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ABSTRACT

Minimum time loop maneuvers of high performance jet
aircraft have been investigated by means of the calculus of varia-
tions. A number of simplifying assumptions have been made in the
atmospheric conditions, aerodynamic parameters, and the number of
controls and their upper and lower bounds, in order to obtain
general features and basic characteristics of the problem. The
optimal control (lift coefficient and thrust) has been determined as
a function of the state variables and Lagrange multipliers. It is
found that subarcs with variable thrust, or with variable lift coef-
ficient and minimum thrust do not occur on time optimal paths.
Possible transitions among the five optimal subarcs have been
established by applying the corner conditions of variational calculus.
These relationships are applicable to any minimum time maneuver
in the vertical plane. The effects of the magnitudes of maximum
lift coefficient and maximum thrust on the control program, man-
euver time, final speed, and final horizontal distance for minimum
time loop maneuvers are explored through numerical computation.
It is found that the control history in lift and thrust and the mini-
mum time required for a loop maneuver depend strongly on the
magnitudes of maximum lift coefficient and maximum thrust.

A limited numerical exploration using more realistic aero-
~ dynamic and atmospheric parameters and a state-dependent maxi-
mum thrust yielded results in qualitative agreement with the more

extensive analysis based on simplified parameters. Normal
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acceleration constraints are analyzed by considering the maximum
lift coefficient to be a function of altitude and speed. New design

criteria for the inlet, duct and engine are suggested by considera-

tion of the problem of engine surge.
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I. INTRODUCTION

In recent years, optimal control theory has been applied to
various performance optimization problems associated with high
speed aircraft. Minimum time and minimum fuel climbs have been
investigated by Miele and Capellari (1), Cicala and Miele (2),
Landgraff (3), Bryson, Desai, and Hoffman (4), and others. Bryson,
Desai, and Hoffman (4) and Miele (5) have analyzed the problems of
range maximization and endurance maximization with a given quan-
tity’ of fuel. Constant altitude and three-dimensional minimum
time and minimum fuel turns have been treated by Bryson and
Lele (6), Hedrick and Bryson (7,8,9), Hoffman, Zvara, and Bryson
(10), and others. Parsons, et al., analyzed constant altitude and
three-dimensional minimum time turns to a point and onto a line
in Ref. 11, 12 and 13.

In this thesis, loop maneuvers are considered. A loop
maneuver is an aerial maneuver in which the aircraft describes an
approximately circ1;1ar path in the vertical plane. Normally, the
upper surface of the aircraft remains on the inside of the circle
and the lateral axis of the aircraft remains horizontal. The flight
path, which begins at angle of climb of 0° and ends at 360°, is
obtained mainly by lift and thrust control. This maneuver is to be
performed within the speed-load factor envelope, subject to upper
and lower bounds on the lift coefficient, thrust and zero-lift drag
coefficient. Spintzyk (14) discussed this maneuver as a part of
the target chasing maneuver. Vincent, et al., (15) investigated

only the climbing part of such a maneuver.



The minimum time and radius of turn associated with a
loop maneuver are useful indices in evaluating the maneuverability
of a high performance aircraft in the vertical plane. This man-
euver includes a steep climb and descent with a large normal
acceleration, as well as flight at a high angle of attack. It is
therefore useful in training pilots. This maneuver is performed
in aerial combat as a target chasing or evasive maneuver.

In a loop maneuver, pilots are interested in the control
prégram, the loss of speed and altitude, the fuel consumption, and
the number of changes in control required for the completion of a
minimum time maneuver. Designers are interested in the effects
of the thrust to weight ratio, the wing loading, the maximum lift
. coefficient, etc., on the overall optimal loop maneuver.

In this thesis, the minimum time loop maneuver of high
performance aircraft will be investigated from the viewpoints of
both the pilot and the designer. In Part II, the basic optimization
problem is formulated, after a number of simplifying assumptions
have been made. The optimal control is determined as a function
of the state variables and Lagrange multipliers, using the minimum
principle. The possibility of.singular arcs is ruled out by the
generalized Legendre-Clebsch condition. By applying the corner
.conditions of variational calculus, it is determined under what
circumstances the control can switch from one mode to another.
The results obtained in this part are applicable not only to mini-
mum time loop maneuvers, but, in fact, to any minimum time

maneuver in the vertical plane.
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In Part III, numerical methods for determining optimal tra-
jectories, subject to a variety of terminal conditions, are discussed.
In Part IV, the effects of the upper limits on the lift coefficient and
thrust are analyzed. The control history and the minimum time
required for a loop maneuver are found to depend strongly on the
upper bounds placed upon the control variables. Concluding re-

marks are made in Part V.
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II. ANALYTICAL FORMULATION
2.1 Equations of Motion and Simplifying Assumptions
The forces acting on an aircraft moving in the vertical
plane are shown in Fig. 1. If the aircraft is modelled as a point

mass, the equations of motion are (16)

\g\'f = Tcosa - D - WsinY
Vé’V'Y = Tsina + L. - WcosY
%X = VcosY
y = V sinY

The transient forces due to changes in lift control have been ne-
glected since the duration of such forces is very short compared
with the length of the maneuver (see Appendix A). It has been
assumed that the thrust direction coincides with the aircraft longi-
tudinal reference axis.

-There are several approximations which may be used to
analyze motion in the vertical plane (4). The quasi-steady approxi-
mation (as’ defined in Ref. 4), in which accelerations are neglected
completely, is adequate for treating the climb performance of sub-
sonic aircraft. However, this approximation is inadequate for a
loop maneuver, which requires changes in flight path angle of 360°.
The energy-state approximation, in which energy is the only state
variable, is quite useful for analyzing the minimum time and max-
imum range performance of high speed aircraft, provided that the
acceleration normal to the flight path can be neglected, and

provided that the flight is nearly horizontal. In a loop maneuver



neither of these assumptions is justified. A more accurate approx-
imation involves considering the velocity and altitude as state
variables and the flight path angle as a control variable. This
approach is also not suitable for analysis of a loop maneuver,
since acceleration normal to the flight path is again neglected.
Since accelerations parallel to and normal to the flight path are
much more important in a loop maneuver than in a climb, the
selection of velocity, flight path angle and altitude as state variables,
and 1lift coefficient, thrust and zero-lift drag coefficient as control
variables is appropriate for analysis of a loop maneuver.
Constraints on the state variables and control variables

which may have to be considered are the following:

0 < MSMIPX

< <
MIN T ™ T MaAX

< <
CL CL CL

MIN MAX

T =T=T

MIN MAX

C < C = C
DOMIN Do DO

MAX
Control variables are 1lift, thfust and drag.

The objective is to obtain the minimum time control history
for a loop maneuver subject to the constraints described above.
This problem is expressible as a Mayer problem of variational

calculus (17,18,19). The Mayer problem involves minimizing a

function of the initial and terminal states and times,



1 =0G(, z)]f

subject to various path and endpoint constraints. In this case
G =1t.

To reduce the complexity of the problem and to determine
the general features of its solution, the following simplifying
assumptions have been made:

1) The atmosphere is isothermal.

2) The angle of attack is small, so that cosd =~ 1 and

sin@t ~ o .
3) The thrust component in the lift direction is much smaller
than the lift, i.e., To << L, .

4) The weight of the aircraft is constant.

5) The atmospheric pressure is constant.

6) CDO is constant. No drag control is considered.

7) The normal acceleration and Mach number are uncon-

strained.

