AN INVESTIGATION OF ThEE

FJECTOR-POWERED JET-FLAP

Thesis by

Laurent B, Sidor

In Partial Fulfillment of the Requirements
For the Degree of

Aeronautical Engineer

California Institute of Technology
Pasadena, California

1974
(Submitted September 1€, 1973)



-ii-
ACKNOWLEDGEMENTS
The author expresses his gratitude to Dr. Gordon L. Harris
for suggesting the topic and providing guidance in the early part of
the work, Also, he is grateful to Dr. Homer J. Siewart for his
interest and his guidance in the completion of this work. In addition,
the financial support of the National Aeronautics and Space Adminis-

tration, Ames Research Center is deeply appreciated. And finally,

he thanks Mrs. Elizabeth Fox for the typing of the thesis.



-iii-
ABSTRACT

The inviscid and incompressible potential flow aspects asso-
ciated with a two-dimensional ejector-powered jet-flap configuration
are investigated. The energy addition due to the mixing process in
the ejector results in a2 non-homogeneous flow and is represented by
an actuator disk located between the lifting surfaces and a powered
wake. A set of ecingularities is developed to represent the lifting
surfaces, to include camber and flap deflection, and the powered
wake. A numerical procedure is used to compute the total system
vorticity needed to satis{y exactly all the prescribed boundary con-
ditions. The lift and moment coefficients are evaluated as a function
of the head change prescribed across the actuator disk. A simple
interpretatic;n of the resulting lift curves is proposed in terms of
analytical results obtained for single-airfoil configurations - a flat-
plate airfoil and sink system, and a conventional single element jet
flap. The sink effect of the actuator accounts for a finite lift at zero
angle of attack, and the lift increment due to angle of attack only

can be predicted by using Spence's theory of the jet flap.
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I. INTRODUCTION

1. General Background

The past few years have seen éwidened interest in the area
of V/STOL flight, spurred by potentially attractive civilian and
military applications. These applications establish as a foremost
requirement for the lifting system a high wing loading, necessary for
range and good ride quality.

Toward the satisfaction of this requirement, new aerodynamic
configurations have been developed to exploit directly the power
available from the propulsion system for the generation of lift by
blowing on the lifting surfaces. Various schemes have been investi-
gated, and are shown in Fig. 1. They are:

The externally blown flap (a géod review of configurations of
this type is in Ref. 29) and over the wing blowing (Ref. 28) configura-
tions use the jet engine exhaust directly over the upper side of the
flap or wing surfa;e. These configurations are characterized by the
simplicity of the mechanical devices used to direct the exhaust air-
flow.

Other configurations use an extensive internal ducting sys-
tem, driven by the high pressure stage of the engine compressor, to
distribute the blowing over a major spanwise portion of the wing.

The conventional jet-flap (Refs. 30-31) and augmentor-type wings
operate on this principle.

In a conventional jet-flap, the jet sheet created by the blowing
action mixes with the surrounding air producing a secondary effect

on the lift by fact rather than design; it will be discussed later in this
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section, On the other hand, .the name "augmentcr wings'" is reserved
for configurations intended to exploit this mixing effect to "augment"
the primary airstream with the entrained secondary in installations
known as "ejectors." The specific purpose for which the ejector
is designed separates augmentor wings into two categories.

(2) The ejecior can develop extra thrust on its inlet lip and
sidewalls, thus supplementing the direct thrust generated by the

primary for a vertical lift system.

A family of ejectors designed toward this end has been
under development at the Aerospace Research Laboratories, Wright
Patterson AFB (Refs. 19,20). It is specifically tailored for the needs
of vertical take~off and landing operations.

(b) The other type of augmentor wing is the ejector-powered
jet-flap, which is the subject of the present investigation. The pur-
pose of the ejector in this case is to augment the primary jet
momentum with the entrained secondary, the intent being to produce
an increase in circulation around the wing as compared to a conven-
tional jet-flap design, other things being equal. In addition, the
design is purported to offer a potential remedy to the noise problem
associated with conventional jet-flaps. The ejector-powered jet-flap
is aimed at producing the high lift coefficients needed for sustaining
flight at low forward speeds: this is the domain of STOL. The
Large-Scale Aerodynamics facility at NASA/Ames has tested several
full-scale versions of this scheme (Refs. 26, 27).

The present work is concerned with the analysis of some

aspects of the flow field around a two-dimensional section of this
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type. Let us describe now in more specific terms the flow field and
how the conveniional modelling techniques can be extended to the

present problem.

2. Representation of the Effects of the Mixing Zone on the Lifting
Surfaces .

The effects of the mixing zone are represented by the inflow
velocity associated with the jet entrainment, and a net momentum
flow downstream resulting in a powered wake. The inflow velocity
can in turn be represented as an equivalent distribution of sinks lo-
cated on the jet centerline (Ref. 33), the strength of these sinks
being equal to the rate of entrainment. The net momentum flux in
the powered wake is representative of the mixing efficiency of the
ejector. The specific parameters used depend on the wake model
used and are discussed in the next section.

3. Solutions to the Lifting Problem for Multi-energy Flows

A wide variety of multi-energy potential flows have been
investigated over the past fifteen years or so, and are quite intimately
associated to new\ developments in lifting systems. The flow models can be
classified into two families: thin wake models and thick wake models.

The independent parameter used to describe the energy addition
will depend on which wake model is used.

Spénce, in his analysis of jet-flap configurations (Refs. 5, 6,
13), used a thin wake model, in which the real powered wake is
replaced by a single vortex sheet. In addition the boundary-conditions
are linecarized. This quel is valid in the limit of a jet of negligibly

small mass flux but finite momentum flux (it is the independent
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parameter energy addition due to the jeti).

His analysis was extended by Wygnanski and Newman (Ref, 7)
to include the etfects of entrainment by adding sinks on the airfoil
chordline. The strength of the sinks, for a given jet momentum, is
related to the entrainment as mentioned previously, It is found that
although significant, the contribution of the sinks to the over-all lift
increment is guite small, and possibly dependent on the particular
mixing model used,

Thick wake work has been largely associated with the predic-
tion of propeller configurations, with the exception of C. A. Sholl-
enberger's investigation of the two-dimensional propulsive biplane
(Ref. 8). The independent parameter, in this case, is the head

—A-—}%—; it results from the

H™ ]
zpU
action of an actuator disk which raises the head of entrained fluid

change AH normalized in the form C

from Ho to Ho + AH.,

Efforts have been'directed toward the solution of the flow
field generated by a heavily loaded actuator disk at zero angle of
attack and to include the effects of non-uniform loading (Ref. 3), and
at a finite angle of attack (Ref. 12). Moré directly relevant to our
problem, Chaplin (Ref. 2) has investigated the performance of
shrouded propellers at zero angle of attack and no forward speed.
His treatment of the wake is quite similar to the oue of the present
work, described in Section II. A review of shrouded propeller work
can be found in Weissinger and Maas' article (Ref. 9). The emphasis
of this work being toward propellers, the configurations investigated

are always two-dimensional axisymmetric, making the results of
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use for our particular configuration as general reference only.

