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ABSTRACT 

The large amplitude vibrations of a thin-walled cylindrical 

shell are analyzed using the Donnell's shallow-shell equations. A 

perturbation method is applied to reduce the nonlinear partial 

differential equations into a system of linear partial differential 

equations. The simply-supported boundary condition and the cir­

cumferential periodicity condition are satisfied. The resulting 

solution indicates that in addition to the fundamental modes, the 

response contains asymmetric modes as well as axisymmetric 

modes with the frequency twice that of the fundamental modes. In 

the previous investigations in which the Galerkins procedure was 

applied, only the additional axisymmetric modes were assumed. 

Vibrations involving a single driven mode response are 

investigated. The results indicate that the nonlinearity is either 

softening or hardening depending on the mode. The vibrations 

involving both a driven mode and a companion mode are also in­

vestigated. The region where the companion mode participates 

in the vibration is obtained and the effects due to the participation 

of the companion mode are studied. 

An experimental investigation is also conducted. The 

results are generally in agreement with the theory. IINon-stationary' 

response is detected at some frequencies for large amplitude 

response where the amplitude drifts from one value to another. 

Various nonlinear phenomena are observed and quantitative com­

parisons with the theoretical results are made. 
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I. INTRODUCTION 

Thin walled cylindrical shells have a wide application in 

modern aerospace vehicle structural design. With increasing vehicle 

speed and more powerful propulsion systems, the dynamic environment 

imposed on the vehicle structure becomes severe. Hence there is a 

growing appreciation of the importance of nonlinear effects in deter­

mining the stability and response of thin walled shells under dynamic 

loading. The nonlinearities considered here are of geometric nature, 

namely the large amplitude in the shell wall deformation makes the 

nonlinear relations between the strain and displacement necessary. 

However, the amplitude is small enough such that the strain itself is 

considered infinitesimal. Since the amplitude is of the order of shell 

thickness the nonlinear terms are small in the governing equation. 

But the effects due to this small nonlinearity can be quite pronounced 

as has been demonstrated in the buckling problem of cylindrical 

shells under axial compression. 

The nonlinear effects of large amplitude vibration of cylindrical 

shells are demonstrated by two phenomena; namely, the response­

frequency relationship in the vicinity of a resonant frequency and the 

occurrence of traveling wave response. Contrasted to the linear 

vibration in which the resonant frequency is independent of its amp­

litude of vibration, the resonant frequency in nonlinear vibration is 

a function of its amplitude. The response-frequency relationship will 

indicate whether the nonlinearity is of hardening type (frequency 

increasing with amplitude) or softening type (frequency decreasing 

with amplitude). Similar phenomenon can be observed on a much 
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simpler system such as a spring-mass system with a nonlinear char­

acteristic in the spring (Ref. 1). 

In the linear vibration of cylindrical shells, the response to 

a stationary periodic excitation is in the form of a standing wave. 

This standing wave will be in conformity with the distribution of the 

external excitation. In case of the external force applied on a dis­

crete point, the standing wave will be symmetrical with respect to 

the point of application. In other words, the response will be a cosine 

function in both circumferential and axial direction with the origin 

at point of application. In the present investigation this standing wave 

will be referred to as a "driven mode. II 

A striking feature of the results of experimental observation 

of supersonic cylindrical shell flutter (Ref. 2) is the fact that" almost 

all the flutter modes observed in these experiments were of the cir­

cumferentia1ly traveling-wave type." Such traveling waves are not 

predicted by linear theory and it was suggested in Ref. 2 that nonline­

arities in the shell were responsible for the phenomenon. A circum­

ferentially traveling wave in cylindrical shell response can be 

decomposed into a driven mode standing wave and another standing 

wave which is circumferentially 90 degrees out of phase with the 

driven mode (which will be referred to as a II companion mode ", in this 

investigation). Therefore, the occurrence of the circumferentially 

traveling wave is a result of the companion mode being excited due 

to the nonlinearities in the shell response. Related studies on nonlinear 

vibrations of circular rings (Ref. 3) and circular plates (Ref. 4) have 

shown the need for including theBe companion modes in the study of 
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nonlinear forced vibrations of axisymmetric structures. In addi-

t ion tot h e sup e r son icc Y 1 i n d ric a 1 she 11 f 1 u t t e r, the 

traveling wave responses have been observed in the sloshing-vibration 

of thin cylindrical shells (Ref. 5). 

The problem of large amplitude vibration of cylindrical shells 

has given rise to a number of theoretical studies (Refs. 7 to 17). The 

basic approach used in these studies (except Ref. 17) is to assume 

the shape of the deflection in space, that is, the shape of the vibration 

mode, sometimes referred to as generalized coordinates, and then 

to derive a set of nonlinear ordinary differential equations by using 

Galerkin's approximation procedure. Subsequently, the nonlinear 

ordinary differential. equations are solved to obtain the response­

frequency relationship. 

The Galerkin's method is a very powerful approximation 

method that reduces a system of nonlinear partial differential equa­

tions. into a system of nonlinear ordinary differential equations which 

become manageable. Also the Galerkiil' 8 method provides insight 

to the nonlinear coupling of various vibration modes during the solu­

tion procedure. However, its results are highly dependent on the 

assumed deflection shape. Completely different results could be 

obtained by a small difference in the assumed deflection shape as 

can be seen from the previous investigations on this subject. Even­

sen (Ref. 18) and Dowell (Ref. 13) have pointed out that the axisym­

metric modes in the assumed deflection shape play an important role 

in the outcome of the results. Yet there is no standard for selecting 

particular axisymmetric modes for the assumed deflection shape. 
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There is another constraint to the solutions of nonlinear vi­

bration equations of cylindrical shells, namely the midplane circum­

ferential displacement must satisfy the periodicity condition in the 

circumferential direction. This periodicity condition assures that 

the circumferential displacement will be continuous and single­

valued whenever the circumferential coordinate moves by 2",. This 

constraint is identically satisfied in the linear cylindrical shell 

theory once the periodicity condition is satisfied by the radial (lateral) 

displacement due to the linear relation between the circumferential 

displacement and radial displacement. However, in the nonlinear 

theory of cylindrical shells, the circumferential and radial displace­

ments are nonlinearly related and circumferentially periodicity of 

radial displacement does not necessarily enforce the same condition 

on the circumferential displacement. In general, for nonlinear vi­

brations of cylindrical shells the radial displacement is solved di­

rect,ly from the equations of motion and then the circumferential 

displacement is calculated as a function of the radial displacement. 

Therefore, in the Galerkin's procedure, the satisfaction of the cir­

cumferential periodicity condition by the circumferential displace­

ment is solely dependent on the assumed deflection shape. Evensen 

(Ref. 3) has pointed out that violation of this circumferential periodicity 

condition may give incorrect results. It may be noted in passing 

that nonlinear static stability analyses have made use of this cir­

cumferentially periodicity condition since the 1941 paper by von 

Karman and Tsien (Ref. 6). 
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The present investigation will apply a perturbation technique 

using the ratio of maximwn radial displacement to the radius of the 

shell as a small parameter to reduce the nonlinear partial differen­

tial equations into a system of linear partial differential equations. 

Then the solutions may be obtained without the handicap of selecting 

a particular set of deflections in the analysis. The usual response­

frequency relationship will be calculated and the occurrence of 

traveling wave response will also be investigated. The resulting 

deflection shape will be discussed and compared with the previous 

studies to establish the important axisymmetric modes participating 

in the nonlinear vibration. This may provide a reasonable method 

for selecting the assumed deflection shape in future analyses 

using Galerkin's method which by far is the simplest method used 

by previous investigations in nonlinear vibration of shells. 

In the following, a brief summary of previous investigations 

will be given and then the present investigation will be described. 

For the convenience of summary, the equations of motion will be 

discussed first. Finally an experimental investigation will be de­

scribed. 
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II. DISCUSSIONS OF EQUATIONS OF MOTION 

In m.ost of the analyses of nonlinear vibration of cylindrical 

shells, the well-known Donnell's shallow-shell equations have been 

us ed be caus e of their s im.plicity. However, the Donnell's equations 

are of an approximate nature, a sim.plification of the full nonlinear 

shell equations in which the following quantities are neglected: 

1. Inplane displacem.ents in the curvature relations 

2. Transver s e shear for ce in the inplane equilibrium. equations 
2 

3. Order (~) in the inplane shear force 

(i. e., N = N ) xy yx 

4. Tangential inertia 

5. Rotary inertia 

The Donnell's shallow-shell equations are often derived (Refs. 

7 and 8) and are sim.ply sum.m.arized here: The coordinate system., 

displacem.ents and the resultant forces, m.om.ents are shown in Fig. 1 

and Fig. 2 respectively. The equilibrium. equations are: 

aN aN 
~ + ----E.. = 0 (2.1) ax ay 

(2.2) 

(2. 3) 

The resultant forces and m.om.ents per unit length are defined 

in term.s of the stresses as follows: 
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h/z h/z 
N = J 0 dz, N = J 0 dz, 

x -h/z xx xy -h/z xy 

h/z 
N = J 0 dz 

Y -h/z YY 

(Z.4) 

h/z 
M = J 0 zdz, x xx 

h/z h/z 
M = J 0 zdz. M = J 0 zdz 

xy -h/z xy . Y -h/z YY -h/z 

The applied external load q(x. y. t) acts in the radial direction. 

The constitutive law for the cylindrical shell of isotropic 

linear elastic material is as follows: 

o = ~ (E' + V E' ) 
xx I-v xx YY 

E o =-Z(E' +VE' ) 
YY I-v YY xx 

(Z.5) 

E E' 
Z(I+V) xy 

where E is Young's modulus and v is Poisson's ratio. The strain-

displacement relations are approximated by 

au 1 8w z flw 
E' =-+-(-) -z----:or 
xx ax z ax ax' 

8v w 1 8w Z 8Zw 
E' = a - R + 'Z ( ~,J -z :-z 

YY Y V7 8y 
(Z.6) 

8v au 8w 8w 8
Zw 

E' = - +' - + - - - Zz--xy ax By ax 8y ax 8y 
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Using the constitutive law (eqs. 2. 5) and the strain-displace­

ment relation (eqs. 2.6), the resultant forces and moments (eqs. 2.4) 

can be written in terms of displacements: 

Eh au av w I aw 2 aw 2 
N = - {- + v [- - -] + - [(-) +v (-) ]} 

x l_v2 ax ay R 2 ax ay 

2 aw 2 
N - Eh {ftv !!.+ au+.!.[(aw) +v(ax)]} (2.7) 

---:--2 a -R Vax 2 ~,. Y I-v Y V7 

Eh ftv au aw aw 
Nxy = 2(1+v) (ax + ay + ax ay) 

where the shell bending rigidity D = 2 12(1-v ) 

(2.8) 

Using eqs. (2. 1), (2.2) and (2. 8), eq. (2. 3) can be rewritten 

as 

(2.9) 

4 a4 a4 a4 
where V

4 
is a biharmonic operator V = ax4 + 2 2 2 + "'4 

ax 8y 8y 
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Now by assuming a stress function F(:x:, y, t) 

N =­:x:y 

(2. 10) 

The equilibrium equations (2. 1) and (2.2) are identically 

satisfied and eq. (2. 9) becomes 

(2. 11) 

On the other hand, from eqs. (2. 7) the compatibility equation can 

be obtained by eliminating the inplane displacements u, v as follows 

(2. 12) 

Equations (2. 11) and (2. 12) are generally referred to as 

Donnell's shallow-shell equations which have been used in the pre-

vious investigation of nonlinear vibrations (except Refs. 11, 17). 

The boundary conditions in this investigation are assUIned to 

be the "classical simply-supported" conditions, sometimes referred 

to as SSI/SSI conditions. Mathematically, they can be expressed as: 

w = M = N = v = 0 at :x: = 0, L :x: :x: (2. 13) 

For a complete cylindrical shell such as is considered here, 
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it is apparent that the displacements, slope, moments, shears and 

stresses must all satisfy the periodicity condition in the circumfer­

ential dir ection. The dependent variables wand F in equations 

(Z.ll) and (Z.lZ) can be enforced to satisfy this periodicity condi­

tion during the solution procedure. However the periodicity of w 

and F is not sufficient for the other physical quantities to satisfy 

the periodicity condition as can be shown from eqs. (Z. 7) and (Z. 8). 

Therefore it is necessary that in addition to wand F, the circum­

ferential displacement v must also be enforced to satisfy the cir­

cumferential periodicity condition. (Note from eq. (Z. 7) that axial 

displacement u satisfies the circumferential periodicity condition 

whenever the circumferential displacement satisfies the same 

condition. ) 

Hence 

w(x, y, t) = w(x, y + Z".R, t) 

F(x, y, t) = F(x, y+Z".R, t) 

vex, y, t) = vex, y+Z".R, t) 

(Z. l4a) 

(Z.14b) 

are the additional constraints that the solutions of differential equa­

tions (Z. 11) and (Z. lZ) must satisfy. This circumferential periodicity 

condition is sometimes referred to as the continuity condition (Refs. 

13, 14). 

For simplicity, the radial external loading q has been taken 

to be 
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- .!!I. m1l'X q(x, y, t) = f coswtcos R sin-,:;- (2.15) 

since a "steady state" solution (note that It steady state" means 

periodic in time) is sought, no initial conditions are neces sary. 

In Donnell's shallow- shell equations the neglecting of inplane 

displacements in the curvature relations and transverse shear force 

in the inplane equilibrium equations is the result of shallow- shell 

approximation in which the circumferential wave length 2".R (n is 
n 

the circumferential wave number) of the deformation pattern is 

always small compared with the radius R. Essentially. it is saying 

that the curvature and inplane equilibrium of the cylindrical shell 
2 2 

th n t 1 t T t · I * t* a u a v are e same as a a p a e. angen la mer las -Z t -::z are 
at at 

neglected because of the assumption that the flexural motion is 

predominant in the present investigation. Rotary inertia is neglected 

because the wave lengths 2".R and 2L (m is the half axial wave 
n m 

number) are large compared to the shell thickness h. 

EI Raheb (Ref. 19) has made a detailed comparison for 

linear vibration between the results of Donnell's equations and the 

"exact" equations of motion derived by KoUer (Ref. 20) based on 

the Love-Kirchhoff hypothesis for shell theory in which all the 

quantities neglected in the Donnell's equations have been retained. 

He defined that the errors in frequency obtained by approximation as 

e = 
w approx. 
wexact 

and concluded that: 

- 1 (2. 16) 

1. Maximum error due to neglecting inplane displacements 

in curvature and transverse shear in inplane equilibrium is 



where r = h 

-lZ-

s = m1l'R 
L 

m is half axial wave number. 

(Z. 17) 

2. Maximum error due to neglecting tangential inertia is 

for n» 3 (2. 18) 

This error is more pronounced for small n which is the circumferen-

tial wave number. 