8) C , C

L T are all constant,

» T ,
MAX Iy, MAX? TMIN

The equations of motion may be transformed into dimensionless

form by introducing the dimensionless variables:

T = ga_t y Tw = —3—; (new control variable)
“p .S
- 0 - BX - EY
Sw = W € = n

2’ T2
a a

The state equations, control constraints, and peformance index may

be expressed as follows:



2 2 .

M' = Tw - Sw M (CDo + KCL } - sinY (1-1)

Y' = & (Sw M® C. - cosY) (1-2)
= M L

€' = McosY (1-3)

n' = MsinY (1-4)

(C. -C. )(C. -C ) S 0 (1-5)
L Lyax 0 by

(Tw - TWMAX)(TW - TWMIN) <0 (1-6)

I = [T]f (1-7)

"Eq. (1-1) explicitly assumes the drag coefficient Cp to be a

parabolic function of C ie., K =(1/2C;)(6CL/8C, ) is

L 2
assumed to be a constant (possibly varying with Mach number).
In the following analysis, it is assumed that K 1is chosen to

make a good empirical approximation and the resulting small

variation of K with CL is neglected.

2.2 Analysis by the Calculus of Variations
The variational Hamiltonian of the system may be construc-

ted by introducing Lagrange multipliers:

~ 2 . 2 .
H =)\ [(Tw - SwM (Cpy + KC. %) - sinY)]
o 2
+—~—M (SwM CL - cosY) + )\3McosY + X4MsinY

The Euler-lLagrange equations, which are expressible in
general form as

ant = -8

become
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A

_ 2 2
M: Xl' = XIZSWMCD - MZ (SwM CL + cosY) - )\3cosY

-)\4 sinY _ (2-1)

)‘2

Y: )\2' = )\lcosY - M sinY + X3MsinY - X4McosY (2-2)
g: )\3' = 0 = )\3 = constant (2-3)
n: X4' =0 = )\4 = constant (2-4)

H 1is not an explicit function of T ; consequently a first
integral of motion exists - the Hamiltonian is constant. The

transversality condition

(g;lr—+ H>T=‘T =0
f
vields
2 . )\Z 2
H = )\1 (Tw - SwM CD - sinY) +_I\_/I (SwM CL - cosY)
+ X3McosY + X4MsinY = -1 (2-5)

In this problem it is expected from the inequality constraints
on the control variables that there are several subarcs correspond-
ing to qualitatively different types of control behavior, which may
be joined together to construct an optimal flight path. Since there
are no interior point constraints, the following corner conditions

must be satisfied at the junction of two subarcs



i.e., the first integral and each of the Lagrange multipliers is
continuous at each corner.
2.3 Characteristics of Subarcs

Optimal controls will be determined by using the minimum
principle*. The control variables CL and Tw are not coupled
in H . Hence, H may be optimized with respect to each control
variable independently. Since H 1is linear in Tw , H is

minimized with respect to Tw when

i <
TWMAX if )\1 0,
< ; _
Tw = TWINT (TWMIN Tw < TWMAX) if >\1 = 0 {for
finite time interval),
i >
TWMIN if )\1 0.
An arc with Tw = TWINT is a singular arc, since
9H/9Tw = A, = 0 and SZH/STW2 = 0 on this arc. Additional

1
tests are needed to determine whether such an arc can be optimal.

Since )\1 = 0 on this arc, it follows that
d (8H \ _ 4y . .
F (3Tw) =M1' = 0

Egs. (2-1) and (2-5) imply that

p:i(l_iﬁaf_?ii):o
1 M M

*The minimum principle states that the optimal control at each
point along a trajectory is that value which globally minimizes H
over the set of all admissible controls, with the state, Lagrange
multipliers and time regarded as constant (20).



10
or

ZkzcosY =M. (3-1)

Furthermore,

2 4\ _cosY - M
g___z_ <_82T_H_> = )\1" = ( 2 3 ) Tw + other terms not
4Tt w M
| involving Tw . (3-2)

The generalized Legendre-Clebsch condition (20) requires that

5 [ d° Y] < o
3Tw L. 2 <8Tw '

T

"i.e., 1/M* 5 0 from Egs. (3-1) and (3-2). Since M must be
real, the generalized Legendre-Clebsch condition is not satisfied.

Hence, intermediate thrust arcs are not optimal.

H is stationary with respect to CL when
QH . SwM (=20 ,KC. M + \,) = 0 (3-3)
oC . | S 2 ’

From Eq. (3-3), it may be observed that H is stationary if

1 2
c. = " 3-4)
L = 2KMh, ° (3-

or C; = XZ =0 .
2.3.1 )\1 = )\2 =0

If )»1 = 0 for a finite period of time, a singular arc with
intermediate thrust exists. This has been shown above to be non-
optimal. Hence, >\1 and )\2 can both vanish only at isolated

points.
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2
3.2 Cp = ZRMY
Since H 1is quadratic in CL , the above choice of CL

minimizes H if )\1< 0 and maximizes H if )\1 > 0 (see

Fig. 2). This value of CL may be within the allowable range of

CL , or outside of it. It is now easy to deduce the optimal value

of CL subject to Eq. (1-5), according to the location of this

stationary point and the sign of Xl

. . < _ .
For the case in which Kl 0 (Tw = TWI[ X)’ the choice
of CL which minimizes H is the following:
XZ
o = C = C, =C ,
2KMA ) Thyax L Duax
)\2 XZ
C < RN < C = C. =C = SRV
LMIN 2K 1 LMAX L I"INT 2K 1
)\2
55— = C = C, =C
ZKMX1 LMIN L LMIN
. . > - .
For the case in which )\1 0 (Tw TWMIN)’ choosing
)\2
CL = ml— maximizes H . In this case, a plot of H versus
CL is concave downward as seen in Fig. 2. Thus H cannot
have an unconstrained minimum with respect to CL . The opti-
mal choice of CL must be either CL or CL , hever
MAX MIN

an intermediate value. It is easy to show that the optimal choice

of CL is as follows:

L L
< MAX , MIN A ¢, =c, = ¢,
>‘2 AVG MAX
ZKNKI
> C = C. = C
Lava L Lyvin
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2 _ . -
If RN T CL , H has a double minimum with respect to
1 AVG
CL . CL and CL produce the same value of H .
MAX MIN

Although this nonlifting arc, which produces minimum drag
and hence maximum excess power, is a special case of the inter-
mediate lift arcs considered above, it will be investigated here,
because of its special physical significance. The fact that the

lift is intermediate implies that )\1 < 0 (Tw = Tw by the

MAX)
analysis in Sections 2.3.1 and 2.3.2. On this arc )\2' = 0 and

cosY

' = -
Y= M

(3-5)
From Eqgs. {2-2) and {3-5), we have
- : -
)\IY = )\3s1nY )\4cosY

Differentiation of the above equation with respect to T gives

1t
Xl' + _Y?.T)\l = ()\3cosY + X4sinY).

