im [Wf] = Im [Wn,v] = constant, on ∂D0. (3.7)

The solution for the freestream potential can be found using geometric relationships and is

Wf = U∞

(
ζeiθ +

a2e−iθ

ζ

)
. (3.8)

The potential for a single vortex can be found using the circle theorem (Milne-Thomson, 1968) and

is simply

Wn,v =
Γn
2πi

log


 ζ − ζn
ζ − a2

ζn


 . (3.9)

Adding Equations (3.4), (3.6), (3.8), and N instances of (3.9) gives the solution to the potential

problem

W = U (ζ − g(ζ)) +
a2U

ζ
+ wr(ζ) + U∞

(
ζeiθ +

a2e−iθ

ζ

)
+

N∑

n=1

Γn
2πi

log


 ζ − ζn
ζ − a2

ζn


 . (3.10)

Note that there are an infinite number of solutions to the boundary value problem. A vortex can

always be added at ζ = 0 and still satisfy the zero normal velocity boundary condition. This is

commonly referred to as the “bound vortex.” It is our interest to study cases where the circulation

is zero for all time in the entire domain, therefore this bound vortex is removed.

3.2.3 Definition of the velocity

The velocities in the physical plane are defined as

u− iv =
dW

dz
(3.11)

=
dW

dζ

/dz

dζ
(3.12)
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recalling the relation that W = W̃ (z) = w(ζ(z)). The definitions given in (3.4), (3.8), and (3.9) are

differentiated and substituted into (3.12) to give

dW

dz
=

e−iθ

g′(ζ)

(
U∞

(
ζ2eiθ − a2e−iθ

ζ2

)
+ U (1− g′(ζ))− a2U

ζ2

+ w′r(ζ) +

N∑

n=1

Γn
2πi

(
1

ζ − ζn
− ζn
ζζn − a2

))
(3.13)

where the prime denotes differentiation with respect to ζ.

3.2.4 Equation of motion for vortices

We use a more generalized form of the standard Kirchoff laws of vortex motion. Unlike previous

studies involving point vortex models this equation accounts change in motion due to the growth of a

vortex provided that the location at which circulation is being fed is given (Cortelezzi and Leonard,

1993). This provides a means for circulation to be shed into the wake and it degenerates into the

standard Kirchoff law when the vortex remains at constant strength.

Vortices convect with the Brown-Michael law, which mandates that a growing vortex and its

associated branch cut must convect force free. With this constraint, the equation of motion for nth

vortex in the physical plane, whether being fed or not, is governed by

żn + (zn − zn,s)
Γ̇n
Γn

=

(
dWn

dz

)
(3.14)

where zn,s is the generating corner for the vortex (see Figure 3.1(a)) and the (˙) represents the time

derivative, d
dt . The function on the right hand side of (3.14) is defined as the desingularized velocity

field such that

dWn

dz
=

e−iθ

g′(ζn)

(
dWn

dζ
− Γn

4πi

(
g′′(ζn)

g′(ζn)

))
(3.15)
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where

Wn = W − Γn
2πi

log (ζ − ζn) (3.16)

is the desingularized complex potential. The extra term on the right hand side of (3.15) is the so-

called Routh correction and it stems from rewriting (3.14) in terms of mapped-coordinates (Clements,

1973). In the case where a vortex has reached a constant strength, i.e., is no longer being fed

circulation, then the vortex velocity follows the standard Kirchoff evolution equation

żn =

(
dWn

dz

)
. (3.17)

The equations of motion are most comfortably solved in the ζ-plane, therefore (3.14) is rewritten

as

eiθg′(ζn)ζ̇n + ż0 + iΩeiθg(ζn) + eiθ (g(ζn)− g(ζn,s))
Γ̇n
Γn

=

eiθ

g′(ζn)

[
U∞

(
ζ

2

ne−iθ − a2eiθ

ζ
2

n

)
+ U

(
1− g′(ζn)

)
− a2U

ζ
2

n

+ w′r(ζn)

−
N∑

j 6=n

Γj
2πi

(
1

ζn − ζj
− ζj

ζnζj − a2

)
+

Γn
2πi

(
ζn

ζnζn − a2
+
g′′(ζn)

2g′(ζn)

)]
. (3.18)

3.2.5 Force

An expression for the force, F , is given in Sedov (1965) as

F
ρf

= i

N∑

n=1

zn,sΓ̇n +
i

2

∮

∂D0

(
dW

dz

)2

dz + i
d

dt

∮

∂D0

z
dW

dz
dz +Az̈0 (3.19)

where A denotes the area of the solid body. Equation (3.19) is a variation of the more standard

unsteady Blasius integral equation for force that is most commonly used in various references (Milne-

Thomson, 1968, Graham, 1980, Cortelezzi, 1996). In essence, all forms of the force integrals are

derived by integrating the pressure force on the surface, but there are several key simplifications
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Figure 3.2: Schematic of the application of Cauchy’s theorem to deform ∂D0 to form the contours
∂D∞, ∂Dn, and the associated contours connecting the two. The infinitessimally thin contours
connecting ∂Dn to ∂D∞ contribute nothing to the integrals in (3.19) because the integrands are
analytic in the fluid domain.

made to obtain (3.19) so that the integration is more manageable. In particular, the time derivative

given in the third term on the right hand side of (3.19) is taken out of the integrand whereas in the

standard unsteady Blasius equation, it remains within.

We can further simplify the expression given in (3.19) by following Michelin and Smith (2009b)

and applying Cauchy’s theorem. This allows us to extend the contour ∂D0 to the contour given in

Figure 3.2 which consists of a contour at infinity, ∂D∞, and several infinitesimally small contours

around each vortex, ∂Dn, in the opposite sense. Therefore the integrals in (3.19) can be written as

∮
∂D0

=
∮
∂D∞

−∑N
n=1

∮
∂Dn

. To make further progress, we expand the potential at z →∞ to read

W = a1z + a0 +
a−1

z
+
a−2

z2
+O

(
1

z3

)
, as z →∞ (3.20)

and subsequently after term by term differentiation

dW

dz
= a1 −

a−1

z2
− 2a−2

z3
+O

(
1

z4

)
, as z →∞ (3.21)

where the coefficients aj are time dependent. In addition, near each vortex, the complex velocity
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can be expanded as

dW

dz
=

Γn
2πi

(
1

z − zn

)
+

dWn

dz
+O(z − zn), as z → zn. (3.22)

Upon substitution of (3.20), (3.21), and (3.22) into (3.19), the force reduces to

F
ρf

= −i
[
N∑

n=1

(
Γnżn + Γ̇n (zn − zn,s)− Γnwn

)
+ 2πiȧ−1

]
+Az̈0. (3.23)

If the Brown-Michael model (3.14) for growing vortices is used then (3.23) simplifies to

F
ρf

= 2πȧ−1 +Az̈0. (3.24)

The details of the determination of a−1 is addressed in specific examples given in sections 3.3 and

3.4 because it depends on the choice of the mapping function, g(ζ).

3.2.6 Torque

Sedov (1965) also provided an equation for torque, T , which is extended in Michelin and Smith

(2009b) to the case where the center of mass of the body moves with location z0(t). This latter

expression is given as

T
ρf

=
1

2

N∑

n=1

|zn,s − z0|2Γ̇n +
1

2
Re

[
2ż0

∮

∂D0

(z − z0)
dW

dz
dz

−
∮

∂D0

(z − z0)

(
dW

dz

)2

dz +
d

dt

∮

∂D0

|z − z0|2
dW

dz
dz

]
. (3.25)

The same technique that is applied in Section 3.2.5 can be used to deform the contour ∂D0 to

simplify (3.25) to read

T
ρf

=
1

2

N∑

n=1

|zn,s − z0|2Γ̇n + Re

[
N∑

n=1

(
dWn

dz
− ż0

)
(zn − z0) Γn − 2πiż0a−1 + 2πia1a−1

]
+
Ḃ
2

(3.26)
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where

B = Re

[∮

∂D0

|z − z0|2
dW

dz
dz

]
. (3.27)

Although it seems (3.27) is not analytic, given the mapping g(ζ), it can be integrated by noting that

z(ζ) remains analytic on the boundary. Since the function is analytic on the boundary, it can be

analytically continued into the domain and integrated using standard complex methods.

3.2.7 Coupled equations of motion

Assuming that there is an external force Fe and torque Te, the coupled equations of motion for the

bodies are simply

(m− ρfA)z̈0 = 2πρf ȧ−1 + Fe (3.28)

and

Iθ̈ =
ρf

2

N∑

n=1

|zn,s − z0|2Γ̇n + ρf Re

[
N∑

n=1

(
dWn

dz
− ż0

)
(zn − z0) Γn

− 2πiż0a−1 + 2πia1a−1

]
+
ρfḂ
2

+ Te (3.29)

where m and I are the mass and mass moment of inertia of the body about the centroid, respectively.

The Equations (3.18), (3.28), and (3.29) constitute 2N + 3 equations. If the strength of all vortices

are held fixed (Γ̇n = 0) then we have 2N + 3 unknowns (2N vortex positions, two body positions,

and one angular orientation) and the problem can be integrated given sufficient initial conditions.

3.3 Vortex-induced vibrations of a circular cylinder

Here we model the induced vibrations of a circular cylinder and a spring-damper system that is

depicted in Figure 3.3 with an additional N constant strength vortices. We are not concerned with
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Figure 3.3: Schematic of the vortex-induced vibration for a circular cylinder in cross flow. There
are two degrees of freedom for the solid structure, x and y.

vortex growth since it is difficult to model separation off smooth bodies using inviscid methods

(Sarpkaya and Schoaff, 1979). The presence of the spring-damper system is modeled by setting the

external force to

Fe = −kz(z0 − zE)− bz ż0 (3.30)

where kz and bz are both scalars and represent the stiffness and damping constant, respectively.

The location zE represents the equilibrium position such that the cylinder feels no force from the

stiffness.

3.3.1 Equations of motion

In this specific case, due to the geometry of the problem, the orientation θ is not used and thus

removed from the equations of motion. In addition, it is not necessary to calculate torques about

the centroid (it will be zero by definition). Although we can treat the system without a specific

map, one is chosen to stay within the framework presented in Section 3.2, therefore the conformal

map for this case is

z = z0 + ζ (3.31)
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which just offsets the cylinder at a location z0. Given the map, the potential can be determined by

(3.10) and is

W =
a2ż0

ζ
+ U∞

(
ζ +

a2

ζ

)
+

N∑

n=1

Γn
2πi

log

(
ζ − ζn
ζ − a2

ζn

)
. (3.32)

Performing a series expansion at z →∞ gives

a−1 = a2(ż0 + U∞) +

N∑

n=1

Γn
2πi

(
a2

ζn
− ζn

)
. (3.33)

The equation of motion for the body is found by substituting (3.30) and (3.33) into the equation of

motion for the body, (3.28), and explicitly expanding the time derivative to give

(ρb + ρf)πa
2z̈0 + bz ż0 + kz(z0 − zE) = iρf

N∑

n=1

Γn

(
ζ̇n +

(
a2

ζ
2

n

)
ζ̇n

)
(3.34)

where ρb is the uniform density of the body. Note that the Γ̇n = 0 for all n since the vortex strengths

are restricted to be constant and pre-existing.

Upon substitution of (3.32) into Equation (3.18), the motion of the vortices for this specific case

is governed by

ζ̇n = −ż0 +

(
a2

ζn

)
ż0 + U∞

(
1 +

a2

ζn

)
−

N∑

j 6=n

Γj
2πi

(
1

ζn − ζj
− ζj

ζjζn − a2

)
+

Γn
2πi

(
ζn

ζnζn − a2

)

(3.35)

The combination of (3.34) and (3.35) together gives 2N + 2 equations for the 2N + 2 unknowns (2N

vortex positions, ζn, and two from the position, z0) therefore we can solve the system readily using

a standard numerical integrator.
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3.3.2 Results

Elastically mounted cylinder

Klamo (2007) presented various cases for which a single degree-of-freedom cylinder undergoes large

amplitude vortex-induced vibration under the presence of a freestream velocity. Although, in ac-

tuality, the induced vibration is created by the unsteady bluff-body shedding, here we choose to

examine a specific case of the vortex-induced vibration of in the presence of pre-existing vortices.

In the stationary flow case, this may be thought of as ocean eddies interacting with off-shore risers.

The spring stiffness and damping are prescribed as kz = 1 and bz = 0 such that the structural

natural frequency in vacuum is ωs =
√

1/π (ρf = 1, a = 1). In addition we enforce that the fluid

is neutrally buoyant such that the density of the cylinder is simply ρb = ρf. These are found to be

typical values for which we can expect a large amplitude response in the canonical one-degree of

freedom case (Klamo, 2007).

The response of an elastically mounted cylinder is studied in the presence of pre-existing vortices.

There is no freestream flow in the cases considered (U∞ = 0) . First, the effect of a single vortex on

the structure is explored. Γ1 is selected so that Γ1/
(
ωsD

2
)

= 1. The simulation is initialized with

a vortex located at z1(t = 0) = x1 > D/2 and the structure is allowed to interact with it. Plotted

in Figure 3.4 is a typical response for this case. As seen in Figure 3.4(a) the motion of the vortex

and the cylinder does not follow any particular periodic structure. It is seen in Figure 3.4(b) that

the amplitudes oscillations are substantial.

We can attempt to find a maximum amplitude of oscillation, A∗ = max (|z0|) /D, given a starting

vortex location, z1(t = 0). The simulations are run until tωs = 1000 at which point the maximum

displacement over all time is used to determine the maximum non-dimensional amplitude. This is

plotted in Figure 3.5. We can see that there is not a simple relationship. Unexpectedly, when the

vortex is very close to the cylinder, its effect is very small. The vortex tends to encircle the cylinder

at a very quick rate while avoiding changing its inertia. As the distance is increased, the cylinder

begins to oscillate until it reaches a maximum amplitude over time with an initial vortex location
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Figure 3.4: Response of the system for z1(t = 0)/D = 0.930 with kz = 1 and bz = 0 at t = 500. (a)
Cylinder path (black) and vortex path (blue), ◦ represents the initial locations of the vortices. (b)
Time history of the amplitude of the cylinder response, |z0|.
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Figure 3.5: Maximum amplitude versus vortex separation distance, z1/D. kz = 1, bz = 0 Γ1 =
ωsD

2 = 2.2568.

at z1(t = 0)/D = 0.93.

As more vortices are added, the system appears to become chaotic. This is partly due to the fact

that when there is more than one vortex interacting with a circular cylinder, chaotic motion ensues

because of the system is no longer integrable (Roenby and Aref, 2010). We can see this behavior

in an example given in Figure 3.6. For a relatively short time, the motion of the cylinder seems

erratic. With a slight change in initial conditions, the response becomes drastically different. An

effort has been made to find the maximum amplitudes for this case and although the response is

always bounded, there was no trend due to the chaotic nature of the flow.

Elastically mounted cylinder with cross-flow

Here vortices are released upstream of the circular cylinder and allowed to convect downstream and

interact with the circular cylinder. The system is initialized with a vortex street ahead of the cylinder

as depicted in Figure 3.7. The parameters δx and δy define the spacing for the incoming street.

The first vortex of the street is located 10 convective time units upstream. We choose δy/D = 0.5

so that the street impinges on the cylinder initially with the width equal to the cylinder diameter.

