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ABSTRACT

The question of whether or not a coplanar, fixed attitude,
constant acceleration burn in a central force field can result in a
post-burn orbit that does not intersect the pre-burn orbit was inves-
tigated for small changes in the orbit. This was done by developing
a criterion for separation between coplanar elliptical orbits, solving
the linearized equations of motion given in reference 1 for a coplanar,
fixed attitude, constant acceleration burn, and evaluating the criter-
ion. Regions in which an initial alignment of the acceleration vector
may be chosen to result in orbital separation at some point in the
burn and the alignments of the acceleration vector to do this were
found numerically. However, it appears that the distances between
the separatéd orbits and the time over which the orbits separate for
a particular alignment are too small to make the phenomenon of

much practical use for small orbital changes.
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LIST OF SYMBOLS

semi-major axis of the Keplerian orbit

semi-major axis of the perturbed orbit

eccentricity of the Keplerian orbit

eccentricity of the perturbed orbit

e-e

semi-latus rectum of the Keplerian orbit

semi-latus rectum of the perturbed orbit

P-P o

polar angle on the Keplerian orbit, measured from
apoapsis in the direction of motion

polay angle on the Keplerian orbit at which the perturbed
orbit intersects the Keplerian orbit

polar angle on the perturbed orbit

polar angle of the perturbed radius vector measured
from apoapsis of the Keplerian orbit

polar angle on the Keplerian orbit at the start of the burn
6-6,_

shift in the line of apsides between the Keplerian and
perturbed orbits

acceleration vector

magnitude of a

position vector on the Keplerian orbit

magnitude of ;;

position vector on the perturbed orbit
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AT
AT’

AV

-Vie
magnitude of T
magnitude of the velocity vector on the Keplerian orbit
magnitude of the velocity vector on the perturbed orbit
gravitational constant
discriminant in the solution for cos ei; defined by
equation (9)
a non-dimensional form of D
l-cosAw
varig.ble in the solution for cosei; defigged by equation (16);
also used as the angular momentum of the perturbed orbit
function defined by equation (35)
r-r_, perturbation in radius magnitude
da | /de o
v-v,
dag /de0
non-dimensional form of Ae
non-dimensional form of AP
non-dimensional form of Aw
non-dimensional form of A©
non-dimensional form of A0’
non-dimensional form of A r
non-dimensional form of Ar'
integral associated with A©; defined by equation (65)
component of a along the radius
component of ;perpendicular to the radius

integral defined by equation (40)



G

-vii-
non-dimensional form of Ir
alignment of the acceleration vector to the local horizontal
at the start of the burn
alignment of the acceleration vector that makes D = 0
alignment of the acceleration vector that gives a minimum D
cos(a-es)
sin(a-es)
angular momentum of the Keplerian orbit
flight path angle at the start of the burn
8,-9> angular movement of the position vector on the
Keplerian orbit during the burn
T, /Po
ro/Po at the start of the burn
r/Po
function defined by equation (52)
function defined by equation (53)
function defined by equation (54)

function defined by equation (55)

81182504+ 8¢ functions in the expressions for AAP, AAe, and AAW;

given by equations (106) through (111)
functions used in an expression for ﬁ; given by equations
(115), (116), (117)

2
dz-d1d3
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INTRODUCTION

The equation of motion of a body of negligible mass in orbit

about a central body is

where n = GM is a parameter of the central (or attracting body) and
r: is the position vector from the central body to the orbiting body,
If there is a force on the orbiting body other than the central force

field, the equa'tion of motion is

?'f' J—%;:? (1)
T~

where ma is theother force. In this paper, a is thought of as the
thrust acceleration by a spacecraft since this study arises from my '
interest in the problem of spacecraft burns. However the results
of the analysis are applicable to any a of the form considered here.
In general, equation (1) has not been solved in a closed form
(although there are certain acceleration profiles for which a closed
form solution may be obtained). The equation is usually handled
numerically: guidance and steering equations are chosen for reasons
particular to the problem being considered (e.g., to optimize a
specific performance index or attain certain end conditions), and
the equation numerically integrated, computing a from the instan-
taneous position and the guidance equations, to obtain numerical
results, There may be many candidate guidance and steering equa-

tions that will work for a particular problem. Thus when considering

which to use, it is natural to think of a as consisting of a magnitude,
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I;', a pitch profile (motion of a in the plane of motion), and a yaw
profile (motion of ];, out of the plane of motion). The simplest a
has a constant inertial orientation (fixed attitude) since both the
hardware and software implementation is less complex than for a
variable pitch and/or yaw orientation. It would be uneconomical to
use guidance and steering equations that provided a pitch and/or
yaw capability when such capabilities are not needed. Thus the
question about the types of orbits, with respect to the initial orbit,
that result from a fixed attitude burn is of interest.