This equation, together with Eqs. (2-1) and (2-5) yields the

following equations,

. Yf' N 2 .
MA, "t M)\l 7 = )\1 2SWwM™Ch,y - Wl (3-6)
MA,! At '
1Pt MA Sy s - - A M (3-7)

Consistency of Egs. (3-6) and (3-7), in conjunction with Egs.
(1-1), requires that

-2
My - — (3-8)
Twyax T 5WM Cpg
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where use has been made of the expression

YT - . M' siny (3-9)

from Eq. (3-5). Substitution of Eq. (3-9) into Eq. (3-7) gives
M A" = - 1 - Ajsiny . (3-10)

Egs. (3-8) and (3-10) should be both satisfied on this arc.
Differentiation of Eq. (3-8) and substitution into Eq. (3-10)

yields the following functional relationship between M and Y:

2 .
][’XDO - 3DO - 6D051nY - 2Tw

2
where DO = SwM CDO .

siny = O,
(3-11)

2+6Tw

Twy iax MAX

Since M and Y evolve in time according to Egs. (l1-1) and
l(1-2), Eq. (3-11) will generally be satisfied only at isolated points.
Hence, an arc with CL = 0 and )\2 = 0 cannot exist.

Thus, there are five control modes (combinations of Tw
and CL) which may be used to construct an optimal path. The
optimal mode at time T depends on M(T), )\l(T) and )\Z(T).

The results of this analysis of subarcs are summarized in Table 1.

2.4 Intermediate Lift Program

For numerical solution of this variational problem, it is
useful to obtain a differential equation which is satisfied by CL
on intermediate lift arcs. This can be done by differentiating

both sides of the expression

A, = 2KC; M) (4-1)

2 1

with respect to T . We obtain
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| I 1 1
)\2 = )\1 ZKCLM + XZZK (CLM + CLM‘).

Substituting Egs. (1-1), (2-1), (2-2) and (4-1) into the above
equation gives the time derivative of the lift coefficient as

1 M - .
CL =7rm X1D\3(sm\r + 2KG| cosY) - A (cosY - 2KC, sinY)]

2

2 2}
+ SwM CD ~-SwM KCI Yt

+ cosy [1 + (ZKCL)Z] - 2KG, (Tw )
(4-2)

MAX 0

On intermediate lift arcs, )\1 can be determined from the expression

-(1 + )\3McosY + )\4MsinY)
. (4-3)
M' + ZKCLMY'

which is obtained by substituting Egq. (4-1) into Eq. (2-5). Thus,
the time derivative of CL on an intermediate 1lift arc is a

" function of )\3 and )\4 (both constants), M, Y, and CL .

2.5 Sequences of Subarcs

From the previous analysis, it is known that a time-optimal
path consists of one or more subarcs which appear in Table 1.
However, it is not yet known how they may be joined together.
The possible sequences of subarcs will now be investigated. Three
basic rules are first established.

Corner condition 1: The state variables, Lagrange multi-
pliers, and the Hamiltonian must be continuous at a corner (20).

In addition, each control variable is continuous at a corner
if H 1is regular in that variable (i.e., if H has a unique
minimum in that variable, subject to the stated constraints) (21).

This result is easily demonstrated, as follows. If =z, A\, T and



15

H are continuous at a corner,

H (2, u, \, T) = H(z, u, A, 7).

+,

Both u, and wu must minimize H , if they are optimal controls.

Hence H does not have a unigque minimum in u , if u, £ u

For this problem this implies that

Corner condition 2:

Tw can be discontinuous only if ()\1)C = 0, and
CL can be discontinuous only if either
()\l)c - O\Z)c =0
or
(*2de C and (\,) > 0
ZKM( ) Lava e ‘
If )»1 = )\2 = 0 at some point, Egs. (2-1), (2-5) and continuity of
)\3 and )»4 lead to the conclusions that Xl‘ is continuous and
)\l' = -IM > 0 at that point. Hence,
Corner condition 3: If A\, = A_ = 0 at any point on an

1 2

optimal trajectory, Rl must change from negative to positive at
that point.
The first four sections below consider transitions in which

Tw does not change, i.e., )Ll does not change sign.

*This refers to the transitions between Subarcs I and II of Table 1.
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CL can be discontinuous here only if 0\1)C = ()\Z)C =0,

according to Corner condition 2. Corner condition 3 then implies

that )\1 changes sign at the corner. According to Table 1,

however, A] must be negative on both subarcs. Hence, CL
must be continuous at this corner, or equivalently,

)\2 = ZKCL Mkl at the corner. It follows in addition that
MAX

()\1)C < 0, since ()\1)C = 0 implies that (A = 0 also, which

Z)C

leads to the contradiction noted above. For the transition from

I to II, it must also be true that (C_') < 0 .

L+
2.5.2
II < I
The same reasoning as for the transition I ¥ II leads to the
conclusion that CL is continuous, or equivalently, that
A, = 2KC MA,, and A, < 0 at the corner. For the transition
2 L 1 1
MIN
II1 —» II, it must be true that (CL')+ >0
2.5.3
I« 111
A discontinuity in C;, assuming that CL # CL R
MIN MAX
requires that ()\l)c = ()\Z)C = 0 . Since )\1 < 0 on both subarcs,

such transitions cannot occur, by Corner condition 3.

From Corner condition 2, a discontinuity in CL implies

that either )\1 = A, = 0 at the corner, or else A, = 2KC MA

2 2 LAVG 1
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and A, > 0 at the corner. Since A cannot change sign at the corner,

1 1

the former case can be ruled out by consideration of Corner condition 3.

However, if )\2 = ZKCL MXI and )\1 > 0 at the corner, transitions

AVG
are possible.

The transitions in which Tw changes will now be investigated.

In these transitions )\1 must vanish at a corner.

2.5.5
Since )\25 ZKCL M)\l and )\1 < 0 on Subarc I, and
MAX
)\2 < ZKCL M)\l and )\1 > 0 on Subarc IV, )\1 = 0 and
AVG

)‘2 = 0 at a corner.
(v - 1]
If )\2 = 0 at a corner, this transition cannot occur by

Corner condition 3. Otherwise, the rules for this transition are

the same as for I —» IV .

2.5.6

i~ v

This transition, which involves a discontinuity in CL , 1is
possible if ()\l)c = ()\Z)C = 0, according to Corner conditions 2
and 3.

The transition V = I 1is not permissible. Corner condition

3 is wviolated.

2.5.7

]'111 - 1V|
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The same reasoning as for the transition I - V implies that

-

this transition is possible, if (Xl)c Z)C = 0.

[1v - 11

Corner condition 3 does not allow this transition.

I+ v

Analysis similar to that in Section 2.5.5 leads to the con-

ditions that

Ao =0, () =0 for III ~ V
()\l)c =0, ()\Z)C >0 for V — III
2.5.9
[II = 1v]
A, = 0 at a corner; consequently ()\2)C = 0 from Eq. (4-1).

1
Hence, Corner condition 3 allows a transition from Subarc II to

Subarc IV, but not vice-versa. At this corner, CL generally will

not be continuous. Just before the switch from Subarc II,

)\1 e:)\l' (T - TC)

A ':.'XZ' (T -Tc),

1
| I— r - 3 -
where >\1 i and )\2 )\3MsmY )\4McosY .

Then,

A
ot oM
CL = ZKM}\I = SR L)\3smY - X4cosY]

immediately before the switch. Hence,

(5-1)

CL - 2‘1\%{ [)\3sinY - X4cosY]
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as T =T from below. In general the right hand side of Eq.

(5-1) is not equal to CL . Thus, the transition II— IV is
MAX
possible if ()\I)C = ()\Z)C = 0. C; is generally discontinuous.
2.5.10
II=v

The transition II » V 1is allowed if ()\l)c = ()\Z)c =0 .

CL is given by Eq. (5-1) immediately before the switch.
The transition V - II is not permissible.