A Strouhal number is defined such that St = fvD/U where fv is the frequency of the oncoming

vortices. In this case, fv = U/(δx) therefore St = D/(δx). We restrict our attention to the case
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Figure 3.6: Response of the system for z1(t = 0)/D = 1.275 and z2(t = 0)/D = 1.275i with kz = 1
and bz = 0 at t = 100. (a) Cylinder path (black) and vortex path (blue, green), ◦ represents the
initial locations of the vortices. (b) Time history of the amplitude of the cylinder response, |z0|.
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Figure 3.7: Schematic defining the parameters in the vortex street.
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Figure 3.8: Max displacement versus Strouhal frequency of incoming vortex street. (a) x-direction.
(b) y-direction.
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Figure 3.9: Displacement versus time for St = 0.25. (a) x-direction. (b) y-direction.

where kz = 1 and bz = 0.1.

Given in Figure 3.8 are the max amplitudes in the x and y-direction for a given Strouhal number

for the chosen parameters. As the body starts to vibrate at higher transverse amplitudes, the

incoming vortices begin to have a larger influence because they almost hit the structure near head-

on (recall δy/D is set to one half). This causes a larger force on the cylinder and more feedback

until the system saturates as seen in Figure 3.9(b). This type of large amplitude behavior happens

near ωs.
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Figure 3.10: Schematic of the vortex-induced vibration for a flat plate in cross flow. There are three
degrees of freedom for the solid structure; x, y, and θ.

3.4 Vortex-induced vibration of a flat plate at high angles of

attack

We model the induced vibrations of a plate and spring-damper system that are depicted in Figure

3.10. For the body itself, there are three degrees of freedom, x0, y0, and θ. In this example, the

vortex strengths are not restricted to be constant. In fact, a separation model is also presented to

allow circulation to enter the fluid from the two sharp edges of the plate.

Again, the spring-damper system in the x and iy directions is modeled by (3.30). In addition,

there is an additional spring-damper system added such that

Te = −kθ(θ − θE)− bθΩ (3.36)

where kθ and bθ represent the stiffness and damping constant in the θ direction, respectively. The

equilibrium angle is chosen to be θE = π
2 so that the freestream flow impinges on the plate in a bluff

fashion.
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3.4.1 Equations of motion

The mapping taking the circle to a flat plate of length, l = 4a is given by

g(ζ) = ζ +
a2

ζ
. (3.37)

For the mapping (3.37), the potential satisfying the associated boundary conditions in the ζ-plane

is given by

W = U∞

(
ζeiθ +

a2

ζ
e−iθ

)
− 2ia2Im [U ]

ζ
− iΩa4

ζ2
−

N∑

n=1

iΓn
2π

log


 ζ − ζn
ζ − a2

ζn


 (3.38)

where details of deriving the rotational potential, wr(ζ) = −iΩa4/ζ2, are given in appendix C. Upon

substitution of (3.38) into (3.18) the equation of motion for the nth vortex is

(
ζ2
n − a2

ζ2
n

)
ζ̇n +

(
(ζn − ζn,s)2

ζnΓn

)
Γ̇n = U − iΩ

(
1 +

a2

ζn

)

+
ζ

2

n

ζ
2

n − a2

[
U∞

(
e−iθ − a2

ζ
2

n

eiθ

)
− 2ia2Im [U ]

ζ
2

n

− 2iΩa4

ζ
3

n

−
N∑

j 6=n

Γj
2πi

(
1

ζn − ζj
− ζj

ζnζj − a2

)
+

Γn
2πi

(
ζn

ζnζn − a2
+

a2

ζn(ζ
2

n − a2)

)]
. (3.39)

To determine the equations of motion for the body, we perform a series expansion on (3.38) to give

a1 = U∞ and

a−1 = eiθ

(
−2ia2 (U∞ sin θ + Im [U ]) +

N∑

n=1

Γn
2πi

(
a2

ζn
− ζn

))
. (3.40)

Substituting (3.38) and (3.40) into the coupled linear momentum equation, (3.28) becomes

m

ρf
e−iθ z̈0 − 4πia2Im

[
z̈0eiθ

]
+
bz ż0 + kz(z0 − zE)

ρf
e−iθ = −4πia2 (ΩU∞ cos θ + Im [iΩU ])

+ Ω

[
4πa2 (U∞ sin θ + Im [U ])−

N∑

n=1

Γn

(
ζn −

a2

ζn

)]
+ i

d

dt

N∑

n=1

Γn

(
ζn −

a2

ζn

)
. (3.41)
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Additionally, from (3.29) the angular degree of freedom is dictated by

IΩ̇

ρf
− Ḃ

2
−1

2

2∑

n=1

∣∣∣∣
(
ζn,s +

a2

ζn,s

)∣∣∣∣
2

Γ̇n +
bθΩ + kθ(θ − θE)

ρf
=

Re

[
N∑

n=1

Γn

(
dWn

dz
− ż0

) (
ζn +

a2

ζn

)
eiθ − 2πia−1

(
ż0 − U∞

)
]

(3.42)

where a−1 is defined in (3.40), the derivative of B is given as

Ḃ = −4πa4Ω̇− 2a2
N∑

n=1

(
−2Γna

2Re

[
ζ̇n
ζ3
n

]
+ Γ̇n

(
a2Re

[
1

ζ2
n

]
+ 1

))
, (3.43)

and the vortex velocity is defined as

dWn

dz
=

ζ2
ne−iθ

ζ2
n − a2

[
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. (3.44)

If all vortices in the flow are constant strength (i.e. pre-existing) all terms involving Γ̇n = 0.

This leads to 2N + 3 unknowns (2N vortex locations, ζn, two from z0, and one from the orientation,

θ). The combination (3.39), (3.41), and (3.42) give 2N + 3 real valued equations (two per complex

equation). Again, a standard scheme is used to integrate the system.

3.4.2 Separation model and the Kutta condition

A shedding model can be conveniently derived for the current problem because of the existence of

the two sharp edges on the plate. The complex velocity given by (3.13) is

u− iv =
ζ2e−iθ

ζ2 − a2

[
U∞

(
eiθ − a2

ζ2
e−iθ

)
+

2ia2Im [U ]

ζ2
+

2iΩa4

ζ3
+

N∑

n=1

Γn
2πi

(
1

ζ − ζn
− ζn
ζζn − a2

)]
.

(3.45)

Upon closer inspection, (3.45) indicates that at the sharp edges ζ = ±a there exists an inherent

singularity due to the mapping function. It is reasonable, but not entirely necessary to remove
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the singularity at the sharp edges as the system of equations can still be integrated (albeit the

velocities near the sharp edges remains unphysical). However, the removal of the singularity can

conveniently model the effect of inviscid shedding as well. To do so, one can introduce two vortices,

Γ1(t) and Γ2(t), near the tips to remove the singularity. The strength of these vortices is continually

adjusted such that the velocity in the frame of the plate is zero at the tip. This is known as applying

the unsteady Kutta condition (Cortelezzi and Leonard, 1993). Defining the pseudo-velocity as the

interior of the bracketed term in (3.45), dW
dζ , the Kutta condition can be written as

dW

dζ

∣∣∣∣
ζ=±a

= 0. (3.46)

or, when simplified,

Im
[
U∞eiθ + U

]
± Ωa±

∑ Γn
4πa

(
2Re

[
ζn

ζn ∓ a

]
− 1

)
= 0. (3.47)

This condition gives two additional algebraic constraints to the equations of motion by effectively

adjusting the strength of the shedding vortices, Γ1 and Γ2. This naturally allows a method to

introduce circulation into the fluid domain and can be thought of as a model of the separation of a

shear layer feeding the two growing vortices.

Vortex shedding criteria

Subsequent vortices can be shed as well. When a vortex grows, one can expect it to become a free

vortex at some point and allow an incipient vortex to take its place near the generating tip. The

inception of a new vortex can be chosen such that when the rate of change of the strength of the

nascent vortex changes sign (e.g. Γ̇1 = 0), a new vortex is formed at the sharp tip, as proposed in

Section 2.2.4. There is a problem with this specific shedding model for the current geometry that is

also inherent in other bluff body flows using an inviscid point vortex model. Consider the plate at a

large angle of attack as depicted in Figure 3.10. It is expected that at ζ = a, the corner only feeds

negative circulation to the nascent vortex. If the model previously proposed is used in this instance,
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Figure 3.11: Schematic showing the instantaneous stagnation streamline at various instants of time.
(a) At the inception of both vortices after impulsive start. (b) At an instant prior to pinch off of Γ2.
(c) The inception of a new vortex where the new vortex is reindexed to Γ2.

the vortex continues to grow and never pinches off since Γ̇1 is always negative. This is contrary to

the observation that a von Kàrmàn vortex street is nearly always seen in the wake of a bluff body.

Although the increasing complexity of using vortex sheets as opposed to point vortices can

overcome this problem (Jones, 2003), the following scheme is chosen to combat the issue. Shortly

after two vortices are initiated, if the plate is not exactly perpendicular to the flow, the leading

edge vortex usually recirculates flow such that there is a relative stagnation point on the backside

of the plate (i.e., where the velocity relative to the body is zero). This situation is depicted in

Figure 3.11(a). At a later time (Figure 3.11(b)) the relative stagnation point moves towards Γ2.

It is proposed that in addition to the previously described shedding criteria, when the stagnation

point reaches the opposite sharp tip (in this case z2,s), the vortex being fed from that point (Γ2) is

released and an incipient vortex is introduced at the at the tip. A time shortly after this criteria

is illustrated in Figure 3.11(c). Numerically, this is executed by tracking the velocity at a position

zp,0 on the backside of plate near zp,s (p = 1, 2) and determining whether there is a switch in the

the sign of the tangential velocity. The direction of the switch indicates the direction in which the

stagnation point passes through zp,0. At this point, if the direction is consistent with moving away

from the generating edge, then a new vortex is created and the vortices are re-indexed such that the

newly created vortex becomes indexed p = 1 or 2.
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Incipient behavior of vortices

The flow around the sharp corners can lead to the introduction of a vortex near the edge. As

indicated in Cortelezzi and Leonard (1993) and more recently in Michelin and Smith (2009b), the

introduction of a vortex at the sharp edges creates a singularity since the vortex and its image lie at

the same location and the equation of motion for the nascent vortex cannot be readily integrated.

Thus, due to the singularity, the initiation of the nascent vortex must be treated separately. A

small-time expansion can be used to further unveil the behavior of newly formed vortices from these

edges. Here we summarize the main results of the small time expansions presented in Michelin and

Smith (2009b) and give a procedure for dealing with the situation where the flow is impulsively

started and the case where a vortex is created at the tip with pre-existing vortices in the flow.

In what follows we only consider the vortex that initiates at ζ1,s = a. The vortex that initiates

from ζ2,s = −a can be treated in a similar manner to give essentially the same result. At time

t = 0+ the freestream is impulsively started with the plate at high angle of attack. We define

ζ1 = a(1 + ζ̃1) such that |ζ̃1| � 1. Closely following Michelin and Smith (2009b), a small time

expansion is performed on the equations of motion and it is found that the leading order behavior

for the vortex position follows

ζ̃1 = C1e
iπ
4 t

1
3 (3.48)

where C1 is a constant. Since z1−a = aeiθ ζ̃2
1 , the dominant flow around the corner forces the vortex

to move perpendicularly away from the plate at a power law of t
2
3 without regard for the orientation

of the plate. Consequently, when the Kutta condition is applied, the strength of the vortex grows

like Γ1 ∼ −t
1
3 .

For subsequent vortices, the situation is more difficult to handle. When a vortex is shed from

ζ = a at t = ts, a new vortex is started in its place and the remaining vortices are re-indexed so

the nascent vortex replaces the shed vortex. This new vortex is qualitatively different from the

starting flow vortex because the background flow is essentially canceled due to the satisfaction of

the Kutta condition. It is seen in Michelin and Smith (2009b) that the small-time expansion in this
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instance leads to the vortex shedding with linear growth in the direction tangent to the sharp edge,

i.e. z1 − a = C2eiθ(t − ts) where C2 is a constant. This imposes two situations. Depending on the

sign of C2 the vortex can either shed away from the tip into the flow or along the plate. The prior

situation is amenable and the latter is very problematic because the inviscid model cannot handle

this situation because the vortex and its image will be one and the same. The problematic case

often occurs at low angles of attack and can also arise when free vortices move in close proximity

to either sharp corner. This is a major drawback of this method. This difficulty is also observed in

inviscid vortex sheet models such as Jones (2003) as well. To the author’s knowledge, this condition

cannot be easily circumvented if encountered. Therefore, we halt the simulation when this condition

occurs. The proximity of free vortices to the sharp edges is not an issue in this case because they

will be sufficiently swept away downstream by the oncoming flow in the cases we consider.

As for the details of numerical implementation, for the impulsive start, a vortex is initiated

perpendicular to each tip at a small distance δ ∼ O(∆t
2
3 ) where ∆t ∼ O(10−5). To determine

the Γp, the Kutta condition is applied. Subsequently, a standard time integrator is used until the

criteria to shed a new vortex is met at t = ts. At this time a new vortex is started, but this time

it is initiated at t = ts + ∆t tangentially at a distance δ ∼ O(t− ts). The integration resumes until

the criteria for shedding is met again, then a new vortex is shed, and so on.

3.4.3 Results

Stationary plate with cross-flow and shed vortices

The vortex shedding criteria is first verified to provide reasonable results. We incline a plate at 45◦

angle of attack with an impulsively-started oncoming freestream. The radius of the circle in the

ζ-plane is chosen to be a = 1/2, thus the chord length is c = 2. The streamlines for various instants

in time are plotted in Figure 3.12. Figure 3.12(a) demonstrates the starting flow around the plate

forming two vortices, one of which stays attached to the leading edge for some time and another that

moves downstream after initially forming. The stagnation point resulting primarily from the leading

edge vortex moves down the plate in Figure 3.12(b) and eventually pinches off the trailing edge
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(a) t = 0.4 (b) t = 4.6

(c) t = 8.0 (d) t = 16.0

Figure 3.12: Streamlines at various instants in time for separated flow off of a plate at angle of
attack of 45◦.

vortex causing a new vortex to be formed in Figure 3.12(c). One key difference seen in comparison

to the results of some more detailed computations is that in the present method subsequent shed

vortices have a much more substantial upwash (Sarpkaya, 1975, Kiya and Arie, 1977). This may be

due to an excess amount of circulation that each vortex gathers before meeting the criteria of being

shed into the wake. Although a slightly high for a bluff body flow, the long time separation Strouhal

number is still reasonable at St ≈ 0.20.

Example of plate vibration due to shed vortices

In this example the plate is only allowed to rotate about its center of mass, that is, z0 is held fixed.

The simulation is initialized with θ0 = π/2. Two vortices are artifically placed far downstream of

the plate to break the flow symmetry thus inducing the von Kármán instability in the wake. Other

parameters chosen for this simulation are I = 1, kθ = 1, and bθ = 0. The instability then induces

a rotational oscillation in the system shown in Figure 3.13. The simulation is run until the model

is no longer valid, i.e. when the velocity at the tip of the plate overcomes the oncoming flow such

that a positive (negative) vortex is shed from the top (bottom) separation point. The oscillation of
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Figure 3.13: Evolution of θ in vortex-induced vibration of a plate.

the plate is modulated by a lower frequency wave. Unlike the circular cylinder case, the system here

seems to become unstable due to the feedback between the shed vortices and the oscillation of the

plate. When the plate begins to oscillate the shed vortices become stronger, thus inducing stronger

oscillations, and so on. The response of the plate begins to deomonstrate some aspects of instability,

although system could saturate in the regime where the model is can no longer be simulated.