The potential flow model proposed in Section II is an extension
of C. A. Shollenberger's analysis of the two-dimensional propulsive -
wing with rectilinear lifting surfaces. It accounts for camber, and
in particular for flap deflection. This will be described in the next

section.
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II. POTENTIAL FLOW PROBLEM

1. Formulation of the Problem

This section provides the theoretical backgreund for a numer-
ical calculation of the potential flow around the lifting section repre-
sented in Fig. 2. It was found that the singularity‘system proposed
in Ref. 8 for rectilinear chordlines can be extended to this more
general geometry.

(a) Field Equation and Elementary Solutions

In this section, we will formulate the problem of the incom-
pressible, inviscid homogeneous and irrotational flow about a system
of lifting surfaces of specified shape in which the amount of energy -
addition is specified through the head change AH.

The lifting surfaces will be represented by cambered thin
lines, in the usual thin airfoil theory formalism.

We will assume that the powered wakeé fluid does not substan-
tially mix with the surrounding fluid, so that it can be assumed to be
bounded by two infinitely thin vortex sheets. This assumption will
model the jump in velocity between inside and outside of the wake.

In the conditions stated above, the stream function y of the
system, and its derivatives, the velocity components u and u_,
satisfy the Laplace equation throughout the field (including the wake)

except on the boundaries where a jump in tangential velocity occurs.
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We will work with the velocity components u and uY because
the boundary conditions are more readily exprezsed in terms of u
and uy rather than .

Using the jump condition across the vortex sheet, we may
decompose the tangential velocity field into a regular part, uother(x)’
due to all the other singularities in the field, and a single-valued
part, representing the self-induced velocity field due to the local
vorticity:

lim u(x,y) =

y—=+0 uotherius-i (1)

where u . = %;y(x) for two-dimensional vortex sheets.

Let? =—s’-(0) specify the position of a vortex sheet (Fig. 3) of

-~

intensity l—y*(o) I Then the velocity field A—J(r) due to the vortex
elements between 0y and o, at any point away from the discontinuity

is given by:

G L o e
e, L 2 vy{o)dox(r-s) '
1 =

The total velocity field at that point, —1;(«1"), is found by superposing
the contribution from all the vortex elemgnts in the field, The
choice of specific vortex elements is dictated by the particular prob=-
lem treated. Each is referred to as an "elementary vortex'" and,
within this context, (2) is an elementary solution to the field equation
(Poisson solution to the Laplace equation).

We have found a general expression for the solution to the
field equation, expressed in terms of the singularities in that field.
The next step is to find a suitable set of singularities. These are

imposed by the boundary conditions.
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(b) Boundary Conditicns

The boundary conditions are imposed both by the airfoil sur-
faces and the powered wake. These can be separated into two distinct
classes: those that are linear in the velocity field and those that are
not.

(i) The Kinematic or Streamline Condition: Let a be the

local slope of the streamline, referred to the freestream direction
(local angle of attack). Then we must have the following relationship

between the velocity components:

v

T zu = tana | (3)

oo X
Since there is no flow through the surfaces representing the
airfoils, this relates the geometry of the system to the velocity field,
the standard problem of thin airfoil theory.
In addition, the relation must be true in particular at the
vortex sheets boﬁnding the wake from the outé'ide fluid, However,
in this case, both a and the velocity components are a priori unknown.
Aiso, the presence of the powered wake imposes finite
velocity perturbations at downstream infinity. We will show how
this boundary condition is satisfied by the wake model we will choose.

(ii) The Pressure or Dynamic Boundary Condition in

the Wake: The mixing process occurring in the ejector raises the
total pressure of the entrained fluid from atmospheric head Ho to
H0 + AH. Applying the Bernoulli equation on the upper and lower

side of the wake vortex sheets (Fig. 2), we get
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»puo outside wake
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HO+AH = pl + %_ pu.z

1 inside wake

Continuity of static pressure across the vortex sheet requires Py =Py

AH = %p(ulnLuo)(ul-uo) ' ' (4)

where AH is specified for this problem. Using (1), we can directly

translate this into a condition for the vorticity:

P Yother * v(x) = AH , {B)

The difficulty of satisfying this boundary condition is two-fold--it is‘
non-linear i.:(l the veloci‘gy field, and the location at which it should
be applied is a priori unknown,

The solution to the problem is completely determined, in
principle, given the representation (2) of the velocity field and the
set of boundary conditions (3) and (5). We must now find suitable
elementary solutions and a practical scheme to actually solve the
problem.

2. Vortex Distributions to Represent the Airfoil System

The chordwise distribution of vorticity in t_he presence of
discontinuities in the shape of the boundary has been discussed
extensively in Refs. 5, 6 and 16. These discontinuities occur at
the leading edge, at the sharp corner representing the deflection of
a flap, and possibly at the trailing edge. A singularity in the vor-

ticity distribution at the trailing edge means flow around the trailing
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edge due to jet discharge angle. This is known as "'singular blowing"
(Ref. 30). In our problem, the jet discharges parzllcl to the flap
line, thus removing this condition ("re.gular blowing'),

In the final analysis, these singularities are of two types:
square root at the leading edge and logarithmic for the other two.
The different nature of these singularities shows in the integrated
effect: the square root singularity prodﬁces a net thrust in addition
to the normal force, while the logarithmic singularity is too "weak"
to produce a thrust term. It is these criteria that dictate the choice
of a particular type of vortex distribution.

(a) The Leading Edge Singularity

A well-known result of thin airfoil theory is the square-root
leading edge singularity of the vorticity distribution of a flat plate
airfoil at an angle of attack:

I‘f :
Ye(x)~ —= as x~0 (6)

X

The flow around the leading edge of the thin section is interpreted as
the limit of the flow about the round nose section of finite thickness.
In both cases, this singularity produces a finite suction force
S =27 I"?, directed along the slope of the carnberline at the leading
edge.

The Kutta-Joukowsky flow about a lifting flat plate has the
required behavior at the leading edge. It is described by the follow-

ing analytic function:



=

]

u=iv

il [1- ‘/ZZT] (7)

w(z)

1]

In particular, it gives a constant downwash v = I,"f on the chordline.
Further properties of this flow are listed in Appendix 1.
The chordwise distribution of vorticity for a flat plate due to

the nose singularity becomes:

vylx) = Ty Y755 | (8)

~t
where I‘f = sina for an isolated flat plate and is otherwise unknown
for an arbitrary system (see Appendix B, page 38). -

(b) The Trapezoidal Distribution of Vorticity

The logarithmic singularity occurring at flap deflection can
also be handled in a similar fashion by finding the flow function due
to a sharp break in the airfoil chordline. Ref. 17 has taken advantage
of this approach.