The above analysis is summarized in Fig. 3, the diagram

of possible sequences of subarcs. Any transition requiring
(Xl)c = (A,), = 0 is a relatively unlikely occurrence in which both
controls, lift and thrust, change simultaneously. Thus, only the 10

transitions I « II, II < III, IV =& V, I # IV, and III # V appear to
be of real interest. If we let )\3, )\4 = 0 (the case in which final
range and altitude are not specified), the transitions I~ V,

I - 1v, 11—~ Iv, and II » V cannot occur, because all )\i‘s will
vanish at tljle corner, thereby contradicting Eq. (2-5) for the first
integral.

Since no terminal constraints on the state have been imposed
in the above analysis, any time-optimal maneuver in the vertical
plane, not just loop maneuvers, will be composed of these subarcs.
In previous work considering minimum time climb performance,
the control variable has been taken to be V, Y or & (equivalent

to CL), while holding the thrust at its maximum level. Optimal

solutions consist of paths with CL = C and T =T

LINT MAX
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(1,2,3,4,15). 1In target chasing maneuvers (14), the control is
assumed to be CL or n , while using maximum thrust. Minimum

time solutions consist of paths with maximum thrust and maximum

normal acceleration or maximum lift coefficient.

2.6 Analysis of a More Realistic Dynamic Model

In order to obtain the features of a realistic minimum time
maneuver, some of the simplifying assumptions made previously
shall now be removed. New assumptions are as follows:

1) The atmospheric pressure changes with altitude in the

following manner:

where P, = pressure at the reference altitude M = 0 .
The atmosphere is still isothermal.

2) CDO is a function of Mach number: CDO = CDO(M) .

3) K 1is a function of Mach number: K = K(M).

4) Constraints on normal acceleration due to aircraft
structural limits or the pilot's physiological limits are
considered.

5) Maximum thrust and minimum thrust are functions of
Mach number and altitude:

= Tw (M,n).

Twyrax Max My M) and Twy g = Twy g

Generally, the normal acceleration constraint is effective
only when the dynamic pressure (q = %%pMZ) is relatively large.

The lift coefficient is then bounded above and below by
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n
Cth i ‘I;‘AT?XZ
Sw e M
and
c . __MIN
LN Sw e—}mM‘2
respectively. Thus the normal acceleration constraints may be
handled as constraints on CL which depend explicitly on Mach
number and altitude. In the relatively low dynamic pressure range,
the constant upper and lower bounds on C are more restrictive

L

than the state-dependent bounds imposed by the normal accelera-

tion limitation. In the high dynamic pressure range, the reverse

is true (see Fig. 4).

2.6.1

Since C , CL s TWMA'X and TWMIN are no longer

LMAX MIN
constant in this case, Egs. (1-5) and (1-6) will be adjoined to the

variational Hamiltonian with the multipliers My and By

_ _ -Un 2 2 .
H=»X [Tw - Swe M” (Cp, + KC( ) -sinY]
XZ -nn 2
+ i (Sw e M CL - cosY) + )\3McosY + )\4MsinY
+ p, (C. - C ) (C. - C )
1 7L Lpyax™ b Ly
+ My (Tw TWMA.X) (Tw - TWMIN) ,
where p, = 0, C. =C or C
1 L "Lyax Ly
u, =0, C. =C
1 L "Lyt
>
“2 0, Tw = TWMAX or TWMIN
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2

IJ‘ZZO’TWZ

Necessary conditions of optimality for the problem are

22

TWINT .

. -Am 2 2 X
M' = Tw - Swe M (CDO + KCL } -sinY
_ 1 St 2
y! = (Sw e M CL - cosY)
€1 = McosY
n' = MsinY
CDO oK
Mt =2 Swe’ M[ZC +M< sirt 5 CL )]
)\2 -um 2 .
- <Swe M CL+cosY -)\3cosY -)\4 sinY
M
BCL 8CL
[( MAX N MIN‘)C _( MAX c
1 oM L oM LMIN
oC
N LviN c )] fu [(aTWMAX . 0T w MIN) T
oM LMAX 2 oM oM
<8TWMAX - N OTwy 11N T )]
B oM WMIN oM MAX
)\Z
- oL . _
)\2 —)\lcosY i sinY +)\3M51nY X4McosY
)\3 = const
“m. 2 -1
' - -~
X4 = XlSwKe MCD+)\ZSWKe MCL
aC oC aC
—_. “MAX | LMIN\)C A “MAX
11\ on an L an LMIN
oC
N LMIN >] . [ 8TW aTWMIN) .
an H2 R

(6-1)
(6-2)
(6-3)

(6-4)

(6-5)

(6-6)

(6-7)
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oTw oTw
MAX . MIN >] )
- ( Exl Twpin ¥ 7 TWMaAX (6-8)
0= - )\ISW e—Kn MZZKCL + )\ZSW e_KnM
-p[c + C )-zc] (6-9)
1 ( LMAX LMIN L
0:)\1 '92[<TWMAX+TWMIN> - ZTwl (6-10)
-\ KSwe ™ M+ 2 0 (6-11)
k= 0 for C, =C or C (6-12)
1 L I'JMAX LMIN
p, = 0 for C, =C (6-13)
1 L LINT
=4 = -
By 0 for Tw = TWMAX or TWMIN (6-14)
py, =0 for Tw = TWINT (6-15)
Un 2 >\2 un, 2
)\1 (Tw - Sw e~ M CD-sinY)+—M(SW e 'M CL—cosY)
(6-16)

+)\3McosY +)\4MsmY =-1

These equations are similar to those for the simpler
dynamic model, except that X,'# 0, p; and p, enter the )\1'
e

and X4' equations, and the term appears in various

equations.

2.6.3 Characteristics of Subarcs
Investigation will be made of the subarcs corresponding to
different control combinations. Egq. (6-10) implies that a subarc

with  Tw = Twyop (b, = 0) must have )\1 = 0 . Consequently



24

>\1'_ = 0 . This arc is a singular arc, as was observed in the

simpler case. If C. = C (#, = 0), then A, = 0, from
L LINT 1 2

Eq. (6-9). Then Egs. (6-5) and (6-16) reduce to
0 = - )\3 cosY - X4sinY
-1 = X3McosY + )\4MsinY

respectively. Inconsistency of these two equations leads to the

conclusion that the subarc with Tw = Tw and C = C

INT L LINT

does not exist.

For the lift program with CL = CL (P‘l > 0) , with

MAX
the normal acceleration constraint assumed effective,
)\2 Sw e-%nM
H1 = - 1C - C ) (6-17)
Ivax  Tvan

from Eq. (6-9). From Egs. (6-5), (6-16), and (6-17), it then

follows that

/ ; 2\, cosY 8C
S - 50 - 22 s (e
or
)\2 - Z(nMA-)I:fcosY) ’ (6-18)
where use has been made of the relation
C . _MAX . (6-19)

LMAX Sw e aall M2

Furthermore,
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2 8CL

4“ [/ sH " [ 1 -Un MAX

—s =) = A," =]~ (4, cosY - M) - A Swe (—————————

de K 1w) 1 M3 2 2 oM.

BZCL
M —~———1\§AX>] T
oM
+ other terms not involving Tw .