3.5 Conclusion

A low-order technique has been outlined here to give the response of an elasatically-mounted general

shaped body in the presence of point vortices and a freestream velocity. It is formulated using

standard potential flow techniques in conjunction to coupling the problem to rigid body dynamics

through Sedov’s force and moment equations. This allows us to specifically apply an external force

to model the structural properties of the fluid-structure interaction. In addition, this model is also

amenable to shedding vortices off sharp edges since the general equations of motion allow for variable

strength vortices.

Specifically, two examples are presented here. First we considered vortex-induced vibrations of

a circular cylinder in the presence of pre-existing vortices. The results show, that even for one

vortex, the motion appears to be bounded. We calculate the maximum amplitude for the case of

a circular cylinder interacting with one vortex versus the vortex’s initial position. It is found that
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if a vortex initially lies near a body, it does not affect it much, but as it is moved away from the

body, the vortex has more influence until it reaches a local maximum near z1/D ≈ 1. For more

than one vortex interacting with a circular cylinder, it is difficult to draw any conclusions since the

response is chaotic. We then allow a freestream flow to convect the vortices downstream towards a

circular cylinder. A vortex street configuration is chosen to impinge on the cylinder. When changing

the Strouhal frequency of the impinging vortices, it is seen that the maximum amplitude Strouhal

number is around St = 0.25 for the configuration considered. At this frequency the vortices couple

closely with the natural frequency of the system to produce a large amplitude response. At lower

and higher frequencies, the vortices have a minimal effect on exciting the system to oscillate at large

transverse magnitudes.

As a further example, the flat plate geometry is also considered. The equations of motion for the

system are derived and simulated with a point vortex separation model. This model is simulated

for the case of a stationary flat plate and gives reasonable results for the natural shedding frequency

of the system. An example of the vortex-induced vibration due to vortex shedding is simulated and

discussed.

Only a couple examples of the methodology are given here. More analysis is necessary to draw

any definite conclusions about the fluid-structure interaction of these structures. However, the low-

order model developed can be used to rapidly simulate problems without relying on higher-order

computational techniques. These models run within a matter of seconds and can provide fast, useful

information for design, prevention, and control of vortex-induced vibrations. At high Reynolds

number, the model of the flat plate geometry is very applicable to vortex-induced vibration for

viscous fluid over a flat plate in the sense that it models the separation from the bluff body very

well. Vortices shed from the sharp edges retain their compactness for relevant time scales therefore

the diffusion due to viscosity is negligible in these cases. An additional model must be developed to

combat the difficulties of representing the vortex shedding off smooth bodies before any progress on

the prediction of the response of the canonical cylinder-spring-damper system can be made.
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Chapter 4

Fluid-structure interactions of two
bodies in an inviscid fluid

4.1 Introduction

This chapter addresses the problem of solving for the hydrodynamic interactions between two arbi-

trarily moving rigid bodies in a two-dimensional inviscid fluid. Not only is it of theoretical interest,

but this work also is important for the application to a myriad of doubly connected problems. As an

example of such a doubly connected domain problem, the Weis-Fogh mechanism has been previously

studied by using complex potential theory for the spreading phase until the two wings separate into

an inherently two-body problem (Lighthill, 1973). The analysis within this study does not carry

on into the phase where the wings are separated due to a lack of a generalized potential theory for

doubly connected domains. Similarly, if we examine the cross-section of a dragonfly wing, we see

two wings that constitute another naturally occurring two-body problem where the interactions be-

tween each wing cannot be simply neglected (Wang and Russell, 2007). To the author’s knowledge,

the hydrodynamics of such phenomena have not been previously investigated and the framework

provided in this paper will allow its subsequent analysis. Moreover, another relevant example in

aerodynamics concerns the flow around two airfoils, or the so-called “biplane problem,” where it has

been seldom studied from an analytic standpoint. In particular, Sedov’s work on this subject is a

rare resource and he devotes a short chapter to determining the steady flow around several biplane

sections in his book (Sedov, 1965). Many other examples of situations with fundamentally doubly
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connected domains exist and the reader is urged to examine Furber and Ffowcswilliams (1979) and

Nair and Kanso (2007) for applications to turbomachinery and coordinated motion applied to fish

schooling, respectively.

Until recently, the multiply connected domain problem in potential theory has been avoided

except for a number of simplified cases. Perhaps as the most simple case, Lagally (1929) was the

first to consider the analytical solution of the potential flow problem for two stationary cylinders

in a uniform stream. He obtained a rather complicated expression for the velocity potential in

terms of Weierstrass functions. This work was later extended to the case of two hydrodynamically

coupled cylinders by Landweber and Shahshahan (1991) to study the hydrodynamic forces on two

bodies nearing inline impact. Furthermore, Wang (2004) contributed to this specific problem by

determining the forces on the cylinders with the extension of allowing the cylinders to contract

and expand as well as determining the large distance influence of the cylinders on one another.

More recently Borisov et al. (2007b) provided the first dynamically coupled interaction between

two circular cylinders in a perfect fluid and restricted his examples to the motion of his cylinders

being along the line connecting their centers. We also take notice of the long-lasting interest in

the two cylinder problem, as Alassar and El-Gebeily (2009) have recently revisited the fundamental

question proposed by Lagally and determined an alternative solution to the potential flow problem

using bipolar coordinates and an infinite series expansion. The methods referenced above are very

restrictive in the sense that they are only applicable to the case where the bodies are two circular

cylinders.

For more complicated shapes, the use of boundary integral formulations, such as panel methods

(e.g. Kanso et al., 2005), have supplanted closed-form solutions for the potential due to the lack of

a theory. However, Crowdy (2010) has developed a new calculus to address issues with providing

solutions to flows in multiply connected domains and has applied it to the Weis-Fogh mechanism

discussed above (Crowdy, 2009). Although the doubly connected problem can be solved in Crowdy’s

framework, here we provide an efficient and specific solution of the flow generated by the motion of

two arbitrarily shaped bodies without the need of special functions. This stems from the fact that
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the doubly connected case has special properties not available in the general multiply connected

case which are exploited in order to avoid using the integral representation in Crowdy (2010). In

addition, formulas for the force and moment are provided and a method to study the fluid-structure

interaction (FSI) of the system is proposed.

As a specific example, the interaction of two circular cylinders is more closely investigated using

the proposed method. First, the method is validated by determining the hydrodynamic forces for the

prescribed motions of the two cylinders and comparing the results to previously derived formulations

in Wang (2004), Bampalas and Graham (2008), and Landweber and Shahshahan (1991). Next,

numerical analyses are performed to address the benefits of hydrodynamic drafting in a “forced-

free” interaction by prescribing the motion of one cylinder and allowing the second cylinder to

follow freely. Lastly, analysis of “free-free” interaction of two cylinders is carried out. Here the idea

of “free-free” interactions refers to objects that are given initial conditions and allowed to interact

with the flow field freely, which in part has been studied in Borisov et al. (2007b) for specific inline

motions of the cylinders. Here, we choose to concentrate on studying the oblique collision and

near-collision events of two hydrodynamically coupled cylinders and demonstrate that the system

conserves total energy and momentum.

An additional example of two flapping plates, similar to the configuration discussed in Wang

and Russell (2007), is provided to highlight the use of the method in a more complicated doubly

connected domain. An idealized flapping motion is examined and resulting forces and torque on

both individual plates are determined for the specified motion.

4.2 Potential flow formulation

4.2.1 Formulation of the boundary value problem

We seek an incompressible, inviscid, and irrotational flow in an unbounded two-dimensional fluid

domain D that is exterior to two solid objects, D1 and D2. Let us denote each body by a subscript

k = 1, 2 so that each body moves with velocity Uk = (uk, vk) and rotates with the angular rate
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Ωk. Kelvin’s theorem guarantees that a flow that originates in an irrotational flow must remain

irrotational everywhere thus for all time there exists a velocity potential Φ such that u = ∇Φ.

Incompressibility requires that the velocity potential must satisfy Laplace’s equation, ∇2Φ = 0, in

the domain D. Since Φ is harmonic, the solution can additionally be recast as finding its harmonic

conjugate, the streamfunction Ψ. Additionally, it is assumed that the flow decays at infinity and

that the circulation around each object is zero. The solution must satisfy the boundary conditions

u · n̂ = (Uk + Ωkêz × (x− xk)) · n̂, on ∂Dk (4.1)

for k = 1, 2 where n̂ denotes the unit outward facing normal. In what follows, it is understood that

the boundary conditions are for each body, k = 1, 2. We introduce s to denote the length along a

specific contour ∂Dk such that the tangent vector and outward normal can be written as

ŝ =

(
dx

ds
,

dy

ds

)
(4.2)

and

n̂ =

(
dy

ds
,−dx

ds

)
. (4.3)

By the Cauchy-Riemann equations it is recognized that the normal velocity on the surface u · n̂ =

∇Φ · n̂ = ∇Ψ · ŝ. Therefore Equation (4.1), by using definitions (4.2) and (4.3), can be rewritten in

terms of the streamfunction as

∂Ψ

∂x

dx

ds
+
∂Ψ

∂y

dy

ds
= − (vk + Ωk(x− xk))

dx

ds
+ (uk − Ωk(y − yk))

dy

ds
(4.4)

on ∂Dk. For an arbitrary surface, (4.4) is satisfied only if

∂Ψ

∂x
= −vk − Ωk(x− xk), on ∂Dk, (4.5a)

∂Ψ

∂y
= uk − Ωk(y − yk), on ∂Dk. (4.5b)
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Figure 4.1: Two arbitrarily shaped objects in the z-plane mapped to the annulus in the ζ-plane.
Object k translates with complex velocity Uk and rotates with angular velocity Ωk around its center
of inertia zk. The annulus is centered at ζ = 0 with a conformal modulus of ρ2.

Upon integration of (4.5), Ψ on the boundary is

Ψ = uky − vkx− Ωk

(
x2 + y2

2
− xkx− yky

)
+ dk, on ∂Dk (4.6)

where dk are constants of integration.

Now consider the complex variable z = x+ iy such that there exists a complex potential function

W (z) = Φ + iΨ that is analytic in the domain D. In addition, we denote the object velocity in

complex form as Uk = uk + ivk. The problem is now presented in the complex z-plane in Figure 4.1.

Equation (4.6) can now be rewritten in complex form to read

Im [W (z)] = Im

[
Ukz − iΩk

(
1

2
zz − zzk

)]
+ dk, on ∂Dk. (4.7)

Here “Im” denotes the imaginary part (“Re” the real part) and the overbar denotes explicit complex

conjugation. The set of equations for each k in (4.7) is equivalent to the standard mathematical

problem in potential theory known as the modified Schwarz problem (Muskhelishvili, 1953). Simply

stated, if one knows either the real or imaginary value of the complex function on the boundaries,

then an analytic solution for W (z) can be found in the domain D. Without loss of generality, the
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constant d1 can be set to zero since it can be arbitrarily specified due to the nature of the modified

Schwarz problem. The constant d2 on the other hand must be determined by a compatibility

condition that forces W (z) to be single valued as discussed later in Section 4.2.2.

To make further progress, an extension of the Riemann mapping theorem is employed to doubly

connected domains. The theorem states that any doubly connected domain can be mapped, by some

conformal map z(ζ), from the annulus given by ρ2 < |ζ| < 1 in the ζ-plane, where ρ2 is defined by

the choice of domain D and its appropriate mapping (see Figure 4.1 and Goluzin, 1969). Defining

w(ζ) = W (z(ζ)) (4.8)

Equation (4.7) can be recast as a boundary value problem for w(ζ) on the annulus in the ζ-plane,

i.e.

Im [w(ζ)] = Im

[
Ukz(ζ)− iΩk

(
1

2
z(ζ)z(ζ)− z(ζ)zk

)]
+ dk, on |ζ| = ρk (4.9)

where ρ1 = 1. It is important to observe that due to the geometric relationship ζ = ρ2
k/ζ on the

boundary, the function between the square brackets in (4.9) can be written as an analytic function

of ζ on the boundaries. Additionally, as z → ∞ the potential must decay to a constant, at most.

Therefore, this sets a requirement on the mapped potential such that w(ζ∞) must be bounded,

where the pre-image of infinity is defined as the limζ→ζ∞ z(ζ) =∞.

We note in passing that (4.9) is essentially equivalent to the formulation given by Crowdy (see

equation (3) in Crowdy et al., 2007)) since Im [W (z)] = Re [−iW (z)]. In contrast to Crowdy et al.

(2007) the rotations Ωk are introduced as additional degrees of freedom in the current formulation.

4.2.2 Analytic solution to the boundary value problem

Although the solution for w(ζ) can be obtained by using the Villat formula (see Crowdy et al.,

2007, Crowdy, 2008, Akhiezer, 1990), we prefer here to use a representation of the complex potential

in terms of a Laurent series because it is a natural representation of the solution in the annulus

domain. By using the Laurent series expansion, the determination of the Laurent coefficients will
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stem directly from application of the boundary conditions. One reason for using this method is

that, as shown below, the values of the coefficients can be efficiently calculated by using fast Fourier

transforms. Thus, consider the Laurent series expansion of the potential

w(ζ) =

∞∑

j=−∞
ajζ

j . (4.10)

The representation given in (4.10) satisfies the condition at infinity as long as the series is convergent.

To determine the coefficients aj , the required boundary data in (4.9) are expanded and rewritten as

an analytic function, i.e.

Im [w(ζ)] =
1

2i

(
w(ζ)− w(ρ2

kζ
−1)
)
, on |ζ| = ρk

=
1

2i

∞∑

j=−∞

(
aj − a−jρ−2j

k

)
ζj , on |ζ| = ρk (4.11)

where the overbar on w denotes the Schwarz conjugate of the function,

w(ζ) = w(ζ). (4.12)

Subsequently, the known boundary data are also expanded as

Im

[
Ukz(ζ)− iΩk

(
1

2
z(ζ)z(ρ2

k/ζ)− z(ζ)zk

)]
=

∞∑

j=−∞
bk,jζ

j , on |ζ| = ρk (4.13)

where (see Saff and Snider (2003), pg. 269)

bk,j =
1

2πi

∮

|ζ|=ρk

Im
[
Ukz(ζ)− iΩk

(
1
2z(ζ)z(ρ2

k/ζ)− z(ζ)zk
)]

ζj+1
dζ. (4.14)

The coefficients (4.14) can be solved explicitly because the integrand can be written as an analytic

function on the boundary. To do so, one can use residue theory for every jth term. Practically, due to

the duality of the Laurent series and the Fourier transform, the coefficients (4.14) can be calculated

numerically in an efficient manner by using the fast Fourier transform. The Laurent coefficients can
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be found from the Fourier series representation of the boundary data by relating b′k,j = bk,jρ
j
k where

b′k,j are the Fourier coefficients. It is also useful to recognize that due to the fact that real data is

provided on the boundary for the determination of these coefficients, the negative coefficients are

given by the alternative relationship bk,−j = ρ2j
k bk,j for j ≥ 0.