In the present investigation, we found that the singularity
could be adequately handled by assuming a trapezoidal distribution

of vorticity between neighboring points:

= (9)

1

trd = 45 ¥ Pl =Tl »

Provided the step size o, is chosen small enough, the agree-

ment in overall 1lift with thin airfoil theory has been found to be
excellent., The pressure distribution is of course quite different

in the neighborhood of the flap hinge, but then the sharp break in
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camberline is not a realistic representation of the flap deflection
anyway.
The field due to (9) can be calculated at any point using (2).
The details of the calculation and properties of the field are listed
in Appendix 1.

(c) Total Chordwise Distribution of Vorticity and Downwash

We may now superpose the contributions (8) and (9) to the

vortex distribution which becomes:

l-x i o8
y(xi< x < (X‘1+Gi))=2rf QJ—;{— + I‘i+(l“i+1-li) a—i (10)

where x is referred to the mean chordline of each airfoil. The

resulting downwash distribution on the cambexline is

" 1 x
v(xi £x< (Xi+oi))—rf+ > [I‘1 Log l.(}::;{
x " ] '
-1y (—l ¥ 6—; e - lci-—x l)] ¥ Vother blA

The 1"f and [ ] terms represent the downwash induced by the ith
element on itself, while Vother T€PTesents the field generated by
all the other vortex elements in the lifting system (including those
on its own airfoil).

The constant term I‘f in the downwash corresponds to a thin
airfoil approximation, but it should be emphasized that the downwash
component is computed at the actual location of &e boundary condi-
tion on the camberline, and in the local coordinate system defined
by the slope of the element at that point, In contrast, thin z;irfoil

theories handling the downwash distribution in terms of integrals
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of the vortex distribution are of nécessity limited to computing the
downwash as if the boundary condition were imposed at the mean-
chord. Regardless of whether the approximation is justified or not,
the present numerical scheme obviates the need for making it in the
first place.

Having the expression of the downwash as a function of the
unknown vortex distributions, we may use boundary condition (3)
and solve for the distributions., This is the subject ¢f the next
section.

(d) Endpoints and Control Points on the Airfoil System

Let n be the number of segments chosen to represent the
camberline for the lower airfoil, and m for the upper one.
The set of unknowns representing the vorticity of the airfoil

system is:

(12)

S B R SEEEERTR Y

It contains the two leading edge singularity terms, Tﬂ and rfu’ and
the trapezoidal terms,

We have omitted the trapezoidal terms at the leading edge of
each airfoil, They may as well be taken to be zero, because the
square root singularity dominates anyway. At the trailing edge,
the vorticity is specified by the Kutta condition, so that Fn+ =

)

rn+m+2 = 0, of course, in the unpowered case. In the powered

case, the vorticity is specified otherwise; we will return to this

point later.
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Thus, the total number of unknown vortex intensities is the
same as the total number of segments representing the system,
We may select in particular the midpoints of these segments to com-

pute the downwash, whence it takes the particularly simple form

g I‘ I;Ll
vix = -2‘) = rf t 27 ¥ Vother (13)

We call these midpoints '"'control points",

We maf now solve for the vortex distribution as a functi.on of
the slope of the camberline. Boundary condition (3) involves velocity
components parallel and perpendicular to free-stream. Writing (13)
for all (ntm) control points, and rotating to the proper coordinate

system, we can write symbolically

u_ —Ullru+U 21-‘2+ . -l-U1 I‘+U1n+1 fu
ceee e U i1 Time1 = M0 G for control point #1,

and similarly uy =V + G for all control points (14)

U and V are the induction functions by which given a vorticity distri-
bution G the velocity can be calculated at any point. Conversely,
given boundary condition (3) the vorticity distribution may be com-

puted as follows:
Define H = V - U tana

Then (3) must hold on all control points so that H- G= [Uoo tana]

which can be solved for G:
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E-l [Uoo tana] Solution to the unpowered (15)
= ’ problem

<]

The matrix _I_{__"] is referred to as the matrix of influence coefficients
and plays an essential role in the following parts. -

3. Vortex Model of the Wake

(a) General

We have seen that the difficulty of the problem arises not only
from the nonlinearity of boundary condition (5), but also in the fact
that the location of that boundary condition is unknown.

To obviate this difficulty, a number of investigators (Refs.

8, 2) have successfully used an iteration technique yielding a pro-
gressively better satisféc’cion of boundary conditions {3) and (5).

The wake is modelled by trapezoidal segments, (similar to
the pl\‘evious section), the position of which varies during the iteration.
It must, however, be truncated after a certain downstream position.
This truncation must be compatible with the boundary condition at
downstream infinity mentioned previously.

(b) Representation of the Flow Field at Downstream Infinity:

The numerical scheme we are proposing involves the calcula-
tion of the downwash at arbitrary points in the fiel_d. Thus, it is a
matter of practical need that we choose a representation of the flow
field at downstream infinity so as to get a smooth distribution of
downwash even in the last wake endpoints,

We do know that the far wake must consist of two parallel

vortex sheets of vorticity =+ =1 -1+ , which is found b
T M y
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applying i« jump condition at p = Poo’ 1. 8.y WiwEe uj = Uoo + %Yoo'
The sepe: ~ on of these sheets is a priori unkrown otherwise., The
direction 1s known: the far wake vortex sheets must lie along the
freestream direction.

The velocity ficld induced by two line voriices, starting at a

downstream distance x_ and separated by a distance hoo can then be

directly computed using (2).

o1 XoUX ] XX 1
2wu,_ = Tan ———) - Tan™ =~ (~—rr— 16
X Yoo[ (y-hoo) - (y+h00 J (16)
L
(%, -x)“+(y-h_)?72
2'n'vy = Yoo Log > > (17)
» (x-x)%=(y-h_)

where hoo varies during the iteration. This far wake model was also

used by Shollenberger,

4. Description of the Iteration Procedure:

(a) Updating the Airfoil Vorticity:

We can conveniently separate the field components due to the

wake and due to the airfoil:

v =v 34y (W)
y y
(18)
u =u (2) + 1 Al
= x %

then, we may rewrite boundary condition (3) as

(a) (a)

v - 1
X

y X(W)ta11a()§)-vgw) (19)

tana(x) = Uoo tana(x) + u

The field at the control points is expressed as: H+ G, where G is

to be determined. Then, the amount of vorticity imbedded in the
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airfoil required to satisfy the boundary condition in the presence of

the wake-induced velocity components will be

1

e % \ , (W) (w)
G=H". [Jootaz_a +u " tana - R ] (20)

-1 . : -
H ~ is independent of the iteration and is calculated once and for all

for CH =0,

(b) Updating the Wake

(i) Updating the Position. To find the slope of the vortex

sheet at the control point, we observe that if indecd this slope were
actually known, then it would be continuous across the vortex sheet,

ie €5

= = tana(x) : (21)

(1 and 0 referring to the velocities inside and outside the wake).