The generalized Legendre-Clebsch condition requires that

9 d?“(aH) DL 4 cost - M) . Sw oM “Lyax

8Tw| 2 \8Tw/] ~ 3 \7hpe08l =M Ty mwe oM

dT M
a2c
-)\2 Sw e-Wr\M : éVIAXS 0
oM
2
8CL 9 CL
Substituting Eq. (6-18), and —MAX and —I\-/I-ézi— derived from
oM 8M&

Eq. (6-19) into above equation, we have

Loy,

M

Since M must be real, the generalized Legendre-Clebsch condition

is not satisfied. Hence, an arc with Tw and C is not
INT Lytax
optimal. The same result will hold for the 1lift program with

C. =C . For the case in which C, = C or
L LM L Lyvax

CL without the normal acceleration constraint, the same
MIN

analysis as for the simpler case is applicable, since the term

involving My vanishes in Eq. (6-5). Thus, intermediate thrust

arcs are not optimal in the more realistic case, just as in the

simpler case.

For an arc with Tw = TWMAX (uz > 0), we have )\1 <90

from Eq. (6-10). Then, from Eq. (6-9)



x
2
C = C = C
2RMA Lyvax L Lyviax
Mo N,

C < C = C = C =

Ly 2KMA Lvax L Lint  2KMhg

A,

s C = C. = C

2ZRMM LN L Lytin

For an arc with Tw = Tw (pz > 0), we have )\1 > 0.

MIN

For intermediate lift, we have )\1 = 0 f{rom Eq. (6-11). This

result contradicts the above conclusion concerning )\1 . Hence a
subarc with Tw = TWMIN and CL = CLINT cannot be an
optimal arc. For C, = C (t; > 0) or C. =C
L LMAX 1 L LMIN
(p.l > 0), we can infer that
C + C
LI A L
) < = 2 Sy CLAVG':’CL = CL
—_—l MAX
ZKM)\I
> C = C. = C
Lava L Iyvin

as in the simpler case.

An arc with Tw = Tw (pz = 0) or Tw = 0),

MAX MIN (2

or C. =C (b, = 0) or C (b, = 0) leads to contra-
L “Iyax ! Iy 2

diction between Eq.s (6-5) and (6-16) except possibly at isolated
points.

These results are similar to the simplified ones. Hence,
the transition between subarcs are analogous to those for the
simplified case. However, there are two types of C subarcs -

L
MAX

those for which C is constant and those for which CL

Lnvax MAX
depends on the state, as shown in Fig. 4. There are similarly
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two types of C subarcs.

LN

2.6.4
The time derivative of the lift coefficient on intermediate
lift arcs is given by

__ 1M .
CLl = ZKM{)\l D\3(smY + ZKCLcosY) -)\4(cosY - 2KC

1, 5inY )]

+cosy[1 4 (ZKCL)Z]

- ZKCL[(TWMAX - Swe

o -Hn, 2
+ Sw e MCDO(l-

9C 9Tw
+ Sw e-KT] M3 ( DO | 9K 2

oM 'a_I\7IL)' oM

- (1 +>\3 McosY + X4MsinY)
where Ay = M+ 2KMC_ V'
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III. NUMERICAL METHODS

3.1 Simpler Case

The optimization problem under consideration here is
expressible as a two-point boundary value problem. Differential
equations (1-1), (1-2), (1-3), (1-4), (2-1), (2-2), (2-3), and (2-4)
must be satisfied, subject to mixed boundary conditions, with the
optimal control along the trajectory determined by the state vari-
ables and Lagrange multipliers, as described in Part II. The
initial time and the initial state are given, but the initial Lagrange
multipliers and the terminal time are unknown. These five unknown
parameters must be determined such that the following terminal

conditions are satisfied:

Mf specified or ()\l)f =0 (7-1)
gf specified or (XS)f =0 (7-2)
nf specified or ()‘4)f =0 (7-3)
Y, =2 (7-4)
He = -1 (7-5)

Since this two-point boundary value problem does not appear
to have an analytical solution, some form of numerical optimiza-
tion technique must be employed. A shooting (or neighboring
extremal) method was used., The basis of such a method, as
applied to this problem, is as follows. By making use of the
fact that )\3 and )\4 are constant and H(T) = -1 an extremal

trajectory may be generated by guessing the three quantities

()\l)i, )\3 and )\4, and integrating differential equations for
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M, Y, &, n, and )\1 forward, subject to the required initial
conditions on the state variables. The optimal control along the
trajectory is determined in terms of the state variables and
Lagrange multipliers, as described in Part II. )\Z(T) is deter-

mined from the condition that H(T) 2 -1 . The final time 'Tf is

chosen to be the time at which Y(T) = 2 . In general, the

guessed values of the parameters (Xl)i, A and )\4 will not be

3’
such that terminal conditions (7-1), (7-2), and (7-3) are satisfied.
A three-dimensional search must then be made for the set of
initial parameters which causes the required terminal conditions

to be satisfied.

If &. and Ng are both specified, a full three-dimensional

f

" search is required. If &, 1is specified but T]f is not, the search

f
is two-dimensional since )\4 = 0 . The situation is analogous if
nf is specified, but gf is not. If neither §f nor T]f is
specified, the search is one-dimensional - O\l)i must be chosen
such that Eq. (7-1) is satisfied.

On intermediate lift arcs, it is more convenient to integrate
Eq. (4-2) for CL than Eq. (2-1) for )\1 . On such arcs, A
and )\2 are determined according to Egs. (4-1) and (4-3).

1

Numerical integration with a fourth-order Runge-Kutta
method was carried out. About five hundred steps of integration
were shown to be sufficient for securing four digit accuracy at the
final point, by comparing the computed results for various step
sizes. Corner conditions for other subarcs, described in Fig. 3,

may also be monitored along with trajectory computation. Since
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a corner is not necessarily located at a discrete point of integra-
tion, its location is determined by linear interpolation between two
successive points between which a corner is determined to exist.
Several other parameters can be considered as variable
besides those which we ’have already considered, for example, the
weight and wing area of the aircraft and its initial speed and alti-
tude. The hypothetical set of data describing the aircraft,
atmospheric conditions and gravity given in Table 2 were used.
The aircraft data are approximately those of the fighter-trainer

aircraft XT-2 of Japan. An initial speed of Mach 0.9 is assumed.

3.1.1 Mf, §f and Mg are not specified.

A one-dimensional search for (A = 0 will be used.

l)f
Since it is not known a priori what combination of subarcs will

produce an optimal solution, exploratory computations for a mini-

mum time path were made for the case CL = 1.0 and
MAX

TWMAX = 0.5. Paths with several combinations of subarcs, for
example, I, I-II-I, or IV-I etc., were computed and the perform-
ance indices of the maneuvers were compared. From these
results, it is expected that the control program for a time optimal
path does not deviate much from that of a path with CL and
MAX
TWMAX . This conclusion is confirmed by private talks with
several pilots. The standard procedure is to pull the control
stick back to develop lift force from level or diving flight, with

maximum thrust. After the normal acceleration reaches its

upper limit (4 ~ 5 g's is the physiological limit) they maintain
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this limit until the maximum lift coefficient is less than the normal
acceleration limit, due to a decrease in dynamic pressure. This

description is for a fighter aircraft with CL ~ 1 and
MAX

Twyax™ 0. 5, at an entry speed of roughly Mach 0. 9. This suggests
how we might make an initial guess for the one-dimensional search.

An initial (C Tw ) arc can be generated by

2
LH JT MAX

integration of Eqs. (1-1), (1-2), (1-3), (1-4), and (4-2), subject to
given initial conditions of state variables, by guessing the initial

value of CL .
Once C has reached CL , assuming that )\1 <0
MAX
at that point, Subarc I will follow, according to the corner condi-

tions for the transition II ® I . On Subarc I, Eq. (2-1) for )\1

' equation,

L

which holds only on intermediate lift arcs. Integration to the

-should be integrated from the corner, rather than the C

final point, at which Ye = 2, yields the final value of )\1 ;

together with A and other state variables. Since this value of

2

0\1 )f is determined by the guessed value of (C we can deter-

L)i ’

mine the (C for which ()\1)f = 0 by varying (CL)i .  The

control programs and the corresponding flight path are obtained at

L)i

the same time. For the case with CL = 1.0 and
MAX

Tw = 0.5, the optimal path has been found and is shown in
MAX

Fig. 8-a. Only one stationary solution was found in this case.

