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ABSTRACT

The large amplitude vibrations of a thin-walled cylindrical
shell are analyzed using the Donnell's shallow-shell equations. A
perturbation method is applied to reduce the nonlinear partial
differential equations into a system of linear partial differential
equations, The simply-supported boundary condition and the cir-
cumferential periodicity condition are satisfied. The resulting
solution indicates that in addition to the fundamental modes, the
response contains asymmetric modes as well as axisymmetric
modes with the frequency twice that of the fundamental modes. In
the previous investigations in which the Galerkins procedure was
applied, only the additional axisymmetric modes were assumed.

Vibrations involving a single driven mode response are
investigated, The results indicate that the nonlinearity is either
softening or hardening depending on the mode. The vibrations
involving both a driven mode and a companion mode are also in-
vestigated. The region where the companion mode participates
in the vibration is obtained and the effects due to the participation
of the companion mode are studied.

An experimental investigation is also conducted. The
results are generally in agreement with the theory. '"Non-stationary*
response is detected at some frequencies for large amplitude
response where the amplitude drifts from one value to another.
Various nonlinear phenomena are observed and quantitative com-

parisons with the theoretical results are made.
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I. INTRODUCTION

Thin walled cylindrical shells have a wide application in
modern aerospace vehicle structural design, With increasing vehicle
speed and more powerful propulsion systems, the dynamic environment
imposed on the vehicle structure becomes severe. Hence there is a
growing appreciation of the importance of nonlinear effects in deter-
mining the stability and response of thin walled shells under dynamic
loading., The nonlinearities considered here are of geometric nature,
namely the large amplitude in the shell wall deformation makes the
nonlinear relations between the strain and displacement necessary,
However, the amplitude is small enough such that the strain itself is
considered infinitesimal, Since the amplitude is of the order of shell
thickness the nonlinear terms are small in the governing equation,
But the effects due to this small nonlinearity can be quite pronounced
as has been demonstrated in the buckling problem of cylindrical
shells under axial compression.,

The nonlinear effects of large amplitude vibration of cylindrical
shells are demonstrated by two phenomena; namely, the résponse-
frequency relationship in the vicinity of a resonant frequency and the
occurrence of traveling wave response. Contrasted to the linear
vibration in which the resonant frequency is independent of its amp-
li'tude of vibration, the resonant frequency in nonlinear vibration is
a function of its amplitude, The response-frequency relationship will
indicate whether the nonlinearity is of hardening type (frequency
increasing with amplitude) or softening type (frequency decreasing

with amplitude). Similar phenomenon can be observed on a much
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simpler system such as a spring-mass system with a nonlinear char-
acteristic in the spring (Ref, 1).

In the linear vibration of cylindrical shells, the response to
a stationary periodic excitation is in the form of a standing wave,
This standing wave will be in conformity with the distribution of the
external excitation. In case of the external force applied on a dis-
crete point, the standing wave will be symmetrical with respect to
the point of application. In other words, the response will be a cosine
function in both circumferential and axial direction with the origin
at point of application. In the present investigation this standing wave
will be referred to as a '"driven mode."

A striking feature of the results of experimental observation
of supersonic cylindrical shell flutter (Ref. 2) is the fact that ""almost
all the flutter modes observed in these experiments were of the cir-
cumferentially traveling-wave type.! Such traveling waves are not
predicted by linear theory and it was suggested in Ref. 2 that nonline-
arities in the shell were responsible for the phenomenon. A circum-
ferentially traveling wave in cylindrical shell response can be
decomposed into a driven mode standing wave and another standing
wave which is circumferentially 90 degrees out of phase with the
driven mode (which will be referred to as a''companion mode" in this
investigation), Therefore, the occurrence of the circumferentially
traveling wave is a result of the companion mode being excited due
to the nonlinearities in the shell response. Related studies on nonlinear
vibrations of circular rings (Ref. 3) and circular plates (Ref. 4) have

shown the need for including these companion modes in the study of
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nonlinear forced vibrations of axisymmetric structures. In addi-
tion to the supersonic cylindrical shell flutter, the
traveling wave responses have been observed in the sloshing-vibration
of thin cylindrical shells (Ref. 5).

The problem of large amplitude vibration of cylindrical shells
has given rise to a number of theoretical studies (Refs. 7 to 17). The
basic approach used in these studies (except Ref. 17) is to assume
the shape of the deflection in space, that is, the shape of the vibration
mode, sometimes referred to as generalized coordinates, and then
to derive a set of nonlinear ordinary differential equations by using
Galerkin's approximation procedure. Subsequently, the nonlinear
ordinary differential equations are solved to obtain the response-
frequency relationship.

The Galerkin's method is a very powerful approximation
method that reduces a system of nonlinear partial differential equa-
tions into a system of nonlinear ordinary differential equations which
become manageable, Also the Galerkin's method provides insight
to the nonlinear coupling of various vibration modes during the solu-
tion procedure. However, its results are highly dependent on the
assumed deflection shape, Completely different results could be
obtained by a small difference in the assumed deflection shape as
can be seen from the previous investigations on this subject. Even-
sen (Ref. 18) and Dowell (Ref, 13) have pointed out that the axisym-
metric modes in the assumed deflection shape play an important role
in the outcome of the results. Yet there is no standard for selecting

particular axisymmetric modes for the assumed deflection shape,
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There is another constraint to the solutions of nonlinear vi-
bration equations of cylindrical shells, namely the midplane circum-
ferential displacement must satisfy the periodicity condition in the
circumferential direction. This periodicity condition assures that
the circumferential displacement will be continuous and single-
valued whenever the circumferential coordinate moves by 27. This
constraint is identically satisfied in the linear cylindrical shell
theory once the periodicity condition is satisfied by the radial (lateral)
displacement due to the linear relation between the circumferential
displacement and radial displacement, However, in the nonlinear
theory of cylindrical shells, the circumferential and radial displace-
ments are nonlinearly related and circumferentially periodicity of
radial displacement does not necessarily enforce the same condition
on the circumferential displacement. In general, for nonlinear vi-
brations of cylindrical shells the radial displacement is solved di-
rectly from the equations of motion and then the circumferential
displacement is calculated as a function of the radial displacement.
Therefore, in the Galerkin's procedure, the satisfaction of the cir-
cumferential periodicity condition by the circumferential displace-
ment is solely dependent on the assumed deflection shape. Evensen
(Ref. 3) has pointed out thatviolation ofthis circumferential periodicity
condition may give incorrect results. It may be noted in passing
that nonlinear static stability analyses have made use of this cir-
curnferentially periodicity condition since the 1941 paper by von

Karman and Tsien (Ref. 6).
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The present investigation will apply a perturbation technique
using the ratio of maximum radial displacement to the radius of the
shell as a small parameter to reduce the nonlinear partial differen-
tial equations into a system of linear partial differential equations.
Then the solutions may be obtained without the handicap of selecting
a particular set of deflections in the analysis. The usual response-
frequency relationship will be calculated and the occurrence of
traveling wave response will also be investigated, The resulting
deflection shape will be discussed and compared with the previous
studies to establish the important axisymmetric modes participating
in the nonlinear vibration. This may provide a reasonable method
for selecting the assumed deflection shape in future analyses
using Galerkin's method which by far is the simplest method used
by previous investigations in nonlinear vibration of shells.

In the following, a brief summary of previous investigations
will be given and then the present investigation will be described.
For the convenience of summary, the equations of motion will be
discussed first, Finally an experimental investigation will be de-

scribed,
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1I. DISCUSSIONS OF EQUATIONS OF MOTION

In most of the analyses of nonlinear vibration of cylindrical
shells, the well-known Donnell's shallow-shell equations have been
used because of their simplicity. However, the Donnell's equations
are of an approximate nature, a simplification of the full nonlinear
shell equations in which the following quantities are neglected:

1. Inplane displacements in the curvature relations

2. Transverse shear force in the inplane equilibrium equations

3. Order (%)2 in the inplane shear force

(i. e., ny = NYX)

4, Tangential inertia

5. Rotary inertia

The Donnell's shallow-shell equations are often derived (Refs.
7 and 8) and are simply summarized here: The coordinate system,

displacements and the resultant forces, moments are shown in Fig. 1

and Fig. 2 respectively. The equilibrium equations are:

Xy .

5% + By - 0 (2.1)
any aNY

proe + By = 0 {(2.2)
2 2 2
9 oM, oM

I\/;"+2 ¥y X4+ n ¥y N ¥

5% ox 8y 8y2 ox T x dx xy 9y

9 (N W N --—-SW) + —RXN + q{x,y,t) = h—z—azw (2. 3)

The resultant forces and moments per unit length are defined

in terms of the stresses as follows:



h/2 h/2 fh/z
N = o dz, N = o _dz, N = o dz
x xx xy x
“h/2 sz Y ‘2 7
(2. 4)
h/2 h/2 h/2
M =f o _zdz, M =f o _zdz, M =f o zdz
x xx xy xy y Yy
-h/2 -h/2 -h/2

The applied external load q(x, y, t) acts in the radial direction.
The constitutive law for the cylindrical shell of isotropic

linear elastic material is as follows:

E

¢ -1—:;7 (Gxx +v GYy)

Q
It

(2.5)

Q
i
o)
)
e
<
m

Y o1y YY xx

ag €
20wy Y

where E is Young's modulus and v is Poisson's ratio, The strain-

displacement relations are approximated by

€ —.3.2+l(__a_w)2-zazw
xx ox 2 '9x axz
2 2
ov w1 . 0w o w
=_____.__+ — - 206
eYY 6)’ R 2 ( ay) % a"y'z ( )
_ov,tu, bw ow _, olw
xy © 5 ' By ' ox oy ax Oy



-8-
Using the constitutive law (eqs. 2.5) and the strain-displace-
ment relation (eqs, 2.6), the resultant forces and moments (eqs. 2, 4)

can be written in terms of displacements:

2 2
- Eb_c8u v w. 10w w
Ne= Tz im vl mrl ) Gy 1
2, ow?
_ Eh v w du 1l 0w +v(=) 1} (2. 7)
NY—I:Z{E-R-‘-V&-"Z[(W) ox
N =B (_3_Y_+ﬂ+_ﬁ_wﬁj_"_)
xy ~ 2(l1+tv) ‘0x 9y ©Ox 9y
2 2
0w 9w
M = -D(——-z— +v~—2-)
x ox oy '
2 2
M, =-DCF+v 2% (2.8)
y oy ox
2
- o w
Mxy = -D(1-v) B0y
Eh>
where the shell bending rigidity D = ———-
12(1-v )
Using eqs. (2.1), (2.2) and (2. 8), eq. (2. 3) can be rewritten
> N 2 2 2
2
DViw + ph%-‘g- = qx,y, ) + gL+ Nx%,—:"f-uny%-éW;«r Ny-"’a—y‘i’-
t
(2.9)
4 4 4
where V4 is a biharmonic operator V4 . 7t 2 82 5 + 9 7
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Now by assuming a stress function F(x,y,t)

NZ

]
coNl @
Sl

<Z
\ n
7%

(2.10)

2
N =- °F

Xy 9x oy

The equilibrium equations (2. 1) and (2. 2) are identically

satisfied and eq. (2. 9) becomes

2 2 2. .2
4 o%w 1 8%F . o°F o%w
DV 'w + ph = q(x,y,t) + =5 +
ot2 R ox? oy’ ox®
Y Y ox ay

On the other hand, from eqs. (2. 7) the compatibility equation can
be obtained by eliminating the inplane displacements u, v as follows

1 azw Bzw 2 - Bzw azw]

1 4
VF=-xw + [ )
Eh R . 2 ax oy oxc® ayz

(2.12)

Equations (2. 11) and (2. 12) are generally referred to as
Donnell's shallow-shell equations which have been used in the pre-
vious investigation of nonlinear vibrations (except Refs. 11, 17).,

The boundary conditions in this investigation are assumed to
be the ''classical simply-supported'' conditions, sometimes referred

to as SS1/SS1 conditions. Mathematically, they can be expressed as:

w=M_=N_=v=0 at x=0,L (2.13)

For a complete cylindrical shell such as is considered here,
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it is apparent that the displacements, slope, moments, shears and
stresses must all satisfy the periodicity condition in the circumfer-
ential direction. The dependent variables w and F in equations
(2.11) and (2. 12) can be enforced to satisfy this periodicity condi-
tion during the solution procedure. However the periodicity of w
and F is not sufficient for the other physical quantities to satisfy
the periodicity condition as can be shown from eqs. (2. 7) and (2. 8).
Therefore it is necessary that in addition to w and ¥, the circum-
ferential displacement v must also be enforced to satisfy the cir-
cumferential periodicity condition. (Note from eq. (2.7) that axial
displacement u satisfies the circumferential periodicity condition
whenever the circumferential displacement satisfies the same
coﬁdition. )

Hence
w(x,y,t) =w(x,y + 22R, t)
F(x,y,t) = F(x,y+t27R, t) (2. 14a)
vix, vy, t) = v(x, yt27R, t) (2. 14b)

are the additional constraints that the solutions of differential equa-
tions (2.11) and (2. 12) must satisfy. This circumferential periodicity
condition is sometimes referred to as the continuity condition (Refs.
13, 14).

For simplicity, the radial external loading q has been taken

to be



-11-

q(x, y,t) = fcoswtcos BRX sin mL1rx (2.15)

since a ""steady state' solution (note that ''steady state' means
periodic in time) is sought, no initial conditions are necessary.

In Donnell's shallow-shell equations the neglecting of inplane
displacements in the curvature relations and transverse shear force
in the inplane equilibrium equations is the result of shallow-shell
approximation in which the circumferential wave length -2{—3 (n is
the circumferential wave number) of the deformation pattern is

always small compared with the radius R, Essentially, it is saying

that the curvature and inplane equilibrium of the cylindrical shell

2 2
are the same as a flat plate. Tangential inertias -'?—P—, —2';8 > are
3!:2 ot

neglected because of the assumption that the flexural motion is

predominant in the present investigation., Rotary inertia is neglected

27R 2L

because the wave lengths = and oy {m is the half axial wave

number) are large compared to the shell thickness h.

El Raheb (Ref. 19) has made a detailed comparison for
linear vibration between the results of Donnell's equations and the
"exact!" equations of motion derived by Koiter (Ref. 20) based on
the Love-Kirchhoff hypothesis for shell theory in which all the
quantities neglected in the Donnell's equations have been retained.
He defined that the errors in frequency obtained by approximation as

e = %BPI—"-’-‘— -1 (2.16)

exact
and concluded that:
1., Maximum error due to neglecting inplane displacements

in curvature and transverse shear in inplane equilibrium is
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33/4, 1/2
(e ) o : (2.17)
1 hax 4(1v 2)1/4~s
where r = h , S = m;:R
ViZR

m is half axial wave number.

2. Maximum error due to neglecting tangential inertia is
1
e, ™ — for n>>3 (2.18)

This error is more pronounced for small n which is the circumferen-
tial wave number.

3. Error due to neglecting rotary inertia is

2,.2, 2
e3=_1l_(_sz_+__n)_ (2.19)

With these estimations in errors due to the approximations

in Donnell's shallow-shell equations, the present investigation will

be limited to shells with the following configuration:

\[ﬁ < 130 , B <10 (2. 20)
2R

Also the deformation pattern will be limited to

4<n< 30, l1<sms<6é6 (2.21)

so as to keep the errors within the acceptable range.

For example, the typical error for a shell having% = —4-(1% ,
%:2, m=1, n=5, will be
ep e, +e, +¢; =0,009979 + 0.02 + 0.0000072 (2. 22)

> 39
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As can be seen, the largest error is caused by neglecting
the tangential inertia. However, this error will be rapidly reduced
for larger circumferential wave number n.