Ux1 Yxo
So that since 1 +—— =1 + ——
v v
yl yo
uxo+ux1 uxo
and tana(x) = - = (22)

v
yo 'yl yo
Now, we want to use the jump condition across the vortex so we must

transform to a system parallel to the vortex.

u o =u cosa(x) - v sina(x)
foru and u
[} 1

v_=u sina(x) + v cosa(x)

where
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so that
Yo ¥ Y = £ Yother
v = Vother"hvs. i
tana(x) = zuotherSina+(vother+vsi)CoS0’ (23)

u_ . cosa~(v +v .)sina
other ( other 51) *

If the boundary condition is exactly satisfied, then VN T vother+ Vi

which represents the total velocity normal to the vortex sheet, will

be zero, so that (23) is satisfied identically,

If the boundary condition is not exactly satisfied, then VN¢ 0
and a better estimate of the slope can be found by using (23) as:
u(new) . sina(OId)Jr(v(nfeW) (:n..ew))'. cosa(Old)
. fnew) _ other other “si (24)
Ang - > (new) cosa(Old)-( (new) (new)) . sina(old)
Yother other "si

Having executed that for all the control points in the wake, we can
find the new wake position by direct integration:
X
— -1 1
YoolX) = Yot {{ tana(x')dx (25)
TE

(ii) Updating the Vorticity: The updating of the vorticity

at the control points is readily obtained by using boundary condition
(5). The vorticity at the endpoints is then obtained by averaging the

vorticity betwecn neighboring endpoints. The exceptions to this rule
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are:

(1} at the trailing edge of the airfoil, the vorticity is
linearly extrapolated from the first wake control poiat. The con-
tinuity of vorticity at this point complies with the Kutta condition
for regular blowing,

(2) the vorticity of the two last wake endpoints is set to
oot

5. Computation of the Aerodynamic Coefficients

(a) Forces

Definitions:

We will call "lift" any force component perpeﬁdicular to the
freestream direction, and "thrust" ar.1y component parallel but oppo-
site to the freestream direction (i.e., thrust is measured by
negative numbers and drag by positive numbers),

(i) The leading edge suction term can be found explicitly
by integrating the flat plate vorticity term around a lip of finite
radius and then letting the radius go to zero., The leé.ding edge suc-

tion is then
Cs = 2% f‘? for each airfoil ' (26)

and acts tangentially to the leading edge element.

This thrust, of course, does not produce any moment about

the leading edge.

(i1) The Pressure Integral Across the Camberline. This

is the only place where the actual location of the actuator disk enters

b

since the Bernoulli equat‘ion involves explicitly the head of the flow.
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For convenience, we assume that the actuator disk is located at the
trailing edge of the system, so that the fluid is assumed to be 2t
atmospheric head Ho up to that point. .This certainly does not affect
the value of the total lift on the system, since it depends only on the
total amount of vorticity shed by the actuator disk, but will affect the
distribution of lift between the two airfoils and the load, However,
to represent these realistically would require detailed knowledge of
the mixing zone, unavailable at the present time. To find the |
pressure difference acting between x, and X,y on the element of the

+1

camberline, we apply the Bernoulli equation on its uppér and lower

side,

-1 . _1 -
= 100%, - 30y,

pL—pOO
-1 2 1 2 :
PuPep 20Uy - 2P [uotheI'(X) *u'] (27)
where u' = -3 ';til the load i =1 2
ere u > y(x) us the load is Ap = 5 p(4 U thert ). (28)

The elementary normal force acting on the element is:

*i+1
Nti f Ap dx

X.
1

]

*i+1
+p L uother(x)y(x)dx
i

uother(x) is the contribution of all the other vortices in the field, and
does not vary much over segment i. It is most convenient to compute

the velocity at the control point between X and x. Thus, normal-

i+l’

izing as usual:



o

it]

~ b r~
Y (x) dx

" ¢ T
Nti—+2U(ki% 2)

Ngﬁy‘

i
This component contributes both to the overall thrust and lift of the
system, It is more convenient to refer this component to the mean
chord coordinates, Let s = slope of the camberline in these coor-

dinates, Then:

ﬁ- = COs ¢£. ﬁ .
1 1t
e B By, Bl (29)

Using the representation of the vorticity (10), we can integrate the

vorticity term

Xi+1
fX v (x)dx = Ty [(Gi+1-Bi)+(smei+1~51n6i)]
i
LI it P :
+ 2[r1+1 + li] AXi (30)

where 0 = Arc cos(%}S -1).
Including the leading edge suction term, (26), the total normal and

tangential referred to the airfoil mean line become:

N

1]

2 L2 ~
-2 I‘f sinf +121 N,

NG

T = -2w f? cosf + Eil ~(31)

1= i, :
(B is the slope of the camberline at the leading edge B = € - )
To obtain the lift and thrust coefficients we rotate to the freestream

coordinates:
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Cc, =N- cos(a+p) - "l\‘)sin(aw"ﬁ)

L

CT = 1 sin{a+p) + iy cos(atf) (32)

(iii) The Pressure Integral on the Actuator Disk, The

forces due to the actuator disk (for the case of uniform loading) (re-

ferring to Fig. 8) are simply its normal thrust referred to the thrust

and lift directions defined previously:
C =C.,+ h- sin(atd)
C.. =-C_ -+ h- cos(atd) (33)

So that finally we obtain the total lift and thrust coefficient acting on

the system:

e =C,., +C. +C ' (34)

It is these coefficients characteristic of the total vorticity in the field
(airfoil + wake) that are significant in the comparison with jet-flap
theory.