The control programs along this trajectory are consistent with the

results of the exploratory computations and the standard pilots'

procedure.
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The initial value of CL for an optimal solution changes if

C and Tw , are changed. If either C or
LMAX MAX LMAX

TwI [AX is decreased, while holding the other constant, (CL)i

eventually reaches CL . Below that value of CL or
MAX MAX

(CL , TWI ICX) arc cannot exist at T = 0. Hence,
INT

L ’

)
MAX MAX

path. For such a path the initial value of )\1 can be varied so

TWMAX’ a

a (C Tw arc will be the initial part of an optimal

as to obtain (A =0 .

l)f

Following the above procedure, corner conditions for other

subarcs may appear in the middle of the path; e.g., )\1 = 0 for

Tw = TWMIN’ )\l = ZKCLWI for CL = CLINT, and so forth.

In these cases, computation should also be made of paths with
"-other subarcs, and the performance indices compared.
Through this process, the time optimal solution for each

combination of C and Tw can be obtained. The
LMAX MAX

results are plotted in Fig. 8-b to Fig. 8-i.

For the case in which M, 1is specified, a one-dimensional

£

search can be applied to choose (CL)i or (A so as to produce

l)i
the specified value of I\/If .
3.1.2 Mf and Tlf are not specified, and §f is specified.
The dimension of the search process is now increased to
two. Since we have already obtained the optimal solution for the
case in which Mf, §f,

may be used as an initial guess for the two-dimensional search.

and ’ﬂf are not specified, this solution

Varying (C ).1 or ()\1)i from the corresponding values of

L
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the optimal solution of Section 3.1.1, while holding )\3 = 0 and

)\4 = 0, produces changes in ()\l)f and gf . Varying X

while holding (C

3 »
L)i or 0\1)i the same as in the optimal solution

of Section 3.1.1, and maintaining X4 = 0, also changes (A));
and gf . From these results, we can construct the following
Jacobian matrix (or transition matrix) by numerical differentiation

of ()\1)f and 5. with respect to (CL)i or (A and )\3 .

l)i

o Lo, %f]
) [(CL)i or ()\l)i, >\3]

If the resulting values of ()\l)f and are sufficiently close to

°f
their desired values, an optimal solution can be obtained with
reasonable accuracy by an iterative process using the inverse of

the above matrix.

For the case in which M, is specified, a similar technique

1)f with Mf. If Tlf

is specified and §f is not specified, the same procedure is valid

used above can be applied by replacing (A

if A, and 7, are used in place of A, and §f .

3.1.3 M, is not specified, Ef and M. are both specified.

In this case it is possible to use the optimal solutions of
Sections 3.1.1 or 3.1.2, as an initial guess for the required three-
dimensional search. This leads to the use of a three-dimensional
Jacobian matrix

9 [(xl)f, éf, nij
3 E(CL)i or (7\1)-1, Ass A

4]
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This technique can also be applied to the case in which Mf

is specified, simply by replacing (>\1)f with M, .

3.2 More Realistic Case
A more realistic case introduces not only aerodynamic

parameters which vary with Mach number, but also a more
realistic atmosphere which includes the variation of pressure with

altitude. In this case, )\4 is no longer constant, because of

Eq. (6-8). Hence, one additional differential equation for >\4

should be integrated along with the five other differential equations.

Two cases need to be considered.

3.2.1 Without Normal Acceleration Constraint

3.2.1.1 M, &, and ng are not specified

7 °f

This case corresponds to the case in Section 3.1.1.

However, a two-dimensional search for the values of (CL)i or
)\ 1 = = 1
( l)i’ and ()\4)i which produce (>\1)f 0 and (>\4)f 0 is
necessary. A starting solution with values of ()\1 )f and ()\4)f

reasonably close to zero can be obtained by making several trial

computations with various values of (C.). or (A and (A

1)'1 4)1 )

Starting from this nominal solution, an optimal solution can be

L’

computed using a two-dimensional Jacobian matrix

a L, 0l

5L (C);, or 00, B

obtained by varying (CL)i or ()\1)i and ()\4)i about the nominal

solution.

For the case in which M and/or Ny are specified, M,



35

and/or ’ﬂf are used in place of (7\1)f and/or ()\4)f respectively.

3.2.1.2 M, and M, are not specified, and §f is specified.

f

In this case, a neighboring extremal technique can be
applied starting from the optimal solution of Section 3.2.1.1,
using the three-dimensional Jacobian matrix

g A
o L0 5, 0]
A
8 [(Cp);, or ()5, *qy B0

For the case in which M, and/or ﬂf are specified,

f

and/or

it is necessary to replace (A and/or 0\4)f with M

l)f f

n ¢ respectively.

3.2.2 With Normal Acceleration Constraint

In this case, CL is sometimes limited by the NyIAX

constraint. Where C appears in state equations and Euler-
L
MAX
Lagrange equations, it should be expressed in terms of Ny rAX?
M and N . A corner to this arc from other arcs will be a
. . .
point where n becomes equal to DAY Since the Ny A
constraint appears in the relatively high dynamic pressure range
and the dynamic pressure normally decreases rapidly during a

loop maneuver, this constraint is effective mainly on the initial

part of a flight path.

£ gf and T]f

During the search process for ()\l)f = 0 and ()\4)f =0,

3.2.2.1 M are not specified.

if (C is not affected by the n constraint, i.e.,

L)i MAX
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(C_L).1 < CL , the procedure in Section 3.2.1 1is also applicable.
X

L)i is constrained by Ny fAX? the maneuver should start

with CL = CL . In this case, the initial arc is considered to
X

If (C

be with C constrained by nyax - Hence, a Jacobian

LMA.X

matrix

ol 0 )y ()]
LAy Byl

should be applied to obtain the solution, as was done for an initial

arc of (C Tw

).
MAX MAX

For cases with different boundary conditions, a technique

L ’

similar to that described in Sections 3.2.1.1 and 3.2.1.2 can be

applied.
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IV. RESULTS AND DISCUSSION

Numerical computations have been made in several cases,
based on the theoretical work and numerical methods discussed
above. The effects of the maximum lift coefficient and thrust on
the control program have been obtained for the case in which final
speed, altitude and range are not specified. Trajectories with
different terminal boundary conditions have been investigated for

the particular case of C = 1.0 and Tw = 0.5, The
LMAX MAX

more realistic model also has been examined for the same param-

eter values.

4.1 Simpler Case

=
4,1.1 Mf, 5S¢

The general effects of the magnitudes of CL and
MAX

MAX ©On the control program are shown in Fig. 7. (About

and nf are not specified.

Tw

one hundred points in the Tw vs., C plane were investi-

Lyvax

. C lane may be divided into
MAX VS L P y
MAX

distinct regions corresponding to different types of control histories.