Although El Raheb's error estimation for Donnell's shallow-
shell equation has been made for the linear vibration, it is assumed
that it will also be applicable to nonlinear vibrations. This will be
true as long as the nonlinearity is small, as will be demonstrated
later for the present investigation, Therefore the Donnell's shallow-
shell equations will be used for the analysis of nonlinear vibration

of cylindrical shells within the limits specified by (2. 20) and (2. 21).
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III. SUMMARY OF PREVIOUS INVESTIGATIONS

In a pioneering work, Reissner (Ref. 7) analyzed the problem
of nonlinear vibration of cylindrical shell using Donnell's shallow-
shell equations (2,.11) and (2. 12) by assuming the deflection shape of the
linear vibration. His results indicated that the nonlinearity could be
either of the hardening or softening type, depending upon the geometry
of the single half-wave or lobe chosen to be analyzed. Chu (Ref. 8)
employed the same assumed mode shape as that of Reissner's but
analyzed somewhat differently. His results indicated that the non=~
linearity was always of the hardening type and could be strong in
some cases. Cummings (Ref. 9) employed a Galerkin procedure
and found that the results varied with the region of integration. The
results over a single half-wave or lobe were the same as those of
Reissner. The results for a complete shell were similar to those
of Chu. Thus, it appeared that Reissner's results were character-
istic of curved panels whereas Chu's calculations were apparently
applicable to complete cylindrical shells, These three analyses did
not investigate the traveling wave solution and the boundary conditions
were partially satisfied; also the circumferential periodicity condi-
tion was violated by Chu (Ref. 8).

Nowinski (Ref. 10) applied Galerkin's procedure with an
additional axisymmetric term in the assumed deflection shape, Thus
the circumferential continuity condition was satisfied. His results
wére virtually identical to those of Chu in the isotropic case., How-
ever, his assumed deflection shape did not satisfy w = 0 at both ends

of the shell,
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Evensen solved a ring problem in considerable detail (Ref, 3)
and subsequently investigated a cylindrical shell (Ref. 12). The mode
shape Evensen assumed in his Galerkin procedure satisfied the cir-
cumferential periodicity condition but the boundary conditions were
partially satisfied as long as a simply supported condition was consid-
ered, His results for the shell included the traveling wave response
and a stability analysis which indicated the stability region of stand-
ing wave response and traveling wave response,

Dowell (Ref, 13) made a similar analysis to that of Evensen
with a slightly different axisymmetric mode term in the assumed de-
flection shape. In his analysis all the simply supported boundary
conditions and circumferentially periodicity conditions were satis~
fied '"on the average," Although no numerical results were given,
the modal equations obtained in the limiting case of L./R — co agreed
with that of ring equations and L./R — 0 agreed with that of plate
equation,

Matsuzaki and Kobayashi (Refs, 15 and 16) carried out an
analysis on a cylindrical shell with clamped ends, The method was
similar to that of Evensen (Ref, 12). The results showed the non-
linearity being of the softening type.

Mayers and Wrenn (Ref. 11) used a more general assumed
deflection shape than that of Evensen which satisfied all the out of
plane boundary conditions but the inplane boundary conditions were
not satisfied, Also in Ref, 11 more accurate shell equations (Sander's

theory) were considered,
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Bleich and Ginsberg (Ref, 17) recently considered an infinitely
long cylindrical shell (periodic in axial direction). Their approach
was to express three displacements in complete sets of normal mode
series and then the energy expression was obtained in terms of these
series, Lagrange equations were used to establish the equilibrium
conditions and a perturbation method was employed to determine the
truncation of the infinite series. Response-frequency relationship
traveling wave response and stability analysis were included in the
results, Tangential inertia and transverse shear deformation were
included in the energy expression.

It is of interest to contrast and compare the analyses of Refs,
8, 10, 12 and 13, since these studies used the same Donnell's shallow
shell equations (eqs. 2,11 and 2,12) and considered the simply
supported end conditions (eq. 2,13). Also these four studies rep-
resent the major effort in the previous investigation on the problem
of nonlinear vibration of cylindrical shells. In the following, their
approach, satisfaction of boundary conditions and circumferential
periodicity condition, and results will be summarized.

1. Chu (Ref, 8)

a) Assumed deflection shape:
w(x, y,t) = AH(t)sin (T-)cos(F) (3.1)

This is the mode shape of linear vibration.
b) Approach:
Substituting eq. (3.1) into eq. (2.12), a particular solution

of the stress function F can be obtained. The assumed
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e)
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deflection w and the solution of stress function F are
substituted into eq. (2.11) and the collection of the first
harmonic terms gives a nonlinear ordinary differential
equation which is subsequently solved by using elliptic
integrals to obtain the response-frequency relationship.
Boundary conditions: (atx = 0 and L)

Out of plane boundary conditions,

w =0, M_=0
x

Inplane boundary conditions
Nx 20, vz 0

Circumferential periodicity condition: not satisfied.

Results: hardening type of nonlinearity is found.

2. Nowinski (Ref., 10)

a) Assumed deflection shape:

b)

ﬁi’”’t sin 2 + £ (t) (3.2)

wix, y,t) = f(t)sin

An axisymmetric term is added to the assumed deflection
shape. Stress function is obtainedin a similar fashion
as that of Chu.

Approach:

Eq. (3.2) and stress function F are substituted into eq.
(2.11) and then a Galerkin procedure is applied to reduce

eq. (2.11) into an ordinary equation. The weighting func-

tion chosen for the Galerkin procedure is sin rx;_‘:rx sin Pﬁi

which effectively elirinates the coupling effect of fo(t)

from the problem.,



-18-
c) Boundary conditions: (at x = 0 and L)
Out of plane boundary conditions
w# 0, Mx =0
Inplane boundary conditions
Nx +#0, v+ 0
d)} Circumferential periodicity condition:
This condition is satisfied by determining fo(t) in terms
of f(t).
e) Results: hardening type of nonlinearity is found.
3. Evensen (Ref. 12):
a) Assumed deflection shape:

muax

w(x, v, t) = [A(t)cos E‘RX+ B(t)sin ERX] sin 237

(3. 3)

2
2 2,0 .2
+-4‘1R-[A (t) + BE(t)] sin” T

The companion mode as well as the driven mode are

considered. Also there are two terms in the axisym-

. . .2mmx _ 1 2mnx
metric mode since sin -5 -—z-(l-cos T )

b) Approach:
Stress function F is obtained as a particular solution to
eq. (2.12) which is substituted into eq. (2.11) together
with eq. (3. 3). Galerkin procedure is employed to re-
duce eq. (2.11) into two nonlinear ordinary equations.
Choice of weighting functions are made such that the
resulting equations are the same as would be obtained

using Hamilton's principle, namely, % and % .
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This provides the coupling effect of the axisymmetric
modes to the fundamental modes.,
Boundary conditions: (atx = 0 and L)
Out of plane boundary ;:onditions:
w =0, Mx¢ 0
Inplane boundary conditions:
Nx #0, v#0
Circumferential periodicity conditions: satisfied.
Results:
Type of nonlinearity is found depending on the " Aspect
Ratio" (ratio of circumferential wave length to axial wave
length), For small aspect ratio, the nonlinearity is of
the softening type, for large aspect ratio the nonlinearity
is of the hardening type. The traveling wave response

and the stability problem are also studied.

4, Dowell (Ref. 13):

a)

b)

Assumed deflection shape:

w(x, v, t) = [A(t)cos L +B(t)sin ] sin 7=

(3. 4)

mnrx
L

Here the coefficient of the axisymmetric mode is consid-

+Ao(t)8in

ered as independent of the driven mode A(t) and companion
mode B(t).

Approach:

The stress function F is solved from eq. (2.12) by using

eq. (3.4). A homogeneous solution is included in the
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following form:

_l= les 2 ==
--—2-Nx+~2-Nyx -nyxy (3.5)

Fho mo

This satisfies the equation vir = o, ﬁx’ "N-Y and ny
are functions of time t only and are to be determined by
considering the inplane boundary condition and circum-
ferential periodicity conditions. Three nonlinear ordi-
nary differential equations are obtained after employing
the Galerkin procedure. The choice of the weighting
functions is the same as that of Evensen.

Boundary conditions:

Out of plane boundary conditions:

w =0, M =0

x

Inplane boundary conditions are satisfied "on the average;"

27R L ou 27R
fo {) 5 dxdy =0, fo N, dxdy = 0

Circumferential periodicity condition is satisfied "on

the average;"

I, 27R ov L
& dydx = [ [vix, 27Rrv(x, 0)] dx = 0
y
0 0 0
Results:

Numerical results are not given, But, in the limiting
cases, the resulting differential equations converge to
the equation of a plate for —]:I;{‘- — 0 and the equation of a

ring for % -+ o0. However, for -II;{- — oo and m even,

the reduced ring equation loses the coupling effect
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between A(t), B(t) and Ao(t) and leads to a hardening
type nonlinearity. This is in contrast to the findings
by Evensen (Ref. 3).

The conclusion emerging from these four previous studies

clearly indicates the following:

1) The assumed deflection shape plays an important
role in the analysis and the results are somewhat
dictated by the assumed deflection shape.

2) Specified boundary conditions are not enforced
strictly in the previous studies, Evensen (Ref, 21)
has shown that added inplane restraints may alter
the response-frequency relationship.

3) Circumferential periodicity condition must be satisfied.
One of the purposes of the present investigation is to
avoid the necessity of assuming the deflection shape,
instead the deflection shape will be obtained as a
result of the perturbation technique. Boundary con-
ditions and circumferential periodicity conditions
will be satiéfied asymptotically with respect to a

small parameter in the present investigation,
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IV. PERTURBATION METHOD

One of the important methods for solving nonlinear differen-
tial equations is the perturbation method. The use of this method
was, in the early days, limited to astronomical calculations, But
the important contributions of Poincaré and later mathematicians
have broadened the capability of the method to include a more general
field of nonlinear mechanics,

This method is applicable to equations in which a small
parameter is associated with nonlinear terms, In application, it
consists of developing the desired quantities in powers of the small
parameter multiplied by coefficients which are functions of the inde-
pendent variable and determining the coefficients of the developments
one by one, usually by solving a sequence of linear equations.

In nonlinear vibration of cylindrical shells, it would be
natural to regard the amplitude of response as a quantity to be
determined by the power series expansion of the small parameter,
However by proceeding in this way a serious difficulty may be en-
countered in the form of the so-called "secular terms," i.e.,
terms which grow up indefinitely as t— oo, The appearance of the
secular terms shows that the expansion of response is asymptotically
valid only for a finite time. Previous experience has indicated that
the essential feature omitted from the expansion of response in a
power series of small parameter is the dependence of the frequency
on the response amplitude, Therefore, the frequency as well as the

amplitude of the response must be expressed in the power series of
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a small parameter in the perturbation method., Then, elimination
of secular terms in the solution will provide the frequency-response
relationship,

First the small nondimensional parameter used in the power
series expansion must be determined. In the vibration of cylindrical
shells the maximum amplitude of response is of the order of shell
thickness h., Since thin-walled shells (% << 1) are considered, it
seems natural that the small parameter € be chosen as %@ where

¥ is the maximum radial displacement of the shell.

4.1 Nondimensionalization and Systems of Linear Equations

Before proceeding in applying the perturbation method, the
differential equations must be rewritten in the nondimensional form,
Also the effect of damping will -be included in the analysis by induc-

ing a viscous damping term in the equilibrium equation:

2 2
4 ow ., . ow 1 8°F
DV'w + Ph—“ +G‘h——=Q(X,Y,t)+ 3
ot ot R 2

+(82F ofw _, r o'w  dPr ofw)., 4

oy? oxl  _ oxBy B0y 52 o2
1 Ao 1w, [( azw)z _o%w 82W] 4.2)
Eh R o2 [\ady/ "z 52

where C is the coefficient of linear viscous damping.
Next, let the nondimensional independent variables be de-

fined as follows:

8 = 6=-§ 7T=wt (4. 3)

X
L!

where w is the frequency of the system.
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Next, the nondimensional displacements and stress functions

are defined as follows:

W(s,0,7) = MLl
m

U(s,0,7) = ux,y,t)
Wm ‘
V(s,0,7) = LEL:t)

w
m

2
?(5,8,7) = kg Flx,y,t) (4.5)
m

(4. 4)

where w_ is the maximum radial displacement. Also the following

nondimensional quantities are defined:

W

m
k= ,€=~—-§—,1‘=

i
W o

1
N12

2,22 202
A = (1-p )E{:)R w , Q(s,0,7) =L]:.:£.§).B_ q (x,y,t) (4. 6)
Eh

C — — h
Y= C ’ CC = pwoo Q(s» 6,7) = W Q(s,@, T)
C m

where w, is the frequency of linear vibration of a cylindrical shell to

be defined later.

Upon substituting eqs. (4. 3), (4. 4), (4.5) and (4. 6) into eqs.

(4.1) and (4. 2), the nondimensional Donnell's shallow-shell equation
can be written as
2
2|1 w2 ofw *a4w]ﬂaw
B

. OW
81'2 + zdi'\lk_ov 5

2 2 2. .2 2. 2

_ 1 %W, e 0% oW . 9% O°W . 9%9 9°W

=q(s,0,7)+ + (——% -2 + ) (4. 7)
P R? 8a? K2 pg° pgl | 0008 8088 ' o 2 T2




1 [ 2% 2 @ cp 9 ¢]
+ + = -
1.2 Lic® 9s%  kZ 5s%00% o0t

The boundary condition can be obtained as:

2 2
1 E)W BW a¢

W = ) = =V = 0 ats =0,1 (4. 9)
2 aaZ ¥ Toe? ool

The circumferential periodicity condition,

27r Zﬂ' 2
oV _rf 1 1 3% o y Z}}d
faede—f{-———z[j u—#g] w- e [je = o,
0 0 l1- k 88 00
(4. 10)

eq. (4.10), is obtained from the first two equations of (2, 7) by
eliminating o= .
From equation (2. 15), it is obvious that

q(s, 8, 7) = f cos T cosn® sinmvs (4.11)

2.,2

where f = (1-py )R = h G (4.12)

Eh}Z ¥m

It is clear now that the nonlinear terms in eqs. (4.7), (4.8)
and (4. 10) are multiplied by a small parameter €, The dependent
variable and nondimensional frequency parameter A will be expanded

into a power series of € as follows:

W(s,0, 1,€) = wo(ao 8, T)te WI(B, 0, T+ €2w2(8, 8, 7)+ ~--
(4.13)
¢(s’ 8, 1,€) = ¢o(3s 0, 1)+ €¢1(89 0, T)+€2¢Z(B' 6, TH ---
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Vi{s,0,7,€) = Vo(s,e,'r)-l-evl(s,8,7)+€2V2(s,8,7) S -

(4. 13)

Cont'd

2
?\-?\o+e)\1+e ).2+......