One qué_stion of this sort is whether or not the orbit resulting
from the fixed attitude burn ever separates from the initial orbit,
i. e., does not intersect, i.e., on no common line in space are the
pre- and post-burn orbital radii equal (see fig. 1). This has some '
practical as well as purely academic interest. For example, small
burns usually are simulated by impulsive velocity changes at a
particular position, and a fixed attitude burn is found to obtain the
post-impulse orbital elements (extensive experience has shown that
this is easily done, for both large and small velocity changes). By
this method, one spacecraft separating from another would require
two burns in order to insure no recontact after one orbit, If a fixed
attitude burn could be found to sufficiently separate the orbits, the
second burn could be avoided. Another example is the problem of
trajectory dispersions from nominal orbits. If it is desired or
necessary to burn where the target (or nominal) orbit does not inter-
sect the spacecraft orbit so that no impulsive simulation of the burn

is possible, can the burn be done to the target orbit with a fixed
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attitude?

I became interested in this question of orbital separation
while working for the Manned Spacecraft Center in Houston, Texas,
on the targeting for the Apollo lunar orbit insertion maneuver. To
determine the capability of the guidance to flyout trajectory disper-
sions, extensive numerical studies of lunar orbit insertion burns
(which were quite large - about 6 minutes in length, covering be-
tween 20° and 25° of central angle) were done. They indicated that
fixed attitude burns for this situation not only gave intersecting pre-
and post-burn orbits but also, for a small plane change, that one of
these intersection points occurred at or very near the intersection
of the pre- and post-burn planes, which occurred at some point in
the burn arc (see figure 2), Variable pitch attitude burns gave
unequal radii at this intersection of the pre- and post-burn planes
(figure 2). This naturally raises the question of the generality of
this phenomenon and provides the motivation for this thesis.

To start the study of this question of separation or intersec-
tion with a fixed attitude burn, a brief numerical search was made
for coplanar burns. It was decided to study coplanar burns since
not only is this the most restrictive condition under which separation
might be found, but also one degree of freedom is eliminated from
the problem. Burns were approximated by a series of impulsive
velocity changes in the same inertial direction for acceleration
vector alignments near the velocity vector for different places on
the initial orbit. The rationale for acceleration vector alignments

near the velocity vector was due to qualitative physical intuition.
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The thinking was that if the acceleration was aligned far from the
velocity vector, the change in velocity vector orientation, i.e.,
flight path angle, would be large; this would cause the pre- and
post-burn orbits to intersect (see fig. 3). However if the thrust
vector were aligned near the velocity vector (probably below since
in a local vertical coordinate system attached to the instantaneous
position vector, the constant inertial acceleration vector would
pitch up as thé burn progressed), there would not be a drastic change
in flight path angle. Thus the perturbed radius could become dif-
ferent in size than the initial orbit radius before a drastic change
in flight path angle forced intersection (fig. 3). A criterion was
developed (see the analysis portion of this paper) to determine when
two orbits intérsected, given their orbital elements, The pre- and
post-burn orbits in this brief initial study were tested with this
criterion. No separation was found. The nearest the orbits came
to separating was for very small burn arcs. This suggested that
calculations for small changes in the orbital elements be performed.
Consequently, it was decided to do this study in the linearized limit.

The main objective was to determine if the pre- and post-
burn orbits ever separated for a fixed attitude burn in the linearized
limit, and if so, what the conditions for a separation were. The
simplest situation was selected: the burn would be coplanar (no
out of plane component of the acceleration vector), and the accel-
eration magnitude would be constant, The linearization and constant
I:I restrictions are not quite as restrictive as it might first appear.