(b) Moments

We‘refer all our moments to the leading edge of the main air-
foil. In this definition the nose thrust of the main airfoil does not
contribute to the moment of the system, but the nose thrust of the

shroud does,
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(i) Main Airfoil. Reférring to IFig. 8, the contribution

of the ith element to the moment about the nose is

N 1 Vil
M, = [ xal - ydT, (35)
B i

where

dN. = cose. - aN..
1 1 {1
dT, = -sine, dN,. (36)

and y is related to x by the local slope of the camberline;
yix) = xtane, + y; = %; tane 5 Mzking the same approximation as in (a)

concerning the velocity, we get, after some manipulation:

~ (1) e i : L g
MY = 42U (%, t ) [cosei+smaitanei] . f xy (x)dx
| *
~(1
- (yinxitanai) T( ) (37)
Writing the vorticity integral explicitly:
i1 T 53 .
fx xy (x)dx =7 lf[6i+1-61-3(51n2_ei+1-51n261)] +
i
I _
1,2 20 TiHlThil 3 T3
e d Gy ) g (3t 55 - 2 x4 (38)

The total moment acting about the nose due to the lower airfoil be-

comes:

g

(39)

ot
yo
I

b~
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(ii) Momment Due to the Shroud

Moment due to the normal force on the shroud. We

assume that the maximum camber of the shroud airfoil is small
enough so that we may neglect the local slope in computing the mo-

ment about the leading edge of the shroud, i.e., (referring to Fig. 8)

*2
dN
M, = [ ox' (G ax (40)
*1

and then the moment transferred to the leading edge of the main

airfoil becomes:

x y
2 ., A
M _L xdF - fy ydF_ (41)
1 1
using
YooYy
tanEM i e (42)
2
dF = dN cos ¢ :
M (43)

de = «dN sin EM

we finally get:

, =M_(N) = M, (N) + [x1~ cose, +y, - siney ] - IN| (44)

where (Xl’ Yl) is the position of the nose of the shroud in the main

Cum

airfoil coordinates,

We must add to this the moment due to the leading edge

suction, which is readily found to be

~2 :
Mo(SLE) = ZTFPf [ylcossM-xlsmeM] (45)
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(ii1) Moment Due to Actuator. Referring to Fig., 8, the

contribution to the moment due to the actuator ig found to be independ-

ent of the position of the actuator and

CM = CH h.d (46)

act
where d is the lever arm of the actuator. The total moment can be

found by simply adding the various contributions:

Cyr = Cpq +Cp +M(5)) + Gy (47)
tot 1 2 act

6. Performance of Numerical Scheme

The numerical calculations were performed on the IBM/System
370 available at the CIT Computing Center.

45 segments were chosen to represent the camberline of the
test configuration. The total computing time for the @powered con-
figuration, including the inversion of the influence ccefficients matrix,
was about 20 seconds.

The step size of the segments selected to represent the wake
must be smaller than or equal to the exit height of the ejector, % .
For a fixed downstream wake cutoff distance, low % ratios t'ranslate
into a larger number of segments to insure convergence, resulting
in an increase of the required computing time. Tims, for a%— = 15%
and wake cutoff at 5 chords downstream, 50 segments were uscd.

The number of iterations required for a given accuracy in
the aerodynamic coefficients appear to be directly proportional to

CH’ and sensitive to a lesser degree to an increase in the angle of



]
™
o~

1

attack and/or flap deflection.
For the case of high CH and low %, the total amount of com-

puting time for a complete set of iterations is about Z minutes.
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III. COMPARISON WITH JET-FLAP THEORY
In a well-known paper (Ref, 6}, Spence developed a linearized
theory for the two-dimensional potential flow about a single element
jet-flap airfoil and computed the lift increment due to blowing in the
form of lift derivatives tabulated versus the jet moinentum coefficient
of the primary Cp. In the previous section, we proposed a numerical
scheme to compute the lift coefficient on a multi-element airfoil,

given the head change C The purpose of this section is to est.ablish

e
a technique for the comparison between the liit increments obtained

by the two different methods.

1. General Characteristics of the Computed Lift Curves

For a constant flap deflection, the functional dependence of

the lift coefficient can be written as:

Cy. = Gy {4, Cp) _ (48)

so that

8C 8C,
Cp=¢C 5a lc. %" 55 la* CH (49)

L (a =0°,C

=0} %

L H

(neglecting cross~terms)

We may regroup

oC
s o jous - © -— 1‘ .
Cila=0°,Cp) = Cy(a=0°,Cp=0)+ Tom Cry (50)

so that the lift increment due to angle of attack only becomes

ACy = 5|6

1
Q
1
@]

r"\
o
]
2
0
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The presence of a finite lift at zero angle of attack in the powered
case results from the asymmetry in the lifting surfaces. In the
early part of the work, some difficulty was encountered in the inter-
pretation of the lift curves, because a finite lift at a = 0° results in
lift derivatives (as computed directly from (48)) be'c:oming infinite
at that angle, thus precluding any rneémingful cormparison with
Spence's theory.

Dr. H. J. Stewart recognized the similarity of this behavior
with that of a wing equipped with suction-type boundary-layer control,
of which he previously made the theory for a single element airfoil
(Ref., 18). This theory will be repeated below, and affords a direct.
interpretation of the lift curves at a = 0°,

Having cstablished that, it will then be shown that the lift
increment due to angle of attack only can be directly related to
Spence's increment, having suitably related the head change CH to

the total momentum flowing in the wake,

2. Effect of a Sink on a Single-element Airfoil

The suction effect of a boundary layer control device can be
represented by a sink on the upper side of the airfoil. (Fig. 10)
The analysis of this effect was done in Ref, 18 and is repeated here,
as it provides the theoretical background necessary to interpret
the presence in our configuration of finite lift at a = 0°. In the trans-
formed plane, the combination of sources and sinks necessary to
maintain the circle a streamline is also shown in Fig. 10. Let 0 be
the angle between the direction of the sinks and the rear stagnation

point. Let the distance between the sinks go to zero. Then, thc
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horizontal velocity component generated by the sink of strength -2Q
is cancelled by the velocity due to the source +Q) at the origin. The

net vertical veleocity component is given by:

20
v, = ——-———9——-——@ cos (-g—) (52)
Y 2m(2R sin =)
Q 4
= 5TR cot ('?“) C 4 (53)

Thus, to maintain the stagnation point at the trailing edge,
an extra amount f‘\rjnd of vorticity at the center of the circle is
necessary, directed counter-clockwise so that its induced velocity

component exactly cancels (53):

AI\ind _ Q

2R~ 2TR

@

-cot(-g—) >0T, 4 =Q cot(z) (54)

The resulting lift increment is pU_AT. .. The total lift
oo ind
becomes:
_ Z o U S
I = TTonocolna +p . Q cot(z) (55)

-]
-and in particular is nonzero as o = 0 .

3. Comparison with the Computed Lift Curves at @ = 0 : the Actuator

as a Sink
To relate this to our configuration, we must first estimate Q
as a function of CH' The strength of the sink is the difference in
mass flux between the power-on and power-off configuration, which

can be estimated as:
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SiE) = = Jd,
@) hUoo )uJ

1
=hU__[1 - (1 +C)?] (56)

Also, we recognize that the cot(%) factor is valid only for a
single element airfoil. For a multiple element airfoil, we expect
that the factor should be somewhat different. In particular, if the
two chords are equal, then the symmetry of the problem dictates
that there can be no lift at @ = 0 . Thus, the estimate of the lift

increment becomes:

c

B u

ACL. = Zk(————-C 5
ind

1
2

) [ +Cp)® -1 (57)

ols

c
where the factor k(-ELl, %) must be determined for the particular

geometry considered.