Substituting eq. (4.13) into eqs. (4. 7), (4. 8) and (4.10) and
equating the terms with equal powersof €, a system of linear equations
may be obtained. However two assumptions will be made before the
linearization, namely,

1) the amplitude of the periodical external forcing function

q is small such that f = ezf'

2) the damping of the shell is also small such that
2—
Y =€ Y
Now the linearized system of equations are as follows; order of €¢°

4 2 2
rz[—l- otw_, otw_ a‘*wo] 8w, %9,

1 _
i~ vt Tzt~ |*NT -z —=7 =0

k™ 9s k™ 88 96 80 or k ds
(4. 14)
a%p %o a%p a*w
Ll o+ 2 o "oy L ©.0 (415
z2|l7da 2tz 2.2t 2|tz .
1-p k 8s

k os k™ 088 86 06

boundary condition:
2 2 2

, w_ o ow_ %
wW_ = + p = = =0 ats =0,1 (4. 16)
© 12 pgl 00° 90° ° '

circumferential periodicity condition

2r 2r 2 2
av ¢ 8¢
o - 1 1 [+ (] -
f—(,;é—de--f{l 2[;2 —Z - 2]+W(}d9-0 (4.17)
0 0 Ld

8 80
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Order of ¢
) a"‘w1 ) otw otw o o*w
k¥ st K% 8s280%° o6

o%w
(o]

2, .2 2, .2 2 2

N ¢, W ¥ oW 9%, oW

R B
o7

) (4.18)
892 892

{

1
+ — L - Z +
k2 892 882 9806 0800

) 7.2 t—3

4 4 4
y [La¢1+»_?__a¢1 a¢>1]
k* ae* k% ae%e0 a0

1-y

oPw 2 o%w o°w

+,_1_2 = _12, [(____ae %) . 2 °] (4.19)
K2 sl k 98 s’ 002

boundary conditions:

, otwy o’w, 2%,
Wl;-;z_ —+ty—5 =——-=V, =0 at s =0,1 (4. 20)

Os 00 00

circumferential periodicity condition,

2r 2r 2 2
2 2
0 0 1-1/2 k™~ 09s 00

oWy - deggD |} a0 =0 .21

order of €2




2 2 2 2
8°p, 8“W o_zaqaoawl

1
+
l_{f[ 892 o8 862 2 9608 000s

™

(4. 22)
2

2 2, .2 2 2 Cont'd
o, oW, ¢, oW, awo]

e e t +
5008 000s Bsi 882 382 862

-2

1 a2""’2
+ =
3

kz 98

2
24t 272 zZzY 3

4
1 |1 29
Kk o8 k% 8s%00° 9@

4 4
O¢, @ ‘3’2]
-—-—-z- —
l-p
{(4.23

8W°8W1 OWOBWIBWOBWI

1
= A -
;2'[ 9008 000s 882 892 862 882_—

2 2 2 2 2 2 ]

boundary conditions

| 8w, ofw, %,
-————-—T-+y = =V, =0ats =0,1 (4. 24)
c 98 892 882 2

Wz=

P

circumferential periodicity condition ;

27 5y 27 8% 9

" 98 o 1-% L2 g2 00

owW_ oW
¥ [Wz -5 8 |[©=0

(4.25)

|

Similarly, the linearized equations for the order of e3 and higher
can be written, In the following sections the equations for zero -
order, first order and second order of € will be solved,

4,2 Solutions of Zero Order Equations

Equations (4, 14) and (4. 15) are the zero order equations
which are identical to the linear equations of free vibration of cylindri-

cal shells (see Appendix A)., The solution can be readily obtained as:
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(A n(T)cosn® + B (7)8inh@)] singnrs) (4. 26)

E}MS

o
m=

1n=1

As indicated by the results of linear vibration (Appendix A),
with an external forcing function of the form fcos 7cosnfsinmas, the

response at the vicinity of a resonance can be expressed as
Wo = acos rcosin@sinfmrs) (4. 26a)

In nonlinear vibration of cylindrical shells, the circumferen-
tially traveling wave response must be included. The traveling wave
response may be expressed as:

Wo = ccos(7-nB)sinfmmws)

(traveling wave)

=c[cosrcosh6}+sin¢ai§m0] sinmw g (4. 27)

Combining the standing wave response, eq. (4.26) and travel-

ing wave response, eq, (4.27), the zero order solution will be

W (s,0,7) = [A(T)cosn@+B( 7)sinin@] sinfnws) (4. 28)
where

Alr) = acos('ﬁﬁa) and

B(7) = bsin(7+5,) (4. 29)

where 5, and 6, are the phase angles which are included in the re-
sponse due to the damping and nonlinear effects.
Comparing eqs. (4.28) and (4, 26) indicates that the zero

order solution is one of the solutions of the linear free vibration of
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cylindrical shells,

Here A(T)cosph@sinimmw s) will be referred to as the driven mode
since it is spatially similar to the external forcing function.
B(71)sinfhf)sinfr &) will be referred to as the companion mode since
it is excited indirectly,

Substituting eq. (4. 28) into eq. (4. 15), the zero . order stress

function can be obtained as:

¢, = T[A(T)cosn®+B(7)sinpe)] singns) (4. 30)

where

T = _1% , L= 5 (4.31)

n (1+47)

With eq. (4.28) and eq. (4. 30), it can be shown that the bound-
ary conditions, eq. (4.16) and the circumferential periodicity condi-
tion are satisfied,

Substituting eqs. (14.28) and (4. 30) into eq. (4.14), the zero

order frequency parameter )LO may be obtained as,

4
2 (1-p5)ETy

2
] +
K )2+ 2]2

A, = [e——-—-)2+ (4. 32)
This zero order nondimensional frequency parameter is
identical to the resonance frequency of linear vibration,
The amplitudes and phase angles of the driven mode and com-
panion mode are not determined by this zero order solution.
Subsequent solutions of higher order equations will determine these

values,
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4, 3 Solutions of First Order Equations

With the results of the zero order solution, the first order

equations (4, 18) and (4.19) can be written as

,r2[1 ‘”’4""14r 2 a4wl +a4w1]+x ofw, 2%,
k> 0s% K% 8202 002 ) ©8.2 K2 0l

= -‘J’Ll [ ﬁcos(nG)+ B 8in6)] singnns) (4. 33)
| mn ¢ 2. .2 2 2

+ () T[(A%+B%)cos2mms+(A”-B“)cos2n6+2ABsin2n0]

4 4 4 2
1[1a¢’1+_2_3¢1 ks PR
12 kT 8% | K% 0s200% 007 K2 sl
(4. 34)
2
= (@27 [4(A%+B%)cos2mus - 3(A%-B?)cos2n0-ABsin2ne]

The right hand side of eqs. (4.33) and (4. 34) are the results
of the right hand side of eqs. (4. 18) and (4. 19) by substituting the

zero order solutions and using trigonometric relations, The
2

dot means differentiation with respect to time 7, hence A = —é’—%—
or

Since eqs. (4. 33) and (4. 34) are inhomogeneous, the solutions
of these equations are decomposed into two parts, the particular

solution Wlp , ¢1P and the homogeneous solutions Wic, d)lc. There-
fore the complete solution can be written as:

=w.P +w, €
171 1 (4. 35)

¢ =0," +9,°

w

WP and ¢ P satisfy the equations (4. 33) and (4. 34) and W, ©

1



-32-

and ¢ lc satisfy the homogeneous equations of (4. 33) and (4, 34);

a4w° otw. ¢ lw ©
2:1 2 1 1
o [—Z +——2‘ + y ]
k 83 9s 89 86 |
SZWIC . 5 d’lc
+AZ—T -..._Z ——r = 0 (4.36)
or k 08 /
84¢c 9 ¢ 84¢c azwc
sl v gt —g Sy —5 = 0 (4.37)
l-p k~ 98 k™ 8s 89 890 k s

and the complete solution (4. 35) must satisfy the boundary condition

(4. 20) and the circumferential periodicity condition(4. 21).

Let the particular solutions Wlp and ¢1P be as follows:

Wl P(a, 0,7 = al(r)c082rmr s+a2(7)0032n8+a3(1-)sin2n8

+[A1( ﬂco&l@)«“Bl(T)sirmel sinfnrs)
( 4. 38)

¢1p (8,0, 7) = EI(T)COBZW s+32( T) cosZn9+€3(T)sm2n0

+[ A, (7) cosn@} B, (7) sinnd] sinfn7e)

Substituting equations (4. 38) into (4. 33) and (4. 34) and equat-
ing the coefficients of cos2mrs, cos2n@, sinZn@, cosnBsinmss and

sinnf@sinmss, five sets of ordinary differential equations may be

obtained as follows:
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4 2
P2ERT) o) a, + BRY 5 = - @2T) r(alis?)

(4. 39)

4 2
1 2mw,'— 2Zmnm _1,mnw 2,2
-I-—Vz'(—k—)nl-( ) 9 =205 ) (AT+BY)

2 )
2 4 s _ ,mnm 2 2
lér™n 0.2+ lohz = (—k-—-) T'(A -B")
[ (4. 40)
16n? - _ 1,mnm

L2 27T 1 (a%-8%) )

2
2 4 . _ w
16rn"a  +\ U, =2 (“’T") T AB

(4. 41)

16n4—— mnm
2% 5 A :
-V

2[ﬂ)z+ z]ZA +AA +(—"M)ZX =2 A
TleT) ) AP H A A HET) A ==y
(4. 42)
2
1 mm,2 - mmn2, _
— [ & - %A =0
l1-p
2pmnz, 280§, @mnZy g
L) ] BytA B, + (¢ 1 =N
(4. 43)

2 2.2 2
;jl';z[(%’ +n°] B) - (LB, =0

The solutions of eqs. (4. 39), (4.40) and (4. 41) may be

readily obtained as



~34.

a, = cl(az+b2)+cz[a2c032(1-+6a)-b20082(7+6b)] }

(4. 44)
- -2 -
Q) = cl(a +b2)+cZ[azc032(1-+6a)-bzcos2.(1+6b)]
2 .2 2
a, = c3(a -b )+<:4[ a cosZ(1+6a)+b2c032('r+6b)]
(4. 45)
g, = S,(a2-b2WT,[alcos2(+5_)+bEcos2(+6. )]
273 4 a b
aj = csabain(ab-ba)+c7absin(21“+6b+6a)
(4. 46)
'53 = 'Esabsin(éb— Sa)+'c-:7absin(2'r'+ 6b+ Ga)

where
2

4.2 2.n

n §P+(1-V )-8— 1 rA 2
cCy, = = i R ? = L_:L.) 1 (n + c )
1 2 16r2n4§,4+(l-v2) 1 4 nzgz 16 1

12ria Z)EE 2 2

c =-%n d-vrg , T =.§ﬂ_)__}_z(n +c,)
2 [161'2114;4”1_92)_410] 2" 4 227167 "2

2

_ 1 T - 1 2, 2
c3,-——37—1-:2—, C3-"'6—4_(1"V)§
(4. 47)

4 2
c=l[ nt T 1, -62_1(1_”2)3
T ierfatan 4" 64 ¢

4 ' 2

— - 2
S % 5= 0570
16r"n -4.\0

[e}
[ o

n
N

ol
o

]

--%(l-vz)gz
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where T and L2 are defined in eq. (4.31).
The solutions of equations (4. 42) and (4. 43) need special
attention, By eliminating —A—l(-r), eq. (4. 43) can be reduced to as
the following equation ‘
. )\1
Al + Al = To a cos(ﬁ-&a) (4. 48)
The solution of the above equation is
}\ .
A7) =%;i- a Tein(7+6 ) | (4. 49)
'Al(q-) is the so-called ""secular term' which grows indefi-
nitely as 7~ oo. Since only the periodic solutions are sought,
Al(q-} can not be part of the solution, Therefore it is necessary

to assign:

A =0 ' (4. 50)

which in turn makes:
A(7) =K [(1) =B,(7) =B (1) = 0 (4.51)

Now the particular solution has been obtained and the first
order frequency parameter has also been determined to be zero.
This particular solution satisfies neither the boundary condition
(4. 20) nor the periodicity condition (4. 21). Therefore the comple-
mentary solution is necessary to enforce these conditions.

After some observations, the homogeneous golution will be

assumed as follows:
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W‘;(s, 0,7 = go(1-)+g1(s)+g2(s)[azcan(ﬁGa)-bzcosa(ﬁsb)]
+g3(s)cann6+g4(s)cOSZn6[a2c052(1+6a)+b2c092(1~l-6b)]

+g g8 )sininesm(ZR+aa+ 8 )+8¢(8)8in2n0sin(6, -5_) (4. 52)

| ¢§(8. 6, 1) =EO(T)SZ“'EI(BH'g_z(s)[a2c052(ﬁﬁa)_bzcogz(ﬁ.ab)]
' +'g'3'(e)cosZne+§4(s)cann0 [azcosZ( ﬁsa)+b2¢osz(.,+5b)]

+‘g‘_5(s)sin2nesin(2¢ +6a+5b)+'g'6(s )sin2n@sin(8, -5 ) (4.53)

Substituting eqs. (4.52) and (4. 53) into the homogeneous
equations (4, 36) and (4. 37) and equating the coefficients of likely
terms, a set of ordinary differential equations for the unknown func-
tions may be obtained. The circumferential periodicity condition
(4. 21) must be satisfied by the complete solution (4, 35) which is
the sum of a particular solution and complementary solution, This
provides an additional equation for the function go('p) and Eo(r).

The details of the circumferential periodicity condition are discussed
in Appendix B. The satisfaction of boundary condition (4, 20) by the
complete solution provides the boundary conditions for the unknown
functions in the complementary solutions., The details of the bound-
ary conditions are discussed in Appendix C, In the following the

differential equations for the undetermined functions and their
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boundary conditions will be summarized. [Note (") = = ( ) --—-—

(4, 54)
gt = S8 =£—(A +B%)
o 1-;;2 kZ o 8
The solutions are as follows:
2
g (1) = cgla®+bP)re [ a®cos2(r+6,)-blcos2(r+5,)]
‘ R E 2 (4. 54a)
‘Eo(?) =-56[a cosZ(ﬁ&a)-b C?BZ(‘T&%)]
where - ‘
z ' . 2 yii 2 1 ?
c =R , c. = 1-p 9_6
5 : 1 ! 6 (Ié;; h4ko) 1 ! LRI DR N e
(1 Vz)nsz} sobeed . ' R IS I (4‘ 54b)
06 -
S(I-y -4X°)
rzgun ‘l_gn =0
KEo1 2ol
(4. 55)
1 1 o m 1 L]
- g + gh =0
l-p F ;2— 1
The boundary conditions at s = 0,1 are
2
g,(8 = 0,1)=-(c +egla’+b?)
(4. 55a)

gl(s=0,1)= (Zmr)zcl(az-l-bz)
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H {

| |

The solutions are as folllowa: :
g,(8) = Ki ampi(éd-ljsinhpl(Zs-l)+K;13coap.lst-l)coshpl(Za-l)

2
B (8) = i"' g}(s) | (4, 55b)

where By Ki and Ké are constants. The detailed solution procedure
and these constants may be found in Appendix D,

2

r 1 -, _
Egep - N8y - 8= 0
(4. 56)
101 5w, 1,
— g3 =0
Wk b
The boundary conditions at s = 0,1 are:
g2(8=09 l) = ‘(c2+c6)
(4. 56a)

g%(s:O, 1) = (?.xn:n')zc2
The solutions are:

gz(s )=K§Binp.2(28- 1 )sinhp.z(ZB- 1 )+K§C08p.2(28-1)c08hp,2(28- 1)
(4. 56b)
E3(8) = -k2(1-18)g(8)

where Bos Kf and Kg are constants, The detailed solution procedure

and these constants may be found in Appendix E.
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2
2:1 2n 4 1 -

r [;—.; g3 -2(3) gj+2n)g,] - Z8370

(4. 57)
2

....__.2. { 4 gms -Z(k =) g ! +@n) 83] +.....2. gn..o

The boundary conditions at 8 = 0,1 are:

g5(8=0,1) = -c (a’-b?)

g%(s:(}, 1)=0
(4. 57a)

5(80, 1) = -T(a-b%)

'gg(a=o, 1)=0 ’

The solutions are:

g4(8) = K)cosh,(28-1)cosh/ (28-1) +K3sinA,(28-1)sinhA, (26-1)
+KgcosA (2s-1) coshA, (2s- l)+K inA(2s-1)sinhA, (28-1)

E4(8) 24517 [K3cos,(26-1)coshA, (25-1)-K} sind\,(28-1)sinhA (25-1)
+Kjcosh (28-1)coshi,(2s-1)-K3sinA,(2s-1)sinhA, (25-1)

(4. 57b)

20 Kg, Ki, 1\, Az, A3, A4 and M3 are constant, The

detailed solution procedure and these constants may be found in

where K K

App endix F,
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r2[L gm 228 )2 "+ (2n)¥g ] -0 g,- Lgn =0
2847 Ba 41" MoBq™ 1284 =
5 (4. 58)
1 1 — 2n, — 4 1
2 [F 84 ~2(37) g4t(2n)gy] +=gi=0 -
-y k
The boundary conditions at 8 = 0,1 are
34(3309 1) = “C4
gy4(s=0,1) =0
(4. 58a)

B4(8=0,1) = -,
EZ(FO. 1) =0
The solutions are:
g4(s) = K‘l"cos?&B(Za-l)coahIl(zg.l J#Ksinf,(25-1)sinkA (2s-1)
+K3cosh(28-1)cos i, (28- 1 +K 38ink ,(25-1)sink, (26-1)
- 4 - - =4 . - .
g4(8)=K, cosA,(2s-1)coshh, (28-1 +K, 8inA,(28-1 )smh?i1 (28-1)
—4

+K3cosh ,(26-1)coshll,(2s-1 )+stm7& 4(28-1)sinbh, (25-1)

(4. 58b)
The detailed solution procedure and the constants in the solu-

tions may be found in Appendix G.
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2 1 —
2 1 2 + - — L =
[ g -242) B5t(2R) Y51 -4n 8 - 285 =0
(4.59)
2n 2
——-z[-; 5 -2() 8§ n+(zn)* 85] +—gs" =0
The boundary conditions at s = 0, 1 are:
g5(s=0, 1) = -c7ab
gg(s=0, 1)=0
(4. 59a)
§5(s=o, 1) = -?57ab
Eg(s =0,1) =0
The solutions are:
g5(8)= K; cosh ;(28-1)cosh (28-1)+Ksink (25~ 1)sinkA (2s-1)
+K§coa;{4(23-1)cosh'I\Z(Zs-l)+Kzahﬁ4(23-1)sinhxz(zs-1)
(4. 59b)

5(5)=K; cosll ;(28-1)coshA, (25-1)+K;sinl ,(28-1)sinkh (25-1)

+K;coal ,(28-1)cosh,(28-1¥K sinf 4(25 - 1)sinkll,(2s-1)

The detailed solution procedure and the constants in the solu-

tions may be found in Appendix G.