MAX
gated.) The Tw

The boundary line labeled "CL Initially" indicates that the C
INT
program begins with a CL arc, in the region to the right of
INT
that line. The label ”CL In The Middle'" indicates that the
INT
CL program has a C arc in its middle part, in the region
Lint
of the plane below that line. The line labeled ”TWMIN In The

C according to
MAX VS tq, g
MAX

— 3 < 1"
whether or not Tw = TWMIN in the middle. The label TWMIN

Initially' indicates that the Tw program begins with the Tw

L

Middle'" divides the plane of Tw

MIN

arc, in the region to the left of that line.
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The regions determined by these boundary lines are denoted
by the letters A to K, corresponding to the optimal CL and Tw
programs shown in the upper part of the figure, except for regions
J and K. For J, no stationary solutions have been found, although
the maneuver can be completed. For K, no control programs are
plotted, since the maneuver cannot be completed. Representative
histories of the control and state variables and Lagrange multi-
pliers -for each region are shown in Figs. 8-a to 8-j. The regions
C, D, G, and I have a second stationary solution, without the
CLINT arc in the middle of the path, except for the region below
the broken line, in which only one locally optimal path exists.
However, these paths produce larger minimum times than those
shown in Fig. 7.

The boundaries separating regions B, E and F have other
characteristics which are shown in Fig. 9. In the neighborhood of
the boundary line between points 1 to 2 (separating regions B and
F), there are three locally optimal solutions of types B, E and F,
which have different values of maneuver time. In region B, the
’cifne for solution type B is shortest among the three possibilities,
and in region F, the time for solution type F 1is shortest. The
minimum time solution switches from one type of solution to the
other across the boundary line 1-2, in Fig. 9. This phenomenon
can be explained in terms of Fig. 10. O‘l)f and tf are plotted
versus ()\1)i for three cases with different TWMAX, but the same
CL . The smallest value, the intermediate value, and the

MAX
largest value of ()\1)i which give (>\1)f = 0 represent type B, E
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and F solutions, respectively. The solution giving the smallest
value of te switches from type B to F as TWMAX decreases.
The type E solution results in a larger te than occurs in the
other cases. Similar solution switchings have been observed across
the boundary lines 2-3 and 2-5. Across the boundary lines 3-4 and
5-6, the solution changes from one type to the other continuously.
It is expected that there are three locally optimal solutions with
different kinds of thrust programs, which give the same value of
maneuver time at the point 2 in Fig. 9.

It can be inferred that optimal paths in the regions to the

left of regions I and F begin with a Tw arc, which corresponds

MIN
to positive )‘l . The time histories of )\1 in this region
(CLMAX < 0.68) show that the duration of the TWMIN arc is so long

that the flight path angle cannot be increased past 90°. This means
that the aircraft cannot complete a loop maneuver, and hence,

type F or I paths cannot exist. When TWMAX is somewhat larger,
it is possible to have a solution of type B giving 0\1)f = 0 (Region

B at upper-left corner in Fig. 7); however, decreasing Tw

MAX
while holding CL constant, or decreasing CL while hold-
MAX MAX
ing TWMAX constant in the medium TWMAX region, results in

paths of type B which fail to give 0\1)f = 0 (Region J), as seen in

Fig. 11. For the case C = 0.6 and Tw = 0.3, the
LMAX MAX

control programs for minimum time paths have been investigated.

The flight path and Lagrange multiplier data are shown in Fig.

8-j for a path beginning with (C , Tw ).
LyAax MAX

not yield 0\1)f = 0. No stationary solutions have been found for

This path does
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trajectories beginning with other control programs, either.
Region K denotes that the aircraft cannot complete the man-
euver, because the flight path angle cannot be increased beyond 900,
due to thrust, weight and drag balance, even using maximum thrust.
Modifications in the control history map (¥ig. 7) can be
expected if the initial conditions are changed.
Contours of minimum maneuver time are plotted in the
vs. C in Fig. 12. The higher values of

MAX LMAX

TWMAX and CLMAX give shorter maneuver times. Contours of

final speed for minimum time maneuvers also plotted in Fig. 13,

plane of Tw

revealing a different trend with C This can be expected

Lymax
from the role of CL in the drag equation. The range at the final
point (the horizontal distance of the final point from the starting
point) behaves similarly to the maneuver time, as shown in Fig. 12.
This may be easily observed from the flight path data given in
Figs. 8-a to 8-i. The final altitude does not vary as strongly as
other variables. From these results it is concluded that large
thrust is desirable for shorter maneuver time and higher final
speed.

¥From the viewpoint of inlet, duct and engine design, the
control histories of lift and thrust shown in Figs. 8-a to 8-i
present a severe design requirement. Maximum thrust at a high
angle of attack and low speed is required for a minimum time
maneuver. This will produce much distortion in inlet and duct

air flow and may induce compressor stall of the engine. Further-

more, investigation of the transient effect of abrupt thrust level
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changes on the inlet and duct air flow and the engine performance
will be required, especially at low speeds, as occurs in the regions

of medium and low Tw in Figs. 8-e to 8-i.

MAX
4,1.2 Mf and nf are not specified, and §f is specified.

The effect of A on the final range has been studied for

3
the case C = 1,0 and Tw = 0.5. X\ and (C.). were
_LMAX MAX 3 L7
varied so as to produce changes in the final range, with ()\l)f = 0.

The control programs and the final ranges corresponding to various

choices of )\3 have been obtained. These trajectories are optimal
loops with specified final ranges. The result for the case
(CL)i = 0.4 is shown in Fig. 14. From this it is observed that

the final range increases by about 1,300 ft. and the final altitude

changes from negative to positive, if the initial CL is decreased

Tw

LM AX MAX

and (>\1)i are varied such that the

by about 0.5. Trajectories beginning with (C ) have

also been considered. )\3
final range changes and ()‘1){ remains zero. Fig. 15 shows that
the control histories are different and that the final range increases
drastically relative to the result in Fig. 8-a, even though both
cases have the same combination of C and Tw

Lyvax
Among seven trials with different values of X

MAX -~

3 the case

CL . = 1.0 and TWMAX = 0.5 was found to have the minimum

Xe of 4,384 ft., using the constant control CL = CL and
MAX

Tw = TWI (AX ° Smaller values of x, would require a more

f

extensive exploration of control programs.
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4.1.3 M, is not specified, Sf and M, are specified.

Although this case is normally solved by means of a three-
dimensional search, it is possible to use a two-dimensional search
if only two final values are of interest. For the case with
CL = 1.0 and TWMA.X = 0.5, the optimal solution, for which

MAX
0\1)f =0 and 7, = 0, has been obtained by suitably varying )\3

and \, from the result of Fig. 14, while holding (C = 0. 4.

L)i
This is shown in Fig. 16. The trajectory shown is thus optimal

for the final range so determined.

4.2 More Realistic Case
4,2.1 Without Normal Acceleration Constraint
The case which takes into account changes in pressure with

altitude, the effects of altitude and Mach number on thrust, and

changes in CDO and K as functions of Mach number has been

computed on the path C = 1.0 and (Tw ). = 0.5, with
LMAX MAX']

)\3 = 0 and (>\4)f = 0 . There is not much difference between

the control history in this case and the simpler case, as may be
seen by comparing Figs. 17 and 8-a. The time for maneuver,
the altitude at the top of the loop, and the final range are larger
in the former than in the latter. Since the effects of altitude and
Mach number on the control history are relatively small, the
simpler case is a reasonable approximation to the more realistic

situtation.