3. Error due to neglecting rotary inertia is 

(Z. 19) 

With these estimations in errors due to the approximations 

in Donnell's shallow-shell equations, the present investigation will 

be limited to shells with the following configuration: 

L 
R ~ 10 (Z. ZO) 

Also the deformation pattern will be limited to 

4 ~ n ~ 30 , 1 ~ m ~ 6 (2. ZI) 

so as to keep the errors within the acceptable range. 

For example, the typical error for a shell having ~ = 4~0 • 

L R = Z, m = I, n = 5, will be 

eT = e l + e Z + E!3 = 0.009979 + 0.02 + 0.000007Z 

:::::= 30/0 

(Z. Z2) 
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As can be seen, the largest error is caused by neglecting 

the tangential inertia. However, this error will be rapidly reduced 

for larger circumferential wave number n. 

Although E1 Raheb ' s error estimation for Donnell ' s shallow­

shell equation has been made for the linear vibration, it is assumed 

that it will also be applicable to nonlinear vibrations. This will be 

true as long as the nonlinearity is small, as will be demonstrated 

later for the present investigation. Therefore the Donnell's shallow­

shell equations will be used for the analysis of nonlinear vibration 

of cylindrical shells within the limits specified by (2.20) and (2.21). 

, I 
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III. SUMMARY OF PREVIOUS INVESTIGATIONS 

In a pioneering work, Reissner (Ref. 7) analyzed the problem 

of nonlinear vibration of cylindrical shell using Donnell's shallow-

shell equations (2. 11) and (2. 12) by as suming the deflection shape of the 

linear vibration. His results indicated that the nonlinearity could be 

either of the hardening or softening type, depending upon the geometry 

of the single half-wave or lobe chosen to be analyzed. Chu (Ref. 8) 

employed the same assumed mode shape as that of Reissner' s but 

analyzed somewhat differently. His results indicated that the non­

linearity was always of the hardening type and could be strong in 

some cases. Cummings (Ref. 9) employed a Galerkin p'rocedure 

and found that the results varied with the region of integration. The 

results over a single half-wave or lobe were the same as those of 

Reissner. The results for a complete shell were similar to those 

of Chu. Thus, it appeared that Reissner's results were character­

istic of curved panels whereas Chu's calculations were apparently 

applicable to complete cylindrical shells. These three analyses did 

not investigate the traveling wave solution and the boundary conditions 

were partially satisfied; also the circumferential periodicity condi­

tion was violated by Chu (Ref. 8). 

Nowinski (Ref. 10) applied Galerkin's procedure with an 

additional axisymmetric term in the assumed deflection shape. Thus 

the circumferential continuity condition was satisfied. His results 

were virtually identical to those of Chu in the isotropic case. How­

ever, his assumed deflection shape did not satisfy w = 0 at both ends 

of the shell. 
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Evensen solved a ring problem in considerable detail (Ref. 3) 

and subsequently investigated a cylindrical shell (Ref. 12). The mode 

shape Evensen assumed in his Galerkin procedure satisfied the cir­

cumferential periodicity condition but the boundary conditions were 

partially satisfied as long as a simply supported condition was consid­

ered. His results for the shell included the traveling wave response 

and a stability analysis which indicated the stability region of stand­

ing wave response and traveling wave response. 

Dowell (Ref. 13) made a similar analysis to that of Evensen 

wilha slightly different axisymmetric mode term in the assumed de­

flection shape. In his analysis all the simply supported boundary 

conditions and circumierentially periodicity conditions were satis­

fied "on the average. n Although no numerical results were given. 

the modal equations obtained in the limiting case of L/R - 00 agreed 

with that of ring equations and L/R - 0 agreed with that of plate 

equation. 

Matsuzaki and Kobayashi (Refs. 15 and 16) carried out an 

analysis on a cylindrical shell with clamped ends. The method was 

similar to that of Evensen (Ref. 12). The results showed the non­

linearity being of the softening type. 

Mayers and Wrenn (Ref. 11) used a more general assumed 

deflection shape than that of Evensen which satisfied all the out of 

plane boundary conditions but the inplane boundary conditions were 

not satisfied. Also in Ref. 11 more accurate shell equations (Sander's 

theory) were considered. 
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Bleich and Ginsberg (Ref. 17) recently considered an infinitely 

long cylindrical shell (periodic in axial direction). Their approach 

was to express three displacements in complete sets of normal mode 

series and then the energy expression was obtained in terms of these 

series. Lagrange equations were used to establish the equilibrium 

conditions and a perturbation method was employed to determine the 

truncation of the infinite series. Response-frequency relationship 

traveling wave response and stability analysis were included in the 

results. Tangential inertia and transverse shear deformation were 

included in the energy expression. 

It is of interest to contrast and compare the analyses of Refs. 

8, 10, 12 and 13, since these studies used the same Donnell's shallow 

shell equations (eqs. 2. 11 and 2. 12) and considered the simply 

supported end conditions (eq. 2. 13). Also these four studies rep­

resent the major effort in the previous investigation on the problem 

of nonlinear vibration of cylindrical shells. In the following, their 

approach, satisfaction of boundary conditions and circumferential 

periodicity condition, and results will be summarized. 

1. Chu (Ref. 8) 

a) Assumed deflection shape: 

w(x, y, t) ::: All (t)Sin <r)COS(1t) (3. 1) 

This is the mode shape of linear vibration. 

b) Approach: 

Substituting eq. (3. 1) into eq. (2. 12), a particular solution 

of the stress function F can be obtained. The assumed 
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deflection wand the solution of stress function Fare 

substituted into eq. (Z. 11) and the collection of the first 

harmonic terms gives a nonlinear ordinary differential 

equation which is subsequently solved by using elliptic 

integrals to obtain the response-frequency relationship. 

c) Boundary conditions: (at x = 0 and L) 

Out of plane boundary conditions, 

w = 0, M =0 x 

Inplane bOuridary conditions 

d) Circumferential periodicity condition: not satisfied. 

e) Results: hardening type of nonlinearity is found. 

Z. Nowinski (Ref. 10) 

a) ;Assumed deflection shape: 

w(x, y, t) = f(t)sin ~ sin!ft + fo(t) (3. Z) 

An axisymmetric term is added to the assumed deflection 

shape. Stress function is obtained in a similar fashion 

as that of Chu. 

b) Approach: 

Eq. (3. Z) and stress function F are substituted into eq. 

(Z. 11) and then a Galerkin procedure is applied to reduce 

eq. (Z. 11) into an ordinary equation. The weighting func­

tion chosen for the Galerkin procedure is sin m~ sin 1t 
which effectively eliminates the coupling effect of £ (t) o 
from the problem. 
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c) BOWldary conditions: (at x = 0 and L) 

Out of plane bOWldary conditions 

w =f. 0, M =0 x 

Inp1ane bOWldary oonditions 

N =f. 0, v:/: 0 x 

d) Circumferential periodicity condition: 

This condition is satisfied by determining f (t) in terms 
o 

of f(t). 

e) Results: hardening type of nonlinearity is fOWld. 

3. Evensen (Ref. 12): 

a) Assumed deflection shape: 

w(x, y, t) = [A(t)cos W+ B(t)sin W] sin m.;x 

2 
+ :R [A 2(t) + B2(t)] sin

2 rr;:" 
(3.3) 

The companion mode as well as the driven mode are 

considered. Also there are two terms in the axisytn-

. d' .2m1l'X 1(1 2m1l'X) metrlC mo e smce sm -,:;- = 2 -cos L 

b) Approach: 

Stress fWlctionF is obtained as a particular solution to 

eq. (2. 12) which is substituted into eq. (2.11) together 

with eq. (3. 3). Ga1erkin procedure is employed to re-

duce eq. (2. 11) into two nonlinear ordinary equations. 

Choice of weighting fWlctions are made such that the 

resulting equations are the same as would be obtained 

using Hamilton's principle, namely, ~ and :;. 
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This provides the coupling effect of the axisynunetric 

modes to the fundamental modes. 

c) Boundary conditions: (at x = 0 and L) 

Out of plane boundary conditions: 

w = 0, M =f.: 0 x 

lnplane boundar y conditions: 

N =f.: 0, v =f.: 0 
x 

d) Circumferential periodicity conditions: satisfied. 

e) Results: 

Type of nonlinearity is found depending on the" Aspect 

Ratio" (ratio of circumferential wave length to axial wave 

length). For small aspect ratio, the nonlinearity is of 

the softening type, for large aspect ratio the nonlinearity 

is of the hardening type. The traveling wave response 

and the stability problem are also studied. 

4. Dowell (Ref. 13): 

a) Assumed deflection shape: 

w(x, y, t) = [A(t)cos It +B(t)sin ltl sin m~ 

(3.4) 

+A (t)sin~ 
o L 

Here the coefficient of the axisymmetric mode is consid-

ered as independent of the driven mode A(t) and companion 

mode B(t). 

b) Approach: 

The stress function F is solved from eq. (2. 12) by using 

eq. (3.4). A homogeneous solution is included in the 
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following form: 

(3. 5) 

This satisfies the equation V 4F = O. N , Nand N 
x y xy 

are functions of tilne t only and are to be determined by 

considering the inplane boundary condition and circum-

ferential periodicity conditions. Three nonlinear ordi-

nary differential equations are obtained after employing 

the Galerkin procedure. The choice of the weighting 

functions is the same as that of Evens en. 

c) Boundary conditions: 

Out of plane boundary conditions: 

w = 0, M =0 x 

Inplane boundary conditions are satisfied "on the average;" 

271"R L au 1 1 ax dxdy = 0, 
o 0 

271"R 

I N dxdy = 0 o xy 

d) Circumferential periodicity condition is satisfied "on 

the average;" 

L 271"R av L f J -a dydx = I [v(x, 271"Brv(x, 0)] dx = 0 
o 0 y 0 

e) Results; 

Numerical results are not given. But, in the limiting 

cases, the resulting differential equations converge to 

the equation of a plate for i - 0 and the equation of a 

. f L rmg or R -00. L 
However, for R - 00 and m even, 

the reduced ring equation loses the coupling effect 
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between A(t), B(t) and A (t) and leads to a hardening o 

type nonlinearity. This is in contrast to the findings 

by Evensen (Ref. 3). 

The conclusion emerging from these four previous studies 

clearly indicates the following: 

1) The assumed deflection shape plays an important 

role in the analysis and the results are somewhat 

dictated by the as sumed deflection shape. 

2) Specified boundary conditions are not enforced 

strictly in the previous studies. Evensen (Ref. 21) 

has shown that added inplane restraints may alter 

the response-frequency relationship. 

3) Circumferential periodicity condition must be satisfied. 

One of the purposes of the present investigation is to 

avoid the necessity of assuming the deflection shape, 

instead the deflection shape will be obtained as a 

result of the perturbation technique. Boundary con-

ditions and circumferential periodicity conditions 

will be satisfied asymptotically with respect to a 

small parameter in the present investigation. 
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IV. PERTURBATION METHOD 

One of the important methods for solving nonlinear differen­

tial equations is the perturbation method. The use of this method 

was, in the early days, limited to astronomical calculations. But 

the important contributions of Poincar~ and later mathematicians 

have broadened the capability of the method to include a more general 

field of nonlinear mechanics. 

This method is applicable to equations in which a small 

parameter is as sociated with nonlinear terms. In application, it 

consists of developing the desired quantities in powers of the small 

parameter multiplied by coefficients which are functions of the inde­

pendent variable and determining the coefficients of the developments 

one by one, usually by solving a sequence of linear equations. 

In nonlinear vibration of cylindrical shells, it would be 

natural to regard the amplitude of response as a quantity to be 

determined by the power series expansion of the small parameter. 

However by proceeding in this way a serious difficulty may be en­

countered in the form of the so-called "secular terms," i. e •• 

terms which grow up indefinitely as t - 00. The appearance of the 

secular· terms shows that the expansion of response is asymptotically 

valid only for a finite time. Previous experience has indicated that 

the essential feature omitted from the expansion of response in a 

power series of small parameter is the dependence of the frequency 

on the response amplitude. Therefore, the frequency as well as the 

amplitude of the response tnust be expressed in the power series of 
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a small parameter in the perturbation method. Then, elimination 

of secular terms in the solution will provide the frequency-response 

relationship. 

First the small nondimensional parameter used in the power 

series expansion must be determined. In the vibration of cylindrical 

shells the maximum amplitude of response is of the order of shell 

thickness h. Since thin-walled shells (~« 1) are considered, it 

seems natural that the small parameter E be chosen as 

w is the maximum radial displacement of the shell. 
m 

w 
m where 
R 

4. 1 Nondimensionalization and Systems of Linear Equations 

Before proceeding in applying the perturbation method, the 

differential equations must be rewritten in the nondimensional form. 

Also the effect of damping will·be included in the analysis by induc-

ing a vis cous damping term in the equilibrium equation: 

4 a2 aw 1 a2 F 
DV w + ph a~ + ~h at = q(x, y, t) + R ax2 

(4. 1) 

(4.2) 

where C is the coefficient of linear viscous damping. 

Next, let the nondimensional independent variables be de-

fined as follows: 

x 
s = L' e-Y. - R T = wt 

where w is the frequency of the system. 

(4. 3) 
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Next, the nondimensional displacements and stress functions 

are defined as follows: 

W( ) = w(x, y, t) s, a, T 
wm 

U(s, a, T) 

V(s, a, T) 

= u(x, y, t) 
w 

m, 

= vex, y, t) 
w m 

(4.4) 

2 
1- v 

q,(s, a, T) = Ehw R F(x, y, t) (4.5) 
m 

where w is the maximum radial displacement. Also the following 
m 

nondim.ensional quantities are defined: 

'V = £ , c' 
c 

1 h 
r=- R 

\In 

( 1 2)R2 
Q(s, a, T) = - v 2 q (x, y, t) 

Eh 

c = pw co' 
.- h Q q(s, a,T) = w (s, a, T) 

m 

(4.6) 

where w is the frequency of linear vibration of a cylindrical shell to 
o 

be defined later. 

Upon substituting eqs. (4.3), (4.4), (4.5) and (4.6) into eqs. 

(4. 1) and (4. 2), the nondimensional Donnell's shallow- shell equation 

can be written as 
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(4.8) 

The boundary condition can be obtained as: 

1 aZw aZw .DE w = (:-z -Z + II --::::-2) = Z = V = 0 at s = 0, 1 
k as a9 a9 

(4.9) 

The circumferential periodicity condition, 

Z'II' Z'II' 

f av f {I [1 ~ a
Z cb] [ 1 aw 2-n -as d9 = :--z:-z Z - II ~ + W -"2 E (a9) lJd9 = 0, 

o 0 1- II k as a9 

(4. 10) 

eq. (4.10), is obtained from the first two equations of (2.7) by 

I ' 't' au e lmma mg ax. 