2[;1; Py -2( ) g;+(2n) 36]*-—58'3, =
1 1 2n 2 4 1 (4. 60)

T—z[‘;—; g% -2(-;;&) ggt(2n)g,] - =z g¢ =0
-y
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The boundary conditions at 8 = 0,1 are:

g6(3=0, 1) = -csab

g’é(a =0,1)=0
(4. 60a)

The solutions are:

g6(u)=K$cosA3(Zs- 1 )cos&ahﬂ»1 (28-1 }+KgsinA3(Zs-l )Esith'&1 (28-1)

+KgcosA4(25-l )coshAz(Zs- 1 )+KisinA4(Zs- 1)sinhA,(28-1)

To(e)=2pir?[KScosh (28-1)cosh A (28-1) rK?sin%(Zs-l)sinh!\‘(Zs-l)
+KgcosA4(23- 1 )coshAz(Za-l )-KgainA4(Zs- 1 )si.nhAz(Zs- 1)]

(4. 60b)

The detailed solution procedure and the constants in the solu-
tion may be found in Appendix F,

Now the solutions for the first order(e) perturbation equa-
tions have been solved, The specified circumferential periodicity
condition and boundary conditions are all satisfied. Combining the
zero order solutions and the first order solutions the response of
the large amplitude vibration of a cylindrical shell can be obtained

to the accuracy of the order of ¢ = —2 | If the maximum radial

R
displacement w__ is of the order of shell thickness h, in view of
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the shell theory used in which % << 1 is applied, the solution up to
the order of € should be considered adequate in consistency with
the shell theory. However the response-frequency relationship has
yet to be determined. ‘I‘hé sécond order perturbation equation will
be used to obtain this relationship.

4.4 Response-Frequency Relationship from Second Order Equations

The second order perturbation equations, (4.22) and (4. 23),
are of inhomogeﬁeous ‘:y‘pe as are the first order equations,
The rightﬁ-’-hand side of equations (4,22) and (4, 23) are functions
of zero order solution and first order solution. Since only the
response-frequency r'elat[i]onship is sought from the second order
equation, the so-c‘:é.lled "gecular terms' are of particular interest;
in other words, the terms with the spatial dependents cosn@sinmms
and sinn@sinmns, However, as the complementaty solution of the
first order equation is not expressed in the form of a trigonometric
function in s, it is necessary to expand these solutions in terms of
trigonometric functions., A careful examination of the comple-
mentary solution of the first order equation indicates that it is
finite and integrable in the interval 8 = 0 to s = 1 and has a finite
number of maxima and minima. Therefore a convergent Fourier
series exists for the complementary solution, such as

o0
g,(s) = §g +Z §jl cos2jns
i=1 (4. 61)

0
E’l‘(s) = -kz(lﬂuz)[gg +Z Q; cos2jns]
j=l
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g,(s) —E +E § cosZJ'ns
3=l ‘ (4. 62)
(B) = -k%(1-0 )[§ +2} § cos2jns ]
j=1

84(8) = § + 2 §J cos2jns |, L
3=l (4. 63)

..,84(0) = g + z § cos;rre
J-—l ) R o I T (4. 64)

g4(s) -'54 + Zlfllcos PALT
)= !
1

gg(8) —g +E § CbBZJn’S 1 . ‘
= (4. 65)

_5(3) "-E + El 34 cos2jns
j=

gé(e) = g + E § cos2jns
j=1 (4. 66)

g6(s) -'66 +3z -E6 cos2jns
J—

The detailed Fourier series expansion and their coefficients
are discussed in Appendix H,
With these Fourier series expansions for the first order

complementary solution, eqs. (4.22) and (4.23) can be written as
otw,  otw a°w 8%,

rf [y 784“]21»3- 2 4 —2] +x z_1
k? 2s? k% 90%8s® g0t ° 8:% K% 8s®

ezw

88
(4. 67)

=f' cosrcoﬁ:x&mtnwé-l 2.Vx \fi'r-é—-—i-[ (G +G3)com0)+
+H G +G4) suﬁQ] Birinfrs)?; G (s 0, 7)
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4 4 2
1 29, , 8¢, 8, | W,

[ + = + |+ —5=
1-07 k% 0e? K% 002082 08% K2 082

(4. 68)

=[(G+G3)cosno)}(G,+G ) sinh9)] sinfmme) + G _(s, 0, 7)

The right-hand side of eqs. (4. 67) and (4. 68) are the results
of the right-hand side of eqs. (4.22) and (4.23). The expressions
of G, G,, G, Gy, ‘é‘l, G,, ‘63 and G, can be found in Appendix. L |
G (8,0, 7) and ﬁo(s, 0, 7) are functions with the spatial dependents
other than cosifpinfrs)and sinfi@sinjrs) where i# n, j# m.

Now let the solutions of second order equations be:
V Wz(é; 6,7 =N[A2('T)coen9+Bz(1-)sinn9] ginmmus + wz(s, 0,7)

q&z(s, 9, 7) =[Mﬁz( 7)cosn9+Bz(7)sin_n9] sinmmns+ <I>2(9, 0,7
(4. 69)

Substituting eqs. (4. 69) into eqs. (4. 67) and (4. 68) and
equating the coefficients of cosp@singnnd) and sinh@sinfnrg), the fol-

lowing ordinary differential equations may be obtained:

o 3 2
AZ+AZ = -Xl;{f' cosb_+aa +[;3+cc082(6b- ﬁa)] ab +)\za} cos(—r+6a)
+ Xl; {f'sins_+nab®sinz(s -6 )k VX Va} sin(7+5_) (4. 70)
s 1 3 2 .
B,+B, =~§{ab +[ptocos2(s,-5_)] a“b+\, bl sin(T+5,)

1 F -
+ 35— { mabsin2(6, -5 _)-V\ VX_¥b} cos(r+5, ) (4.71)

o
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where a, B, 0, and n are functions of circumferential wave number
n, half axial wave number m, Poisson's ratio y, length to radius
k and nondimensional bending rigidity r, Their expressions can
also be found in Appendix I,

It should be remembered that,a,is the amplitude of driven
mode and,b,is the amplitude of companion mode.

Equations’ (4. 70) and (4. '71I) are similar tc} eq. (4.48), There-

fore ;Ltle solution A, and B, are the secular terms which grow indefi-

i
!

nitely|as 7 — ©, Consequently for a steady state solution the following
i . T

j/ "i
must be true:

| ' . |

Xza + aa3 + :[ﬁ-!-acosA] ab?‘ +f cés‘ §=0 | ' L (4. 72)
VA VR Ya 41 ab’sinA + f'sing =0 (4.73)
3 2
A,b + ab™ [ptocosA]a™b =0 (4. 74)
VX VX_7b ~ma’bsina =0 (4. 75)
where 6 = §_ and A = 2(§, - 5,) (4. 76)

Eqgs. (4.72), (4.73), (4.74) and (4. 75) are four algebraic
equations for four unknowns, namely a, b, § and A. These un-
knowns can be solved in terms of a, B, ¢, n, which are functions
of wave numbers and shell configurations, and v, the damping in
the shell and f, the magnitude of the external forcing function. A,
the second order frequency parameter, is also an unknown but it

appears in the solutions of the driven mode,a,which provides the
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response-~frequency relationship.:

Single mode (driven mode only) response .

b = 0 is one of the solutions for eqs. (4. 72) to (4. 75). In this
case the companion mode is not participating in the vibration. The
response involves the single mode, namely the driven mode only,
The equations governing the driven mode response can be reduced

to as followq:

A a+aa3+‘£' cos & =0

2
(4. 77)
\ﬁt\ﬁ;?a+£‘ 8in 6 = 0
Eliminating 6§ from eq. (4. 77), one obtains:
(A MJFNNX‘"“"-"Z 4.78
2 A 7 faz ' ‘ (4.78)
Now defining
PR T W S o (479
== =5 = € X | ‘ \ (4, 79)
o] o \ O v :
equation (4. 78) can be reduced to
2 ... 2 x2:% 2.2 f
[2%-1) +€ al +trvaet== (4. 80)
o x'O» vl [ S a.du\!l X .

Here the relations vy = ez"')'; and f = ezf', which have been defined
before, are used.

Equation (4. 80) can be rewritten as:

2 2.2
2 1 o 2 2 2.2 _  h°G (4. 80a)
[@°-1)+ -7 3, ¥m® ] V= T
o o m

Here eqs. (4.6) and (4. 12) are used. The physical deformation of
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the shell can be expressed as

: 2
wix,y,t) =w_[W_+eW, +&W, +...]

= wm{[acoa(wt+6a) cos BI%{i-bsin(mH&b)ain i’g-] +O(€). .. }

where a and b are nondimensionalized amplitudes of the driven mode
and the companion mode respectively. Obviously the quantities w_a
and wmb are the physical amplitude of the driven mode and the com-
panion mode:fesP;actively. .Since the deflection is of the order of
ahell‘thickness fo:f‘t;\h:e .cqz‘wgniencel of Fomp}arison, \the following non-
dimensionalized quantities will be defined

w_a wmb

Wa = —E—-- M Wb = —E-""- (4. 80b)

Then eq. (4.80a) can be written as

2 2
@21+ &) L w?1%44%0%2 - G (4. 80c)
®' % Va 3
. O xowa

Throughout this study, the driven mode and the companion mode are
plotted in terms of w, and wy respectively,

Eq. (4, 80) is the so-called response-frequency relationship.
Fig. 4 is a typical plot of eq. (4. 80) for m =1, n =6, R = 4", L = 8",
h = 0,010" and% = 0. 0025, £ = 0,0012, y = 0.00l. As can be seen,
the nonlinearity is of the softening type, i.e., the frequency
decreases with increasing response amplitude., This curve is simi-
lar to the response-frequency relationship of a simple spring-mass
system with a nonlinear softening type spring as described in Ref. 1,

Physically, when the frequency is increasing the response will follow
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the curve a-b-c and then jump to d. Further increasing the fre-
quency, the response will follow the curve from d to f. When the
frequency is decreasing the response will follow the curve f-d-e
and then jump to b, Further decreasing the frequency, the response
will follow the curve from b to‘ a, The discontinuous responses at
c,d and e, b are called " jump phenomena'" which have been observed
in various nonlinear vibration systems. Figs. 5, 6, and 7 are the
similar plots for different wave numbers, damping and amplitude
of external forcing functions.

In the case of free vibration, the fesponse-frequency rela-

tionship caln be obtained by lettiné f=7 =0 in eq. (4.80), namely,

92=1-ez%a2 , (4.81)
o

which are plotted by dashed lines in Figs. 4, 5, 6 aﬁd 7 and referred
to as ""backbone curves.' |

The backbom—lz curves can be used to determine the type of
nonlinéarities (softening or hardening) and the degr;ae of nonlinearity.
If the backbone curvé bends towa!rd the left, the noniinearity is soft-
ening, if to the right the nonlinearity is hardening,

Although a softening type nc;nlinearity is indicated in Figs. 4
to 7, not all the modes (combination of m and n) are of the softening
type. Fig. 8 shows the backbone curves for different modes. It is
clear that the nonlinearity in the vibration of a circular cylindrical
shell with finite length is of both the softening and hardening type.

An examination of eq. (4.81) shows that the type of nonlin=-

earity depends on the sign of the quantity . Positive a implies a
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softening type nonlinearity and negative @ implies a hardening type
nonlinearity. Also the degree of nonlinearity is dependent on the
magnitude of @. The larger a implies the larger nonlinearity. Figs,
9 and 10 show the quantity (%) %— (note ko is always positive) as a
function of half axial wave numbec;' m and circumferential wave num-
ber n for -i.{i = 2 and Il% = 0,0025, For m =1 the nonlinearity is of
the softening type only, For m > 2 the nonlinearity is either of the
softening or hardening type depending on the circumferential wave '
number n,

The forced response-frequency relationship is given by the
solution of eq. (4.80). At a given frequency the response can be
expressed as a function of the external forcing function. Figs., 4
to 7 show that the response at certain frequencies is not single-
valued, For instané¢e in Fig. 4 the response is triple-valued for
0.9965<2 < 0, 9984 and double-valued for 2 = 0. 9965 and R = 0. 9984,
In the multiple-valued response region, a stability analysis must be
performed to determine the stable response. This stability analysis
will not be included in this iﬁvestigation. However, it can be ob-
served from the i-e'ep‘ox}se-fredliexicy relationship that the multiple
‘reap'orwe region is confined between the two fxlequénciea where the
tangent of eq. (4.80) is vertical, i, e., g—% = 0, In other words, the
locus of these vertical tangents is the stability boundary (Ref, 1).
Fig. 11 shows the locus of vertical tangents for vy = 0, 001 and
¥ = 0.003 respectively of a shell having 3 = 2, § = 0.0025. The
shaded area indicates that the jump phenomenon will occur, The

amount of damping in shell vibration plafrs an important role in the
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jump phenomenon. Larger damping will make the jump phenomenon
occur at a higher amplitude of response.

Companion Mode Participation

In the case of the companion mode participating in the vibra-
tion, i.e., b# 0, eqs. (4. 72) to (4. 75) can be reduced as follows by

eliminating 6§ and A:

2

[@2-1)(a®-b%) +e? 2 (2% b4 12405 (a2 D) =12a? (4. 82),
[o] o] )
2 2 4
a2 + & (aviipa?) +La%? - e4;:z (4. 83)
o ) n
o

Eqs. (4.82) and (4. 83) are nonlinear algebraic equations for
two unknowns, namely a and b. A direct solution for a and b as
functions of f, 2 and v is difficult. Therefore a small computer
program was deveiéped to calculate b a.nd -{-— fqr given a and . By
cross-plotting the results, it is possible to gbtain curves of a vs, 02
and b vs. @ for constant -{— and Y. Figs. 12 and 13 show the ampli-
tude of the driven mode a v?riéﬁ and without the companion mode
participation for constant -{— and Y. Since b= 0 is a solution of
eqs. (4.72) to (4. 75), both f:’urves in the figure represent the possi-
ble response of the shell, The actual response in the multi~-valued
region has to be determined by a stability analysis. Fig. 14 shows
the corresponding amplitude of the companion mode as a function
of 2 for constant %—- and Y. As can be observed, the response of
the driven mode isoaffected by the companion mode only in a narrow

region in the vicinity of & = 1, Its amplitude, a, is always greater

than a certain value in this region. This minimum value can be
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derived from eq. (4. 83) as follows, In order for the companion

mode b to be a real value, it is necessary that the following is true.