The concept of variation of parameters can be applied to extend the
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theory. If there is a finite region where separation occurs (i. e.,
a range of some orbital parameters and/or alignments where sepa-
ration occurs), then slight changes in the orbital elements should
remain in that region. Thus an actual burn could result in orbital
separation, even for non-linear changes in orbital elements if the
separation region is large enough. Since in linear theory the
changes in orbital elements should be proportional to I;] , sepa-
ration regions; should not be a function of IS..I (except that I;I must
be small enough to make the linear analysis valid)., Thus a variable
acceleration burn could cause changes in orbital elements that

remained in a separation region for a finite time.
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ANALYSIS

General Criterion for Orbital Separation

The first step in determining whether or not two orbits are
separated is the development of a criterion for separation. Consider
two elliptical coplanar orbits as shown in figure 4 whose lines of
apsides are Aw apart. The initial orbit has the subscript o. Ele-
ments of both orbits are known; the unknown factor is the inter-
section polar angle, the angular position on the orbit measured in
the direction Qg motion from apoapsis.

For intgrsection

r=r
.0

or

P _ 1':’o

l-ecosO 1-e0c059i

If e, # 0, this may be solved for cos ei, the cosine of the polar
angle in the initial orbit.

P Poecose

21
cosf; =-— - Pe + Pe (2)
o o o

Now the polar angles on the initial and final orbits are related by
0, =0 +Aw (3)

Note here for completeness that the sign of Aw is unimportant since
the two orbits could be interchanged. Algebraically, the sign on
Aw will be squared later. Using (3), cos6 may be written in terms

of 6. and Aw. Substituting for cos0 in (2) gives
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Final Orbit:
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Figure 4
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P Poe
- ?E; t o (cose; cosAw + 8inb, sinAw)

cosf. =
i

o® |-

If e # 0, this may be rearranged to give

Peo P 1
cosei (Poe ~ COSAW) - P—oé ts = +smAWEH.n9i (4)
Define
¢ =P _1_ " (5)
1 Pe e P e
o o
Peo Peo-PoecosAw
C, =i - COSAW = _ (6)
2 qu Poe .

and square equation (4) to give
Cg coszei-ZC1 Czcosei + C? = sinZAw(l-coszei)
or

(C§+sin2Aw)coszei-2C Czcosei+(Ci'-sin2Aw) =0 (7)

1

which may be solved for cosei by the quadratic formula

C,C +\ICZCZ—(C2+sin2Aw)(Cz-sin2Aw)
172~ 172 2 1
cos@, = > > (8)
C2 + sin” AW

Note that at the start of the burn, cos@, has a 0/0 form. Physically,
this means that the two orbits coincide and there is an infinite num-
ber of values for ei. At some point into the burn, equation (8) will
give four values for Bi.

Using (5) and (6) and some algebra, the quantity under the

radical may be written as
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. 2
sin Aw D
-2 2

P e
o
where D is defined as

_ 2 2 2 2 2
D=P e + Poe - (P-Po) -ZPOPeoecosAw (9)

Thus (8) becomes

C,G, + 25¥.V/D

1v¥2 — o
cosei = > —> (10)
C2 + sin" Aw

D can be written in terms of the initial orbit parameters and the

differences between the initial and final orbits, Let

P=P0+AP
e=eo+Aw (11)

COSAW =1=08

Then using (11) in (9) and algebra, D may be written

2

2 2 2
D = (e AP-P_Ae)*-AP“+2P el6+

2P e 6(P Aete AP+APAeE) (12)
oo o o

which is good for any two elliptical coplanar orbits,
Now the criterion for separation is seen in equation (10): if
(10) cannot be solved for Gi, then there is separation. This can occur

when the expression for cosb, is complex, Thus

D<O (13)
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is sufficient for a separation. However, if the absolute value of the
right-hand side of (10) is greater than 1 for both signs on the radical

and for D > 0, then it again is impossible to solve for 0. Therefore

inA
6,1 + A | D

> 1 (14)
Cg-i-sinzAw

also is sufficient for a separation.