From equation (Z. 15), it is obvious that 

q(s, 9, 'T) = f cos 'T cosn9 sinmll's (4.11) 

Z Z 
where f - (1-1I)R £= ~ G 

- EhZ wm 
(4. lZ) 

It is clear now that the nonlinear terms in eqs. (4.7), (4.8) 

and (4. 10) are multiplied by a small parameter E. The dependent 

variable and nondimensional frequency parameter X will be expanded 

into a power series of E as follows: 

Z 
W(s, 9, 'T,E ) = w o(s, 9, 'T)+E WI (s, 9, 'T)+ E W Z(s, 9, 'T) + ---

(4. 13) 
Z 

tp(s, 9, 'T,E ) = tp o(s, 9, 'T)+ Etp 1 (s, 9, 'T)+E tpZ(s, 9, 'T)+ ---
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(4. 13) 
Cont'd 

Substituting eq. (4.13) into eqs. (4.7), (4.8) and (4.10) and 

equating the terms with equal powersof £, a system of linear equations 

may be obtained. However two assumptions will be made before th~ 

linearization, namely, 

1) the amplitude of the periodical external forcing function 

q is small such that f = £2f , 

2) the damping of the shell is also small such that 
2-

y = £ Y 

boundary condition: 

a2w a2w a2q, 
o 0 0 

-a-s-.;"2- + " ae 2 = a;z = V 0 = 0 
1 W =~ 

o k'" 
at 8 = 0,1 

circumferential periodicity condition 

211' av 211' a2 q, 
f ao

o 
dO = f {~[~ ZO 

o 0 1-" k as 

a
2q, 1.. 

- " ae 2 ] + W oJde = 0 

(4.14) 

(4. 15) 

(4.16) 

(4. 17) 
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Order of E: 

boundary conditions: 

2 2 2 
1 a WI a WI a CPI 

WI =:-z -:-z- + v-::z =-2-= VI = 0 at s = 0,1 
k as Be Be 

circumferential periodicity condition, 

2 
order of E: 

(4.18) 

(4. 19) 

(4.20) 

(4.21) 
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a2w a2cp a2w a2cp a2w [82q) + 1 0 1 + 1 0 0 1 

kZ ael as l ae l asl - 2 aeas aeas 

a2
cpl a2w a2

cp a2w a2cp 82wo] 0 + 0 1 + 1 
-2 aeas aeas asl ael as2 ael 

boundary conditions 

a2
cp2 

= ae 2 = V 2 = 0 at s = 0 f 1 

circumferential periodicity condition 

2Wa~'. 2#1 [ ;~ 
f 2 f 1·1 "'2 ae de = ----z 2 2 
o 0 I-v k as 

+ [W2 -&:0 8:1 lIdS = 0 
I 

2 
a CP2 ] ; 

- v l + 
ae 

(4.22) 
Cont'd 

(4.23 

(4.24) 

(4.25 ) 

Similarly, the linearized equations for the order of £3 and higher 

can be written. In the following sections the equations for zero . 

order, first order and second order of £ will be solved. 

4. 2 Solutions of Zero Order Equations 

Equations (4. 14) and (4.15) are the zero order equations 

which are identical to the linear equations of free vibration of cylindri-

cal shells (see Appendix A). The solution can be readily obtained as: 
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00 00 

W 0 = ~ ~ [AmnC T)COSO:tO) + BmnC T)S~O)] Sintnll'S) C 4.26) 
m=ln=l 

As indicated by the results of linear vibration (Appendix A), 

with an external forcing function of the form fCosTcosnOsinmll's, the 

response at the vicinity of a resonance can be expressed as 

W = acosTcos(nEJsintnll'!iO o . (4. 26a) 

In nonlinear vibration of cylindrical shells, the circumferen-

tially traveling wave response must be included. The traveling wave 

response may be expressed as: 

W = ccos( T-nO)sintn1TS) 
o (traveling wave) 

(4.27) 

Combining the standing wave response, eq. (4.26) and travel-

ing wave response, eq. (4.27), the zero order solution will be 

where 

W (s, 0, T) = [A(T)COsO.tEtt-B( T)sinPttl Sintn1TS) 
o 

A(T) = acos( 740 ) and a I 

(4.28) 

(4.29) 

where 0a and 0b are the phase angles which are included in the re­

sponse due to the damping and nonlinear effects. 

Comparing eqs. (4.28) and (4.26) indicates that the zero 

order solution is one of the solutions of the linear free vibration of 
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cylindrical shells. 

Here A(T)coS(P~sin4n1Ts)will be referred to as the driven mode 

since it is spatially similar to the external forcing function. 

B(T)sinf!e)si.:Jltnn's) will be referred to as the companion mode since 

it is excited indirectly. 

Substituting eq. (4. 28) into eq. (4.15), the zero. order stress 

function can be obtained as: 

where 

" 
m1T 

t = nk 

(4.30) 

( 4. 31) 

With eq. (4.28) and eq. (4.30), it can be shown that the bound-

ary conditions, eq. (4. 16) and the circumferential periodicity condi-
t 

tion are satisfied. 

Substituting eqs. (14.28) and (4.30) into eq. (4.14), the zero 

order frequency parameter X may be obtained as, 
o 4 

2 m". 
2 m 1T 2 2 2 (1- V )(T) 

X = r [~k ) +n] + 2 2 2 
o R ~". ) +n ] 

( 4. 32) 

This zero order nondimensional frequency parameter is 

identical to the resonance frequency of linear vibration. 

The amplitudes and phase angles of the driven mode and com-

panion mode are not determined by this zero order solution. 

Subsequent solutions of higher order equations will determine these 

values. 
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4. 3 Solutions of First Order Equations 

With the results of the zero order solution, the first order 

equations (4. 18) and (4. 19) can be written as 

4 4 4___ l 
. l [I a WI l aWl a -WI] a WI 

r ~ B;4 + ~ asZae Z + -;r + >"o-;:;r 

l 
I a till 

- ~87 

= -AI [ A cos(ne) + B s~e}] ampul's) (4.33) 

l 
Dln1r [ l l l l . + (-k-) r (A +B )coslm1rs+(A -B )coslnO+lABsmlnO] 

(4. 34) 
l 

mn1r [1 l l 1 l l . = (-k-) y(A +B )coslm1rs - y(A -B )coslnO-ABsmlnO] 

The right hand side of eqs. (4.33) and (4.34) are the results 

of the right hand side of eqs. (4. 18) and (4. 19) by substituting the 

zero order solutions and using trigonometric relations. The 
•• _ alA 

dot means differentiation with respect to time T, hence A -
- aTl · 

Since eqs. (4.33) and (4.34) are inhomogeneous, the solutions 

of these equations are decomposed into two parts, the particular 

solution wt ' tilt and the homogeneous solutions WI c, till c. There­

fore the complete solution can be written as: 

WI =W I
P +W l

c 

till = tIl l
P + till c I (4.35) 

W IP and tilt satisfy the equations (4.33) and (4.34) and WI c 
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(4. 36) 

(4. 31) 

and the com.plete solution (4.35) m.ust satisfy the boundary condition 

(4.20) and the circumferential periodicity condition(4. 21). 

Let the particular solutions WI P and CPl P be as follows: 

( 4. 38) 

Substituting equations (4.38) into (4. 33) and (4.34) and equat-

ing the coefficients of cos2m.1I"s, cos2n9, sin2n9. cosn9sinm.1I's and 

sinn9sinm.1I"s. five sets of ordinary differential equations m.ay be 

obtained as follows: 
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4 2 
16n -Q _ !.(nm11') (A2 B2) :--z 2-- 2 lt -
I-v 

4 2 
16n - _ (nm11') AB -:--z Q 3 - - -k-
1- v 

The solutions of eqs. (4.39), (4.40) and (4.41) m.ay be 

readily obtained as 

(4.39 ) 

(4.40) 

(4.41 ) 

(4.42) 

(4.43) 
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) 

Z Z Z Z o.z = c 3(a -b )+C4 [ a cosZ(rt6a)+b cosZ(rt6b )] } 

- - Z Z-[Z Z ··o.z = c 3(a -b )+c4 a cosZ( rt6a )+b cosZ( rt6b ) 1 

0.3 = caabsin(6b - 6a )+c7absin(Z,.'+6b +6a ) I 
0:3 = caabsin(6b -6a )+c7absin(ZT'+6b +6a ) 

Z Z 

(4.44) 

(4.45) 

(4.46) 

(1-11) 1 n 
Cz = 4 --z:z (17) + c Z) 

n t 

-, 1 Z Z 
c3 = - '"()4 (1- II ) t 

- 1 Z .2 
ca = - 3Z (1-11 ) ~ 

(4.47) 
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where rand t 2 are defined in eq. (4.31). 

The solutions of equations (4. 42) and (4. 43) need special 

attention. By eliminating Al (r), eq. (4. 43) can be reduced to as 

the following equation 

(4.48) 

The solution of the above equation is 

(4.49) 

A l (r) is the so-called "secular term" which grows indefi­

nite1yas r - 00. Since only the periodic solutions are sought, 

Al (r) can not be part of the solution •. Therefore it is necessary 

to assign: 

which in turn makes: 

(4.50) 

(4.51 ) 

Now the particular solution has been obtained and the first 

order frequency parameter has also been determined to be zero. 

This particular solution satisfies neither the boundary condition 

(4.20) nor the periodicity condition (4.21). Therefore the comple-

mentary solution is necessary to enforce these conditions. 

After some observations, the homogeneoull solution will be 

as surned as follows: 
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(4.52) 

and 

(4.53) 

Substituting eqs. (4.52) and (4.53) into the homogeneous 

equations (4. 36) and (4.37) and equating the coefficients of likely 

terms, a set of ordinary differential equations for the unknown func-

tions may be obtained. The circumferential periodicity condition 

(4.21) must be satisfied by the complete solution (4.35) which is 

the sum of a particular solution and complementary solution. This 

provides an additional equation for the function g (r-) and i (T). 
o 0 

The details of the circumferential periodicity condition are discussed 

in Appendix B. The satisfaction of boundary condition (4.20) by the 

complete solution provides the boundary conditions for the unknown 

functions in the complementary solutions. The details of the bound-

ary conditions are discussed in Appendix C. In the following the 

differential equations for the undetermined functions and their 
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a f a 
boundary conditions will be summarized. [Note (. ) = 8r' ( ) = as] 

} (4.54) 

The solutions are as follows: 

(4. 54a) 

where 

'22 ,I: 2 I 

n I-v n 
c = T'7" , C 6 = Z T'7" 

5 , 10 1 (I .. JI l..4)":) 10: 
2 2 2 0 

,( 1- v )n i k ~o : , ' I, I 

l, 11 

(4. 54b) 

c6 = - 2 
8(I-v -4)..0) 

(4.55) 

1 1 g"" + ~ g"l = 0 
~k4 1 k~ 

The boundary conditions at s = 0,1 are 

I (4. 55a) 
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: 

The solutions are as follows: . 
I 

~ 1 (0) = :! 0:"1 (2.-1 jo!nbtil (20-1 j+K~ coo"l (20 -1)coBhf'1 (20 -I ) ] 

8 1(S)=:-2'8 1(s) (4. 55b) 
k 

1 1 
where .... 1' KI and K2 are constants. The detailed solution procedure 

and these constants may be found in Appendix D. 

2 
r 8 'III k4 2 

~ 1 il" + 1 8" = 0 
I-I! k4 kZ 2 

The boundary conditions at s = 0, I are: 

2 
82(s=0, I) = (2m'IT) c2 

ThesolutioDs are: 

I 

(4.56) 

(4. 56a) 

82(8 )=K~Sin""2(2S-1 )sinh .... 2 (2a-1 )+K~cos""2(2s-l)c08h.,..2(2S-I) 
(4. 56b) 

where f.L2' K~ and Ki are constants. The detailed solution procedure 

and these constants may be found in Appendix E. 
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ZI lilt ln Z 4 1-
r [, g3 -Z(lt) g;+(ln) g3] -:z g; = 0 

k k 
(4.57) 

Z 
~ [~ g;" -Z(~) g; +(Zn)"'i31 +~ 8;=0 
I-v k k 

The boundary conditions at s :: 0,1 are: 

g;(s=O, I) = 0 
(4. 57a) 

g;(s=O, I) = 0 

The solutions are: 

+K~COSA4(ZS-1) cos~(Zs-1 )+K;sinA4 (ZS-1 )s~(Zs-l) 

i 3(s) =Z .... ~rZ[K~coS~(Zs-l)Coshl\ (ZS-I)-K:S~(ZS-I)S~ (Zs-I) 

+K!cOSA4(ZS-1 )cosllAz(Zs-1 )-K~SinA4(2S-1 )s~(2s-1) 

(4. 57b) 

3 333 
where K I , KZ' K 3, K4 , -'\, AZ' ~, A4 and .... 3 are constant. The 

deta.iled 801utioa procedure and these COIUItaa.ta may be fo1Dld iD 

Appendix F. 
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2 
r2 [~ g'4 -2(1?) g4 + (2n)4g41 -4~og4- ~g4 = 0 

~ [~ gil" _2(2n)2 sr!'+(2n)"i ] +..;. g4" = 0 ) 
1- 1/ k 4 k ""4 4 k' 

(4.58) 

The boundary conditions at s = 0,1 are 

g4(s=O, I) = 0 

(4. 58a) 

g4(s=O, 1) = 0 

The solutions are: 

g4( s) = KiCOS~(2s .. 1 )cosli1\ (2~1 )+KiSmA3(2s-1 )sinhl\ (2s-l) 

+K~cOSA4(2s-1 )cosb1i:2(2s-1 )+K:s~4(2S-I)S~2(2S-I) 

(4. 58b) 

The detailed solution procedure and the constants in the solu-
r 

tions may be found in Appendix G. 
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(4.59) 

, ~ [~ gs" -2(¥) 2 I s+(2n)4 15] + ~ 15 = 0' 
I-v k k 

The boundary conditions at s = 0, 1 are: 

g5(s=0, 1) = 0 

(4. 59a} 

is (s =0, 1) = 0 

The solutions are: 

(4. 59b) 

The detailed solution procedure and the constants in the solu-

tions may be found in Appendix G. 

} (4.60) 



-42-

The boundary conditions at 8 = 0, 1 are: 

g6(s=0, 1) = 0 

The solutions are: 

g6 (8)=K~ cos~(2s-1 )coshL'\ (2s-1 )+K~Sin~(2s-1 )sinh:J\ (2s-1) 

+K~COSA4(2S-1 )cosh~(2s-1 )+K!SinA4(2s-1 )sinbAz(2s-1) 

(4.60a) 

g6(s)=21J.~r2 [K~cosA3(2s-l)coSh.L\ (2s-1) :-K~S~(2S-I)Si.rllu\ (2s-1) 

+K!coSA4(2s-1 )cosh:Az(2s-1 )-K~sinA4(2s-1 )sinbAz(2s-1)] 

(4.60b) 

The detailed solution procedure and the constants in the solu-

tion may be found in Appendix F. 