The lift slope computed numerically in Fig. 11 corresponds
c
to a system having a chord ratio -—CE = 40% and an ejector height

h

= B 15%. The numerical value of coefficient k was determined by a

‘best fit of the curves C_ (a = 0", Cyy) and AC , which was obtained

Lot

for k = . 1625, The agreement between the two curves validates the
interpretation proposed for the mechanism of generation of lift at

a=0.

4, Comparison of the Lift Increments Due to Angle of Attack with

Spence's Theory

The lift increment due to angle of attack computed numerically

by Spence in Ref. 6 can be approximated by
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3.
ACLJF = 20[1 # , 151 C;% +.219 CJ] a (58)

(no lift at a = 0°)

where CJ is the momentum flowing in the powered wake. For a jet
flap, this is just equal to the momentum of the primary CJ =C , as
: 2

this model neglects any entrainment in that region. To relate

ACLJF to the lift increments computed in our configuration, we

must relate CJ to CH'

a. Relation Between Head Change and Momentum Coefficient

Referring to Fig. 2, the total momentum flow in the far wake

is:
2
M=p uj hoo
where uJ. is related to the head change by

+—;-pU§O +AH=pOO+—§;pu.2

T, j

so that

2 2
puj =pU_, + 2AH

and

- 2
M =h_ [pU> + 2AH] | (59)

For the type of geometries representative of an ejector=
h
powered jet-flap, the exit height to chord ratio —;- will be-of the

order of 10%. Under these conditions, 'the results of the numerical

.
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scheme proposed in Section II show no appreciable slipstream con-
h_

traction, i.e., ?3— = 1. This allows us to neglect the pressure
$ N

integral on the wake and identify (59) with the total momentum flow

at the exit of the ejector:
M_=h_[pU% + 2AH]
s s LP o0

so that the jet coefficient that will be used in the comparison with

Spence's theory will be

Mq
C, = ——
J %pUéoc
h h
B2 A Es Sy o
1
zpU
h_ '
= 8 == [1+CH] (60)

To relate CJ to the conventional primary jet momentum C

3

we note that CH is the force, i.e., change in momentum, exerted

per unit height by the actuator disk on the pumped {luid, so that

c = Elﬁc (61)
b c H '
' hq'

and CJ = 2 —-C—— + 2 Cp (62)

A further implication of this choice is clear when we consider

the ejector at zero forward speed Uoo = 0

so that (51) = MJ. = ZMH
M
and & =2
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This ideal augmentation coefficient can be achieved only by an ideal
mixing device (Ref, 21).

b. Comparison of the Lift Increments

We are now in a position to compare the lift increments due
to angle of attack computed by the two methods. This has been done
in Figures 11 and 12 by comparing the lift curve obtained nume rically

and the curve C, = C_(a = 0°, CH) +ACL , Where C is

( )
L~ L I L H

also computed numerically, for the following configurations (the

a=0°%, G

geometries are in Fig, 2-A):
Fig. 11. System of unflapped flat-plate airfoils, with height
%— = 15% and chord ratio —CCE- = 40%
Fig. 12. System of flapped cambered sections corresponding to
a configuration tested in the 10-foot tunnel at GALCIT
and described in Ref. 34,

It is seen that for these Widély different configurations the
lift increments computed by both methods agree quite well, In addi-
tion, the distribution of lift between the two airfoils has been plotted
in Figs. 15 and 16 for an actuator disk effectively located at the
trailing edge of the system. Both lift slopes are negative, indicating
the presence of the upper airfoil stagnation point on its upper sur=-
face. This again illustrates the sink effect of the actuator on the
lifting surfaces.

5. Comparison of the Moment Curves

A similar comparison was made for the moment curves of
the same configurations as above, the moment increment being also

obtained from Ref, 6.
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For the {lat-plate system (Fig. 13), the curves have differ-
ent slopes and cross for a value of CH high enocugh.

For the cambered system (Fig. 14), the magnitude of the
moment increment as well as the slopes agree with the moment in~
crement computed from Ref, 6.

To the extent of this comparison, this indicates that the
moment increment is sensitive to the particular geometry consid-
ered and cannot in general be reliably computed from the jet flap
‘increment.

6. Conclusions

The method of superposition that has been just discussed
allows a simple interpretation of the lift curves computed numeri-
cally in terms of analytical results for single~airfoil configurations.
While it does not remove the need to compute numerically the lift

at a = 0°, it lends to the numerical solution a flexibility that is

inherently lacking in this type of approach.
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A. The Trapezoidal Vorticity

l. Expression for the Flow Field

Let 0. be the mesh size 0. = x. - X,
i 1 i+] i

The trapezoidal vorticity is a linear distribution of vorticity

between x5 and Xipqe

y(x) = I, + (I, -T}) - 6’51— (1-1)

We want to compute the induced velocity using the Biot Savart law:

ds

dur = YEI= £l
(0}

2mu_ = [ XN Y gy (1-3)
(o] T
&,

2mu =f = ;’ y(x)dx (1w4)
(o] I 2

Carrying out the integration:

o 50y 1
Zevu =1+ [Tan fenecl-Tan (-X—)] +
x i y ¥y

v x2+y2 " 1. =% 1x
+(I-;.+1—I‘i) . ga. Log['(—o“—-—z—i] +-C.)‘.T Tan " ( - )-Tan (—Y—)]

i -x) ty i
" (A=)
2+ r2 2
2ru_ = I Log{——-}i———?) 2] +
y ! (0,-x)"+y
p3
X x2+X2 : v ol -1x
+(I‘i+l-I‘i)- -14—8— Log 55| =< |Tan y=Tan “(=)
i (Oi—-x) +y i y y
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2. Limit Forms of (1-5) and (1-6) as yv—4 0

X0,
1 i

(i) x<0 or x>0 Tan "(

o e 2fH =10
x

i

2mTua

" l“lLog %l+(]-—;.,}-l—l:.) “14'%L0g lo‘:-{-Xl

Same holds for x > 07’.

(if) 0< x< o,

| -1 %% ™ Ul
Tan (—)—,-)-Tan (y )-—>i-2-+(:r__-z—):i1r
So that u_(0< x< 0, y=10)= + 3 y(x) (1-8)

(iii) Expression for the downwash

In computing the downwash, we require o, = 0 so that

- - . B ol ) B, "
Zwuy = by Log ,oi-x |+ gy =ik ['1 * CH Log 'oi-x ]
and in particular (1-9) evaluated at the midpoint yields:

1 . O 1% - _1___ -
uy(x -2 Yy “O)""Z.n. (ITL'{‘]. 1—;_) (1"10)

3. Comment
It should not be concluded that the field at the end of these
segments x = 0 is inherently singular, since the downwash is com-

puted as v = L + v although, should one need the downwash at

i other
that particular point to interface with a complete integral model of
the turbulent flow outside the ejector additional numerical sophisti-

cation would be needed.
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B. Field of the Leading Edge Singularity
The Kutta~Joukowsky flow about a lifting flat plate is repre=-

sented by

w(z) = u-iv

iIN‘f[l -13/’7:1—] (1-11)

z

where I'\"’f = sina for an isolated flat plate.