Equation (14) may be considerably simplified. First write

(8) as
coseil= Ci‘D (15)
where
C,C,
C =
C2+sin AW
(16)
B = [Cfcg - (C§+si.n2AW)(Cf-sinzAW)]/(C§+si_n2Aw)2

D may be written as

~ CZC2 (Cz-sinZAw)
172 1
D= oo —— (17)
(Cz+sin Aw)2 C2+sin Dw

Now from (16) for C 7% 0 (i. e., the two orbits do not coincide)

C.C
2 . 2 _ 172
C2+smAw— c

and

C,C
sin Aw C - C2
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Using these in (17) gives

~ 2 C C

1 2
D=C-(—C—-2+—C——)C+1 (18)
1
Define
f = E-]-' + -C—2 =C + __l__
12 2 C) 1/2 C1/2
There are two important facts about f1 20 First write f12 as
2, .2 2, 2
. - C1+C2 _ C1+C2 1
127 C,C C

1C2 (c§+sin2Aw)

which shows t}_}ét

Sign(flz) = Sign(C) (19)
and thus
-leC <0
Second
df; > L
dC -t T2
1/2 cl/2

shows that f12 has extremums at CI/Z = +1l. Therefore for C< 0,

£12 max = =2 (20)
and for C> 0
le min ~ t2 (21)
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Now consider curves in B - C space. Because le does not

take in all values between +  (the area between 12 is eliminated),
(18) does not allow B to take on all values in D - C space. The

~y

maximum value D can assume has f, ., C minimized so that -leC is

12
as algebraically large as possible. Therefore

D___=ct+1-2|c]| (22)
max

Now consider C< 0. Here,

~ 2 2
D_.. =C+1+2C=(Ct) (23)

Now (15) never allows cosei >+ 1 since the maximum cos()i is

c+\VD =C+V(c+1)2=zc+1<+1
max

Therefore for the absolute value of the right-hand side of (15) to

be greater than 1 for both signs on the radical,
C +\I—§< -1

which means that
C< -1

is n‘ecessary. But the maximum 'coss(ii was
cosei =2C +1

For C< -1, this is

cosei < 2+1 = -1
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Therefore

C< -1 (24)

is both necessary and sufficient for the absolute value of the right-
hand side of (15) to be greater than 1 for both signs on the radical.

Now consider C> 0, Here the minimum D is

D . =c®+1-2C=(c-1) (25)
min .

Now (15) never allows cosei < -1 since the minimum c:osei is

c -\’Bmm -c-Y(c-1)?
-c V(- =2¢C-1> -1

Therefore for the absolute value of the right-hand side of (15) to be

greater than 1 for both signs on the radical
C - JTDT >1

which means that
CcC>1

is necessary. But the minimum cosei was
cosei =2C-1

For C>1,

cos(—)i> 2-1 =1
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Therefore
c>1 (26)

is both necessary and sufficient for the absolute value of the right-
hand side of (15) to be greater than 1 for both signs on the radical.

Equations (24) and (26) may be combined as

|c|>1 (27)
Summarizing, the criterion for separation is either that

D<O " (13)
or

|c]>1 (27)

,CI > 1 Criterion Evaluated for Small Perturbations

Now it will be shown that ICI is always < 1 in the
linearized limit when D > 0, First, write

C,C;

Cg+sin Aw
(Peo-PoecosAw)(P-P ) (P-P )(Pe -P ecosAW)

(Peo-PoecosAw)2+P(2>ezsm Aw P2e2+P2e2-2PP ee cosAw

C =

using (5) and (6) for C1 and CZ‘ Now use (11) to write C in terms of

the changes in orbital elements. Substituting and combining terms

gives
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AP(e AP-P Ae+P e, 6+P Ae&)

C= (28)
(e AP-P Ae) +2P e 6(P e +P Ae+e AP+APAe)

From its definition in (11), § is greater than or equal to zero and
second order in Aw. Thus C consists of second and third order
terms divided by second, third, and fourth order terms. Keeping
only the second order terms gives

AP(e AP-P Ae)
C

(e AP-P Ae) +2P 6

ON

2
€o
Now let

g _ AP(eoAP-Per) ) AP

= (29)
(e AP-P_Ae) eAP-Pole
¥ [C| <1, then |C| < 1. Thus
|aAP| < |e AP-P _Ae| (30)

is sufficient to keep ICI <1

Now linearizing D (equation (12)) gives

D = (e ,AP-P_ae)? - AP? + 2P2e26 (31)
Therefore

(e AP-P Ae) + ZP(Z) 55 =D +AP2
Therefore

c - AP(eoAP-Per)

D+AP?
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Since if D is less than 0, there is a separation, consider here D
greater than 0. Let

e AP(eoAP-Per) eoAP-Per

= = (32)
APZ AP

A
If |C|< 1, then |[C| < 1. Thus
|e AP-P_Ae| < |AP| (33)

is sufficient to keep ICI <1, Thus (30) and (33) show that

in the linearized limit and with D > 0
o] <1
and therefore

D<O

is both necessary and sufficient for a separation.