Now the solutions for the first order(e) perturbation equa-

tions have been solved. The specified circumferential periodicity 

condition and boundary conditions are all satisfied. Combining the 

zero order solutions and the first order solutions the response of 

the large amplitude vibration of a cylindrical shell can be obtained 
w 

to the accuracy of the order of E = :;. If the maximum radial 

displacement w m is of the order of shell thicknes s h, in view of 
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the shell theory used in which ~ « 1 is applied, the solution up to 

the order of E should be considered adequate in consistency with 

the shell theory. However the response-frequency relationship has 

yet to be determined. The second order perturbation equation will 

be us ed to obtain this relationship. 

4.4 Response-Frequency Relationship from Second Order Equations 

The second order perturbation equations, (4. ZZ) and (4. Z3), 

are of inhomogerteous type as are' the firs t order equations. 

The right.;.hand side of equations (4. ZZ) and (4. Z3) are functions 

of zero order solution and first order solution. Since only the 

response-:trequen~y r'elati~nship is sought from the second order 

equation, the so-called If secular terms" are of particular interest; 

in other words,'the terms with the spatial dependents cosnesinmrrs 

and sinnesinm,rs;Ho\Vever, as' the complementary solution of the 

first order' equation is not 'expressed in tlle form of a trigonometric 

function in s, it is nece'ssary to expand these solutions in terms of 

trigonometric functions. A careful examination of the comple­

mentary solution of the first order equation indicates that it is 

finite and integrable in the interval s = 0 to s = 1 and has a finite 

number of maxima and minima. Therefore a convergent Fourier 

series exists for the complementary solution, such as 

1 (4.61 ) 
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I (4.62) 

l, (4.63) 

I ' 

," '1.1, I"~ 

, , I I (4.64) 

l (4.65) 

} (4.66) 

The detailed Fourier series expansion and their coefficients 

ar e dis cus s ed in App endix H. 

With these Fourier series expansions for the first order 
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I :, 

(4.68) 

The right-hand side of eqs. (4.67) and (4.68) are the results 

of the right-hand side of eqs. (4. ZZ) and (4. Z3). The expressions 

of G 1, GZ' G 3, G4 , G 1, GZ' 03 and G4 can be found in Appendix. 'L 

G (s, 9, r) and G (s, 9. r) are functions with the spatial dependents 
o 0 

other than cosij,9)sin(j1Ts)and s~6JBi..r(j1Ts)where i:f:. n, j:f:. m. 

Now let the solutions of second order equations be: 

WZ{B. e. T) ';~AZ{T)cosne+BZ{T).innel sinm". + WZ{s. e.T) I 
CPZ{S, 9, r) =[AZ( r)cosn9+B Z( r)sinn9] sinm1Ts+ 4}Z{s, 9, r) 

(4.69) 

Substituting eqs. (4.69) into eqs. (4.67) and (4.68) and 

equating the coefficients of COsfp.9)siDpl1Ts) and sil::lp(jsU:tn1TE9, the fol-

lowing ordinary differential equations may be obtained: 

+ J- {f' sin6 +TlabZsinZ(6b -6 )+"">.. ~ ya}sin(.,...6 ) 
~ a a 0 a (4.70) 

o 
•• 1 3 Z 
B Z+BZ = >"0 {nb + [j3+O'cosZ(6b-6a )] a b+>"zb}sin(.,...6b ) 1 
+ i- { f1&Z

bSinZ(6b -6a )-oJ). ~Y.b}cOS(r+6b) (4.71) 
o 
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where Q, J3, 0, and TJ are functions of circumferential wave number 

n, half axial wave number In, Poisson's ratio v, length to radius 

k and nondimensional bending rigidity r. Their expressions can 

also be found in Appendix I. 

It should be remembered that,a}is the amplitude of driven 

mode and}b,is the amplitude of companion mode. 

, Equations i (4.70) and (4.71) are similar tq eq. (4.48). There­

fore ~e solution Az and BZ are ~e secular terms which grow indefi.' 
I 

nitelyj as T - 00. ConsequenUy for a steady state solution the following 
t I I I I j 

must be true: 
i, 

3 . Z '! 

~Za + aa + [J3+ocosA] ab + f' cos 0 = 0 

..r~ ..Jr:" 'Ya + TJ ab Z sinA + f'sino = 0 o 

3 Z 
~Zb + ab T [I*0cosA] a b = 0 

where 0 = 0 andA = Z(ob-o ) a a 

; 
" , 

(4.7Z) 

(4.73) 

(4. 74) 

(4. 75) 

(4. 76) 

Eqs. (4.7Z), (4. 73), (4. 74) and (4. 75) are four algebraic 

equations for four unknowns, namely a, b, {) and A. These un-

knowns can be solved in terms of Q, J3, 0, TJ, which are functions 

of wave nwnbers and shell configurations, and 'Y, the damping in 

the shell and f, the magnitude of the external forcing f\.mction. A2 

the second order frequency parameter, is also an unknown but it 

appears in the solutions of the driven mode ,a, which provides the 
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response-frequency relationship.' 

Single mode (driven mode only) response ill 

b:; 0 is one of the solutions for eqs. (4.72) to (4.75). In this 

case the companion mode is not participating in the vibration. The 

response inyolves the single mode, namely the driven mode only. 

The equations governing the driven mode response can be reduced 

to as foUow~: 

~..r;:- Va + fl sin 0 = 0 
o 

Eliminating 0 from eq. (4.77), one obtains! 

2 2 - 2 fl2 
(~2 + aa ) + ~ ~ y =--Z 

Now defining 

Col) 
Q=­Col) I 

o 

. . a 

. :2' " A . 2 42 
n =X-=l+E r-

o 0 

equation (4. 78) can be reduced to 

(4. 77) 

(4.78) 

(4.79) 
, ; 

. \ , 

(4.80) 

2- 2 Here the relations y = E 'Y and f = E £1, which have been defined 

before, are used. 

Equation (4.80) can be rewritten as: 

(4.80a) 

Here eqs. (4.6) and (4. 12) are used. The physical deformation of 
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the shell can be expressed as 

where a and bare nondim.ensionalized amplitudes of the driven mode 

and the companion mode respectively. Obviously the quantities wma 

and wmb are the physical amplitude of the driven mode and the com- i 

panion mode respectively •. Since the deflection is of the order of 
I ,! , 

shell thickness for the convenience of comparison, the following non-
, • I \: " 1 !! ' ; , , I '. ~ , 

dim.ensionalized quantities will be defined 

w a m 
w = -.,F--a h 

w b 
m 

wb = h 

Then eq. (4. 80a) can be written as 

G2 

2 
>"owa 

(4.80b) 

(4.80c) 

Throughout this study, the driven mode and the companion mode are 

plotted in terms of wa and wb respectively_ 

Eq. (4.80) is the so-called response-frequency relationship. 

Fig. 4 is a typical plot of eq. (4. 80) for m = 1, n = 6, R = 4", L = 8", 

h h = 0.010" and R = O. 0025, f = O. 0012, 'Y = 0.001. As can be seen, 

the nonlinearity is of the softening type, i. e., the frequency 

decreases with increasing response amplitude. This curve is sirni-

lar to the response-frequency relationship of a simple spring-mass 

system with a nonlinear softening type spring as described in Ref. 1. 

Physically, when the frequency is increasing the response will follow 
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the curve a .. b-c and then jump to d. Further increasing the fre­

quency, the response will follow the curve from d to f. When the 

frequency is decreasing the response will follow the curve f-d-e 

and then jump to b. Further decreasing the frequency, the response 

will follow the curve from b to a. The dis continuous r espons es at 

c, d and e, b are called" jump phenomena II which have been observed 

in various nonlinear vibration systems. Figs. 5, 6. and 7 are the 

similar plots for different wave numbers, damping and amplitude 

of external forciD.g functions. 

In the case of free vibration, the response-frequency rela-

tionship can be obtained by letting f = 'Y = 0 in eq. (4.80), namely, 

2 2 a 2 n =1-E' ra (4.81 ) 
o 

which are plotted by dashed lines in Figs. 4, 5, 6 and 7 and referred 

to as "backbone curves." 

The backbone curves can be used to determine the type of 

nonlinearities (softening or hardening) and the degree of nonlinearity. 

If the backbone curve bends toward the left, the nonlinearity is soft-

ening, if to the right the nonlinearity is hardening. 

Although a softening type n~nlinearity is indicated in Figs. 4 

to 7, not all the modes (combination of m and n) are of the softening 

type. Fig. 8 shows the backbone curves for different modes. It is 

clear that the nonlinearity in the vibration of a circular cylindrical 

shell with finite length is of both the softening and hardening type. 

An examination of eq. (4.81) shows that the type of nonlin-

earity depends on the sign of the quantity a. Positive a implies a 



softening type nonlinearity and negative a implies a hardening type 

nonlinearity. Also the degree of nonlinearity is dependent on the 

magnitude of a. The larger a implies the larger nonlinearity. Figs. 
2 

9 and 10 show the quantity (~) r (note>.. is always positive) as a 
o 0 

function of half aXial wave number m and circumferential wave num-

L h 
ber n for R =:: 2 and R: = O. 0025. For m = 1 the nonlinearity is of 

the softening type only. For m ~ 2 the nonlinearity is either of the 

softening or hardening type depending on the circumferential wave 

number n. 

The forced response-frequency relationship is given by the 

solution of eq. (4.80). At a given frequency the response can be 

expressed as a function of the eXternal forcing function. Figs. 4 

to7 show that the r'esponse at certain frequencies is not single-

valued. For instance in Fig. 4 the response is triple-valued for 

0.9965<0 < O~ 9984 and double:'valued for 0 = 0.9965 and 0 = 0.9984. 

In the multiple-valued response region, a stability analysis must be 

performed to deterrhine the stable response. This stability analysis 

will not be included ul. this investigation. However. it can be ob­

served from the resp0l!se-freciuency relationship that the multiple 

'response region is confined between the two f~equencies where the 

tangent of eq. (4.80) is vertical, i. e., : = O. In other words, the 

locus of these vertical tangents is the stability boundary (Ref. 1). 

Fig. 11 shows the locus of vertical tangents for y = 0.001 and 

'Y = 0.003 respectively of a shell having ~ = 2, ~ = 0.0025. The 

shaded area indicates that the jump phenomenon wi11 occur. The 

amount of damping in shell vibration plays an important role in the 
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jump phenomenon. Larger damping will make the jump phenomenon 

occur at a higher amplitude of response. 

Companion Mode Participation 

In the case of the companion mode participating in the vibra­

~ion, i. e., b'l- 0, eqs" '(4.72) to (4.15) can be reduced as follows by 

eliminating 6 and A: • 

(4.83) 

Eqs. (4.82) and (4.83) are nonlinear algebraic equations for 

two unknowns, namely a and b. A direct solution for a and b as 

functions of f, nand 'Y is difficult. There:t'ore a small computer 
i I ! i f 

program was developed to calculate b and r for given a and 0. By 
, 0 ' 

cross-plotting the 'results, it is possible to obtain ~urves of a vs. 0 

and b vs. n for constant ~ a.:rld y. Figs. 12 and 13 show the ampli-
0, 

tude of the driven mode 'a with and wi'thout th~ ~companionmode 

participation for constant ~ and 'Y. Since b == 0 is a solution of 
o 

eqs. (4.72) to (4.75), both curves in the figure represent the possi-

ble response of the shell. The actual response in the multi-valued 

region has to be determined by a stability analysis. Fig. 14 shows 

the corresponding amplitude of the companion mode as a function 

of n for constant ~ and 'Y. As can be observed, the response of 
o 

the driven mode is affected by the companion mode only in a narrow 

region in the vicinity of g = 1. Its amplitude, a, is always greater 

than a certain value in this region. This minimum value can be 
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derived from eq. (4. 83) as follows. In order for the companion 

mode b to be a real value, it is necessary that the following is true .. 

~ I 2' 2 
.... 2° y 

TJ 

which in turn can be written as 

(4.84) 

(4.85 ) 

This indicates that larger damping y will make the companion mode 

occur at larger amplitude. 

After establishing the minimum amplitude for the driven 

mode, a minimum magnitude of forcing function f can be established 

by using eq. (4.82). The existence of a minimum forcing function 

implies that in order to make the companion mode participate, the 

external forcing function must be greater than a certain minimum 

value. This explains the fact that the companion mode can be ob­

served experimentally only for the large external excitation. 

It may be concluded that the participation of the companion 

mode is a phenomenon of large amplitude and large external forcing 

function. (Note that the large forcing function only does not neces­

sarily imply large amplitude, the large amplitude can also be ob­

tained for small damping at the right frequency for small forcing func-

tion. ) As mentioned before, the occurrence of the companion mode must 

be determined bya stability analysis. Nevertheless the region in which 

the companion mode may exist can be established. Fig. 15 shows the 

region (the shaded area) in which the companion mode may be 
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L h' 
participating for R = z, R = O. 00Z5, m = 1, n = 6, 'Y = 0.001. 

4. S Discussion of Results and Comparison with Previous Investigation 

The radial response of nonlinear vibration of a cylindrical 
ii. 

shell simply supported at both ends can be written as 

W(8, 0, 1') = [acos(T+oa)cosne+bsin(T+~)sinne] sinm"s 

+gl (8 )+gZ(S )[a
Z 

cosZ( 'r+0a) .. b
Z 

cosZ( T+~)] 

+g 3(* )cosZn9+g4(s )cosZn9 [aZ cosZ( 'r+0a)+bZ cosZ( ;:..~)] 

+gs(s)sinZn9sin(2 ir+oa+ob )+g6(s)sinZn9sin( ~ -oa)} 

'Z +0(£ ) + • ••• • (4.86) 

where the amplitude of the driven mode. a, and the companion mode 

b,are functions of the frequency, external forcing function and damp-

ing. The terms multiplied by the small parameter £ are due to the 

nonlinearities of the problem. ' These terms represent the difference 

of the deflection shape and harmonic content between the linear and 

nonlinear response of the shell. Therefore, it is of interest to dis-

cuss these terms. The functions go(T), 1:X 1(T), I:XZ(T) andI:X 3(T) 

involve a constant term and a term with coefficient COSZT or sinZT. 

The functions gl (s) to g6(s) are of the "boundary layer" type, i. e. , 

they possess large magnitude neal: both ends (s = 0 and 

s = 1) and vanishingly small magnitude elsewhere. A typical plot of 

gZ{:.) for m = 1, n =.6 and m = Z, n = 7 is shown in Fig. 16. There .. 
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fore, as far as the deflection shape away from the immediate vicinity 

of the boundary is concerned, terms like go(T), al(T)cosZm'll's, 

aZ(T)cosZn8 and a 3(T)sinZn8 are dominant. 