4.2.2 With Normal Acceleration Constraint

The normal acceleration constraint is now added to the
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problem treated in Section 4.2.1. In this case, an arc of CL
MAX

subject to the NyrAX constraint replaces the CL’INT arc., It is

followed by an arc of (,LMAX without the DyIAX constraint, as

shown in Fig. 18. Although the initial program has changed from

CL to CL , the similarity in the numerical values of C
INT MAX
does not cause the values of maneuver time and the terminal state

L

variables to change appreciably relative to the results of Section

4.2.1. In this example, the n constraint has its major effect

MAX

on the initial part of the path, since the initial dynamic pressure is
large. The effect of the constraint decreases with an increase in

the value of is taken to be 7.33,

Ny rAX (see Fig. 19). If NyVIAX
the structural limit load factor for fighter aircraft (22), most of
is

the control history map need not be modified. When Ny AKX

decreased to 5, major changes must be made, especially in the
initial part of the path. However, the dynamic pressure decreases

as the maneuver progresses, so that the n constraint soon

MAX

becomes ineffective. Hence, the effect of the n constraint

MAX
depends upon how long the constraint is effective relative to the
overall maneuver time. In the above example, the duration of 5g
normal acceleration is about 5 seconds, compared with te = 48

seconds,



44

V. CONCLUSION

Minimum time loop maneuvers of high performance jet air-
craft have been investigated through the calculus of variations.
Numerical computations for time optimal paths have been made for
a hypothetical aircraft at an initial altitude of 20,000 ft. and a
speed of Mach 0.9. From the theoretical analysis and numerical
results, the following conclusions have been derived.

There are several types of subarcs which may be joined
together to form an optimal path. There are no subarcs with

TWINT’ or CLINT and TWMIN . The optimal control is uniquely

determined by the state variables and Lagrange multipliers. Pos-
sible transitions between optimal subarcs have been established by
applying the corner conditions of variational calculus. These
results are applicable to any minimum time maneuver in the verti-
cal plane.

For the given initial conditions, the effects of the magni-

tudes of CLMAX and T\VMAX on the control program have been

plotted in the control history map, for the case in which final speed,

vs., C
MAX LMAX

plane has been divided into eleven regions. Nine of these regions

range and altitude are not specified. The Tw

are characterized by qualitatively different control programs for
minimum time paths. One of the remaining two has admissible
solutions; however, no stationary solutions have been found vyet.

In the other region the maneuver cannot be completed. The flight
path angle cannot increase beyond 900, due to the balance of thrust,

weight and drag. These features are observed in the low C
Tmax
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region. In the region of low CLMAX and medium TWMAX, it was

observed that there were three locally optimal solutions which have
different thrust programs.

In the relatively high CL and high TWI (AX region, a
MAX
path is varied mainly by means of lift control rather than thrust.

In the relatively low CLMAX and low Tw \x Yesion, both 1lift

and thrust are important control variables.

The effects of the magnitudes of C and Tw on
LyfAax MAX

the time and the final range of the minimum time maneuver are

similar. Larger values of C and Tw . give shorter
LMAX MAX

time and smaller range. The effects of CL and TWMAX
MAX
on the final speed are different, however. To increase the speed
at the end of a minimum time maneuver, an increase 1in TWMAX
or a decrease in C is favorable. Final altitude is affected
L
MAX
relatively little by these quantities.
The maximum thrust required at a high angle of attack and
low speed, around the top of the loop maneuver, will impose severe

restrictions on the inlet, duct and engine design, from the stand-

point of compressor stall of the engine. If CL is relatively
MAX

small and TWMAX is medium, investigation of the dynamic
behavior of the air flow in the inlet and duct may be necessary,
since the thrust changes abruptly from its minimum to its maxi-
mum level.

The simplifying assumptions made on the altitude, pressure

and Mach number changes have been found not to have a major

effect on the control program and aircraft performance. Hence,
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this approach is considered to be good enough to obtain the general
features and characteristics of this problem.

Under the assumed initial conditions, the normal accelera-
tion constraint exerts its main influence on the initial part of the

maneuver, just as though a C arc were inserted. Usually
bint

the speed of the aircraft decreases in the early stage of the man-

euver, and the aircraft soon attains its CL . Since
MAX
Cc. =C along most of the trajectory, the significance of the
L L
MAX
nyrax  2rc is heavily dependent upon the ratio of the magnitudes of

and CL , if the initial dynamic pressure is held fixed.
MAX

Since the control history map has been obtained for a partic-

"MAX
ular combination of values of wing loading, initial altitude and
initial speed, the pattern of the map may be affected by changes in
these parameters. These changes may be easily obtained by the
numerical methods used in this thesis.

There are several additional performance optimization prob-
lems in which pilots and designers are interested. These include
problems of the energy height difference maximization
(he = y + %—2 , see Appendix B), fuel consumption minimization,
and the target pursuit problem, the latter being a differential game

problem.
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APPENDIX A
The Effect of Transient Motion

In this thesis, the equations of motion are established based

upon the assumption that the aircraft is a point mass. The angular
momentum balance around the center of gravity is neglected. As
long as the control history of CL is smooth, i.e., its time deriv-
ative 1is continuous, this assumption is appropriate. At the

corner point between two subarcs with intermediate CL and
maximum CL , for example, the time derivative of CL is

usually not continuous.

Angular equilibrium then causes a transient pitching motion
and, consequently, a deviation from the nominal path around the
corner. However, since the duration of this transient motion is
relatively short compared with the controlled subarcs, the effect
of transient motion on the overall maneuver can be neglected if

control changes are not frequent.
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APPENDIX B

Maximization Problem of Energy Height Difference
The performance index to be minimized is given in the

following form:

I =[G (t,z)]i

1 2 2
”(ni—nf)+‘2-(M. "M

If we assume that the differential constraints and inequality control
constraints are the same as in Part 1I, Eqgs. (1-1) to (2-4) except

Eq. (1-7) are also applicable, and the first integral becomes
» 2

(Tw - SWMZCD - sinY) +_§ (SwM CL - cosY)

A M

1

+ )\3 McosY + X4 MsinY = H = constant

If all the initial and final conditions are given except the speed,
range and altitude at the final point, the transversality conditions
give

()\1){ = -Mf 1] 0\3)1' =0 ’ ()\4)_{ = -1

The possible subarcs and their relationships to the Lagrange multi-
pliers are the same as in the time-optimal problem.

To solve this problem it is necessary to establish the

sequence diagram of subarcs. One additional unknown parameter
enters the problem since H is not known. The transition routes
between subarcs which require that )\l = )\2 = 0 will change

their direction if H > 0 .
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TABLE 2. AIRCRAFT AND ATMOSPHERIC DATA

Aircraft Data

W = 18,000 1b.

S = 220 sq. ft.

CDO = 0. 02 for Simpler Case
= 0.02 M < 0.93
= 0.02 + 0.2 (M - 0.93) 0.93 = M < 1.03
= 0.04 + 0.06 (M - 1.03) 1.03 = M < 1.10
= 0.0442 - 0.007 (M - 1.10) 1.10= M

Shown in Fig. 5

K = 0.2 for Simpler Case
= 0.2 M < 1,15
= 0.2 + 0.246 (M - 1.15) 1.15 s M

Shown in Fig. 6

tl

TWMAX constant with altitude and speed for Simpler Case

0.0405 (1 + 0.597297M%) Sw e - 4N

I

Tw = 0.5 at altitude of 20,000 ft. and speed
MAX " f Mach 0.9

Twyin = o

Atmospheric Data

Reference and starting altitude: 20,000 ft.

p = 972.49 psf
a = 1037.26 fps
no=1.4

Others

g = 32.1741 ft/sec2
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