4

4a 1 2 2
o n
which in turn can be written as
2 xoRz
[wy "2 —— av (4. 85)

This indicates that larger damping ¥ will make the companion mode
occur at larger amplitude.

After establishing the minimum amplitude for the driven
mode, a minimum magnitude of forcing function f can be established
by using eq. (4. 82). The existence of a minimum forcing function
implies that in order to make the companion mode participate, the
external forcing function must be greater than a certain minimum
value. This explains the fact that the companion mode can be ob-
served experimentally only for the large external excitation,

It may be concluded that the participation of the con;panion
mode is a phenomenon of large amplitude and large external forcing
function. (Note that the large forcing function only does not neces-
sarily imply large amplitude, the large amplitude can also be ob-
tained for small damping at the right frequency for small forcing func-
tion. ) As mentioned before, the occurrence ofthe companion mode must
be determined by a stability analysis. Nevertheless the region inwhich
the companion mode may exist can be established. Fig. 15 shows the

region (the shaded area) in which the companion mode may be
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participating for ¥ =2, & =0.0025, m=1, n =6, y =0, 001,

4.5 Discussion of Results and Comparison with Previous Investigation

The radial response of nonlinear vibration of a cylindrical

shell simply supported at both ends can be ;v‘fitten as
W(s,6,71) = [acos(ﬁ&a)cosne+bsin(r+&b)sinne] sinmmns
- e{go( 1-)+a1 ( T)cosmes+az( T)cos Zn9+a3( T)8in2no
+g,(8)+g,(8)[a® cos2(T+6_)-bPcos2(r+6,)]
+g3'(8)C052n0+g4(5)COéZnO[aZCOBZ(1"’5&)+b20082(;{;f'5b)]
+g5(s)sin2nesin(2 "r+6a»+6b)+g6(s)sinZnBsin(&b-Ga)}
+0E %) +.u... | (4. 86)

where the amplitude of the driven mode, a, and the companion mode
b,are functions of the frequency, external forcing function and damp-
ing. The terms multiplied by the small parameter € are due to the
nonlinearities of the problem. ' These terms represent the difference
of the deflection shape and harmonic content between the linear and
nonlinear response of the shell. Therefore, it is of interest to dis-
cuss these terms. The functions go('r), 061(7‘), az(’r) and 33(7)
involve a constant term and a term with coefficient cos2 7 or sin2T.
The functions gl(s) to ge(s) are of the '""boundary layer'' type, i.e.,
they possess large magnitude near both ends (s = 0 and

8 = 1) and vanishingly small magnitude elsewhere. A typical plotof

gz(I) form=1, n=6andm=2, n=7is shown in Fig. 16. There~
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fore, as far as the deflection shape away from the immediate vicinity
of the boundary is concerned, terms like go(q—), oel('r)cosZImr 8,
az(-r)cOBZnO and a3( T)8in2n0® are dominant.

In Section II, previous investigations of nonlinear vibration
of cylindrical shells have been discussed. The deflection shape as-
sumed in those previous investigations for applying the Galerkin
method will now be compared with the present calculated deflection
shape. Since the fundamental deflection shapes are all identical to !
the linear mode shape, only the "add;ed“ t;rms in the deflection
shape will be compé.red; Chu (Ref. 8) has no added terms for the
deflection s‘hape.v No‘winski (Ref. 10) has a constant as the added
term. Evensen (Ref. 12) has (1-cos2mns) as the added terms.
Dowell has s‘u;nﬁrS as the added t:e:t"m. All the added ter%ns are
axisym:;:letric. In the present analysis, non-axisymmetric terms
such as az( T)cos2n6 and a3(7)sin2ne are found. A comparidon of the
axisymmetric mode of the present solution and Evensen's assumed
deflection is shown in Fig., 17, (Note the axisymmetric modes in
the present solution are go('r)+al(7)cerm1rs+g1(s)+g2(s)[ azcos(ri-ﬁa)-
b2c032(1+5b)] ) For small '"aspect ratio,'' favorable agreement is
indicated. However increasing the aspect ratio makes the deviation
between the two mode shapes larger. For the m = 3, n = 7 mode
the deviation is quite pronounced. One possible explanation of the
large deviation at large aspect ratio is that the amplitude of Evensen's
axisymmetric mode is independent of the axial half wave number m

but the present analysis indicates otherwise.
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As mentioned before, the type of nonlinearity of cylindrical
shells depends on the shell geometry as well as the mode shape
(combination of m and n). In order to compare the nonlinearity in
the present results and those in Evensen's results, the response-

frequency relationship in Evensen's report (Ref. 12) is modified as

1Bl ve L] atolnd Bat (sen
where §

2h 2

i st §4l 1 1 (n ‘ﬁ)
SV LT T8 " 12047 -

I 2h2 (L5+1) '
+(n” %
€Z +1)? R 1201408

The quantity in the bracket in eq. (4.87) corresponds to the quantity
%)2 Xoi- in the present analysis (eq. (4.81)). Fig. 18 shows the com-
parisgn of these two quantities. In general, the type of nonlinearity
and the degree of nonlinearity are different for the present analysis
and that of Evenasen's except for m =1, n> 10, Fig. 19 shows a

similar comparison for large circumferential wave number n. The

percentage difference is defined as follows:

I(Present)-(Evensen' 8) l

% =

x 100 (4.89)

(Present)

Large percentage differences are observed for 10> n > 20. The
explanation for this difference is as follows, For n < 10, the inplane
boundary conditions have greater influence in the results of the linear
vibration of cylindrical shells {(Ref. 19) and Evensen's solution does

not satisfy specified inplane boundary conditions which cause the
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large difference. For n > 20, Evensen's solution breaks down since
it is based on the assumption that (nz %)z << 1. It appears that
more inplane constraints at the boundary makes the degree of non-
linearity greater,

Olson (Ref. 22) performed a vibration experiment on a cylin-
drical shell flutter model where two rings were rigidly attached to
both ends of the shell. The measured frequency for m =1, n =10
mode was 131 cps. The calculated frequencies are 80 cps and 140
cps for the simply-supported case (w = Mx = Nx = p = 0) and clamped
case (w = %;v— =u = v = 0) respectively. It is obvious that Olson's
experimental model is closer to clamped than simply supported.

Fig. 20 shows Olson's nonlinear vibration experimental results com-
pared with the backbone curve obtained by the present analysis,
Evensen's analysis (Ref. 12) and Matsuzaki and Kobayashi's (Ref. 16)
analysis, Here the preéent analysis has a simply-supported inplane
boundary condition. Evensen's analysis has a somewhat more con-
strained inplane boundary condition due to the violation of simply-
supported inplane boundary bondition, Matsuzaki and Kobayashi's
analysis was intended for a clamped boundary condition, namely,

aw

w = % = Ny, =u=0at s=0,1; however the u = 0 condition was vio-

y
lated, which imposes a further inplane constraint to the shell.
Clearly Olson's experirx;xental model has a boundary condition some-
where in between the partially unconstrained inplane boundary con-
dition and ''super'' total constrained inplane boundary condition.

Again this confirms that more inplane constraints make larger de-

grees of nonlinearity.
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The presence of the companionmode is a very interesting phe-
nomenon. The appearance of traveling wave response due to the

companion mode can be explained as follows:
W(8, 7) = acos rcosn@tbsin r8inhi6)

The axial dependence is omitted for convenience. If a = b then the
following is true.
W(y, t)= a[ coswtcos BRX + sinwtsin ERX]

= acos(BRX - wt)

Defining the circumferential wave length as:

_ 2nR
Xc" n

then
W(y,t) = cos 2% (y - 22 )
c.

This is a traveling wave form with wave length Xc and phase
velocity %2 in/sec. Now the period T required for this wave to

travel a complete circumference (1 cycle) is:

_2wR _ 2nw _. !
n

hence the frequency of the traveling wave O

W w _
Op = 5 cygle/&ec == rad/sec.

Now if a+ b, the total response can be decomposed into a
standing wave superimposed on a traveling wave. Fig. 21 shows the

difference between a standing wave and a traveling wave by looking
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at the shell cross-section and the signal from a displacement pick-up
at a fixed point on the shell.
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V. EXPERIMENTAL ANALYSIS

An experimental investigation was performed in order to
observe qualitatively the phenomena predicted by the analysis and
wherever possible to make detail comparison of experiment and
theory. Very few experimental studjes have been devoted to non-
linear vibration of cylindrical shells, Olson (Ref. 22) studied an
electro-plated shell flutter model in which a softening type nonlin-
earity was observed. However in his experimental study no attempt
was made to investigate the companion mode. Kobayashi (Ref. 16)
tested another flutter model which was constructed of super-invar
sheet bonded into a seamed cylinder. He also found that the non-
linearity was of the softening type and observed the participation of
a companion mode over a range of frequency and amplitude.

In the present experimental investigation, it is hoped that
the following aspects can be achieved, namely:

1) To observe the type of nonlinearity

2) To measure the response quantitatively and to compare

with the theoretical results

3) To determine the range of companion mode participa-

tion and the characteristics of the companion mode

4) To make a general comparison between the theoretical

and experimental results and to determine the region
of validity of the theory

5) To observe the characteristics of nonlinear response

which were not predicted by the theoretical analysis

and to suggest the modifications to the theory.
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5.1 Test Specimen

5.1.1 Description of Test Shell

In the theoretical analysis, a so-called simply-supported
shell (SS1/SS1) was studied because of the simplicity of its boundary
conditions. The simply-supported boundary condition requires that
radial displacement w, bending moment M_, axial force N x and cir-
cumferential displacement v vanished at both ends, It is almost
impossible to simulate these conditions experimentally, Therefore, '
it was decided to choose a shell with rings at both ends that will
approximate the simply-supported condition. ’I‘ﬁe rings were chosen
so that the shell's natural frequencies and mode shapes were close
to those of a simply;-supported shell. Using the program developed
by El Raheb (Ref. 19}, a preliminary analysis was performed to
determine the size of the end rings. It is obvious the ring should
be stiff in the radia],‘ direction to provide w = 0, torsionally weak
to provide M = 0 and tangentially stiff to provide v = 0 The van-
ishing ax1a1 force N is achleved by the low bending st1f£ness of the
ring in the axial d1rect1on. The material chosen for the shell-ring
system was alummum alloy 7075 T6. The shell was machined from
a seamless tube to its desired inner radius, then placed on a steel
mandrel by thermally expandmg the aluminum tube., The outside
machining process was carned out on the mandrel to the design
thickness and ring dn‘nensmns. The final shell was removed from
the mandrel by thermal heating again. The end rings are an integral

part of the shell. The final dimensions are shown in Fig. 22,
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5.1.2 Determination of Shell Wall Thickness

It is reasonable to assume that the test shell would not have
uniform wall thickness since the machine tool used to manufacture
the shell has its own tolerances. Although the tolerances would be
of small magnitude, the percentage error might be high since the
average shell wall thickness was also very small, Therefore the
variation of wall thickness of the test shell was measured to insure
the errors were within an acceptable range. It is especially impor- i
tant to minimize the variation in shell thickness not only to obtain
the uniform wave pattern for the vibrational mode shape but also
to prevent any undesired response during the vibration. A deep
throat micrometer was used to take 5 measurements at each of the
36 locations over the entire shell wall, The micrometer and shell
were connected to a light bulb and a battery. The contact between
the micrometer and shell closes the circuit and turns on the light
bulb. This is used as an indicator for contact made to assure the
uniform measurement, The maximum deviation of the shell wall
thickness among these measurements was found to be 4% which was
considered to be acceptable.

However, the average shell thickness was determined in the
following manner. The diameter and the length of the shell together
with the dimensions of two end rings were measured. The total
weight of the shell-ring systerm was obtained. Then the shell wall
thickness is calculated using the density of the material. The
density was checked for a piece of material cut from the same stock

as the shell and was very close to that reported by the manufacturer.
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5.1.3 Support Plate for Shell-Ring System

The support conditions desired for the test were a free support
for the shell-ring system. However, it was necessary to constrain
the rigid body motion of the shell in order that the mode shapes could
be readily measured. This was accomplished by mounting one end
of thé shell on the base plate but making only a flexible line contact
with the end ring. For this purpose, the plate was fitted with two O
rings, one to support the axial motion and the other to support the *-
radial motion. The O ring for the radial support is mounted so as
to allow a few thousandths of an inch clearance. It was felt that this
provided sufficient play so as not to restrict the radial motion and
at the same time sufficiently restrain the rigid body motion. Fig.

23 shows a photograph of the test shell and its supporting end plate,
5.1.4 Comparison Between the Shell-Ring System and the Simply-

Supported Shell

After the dimensions of the shell ring system and its support
end plate were determined, it was necessar)} to “perforrﬁ an analysis
to see how close the shell-ring system could approximate the simply-
supported shell, The natural frequencies and mode shapes were
chosen for the comparison.

Table I lists the calculated natural frequencies of the shell-
ring system based on El Raheb's solution (Ref, 19) and of the
simply-supported shell (SS1/SS1) based on the Donnell approxima-
tion (eq. (4. 32)) which is used in the present investigation. Also

the experimentally measured natural frequencies are listed., The
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percentage difference of the calculated frequencies between the shell-
ring system and the simply-supported shell are less than 8, 62% for
n25 and decrease with increasing circumferential wave number n,
The experimentally measured natural frequencies are generally in
good agreement with the calculated frequencies based on the shell-
ring system. Fig. 24 shows the frequency spectrum of the shell
specimen as a function of half axial wave number m and circumfer-
ential wave number n. . !

The mode shapes of radial displacement w, bending moment
Mx’ axial compression N, and circumferential displacement v for
m =1, n = 6 mode are plotted in Fig. 25 for the shell-ring system
and the simply-supported shell. They are in good agreement except
for the bending moment Mx in the vicinity of the boundary where
large deviations are indicated. Since the high bending moment is
concentrated in the very narrow region close to the boundary and
rapidly approaches the values for the simply-supported shell, it
was felt that this shell-ring system is acceptable in approximating
the simply-supported shell for the nonlinear vibration problem to be
studied.

5.2 Description of the Experimental Set-Up

Vibrations of the shell-ring system are excited by an acoustic
driver whose acoustic output is focused through a conical nozzle with
a 0,25 inch diameter exit hole. The driver is positioned either mid-
way between the ends of the shell to excite m = 1 modes or a quarter
length of the shell from the top end ring to excite m = 2 modes. The

nozzle of the acoustic driver was a small distance d away from the
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shell skin and tﬁe distance d could be adjusted since the acoustic
driver was ﬁounted c;n a traversing mechanism. Previous experi-
ments (Ref. 22) indicated that as long as the distance d is less
than 0. 03 inch, the pressure output from the driver will be essen-
tially sinusoidal.

Motion of the éhell skin is measured with a non-contact
reluctance-type pickup which was mounted on a fixture with a large
bearing that could be traversed circumferentially. The pickup
could be stationed at ax{y position along the axis of the shell. The
reluctance pickup-amplifier system was calibrated by ;v'arying the
distance between the reluctance pickup and shell skin and recording
the voltage output from the amplifier, The distance-voltage cali-
bration relationship is shown in Fig. 26. The arrangement of the
acoustic driver and reluctance pickup is shown in Fig. 27.

Since the calibration curve of the reluctance pickup is not
a linear one, higher harmonics may be generated by the pickup.

An examination wé,s carried out as follows, During the vibration
test, the distance between the pickup and sheil wall was preset at
0.0215 inch in order to have optimum usage of the linear part of

the calibration curve. The coordinates of the calibration curve

may be rearranged as shown in Fig. 26 by output V and displacement

6. Then the calibration curve can be represented by a power series,
2 3
V(t) = a;6(t) + a,67(t) + ay67(t) +... (5.1)

here a; = 23.1, a, = 220.0, ...