In Section II, previous investigations of nonlinear vibration 

of cylindrical shells have been discussed. The deflection shape as­

sumed in those previous investigations for applying the Galerkin 

method will now be compared with the present calculated deflection 

shape. Since the fundamental deflection shapes are all identical to 

the linear mode shape, only the "added" terms in the deflection 

shape will be compared; Chu (Ref. 8) has no added terms for the 
, 

deflection shape. Nowinski (Ref. 10) has a constant as the added 

term. Evensen (Ref. IZ) has (l-cosZm'll's) as the added terms. 

Dowell has sinm'll'S as the added term. All the added terms are 

axisymmetric. In the present analysis, non-axisymmetric terms 

such as aZ(T)cosZn8 and 0!3(T)sinZn8 are found. A comparis'on of the 

axisymmetric mode of the present solution and Evensen's assumed 

deflection is shown in Fig. 17. (Note the axisymmetric modes in 

the present solution are go(T)+O!l (T)cosZm'll's+gl (s)+gZ(s)[ aZcos(T+6a >· 
Z b cosZ( T+6

b
)]). For small" aspect ratio," favorable agreement is 

indicated. However increasing the aspect ratio makes the deviation 

between the two mode shapes larger. For the m = 3, n = 7 mode 

the deviation is quite pronounced. One possible explanation of the 

large deviation at large aspect ratio is that the amplitude of Evensen's 

axisymmetric mode is independent of the axial half wave number m 

but the present analysis indicates otherwise. 
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As mentioned before, the type of nonlinearity of cylindrical 

shells depends on the shell geometry as well as the mode shape 

(combination of m and n). In order to compare the nonlinearity in 

the present results and those in Evensen's results, the response­

frequency relationship in Evensen's report (Ref. 12) is modified as 

(4.87) 

where 

'Y = (4.88) 

The quantity in the bracket in eq. (4.87) corresponds to the quantity 

(:)Z f- in the present analysis (eq. (4.81». Fig. 18 shows the com­
o 

parison of these two quantities. In general, the type of nonlinearity 

and the degree of nonlinearity are different for the present analysis 

and that of Evensen's except for m = 1, n> 10. Fig. 19 shows a 

similar comparison for large circumferential wave number n. The 

percentage difference is defined as follows: 

% = 
I(Present)-(Evensen's) I 

x 100 
(Present) 

(4.89) 

Large percentage differences are observed for 10 > n > ZOo The 

explanation for this difference is as follows. For n < 10, the inplane 

boundary conditions have greater influence in the results of the linear 

vibration of cylindrical shells (Ref. 19) and Evensen's solution does 

not satisfy specified inplane boundary conditions which cause the 
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large difference. For n > ZO, Evensen's solution breaks down since 

it is based on the assumption that (nZ ~)Z «I. It appears that 

more inplane constraints at the boundary makes the degree of non-

linearity greater. 

Olson (Ref.· ZZ) performed a vibration experiment on a cylin­

drical shell flutter model where two rings were rigidly attached to 

both ends of the shell. The measured frequency for m = I, n = 10 

mode was 131 cps. The calculated frequencies are 80 cps and 140 

cps for the simply-supported case (w = M = N = V = 0) and clamped x x 

case (w = :: = u = v = 0) respectively. It is obvious that Olson's 

experimental model is closer to clamped than simply supported. 

Fig. ZO shows Olson's nonlinear vibration experimental results com-

pared with the backbone curve obtained by the present analysis, 

Evensen's analysis (Ref. IZ) and Matsuzakiand Kobayashi's (Ref. 16) 

analysis. Here the present analysis has a simply-supported inplane 

boundary condition. Evensen's· analysis has a somewhat more con-

strained inplane boundary condition due to the violation of simply­

supported inplane boundary bo:h.dition. Matsuzaki and Kobayashi's 

analysis was intended for a clamped boundary condition, namely, 

w ~ ax8w = N = u = 0 at s = 0, I; however the u = 0 condition was vio­xy 

lated, which imposes a further inplane constraint to the shell. 

Clearly Olson I s experimental model has a boundary condition some-

where in between the partially unconstrained inplane boundary con-

dition and "super" total constrained inplane boundary condition. 

Again this confirms that more inplane constraints make larger de-

grees of nonlinearity. 
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The presence of the companion mode is a very interesting phe-

nomenon. The appearance of traveling wave response due to the 

companion mode can be explained as follows: 

The axial dependence is omitted for convenience. If a = b then the 

following is true. 

W(y, t)= a[coswtcos1t + sinwtsin it1 

= acos(it - wt) 

Defining the circumferential wave length as: 

~ = ZTI'R then 
c n 

Z1f Rw 
W (y, t) = co s X- (y - n t) 

c, 

This is a traveling wave form with wave length~.' and phase 
, ' c 

velocity Rw in/sec. Now the period T required tor this wave to n , ' , , 

travel a complete circumference (I cycle) is: 

ZTI'R ZnTl', 
T =-- = -sec. Rw w 

" 

,n 

hence the frequency ,of the traveling wave wT 
, ' 

'w ' w ' 
wT =.,,- cycle/sec = - rad/sec. 

"n1r n 

Now if a:;. b, the total response can be decomposed into a 

standing wave superiInposed on a traveling wave. Fig~ Z 1 shows the 

difference between a standing wave and a traveling wave by looking 
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at the shell cross-section and the signal from a displacement pick-up 

at a fixed point on the shell. 

I' 

,), I! , 
,. ;, , ! 

" 

: ): : \', i, 1 I: .' i I., 
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V.. EXPERIMENT AI.., ANALYSIS 

An experimental investigation was per formed in order to 

observe qualitatively the phenomena predicted by the analysis and 

wherever possible to make detail comparison of experiment and 

theory. Very few experimental studj-es have been devoted to non­

linear vibration of cylindrical shells. Olson (Ref. 22) studied an 

electro-plated shell flutter model in which a softening type nonlin­

earity was observed. However in his experimental study no attempt \ 

was made to investigate the companion mode. Kobayashi (Ref. 16) 

tested another flutter model which was constructed of super-invar 

sheet bonded into a seamed cylinder. He also found that the non­

linearity was of the softening type and obs erved the participation of 

a companion mode over a range of frequency and amplitude. 

In the present experimental investigation, it is hoped that 

the following aspects can be achieved, namely: 

1) To obs erve the type of nonlinearity 

Z) To measure the response quantitatively and to compare 

with the theoretical results 

3) To determine the range of companion mode participa­

tion and the characteristics of the companion mode 

4) To make a general comparison between the theoretical 

and experimental results and to determine the region 

of validity of the theory 

5) To observe the characteristics of nonlinear response 

which were not predicted by the theoretical analysis 

and to suggest the modifications to the theory. 
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5. 1 Test Specimen 

5. 1. 1 Description of Test Shell 

In the theoretical analysis, a so-called simply-supported 

shell (SSl/SSl) was studied because of the simplicity of its boundary 

conditions. The simply-supported boundary condition requires that 

radial displacement w, bending moment Mx' axial force N x and cir­

cumferential displacement v vanished at both ends. It is almost 

impossible to simulate these conditions experimentally. Therefore, 

it was decided to choose a shell with rings at both ends that will 

approximate the simply- supported condition. The rings were chosen 

so that the shell's natural frequencies and mode shapes were close 
I 

to those of a simply-supported shell. Using the program developed 

by El Raheb (Ref. 19), a preliminary analysis was performed to 

determine the size of the end rings. It is obvious the ring should 

be stiff in the radial direction to provide w = 0, torsionally weak 

to provide M = 0, and tangentially stiff to provide v = O. The van .. 
x I 

ishing axial force Nx is achieved by the low bending stiffness of the 
I 

ring in the axial direction. The material chosen for the shell-ring 

system was aluminum alloy 7075-T6. The shell was machined from 

a seamless tube to its desired inner radius, then placed on a steel 

mandrel by thermally expanding the aluminum tube. The outside 

machining process was carried out on the mandrel to the design 

thickness and ring dimensions. The final shell was removed from 

the mandrel by thermal heating again. The end rings are an integral 

part of the shell. The final dimensions are shown in Fig. 22. 
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5.1.2 Determination of Shell Wall Thickness 

It is reasonable to aSSUllle that the test shell would not have 

uniform wall thickness since the machine tool used to manufacture 

the shell has its own tolerances. Although the tolerances would be 

of small magnitude, the percentage error might be high since the 

average shell wall thicknes s was also very small. Therefore the 

variation of wall thickness of the test shell was measured to insure 

the errors were within an acceptable range. It is especially impor­

tant to minimize the variation in shell thickness not only to obtain 

the uniform wave pattern for the vibrational mode shape but also 

to prevent any undesired response during the vibration. A deep 

throat micrometer was used to take 5 measurements at each of the 

36 locations over the entire shell wall. The micrometer and shell 

were connected to a light bulb and' a battery. The contact between 

the micrometer and shell closes the circuit and turns on the light 

bulb. This is used as an indicator for contaCt made to assure the 

uniform measurement. The maximum deviation of the shell wall 

thickness among these measurements was found to be 4% which was 

considered to be acceptable. 

However, the average shell thickness was determined in the 

following manner. The diameter and the length of the shell together 

with the dimensions of two end rings were measured. The total 

weight of the shell-ring system was obtained. Then the shell wall 

thickness is calculated using the density of the material. The 

density was checked for a piece of material cut from the same stock 

as the shell and was very close to that reported by the manufacturer. 
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5. 1. 3 Support Plate for Shell-Ring System 

The support conditions desired for the test were a free support 

for the shell-ring system. However, it was necessary to constrain 

the rigid body motion of the shell in order that the mode shapes could 

be readily measured. This was accomplished by mounting one end 

of the shell on the base plate but making only a flexible line contact 

with the end ring. For this purpose, the plate was fitted with two 0 

rings, one to support the axial motion and the other to support the 

radial motion. The 0 ring for the radial support is mounted so as 

to allow a few thousandths of an inch clearance. It was felt that this 

provided sufficient play so as not to restrict the radial motion and 

at the same time sufficiently restrain the rigid body motion. Fig. 

23 shows a photograph of the test shell and its supporting end plate. 

5.1.4 Compadson Betweeh the Shell-Ring System and the Simply-

Supported Shell 

After the dimensions of the shell ring system and its support 

end plate were d~termined, it was necessary to perform an analysis 

to see how close the shell-ring' system could approximate the simply­

supported shell. The 'natural frequencies and mode shapes were 

chosen for the comparison. 

Table I lists the calculated natural frequencies of the shell­

ring system based on El Raheb's solution (Ref. 19) and of the 

simply-supported shell (551/551) based on the Donnell approxima­

tion (eq. (4. 32» which is used in the present investigation. Also 

the experimentally measured natural frequencies are listed. The 
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percentage difference of the calculated frequencies between the shell-

ring system and the simply-supported shell are less than 8.62 % {or 

n;:' 5 and decrease with increasing circumferential wave number n. 

The experimentally measured natural frequencies are generally in 

good agreement with the calculated frequencies based on the shell..; 

ring system. Fig. 24 shows the frequency spectrum of the shell 

specimen as a function of half axial wave number m and circumfer-

entia! wave number n. 

The mode shapes of radial displacement w. bending moment 

M • axial compres sion N and circumferential displacement v {or x x 

m = 1, n = 6 mode are plotted in Fig. 25 for the shell-ring system 

and the simply- supported shell. They are in good agreement except 

for the bending moment M in the vicinity of the boundary where 
x 

large deviations are indicated. Since the high bending moment is 

concentrated in the very narrow region close to the boundary and 

rapidly approaches the values for the simply- supported shell, it 

was felt that this shell-ring system is acceptable in approximating 

the simply- supported shell for the nonlinear vibration problem to be 

studied. 

5. 2 Description of the Experimental Set- Up 

Vibrations of the shell-ring system are excited by an acoustic 

driver whose acoustic output is focused through a conical nozzle with 

a O. 25 inch diameter exit hole. The driver is positioned either mid-

way between the ends of the shell to excite m = I modes or a quarter 

length of the shell from the top end ring to excite m = 2 modes. The 

nozzle of the acoustic driver was a small distance d away from the 
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shell skin and the distance d could be adjusted since the acoustic 

driver was mounted on a traversing mechanism. Previous experi-

ments (Ref. 22) indicated that as long as the distance d is less 

than 0.03 inch, the pressure output from the driver will be essen-

tially sinusoidal. 

Motion of the shell skin is measured with a non-contact 

reluctance-type pickup which was mounted on a fixture with a large 

bearing that could be traversed circumferentially. The pickup 

could be stationed at any position along the axis of the shell. The 

reluctance pickup-amplifier system was calibrated by varying the 

distance between the reluctance pickup and shell skin and recording 

the voltage output from the amplifier. The distance-voltage cali­

bration relationship is shown in Fig. 26. The arrangement of the 

acoustic driver and reluctance pickup is shown in Fig. 27. 

Since the calibration curve of the reluctance pickup is not 

a linear one, higher harmonics may be generated by the pickup. 

An examination was carried out as follows. During the vibration 

test, the distance between the pickup and shell wall was preset at 

0.0215 ~ch in order to have optimum usage of the linear part of 

the calibration curve. The coordinates of the calibration curve 

may be rearranged as shown in Fig. 26 by output V and displacement 

6. Then the calibration curve can be represented by a power series, 

(5. I) 

here a l = Z3. 7, a Z = ZZO. 0, ••• 

1£ the displacement 6 is sinusoidal in time, the output voltage V will 
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contain higher har:monics, due to the nonlinearity of the calibration 

curve. For instance for 0 = asinwt (5. Z) 

(5.3) 

Here the ratio of a:mplitudes of the second har:monic and the funda-

mental har:monic is 

.!azaZ 1 a Z A:mplitude Ratio = .... 2_- = '2 _. a 
ala a l 

(5.4) 

In the present experiment, the :maximum amplitude of the 

funda:mental har:monics is about O. 010 inch, hence the amplitude 

ratio is 

ZZO A:mplitude Ratio = O. 5 x 23.7 = o. 046 (5.5) 

If one atte:mpts to :measure a nonlinear displacement contain-

ing higher har:monics such as 

O(t) = 01 coswt + 0ZcosZwt + 03cos3wt + •••• (5.6) 

one will find that it is difficult to deter:mine the :magnitude of Oz and 
0z 83 03 unless the ratio of 7) and 6 are :much greater than the amplitude 

I I 
ratio found in the calibration curve. Unfortunately in the present 

experi:ment, the 'amplitude ratio of the higher har:monics is of the 

sa:me order as that of the calibration curve. 

The :magnitude and frequency output of the acoustic driver 

were controlled by a standard oscillator-power a:mplifier syste:m. 

The response signal from the pickup was fed into a cathode ray 

oscilloscope and a Ballantine true RMS (Root-mean-square) voltmeter. 
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The frequency of the oscillator and response is monitored by a 

digital counter. The circumferential mode shape was plotted by 

connecting the y-axis of an x-y plotter to the RMS response signal 

and the x-axis to a potentiometer which indicated the position of 

the reluctance pickup. Thus the circumferential mode shape could 

be plotted in forms of RMS value. A schematic diagram of the 

instrumentation arrangement is shown in Fig. 28, and a photograph 

of the experimental set-up is shown in Fig. 29. 