Available Liinear Relations

The equations of motion (equation (1)) will not be linearized
here; this has been done in ref. 1. Results from reference 1 appli-
cable to this problem will be used here.

Let r and v be the radius and velocity magnitudes on the final

orbit and let © define the position of r in space. Let

H
1

=r +Ar
o

v_+ Av (34)
0O
=0_+A0

(o]

@ <
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where 'g is measured from apoapsis of the initial orbit and is not the
polar angle of the final orbit (fig. 5). Reference 1 derives linear
relations for Ar, Av, and dAG/deo. This is done by writing (1) in
spherical polar coordinates, considering ; as made up of radial
and tangential components, and linearizing the resulting equations.
The pertinent equations are numbered (6. 6), (6.7), (5.10), and (6. 2)
in reference 1 and are reproduced here as equations (36) through
(39). Equations (36) through (39) are written in terms of T, and

Ar instead of l/ro and A(l/ro) as done in reference 1. Define

OONI o w

f ° F + r F)de (35)
0

where Fr and Fe are the radial and tangential components of a and
Co is the angular momentum of the initial orbit, Then the differen-

tial equation satisfied by Ar (equation (6.6) in reference 1) is
" ’
Ar + Ar = E(Go) (36)

where the primes denote differentiation with respect to 90. With the

initial conditions
Ar(es) =0
Ar'(es) =0
the solution to (36) can be written

9 ' :
ax(e ) =fe°sin(eo-6) =(0)de (37)
S
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Figure 5
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The pert it equation for A v ir
1 -2 . ) 2
{ -2-‘-,-; GO{Zro'Ar .roAr+2rer'} (38)

and the wtion for AO' is

e sin® pr
o (o] A’S IR O]

P 2

o Co

0
o

J‘;(ro'Fr T, 4)de | (39)
s :

OlH
o o N

Define f onyenience

0
o ' ,
_g (r,'F +r F (40)
S
v (38) can b« lified by substituting (39) into (38) for

AQ' and « rrying out 46 . Sever :1 terms cancel and using

4 .2
"roeo

gives

Ar (41)

(-p = Y

r
o

i sation (2} niay be integrated with the initial condition that

AO is zero at 6, to obtain an expression for Ae(eo). Direct integra-

S
tion would require the integration of the expression for Ar. As will
be seen later, the expression for Ar involves an arctangent. To

avoid integrating this, the differential equation (equation (36)) is used.
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0 e sin@ T

- o ' A_l' Ar o
46 =% p—ar - 35 - BS54 2 1 )de

Gs o o Co Co

0 e sind
eS o o o
be evaluated by using (36) for Ar

Ar = 5 - Ar"

Thus

Ar .. _ o 1 Ar'
- r—de—-f...-r—de+f —— de
(o] (o) (o]
AI‘”

r
(o]

Integrating f dé by parts and using Ar'(es) = 0 gives

e sind
Po

- %-:de=-fz-rl-de+9-51-f

= Ar'de
o o
Therefore
60 eosi.neAr' Ar Ar' o . 1
[ -Fe =22 - [® 5 —de
0 o o o 0 o
S S

Now the integral of Ar may be evaluated, again using (36).

9 0 0
f° arde = [ °(2 -Ar'')de = - Ar' + [ © = de
Og 9 O
Thus
0 8 0
_Ar' o & e 1y [ O 1 o_2
Ae__r.o_-g .5;.de.c2 [-Ar+fe _de]+nge ro1 de
S o S o S

(42)

Lo

Now equation (35) may be used to eliminate =. Doing this and using
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(40) gives
Ar 1 eo 2 2 o 3
Ae(eo)=-*‘7Ar'+—-—2f rlde-—i*Z 1_de
C cce. °F C °
o o 'S o S
-4 fe° F do fe° 3r de 4
2. T T o, ° T (43)
o S o S

Finally (37) may be differentiated with respect to 90 to give
an expression for Ar',