Equating coefficients in (4.11) and (4.13) leads to

aj =
2i

1− ρ2j
2





b1,j − b2,jρ2j
2 , j > 0

b2,j − b1,jρ2j
2 , j < 0

. (4.15)

The zero term must be explicitly treated as a compatibility constraint. Equating the constant terms

uniquely defines d2 = b1,0 − b2,0 in addition to requiring Im[a0] = b1,0. It is observed that the

solution for w(ζ) can only be solved for up to an additive constant whose value is inconsequential

in obtaining the solution for the flow. Furthermore, it can be confirmed by simple algebra that the

coefficients aj decay exponentially as j → ±∞, since the coefficients b′k,j of the periodic boundary

data decay exponentially as well. Thus given the motions Uk and Ωk and the appropriate conformal

mapping function z(ζ) one can explicitly form all the components to construct a solution of the form

(4.10).

Some care must be taken when numerically truncating the series (4.10). When bodies are rather

close in proximity, more terms of the series must be retained to provide an adequate representation

of the potential since the conformal radius ρ2 approaches 1. In the examples provided here, the

series is truncated to N terms such that

|aN |2∑N−1
j=1 |aj |2.

< 0.01

thus retaining 99 percent of the energy associated in the expansion. This typically leads to expan-

sions with N < 50 terms for separation distances ε/L ≈ O(10−2), where L is a pertinent length

scale. Alternatively, a more elaborate truncation correction method can be used to combat the

errors associated with representing the infinite series with a finite number of terms. Landweber
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and Shahshahan (1991) discuss a method where the “trapezoidal” remainder left from truncation is

used to correct the truncated series. Without the correction it is necessary to retain an additional

N/Ncorrected = 2.5 terms to attain the same level of accuracy for gap distances of ε/L = 0.01 for the

case of the impact of two circular cylinders, thus it is chosen to ignore the correction for simplicity,

although at a higher computational expense.

4.3 Hydrodynamic coupling

In this section, a method for determining the forces and moments and hence the coupled interactions

of the two bodies is determined by employing the conservation of momentum and angular momentum.

4.3.1 Hydrodynamic forces and moment

The force on the body can be obtained via complex contour integrals around the objects by extension

of the well known unsteady Blasius formula (Milne-Thomson, 1968). Sedov (1965) gives an expression

for the complex force, Fk = fk,x+ ifk,y, and, in the absence of point singularities, it reduces to (with

fluid density ρf)

Fk =
iρf

2

∮

∂Dk

(
dW

dz

)2

dz + iρf
d

dt

[∮

∂Dk

z
dW

dz
dz

]
+ ρfAkz̈k (4.16)

where Ak and zk are the area and centroid position of the kth object respectively. It is seen that

a “negative-mass” like term is introduced by the last term on the right hand side of Equation

(4.16). This may be deceptive since it is counter-intuitive to the notion of added-mass, but the

time derivative of the second term of Equation (4.16) produces an additional “mass” term. In later

examples this term is found to counteract the “negative-mass” term and produce an overall positive

added-mass for the system bodies.

Similarly, from Michelin and Smith (2009b), the torque applied by the fluid onto the body about
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its moving centroid in the laboratory frame is found to be

Tk =
ρf

2
Re

[
2żk

∮

∂Dk

(z − zk)
dW

dz
dz

−
∮

∂Dk

(z − zk)

(
dW

dz

)2

dz

+
d

dt

∮

∂Dk

|z − zk|2
dW

dz
dz

]
. (4.17)

There are no further simplifications that can be made without prior knowledge of the form of the

mapping function z(ζ). One can transform (4.16) and (4.17) from integrals in the z-plane to integrals

in the ζ-plane. Thus, (4.16) and (4.17) can be replaced respectively by

Fk =
iρf

2

∮

|ζ|=ρk

(
dw

dζ

)2(
dz

dζ

)−1

dζ + iρf
d

dt

[∮

|ζ|=ρk
z(ζ)

dw

dζ
dζ

]
+ ρfAkz̈k (4.18)

and

Tk =
ρf

2
Re

[
2żk

∮

|ζ|=ρk
(z(ζ)− zk)

dw

dζ
dζ

−
∮

|ζ|=ρk
(z(ζ)− zk)

(
dw

dζ

)2(
dz

dζ

)−1

dζ

+
d

dt

∮

|ζ|=ρk
|z(ζ)− zk|2

dw

dζ
dζ

]
(4.19)

where all integrals are now evaluated in the ζ-plane. The integrals can be evaluated using residue

theory as in Bampalas and Graham (2008) but due to the series form of w(ζ) and the geometry

of the doubly connected domain, formulas (4.18) and (4.19) are best integrated numerically by

parameterizing the curves |ζ| = ρk as ζ = ρk exp(iσ) and integrating from 0 to 2π. This gives a

numerical integration of a periodic function on a periodic domain and thus the integration can be

carried out with spectral accuracy by employing a trapezoidal-rule quadrature.

It is also worthy to note that the Equations (4.18) and (4.19) are extremely useful in the presence

of discrete vortices as they removes the contour integration around the logarithmic singularities that

are present in the standard formulation of the unsteady Blasius formula (Michelin and Smith, 2009b).
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Crowdy (2010) has developed a novel method to add vortices to multiply connected domains and it

can be readily applied to the current problem.

4.3.2 Coupled fluid-structure interactions

The equations dictating the coupled fluid-structure motion are

(ρb,k − ρf)Akz̈k =
iρf

2

∮

|ζ|=ρk

(
dw

dζ

)2(
dz

dζ

)−1

dζ + iρf
d

dt

[∮

|ζ|=ρk
z(ζ)

dw

dζ
dζ

]
(4.20)

and

Ikθ̈ =
ρf

2
Re

[
2żk

∮

|ζ|=ρk
(z(ζ)− zk)

dw

dζ
dζ

−
∮

|ζ|=ρk
(z(ζ)− zk)

(
dw

dζ

)2(
dz

dζ

)−1

dζ

+
d

dt

∮

|ζ|=ρk
|z(ζ)− zk|2

dw

dζ
dζ

]
(4.21)

with ρb,k being the density, Ik the moment of inertia of the kth object, and θk being the orientation

of body k such that θ̇k = ω. One must also take care if numerically integrating the system. Since a

time derivative given on the right hand side of Equations (4.20) and (4.21) gives rise to an added-

mass type term, at each time step an iterative scheme must be implemented to ensure that the

accelerations are consistent. Details of the are given in Appendix D.

4.4 Two interacting circular cylinders

Here, an example of two interacting circular cylinders is more closely investigated using the prescribed

method. Due to the symmetry of the problem there is no need to introduce rotations and torques

on the bodies.
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4.4.1 Conformal map

Two discs lie at z1(t) and z2(t) with radii r1 = 1 and r2 in the z-plane. The Möbius transformation

that takes the annulus in the ζ-plane (ρ2 < |ζ| < 1) to the appropriate configuration in the z-plane

is

z = z1 + exp(iα)
ζ − λ
λζ − 1

(4.22)

with

λ =
1 +

(
x̂2

2 − r2
2

)
+
√

(l21 − 1) (l22 − 1)

2x̂2
,

α = arg(z2 − z1), x̂2 = |z2 − z1|, l1 = x̂2 − r2, and l2 = x̂2 + r2 (see Saff and Snider (2003)). The

inner radius of the annulus, i.e. the conformal modulus, is found to be

ρ2 =

(
x̂2

2 − r2
2

)
− 1−

√
(l21 − 1) (l22 − 1)

2r2
.

The conformal map (4.22) can be easily inverted to give the inverse relationship that takes the

physical plane to the mapped plane. We also note that in the special case where r1 = r2 it can be

shown that λ2ρ2 = 1.

4.4.2 Complex potential solution

Analytical expressions for the coefficients (4.14) can be obtained by expanding the boundary data via

analytic continuation and integrating around the contour |ζ| = ρk. Defining Bk = Uk(λ2−1) exp(iα)

and Ck = Uk(z1 + λ−1 exp(iα))− Uk(z1 + λ exp(−iα)) the boundary data can be expressed as

Im
[
U1z(ζ)

]
=

iB1

2(ζ − λ)
+

iB1

2λ(λζ − 1)
+
iC1

2
, on |ζ| = 1 (4.23a)

Im
[
U2z(ζ)

]
=

iB2

2λ(λζ − 1)
+

iρ2
2B2

2(ζ − λρ2
2)
− iC2

2
, on |ζ| = ρ2. (4.23b)
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Residue theory is used to integrate (4.14). Inserting Equation (4.23a) and (4.23b) into (4.14) gives

residues at ζ = 0, 1/λ and ζ = 0, λρ2
2 which lie in their respective contours. Applying the residue

theorem gives

b1,j = − iB1

2λj+1
, (4.24a)

b2,j = − iB2

2λ1−j , (4.24b)

for j 6= 0 with the zero terms b1,0 = −Im[U1(z1 + λ−1 exp(−iα))] and b2,0 = −Im[U2(z1 +

λ exp(−iα))]. Thus the coefficients in the Laurent expansion (4.15) are

aj =
1

λj+1(1− ρ2j
2 )





B1 −B2(ρ2λ)2j , j > 0

B2 −B1λ
2j , j < 0

. (4.25)

The necessary compatibility condition sets the constant

d2 = Im[(U2 − U1)z1 + (U2λ− U1λ
−1) exp(−iα)].

4.4.3 Forces induced from inline impact of two circular cylinders

To validate the method the inline impact of two cylinders is investigated and the results are com-

pared to Wang (2004), Bampalas and Graham (2008), and Landweber and Shahshahan (1991). For

simplicity the cylinder radii are taken to be r1 = r2 = 1 (D = 2). The integrals for the force given by

(4.16) are integrated numerically using a trapezoidal-rule quadrature. Since motions are prescribed,

a simple first order finite difference scheme is used to approximate the time derivative to O(10−8).

First we investigate the inline motion of a cylinder (k = 2) towards a stationary cylinder (k = 1).

Cylinder 2 moves at a constant velocity U2. Streamlines for such a motion are shown in Figure 4.2.

In Figure 4.3, the force coefficient in the x-direction Cx = 2fx/(ρfU
2
2D) for both the moving and

stationary cylinder are plotted versus non-dimensional time t∗ = U2(t − t0)/D. The two cylinders

impact at t∗ = 0. In addition to results from the current formulation, data from the papers of
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Figure 4.2: Instantaneous streamlines due to a cylinder approaching a fixed cylinder from the right
at constant velocity.

Bampalas and Graham (2008), Landweber and Shahshahan (1991), and Wang (2004) are also plotted

for comparison. It is useful to note that, unlike the current method, Bampalas and Graham (2008)

and Wang (2004) use a form of the Blasius equation much like the formulas given in Milne-Thomson

(1968) but with assumptions that allowed the order of the spatial integration and time derivative

of Φ to be interchanged. On the other hand Landweber and Shahshahan (1991) used a Lagrangian

mechanics perspective to derive the force on the cylinders as outlined in Lamb (1945). Using the

current method the agreement to Bampalas and Graham (2008) and Landweber and Shahshahan

(1991) is excellent for both the moving and stationary cylinder. As the cylinders approach each

other, the forces become unbounded as expected. The results from Wang (2004) for the stationary

cylinder agree well, but the results for the moving cylinder are offset due to the incorrect treatment

of the Blasius force equation. This difference is accounted for by the omission of a convective term

U2 ∂Φ/∂x in the standard Blasius equation as discussed in Bampalas and Graham (2008). The

Sedov formula presented in (4.16) accounts for such a term in its derivation.

Additionally a case where two cylinders move towards each other at a constant velocity U1 =

U2 = U is compared. Streamlines for such a case are given in Figure 4.4. The magnitude of the

force coefficient in the x-direction is plotted with the same non-dimensional variables as given above.

Figure 4.5 shows the results for this configuration in comparison to data from Bampalas and Graham

(2008) and Wang (2004). Again, the agreement between Bampalas and Graham (2008) is nearly

exact while the results from Wang (2004) are slightly offset due to the mistaken omission of the

convective term.
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Figure 4.3: Force coefficient Cx when a cylinder moves toward a stationary cylinder as depicted in
Figure 4.2. The two cylinders impact at t∗ = 0. The forces on the moving and stationary body are
denoted on the figure. , present method; , Bampalas and Graham (2008); ◦ , Wang (2004);
4 , Landweber and Shahshahan (1991)

.

Figure 4.4: Instantaneous streamlines due to two cylinders approaching each other inline at constant
velocity.
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Figure 4.5: Magnitude of the force coefficient |Cx| when two cylinders moves toward each other at
constant velocity as depicted in Figure 4.4. The two cylinders impact at t∗ = 0. , present
method; , Bampalas and Graham (2008); ◦ , Wang (2004).

As previously discussed, when the bodies become closer in proximity more terms in the expansion

(4.25) are retained for an accurate representation in the truncated series. Given in Figure 4.6 is

the convergence of the coefficients aj when the cylinders are separated by a distance ε/D = 0.01

to highlight the spectral convergence of the Laurent coefficients in this case. The square of the

magnitude of the jth term is machine precision small at j ≈ 150. For the investigations hereafter, a

minimum separation distance of ε/D = 0.01 is maintained.

4.4.4 Coupled dynamics of two circular cylinders

For coupled cylinder interactions we use Equation (4.20). The equations are integrated using a

variable-time step explicit Runge-Kutta solver in Matlab (i.e. the ode45 package) with strict

relative and absolute tolerances on the error in the solution (10−6 and 10−8 respectively). Here we

study two different types of cases. First, we investigate the influence that a cylinder with prescribed

motion has on a cylinder that is allowed to freely interact with the flow (forced-free interaction).
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Figure 4.6: Convergence of |aj |2 versus j. For the negative terms, the scaled coefficients, a−jρ
−j
2 ,

reveal the same trend.

Second, we study the case where both cylinders are given an initial condition and allowed to interact

freely with one another (free-free interaction). In what follows it is assumed that each body is of

equal radius, r1 = r2, and neutrally buoyant, ρb,k = ρf .

Forced-free interaction applied to hydrodynamic drafting

In this section we prescribe the motion of first body and allow the second body to move freely in the

flow. One particular area of application is to characterize how bodies forward of another body affect

the hydrodynamic performance of the aft body. Here we look to investigate the benefits that the

aft body receives in “riding” behind the forward cylinder that has a prescribed motion, primarily

to determine good drafting regions. We first initialize both cylinders to have unit velocity in the

x-direction, i.e. Uk = 1. It is assumed that the forward body travels at a uniform speed U1 = 1

(which means there must be an external force on it). No external force is applied to the second body

so it moves in response to the resultant fluid forces. A few examples are given in Figure 4.7. If the

aft cylinder sits in a narrow band directly behind the forward cylinder, its velocity is decreased. On

the other hand, the aft cylinder is capable of maintaining or overtaking the forward cylinder with

no added force if it sits more towards the forward cylinder’s side. In one case it is seen that the aft

cylinder is ejected in the y-direction due to the large side force generated from the motion of the

forward cylinder.
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Figure 4.7: Several example paths of an aft cylinder following the forced motion of a forward cylinder.
Both cylinders are initially moving to the right with unit speed. Black lines denote the paths of the
passive cylinder, • denotes the centroid location at t = 20, and the gray line denotes the path of the
forward cylinder. The forward cylinder is forced at a constant velocity starting from z1(0) = 0. The
initial locations for the aft cylinder are z2(0) = −3,−3 + i,−3 + 2i, and −3 + 3i.