If the displacement § is sinusoidal in time, the output voltage V will
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contain higher harmonics, due to the nonlinearity of the calibration

curve. For instance for § = asinwt (5.2)
V(t) = alasinwt +%a2a2(1-cos.‘2wt) + oes (5. 3)

Here the ratio of amplitudes of the second harmonic and the funda-

mental harmonic is

: . laga? 3
Amplitude Ratio = & —— =3 — =+ a (5. 4)
aa a;

In the present experiment, the maximum amplitude of the
fundamental harmonics is about 0, 010 inch, hence the amplitude

1
ratio is

Amplitude Ratio = 0. 5 x§§% = 0. 046 . (5.5)

If one attempts to measure a nonlinear displacement contain-

ing higher harmonics such as

6(t) = 6, coswt + 62c052wt + 63cos3wt P (5.6)

one will find that it is difficult to determine the magnitude of 6, and
& 8
64 unless the ratio of +— and — are much greater than the amplitude

6 )
ratio found in the calibr:\tion cuive. Unfortunately in the present
experiment, the -amplitude ratio of the higher harmonics is of the
same order as that of the calibration curve.
The magnitude and frequency output of the acoustic driver
were controlled by a standard oscillator-power amplifier system,

The response signal from the pickup was fed into a cathode ray

oscilloscope and a Ballantine true RMS (Root-mean-square) voltmeter,
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The frequency of the oscillator and response is monitored by a
digital counter. The circumnferential mode shape was plotted by
connecting the y-axis of an x-y plotter to the RMS response signal
and the x-axis to a potentiometer which indicated the position of
the reluctance pickup. Thus the circumferential mode shape could
be plotted in forms of RMS value., A schematic diagram of the
instrumentation arrangement is shown in Fig. 28, and a photograph
of the experimental set-up is shown in Fig. 29,

5.3 Driven Mode Response

Them =1 mbdes were used for frequency-response relation
study because these modes are the easiest to excite into a nonlinear
region. The acoustic driver was placed midway between the end
rings. The reluctance pickup was also pointed at the midsection of
the shell and fixed at an antinode of cosn8 about 180° from the
acoustic driver, The magnitude of the force output of the acoustic
driver was kept constant by applying a constant voltage across the
driver (driver voltage). At each data point the frequency measured
by an electronic counter was normalized by the linear frequency “,
which is known prior to the test and the response measurement
was converted into physical value (i. e., displacement) and then
normalized by the shell thickness,

Fig. 30 shows the frequency-response relation for m =1,

n = 6 mode. When the external force is small, no jump phenomena
is detected. But the "jump" is detected wilen the external force
becomes larger.

~ Similar results are observed in Fig. 31 and Fig. 32 for
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m=1, n =10 mode and m =1, n = 12 mode respectively., All three
modes tested possessed the softening-type nonlinearity as the theoreti-
calanalysis indicated. Equivalent theoretical resultsare also plotted
which show good agreement with the experimental results. Fig. 33
shows the RMS circumferential mode shape. Clearly it was a single
driven mode response since no response was measured at the nodes.

5.4 Response with Companion Mode Participation

Since the m = 1, n = 6 mode was the easiest to excite, it was '
chosen for further investigation. With the magnitude of the acoustic
input increased further, adifferent frequency-response relation was
obtained which is shown in Fig., 34, The response measurement is
taken at the ahtinode éf cosn®, This result indicates that in the vicinity
of the resonance frequency the response became "no‘n-stationary‘* in the
sense thatthe responsewould notremain atone amplitude, rather it
drifted slowly fromone amplitude to another. In some cases as many
as 4 different amplitudes were observableat a given frequency. These
are shown in Fig. 34. No regularity was observed in the drifting
rate. It was obvious that at these frequencies the driven mode re-
sponse became multi-valued. Outside of this frequency range, the
response was single-valued. For this particular test, the region of
multi-response was at 2< 1. A RMS circumferential mode plotted at
constant external force for different frequencies is shown in Fig., 35.
As the mode shape indicates, for larger amplitude the response was
no longer a single driven mode cosn8. These are shown in Fig,

34, At the node point of cosn® which is the antinode of sinn®,
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the deflection did not vanish, This was the first indication that the
companion mode was participating in the vibration.

The presence of the companion mode can also be detected
by the use of Lissajous figures., The voltage proportional to the
radial deflection of the shell was fed into the vertical axis of the
cathode ray oscilloscope, with the horizontal axis being driven from
the oscillator which controlled the acoustic driver. The resulting
Lissajous figure indicates the amplitude and the phase (relative to
the input force) of the vibration at that point of the shell, By moving
the reluctance pickup along the circumferential direction of the shell
and noting the Lissajous figure, it is possible to detect which modes
are present., The Lissajous figure at antinode of cosn® is shown in
Fig. 36. The open ellipse indicated a response that is + 90° out of
phase with the input forcing function. The Lissajous figure at the
adjacent node of cosnd which is the antinode of sinn6é is shown in
Fig., 37. The diagonal line demonstrated that the response is in
phase with the input forcing function. This shows that the responses
of the driven mode cosn® and the companion mode 8inn® are + 90°.
different in phase which indicates the deflection form of the shell

at the midsection is of the form
w(0,t) = acoswtcosnd + bsinwtsinn® (5. 7)

The response-frequency relation of the companion mode was
also measured for the driver voltage equal to the 8. 0 vcaseandis
shown in Fig., 38. The experimental results compared withthe theoreti-

cal results show some discrepancies for Q> 1. This may be due to the
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following facts. The amplitude of the companion mode was measured
at a predetermined node of the driven mode cosn8. However the
shifting of the node as shown in Fig. 35 made the companion mode
measurement ''contaminated'' by some amount of the amplitude of
the driven mode.

The participation of the companion mode has changed the
characteristics of nonlinhear vibration of the cylindrical shell as
compared to the case of driven mode response only, The ''jump i
phenomenon'' has been eliminated and instead a ''non-stationary"'
response is observed in which the amplitude drifts from one value
to another.

An attempt was made to constrain the companion mode by
lightly placing a sharp point at the antinode of the companion mode
8inn® and then taking measurements at the antinode of the driven
mode cosn@®. The result is shown in Fig., 39. The classical ''jump
phenomena'' was recovered and the shell vibrated in the driven
mode only.

With the voltage of the acoustic driver increased further to
15 v., another test was conducted and the response-frequency rela-
tion was obtained as shown in Fig. 40. Again there was a narrow
region in the vicinity of 2 = 1 in which the response drifted between
several values. In this case, the drifting rate was somewhat faster
than the previous case but still no regularity was detected in the
drifting rate. The companion mode was participating in the vibration
although no attempt was made to measure it. Within the narrow

frequency region where the drifting response was found, a few points
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very close to 2 = 1 seemed to be ''stationary'’' or the drifting range
was too small to detect. The high amplitude response found outside
of the drifting region (f2< 1) was extremely difficult to obtain,

since the amplitude had a tendency to drop to the lower value. Only
with extreme caution and patience were these amplitudes measured.
Also an attempt was made to constrain the companion mode by an
external constraint but no significant difference was found.

Another test was performed with the driver voltage increased’
further to 21 v. Similar results were obtained with a few differences
as shown in Fig. 41. A larger drifting response region was found
and the drifting rate became faster, Fig. 42 was taken from the
cathode ray oscilloscope; the voltage from the response measure-
ment was fed into the vertical axizs with the horizontal axis being the
time scale. The time scale was adjusted in such a way that
the regular wave pattern was crowded together such that the photo-
graph could not distinguish them. Therefore a white belt was shown
ixllmtiﬂé;picture instead of a wave ‘form. The top straight belt repre-
sents the input signal from the oscillator, The lower wavy belt was
the signal from the reluctance pickup measuring at the antinode of
the driven mode cosnf. As can be observed in Fig. 42, the ampli-
tude is drifting from one value to another in a much faster rate
than the other cases with smaller external force. Also the drifting
rate follows a certain pattern which is repeated over a period of time.

Another interesting result found was that the response in the
immediate vicinity of 2 = 1 is much lower than that resulting from

smaller external force as shown in Fig. 34 and Fig. 40.
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5.5 Other Results of Interest

5.5.1 Observation of the Traveling Wave

As mentioned in the theoretical analysis, the response of a
nonlinear vibration of cylindrical shells takes the form of a traveling
wave in the circumferential direction superimposed on a standing

wave. This is due to the participation of the companion mode such

as

w(x,y,t) =[acoscotcos PRX + bsinwtsin fﬁz]sin m;ix (5.8)
This can be rearranged as
w(x,y,t) = [ ccoswtcos 9% + beos(wt - 2%)] sin ml‘:x (5.9)

where ¢ = a-b.

The second term cos(wt ~ %Z) is a traveling wave., The phase velocity
of this traveling wave is % rad/sec. In other words, it takes

T = —"%—75 seconds for this wave to travel 360° or a complete circum-
ference of the shell, Therefore, what the pickup will measure at

a fixed station is the standing wave ccoswt plus a wave with amplitude
b, coming every %E seconds. From the pickup's point of view

this appears to be another standing wave with a frequency%’ . This
was observed by the cathode ray oscilloscope as shown in Fig., 43,

In both pictures, the upéer signal was taken from the oscillator and
the lower signal was taken from the pickup. A similar figure was
shown for the theoretical results in Fig. 21.

5.5.2 Regions of Multiple Responses

For the driven mode response only, it was observed that jumps
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occurred at certain amplitudes and frequencies for each level of the
forcing function. The boundaries of the jump are plotted in Fig. 44
and compared to the analysis. The comparison shows qualitative
agreement between the analysis and experiment. The difference may
be caused by the choice of damping in the analysis,

A similar plot was made for the response with companion
mode participation. The boundaries of this region are shown in
Fig. 45. Similar qualitative agreement between the analysis and
experiment is indicated.

5.5.3 Rotating of the Shell at Large Amplitude

One of the most surprising results discovered in this experi-
mental study was that the shell rotated at certain amplitudes and
frequencies. As mentioned before, the shell-ring system was sup~-
ported by an end plate with two O-rings. Although it was designed
to freely support the shell-ring system, due to friction between the
ring and rubber O-ring, it required a certain amount of torque to
rotate the shell with respect to the end plate. However, the large
amplitude vibration somehow introduced a net torque to the shell
and the shell rotated with respect to its end plate. This would occur
only at a certain discrete frequency for a constant driver voltagé.
Depending on the amplitude and frequency, the shell rotated either
in one direction or back and forth, At the present time no reason-
able explanation can be offered. However two possibilities can be
eliminated, namely

1) It was not a spontaneous occurrence, since all of the

rotating shell phenomena were repeatable.



-73-
2) It was not due to the resonance of the table where the
| experzmental apparatus was placed, since addmg heavy
lwe1ghts on the table, thus changmg 1ts resonance, did

not elimmate t:he rotatmg phenomena.
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VI. CONCLUDING REMARKS

The experimental results of the driven mode response show
good agreement both quantitatively and qualitatively with that of the
analytical results. This indicates that Donnell's nonlinear equations
for a cylindrical shell can be used in the large amplitude vibration
problem. When the response amplitude exceeds a certain " critical
valﬁe," its companion mode becomes excited. Here the analyses
are qualitatively in agreement with the experimental results. The
regions of the companion mode participation and resulting traveling
wave phenomena have been demonstrated by the experiment as the
analysis indicated. However the drifting of the amplitude at a cer-
tain frequency range was not predicted by the analysis. It appears
that a transient analysis should be performed to study these phe-
nomena.

It has also been demonstrated that the perturbation technique
used in the present investigation has a few advantages over the
methods used in previous investigations such as without predeter-
mining the deflection shape. The comparison between the present
study and the previous investigation indicates the importance of the
assumed deflection shape with respect to the type of nonlinearity
and the degree of nonlinearities, The abilityl to satisfy the specified
boundary conditions asymptotically in the present analysis is another
advantage.

In conclusion, it seems that the basic approach presented
here is applicable to the problem of large amplitude vibration of

cylindrical shells, as well as many other axisymmetric systems.
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APPENDIX A

LINEAR FORCED VIBRATION OF CYLINDRICAL SHELLS

The governing equations for the linear vibration of cylindri-

cal shells are:

Dv W*ek.btwfl“-:‘),t)%-{i%% (A.1)
L ¢'F ool 2w _
E{uv F R (A.2)

where q(x, y, t) is the external forcing function applied in the radial
direction.
It can be shown that the solutions for the homogeneous equa-

tions of (A. 1) and (A. 2) are:

' ;"“olmt & . .
W38 = € [Guatos™d +b,., Sint% [ Sm™TX (4.3
_E_*x(m)‘ .
— _RrRVU WOant w LMY,
(x,yt)= o [ 055 th S 2 |45, max
F 3 ) [(%)\*(%)t] a.. | -3 b,,m m R] m v
(A. 4)
The solutions expressed by (A, 3) and (A. 4) satisfy the simply-
supported boundary condition, namely
wn—-ﬁN =\ =0 : (A. 5)

Y &

The eigenvalues of the homogeneous equations can be written

as

2 E‘l (M!.)‘
co..n""*{ iR - R [E G T } (A. 6)
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The solutions given by (A. 3) and (A. 4) are the eigenfunctions (normal
modes) of the cylindrical shell since they satisfy the goverﬁing equa-
tions and the specified boundary conditions.

For the forced response problem, the solution can be written
in terms of the eigenfunétiohs with undetermined coefficieﬁts as

follows:

Wen =35 [ A (t)cos—!’- FByOSmIL] s AT a7)

= 3=l

Upon substituting (A. 7) into eqs. (A. 1) and (A. 2) and eliminating
the stress function F, the following equations governing Aij and Bi'

are obtained after multiplying the equation by (95!% Sﬁ\-"-‘-‘c} and

: Sm ny 5,,,__1. and integrating over the shell surface.‘i
v v o . k SR i
i ; }

A;9 U:) + cﬁ}j A;ékt) = Q;} | ' (A. 8)
Bij (&) + Wy Byle) =Ty (A.9)
where
2 L WUR '
Q.::, = OrRL) ok j I Q. 51—.)@5-’- Sim X 2 dy dx (A.10)
L IRR
P;:) ams. j ﬂ_ﬁi‘)t)smﬂSM i’ d (A.11)

Distributed External Excitation

Now assuming the external forcing function is given as

§ x,9,£) = Fos ot skt op mak (A. 12)
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then from eqs. (A.10) and (A.11),

. ,=i—. ‘FD"' = A’.g |

Q;) M\(psw{; A=W , §J=n

Q;=o o For ixm, jan (A.13)
Py =0 forr ol i, )

Substituting eq. (A, 13) into eqs. (A. 8) and (A. 9) the undetermined

coefficient can be calculated as

+_

Ap:)k‘t) %(w = ,_) CDS wb %r \i,am , 5-a.y\,
A;,j =0 for iA%m, j2n  (A.14)
B;:.')(t,)a,o C Lor al i.,j

H

Now the response of the shell under the given external

excitation (A. 12) may be written as

£ Ny <. MR
= Cos ob os 2L 5, 2T .
WY S R0 (A-15)

Concentrated External Excitation

Now assuming a concentrated external forcing function given

as follows

~lf"

3(1,9,t)=¥wsm’c for (——--—)é’ﬁ %,)
$$Y

< K
:’:
Ixy,)=0 : otherwise (A.16)
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From eqs. (A, 10) and (A. 11) the generalized force can be

obtained as follows:

8 )‘LC mIrc
S SmiT S mI]
Qm, ";Mn% ™20 Sm > £ cos b
(A.17)
Rnn = Q0

From eqs. (A. 8) and (A. 9) the undetermined coefficients An_m(t)

and an(t) can be obtained as follows:

An 0= T mngf(wm sm%ﬁ maL Sy st

(A.18)

bmn (‘b) = 0

The response of the shell can be written as

[- )
Wiy t)= Ktk ZI:.‘ % Ry OS0L c»s% Siw-m% (A.19)
wherve :
o o o R onuE
mn mn (W, — &)

(A. 20)

For a cylindrical shell with viscous structural damping,

the response can be obtained as follows:

Wiy, t)= m S 3 Q. ws(et- ~§pun) OS2 Sy PIR

X,
mor ey L

where (A.21)
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mire wTr
Uy = SRS S (A. 22)
T mn oa.....[(\-—@- T+ e »w 14
and phase angle 6mn is given as
2 o Omn D
Sp = —Lim (A.23)

oy, — oI
and Yon is the percentage of the critical damping. Now assuming
the percentage of critical damping Ymn is 0. 001 for every mode i
and the finite area Cz, where the external forcing function is ap-
plied, is (0.25 inch)®. The magnitude of a__ will be calculated

for the shell specimen used in the experiment,

1, At resonanceofm =1, n =6, w = 558,07 cps

a"“ _6 SMLSn«mrcM%- (‘5539'0 Lr.‘.‘.&i’l

4 mn _& C
e SmIg SIS o SmT e [(h—-—ﬂ yr4y S::.Wt]x
" (A.24)

a!
The values of —;m are tabulated in the following form =1, 4 <n < 13
1,6

n 4 5 6 7 : 8 9

al
mn

a'l 6 0. 00075 0.00276 1,000 0. 00827 0.00806 0.03414
'

10 11 12 13

0. 00734 0.002617 0.001392 0.000863
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From this tabulation, it is clear that the response is domi-
nated by the m =1, n = 6 mode. Therefore it may be concluded that
at the resonance frequency for a lightly damped shell under concen-

trated external excitation the response can be approximated as

W, Y, t) = afmcns(cot ~ &) ‘-0&% 5%-'3'{'—" : (A. 25)

2. At the vicinity of a resonance, m=1, n =6

In the analysis and the experiment, the frequency of the con- '
centrated external forcing function is varied in the vicinity of the
resonance. In the following, it will be shown as long as the fre-
quency variation is small the approximation expressed by eq; (A. 25)
still holds.