5.3 Driven Mode Response 

The m = I modes were used for frequency-response relation 

study because these modes are the easiest to excite into a nonlinear 

region. The acoustic driver was placed midway between the end 

rings. The reluctance pickup was also pointed at the midsection of 

the shell and fixed at an antinode of cosnfl about 1800 from the 

acoustic driver. The magnitude of the force output of the acoustic 

driver was kept constant by applying a constant voltage across the 

driver (driver voltage). At each data point the frequency measured 

by an electronic counter was normalized by the linear frequency (&)0 

which is known prior to the test and the response measurement 

was converted into physical value (i. e. f displacement) and then 

normalized by the shell thickness. 

Fig. 30 shows the frequency-response relation fo;r m = 1, 

n = 6 mode. When the external force is small, no jump phenomena 

is detected. But the "jump" is detected when the external force 

becomes larger. 

Similar results are observed in Fig. 31 and Fig. 32 for 
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m = I, n = 10 mode and m = 1, n = 12 mode respectively. All three 

modes tested possessed the softening-type nonlinearity as the theoreti­

cal analysis indicated. Equivalent theoretical results are also plotted 

which show good agreement with the experimental results. Fig. 33 

shows the RMS circumferential mode shape. Clearly it was a single 

driven mode response since no response was measured at the nodes. 

5.4 Response with Companion Mode Participation 

Since the m = I, n = 6 mode was the easiest to excite, it was i 

chosen for further investigation. With the magnitude of the acoustic 

input increased further, a different frequency-response relation was 

obtained which is shown in Fig. 34. The response measurement is 

taken at the antinode of cosnS. This result indicates that in the vicinity 

ofthe resonance frequency the response became "non-stationary" in the 

sense thatthe response would not remain atone amplitude, rather it 

drifted slowlyfromone amplitude to another. In some caSes as many 

as 4 different amplitudes were observable at a given frequency. These 

are shown in Fig. 34. No regularity was observed in the drifting 

rate. It was obvious that at these frequencies the driven mode re­

sponse became multi-valued. Outside of this frequency range, the 

response was single-valued. 

multi-response was at 0< 1. 

For this particular test, the region of 

A RMS circumferential mode plotted at 

constant external force for different frequencies is shown in Fig. 35. 

As the mode shape indicates, for larger amplitude the response was 

no longer a single driven mode cosnS. These are shown in Fig. 

34. At the node point of cosne which is the antinode of sinne, 



-68-

the deflection did not vanish. This was the first indication that the 

companion mode was participating in the vibration. 

The presence of the companion mode can also be detected 

by the use of Lissajous figures. The voltage proportional to the 

radial deflection of the shell was fed into the vertical axis of the 

cathode ray oscilloscope, with the horizontal axis being driven from 

the oscillator which controlled the acoustic driver. The resulting 

Lissajous figure indicates the amplitude and the phase (relative to 

the input force) of the vibration at that point of the shell. By moving 

the reluctance pickup along the circumferential direction of the shell 

and noting the Lissajous figure, it is possible to detect which modes 

are present. The Lissajous figure at antinode of cosnO is shown in 

Fig. 36. The open ellipse indicated a response that is .:!:. 90· out of 

phase with the input forcing function. The Lissajous figure at the 

adjacent node of cosnO which is the antinode of sinnO is shown in 

Fig. 37. The diagonal line demonstrated that the response is in 

phase with the input forcing function. This shows that the responses 

of the driven mode cosnO and the companion mode sinnO are.:!:. 90· 

different in phase which indicates the deflection form of the shell 

at the mids ection is of the form 

w(O. t) = acoswtcosnO + bsinwtsinnO (5. 7) 

The response-frequency relation of the companion mode was 

also measured for the driver voltage equal to the 8.0 v caSe and is 

shown in Fig. 38. The experimental results compared with the theoreti­

cal-results show some discrepancies for n:> 1. This may be due to the 
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following facts. The amplitude of the companion mode was measured 

at a predetermined node of the driven mode cosn9. However the 

shifting of the node as shown in Fig. 35 made the companion mode 

measurement "contaminated" by some amount of the amplitude of 

the driven mode. 

The participation of the companion mode has changed the 

characteristics of nonlinear vibration of the cylindrical shell as 

compared to the case of driven mode response only. The "jump 

phenomenon" has been eliminated and instead a "non-stationary" 

response is observed'in which the amplitude drifts from one value 

to another. 

An attempt was made to constrain the companion mode by 

lightly placing a sharp point at the antinode of the companion mode 

sinn9 and then taking measurements at the antinode of the driven 

mode cosn9. The result is shown in Fig. 39.· The classical "jump 

phenomenal' was recovered and the shell vibrated in the driven 

mode only. 

With the voltage of the acoustic driver increased further to 

15 v., another test was conducted and the response-frequency rela­

tion was obtained as shown in Fig. 40. Again there was a narrow 

region in the vicinity of n = 1 in which the response drifted between 

several values. In this case, the drifting rate was somewhat faster 

than the previous case but still no regularity was detected in the 

drifting rate. The companion mode was participating in the vibration 

although no attempt was made to measure it. Within the narrow 

frequency region where the drifting response was found, a few points 
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very close to 0 = 1 seemed to be "stationary" or the drifting range 

was too small to detect. The high amplitude response found outside 

of the drifting region (0 < I) was extremely difficult to obtain, 

since the amplitude had a tendency to drop to the lower value. Only 

with extreme caution and patience were these amplitudes measured. 

Also an attempt was made to constrain the companion mode by an 

external constraint but no significant difference was found. 

Another test was performed with the driver voltage increased' 

further to 21 v. Similar results were obtained with a few differences 

as shown in Fig. 41. A larger drifting response region was found 

and the drifting rate became faster. Fig. 42 was taken from the 

cathode ray oscilloscope; the voltage from the response measure-

ment was fed into the vertical axis with the horizontal axis being the 

time scale. The time scale was adjusted in such a way that 

the regular wave pattern was crowded together such that the photo-

graph could not distinguish them. Therefore a white belt was shown 
I I., L j I I, 

in the picture instead of a wave form. The top straight belt repre-

sents the input signal from the oscillator. The lower wavy belt was 

the signal from the reluctance pickup measuring at the antinode of 

the driven mode cosn9. As can be observed in Fig. 42, the ampli-

tude is drifting from one value to another in a much faster rate 

than the other cases with smaller external force. Also the drifting 

rate follows a certain pattern which is repeated over a period of time. 

Another interesting result found was that the response in the 

inunediate vicinity of 0 = 1 is much lower than that resulting from 

smaller external force as shown in Fig. 34 and Fig. 40. 
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5.5 Other Results of Interest 

5.5. 1 Observation of the Traveling Wave 

As mentioned in the theoretical analysis, the response of a 

nonlinear vibration of cylindrical shells takes the form of a traveling 

wave in the circumferential direction superimposed on a standing 

wave. This is due to the participation of the companion mode such 

as 

w(x, y, t) = [acoscotcos it + bsmwtsin it] sin m:: (5.8) 

This can be rearranged as 

[ ~ nv] . m1rX w(x, y, t) = ccoswtcos It + bcos(wt -It) sm--y:- (5.9) 

where c = a-b. 

The second term cos(wt - it) is a traveling wave. The phase velocity 

of this traveling wave is ~ rad/sec. In other words, it takes 
n 

T = 2;11" seconds for this wave to travel 3600 or a complete circum-

ference of the shell. Therefore, what the pickup will measure at 

a fixed station is the standing wave ccoswt plus a wave with amplitude 

b, coming every 2;11" seconds. From the pickup's point of view 

this appears to be another standing wave with a frequency :. This 

was observed by the cathode ray oscilloscope as sh()wn in Fig. 43. 

In both pictures, the upper signal was taken from the oscillator and 

the lower signal was taken from the pickup. A similar figure was 

shown for the theoretical results in Fig. 21. 

5.5.2 Regions of Multiple Responses 

For the driven mode response only, it was observed that jumps 
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occurred at certain amplitudes and frequencies for each level of the 

forcing function. The boundaries of the jump are plotted in Fig. 44 

and compared to the analysis. The comparison shows qualitative 

agreement between the analysis and experiment. The difference may 

be caused by the choice of damping in the analysis. 

A similar plot was made for the response with companion 

mode participation. The boundaries of this region are shown in 

Fig. 45. Similar qualitative agreement between the analysis and 

experiment is indicated. 

5.5.3 Rotating of the Shell at Large Amplitude 

One of the most surprising results discovered in this experi­

mental study was that the shell rotated at certain amplitudes and 

frequencies. As mentioned before, the shell-ririg system was sup­

ported by an end plate with two a-rings. Although it was designed 

to freely support the shell-ring system, due to friction between the 

ring and rubber a-ring, it required a certain amount of torque to 

rotate the shell with respect to the end plate. However, the large 

amplitude vibration somehow introduced a net torque to the shell 

and the shell rotated with respect to its end plate. This would occur 

only at. a certain discrete frequency for a constant driver voltage. 

Depending on the amplitude and frequency, the shell rotated either 

in one direction or back and forth. At the present time no reason­

able explanation can be offered. However two possibilities can be 

eliminated, namely 

I) It was not a spontaneous occurrence, since all of the 

rotating shell phenomena were repeatable. 
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2) It was not due to the resonance of the table where the 

experimental apparatus was placed, since adding heavy 

weights on the table, thus changing its resonance, did 

not eliminate the rotating phenomena. 
: ;.:.I! I, 

, , 
j ,I' 1,' , I; 
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VI. CONCLUDING REMARKS 

The experimental results of the driven mode response show 

good agreement both quantitatively and qualitatively with that of the 

analytical results. This indicates that Donnell's nonlinear equations 

for a cylindrical shell can be used in the large amplitude vibration 

problem. When the response amplitude exceeds a certain" critical 

value," its companion mode becomes excited. Here the analyses 

are qualitatively in agreement with the experimental results. The 

regions of the companion mode participation and resulting traveling 

wave phenomena have been demonstrated by the experiment as the 

analysis indicated. However the drifting of the amplitude at a cer­

tain frequency range was not predicted by the analysiS. It appears 

that a transient analysiS should be performed to study these phe-

nomena. 

It has also been demonstrated that the perturbation technique 

used in the present investigation has a few advantages over the 

methods used in previous investigations such as without predeter­

mining the deflection shape. The comparison between the present 

study and the previous investigation indicates the impor.tance of the 

assumed deflection shape with respect to the type of nonlinearity 

and the degree of nonlinearities. The ability to satisfy the specified 

boundary conditions asymptotically in the present analysis is another 

advantage. 

In conclusion, it seems that the basic approach presented 

here is applicable to the problem of large amplitude vibration of 

cylindrical shells, as well as many other axisymmetric systems. 
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APPENDIX A 

LINEAR FORCED VIBRATION OF CYLINDRICAL SHELLS 

The governing equations for the linear vibration of cylindri-

cal shells are: 

'" '\. 

DV
4
\J T f-l~; == i l')"t:)+t~i.1. (A. I) 

..L ~F· ..L ~w-
E-k. V a - R U,i (A. Z) 

where q(x, y, t) is the external forcing function applied in the radial 

direction. 

It can be shown that the solutions for the homogeneous equa-

tions of (A. I) and (A. Z) are: 

\J llC., , ,to) ,.. e.lt.J,.. t [o...n c.o~!';l + b..n s;"'!!f 1 ~;... "'t (A. 3) 

li(.!!!1.)' . 
F I ) - g L. EtCAl .. "t rll .. 'I... ,Il.'] , 

\~, ',t -[(~)"-~{t)'J L""""(o~R 't.....,. .. S~ll ~""..,~ 

(A. 4) 

The solutions expressed by (A. 3) and (A. 4) satisfy the sim.ply-

supported boundary condition, namely 
\0. 

l.t" =-:!!!: = N =. V =-0 
"" 0 X. '1. JL. 

(A. 5) 

The eigenvalues of the homogeneous equations can be written 

(A. 6) 
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The solutions given by (A. 3) and (A. 4) are the eigenfunctions (normal 

modes) of the cylindrical shell since they satisfy the governing equa-

tions and the specified boundary conditions. 

For the forced responSe problem, the solution can be written 

in terms of the eigenfunctio~s with undetermined coefficients as 

follows: 

CA.7" 

Upon substituting (A. 7) into eqs. (A. l) and (A. 2) and eliminating 

the stress function F, the following equations governing Alj and Bij 

are obtained after multiplying the equation by (&)~i~U"~ and 

SM~~MmE,J( and integrating over the shell surface.: 
" , , \, 

\ ~. 

~ < ~ , .! 

(A. 8) 

(A. 9) 

where 

L l. .... rt Q, -= l1f~) ~ t t i\llJ'/t)CJl~~ $"" ~~ d.) tht (A. 10) 

(A. 11) 

Distributed External Excitation 

Now assuming the external forcing function is given as 

i ,)(., ~, t) c. ..f. to~ Cr.)'\:, (.O~~ ~M Y!m~ (A. 12) 
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then from eqs. (A. 10) and (A. 11), 

Q.. ::. -\ lD~ to-\;. -tot"' . , j -=: r\., ~=M 
1» ~ 

Qy =0 fo .... i-t;.m I 1 ~ "'" CA. 13) 

Pl.) - 0 
+0,... all A. I j 

Substituting eq. (A. 13) into eqs. (A. 8) and (A. 9) the undetermined 

coefficient can be calculated as 

f ' 
Ai\ ~t) lIZ \. . '''") (.o~ tot, 

J ~(Cd~-~ . 

A~j It)= 0 

'PJ, <.1:,) :5- 0 

" 

Now the response of the shell under the given external 

excitation (A. 12) may be written as 

Concentrated External Excitation 

(A. 14) 

(A. 15) 

Now assuming a concentrated external forcing function given 

as follows 

i lX., , , t.) =: ~ to~ cot 

ll1C.., " t.) =:. 0 (A. 16) 
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From eqs. (A. 10) and (A. 11) the generalized force can be 

obtained as follows: 

Pmn=O 

From eqs. (A. 8) and (A. 9) the undetermined coefficients A (t) 
mn , 

and Bmn(t) can be obtained as follows: 

A 8~ . M.. . mire. . 
Mn It):: rr1.mnfk(~,,-oo") ~M 2.f' b",,-u; &tnT c.o~(A)t, 

CA. 17) 

. (A. 18) 

The response of the shell can be written as 

(A. 19) 

where 

(A. ZO) 

For a cylindrical shell with viscous structural damping, 

the response can be obtained as follows: 

where (A. Z1) 
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(A. 22) 

and phase angle 6 is given as 
Inll 

(A. 23) 

and 'Y1'.Il.ll is the percentage of the critical damping. Now assuming 

the percentage of critical damping 'Y Inll is O. 001 for every mode 

and the finite area C2 • where the external forcing function is ap-

plied, is (0.25 inch)2. The magnitude of a will be calculated 
mn 

for the shell specimen used in the experiment. 