To further elucidate the effect of drafting for the aft body we look at the forces that the aft

body experiences due to the presence of the forward body. In a perfect fluid a single cylinder in

an unbounded flow travels with no drag and thus does not require any energy input to maintain

its velocity. Thus we look for the regions in a force contour map where the aft cylinder receives an

additional thrust due to the motion of the forward body. This extra force assists the aft body to

overcome the drag it is to experience if in a viscous fluid. Plotted in Figures 4.8(a) and 4.8(b) are the

thrust force and side force experienced by the aft body, respectively. Although it may seem beneficial

to draft directly behind the lead cylinder since fluid rushes to fill the forward mass, doing so actually

hinders the following body substantially. The aft body receives an induced hydrodynamic drag due to

the high-pressure region created between the bodies. Thus as seen in a particular path in Figure 4.7

where the aft body is initialized directly behind the forward cylinder, the separation between the

two increases as they move toward the right. Alternatively, if the aft cylinder sits in an area slightly

behind the forward cylinder’s midline but above the 30 degree angle line (see Figure 4.8(a)) the

forward cylinder experiences a thrust force allowing the aft cylinder to be propelled beyond the

forced cylinder as seen in a few of the example pathlines given in Figure 4.7. This force increases

as the distance between the cylinders is reduced and reaches a finite value in the limit that the

separation is the sum of their radii. In addition to the thrust force, the aft body can experience

a significant side force as seen in 4.8(b). In many applications, such as the drafting of neonate

dolphins behind their mothers, the side force can be a substantial limiting factor on the effectiveness
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Figure 4.8: Contour plots for the force on an aft cylinder drafting behind another cylinder of equal
radius. Both the lead cylinder and trailing cylinder move to the right with U1 = 1. (a) Thrust force
acquired by the aft cylinder based on the location of its center. The gray curve indicates the location
where the side force on the aft body is exactly zero. (b) Side force on the aft cylinder. Contours on
all plots are separated by an increment of 0.3.

of drafting. In Figure 4.8(a) the line of zero side force is shown in gray to give a sense of the

location where the aft cylinder feels zero side force thus allowing the aft cylinder to stay near the

body without being pushed away or colliding with the forward cylinder. This line indicates that the

preferred location for drafting and is roughly inclined at an angle of 60 degrees from the trailing

edge of the forward cylinder.

Free-free interaction applied to the collision of two cylinders

We now investigate the dynamics of two circular bodies that are allowed to interact with one another

given a specific set of initial conditions. As a specific example, the collision of two circular cylinders

is studied to illustrate the effect of the fluid on the resultant motion of the cylinders before and after

impact.

Consider the assumed collision of two cylinders. When two circular cylinders collide, momentum

along the line of contact is transferred between the two bodies. For a perfectly elastic collision, this

transfer of momentum between the two bodies must satisfy both conservation of total momentum

and the conservation of energy. We seek to enforce this when the two bodies collide and to do so,

expressions for the total momentum and energy are derived and used to determine the resultant
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velocities after impact. The momentum of both the bodies and the fluid is written as an integral

over the entire plane, D,

P =

∫

D

ρfu dA = m(U1 + U2) + ρf

∫

Df

∇Φ dA (4.26)

where explicit integration over the two bodies leaves us with the standard expression for momentum

of two rigid bodies, each with mass m, and an expression for the fluid momentum as an integral

over the region occupied by the fluid, Df. By applying the divergence theorem to the area integral

over the fluid region, Equation (4.26) can be rewritten

P = m(U1 + U2)−
∮

∂D1+∂D2

Φ n̂ ds. (4.27)

Now, we take the vector Equation (4.27) and transform it to complex notation, P 7→ P = Px + iPy,

by noting that the complex version of the normal can be represented with n̂ 7→ −i(dz/ds) and

recalling that Φ = Re[W ]. Thus

P = m(U1 + U2) + ρf

∮

∂D1+∂D2

Re[W ] dz. (4.28)

Similarly, the expression for kinetic energy is written as

E =
1

2

∫

D

ρf (u · u) dA

=
m

2
(|U1|2 + |U2|2) +

ρf

2

∫

Df

(∇Φ · ∇Φ) dA (4.29)

where the last integral is the kinetic energy of the fluid alone. The area integral for the kinetic

energy of the fluid in (4.29) can be transformed to a contour integral by applying Green’s theorem

and noting that ∇2Φ = 0. Thus

∫

Df

(∇Φ · ∇Φ) dA = −
∫

∂D1+∂D2

Φ
∂Φ

∂n
ds+

∫

∂D∞

Φ
∂Φ

∂n
ds (4.30)
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where ∂D∞ is a contour that extends to infinity. The last integral in (4.30) is exactly zero due to the

continuity equation and the requirement that Φ must be a constant at infinity, thus, when placing

in complex form, (4.29) reads

E =
m

2

(
|U1|2 + |U2|2

)
− ρf

2

∮

∂D1

Re[W ] Re
[
−iU1 dz

]
− ρf

2

∮

∂D2

Re[W ] Re
[
−iU2 dz

]
. (4.31)

Equations (4.28) and (4.31) must be conserved following a collision event.

To model a collision a threshold value ε is chosen such that when separation between the cylinders

is below this value a collision takes place. This threshold value is selected to be ε = 0.01D for all

the cases presented here. If a collision event occurs at t = tc while the equation of motion (4.20)

is integrated, the pre-impact velocities are decomposed into two components, a component that is

along the line of collision, Uk,n(t−c ), and a component that is tangent to the line of collision, Uk,t(t
−
c ).

The change in resultant velocity after a collision must only take place in the direction along the line

of collision while conserving both the total momentum and energy of the system. For example, in

the absence of the fluid, closed-form expressions for the post-impact normal velocities of the two

equal mass cylinders are easily found to be U1,n(t+c ) = U2,n(t−c ) and U2,n(t+c ) = U1,n(t−c ) while the

tangential component remains the same. With the presence of the fluid, we resort to numerically

determining the post-impact normal velocities Uk,n(t+c ) by ensuring that the total normal momentum

is conserved, Pn(t+c ) = Pn(t−c ), and that the total energy is conserved, E(t+c ) = E(t−c ).

As an example, an oblique collision event is plotted in Figure 4.9. Here, a cylinder starting from

the left is initialized with U1(0) = 1 and z1(0) = −6 + i and allowed to interact with the second

cylinder initially at rest with U2(0) = 0 and position z2(0) = 0. In the presence of the fluid the

cylinders collide at t = 4.45. The paths for such a situation are given in Figure 4.9 as black lines.

For comparison, the paths for the case where the fluid is absent are also plotted as dashed lines.

One can see a distinct difference between the two paths due to the presence of the fluid.

To validate this type of behavior the evolution of momentum and energy for the fluid, each body,

and the entire system are plotted in Figure 4.10. It is easily seen that the total momentum and
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Figure 4.9: Paths of two cylinders in a collision event. The dashed filled cylinders indicate the initial
locations and velocities (U1(0) = 1, U2(0) = 0, z1(0) = −6 + i, and z2(0) = 0) while the solid filled
cylinders indicate the resultant locations and velocities at t = 10. In addition to the paths taken by
the cylinders in an inviscid fluid (solid) the paths of a perfect collision in the absence of the fluid
are also plotted (dashed) for comparison. Arrows scale with the magnitude of velocity.

energy of the system is conserved in addition to providing more justification for the use of (4.20) for

modeling FSI in potential flow. In all instances presented here, the normalized variations in total

momentum and kinetic energy are maintained at O(10−3) or less. It is interesting to observe that

the fluid momentum and energy is continuous at the instant of collision (although non-smooth). The

lack of the jump in the fluid momentum actually indicates that at the time of impact, the transfer of

momentum between the two bodies is conserved, that is even though we enforce the requirement that

the total momentum of the entire fluid-body system be conserved, the collision itself degenerates

into satisfying only the momentum transfer between the two bodies. In essence, at the time of

collision, the fluid can be neglected, although the fluid plays an important role in deflecting and

buffering the two bodies prior to collision, thus drastically affecting the resulting trajectories of both

the impinging cylinder and the target cylinder by changing the line of impact.

Futhermore, it is also important to distinguish the difference between the fully coupled FSI and

the prescribed motion case. As observed in Section 4.4.3, the prescribed collision of two cylinders

creates an unbounded force approaching impact. Intuitively, one thinks this suggests that a collision

can never occur because the forces become increasingly large as the cylinders approach. The key

α1

α2
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Figure 4.9: Paths of two cylinders in a collision event. The dashed filled cylinders indicate the initial
locations and velocities (U1(0) = 1, U2(0) = 0, z1(0) = −6 + i, and z2(0) = 0) while the solid filled
cylinders indicate the resultant locations and velocities at t = 10. In addition to the paths taken by
the cylinders in an inviscid fluid (solid) the paths of a perfect collision in the absence of the fluid are
also plotted (dashed) for comparison. Arrows scale with the magnitude of velocity. h/D is measured
from the origin (i.e. the initial location of the stationary cylinder).

energy of the system is conserved in addition to providing more justification for the use of (4.20) for

modeling FSI in potential flow. In all instances presented here, the normalized variations in total

momentum and kinetic energy are maintained at O(10−3) or less. It is interesting to observe that

the fluid momentum and energy is continuous at the instant of collision (although non-smooth). The

lack of the jump in the fluid momentum actually indicates that at the time of impact, the transfer of

momentum between the two bodies is conserved, that is even though we enforce the requirement that

the total momentum of the entire fluid-body system be conserved, the collision itself degenerates

into satisfying only the momentum transfer between the two bodies. In essence, at the time of

collision, the fluid can be neglected, although the fluid plays an important role in deflecting and

buffering the two bodies prior to collision, thus drastically affecting the resulting trajectories of both

the impinging cylinder and the target cylinder by changing the line of impact.

Futhermore, it is also important to distinguish the difference between the fully coupled FSI and

the prescribed motion case. As observed in Section 4.4.3, the prescribed collision of two cylinders

creates an unbounded force approaching impact. Intuitively, one thinks this suggests that a collision
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Figure 4.10: The momentum, P , and kinetic energy, E, of the fluid (dashed), each body (gray), and
total system (black) are given for the oblique collision event presented in Figure 4.9. The collision
occurs at t = 4.45.
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Figure 4.11: Angles, α1 and α2 that the cylinders are deflected versus h/D after an oblique collision
with the second cylinder initially at rest. With fluid present (solid) and without the fluid present
(dashed).

can never occur because the forces become increasingly large as the cylinders approach. The key

contrast in the FSI case is that the bodies undergo deceleration as well and this in turn affects

the forces on the body. Obviously, if one thinks of the notion of forces in this FSI case, they are

counteracted by the inertia of the bodies, mU̇k, and remain bounded up until the moment of the

modeled impact as seen in Figure 4.10. Thus it is hard to conclude from a prescribed interaction

that there are any convincing trends for the FSI of multiple bodies.

Plotted in Figure 4.11 are α1 = arg(U1(∞)) and α2 = arg(U2(∞)), i.e. the angles that the post-

collision velocity of the impinging and target bodies make with the horizontal versus an impinging

obliqueness measure, h/D (see Figure 4.9 for definitions). When the two bodies have an inline

impact, the impinging cylinder slightly rebounds at a very low speed and thus we see α1 > 90◦

when h/D < 0.1. In these cases, nearly all the momentum is trasferred to the target cylinder. As

Figure 4.11 demonstrates, when 0.1 < h/D < 0.8, the difference between a collision without the

fluid and with the fluid is that the impact is more shallow due to the fluid slightly moving the target

cylinder away from the impact. In the region 0.845 < h/D < 0.895, the collision is so shallow that the

initially stationary cylinder actually begins to move to fill the void of fluid following the impinging
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Figure 4.12: Cylinder paths for a near-collision event. The initial conditions are U1(0) = 1, U2(0) =
0, z1(0) = −6 + 1.8i, and z2(0) = 0).

cylinder, albeit at a very small resultant velocity, thus the tendency for the second cylinder to have a

positive α2. When h/D > 0.895, the incoming cylinder narrowly misses the target cylinder whereas

when the fluid is absent the cylinders actually collide. In this sense, the fluid acts as a buffer to avoid

a collision. However, the fluid facilitates a transfer of momentum between the two cylinders through

the low pressure region existing between the bodies and thus, without any direct contact between the

cylinders, the incoming cylinder is deflected downward quite substantially. In addition, the initially

stationary cylinder gains a substantial amount of momentum thus propelling itself primarily in y-

direction. This process is illustrated in Figure 4.12 and demonstrates a substantial hydrodynamic

drift for the target cylinder in the direction transverse to the dominant motion in the fluid. For this

specific case where U1(0) = 1, U2(0) = 0, z1(0) = −6 + 1.8i, the resultant velocities of the bodies

are U1(∞) = 0.954− 0.205i and U2(∞) = 0.030 + 0.216i. As h/D increases, the influence that the

fluid has on the interaction of the two bodies begins to degrade rapidly.

4.5 A pair of flapping parallel plates

An additional example is given here to highlight the use of the method for more complex body

shapes. Here a brief account of applying the method to a pair of flapping plates is given.

4.5.1 Conformal map

Consider two parallel flat plates defined by the two angles, χ and β, separation distance, l, plate

chord length for each plate, c, and mid-point location, z0, as depicted in Figure 4.13. The conformal
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inertia zk. The annulus is centered at ζ = 0 with a conformal modulus of ρ2.

116

∂Ψ

∂y
= uk − Ωk(y − yk), on ∂Dk. (5b)117

Upon integration of (5), Ψ on the boundary is

Ψ = uky − vkx

− Ωk

(
x2 + y2

2
− xkx − yky

)
+ dk, on ∂Dk (6)

where dk are constants of integration.118

Now consider the complex variable z = x + iy such that there exists a complex potential119

function W (z) = Φ+ iΨ that is analytic in the domain D. In addition, we denote the object120

velocity in complex form as Uk = uk + ivk. The problem is now presented in the complex121

z-plane in Fig. 1. Equation (6) can now be rewritten in complex form to read122

Im [W (z)] = f(z) + dk, on ∂Dk (7)123

where

f(z) = Im

[
Ukz − iΩk

(
1

2
zz − zzk

)]
.

Here “Im” denotes the imaginary part (“Re” the real part) and the overbar denotes explicit124

complex conjugation. The set of equations for each k in (7) is equivalent to the standard125
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Figure 4.13: Geometric quantities defining the configuration of two parallel plates in z-plane.

map taking the annulus to the two parallel plates is given by

z = τ
(
K(ζ/

√
ρ2, ρ2)− exp(2iν)K(ζ

√
ρ2, ρ2)−K(−1, ρ2)− exp(2iν)K(−ρ2)

)
+ z0 (4.32)

where

K(ζ, ρ2) = 1− 2ζ
P ′(ζ, ρ2)

P (ζ, ρ2)

and

P (ζ, ρ2) = (1− ζ)

∞∏

j=1

(1− ρ2j
2 ζ)(1− ρ2j

2 ζ
−1)

is the Schottky-Klein prime function for the annulus domain (Crowdy and Marshall, 2006). The

parameters τ, ρ2, and ν in Equation (4.32) are all functions of time and can be determined implicitly

(e.g. using Netwon’s method) by enforcing the geometric conditions on β, χ, c, and l defining

Figure 4.13. Note that we can conveniently set θk = χ.