Let the frequency of the external forcing function be 0. 4%
more than the resonant frequency for m =1, n = 6. In other words

let w = 560, 30 cps, then'

we 5&03’})‘
G _ 6 S S™IL S ssgep [ Z502.) + 41 oo

. 26)
&C 1rc Seoat (A
a‘ © “mn szg S it .’:m-m Cmn [U" 5503 )_‘_*_r‘-ss‘:’ ]Yy,
al
" The values of afnn are tabulation in the following for m =1,
1,6
4<n<13 '
n 4 5 6 7 8
a' .
mn
—571-—; 0. 00311 0,0115 1. 000 0.033 0. 0351
]
9 10 11 12 13

0. 071 0.0312 0.0109 0,00578 0. 00357
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Again the response is dominated by the m =1, n = 6 mode.
However the magnitude of other modes is significantly larger than
the previous case. For instance the m =1, n = 9 mode has an
amplitude of 7. 1% of the m =1, n = 6 mode compared to 3.4% in
the previous case, Using the approximation response as shown by

eq. (A.25) for this case is neglecting the terms with magnitude up

to 7.1% of the m = 1, n = 6 mode.
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APPENDIX B

CIRCUMFERENTIAL PERIODICITY CONDITION

The solutions for the zero order equations satisfy the circum-
ferential periodicity condition identically due to the linear relationship
between the stress function and the radial displacement and tangential
displacements. The circumferential periodicity condition for the
first order equations will be derived in the following.

From eqs. (4.21) and (4. 35), one obtains

W) [LIK 3k _ LYY
20 \—9‘['&""08‘" ”)e‘l W, 2\39
i N ‘P N P X
)—»"[ft“bs‘ u‘be‘] W -7(5%)
L3S <
*\ - B‘ 1)
e b R ‘

upon substitution of eqs. (4. 38), (4.52) and (4. 53) into eq. (B.1).

The following may be obtained:
P 2q - __N:_ 2 1 =¥
"i% =901+ L & folo - F R+ Blo] +9.9) + LT

Hiwor Sk g, [&wsaﬁcf&)- b es2ter 5,

LS LS ~
Heh - G (BFD R + 3 (Av8)] cos 2mms (B.2)

+Q,(5, )05 24D + 0,.(5,T) Sm2ng



-86-
where

Q5. T) = oy ke) +4,(9) + FulS) [cwszies s;;)+ b'ewos 2(trsy))

4 «“-’;‘f‘!—,% {a,_m +"§,ts) +9 )[R s 2erby) thcos 2(03.,)]}
t R {ﬁ;'(s) * 3.0 [ R os ter b+ Beos 2der by )]}

+ %‘*(B‘—A‘)(m unw s -\) (B. 3)

@05, )= dyke) +P5(6) Stz rfarhy) + G om (p-50)

¥ ‘:':‘;li [ ;{;\&) + .%,.U) S5m (1§t Qb) "'—igs;"(sb" Sa)]

O HRE O S e s) TR Siny60)
S 1.*‘1%; A&(‘-—l‘.oS”LMTS\) R (B.4)

v R . . L Loe . R .
S AT SC EE I (A R BRI 3¢

Now from eq. (4. 39), it may be concluded that
1 W oan v
ol e) ~ 5= (BEh) + 3 (R+8%) =0

From eqs. (4.55) and (4. 56) by integration twice and setting the

integration constants equal to zero, it may be concluded that
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D=0 and G+ ‘3'(5) 20

%\LS) + > &!—

‘__v ht%‘

Therefore the circumferential periodicity conditions can be written

as
Y o

Y 2 Ny ~
S _bé df = L {[30&‘.") * ﬁ? -&t-ii@‘) "'%'(&*B )] + Q6,<) LS g

+0,(5) Sim uej 49

=y [‘3,\1) N #-—;—53.&9 5—‘3‘3 (&'+3‘)J =0 (B.5)

It. is obvious now that
§ 0+ L B0 =F Ak +Bw) (B. 6)

is the equation which assures that the first order solution satisfies
the circumnferential periodicity condition. Eq. (B. 6) appears as

the second equation of eq. (4. 54) which determines the function %.
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APPENDIX C

BOUNDARY CONDITIONS FOR THE FIRST ORDER COMPLEMEN-
TARY SOLUTION

The boundary conditions for the first order complementary
solution are obtained such that the sum of the first order particular
solution and complementary solution satisfy the specified boundary

conditions as expressed by eq. (4.20).
A

‘The radial displacement W, can be expressed as
Wi(8,8C)= WY (5.0.0) + WS (5,9,€)
= {c, (05 ) +C [ s ateesa)- b‘cnsm«-s,,)]} (oS 2mT $ +G(A-5) cos D
1 ([ Cemsaterbe)+Btos starty)] (08240 +Cy0b Sim (A +8ir8y) S 24D
+Cg ab Sim(by8a) i 108 +9115) +§ 1) [d o8 therke)-Limrtery)
+J3(5) Los2ad 1-%4[5)[0‘: tos 24erb) 1B L alerhy) ] o5 248
15(9) Sm e rEr§p) Smnd + 3el9) Sm -8 Smmd

+Cs (@+8) + Co[dem 2hera) - b eos wer 5s)] (C. 1)

At 8 = 0 and 8 = 1, the radial displacement vanishes,

W(s = 0,1) = 0. From eq. (C.1) this condition can only be satisfied
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if the following is true.
9 (s20,1) =~ (G +eI@eB)

Quls=0,1) = -~ (GrCe)

fts=o)=~cstds)
.\ S | c.2
Ja(s=0,) = -4

%S‘ (5;.;-_6,1) = "cyﬁ-b
9. (8=0,1) s ~Ggab ] o

The axial bending moment at 8 = 0,1 can be expressed as

M, _LP.S_VL 7.?171 (‘ ‘w) )/(

'L
~ BVt st *os")g ° (C.3)

From eqs., (C.1) and (C., 2), it can be shown that

?
?_‘%(3_,0, =[’m;+_ﬁf] = o (C. 4)
% % Ly geon ;
Therefore,
€
LW BW ‘aw =0 at $=0,)

25 28t T

represents the boundary condition that the bending moment vanishes
1

AW,
at s =0, and 8 =1, Now ;’gﬁ can be expressed as,
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%Wi ,,‘%.w\?_‘. S'W;C
8- VS St

= -(zmw)‘{c\ (&+9’)+Q[ol’cos 2erfa)-b s u»r.q-s..)]i *3,"(5)
+ 3. [ ws aersa)-b eos 2ersy)] + 3; (5) Cosznd
1] ‘ L S
+ %4 (s) [0:' Cos 2{t+ka)+b cos 2((-9-‘5)] (oS zn®

195 () S (2t +8avby) Sim2AB + L (8)5m(fy-bu) Sinang

(C.5)

Ats=0ands =1, 75 =0 gives the following conditions,
]
%, (S=0,1) = (zmn)"c,. (a‘.'ﬁ-b‘) \
/] =
9, (20,1 = (2mm)c,
h
% ts=e.) =0

' (C. 6)

%: (,s'—"o;|>=°

%:(5:::,!):-0 I

The axial stress vanishing at s = 0,1 implies that

kS \f 1., ¢
b_ég}-g-—-‘-ﬁgo

20 Ot 2O (.7
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#

Using eqs. (4. 38) and (4. 53) the expression for can be

o

91.

written as

‘3'¢ ¥l A = L

S RICN { G (0-b) Loswnd + T dcos 2tersy)r beas aterty) | coszng
+ Cyab Sm(b,~5a) Sm 10 + Tyab Smlzaviarhy) S 108
1-%(;)(& D + %4“)[&(‘“ UCrba)rhun Uty 39] L& 10
ﬁ,\s) Sm 2+ &ar §b) S 20D

3,08 Sim (By-bo) sc»ue} (C.8)

S
Ats =0ands =1, %:‘3_1-‘-0 gives the following conditions,

f

Pls=o,)=-Tws) |

—

g,t8=0,1)= ~C4

| > (C.9)
%5- \(.3"":\‘\.)’ = "@ ab

% (s=0.)=-Fob |

The last boundary condition is the vanishing circumferential
displacement at s = 0 and 8 =1, From eqs. (B.2), (4. 39), (4.55)

and (4. 56), the circumferential displacement V{(s, 8,T) can be
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expressed as

W

’0& = Q,(S.) 0>2nB + Q, (S, ) S 2B (C.10)

where Ql(s,'r) and Qz(s,'r) are defined by eqs. (B.5) and (B. 6).
Upon integration, the following equation may be obtained

Vi 15,8,2) =3 [Q5,2)8mud - 6. (5.2) os 18] + K (5,T)

(C. 11)
where K(s,T) is an integration constant.

At s = 0 and 8 = 1, using previous boundary conditions, it can be

shown tha't |

@ om0ty =x = {33 ($50,1) + ﬁ, LSm,') [Rcos uerba)+Beos z(»uw]}

(C.12)
Q,($=0,1) = .L...L- H‘ (550,1) Hm L‘ldt-rﬁ,ﬁb,)'r%‘(scﬁ,!) Sm (8; S;)}

Setting the integration constant K(s,7) =0, the vanishing circumfer-

ential displacement at 8 = 0 and s = 1 can be satisfied if the following

condition is satisfied.

Q\(3=0,1) =Q,\8=0,1) =0

(C.13)
which in turn gives the following conditions,
—— f
1 s=0,1) =0 w
.ig-q (,S:"O) ‘) 2'0
P/ ' (Co 14)
4. ($=0,1) =0
—n
%& (S$=o0,1)=0 J
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In summary, the following boundary conditions are obtained

atse =0ands =1

9 (s=0.,1) = ~(Q+¢y) (&)

B (s50,1) = @mmsci(dre)

32 (8=0,1) = - (Ca+ C¢)
%: ( $=20,1) = (2mm) C

Uls=0, ) =-G (&)
T \s=0,1) = -G @-8)
9 (s=om)=o

-
% ($=o) =0

JaLo=o,1)=-C4
9 (8=0,1) = =T,
9 (S0 =0

g: ($= O:‘)-’-‘-O

|

-

(4.55a)

(4. 56a)

(4.57a)

(4.58a)



Us ($=0,1)=-¢ab
U S=e.y=-Tab
(a;-’ (S=0,1) =20

3: (s=°") =0

%{,(Sr-o,l):
%‘,LSM,I)‘: 68

” ~Gab
% (s=0.1) = 0

86 ($=0,1) =0

~94-

1

(4.59%a)

(4. 60a)
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APPENDIX D
SOLUTIONS FOR gj(s) AND El(s) OF THE COMPLEMENTARY

EQUATIONS

The governing equations for g,(s) and gl(s) and its boundary

conditions [eqs. (4.55) and (4. 55a)] are as follows:

g a
—{}3,(9 -fa,w) =0

(D. 1)
Lmhordin=o
Fs=0,1) = ~(t+¢s) (d+b)
, L < . (D. 2)
T (5=0,1) = (2mm) & (a+b)

Here eq. (D. 1) is obtained by integration of eq. (4.55) and
the integration constants are set to be equal to zero due to the re-

quirement of circumferential periodicity condition (see Appendix B).

]

4] 4 :
= (R Q-»)
Let My v~ (D, 3)

Then eq. (D.1) can be reduced to

"ner

G ¥ 64 pgusd=o (D. 4)
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The solution for eq. (D.4) can be written as

31(5>=K| Smptzs) sindpulzs—) + K, cospy (25-1) coshm (28~ (D. 5

1

1 and

Using the boundary conditions in eq. (D.2), the constants K

Ké can be obtained as

5
i

H, 5m, b\'w!u).\;“'ﬁ\ Cos i, wsk)x, |
Cos™ P+ Sinh M, ]

K, =]

(D. 6)

% __[ H, Cosp,coshiy, = Hy Smp, sinh g ]
2 Cot Hy+ Bink' M

Hy=¢i18=0,1) = - CQ+C) (A +b) ,
} (D.7)

~ (e | e
H“‘"ﬁ‘j}ﬂ:‘(sﬂoﬂ)‘;‘mciﬁa*b)y
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APPENDIX E

SOLUTIONS FOR gp(s) AND Ez(s) OF THE COMPLEMENTARY

EQUATIONS

The governing equations for g,(s) and 'g'z(s) are given by

eq. (4.56) and the boundary conditione are given by eq. (4. 56a).

Let M, = j Kl ; (E. 1)

64"

Then eq. (4.56) can be reduced to

e

4 )+ A, =0 (E.2)

The solution of eq. (E, 2) can be written as

8; )= K‘, Simpi; (25-1) Sndupla 28-1) + K Cos Ma 28 Cosk}l-..(z.s-\)

Using the boundary conditions expressed by eq. (4. 56a), the con-

stants K‘;‘ and Kg can be found as

K1 _ W 5 timbp, ¥ HaCosp, oshpa

' oS, + Bl Py '
(E. 3)
K = W, 0051, Coshihy = Ha Simpa Sivdupin
v Cns"}b:. 4+ Sadl g
Ha= §uts=o, 1) = - (CarCe)
(E. 4)

\,?..m)

Ho=gp hemon =58
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APPENDIX F

SOLUTIONS FOR g3(s), g3(s) and ge(s), g¢(s) OF THE COMPLE-
MENTARY EQUATIONS

The governing equations and boundary conditions for gs( 8) and

§3(a) are given by eqs. (4.57) and (4. 57a) respectively.

Let
=% sn [ B L T
Ms=fo= , I=77]|'"* T *! =""j‘“"u*“‘
\ Iz , Iz n 1)
A,:%(P,-rl) , A,=§-()‘;‘I)
| (F.2)

A g+T) |, Acdn-T)

The solutions for eq. (4.57) can be written as

L= K 0885 (25-) Cosh A (25 1) + K, Sim Ay (25-) Simb A, (25-),
+ K”, o5 Ay (25-)Cosh A, (as) + k: Sim Ag(25-1) SR A, (s)

0305 = 25 [, o8 By a) otk 254 Ky iy (0-1) S A 28)

G Lo A (24-4) Coth, Au@8) -] i By @) Sty (8 4)]

(F. 3)
Using the boundary conditions [eq. (4.57a)], the constants in eq.