1. At resonance of m = 1, n = 6, w = 558.07 cps 

a' 
:rhe values of ~ are tabulated in the following for m = 1, 4 ~ n ~ 13 

a l ,6 

'n 4 5 6 7 8 9 

a' mn 
a'l 6 0.00075 0.00276 1.000 0.00827 0.00806 0.03414 

t 

10 11 12 13 

O. 00734 0.002617 0.001392 0.000863 
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From this tabulation. it is clear that the response is domi-

nated by the m = I. n = 6 mode. Therefore it may be concluded that 

at the resonance frequency for a lightly damped shell under concen-

trated external excitation the response can be approximated as 

(A. 25) 

2. At the vicinity of a resonance. m = I, n = 6 

In the analysis and the experiment, the frequency of the con- \ 

centrated external forcing function is varied in the vicinity of the 

resonance. In the following. it will be shown as long as the fre-

quency variation is small the approximation expressed by eq. (A. 25) 

s till holds. 

Let the frequency of the external forcing function be 0.4% 

more than the resonant frequency for m = I, n = 6. In other words 

let w = 560. 30 cps. then' 

a' 
The values of mn ar e tabulation in the following for m = 1 J -,--

a l 6 , 
4.16n.16 13 

n 4 5 6 7 8 

a' mn 0.00311 0.0115 1.000 0.033 O. 0351 -=r-
a 1,6 

9 10 11 12 13 

0.071 O. 0312 0.0109 0.00578 0.00357 
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Again the response is dominated by the m = 1, n = 6 mode. 

However the magnitude of other modes is significantly larger than 

the previous case. For instance the m = 1, n = 9 mode has an 

amplitude of 7. 1 % of the m = 1, n = 6 mode compared to 3.4% in 

the previous case. Using the approximation response as shown by 

eq. (A. 25) for this case is neglecting the terms with magnitude up 

to 7. 1 % of the m = 1, n = 6 mode. 
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APPENDIX B 

CIRCUMFERENTIAL PERIODICITY CONDITION 

The solutions for the zero order equations satisfy the circwn­

ferential periodicity condition identically due to the linear relationship 

between the stress function and the radial displacement and tangential 

displacements. The circwnferential periodicity condition for the 

first order equations will be derived in the following. 

From eqs. (4.21) and (4. 35), one obtains 

(B. 1) 

upon substitution of eqs. (4.38), (4.52) and (4.53) into eq. (B. I). 

The following may be obtained: 

'lY. 2.. - " , 
ott =1 .. l't)+*, "l1.1.t<) -t[tt('t)+t{'t.)] +1. t')""';liti,(S) 

+[~l(")+ # it 1:(~») (~CoS .. ~'C-t',,)- b~(b~Z{<+~ .. )l 
+[ cI, - *"t t~"'5~ -tfl1\' f-6'}] c.o~ 2.",,,, $ (B.2) 
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where 

Q, ~~l-c)Q cXz.J,:t:) 1"1~ {S) -\- ~~\» Lc£<.o~2.lt(.~'~)+b1.(.Os 2{-C+~,,)] 

+ ~~ { ~1.t1:r~ }llS) + 14~)l o!"Co~ 2.{tc1'~ .. )'tb1.cos tl1:1'1~1} 
1" ~ i> { Sl't~) ... ~:tS) [O:-c..o\1.I.~tl.) ... b'toS *~'b)J} 

... f (S""- A') t to> tInT ~ -\) (B. 3) 

.' \ + t; l ~ \-<.) -;. irl»~"'" \1.t(.-t!, .. +t,,) "'1"Sw{Aa,- ~,,)) 

,'of *" t n;tS) S;';~1.oC+~ .. +~) 1-,:(S):!J" \' .. -flO:)] 
; ! \. .. '.. \ ' 

; .': .,..1\: A'B t \ ... loS \ '1."",.. ~) .,. \. '.' 

, " r' 

Now from eq. (4. 39), it may be concluded that 

..L '_"'l1' L ~:~. I 1.. "-) ol,t<) - '-a-'" ~ T) -t T ,1\ -t'B =-0 

From eqs. (4.55) and (4. 56) by integration twice and setting the 

integration constants equal to zero, it may be concluded that 

CB.4) 
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3"l~) + ~ it ~:{ S) :::. 0 

Therefore the circumferential periodicity conditions can be written 

as 
1.11' ",.. 

~ ~ de = J {[ ~ol"G) + *' t ~.l.q -f(~~6")] + Q,(S,<} c.oS2A9 
o 1 • 

It is obvious now that 

(B. 6) 

is the equation which assures that the first order solution satisfies 

the circumferential periodicity condition. Eq. (B. 6) appears as 

the second equation of eq. (4. 54) which determines the function ~. ~ 

and 1.\.'(.). .' 
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APPENDIX C 

BOUNDAR Y CONDITIONS FOR THE FIRST ORDER COMPLEMEN-

TAR Y SOLUTION 

The boundary conditions for the first order complementary 

solution are obtained such that the sum of the first order particular 

solution and complementary solution satisfy the specified boundary 

conditions as expressed by eq. (4.20). 
" \ 

The radial displacement WI can be expressed as 

"W'(~t9/C):: wr (~.9/C)'" "W,<. t~.~,'C) 

=.{c, (G.1-~) +Cl. [«tto~ 1\.<.+~ .. )-b\.loSl.(I(:t'1b)11 to~ t.,"W S t"st~-t:")c.o~ u..Q 

-tel Q.b S~(~I,,,) Sw- 1.~4d ,"ailS) +~"lS) I rl'c.os z.l-c+A..)-\,"'CARtl<+ltJ) 

"'1~\~)to~tA\\} "'~l» tlc..o~ 1.\'t ... ",).,~CJr'l ~1(.t-1t,») to~ tA~ 

~~S'l~) :;~l2.tC .,." ... t,,) s .... 'L"t + 1"l~) S;"'l~b"'I, .... ) ~;..~& 

+ Cs l~"''''''') .,. c, [&"c.m ~'tt& .. ) -,,"'ca~ 'L\.('1"k.,)) (C. 1) 

At s = 0 and s = 1, the radial displacement vanishes, 

W(s = 0,1) = O. From eq. (C. 1) this condition can only be satisfied 



if the following is true. 

8 .. t ~==-O, ') = - tc.~ T4,) 

~ & l & =-0 I , ) ~ - c~ \ ct -b ) 

~4 \ ~=Ol ,) ~ - ~ 

~" l~~Oi I) =-<:,o.b 

~,,\~:-"Ol ,)= "':'S,tkb 
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(c. Z) 

The axial bending moment at s = 0, 1 can be expressed as 

(C. 3) 

From eqs. (C. 1) and (C. Z), it can be shown that 

(C.4) 

represents the boundary condition that the bending moment vanishes 
1--a V, 

at s = 0. and s = 1. Now 1)~" can be expressed as, 
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1. ~r \.c 
'2) W, :-. Q WI + '?> Wi 
'l~" O~... 'b ~'L 

= -( ~", .... ) {(. (cl:+~)+c,[ct(.Os Zl-c+~)-~(.O~ ~l-e~"'))~ +S;U) 

" [\. t ) '" + ~ I. l~) a.. c...o ~ 2.l1::t-£~) -I; (J) ~ 2. \ '(.1"~., ) ... ~ ~ Ut) (.o!. 'Z."'~ 

... ~: l!» [d:. to~ 2.l'1:1"k,,)+b u.s 2.l-c.+1 .. )) (.oS lAS 

l' ~~ tS) ~Mlut..,.s..."'At.) ~"" 'Z..W\9 + 1~ l~)~""U .. -i .. ) ~M"L"9 

(C. 5) 

At s = 0 and s = I, gives the following conditions. 

" ~) l !>=-o , ,) = 0 
(C. 6) 

Q: 0.. l & =-0 , I ) c. 0 

a; o. l5.=-o,I):a.O 

Q.," o t ~.::.o I I ) =- 0 

The axial stress vanishing at s = O. I implies that 

(C.7 
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-t+. Using eqs. (4. 38) and (4.53) the expression for ~'- can be 

written as 

+ fa o..b ~~t~-Ss,,) ~M u\.9 + C',o..b S~l1.tC."'-.~l,,) f, .... lA\& 

t~~)t.Q ~ +~4l~)[~Usu.~<''''',,)'''bLcn'1.(.tt.:t'.,)1 Up. '1t\.9 

1'1,,\~) ~~ t-uei"b ... ~ 'b) ~;.... 2.tl9 

+1" \,5» &~ \ "'-,4) > ~& \ (c. 8) 

At 8 = 0 and s = 1, ~,,:, 0 gives the following conditions, 
I 

~4 ~ & =- 0 I , ) = - c... 
(c. 9) 

~.r <.) =-0" J = - C; t.Lb 
, , - " 

The last boundary condition is the vanishing circumferential 

displacement at s = 0 and s = 1. From eqs. (B.2), (4. 39), (4.55) 

and (4.56), the circumferential displacement Vi(s, 9,T) can be 



-9Z .. 

expressed as 

where 01 (a,or) and 0Z(s,or) are defined by eqs. (B. 5) and (B. 6). 

Upon integration, the following equation may be obtained. 

(c. IO) 

V. \~t 61 'Co) -::. ~ [ Q,l S, 't.) 6~ 'Ul9 - Q, \S, 'to) t.o~ t..4lQ] 1- K lS, 'Cr) 
(c. 11) 

where K( a, or) is an integration constant. 
'" 

At s = 0 and s = 1, using previous boundary conditions, it can be 

shown that 

Q, l&'ir.Ot t) "eo";': t {~: ~!;~I') l' ~ Uco,,) tlc..s. 'Ll4(.1"'~)1-b(.oS, 2.l-t'.1"WJ} 

{C. IZ} 

Q, ~~"O/,) '=W~ \,: U~CO/') &~bl(1'~""'''')+1:U='/1) ,s.~l~~-''')) 

Setting the integration constant K(s,or) s: 0, the vanishing circumfer-
" 

ential displacement at s = 0 and s = 1 can be satisfied if the following 

condition is satisfied. 

{C.13} 

which in turn gives the following conditions, 

.... " 
~~ <"&=-0, ,) =-0 

-" 
1~ l ~ ::"01 t) ~o 
_'I 1S" (6, =-0, 'J =-0 

{c. 14) 
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In summary, the following boundary conditions are obtained 

at s = 0 and s = 1 

~1.l~:"'O, ,):: - <'(1. 1- C,,) 

~: t ~:::.o I ,) = l '2.m 1tJ' C. "l. 

~~<'~::'O, I) =-sto!"-b') 

q - "'" ij) \.s::.o I ,) -= - c;, (A-b) 
II : 

~) l ~::.o, ,) =- 0 

_II ) 
~3 t ~:"Ot I ::.. 0 

~4 t~:....o" ) :::.-~ 

~ l~:4, t):::-~ 

~: t~'I:.()/') =-0 

(4. 55a) 

\ ' 

(4. 56a) 

(4. 57a) 

i 

J 
(4. 58a) 



~s <"~::'O,I) = -c,~ 

~S l.s .. o, I) ~ -c,~ 

0; (~:.o, I) ::. 0 

-" OS' (~:.o, I) '::. 0 

~b ( ~::. 0, I) ::. - C, oj, 

~~ loS ~, , ) :: - Cs o..b 

~Z { 5 =-0 I I) : 0 

-" ~ .. l ~:.o,I) ::"0 

, , 
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(4. 59a) 

(4.60a) 



-95-

APPENDIX D 

SOLUTIONS FOR gl(s) AND il(s) OF THE COMPLEMENTARY 

EQUATIONS 

The governing equations for g 1 (s) and g 1( s) and its boundary 

conditions [eqs. (4.55) and (4. 55a)] are as follows: 

,,'I. II 

~ ~,C.~) -1Il~) =0 

~ it ~I"<.~) T S,U):: 0 

~,l~c.o, \) = -tt..+Cs) (ct+b) 

~: l &=-0, J) = l2.m1r)l.~ \cA+b'') 

(D. 1), 

} (D. Z) 

Here eq. (D. 1) is obtained by integration of eq. (4. 55) and 

the integration constants are set to be equal to zero due to the re-

quirement of circumferential periodicity condition (see Appendix B). 

.Let (D. 3) 

. Then eq. (D. 1) can be reduced to 

(D. 4) 
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The solution for eq. (D.4) can be written as 

~,<..~)-l<.\ ~w,p\l2.~"",) ~i~)l,l2.S.4) -t" \<~ CAS)l,l2.l-l) c..o~J"\ l1.~-!) (D. 5) 

Using the boundary conditions in eq. (D. Z), the constants K~ and 

Ki can be obtained as 

K' w:I H, ~rnJ.l' ~~-l)A, + H, to~,u, c..o5k p.., ] 
, c.o~a."..,,,, ~iW\.l.a.f'-' 

(D.6) 

1 
(D. 7) 
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APPENDIX E 

SOLUTIONS FOR gZ(s) AND iz(s) OF THE COMPLEMENTARY 

EQUATIONS 

The governing equations for gZ(s) and gZ(s) are given by 

eq. (4. 56) ~d the boundary conditions are given by eq. (4. 56a). 

Let 
t.4l~H>}-+)...) 

b""1-" .... 

Then eq. (4. 56) can be reduced to 

The solution of eq. (E. Z) can be written as 

~~ lS) -= K, ~~}l:& {,z.,S-, )$~-lJl .. l2.~-') + K~ c.o~f'" (1~-9c.o~\...)l ... tt.~-') 

(E. I) 

(E. ~) 

Using the boundary conditions expressed by eq. (4. 56a), the con-

Z Z stants KI and KZ can be found as 

", 6~)J::a. ~Mtv )h .,. H~ (.0'>).1 ... c..ofo\...)l"\. 
(.0 "::> .... >'-2. + t>~"']A\. 

H1 = ~a..l-S=OI I) -= - <..c.1..~4.) 

- ..L f, \.'l.lIft1ff 
).\1. ': 0 '- ~ ... l.s~o, \)... B '" Cl.. 0'", ~ ... \ 

(E. 3) 

(E. 4) 



-98-

APPENDIX F 

SOLUTIONS FOR g3(S), i 3(s) and g6(s), i6(s) OF THE COMPLE­

MENTARY EQUATIONS 

The governing equations and boundary conditions for g3(s) and 

g3(s) are given by eqs. (4.57) and (4. 57a) respectively. 