4.5.2 Sinusoidal flapping and pitching

Here, the configuration is restricted to β = 0 and c = l = 1 such that the plates are always stationed

at the same y-location. A flapping-like wing motion is chosen such that the remaining geometric
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Figure 4.14: Instantaneous streamlines for the flapping motion of two parallel plates with motion
prescribed by Equation (4.33). (a) t = 0. (b) t = π/2.

parameters are prescribed as follows:

z0 = exp

(
− iπ

4

)
sin (t) , (4.33a)

χ =
π

2

(
1− 1

2
cos (t)

)
. (4.33b)

The prescribed motion gives the downstroke a large angle of attack while the upstroke maintains a

relatively small angle of attack (relative to the motion of the plates). Although idealized, the motion

can be seen as a model of a dragonfly wing beating where the fore and hindwings are in phase.

The solution for the potential is given by (4.10) with the coefficients (4.15) determined numer-

ically by the method discussed in 4.2.2. Figure 4.14 gives the streamlines during two instances of

the flapping motion prescribed by (4.33). Figure 4.14(a) shows the streamlines at t = 0 where the

angle of attack is 90◦ and Ω1(0) = Ω2(0) = χ̇(0) = 0. Alternatively, Figure 4.14(b) depicts the

streamlines at t = π/2 when the plates are experiencing pitch reversal for the upstroke. Here, the

angular velocity is at a maximum χ̇(t)(π/2) = π/4 while there is no translational velocity.

Care must be taken to integrate (4.18) and (4.19) since the mappings include four zeros on

the annuli representing the four sharp edges in the physical plane. This in turn introduces four

poles lying on the contours when attempting to integrate (4.18) and (4.19). To make progress,

the integration contour is stretched slightly into the fluid domain avoiding the singularities. The

resulting force and moment coefficients acting about the plate centroids, zk, in addition to the sum
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of each component (e.g. Cx = C1,x + C2,x) for a single cycle are given in Figure 4.15. A few

observations can be made. Contrary to the potential flow around a single plate in the absence of

circulation, each plate experiences a force and moment, and their sum is not simply zero. A net

force and moment about z0 may act on the entire system at any given instant in time, although

the moment in this case is especially small. In addition, it appears that pitching in the positive

χ-direction during pitch reversal affects the lift force substantially and actually decreases lift in pure

potential flow. Furthermore, for this sinusoidal motion, the net lift and torque,
∫

(Cx, Cy, Cθ) dt,

over one period is exactly zero. This suggests that although there are net forces and torques on the

system at various instants in time, the sinusoidal motion restricts the net force and torque over one

cycle to be zero.

4.6 Conclusion

A general method to solve for the complex potential of two bodies translating and rotating in a

perfect fluid is derived. The formulation can be used to form the complex potential given the

conformal map of an arbitrary doubly connected domain to the annulus domain. Having solved for

the complex potential, generalized forms of the Blasius formulas from Sedov are used to calculate

the forces and moments on both bodies by numerically evaluating contour integrals along each body

in the annulus domain. The forces and moments can additionally be used to dynamically couple the

two bodies to analyze their fluid-structure interaction.

This formulation can be used in various applications to study the dynamics of bodies that con-

stitute a doubly connected domain with relative ease (e.g. Weis-Fogh mechanism, ground effect,

dragon fly aerodynamics, etc). One specific case considered here is the problem of two interacting

cylinders in a perfect fluid. Three subcases are studied. First, the motion of the cylinders is pre-

scribed and the forces experienced by both cylinders are calculated to provide validation for this

method. It is demonstrated that when one cylinder is forced to collide with a stationary cylinder,

the forces experienced by both cylinders are in excellent agreement with previous published data. In

addition, when both cylinders are prescribed to impact each other at equal and opposite velocities,
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the agreement with previous data is also nearly exact.

In the second subcase the motion of one of the cylinders is prescribed and the second cylinder

moves only subject to the fluid forces it experiences. The analysis of the “forced-free” interaction is

applied in the context to the benefits of hydrodynamic drafting. It is shown, contrary to intuition,

that drafting directly behind a second body leads to substantially increased induced drag for neu-

trally buoyant cylinders. When the body sits in a particular zone, the body is capable of receiving

additional thrust to aid its ability to overcome an unmodeled viscous drag while experiencing very

little adverse side force. For example, this coupling may help give more insight on why neonate

dolphins, among other aquatic animals, follow obliquely as opposed to directly behind their mothers

although we have neglected to model the effects of a possible separated flow (e.g. Weihs, 2004).

In the third subcase, two cylinders are allowed to dynamically interact with one another through

their mutual induced forces specifically in oblique collision and near-collision events. It is seen that

the fluid provides a buffering effect prior to collision by attempting to push the colliding cylinders

away from each other, but not necessarily preventing collision. In some instances with the presence

of the fluid the cylinders are capable of narrowly avoiding a collision, whereas in the absence of fluid

the two cylinders experience a collision event. In addition to avoiding the collision, a substantial

drift velocity in the direction normal to the motion of impinging body can be obtained.

Lastly, a brief example of a pair of flapping parallel plates is given to highlight the application of

the proposed method in a more complicated domain. A dual wing configuration is further investi-

gated in the context of flapping flight. It is found that the system is capable of sustaining a force or

moment at any given instant of time, but under sinusoidal motion the net force and moment about

the system centroid is exactly zero over an entire cycle. Though it is hard to draw any definitive

conclusions without the inclusion of separated vortices in this high angle-of-attack application, it is

clear that the sinusoidal pitching gives a hydrodynamic disadvantage in terms of producing net lift.

We would like to note that this two-dimensional study is highly idealized and does not capture

many important effects of viscous, three-dimensional flows. Nevertheless, it is sensible to investigate

this idealized system because it calls attention to several dynamical features that have remained
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unexplored. Even in cases where bodies exhibit substantial three-dimensional effects, the method

presented here can lead to important generalizations in an idealized configuration to give some

intuition for fluid-structure interaction.
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Chapter 5

Conclusion and future directions

5.1 Conclusions

This thesis has concentrated on developing several low-order techniques to study a variety of fluid-

structure interaction (FSI) problems with one or two rigid bodies in a perfect fluid. In general, the

techniques presented are based on potential flow theory with the possibility of point vortices in the

flow and reduce to one or more ordinary differential equations that can be solved using standard time

integrators. The techniques developed are general enough to apply to various applications ranging

from aerodynamics of insect wings to the vortex-induced vibration of marine structures.

The first application area addressed is the FSI of an idealized flat-plate airfoil subject to a

freestream flow. We assume that the airfoil is thin, at high Reynolds number, and does not experience

any leading edge separation at any instant, thus a potential flow model with point vortices can be

used to provide a low-order description of the wake dynamics in the fluid associated with the problem.

In this case the aerodynamics model reduces to a single ordinary differential equation. Equations

of lift and moment are derived from a conservation of linear and angular impulse argument and are

adjusted for the effects of thickness and camber in the airfoil. The results of the model are compared

to numerical and experimental results and are found to be quite reasonable given the simplicity of

the model. The model is then used to show the application to the classical flutter problem. As

an example several responses are given showing the unstable flutter phenomena resulting from the

vortex-induced motion. It is also shown that for some regimes, multi-modal behavior is seen which
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cannot be addressed using classical techniques. The model is further extended using the concept of

trapped vorticity to model synthetic jet actuators for airfoil control. The extended model is validated

with experiments and demonstrates relatively good agreement. We then use a lightly tuned, simple

feedback algorithm to stabilize the system undergoing flutter. Further applications of the model

with adaptive control is presented in Appendix B.

The second application considered is the coupled response of a general shaped body in the

presence of point vortices and a freestream flow. The model developed for this case uses the Brown-

Michael law for varying strength vortices shed from the body. If no varying strength vortices are

present then the equation of motion for the vortices reverts back to the Kirchoff laws for vortex

motion. Force and moment acting on the body is calculated using Sedov’s integral formulas and

then coupled to the rigid body dynamics of the body. The resulting system consist of 2N + 3

real differential equations and possibly P algebraic equations for P varying strength vortices. Two

examples are given here, both in context of the canonical mass-spring-damper system often studied

for the characterization of vortex-induced vibrations. The circular cylinder is first considered in the

absence of the freestream. It is seen that although the body motion seems chaotic, there is a limiting

amplitude and its dependence versus initial vortex location is plotted. For more than one vortex,

the chaotic motion makes it difficult to draw any concrete conclusions. We then allow a vortex

street to impinge on the same canonical system but now in a freestream flow. We see that when

the vortex street is spaced near the natural frequency of the structure, then the structure responds

with large amplitude oscillations that can exceed y0/D = 3. For vortex spacings shorter and longer

than this, the response amplitude decreases. As another brief example, the model is applied to the

flat plate geometry. Here a separation model is proposed and applied to a flat stationary plate and

its Strouhal shedding frequency is found to be in a reasonable range. Additionally, an example of a

spring-mass-damper system response is given to show the application of the method.

In the final application a general method is developed to solve the potential problem for two

arbitrarily shaped bodies in rigid rotation and translation. Again, Sedov’s equations are used to

calculate the force and moment on both bodies. These forces are coupled with the body motion to
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give two complex ordinary differential equations describing the dynamics if both bodies are allowed

to act freely. We further study two geometries here as well. First, we study the case where both

bodies are circular cylinders. For prescribed motion, the new method predicts the correct force

(compared to previous studies) on the body for inline impacts. The analysis is also done where the

motion of one body is prescribed and applied in the context of hydrodynamic drafting. It is found

that for locations near the forced cylinder, but not directly behind the forced cylinder, the free

cylinder can attain a substantial additional propulsive force. Furthermore, we examine the collision

and near collision of two cylinders in a free-free simulation. It is seen that the fluid acts as a buffer,

slightly deflecting the line of contact prior to collision. In some cases, a collision is avoided whereas

in the absence of the fluid they would collide. As a final example, we briefly look at the interaction

of two flat plates in a flapping like motion. It is found that the system can sustain a lift and moment

at a given instant in time but for sinusoidal motion its net force and moment over a cycle is exactly

zero.

5.2 Future directions

There is a myriad of applications for each model presented here. For the first model, it would be

interesting to further study the flutter problem more rigorously. In particular, the linear model

presented in Appendix B can be applied and a formal linear stability analysis could be conducted

and compared to previous results of Theodoresen flutter theory. As far as the control problem is

concerned, more work can be done to model the startup and release of the control vortex when

actuation is turned on and off. In the current approach, the control vortex is instantaneously turned

on based on the experimental evidence that suggests that the formation time is much faster than the

convective time scale. A more accurate model of the starting process of the control vortex may lead

to faster response times from the system when the model is used in a closed-loop adaptive controller.

We can also offer many future excursions for the model presented in chapter 3. Due to the large

parameter space of the vortex-induced vibration cases, we have only presented a few examples of

what can be done without rigorous analysis. More work is needed in characterizing and predicting
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limiting amplitudes for both the circular cylinder and the flat-plate problem for various configurations

of pre-existing and shed vortices. It is also appealing to analyze the onset of the free or constrained

systems in the context of chaos. Furthermore, a vortex shedding model for smoothed bluff body

flows may be of very important interest. Preliminary attempts seem to suggest that it is difficult

to properly grow vortices from fixed separation points on the body. It may be necessary to apply

an ad-hoc type model such as the one presented in Sarpkaya and Schoaff (1979) to properly model

the vortex shedding off a circular cylinder for example. If a model of shedding off a smooth body

could be successfully implemented, this would allow one to study vortex-induced vibrations for the

canonical circular cylinder case and compare the results with experimental results.

There are many avenues for future research concerning the two-body potential flow problem.

First and foremost, there are numerous doubly connected problems to investigate, ranging from

Darrieus wind turbines to the flapping flight of small birds and insects. This method can be applied

to all those instances to determine fluid-structure interaction in the absence of vortices. In particular,

it would be interesting to examine and further analyze the two-wing model described in Section 4.5

for various motions of the airfoils (non-sinusoidal). This may elucidate the dynamics of flapping

flight for dragonfly-like wing structures. Additionally, there is a need to determine a method to

introduce vortices in this framework (unlike the integral representations used in Crowdy, 2010).

This would open up many research topics in vortex dynamics for doubly connected domains. For

example, one could use an unsteady vortex model like the one presented in Chapter 3 to describe

the vortex shedding from sharp tips and apply it to flapping flight of the bi-wing geometry presented

above.
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Appendix A

Simulink models of the
experimental apparatus

Given in Figures A.1, A.2, and A.3 are the three block diagrams that have been built to simulate the

experimental facilities. These models have been originally built by Ali Turker Kutay at GTRI and

have been modified by the thesis author. The complete Simulink model simulates the facilities in the

configuration where the airfoil is allowed to only pitch about its quarter chord. The aerodynamic

model of Chapter 2 has been included in the wing dynamics model as seen in Figure A.2.

Figure A.1: Simulink model for the simulation of the experimental apparatus where the NACA 4415
airfoil is allowed to pitch only.
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Figure A.2: Block diagram model for the wing aerodynamics and its structural response with the
torque motor.

Figure A.3: Block diagram model for the torque motor that attempts to hold the wing at a constant
AOA.
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Appendix B

Vortex model based adaptive flight
control using synthetic jets

This material, in part, was presented at the 2009 AIAA Guidance, Navigation, and Control Con-

ference, in Chicago, Illinois (Muse et al., 2009) with the thesis author contributing as the second

author. This appendix develops a simple linear model based on the results from chapter 2 and ties

in control integration for the GTRI test bed. This section has its own notation due to the emphasis

control design.

B.1 Introduction

The idea of using small, simple active flow control devices that directly affect the flow field over

lifting surfaces sufficiently to create control forces and moments has attracted growing interest over

the last decade. Compared to conventional control surfaces, flow control actuators have the potential

benefits of reduced structural weight, lower power consumption, higher reliability, and faster output

response. Significant work on open-loop flow control has already demonstrated control effectiveness

on both static and rigidly moving test platforms. These studies have primarily focused on mitigation

of partial or complete flow separation over stalled wing sections or flaps (Wu et al., 1998, Petz and

Wolfgang, 2006). The lift and drag benefits associated with flow attachment enable control in a

broader angle-of-attack range, however, these methods provide no direct control as they rely on

conventional control surfaces for control actuation, and provide little benefit at moderate flight
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conditions. A different approach to flow control that emphasizes fluidic modification of the apparent

aerodynamic shape of the surface by exploiting the interaction between arrays of surface-mounted

synthetic jet actuators and the local cross flow was recently developed (Smith and Glezer, 1998,

Glezer and Amitay, 2002). With this approach bi-directional pitching moments can be induced by

individually controlled miniature, hybrid surface actuators integrated with rectangular, high aspect

ratio synthetic jets that are mounted on the pressure and suction surfaces near the trailing edge

(DeSalvo and Glezer, 2004). An important attribute of this technique is that it can be effective not

only when the baseline flow is separated but also when it is fully attached, namely at low angles of

attack such as at cruise conditions.

Despite the amount of the effort devoted to active flow control technology in recent years, a

majority of the work published depends on experience and intuition rather than on a fundamental

understanding of the flow physics. This is due to the lack of an analytical formulation of the mech-

anism behind flow actuation. Even though various aspects of flow actuation have been investigated

experimentally, mostly on steady models, it is still difficult to draw conclusions and predict per-

formance on dynamic models. This presents a challenge for feedback controller design as the vast

majority of control synthesis techniques are inapplicable.

In our recent studies, we demonstrated successful closed-loop control of pitch motion of a 1-DOF

and 2-DOF wind tunnel model by using the aforementioned actuators with no moving control sur-

faces (Kutay et al., 2006, Muse et al., 2008a). First a linear controller was designed for the rigid

body model of the test model by approximating the actuators as linear static devices. This controller

worked well for slow maneuvers where the static actuator assumption holds. For faster maneuvers,

requiring higher bandwidth controller design, interactions between the flow and vehicle dynamics get

stronger and the linear rigid body model can no longer represent overall system behavior accurately.