Using the angles in Fig. 5, this can be decomposed into real and

imaginary parts

R_Z = (l-x)2 + yz
2 w4 (1-12)
Then
1
2
u = Ff [~ siny] (1-13)
r2
y=0
1
vl f(f [1-~ T cosy] (1-14)
r2
0,-6
where y = 22 1

The downwash on the chordline y = 0, 0< x < 1, is constant : v :T‘f.

QOutside this interval, on the line through the two branch points, we have

Lo x-1
V=I}- [1-— —;—], x< 0 and x=1
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In addition, the vorticity distribution can be deduced from (11) and

is,

yf(0$x$l)=2rf' — (1-15)

with the square root singularity at the leading edge.

The complex function (1-11) represents the leading edge
singularity for.any thin airfoil as well as for a flat élate, provided the
branch cut is moved to coincide with the camberline. In the particular
scheme we used for the numerical solution, the branch cut was not
moved, so that the contribution of the leading edge singularity to the
total downwash on its own airfoil, given in equation (11), is just ?f’
and the vorticity is (1-15). These two results are linearized approx-
imations. The nonlincar results could have been incorporated at a
slight increase in the complexity of the calculation. A consistency.
check was made by computing the velocity components directly
from the computed vorticity distribution equation (15), and they
satisfied the imposed boundary condition within three significant
digits. Thus, in this particular example, this approximation was

well justified.



N

10.

w50,

REFERENCES

Herold, Alan C., A Two-dimensional, Iterative Solution for
the Jet Flap, NASA CR-2190.

Chaplin, H. R., A Mecthod for the Numerical Calculation of
Slipstream Contraction of a Shrouded Impuise Disk in the
Static Case, DTMB Rept. 1857, June 1964.

Greenberg, Michael D., Powers, Stephen R., Non-Linear
Actuator Disk Theory and Flow Field Calculations, Including
Non Uniform Loading, NASA CR-1672.

von Karman, Th., Burgers, J. M., Aerodynamic Theory,
Durand, ed., Vol. II, Perfect Fluids, Section 10.

Spence, D. A., ‘The Lift Coefficient of a Thin, Jet Flapped
Wing, Proc. Royal Soc. A 238, 1956,

Spence, D. A., Some Simple Results for 2-D Jet Flap Aero~
foils., Aero Quarterly, Nov. 1958,

Wygnanski, I., Newman, B. G., The Effect of Jet Entrain-
ment on Lift and Moment for a Thin Airfoil with Blowing,
Aero Quarterly, May 1964,

Shollenberger, Carl A., An Investigation of a 2-D Propulsive
System, Calif. Inst. of Technology, Ph.D. Thesis, 1971.
Weissinger, Johannes, Maas, Dieter, Theory ofthe Ducted
Propeller - A Review. Article in 7th Symposium on Naval
Hydrodynamics, Aug. 25-30, 1968.

Yen, K. T., On the Thrust Hypothesis for the Jet Flap,
Including Jet-Mixing Effects, Journal of the Aerospace

Sciences, Aug. 1960. s



1l

12

15

14,

1.8,

16.

L€y

18.

19.

20,

21.

w05

REFERENCES (Cont'd)

Stratford, B. S., Early Thoughts on the Jet Flap, Aero
Quarterly 7, 1956, -

Levinsky, E. AS. , et al., Lifting Theory for V/STOL Aircraft
in Transition and Cruise L., J. of Aircraft, Vol, 6, No. 6.
Spence, D. A., The Lift Coefficient of a Thin Jet-Flapped
Wing., IL. A Scolution of the Integro-differential Equation
for the Slope of the Jet., Proc. Roy. Soc., Series A 261.
Stratford, B. S., Mixing and the Jet Flap, Aero Quarterly,
Vol. VII, May 1956,

Stratford, B. S., A Further Discussion on the Mixing and
the Jet Flap,

Lissaman, P. B. 5., A Linear'Solution for the Jet Flap in
Ground Effect, Ph.D. Thesis, Calif. Inst. of Technology,
1965.

Liopes, M. L., Shen, C. C., Recent Developments in Jet Flap
Theory and Its Application to STOL Aerodynamic Analysis,
AIAA Paper 71-578,

Stewaxrt, H. J., Private Communication.

Quinn, Brian, A Wind Tunnel Investigation of the Forces
Acting on an Ejector in Flight, ARL Rept. 70-0141,

Fancher, R. B., Why Ejectors for Aircraft Propulsion-Lift
Systems and Where We Stand, ARL Rept, 71-0140.

von Karman, T., Theoretical Remarks on Thrust Augmenta-

tion. Reissner Anniversary Volume, J. W. Edwards, 1949,



Ll

23.

24,

25,

26,

2l

28.

29.

30.

31.

32,

wd] .

REFERENCES (Cont'd)

Steady Flow Ejector Research Program. Tinal Report
Contract Nonr-3067(00), Dec. 1960.

Curtet, Roger, These, Faculté des Sciences de 1'Universitd
de Grenoble, Nov. 1958, Publ. Sc. and Tech au Min de 1'Air,
No. 105. -

Rose, James R., Ph. D. Thesis, Calif, Inst. of Technology,
An Anaiysis of the 2-D, Incompressible Jet Ejector, 19(;9.
Hill, P. G., Turbulent Jets in Ducted Streams, JFM 22, 1965,
Koenig, David G., Corsiglia, Victor R., Aerodynamic Char-
acteristics of a Liarge Scale Model with an Unswept Wing and
Augmented Jet Flap, NASA TN D-4610, 1968,

Cook, A. M., Aiken, T. N., Low Speed Aerodynamic Char-
acteristics of a L.arge Scale STOL Transport Model with an
Augmented Jet Flap, NASA TM X62017, 1971.

Flight International, Boeing's AMST Proposal, 8 Feb. 1973,
p. 210,

Perry, D. H., A Review of Some Published Data on the
External-Flow Jet-Augmented Flap, Aeronautical Research
Council Current Papers, CP No. 1194, London, 1972.
Lachmann, G. V., ed., Boundary Layer and Flow Control,
Vol. I, Pergamon Press, London, 1961,

McCormack, Barnes W., Jr., Aerodynamics of V/STOL
Flight, Acade;mic Press, New York, 1967,

Harris, G. L. and Lissaman, P. B. S., The Mechanics of

Ejector Thrust Augmentation, CIT Ae TR 67-1, 1967,



Siiy

34,

e P

REFERENCES (Cont'd)

Newman, B. G., The Prediction of Turbulent Jets and Wall
Jets, Canadian Aeronautics and Space Journal, October 1969,

GALCIT Report 926 (to be published).