Let 

J= - 1+ -,. 411. J Ml 
IT k"'''' , 

1 1\1 ::: * t fs - 1:) } 

A... --l-l}ll- J) 

The solutions for eq. (4.57) can be written as 

(F. 1) 

(F. Z) 

~\ (~) = K~ c...o~L\J (2S-i)c..o~k.A,,2.~-') + tel S~ h,tts-'.) :s~-lA,(r..~') 

t K.~3 c.o~ A... t2.S-t)to~~ hI, t1.~-9 t ~ ~Wt /4(2.5. ... , $~{,t\1. (l~) 

~3l~)::: ,)l~r'tKl C'O~Alt"-')Co&k.A,(L~ ... )- "'~~A.sl~-t)!,~-l~,lu ... ) 

T ~ tc~A..lu.-t)to\"-l\,t~ )-t.{ s.., A...\.~} SM{.A,,(~"") 1 
(F. 3) 

Using the boundary conditions [eq. (4. 57a)]. the constants in eq. 

(F. 3) can be found as 



(s • .!) 

(~-~)'~ ,J~'=('(O~C;1(~ ,J'f -= \i '(,'-~)':>-::::("oo~),t=~'"' 

(t· .!) 

('1'c+.,."J:)\.n'Z. , '2 ... 

'H ('I(l~+~) ~ £(lrf-~)··14 'H [£(t1'<+".,.)+ I( (Tf-'t41:r\l-~ ti T-= :x -""" "" 
(",~+,'1:)'rt'l . ( ~ 

"H {£(tn'.~) + "Ie 1Y(-"''''''''1. 'tot [:r«(w+~)-£(tlf-)f;."] -H T': ~x -" ", "' ".,. ... 'I 'I 

( 't .c + 'I "I ) ~-n "l '2 
;.. [I(~'d+~)-.£(!W-~)]···~ ~H [r("f{-4-'\t70"-+ J:(t~-...,.,]-+ 't4 T': l'y _ ." " ,,"J "' ... 

("t£ + ,"I: ) tn z (' 'Z 

'H (!(~n'4~)+-1:-(-"y(""'--~-~]. £H["I('£r{"'''k;.'-.c(ld-'''~''] + HT= '-x _ "\ "" , "t.J ,,,,\"J 

a.laqA\ 

tv~~-ry"'l~$ "" 'V,,,\scn-V$O") _ ... 
'tV ,,\,0") "'vC)Q'") ""x 4-"tv '}~<;. ... v ~~ 'x -~)f 

t:v~~c;. +V'r"'!S ~ 'tV,,,\sO')"v "Cj;0") _ ~'\I 
'tv,.~ "'V~<7 ""X -"tV"'~O")+V«;c:r) iX -~' 

tv" ~-> "v 'l~<; + IV ,,,\""0") SV'CC;O") _"l 

'V"t'D')tvc;a:)«!'X +'V~C;(v~':;\X' -t)( 

'v .. '~~ tv,~,> ... 'v ~O') (v~O") _ I 

&v~c;~v ~~"")' -'V'\~O"){VC;Q")I:x -t)\ 

-66-
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The governing equations for g6(s} and g6(s} [eq. (4.60)] are 

identical to those of g3(s) and g3(s) with the similar boundary condi­

tions [eq. (4.60a)]. Therefore, the solutions for g6(s) and g6(s) 

will be the same as g3(s) and g3(s) respectively with H6 and H6 re­

placing H3 and H3 respectively, where 

~ : 

I'" 
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APPENDIX G 

SOLUTIONS FOR g4(s), 84(s) AND g5(s), i 5(s) OF THE COMPLE­

MENTARY EQUATIONS 

The governing equations for g4(s) and g4(s) are given by 

eq. (4.58) and its boundary conditions are given by eq. (4. 58a)~ 

The solutions of eq. (4. 58) can be written as 

~4tS) =: K~<..o~h.J<"2~-')Co~htl.u"")+K~£'~Jill~-Q6~lA,~-4) 

t K.~ to~~ <"l~-\)lo~k. Alt~-t) t ~ ~~ A~ \2.~-t) $"",-1.,. iiI. l2.~-t) 

i.lS)-= K; tD~ K)t1~-,)c.o~A.lU,",,) -t ,,1 ~~bJl1.l-1) S~-lA.l~-\) 
t ~~ to~~ll,~-t)c.oSk.AJ.l1&"') t "R:$~A...l16-')S~~t~ .... ) 

where 

(G. 1) 

(G. Z) 
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~z. =: J (.1.. ... % <.o'>t - C. 

p~ :: 1: l c.\. t t tD~~ ... .n; ~~~ ) + C. 

p~~ = -tl2" ... ~ \ (O~t -.5 ~;...* )~c. 

(G. 3) 

The constants in the solutions (G. l) may be determined by using 

the boundary conditions [eq. (4. 58a)] which will be written as 

follows. 

K .... - ~ (c~K3U>Sh.I,- Yz.S~x..,~~A, 
, - c..o~"'i.\)c:.o~~+ ~~"1i,SmcA, 

K 1- :::. ~ s"'" A.) ~~h.'" ~ c.oSA.,)to~"'-'K1 
l. c..o!J'I,. A.l c..o~h!"i\., ... .s~I.K3 ~~~A, 

\(
1- ::. T;to~~4 to~A.l.-~ ~~s.""'-lX" 
~ Co ~A.r. ~ ~ "t' S~~ S~A... 

v<4- ::.. V, ')~ i. ~l1.a. + 'Y4Cc~~~ 
"4 to&-~ (.Q~"A. ...... S~"A4 ~Ml'i" 

(G. 4) 
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K.~ =. Y,UlSolilto>k.h,- 91. ':>~A.J ~k..-t~ 
, c..o':>""hJ <.o'!>\tA, + ~~'-K.l ~,"-l"'1\., 

'k.... - y.~.:n liJ s~l AI 1" ~l. LoS Kl <.04 AI 
1. - to~1.X)Co~"l.A.-t S~1.1il Sh-.{L~ 

(G. 5) 

k. 10 = Y)Un A.c.a~~A.1. - "'" S~ K. s.~{.~ 
~ Co~1.~ ~A...+ 5m":h ~-lI.K. ,'" ~ .. , 

(G. 6) 
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~ :II. ['~1' ... ( R"=- f;) - b~ ~ f~ - ~c. 1. 'P,,) ~ -t {\-v) l ~ -\ (, 1\4) fl."4 
:z. 4( ~~-f:a.")l f,t..1"Y:a.J 

+ [&il:1\ t'f~-':-)-b~ ~ p~ -'c. VI f"l~ ~lHl) l1:t-\b'l~)f)~ 
4( K'"-f~) t V.".,. f)~) 

~ :. ~ _ t'C.~f)-b'*Y, -~Y\lr~.,.~)]~ 1-(1-11'2\ ~ .... ".t)f,"" 
} '2. 4 t ,.'; Y;)~1~"" f")''''} 

Y.; =. [g)\."'-a.(J~l.-y~) -l:.aC ,,1'1. -~c. ftf~]H4 "'{'-1J1t~ -\b";f"H .... 
4 -4-lf~L_f;)lYIL+'f~) 

_ ['~.lT.~-l':-,-b~~ft-1C.',f,,)~ 'tl....,")l*-'b~)f)H, 
"" l r~':... ':-J \ R\.. ... ~") 

where 

(G. 7) 

(G. 8) 
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The governing equations and the boundary conditions for 

gS{s) and gS{s) are similar to those for g4{s) and g4(s). The solu­

tions for gS(s) and is(s) are the same as eq. (G. I) with H4 replaced 

by HS and H4 replaced by HS' where 

(G. 9) 

; I 
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APPENDIX H 

FOURIER SERIES EXPANSION OF THE COMPLEMTARY SOLUTION 

~,(S)= ~o - [ ~: c.os zjns 
I ~=-I 

(H. 1) 

!o = 1. (H,-H,)f»il'lk.~JA' +(t."tH,)51n2.JL') 
I -+ p, l C06h1Jl\ - S;r\. ... }',) 

(H. Z) 

§~-l.l H, su,:l2.J,ll+'ij. ~""le,[ Jl, + --::--r.....--:-_~ 
,- l c.o~'n1."-~m~ (1lfT~"'+jltl.. 

t 11, ~"" 1», -H, '&Ml.z.A. [ .1'1f + J; _ ~11' - )L, ] } (H. 3) 
(,o'tlh"'~, - :,MjJ.. ('w ... p..; + 1'-.... lj1f-JAl' +]l'. 

+ }J:a. ] 
lj'lf-)IS' + ~ 

- &~~~+Jld} 
(H. 7) 

(H. 8) 



(ZI ·H) ., ,-=~ 
s.u.f.., _~O") ,,~ ~ + :~ -= ('7,).,g 

"<', "~ , 

" 
1 ' ; '\ (z' 

(ll ·H) 

{(".aV,+,(-tov-1t~) .... ~V .... \(,.V ... JL~) J ""v",w,e; -'lV,'1<e;o') _ + 
. .V -JL~ .. v ... .lL~ lV't ~q "T ~ '1V'l. ~.c;. iX 

'II" ......, . -c .. + 
l

:v + '·V-Jl.') "y ... (~V +l1.~11 "'v ~$-'tV "tfi,(Y) 

'tV lV i>V'~<; "'f 4-lVt"~<; tr \ 

l
;v 4-,(t.V-llf) _ ';V "'.J~'\T~.lLn 1 lV,~<; -"'" .. "\"0") 

'v -Jt ~ '"v + .u.~ ''\7""t'l~c, l'i -t'J'1 ~c;. 'X + 

r')7+ ... {'V-lL~) ,~ .... ,('VfJl.f)] tv"~<;_I",,,,\~Q') } ~_,~ 
t IV"" 'V 'V'l~<; 'ty + iV'l1~~ ':X T·-, ~ • 

(Ql ~) 

{ 
( ""v, ~s -'v 'l'1~0')) ( 7,.v + ~ ) 

('tV~~$~ -~~t;. 'T)1V +(+vH<;ty+tV1."~<; 4lr)iv + 

,._-....... . __ ~~.Y.l;.~.: :~~'1';O'») ~ ~v~~V't ,.. 1 t = :~ 

(6 ·H) .: •• e 
~JLf-e 4i<n ~§ 1 + !i =(~)~s 

-LOl-
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(H.l3) 

~.'=.L IA,li. 5.h-&.2.l\, -t Xa SmZl\J) +A) (XI ~~l.A~-'iL s.;...{,u,) 
I Z (K, ... X-3 ) (c.o'Sth" A, - ~M'L 1\) ) 

Alex .. ~~'l'&..l\" +~ 6""t..A.)~ A.l~A,;-t.A,,-i"'>UA'L)} 
-+ ( 1:\.; + K,.. ) \ c.o~h'" AI. - f,;""" t.." ) 

+.xl ~"" t.b .. - i~ 5Mi.2.l\1 [ 311' T A..,. 
c..o",h'" A'L - ~M"'Il+ l;11' .... ~"~ Aa

L 

(H. 14) 

f ;'1"-1\4 J} 
,- (;JT-AS·+.A~j 

(H. 15) 

(H. 16) 
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(H. IS) 

+ Al.ry,~~"",t.'hJ, + V"" &it\ l.A,) + A. (,y, ~~ 1.i. ... - Y... SMd..z.A,,) } 
\ A~ -+ A ...... ) \ ~h &l\1. - $",," At ) 

(H. 19) 

y. ~;.... l Al - V .. f,M-,i, 1. ft.\ [ :;;11' -+ A.l _ ;;1f- A J ) 

+ (..obh1. A. - 5",,\.1\) {jrr + A,)" 1" A!' t;11'- A,,)\. + A~ 

+ 'Y} '!r~ to A4 - 'Y ... '&M~ LA" [ j-rr + Ai: 
CAf>~'" A1. - 6~ \. ~ (;1f + A.j'" + A~ 

_ j11'- At 1} 
lj1f-A.,.)'+ 2t~ 

(H. 20) 

(H. 21) 
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(H. 22) 

~. ==..L r A. (~ ~;,.,{. tA, -+)7 ... <&.;.. z. ~)) + A){'Tt '$':"'Z.A3 -~ ... ~-lZ.A.) 
4 Z 1 ( ~ ..... 1\~) <. (.o'Soh&.~, - $w,1.l\.,t ) 

A&\ Y~~twl.2.K" +i'4~~t.A4)+ A..(Y, ~r..,t.A... -~4 ~""'~1.K1.) } 
+ (h~ + ~) ~c.o~hLlit.- Sh-t"A.) 

(H. 23) 

(H. 25) 
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APPENDIX I 

THE EXPRESSIONS FOR G1, GZ' G3, G4 AND '01, 'OZ' '03, '04 IN 

THE SECOND ORDER EQUATIONS 

Cr. = {-{t rt'(O-u'") ~~: -to + i \~: - i () 1 
t2.{mn1T)(l~: t!; +tr\: ""t~;)}cr 

+{ 1lfa.1.l'-1> .. )t(~: -t~~) -i(~ -t ~:)CDS2(b,,-, .. )J 
-(M"11') (f J: + ~: ) c.a:; 2.(~1t-1 .. ) + 2lmtt1r)1 [-( r s; + ~;) 

t t(n~ + ~: ) LoHl",- ' .. ) t Hn~ T J~ + r~ T ~;)J}o.b}Col>(tJ-~) 

to:i( [ ttt{O-II')(~: -H:) - (1r\"1r)lrt~ + J: -n: -~)])( 
x a.b $;" ~(~- !I .. )} s;" (1:.+~) (I~ 1) 

(1. Z) 
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EfL =~ (t rt~Q-IJ'*'~-h~) +tl~: -H~)l 
t 2{mnlr)1( r~; + ~; + tr\~ ... t~:)} bl 

t t ~it~ll-v'-)l (~: - ts~) -t{S: -t~:) c.o~2 (S .. -~A)] 

t ZlMy\lf;{ - \rr,"'~;)T t{r!.~ +~~ )c.e-.a.2.l~-&..) 

+ tln~ ... !~ + r\~ + !: ) -Hr~~ + ~~) (.qt(1b-~ .. )Jl~) !>;"{-ttll.) 

+ t,. {tti (J-p'->t~: -~ \7) - ~ ,",,1f) l r \~ + \~ 

- f\·" - l~ )\ ~b s~ i( ',,- ~ .. ) CA; \"t. ... ' ... ) (1.3) 

'-
+ ~ m;~) \ -S: ... ~: -&~ )~b '''''1(''--~ .. ) CAR ~< ... SJ b ) (I. 4) 
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Ei~ = 2l ~)i [r (-c.-}:'-. +c~ ~i c..)+(-c. -"!~ +"C:) 

+t ~ -1 s..~)] cl t { rI -c., +t<;. c..~ 2(.~-" .. ) -c) 
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FIG. I SHELL GEOMETRY AND COORDINATE 

SYSTEM 
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Driven Mode 

Companion Mode 

FIG.3 DRIVEN MODE AND COMPANION MODE 
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FIG. 36 LISSAJOUS FIGURE AT ANTINODE OF COS(n8) 

FIG. 37 LISSAJOUS FIGURE AT NODE OF COS(n8) 
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