In these regimes, linear controllers that ignore effects of flow actuation have limited performance.

A neural network (NN) based adaptive controller was introduced to improve the controller perfor-

mance by compensating for the modeling errors in the design including the unmodeled dynamics of
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actuation. It is assumed that the system dynamics can be written as

ẋ = Ax+B(u+ ∆(x, xf, u))

ẋf = f(x, xf, u) (B.1)

where x represents the rigid body states of the vehicle, xf is the state vector associated with the

dynamics of the flow, and u = udc − uad is the control signal to the actuators with udc being the

output of a linear dynamic compensator and uad the adaptive control signal. Matrices A and B

form the linear system model used to design udc and ∆ represents the modeling errors in rigid body

dynamics and the couplings between the vehicle and unmodeled flow dynamics.

For slow maneuvers where changes in the flow field due to actuation occur much faster than the

variations in the vehicle states, ∆ remains comparatively small. In this case, the vehicle behavior

approaches the linear design model and udc alone can control the system suffciently well. As the

vehicle starts moving faster, vehicle-flow interactions get stronger and ∆ becomes large enough to

disturb the vehicles’ predictable dynamics. The adaptive controllers proposed were shown on the

experiment to successfully compensate for ∆ for moderate bandwidths for a 1-DOF and a 2-DOF

airfoil (Kutay et al., 2006, Muse et al., 2008a). The adaptive controller only used x and u feedback

to compensate for ∆ that is a function of x, u, and xf . This is possible only if the xf dependence

of ∆ is observable from x and u, which was evidently the case. For more aggressive maneuvers the

observability assumption is likely to fail, or the dependence becomes much more complex. For such

cases feedback from flow states is necessary to control the vehicle, which requires some information

on f(x, xf, u) and ∆(x, xf, u).

The objective of this research is to apply the low-order approximate flow model presented in

chapter 2 to the wind tunnel setup at GTRI for simulation and control design. First, the low-order

nonlinear model is linearized to allow for standard adaptive control practices. A unique feature of

control designs using this model is that the control variable is a pseudo-control based on regulating

the control vortex strength. The control design is based on an output feedback adaptive control
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∆t βc/U
5 0.406
10 0.360
20 0.333

Table B.1: Several values of β for various averaging times.

methodology that illustrates the effectiveness of using the model for achieving flight control at

a higher bandwidth than achievable with a static actuator assumption. Since the linear model

provides some information on f , this is incorporated into the linear part of the design (A and B

matrices in (B.1)), effectively reducing the amount of modeling error that the adaptive controller

must compensate. This provides superior results compared to conventional modeling techniques.

Experimental examples on a unique dynamic wind tunnel traverse verify that tracking performance

is indeed better than control designs employing standard actuator modeling assumptions. The

reduced order model from our previous work will also be used to simulate the system with higher

accuracy. This is crucial to allow for investigation of various control architectures without spending

expensive wind tunnel time.

B.2 Control formulation

B.2.1 A simplified control design model

The vortex model by its nature captures some dynamics that are negligible on the time scales of a

flight control system. From this perspective, it is reasonable to expect that it is possible to simplify

the model further to make it appropriate for control design. When examining the lift and moment

equations, (2.21) and (2.26), it is observed that they are a function of only the states of the rigid

body (i.e. both the added mass and the quasi-steady terms) in addition to a term due to the wake.

For example, consider the lift equation. In this case, the term due to the wake is simply

LW = −ρfUc

2

N∑

j=1

Γj√
x2
j − c2

4

.
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Let us define a characteristic circulation due to the entire wake based on (B.2.1) as

ΓW = c

N∑

j=1

Γj√
x2
j − c2

4

. (B.2)

Even though the discontinuities of the flow (i.e. the startup of Γj and xj) are included here, equation

(B.2) is smooth. Hence, it is reasonable to model this term using an ordinary differential equation.

To choose a satisfactory differential equation, we examine the startup problem where a only a single

vortex is created. In this case

L = −ρfU

(
Γ0 +

ΓW
2

)
.

From classical theory, it is expected that half of the lift is attained at the moment the plate is

impulsively started from rest. Thus, at t = 0, ΓW ≈ Γ0. When t→∞, the lift term due to the wake

term should disappear as the wake vortices move further and further away. Therefore we propose

using the model

dΓW
dt

= −dΓ0

dt
− βΓW

where β is a constant. Note that this introduces an exponential decay of ΓW given a constant Γ0.

This is contrary to the classical square root like growth for the lift. The parameter β is chosen

based to agree, in a least-squares sense, with the original nonlinear low-order model for a given

non-dimensional time, ∆t. Given in table B.1 are several values of β. In what follows, βc/U = 0.406

so that the more dynamic aspects of the wake circulation are maintained. From this, a linear model

can be formed consisting of geometrical parameters and the derivatives of yb and α. The differential

equation governing the fluid dynamics reduces to a simple first order differential equation

Γ̇W + βΓW = −πc
(
ÿb +

(
a+

c

4

)
α̈+ Uα̇

)
(B.3)

with the initial condition

ΓW (t0) = −πc
(
ẏb +

(
a+

c

4

)
α̇+ Uα

)
t=t0

.
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Furthermore, the lift and moment expression simplify to read

L = −ρfπ

(
c2

4
ÿb + Ucẏb

)
+ ρfπ

(
ac2

4
α̈+ Uc

(
a+

c

2

)
α̇+ U2cα

)
− ρfU

2
ΓW − ρfUΓC (B.4)

and

M = aL+
ρfπUc

2

4
ẏb + ρfπ

(
ac2

128
α̈− Uac2

4
α̇− U2c2

4
α

)
+
ρfUc

8
ΓW − ρfUΓCxC. (B.5)

B.2.2 Linear control algorithm

For control design it is desirable to rewrite the simplified equations of motion as a matrix quadruple.

To this end, we can combine equations (B.4), (B.5), (2.38), and (2.39) to form the rigid body

differential equations as

M



ÿb

α̈


+D



ẏb

α̇


+K



yb

α


+AΓW = BΓC (B.6)

where the mass, damping, and stiffness matrices are given by

M =




m+ ρfπc
2

4 −Sx + ρfπac
2

4

−Sx + ρfπac
2

4 Iα + ρfπa
2c2

4 + ρfπc
4

128


 ,

D =




by + ρfπUc ρfπUc
(
a+ c

2

)

ρfπUc
(
a− c

4

)
bα + ρfπUa

(
a+ c

4

)


 ,

and

K =



ky ρfU

2c

0 kα − ρfπU
2c
(
c
4 − a

)


 .
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The aerodynamics coupling matrix and control matrix are given respectively as

A =




ρfU
2

ρfU
(

4a−c
8

)


 , B =




−ρfU

−ρfU (xC + a)


 .

The governing relation for aerodynamics in equation (B.3) combined with (B.6) is used to form the

required matrix quadruple

ẋ = Ax+BΓC

y = Cx+DΓC (B.7)

where the system state is x = [yb, α, ẏb, α̇, ΓW ]
T

and

A =




0 Iα 0

−M−1K −M−1D −M−1A

πc
(
1 +

(
a+ c

4

))
M−1K πc

(
1 +

(
a+ c

4

))
M−1D πc

(
1 +

(
a+ c

4

))
M−1A− β



,

B =




0

M−1B

−πc
(
1 +

(
a+ c

4

))
M−1B



, C =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




, D =




0

0

0

0




.

Note that the control term ΓC is a physical variable that is related to control voltage and the system

states. This relationship will be explored in more detail later in the Appendix. Also, not all of the

states are measurable. If all of the states are measurable, it is easy to formulate a control design

based on linear-quadratic-regulator (LQR) theory. In this paper, the nominal control design consists

of a robust servomechanism LQR control law with augmented feed forward term to improve transient
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error tracking response. Consider the linear time invariant state space model

ẋ = Fx+Gu+ Ew

y = Hx (B.8)

where x ∈ Rn, u ∈ Rm, w ∈ Rm, and y ∈ Rl. Furthermore, it is assumed that w is an immeasurable

disturbance. Next the command input vector, r ∈ Rp is defined such that r satisfies the differential

equation given by

r(p) =

p∑

j=1

ajr
(p−j). (B.9)

Assuming that p < l and defining the error signal as

e = yb − r

and given the control objective that the command error e(t) → 0 as t → ∞ in the presence of

undisturbed disturbances satisfiying equation (B.9), it is possible to design an optimal stabilizing

control law for the plant dynamics given in (B.8). The solution of this standard formulation is

derived in Wise (2007) and yields that nominal control signal of the form

u = −Ke

∫ t

0

e(τ) dτ −Kxx. (B.10)

Letting r satisfy ṙ = 0, the LQR based technique yields an integral action on the tracing error that

allows for robust tracking of commands with zero steady state error. Augmenting the control law

in (B.10) with a feed-forward term, Z, and allowing for an additional augmenting control input for

adaptive control design, ∆u, the final nominal control law is given by

u = −Ke

∫ t

0

e(τ) dτ −Kxx+ Zr + ∆u. (B.11)

Graphically this can be represented as the simulation diagram shown in figure B.1.
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a feedforward term, Z, and allowing for an additional augmenting control input, ∆u, for adaptive control
design the final nominal control law is given by:

u = −Ke

∫ t

0

e(τ)dτ − Kxx + Zr + ∆u (42)

Graphically this can be represented as the simulation diagram shown in figure 5. The effect of the feedforward
term is to help speed up the transient response of the control law. From a frequency domain standpoint,
the eigenvalues of the closed loop system remain fixed under a constant gain Z. In a SISO system, this is
equivalent to adding an adjustable zero that allows the designer to cancel a slow pole in closed loop transfer

function Y (s)
R(s) .

Figure 5. Robust Servo LQR with feedforward element and added control signal

Since the system is not full state feedback, we use the static projective control technique17 , to formulate
an output feedback law without feedback of the flow state. Augmenting the model dynamics with the control
law dynamics, the closed loop system is given by

[
e

ẋ

]
=

[
0 Ct

−B̄Ke Ā − B̄KX

][ ∫
e

x

]
+

[
−1

B̄Z

]
r

yt =
[

0 Ct

] [ e

x

]

where Ct is a matrix that multiplied by x that gives the plunge position, z. Since, we are not using the flow
state in feedback we can retain all but two of the closed loop eigenvalues. Let K = [Ke Kx] and Xy be
the eigenvectors corresponding to the closed loop eigenvalues we wish to retain. Then the required output
feedback gain is computed as

K̄ = KXy

(
C̄measXy

)−1

where C̄meas corresponds to measured states of x such that ymeas = C̄measx = [
∫

e y θ ẏ θ̇]T . The
projective control effort is then defined by

ΓC = −K̄

[ ∫
e

ymeasured

]
+ Zr

Though this technique does not guarantee closed loop stability, in practice, closed loop stability is easily
satisfied.

V.A. Augmenting Output Feedback Adaptive Control

The assumed linear dynamics of the model (35) ignores nonlinearities and unmodeled dynamics associated
with the flow actuation process. We assume that the true dynamics of the system can be represented as:

ẋ = Āx + B̄Λ (Γc + f (x,Γc))

y = Cx
(43)
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Figure B.1: Robust servo LQR with feed-forward element and added control signal.

The effect of the feed-forward term is to help speed up the transient response of the control law.

From a frequency domain standpoint, the eigenvalues of the closed loop system remain fixed under

a constant gain Z. In a single-input/single-output system, this is equivalent to adding an adjustable

zero that allows the designer to cancel a slow pole in closed loop transfer function Y (s)/R(s).

Since the system is not full state feedback, we use the static projective control technique of Wise

(2007) to formulate an output feedback law without feedback of the flow state. Augmenting the

model dynamics with the control law dynamics, the closed loop system is given by



e

ẋ


 =




0 Ct

−BKe A−BKx







∫
e

x


+



−1

BZ


 r

yt =

[
0 Ct

]


e

x




where Ct is a matrix that multiplied by x that gives the plunge position, z . Since we are not using

the flow state in feedback we can retain all but two of the closed loop eigenvalues. Let K = [Ke,Kx]

and Xy be the eigenvectors corresponding to the closed loop eigenvalues we wish to retain. Then

the required output feedback gain is computed as

K = KXy

(
CmeasXy

)−1

where Cmeas corresponds to measured states of x such that ymeas = Cmeasx =
[∫
e, y, α, ẏ, α

]T
.
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The projective control effort is then defined by

ΓC = −K




∫
e

ymeas


+ Zr.

Though the technique does not guarantee closed-loop stability, in practice, closed-loop stability is

easily satisfied.

B.2.3 Augmenting output feedback adaptive control

The assumed linear dynamics of the model (B.7) ignores nonlinearities and unmodeled dynamics

associated with the flow actuation process. It is assumed that the true dynamics of the system can

be represented as

ẋ = Ax+BΛ(ΓC + f(x,ΓC))

y = Cx (B.12)

where C is a matrix capturing the system output, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n are

known matrices. Λ ∈ Rm×m is unknown but is constant and positive definite, x ∈ Rn is the system

state, u ∈ Rm is the control input, y ∈ Rm is the system output, and f : Rn × Rm is a Lipschitz

continuous function that is unknown. The nominal vortex control law has the form

ΓC,n = −Kyy +Krr

where Ky ∈ Rm×m and Kr ∈ Rm×r are chosen such that the following reference system achieves

the desired tracking characteristics

ẋm = Amxm +Bmr

ym = Cxm (B.13)
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where Am = A − BKr is Hurwitz and Bm = BKr. For the purposes of adaptive design, assume

that Am satisfies the following Lyapunov equation

ATmP + PAm = −Q, Q = QT > 0, Q ∈ Rn×n.

To introduce an adaptive signal to compensate for f(x,ΓC), the control effort is redefined as

ΓC = ΓC,n − ΓC,ad.

By inserting the control law given in (B.11) into the open loop dynamics (B.12) the closed-loop

dynamics can be written as



ė

ẋ


 =




0 C

−BKI A−BKX






e

x


+



−1

BZ


 r +




0

B


 (−uad + ∆(x, xa,ΓC)),

ẋa = g(x, xa,ΓC),

y =

[
0 C

]


e

x


 .

One can rewrite the closed loop system in a more compact form as

ẋ = Amx+Bmr +B [δAΓC + Λf(x,ΓC)− ΓC,ad] .

We wish to approximate Λf(x,ΓC) by a neural network. To construct such an approximation in

an output feedback setting, we reconstruct the system states via delayed values of system outputs

and inputs (Calise et al., 2002, Yang, 2004, Yang et al., 2004, 2003, Volyanskyy et al., 2008). If the

number of delayed values for each output is s, the number of delayed values for each input is t, and
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the length of the time delay time is d, the delayed value vector, η(t), is given by

η(t) =
[
[y1(t), y1(t− d), . . . , y1(t− sd), . . . , ym(t), ym(t− d), . . . , ym(t− sd)]

T
;

[ΓC,1(t− d), . . . ,ΓC,1(t− sd), . . . ,ΓC,m(t− d), . . . ,ΓC,m(t− sd)]
T
]

(B.14)

where η(t) ∈ Rw and w = (s + t)m. Note that the current control output is not included in η(t).