(F. 3) can be found as
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3 X,05A,c0m Ay~ X, Sim Ay ondi A,
OSN3 WAL+ S Dy sk,

K; - X\Sml\-;;ﬁwkﬁ"\' X;@SA3CD$‘\-A\
PT oS ACosh A+ S Ay SR A, 7

(F.4)

K, = X; 0504 osh By~ ZabmAL S A,
T CoS'NLCoSKA, + SmiAg SinbIA,

4= CoS A oK A, + SMALSWICA, /

where

X, =tu, + LGr-ps )T - (e i )T T Hy + [l-pih ) T +elps)TTH
T2 233 (2t +JY)

X, =L+ =[5 Han o3 )T T Hy + (4R )T ey )1 T Hs
e 2P, (T5+TY)

XKool p, - LERT ()T ] Hy +Leakopy )T+ (akap )3T By
e T2y

L. = LT o SLE )T +aR05)T] H 1] (48-03)3 + (ki) 1],
4= M
2 2y (I TY)

Hy=ghisme,0=-cod), By=grafismon = SnH@-5) |

{F.5)
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The governing equations for g.(s) and E6(s) [eq. (4.60)] are
identical to those of g,(s) and §3( s) with the similar boundary condi-
tions [eq. (4.60a)]. Therefore, the solutions for g¢(s) and §6(s)
will be the same as g,(s) and "g'3(s) respectively with H, and ﬁ6 re-

placing H; and H, respectively, where

He=3u(8=0,1) = ~Gab , ge";}i‘;‘n?%c“""*')‘ .;TE%:“L (F.6)
3
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APPENDIX G

SOLUTIONS FOR gy(s), g4(8) AND gs(s), §5(s) OF THE COMPLE-
MENTARY EQUATIONS

The governing equations for g4(s) and 24(8) are given by
eq. (4.58) and its boundary conditions are given by eq. (4., 58a).

The solutions of eq, (4.58) can be written as

o) = K*‘ 05 N, @8~1)cosh A 28-) + K Sm R, (as) smb A28~

1k osRy(a5-1) osh A (284) +1 iR (23 Sine &, 25-1)

(G. 1)
8.15)= K 08 B, (28 cosh a8 + K Sim B,f23-1) S Blas-)
+ 8 R (134) (oS R, (25+1) 1R S Bglasn) simh B, 244)
where
.
A [fei @] v
2z
? (G. 2)

-—

A, =-2—%-_=- f [+ 73+ (R-RT - i)

A 4= 5‘% f J k“‘ﬂf"‘?ﬁ Y+ (% 1‘?3) - k“""’?\)
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2 %
I4 =|c_"+-%-<,o'>-é- -C
. - -
P=%t[d+& (52 +F smB) +C
L — —
=[5 (s -Bsmi)rc

-‘L -
CEE- ) emen giat

P r
- . -&
Sr -§=ﬁ=-——-r Cos © =-———2=-——‘
m %—*71 s %t*?;

,L ; . . )
d=-%(c+$) , p=%(ce-c-a)
r=~(%+%5)

(G. 3)

The constants in the solutions (G. 1) may be determined by using

the boundary conditions [eq. (4.58a)] which will be written as

follows,

Y

KF = Y cosKycosh K~ Vo SmAs Sl A,
VT T s R cosk Ay + Sm By SRR,

K* V Sm A S+ Vi Cost&;,uskt\
z s*A Cnskl\.+5ME oA,

Kq' KCO‘)R ‘-Dq\.bn. &&“KASWJ\.A;
3 Cosh, WA, + SR, sk A,

K’: _ %omA oA, + TatosBgtathA,
s A sk R, + SR Sl A,

(G. 4)
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K= T 05k, toshR, — R Sl Sidu Ay X
' = o3 R, ok K, + S B, Side K

T, om By Simb A+ T, Cos Ry Cosh &,

K=
2T WS R, CosWA, + SRy SR,

K _}(m RaCosh A, = ¥ 5m A, Sich A,
P Cos'Aak s sinAy SR,

' Yo S Ay Sl At ?.CosK‘CosL,AL
K= Cos A Cotk Dot Siihy SdcA,

where

» _H
Y=

e P [sw.uaﬂz. )— \ +3c)r,.r,+ut",’;:7.]ﬂ,

Y,= [BRPA=B) - (B2 +30)RR ~20 ,‘,R]Hp-“’“ PHa
4(?""?‘) &El. ?\-)

L RRER) AR DO TR 2t R R]Ha + o o,
4 (et + R ) U’a ?\-)

Y - Ha _ ‘U‘\ ?.H‘; [3'\.‘?; {P,_-\—%) k‘qi: ﬂ’c-)?x?;‘\‘ut?}-{ ?]Hq.
3 =

Z 4(p" ""?x. )(? %]73)

1L 4he b
[81\- Y»(?\ ?3 ) (.4>° * 39?\?3 4:;\.?\.] H4.’*‘ “rk\ % H*

4R (B-R)
_ [BRREER) - (ER ORR R ?_l *1(.1\

Ya=

4'(‘?' "'?3 )LEI ?\.)

(G. 5)

(G. 6)
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» L3RR~ [z ,.m-—sn R(P4R )]H..,+u~mﬁ~— bR
4RI (Rh+h)

- i

~lf'

_ Lo (R M)~ o 2 P -3¢ RATHs + () (R 16K Rk

o

4(?6 ?‘*)(?' T?\.)

o [BER D) -0t B P 3 AR, +00) (- pm,
4(?} Y\.) (?I "'?3)

\47).

He  BeRB-e TR -8R (AR R, +(9)( ,.ﬁf»a)?,
2

Yb: 4(?!*7»)(\7!"‘?3)

G o IR -6 P, -3¢ PR JA +0- (B2 6PN,
4 4“’3 "\’t)u'l “'T»)

) LSMQFV:)-G&%?%—RM»]% R R,

' (G. 7)

SCREW) (A RY)

where

H“ :%‘(Sao, i) =-Cq , '\.--L :.-%4( $=0,1)= --C:

(G. 8)
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The governing equations and the boundary conditions for
gg(s) and Es(s) are similar to those for g,(s) and -g'4(s). The solu-
tions for g.(s) and Es(s) are the same as eq. (G. 1) with H, replaced

by Hg and ﬁ4 replaced by 'I'i's, where

Hs =Ge\s=0,1) = ~Gab, Hg=gls=0,N==Gab ©.9)

D
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APPENDIX H

FOURIER SERIES EXPANSION OF THE COMPLEMTARY SOLUTION

o= &~ 5 S s
J=

= L [ (Hi=H) sy + (HitH ) sinan, ]
VF i (wsh sy — sinp)

(H.1)

(H. 2)

M ]

Si"i H, Sind 2 +H, Smap [ M
V2

sh - s LOTERAP T Gropr o)

B smam R sfn’vu&;[ ELEY N | P ] .
¥ Grepy+p0 Gu-pg o, (5-3)

Cosh™uy ~ Sm Ay

%"”(5) =% () [ g‘o + % g;} Cos 2§W S]

2

(H.4)
hor=€ +2 € cos 2jms (5. 5)
° (Hy~H, ) Simvh2p, + (H,+5,) sin2
§ =“}+‘[ R SRt I ) shnap] (H. 6)
e : Malcosh' i, — smm,)
S'} — L] Hasmheu vH, S‘an\i[ My 4 ]
z TR, - B, Guapg) o UGm-paX+
+ _ﬂ;S‘nﬁ}lx "ﬁz 5%1}1;[ 5“ + My - 5“"‘)‘\. ]
COBh™}y ~ Sm'l, Gw epyt+ b =)+ ;)
as ; (H. 7)
-t * ™ ) N
3}5) =% (1-0) [ iz + ; gz ob 2‘3“5] (H. 8)
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o , 2 3 . .
Br=§, + ;Z,‘__' §, cos2jms (H. 9)

£ --_L A X ot 28+ X, S50 202) 403 (X, Sy = X, Simvh2A))
3 - (A “’f\ Y(cosh' A\, =~ Sima Aa)

4 Do b A + Xy 50 )+ D Xy St~ Kashdi20y)
(8 + 83) (CoshAa-5iAs)
(H. 10)
3 2 Cosh A= St hy Grd Ay +8,  Un-ay) + &, |
" X.swulr X, oz [ S+ Dy W-Ay )
A = 5m Ay LOTEB) v A UGT-8s)+ A
+ X, 20, + Xy Stz [ A, . A,
(-Qsh& Az - shxhq. (5.“' -+ l\q.)"f' A‘; (5“ e A‘)\ o A;
I, Sm znz "'xé- ﬁ""“"zA! [ 37[ h 'ﬁ-d, iﬂ'- Nas ‘ ]
Cosh N, — Sm He O+ AN+ A, (=-a0'+A,,
(H.11)

P Ve
RETN

. ' o ” Ea 3 1 ;'_ ‘ i ]
Jols) =€, + 55;»‘ g cosmyms (5. 12)
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el co "’5 N
hisd=§; + ' E, Los2)ms (H. 13)

8

u.
L.

g“= 1 {AL(EL S 2t ZaSmzDy) + Ay (X Smziy-X, sied 20.)
s ¢ (R, + 1) (osh A, ~ Srt D)

. AU 9k A+ Ky S A)+ Ay (Br a2 By-Xeontan,)
( t\‘:'ﬁ' Ak‘) (Cbsh‘ At"‘ 6;\'\.‘ AQ)

(H. 14)

3 _ 1 [KomhanntX, 51"\'\2’\3[ 4% N
3 2] Cosh*A - SmiA, AW+ A +A,  On=-A3 Y+ A

+ i 3%21\; ’ij_ ﬁi‘v\'c\ZA\I 3“- + A; - 37" - A; '}
CoSh Ay~ Sm Ny (e A+ R, Gr-A0+ A

+ ZashbzByr i‘séau\‘[ D, PR ]
Cosh Ay = S Dy Guedg+i,  (IW-ad 1A,
+i;$;hlh4-i*6;lﬂ&a2ﬁ;[ 57\"1‘?4 } 5;"_ Na ’]
Cosh AL~ Sm Dy Gm+ay+a, * (Gn- A +A, )
(H. 15)
pr Zo b= -5 .
Jels)=§ :é-\ g, cosyns (H. 16)

— > — A kY -— L.
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%4(5) = g: + ; gi o5 24TS (H.18)

€ =4 A (T, 5mh 2R+ T Sinzhs) + An(Ti5m2B3~ T, samh2A,)
4+ 2 (R + R, ) (CoshiRmSm By)

4 BT simhtA, + Y 5im2B )+ Ao (Vs 5m 2B~ Ta Smb 21\,
(As + A% ) (osh A, - SmtAs)

{(H. 19)
g 1 Y ombh A+ Y, szt\,[ A, + A,
2]  coshtA- sm b, (R R, + B, Gr-B0 + K‘,)
Y, 5m1hy = T smb LA, { an+ B, _ _3v- A,
cosh' B, — Sm A, Gr+R0+ AY Om-A) + K:’
+ Yaomhah,+ Yq,sc_:.bx.[ A, N ]
Cosh'A, - Sm'B, Or+Aa+ &y Gn-RO+A;
Cosh' K, -om'A, | Gr+ARJ+A, UT-AD+ K
(H. 20)

° %o 3 .
Ist)=5; + ;‘:‘._‘, E:_ Cos 2975 (H. 21)
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ja

S i_A, (Y Smh 1A, + T, om2 A3)+ )(Y‘ smzA, '-Y;‘Sm&z.b.,)
o (R, + Ry ) (cosh A, -~ Sm D,)

AL\Yssm{.z A+ Taomtha) + Ra(To omedy —Fa 5mb2i,)
(A, + Ry ) (cosh R, ~ 5m'AL)

(H. 23)
g = 1 Y, smb A, +Yo 5'::1.53 A, + A, ]
42 Cosh A= 5m Dy | (3m+A8,)+ & (3u-A, )} + A
+ ?g b;hz'a;" iﬁMtR; [ ‘Q“"' K} 3“' A)
Cosh'A, - 5mR, (3w + B, + &, T Ggm- A)+R ]
¥ % ﬁ;n‘e\zﬁ,_ + -‘?4 {’?’\GLKQ I K‘, + Kﬂ_‘
cosh By— om A, Un+RD)+ K.  Ur-A A+ R .}

7 Shlﬁc"'v46‘“&-ll\ [ jW“'K‘ - _In-Ae ]
u:sh‘K._ Dy Or+kg+ A, OGm-AQ+ K
(H. 24)

Is(o)= §s 32.;‘ § Cos 275 | (H. 25)
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APPENDIX I

THE EXPRESSIONS FOR Gy, Gy, G3, G4 AND G}, G,, G3, G4 IN

THE SECOND ORDER EQUATIONS

6, =-}<-.Q{ KD -4+ 18 - 2]
ratmen) (T +8; +£08, +£ 5]
H{ R 0 (5187 - 18 L E) e05208,76,)
~(mnre) (LE +E, ) o5 2(85-50) + z(mnn)"[-( (5, + )
+ (0§ + B, )05 205 80) + (T8, + & + 6 + Ss)]} }Cos(tr&)

A D) -l T - )

% ab Sm z(&-ﬁdg Sm(T+5,) (I.1)

s (m m et Lg "+Lg”
6 =22 (-4 -G s

+ g -4 §, 05205,-5) - % 3€, -35. g:us 208y &..)} o.b"} os(t+hy)

(mrm')
«

{ gz g«» gg}“’b Sim2(fy~be) Sim(+$,) a.2)
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PTG B T §0) - 050 50 emathy o s

+L

L[4 OG- 80) (e (64T,

T8-S )}“’55 Sm2(§p- Sa)cm it by) | @3)

*
— _ 2(mnm)

&= P {0 - SR [y
A A M R ERICRTN L RN

+ TR (516 b et sy entarty) )
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Gy =2 [T (-G 46 46+ 1 Q)+ (G -3TT

e ey R A
+3GLs2(§=8) + T +1Cy -G oo 2 —hd)]
+[0 r 30 s 24 £) -G + F T o5 26y~ 50 + 3 Toye Ce G5 2088

+-}£-§+ 13 -chusz(&b—s‘)]}a.b ﬁ Costt+8a)

1 -
G R R
+G ]J ab Sim 205y~ 65) Sh (e + ) r.5)
g, =2("F5) {(c, +1G-G —1C)0} +[C -1 oseB—8a) +<5
~L s 28-b0) - $&r - £ G + 3G s 2UE)ab Cosmgy

HPD (GrG-Cp)ak Sinatlyba) Sttt ) @.6)
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G =2(pT) {[['(« 3G G+ Y (-G - 10 G 1 G- 1R GYb
+{p{ G+ 0,082 §y-5,) -3 + (e 05208~ 6a) + 1T,
~ $CCos 2(8-6a)) + [~G + 1 Cutos 2064-60) ~ G

++C
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+& $2(S$‘, ga)"’ w}%CDSZ(&; Ea_) "l'

3G -3 C; Cos 205" Su)} ‘-\bﬁ Smt+by)
+(mw {r(‘cm G+C) +[-G -Gy ~ uer‘-rcg]}

X ob Sim 2(4-8a) oSt tp) (1. 7)

4.

G, = 25 {6 S -1eb + [o-dates i) 16,
~L s 2by-62) -~ TG ~T G + 3G Los usb-ga)]&g) Siltth)
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FIG. | SHELL GEOMETRY AND COORDINATE
SYSTEM
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FIG.2 ELEMENT OF CYLINDRICAL SHELL
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FIG, 36 LISSAJOUS FIGURE AT ANTINODE OF COS(n6)

FIG, 37 LISSAJOUS FIGURE AT NODE OF COS(n6)
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external
force

response

0.5 second ,

FIG. 42 DRIFTING PHENOMENON OF RESPONSE
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FIG. 43 TRAVELING WAVE PHENOMENON
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FIG.44 REGION OF JUMP PHENOMENA
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