A =

Blowing Slots
N VToL
Augmentor Wing

STOL
Augmentor Wing

(Ejector Powered
Jet Flap)

FIG. 1| POWERED LIFTING SYSTEMS



i -

AY13IW0O39 O1Isvd t N3T1804d J_Bo.i TVILN3L0d 2 "9ld

10}DnioYy




T NOILDO3S NI g3sn s21yi3N039 01410348 P-2 '9id

926 120dey 1197V ¢ UOIIDINBILUOY
}S8] 10 eAlpiuesaldsy wWesAg palsquwdd

/Il. uoilnig

o ebuiy
;_u, ] 10 pipaiod
5 _r// 812 -£59 yovN
Gl HVOUN jojs Buimo)g
paoLugG-
PiCU3d % CL
uoiinls sbBuly dojd wa}shkg 81b|ld D)4

%al =%y

%0V = q



.,,.£1 6,..

r—s

Vortex Sheet
Element Of Intensity

y (o) \
‘A‘" -"li" £ 2 N
C"n‘——}?}g\@\Q ;
D .
—re 75;;\\—

S

e
X

FIG.3 POISSON SOLUTION TO 72u =0



- kg

{ -

A
/ Pi+!
Fi '
-
O o X
Dovwnwash
Distribution
St ‘ / .
| | X
{/ i e =11}
- 5 o

FIG.4 DOWNWASH OF THE TRAPEZOIDAL VORTICITY



ALIHVTINONIS ISON 40 gT3ld HSYVMNMOG ¢ 9ld

3.1=(x) A 31013407

& s Do s me Gme T G Gy S -

; % H
< - T 72 7T I T T T TITT =
g lg
YSDMUMOQ

(K%YW



(T10441V H3MOT) ALIOILYOA 3HL 40 NOILVLINIS3HJ3Y TIVOIH3ANNN 9 9ld

o6p3 obuiH
93D\ 104 . uioy  9oId oullpIoy) uba

e %

10104 $J0IN0) : , °bp3 butpoeny
Ox (o | | |
7 /i

7 ./.\wi.%,t»

splozadoay
splozedoa] oY 9.5..\

! N\ logay

(uontpuod oY) 1 =U1




pioy
uoap

e

TI044IV NIVIN NO ONILOY SLNINOW/SI0804 <L'91d

I+1y by

uoiong
ebp3 Buiposn

-

Z

'

mN

I +1g

_EO

s6p3 Buippbe
INOGY JUSWOW



Uoo

Moment Due/A
To Actuator

Disk
CMAct= Cyh-d

>. _ Force Due To Actuator Disk

//// ‘\\F@==AH'h

(a) Force And Moment System Due To Actuator Disk

Contribuiion
Mo (S| g)
\ :

RLccsding Edge Suction

(x12y))
Normal

“ Force
Contribution
CM2

(Xa 1y2)

(b) Moment System Due To Upper Airfoil

FIG. 8



Airfoil Coordinales
5
'E'

Flow Field CH=0
Compute H , 1™

G=4" [tana(x)]

i

Input CH,Wak
Coefficients
And Initial
Guess

3

o] Compute Velocities
) InGUced On Airfoil

System By Present

V/ake

Update Airfoil Vorticity

&=17 Ttan a0+ 0, tan ¢ () = vy ™ tan o]

y

i

Compute Vglocities
Induced By Airfoil
System And Old
Wake At Old Wake
Position

\

Upddte Wake
Vorticity And
Position

Compute
Acrodynamic

“lCoefficients T

L

Start
New
Itcration

FIG.© POTENTIAL FLOW PROGRAM FLOW CHART



-5 %

I»Locczﬂon 0Of Suction Slot M

-2Q Yy

o e

)/\?’ C A 0 MO S AP AL L LA AP A A i

Up

FLAT PLATE AIRFOIL WITH SUCTION SLOT

Avy ? Nef
Velocity
\fy’\’ induced By

. Source-Sink
i)

: System
S(Rear

Stagnation
Point )

TRANSFORMED FLAT PLATE
AND SINK-SOURCE SYSTEM

FIG. 10 EFFECT OF A SINK ON A FLAT PLATE AIRFOIL



2.2

2.0

'
o
T
-

i

CL
TOTAL LIFT
FLAT PLATES

T

COMPUTED
NUMERICALLY

LIFT INCREMENTS FROM

SPENCE'S THEORY

A
o
O
v
X

Lot Lo oo

EQ (57)

k=0.1625
2 8 10 12 14 16
¢ 1 ! 1 1 1 1 ! 1 Cy
9 2.1 3.3 45
i i ! | CJ

TOTAL LIFT, FLAT PLATE SYSTEM UVC=I5%Q
FIG. {I



qL =0
Cp
7.0 |- TOTAL CAMBERED
SYSTEM LIFT

6.0 |
A compuTED
O | NUMERICALLY
0
v } LIFT INCREMENTS FROM
X J SPENCE'S THEORY

5.0

) 8 10 12 14
1 1 1 1 1

9
i

2.l 3.3 | 4.5

TOTAL LIFT, CAMBERED SYSTEM (h/c=l5°/q)
FIG. 12



40

.30

c it
RPOSITIVE

HOSE DOWN

FLAT FLATES X/a:@o

ﬁ} COMPUTED NUMERICALLY
O

v} LIFT INCREMENTS FROM
% J SPENCE'S THEORY

/{ Q=2°
ge=pno
A CH
S S SN N R -
.9 2.l S0
| ] 1 CJ

TOTAL MOMENT,FLAT PLATES
FI1G. 13



50

4.0

3.0

Cm

TOTAL CAMBERED
SYSTEM MOMENT
(POSITIVE NOSE DOWN)

LIFT INCREMENTS

A ) COMPUTED
S [ NUWERICALLY
} FROW SPENCE'S

xXq

THEORY
2 4 6 8 To) i2 i CH
I H 1 1 1 1 1
9 2.1 3.3 45 G
1 1 i 1

TOTAL NMOMENT, CAMBERED SYSTEM
FIG. 14



-58.

8.0 CL

Q=6°
LOWER AIRFOIL

FLAT PLATE /////////

&1 computed
© | NUWMERICALLY

CL

-g.0k

UPPER AIRFOIL
FLAT PLATE

LIFT DISTRIBUTION, FLAT PLATES (ACTUATOR DISK AT
TRAILING EDGE
FIG. 15



8.0

=20

CL
LOWER AIRFOIL

CL
UPPER AIRFOIL

LIFT DISRIBUTION, CAMBERED SYSTEM ACTUATOR DISK AT
TRAILING EDGE FIG. IG