This is to prevent implementation issues associated with realizing the control. Using η(t), we assume

that the function f(x,ΓC) can be approximated over a compact set Dx×DΓC
to an arbitrary degree

of accuracy such that

Λf(x,ΓC) = WTσ(V T η(t)) + ε(x,ΓC)

where ||ε(x,ΓC)|| < ε∗ <∞, σ(q) = [1, σ1(q1), . . . , σl(ql)], l being the number of your hidden layer

neurons, σj(z) = 1/(1 + exp(−z)) and W ∈ R(l+1)×m and V ∈ Rw×l are unknown but constant

neural network ideal weights. The closed-loop system can then be equivalently expressed as

ẋ = Amx+Bmr +B
[
δΛΓC +WTσV T η − ΓC,ad

]
+Bε.

To develop the complete output feedback algorithm an error observer must be introduced. Con-

sider the following error observer

ξ̇ = Amξ + L(y − yξ − ym)

yξ = Cξ

such that Ã = Am − LC is Hurwitz and satisfies the following Lyapunov equation

A
T
P̃ + P̃ Ã = −Q̃, Q̃ = Q̃T > 0, Q̃ ∈ Rn×n.
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The adaptive signal is given as

uad =
[
Im + δΛ̂

]−1 [
δΛ̂un + ŴTσ

(
V̂ T η(t)

)]
. (B.15)

The adaptive update laws are defined as

˙̂
W (t) = −ΓWproj

[
Ŵ (t), σ̃

(
V̂ (t), η(t)

)
ξ(t)TPB

]

˙̂
V (t) = −ΓV proj

[
V̂ (t), η(t)ξTPBH

(
(Ŵ (t), V̂ (t), η(t)

)]
(B.16)

δΛ̂T (t) = −Γδproj
[
δΛ(t), u(t)ξTPB

]

where

σ̃
(
V̂ (t), η(t)

)
= σ

(
V̂ (t), η(t)

)
− σ′

(
V̂ (t), η(t)

)
V̂ T (t)η(t)

H
(
Ŵ (t), V̂ (t), η(t)

)
= ŴT (t)σ′

(
V̂ (t), η(t)

)
(B.17)

and

σ′
(
V̂ (t), η(t)

)
=




0 · · · 0

dσ1

dq · · · 0

...
. . .

...

0 · · · dσl
dq




where qj is the jth row of q. It is easy to show with a standard Lyapunov candidate that the adaptive

weights are bounded and that the system tracking error is uniformly ultimately bounded.

The modeling error f(x,ΓC) is a function of unmodeled flow dynamics as well. In the absence of

an analytical model for flow actuation dynamics and devices to measure the related states, we can

only use measurable states in the adaptive controller. In the relatively low bandwidth maneuvers

performed in our experiments, the effects of flow dynamics on rigid body dynamics are expected to

be small. In addition, we also assume that such effects are observable from rigid body states. With

these assumptions, the adaptive signal defined in (B.15) can be used to approximate f(x,ΓC).
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where Bh is the modeled control effectiveness matrix. The hedge signal is computed as

ΓC,h = g(uf , θ) − ΓC

where g(uf , θ) models the saturation limits of the actuator and ΓC is the ideal control action. This is
illustrated graphically in figure V.B and the actuator model, g(uf , θ) is shown in figure V.B.
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Figure 6. Control Hedging diagram.

!15 !10 !5 0 5 10 15 20
!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

!
C

" (deg)

 

 

Maximum !
C

Minimum !
C

Figure 7. Gain scheduled saturation block.

VI. Model and Control Design Validation

Experimental verification of the model was performed under open loop excitation.9 Numerical simula-
tions were also used to validate the models in situations not realizable by the experiments. The numerical
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Figure B.2: Control hedging diagram.

B.2.4 Control hedging

In order to prevent adaptation effects due to control saturation, control hedging has been applied to

modify the reference model (B.13). The difference between the commanded control and the control

applied to the plant is defined as the hedge signal. The hedge signal is then subtracted from the

input to the plant model of the reference model as shown in figure B.2. This modification effectively

moves the reference model backwards by an estimate of the amount the controlled system did not

move due to saturation and produces a reachable command within the capabilities of actuation.

With this modification during periods of full saturation tracking error remains small, preventing

winding up of the NN weights.

Applying control hedging to the adaptive vortex control algorithm here requires the hedging

algorithm to be gain scheduled. The reference model is modified as

ẋm = Amxm +Bmr +BhΓC,h

where Bh is the modeled control effectiveness matrix. The hedge signal is computed as

ΓC,h = g(uf, α)− ΓC

where g(uf, α) models the saturation limits of the actuator and ΓC is the ideal control action. This

process is illustrated graphically in figure B.2.
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B.3 Model and control design validation

Experimental results and numerical simulations are used for verification of the model under open loop

excitation as discussed in 2.3 and 2.5.4. In this section, the model developed in our previous research

is used to validate control design efforts under high bandwidth, free flight conditions. Additionally,

wind tunnel experiments conducted on a novel traverse capable of simulating free flight are used to

further validate the control algorithms.

B.3.1 Regulating control vortex strength

The relationship between ΓC and the input control voltage is assumed to be of the form ΓC =

ΓC(u, α). This results in a system model of the form

ẋ = Ax+BΓC(u, α).

For control, if ΓC is invertible in terms of u, then the system can be inverted as well. This is the case

for the simple structure of ΓC(u, α) presented in figure 2.16. It can be seen that both the control

voltage can saturate and the magnitude of ΓC can saturate. When the input voltage increases

above a point, ΓC no longer increases in magnitude (it indicates control reversal). If the control is

restricted, the curve for fixed α is monotonic on a compact set which implies invertibility over the

restricted domain. It is also seen that depending on α, the maximum and minimum ΓC shrinks in

magnitude. Therefore, there is an angle of attack saturation dependence. This information is used

to develop the following feedback linearization strategy:

• Use control law formulation to compute required ΓC.

• Use interpolation over α to determine [max{ΓC},min{ΓC}] If ΓC is achievable, compute the

corresponding control voltage. If not, apply the best control voltage possible and appropriate

control hedge signal.
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Figure 13. Diagram illustrating how the spring system interfaces to the wind tunnel model

22 of 24

American Institute of Aeronautics and Astronautics

Figure B.3: ΓC with control voltage saturation limits.

This strategy can be realized in a lookup table and precomputed. This precomputed lookup table is

shown in figure B.3 where the inverse map is saturated. Note that since ΓC is a continuous signal,

the corresponding control voltage will also be continuous.

B.3.2 Experimental results

The control strategy for the experiments is as follows. First, the traverse is operated in position

control mode where a tracking control design is used to drive the model to a desired position

and attitude. Then position control is transferred to the flow actuator loop while the traverse is

switched to the force control mode. In this mode, the traverse maintains the forcing derived from

the required system dynamic properties while the outer loop controller, based on the control laws

described previously, forces the modified dynamics of the wing model to track the given reference

trajectory. A variable force is applied to the model via the force control law to remove only the

effect of gravity and friction. The outer loop control design assumes that ideal force tracking is

achieved in the plunge axis and makes no account for the presence of the traverse. This assumption

has proved suffcient in Muse et al. (2008b). It is also assumed that rigid body state information

is available consisting of vertical position, pitch attitude, and their derivatives. State estimation

is achieved using a Kalman filter to blend sensed angular position and angular acceleration in the

pitch axis, and by differentiation, of sensed vertical positions in plunge. The flow state is unknown
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in all designs.

Simulating free flight

Force control is a technique commonly used in robotics to control the position of a manipulator and

its applied force. Here we control the forces and moments that are applied to a wind tunnel model

in order to simulate the complete longitudinal dynamics of an arbitrary aircraft configuration. The

techniques used in this application are different than those used in robotics because the force must

be applied on a system while in motion and the control system must restrict the model to stay in the

longitudinal plane regardless of the commanded and applied disturbance forces on the plunge axis.

The control objective is achieved by manipulating the forces applied by two servo driven ball screws

and the moment applied by a servo motor in the pitch axis. Applying a prescribed force to the

model is difficult due to the large mass and high friction of the linear drives in relation to the model.

The limitations in force control arise from the lack of compliance between the model and the linear

actuator. Having a stiff coupling between the actuator and the point of force application can cause

a chattering effect. This is due to a large stiffness at the force measurement point. Furthermore, a

stiff coupling results in poor force tracking. This is due to the actuators not being able to respond

quickly enough to maintain an acceptable level in force tracking error. To overcome these limitations,

linearly compliant springs are mounted between the model and each ball screw carriage as shown in

figure B.4. The contact force between the actuator and the model can then be precisely regulated

through control of the spring deflections.

In order to study aircraft flight in a wind tunnel on a traverse heavy enough to carry all of the

support and measurement equipment, the control system must serve three fundamental purposes:

removing the effect of the high traverse mass, modifying the stability characteristics of the model,

and restricting the motion of the traverse to the longitudinal plane. To meet these requirements, a

three-loop control architecture is used. This consists of the carriage control loop, the force control

loop, and the stability modification loop. A distinguishing feature of the latter loop is the ability

to actively compensate for the effect of the center of gravity offset from the model pivot. A full
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Figure 13. Diagram illustrating how the spring system interfaces to the wind tunnel model
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Figure B.4: Diagram illustrating how the spring system interfaces to the wind tunnel model.

description of the force tracking control law used here is described in Muse et al. (2008b).

Results

In this section we present typical results from application of the control designs described previously.

All linear control designs are tuned to have a theoretical response that is similar in behavior. We

fixed the overshoot and required the response to have the same shape. To evaluate improvements in

performance, we slowly decreased the response rise time until each model failed. Each model is tuned

based solely on the linear design model. No further tuning is performed. Figure B.5 illustrates the

behavior of the static model using a torque motor to simulate the assumed response of the actuators.

The torque motor output is scaled to have the same control effectiveness as the measured actuator

gain. The same control gains and are used to control the model. As seen in the figure the response

closely matches the expected ideal response. Hence, the traverse is functioning as expected. Figure

B.6 compares the response of the vortex model based linear control design to a control design using

the static model for a rise time of 0.39 seconds (rise time is defined as 10 percent to 90 percent

os the final command). The gains for the static model based control law are the same ones used

for the torque motor in figure B.5. The linear control law in this case exhibits a limit cycle type

behavior that does not decay. However, the vortex model response remains quite close to the ideal

response. In figure B.7, the bandwidth of the nominal vortex control law is increased further, in

this case the system rise time is 0.19 sec. The vortex model seems to be stable but suddenly loses
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Figure 14. Verification that static model models response with torque motor accurately (Black - Command, Blue -
Experimental Response).
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Figure B.5: Verification that the static model models response with torque motor accurately. Top:
, command signal; , experimental response.

stability. However, the adaptive control law is able to maintain stable ideal tracking. Figure B.8

gives a visual comparison between the responses of the each design at the limit of each models’

closed loop performance.

B.4 Conclusion

A novel low-order model is developed to facilitate flight control design using synthetic jets. To

the authors’ knowledge, this is the first model developed for control design that is based solely on

first principles based modeling. Though the model used for a linear control design helps achieve

higher control bandwidths than achievable with conventional modeling assumptions, as the control

bandwidth increases, the nonlinearities in the flow become large requiring adaptive control methods

to maintain tracking performance and stability. The adaptive architecture uses a single hidden layer

neural network with delayed system output and control values to observe and compensate for the

unmodeled system dynamics and nonlinearities. Control designs are verified on a novel wind tunnel
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Figure B.6: Comparison between the vortex model and static model when the static model assump-
tion fails. , command signal; , static model; , vortex model.
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Figure B.7: Comparison between vortex model and adaptive control law when the vortex model
fails. , vortex model; , adaptive control.
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Figure B.8: Comparison of the rise time stability barriers.

traverse capable of simulating free flight in a wind tunnel.
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Appendix C

Example translation and rotation
potentials

Here we find forms of the potential Wt, Wr satisfying Equations (3.3) and (3.5). Consider conformal

transformations of the form

z = z0 + eiθg(ζ). (C.1)

For any general g(ζ) such that g(ζ) ∼ ζ as we approach ζ = ∞, we must enforce the boundary

condition on the surface as well as satisfy the condition at infinity that the potential is at most a

constant. Thus we have the boundary condition

Im [Wt] = Im
[
ż0 (z − z0)

]

= Im
[
ż0 eiθg(ζ)

]
(C.2)

where a constant has been added to Equations (3.2). Let us denote the term in (C.2) as U = −ż0 eiθ.

Here we have a Schwarz problem and can use Cauchy’s integral formula and perform a complex

integration to determine a general form for the potential. As an alternative, we note that the

function inside the square brackets, −Ug(ζ), is well behaved and a good candidate for the function

except that the potential does not decay at infinity as the boundary conditions require. Thus we
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use the following trick: by adding a linear term Uζ to −Ug(ζ) we have

Im [Wt] = Im

[
−U (g(ζ)− ζ) +

a2

ζ
U

]

where we have used the geometric relation Im [−Uζ] = Im
[
Ua2/ζ

]
. We can now simply equate

Wt = U (ζ − g(ζ)) +
a2

ζ
U

since it satisfies both the boundary condition on the body’s surface as well as the condition at

infinity. This is true for any transformation g(ζ) as long as g(ζ) = ζ +O (1).

Rotational potential is more difficult to deal with and no single formula can be derived for a

general form of g(ζ) that satsifies the aforementioned conditions. We point out two examples in

literature where the rotational potential has been determined for a class of g(ζ). One special case

of interest are the Joukowski airfoil forms (including the flat plate transformation), i.e.

g(ζ) = ζ + ζc +
b2

ζ + ζc
.

Streitlien (1994) used the well-known circle theorem to derive the rotational potential (Milne-

Thomson, 1968). The potential for this form is given by

Wr = −iΩ

(
ζca

2

ζ
+
b2a2 − ζcζ
ζ(ζ + ζc)

+
b4ζc

(a2 + |ζc|2)(ζ + ζc)

)

where a = |b − ζc| and the complex parameter ζc and real parameter b control the camber and

thickness of the airfoil. For the special case of a flat plate, b = a and ζc = 0 thus the rotational

potential reduces to

Wr = − iΩa
4

ζ2
.
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Furthermore, as another example, Michelin (2009) takes a look at

g(ζ) =

M∑

j=−1

Gj
ζj

where G−1 = 1. The rotational potential for this case has the form

Wr = iΩ

M+1∑

l=0

Rl
ζl
, where Rl =

M−l∑

k=−1

GkGk+l

a2k
.
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Appendix D

Details on integrating the two
body FSI problem

Care must be taken when numerically integrating the coupled FSI problems presented in (4.20) and

(4.21). For example, in (4.20) we cast the equations in the following form

dPk
dt

= Gk, (D.1a)

dzk
dt

= Uk (D.1b)

where

Pk = (%b − %f )AkUk − i%f
∮

|ζ|=ρk
z(ζ)

dw

dζ
dζ, (D.2a)

Gk =
i%f
2

∮

|ζ|=ρk

(
dw

dζ

)2(
dz

dζ

)−1

dζ. (D.2b)

The integrals represented in (D.2) are implicitly functions of the physical variables z1(t), z2(t), U1(t),

and U2(t). One can integrate (D.1) with any adequate time-integrator but it must be ensured that

the term (D.2a) is satisfied. To do so, one must solve (D.2a) for a suitable Uk, e.g. via Newton

iterations, for the use in (D.2b) and subsequently in (D.1).
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