9
Ar' = f° cos(0_-0) =(0)de (44)
9

It is now necessary to find Fr and F, for the fixed attitude,

, o
constant |2| burn, Let a be the angle between the acceleration vec=-
tor and the local horizontal at ignition. This alignment angle is
positive for a aligned above the local horizontal and negative for a

aligned below the local horizontal, Then, referring to fig. 6
F,(8,) = |a| sin(at6_-6g)
Fo(8,) = |a| cos (a+8_-0g)

Expanding sin(a-6 +6°) and making the definitions

S+e°) and cos(a-QS
A = cos(a-es)
(45)
B = sin(u-es)
gives
F_= EY (Asing_ + B cosf )
. . (46)
F9 = Ia.l (Acoseo - B81n6°)
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Figure 6
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Now note that

_d
Fe-d—e‘;‘Fr)

Therefore Ir can be easily evaluated

0

- o '
I = f (r,'F +r Fg)do
95
eo eo d
- 1 [ - 2
= fe (x,'F_tr F ')d6 = f(—) 35 (T F)de
S S
I_=r_(8 )F (8, )-7 (85)F (8) (47)

For convenience, the Ir notation will be retained.
The evaluation of the integral for Ar is straightforward, but

lengthy. It is shown in some detail in Appendix A. The result is
p4
Ar = |a| B EOZ {sine_Fpgtcose Fp
o (48)
+ ];I A-(-:-% {coseoFAC+sineo‘FAS}

(o]

where the following definitions were made:

2e4+12e2+1
c - o o
11 2e E3
o

-4e4+3e2+1
- o o
ey tan
21 2e E

o

1

€31 T e &
(o]




21

-27=

(49)
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x_ = ro/P = 1/(1-e°coseo)

(50)
xg = rS/Po = 1/(1-eocoses)
FSl = smeoxo-smesxs
2. 2
FSZ - smeoxo - smBSxS
3. 3
F53 = s1n60xo - smesxS
2
Fp =%, -x%g
_.3
F3 = xo - xS
fo
o (1~ G cos@ )
S
1 o o -1 1+e
= -] tan } -tan" Y1 e tan } (51)
T-e e 2
ll ||
©1 €21
- ]
Fps = Fg(c11-%g e )+Fsz( 2rXs O)
1 R]
. 41
FS3C31+Af(c41-xSe— (52)
k”
F = F(k,,-x —2—1)+F k (53)
BC 2722 S e 3732
- > B}
Fac = Fg1C127Fg2C22 Fg3c3ptAfc y-8inbgx ko F) (54)

Ky
I

' : 1t L
sz21+F3k31-smesxs(c1 lFSI+ c21Fsz+c41Af) (55)
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An expression for Ar' may be developed from (44) as was

done for Ar or may be obtained from (48) by differentiation. An

expression for Ar' is obtained in Appendix A as

4
Ar' =. I:I B-(—;% {coseoFBS-sineoFBc}
o
(56)
. o
+ |a] A—5 {-sin6 F, -
C
o

+coseoFAS}

These expressions for Ar and Ar' are convenient since later combi-
nations of Ar and Ar' multiplied by sineo and coseo are needed and

the above expressions give these combinations in simple forms.

Since
2
Co = rPy (57)
the planet characteristic has factored out, Define
Ar
SR
— [2]
C
c
Ar'
AR' = i
(o] -
73 lal
Co
Then
AR = B[ 31n60FBS+coseoFBC]
(58)

+A[ cosd F , ~+ sineoFAS]
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AR' =B[cos® F_.-sin6 F
(o] O

BS BC]

(59)

+A[-sin®@ F, .+cos® F
o o

AC AS]

Note AR and AR' are non-dimensional and functions of only a, e ,
60, and OS. Also, note that Ir may be put in a form proportional to

|a] and P_. With the definition of Fg, in (51) and with
FCl = coseoxo - cosec.xS ‘ (60)
Ir can be written

I.=|3] AP _Fg, + |3| BP_F

Cl
- A
= |a] Polp (61)
where
A
I, = AFg +BF (62)

is a function of a, e , 0 , and 6,. Note that F_, I, Ar, and Ar'
o’ "o S r’ r

are of the form A( ) + B( ), where the alignment, a, appears only

in A and B. Later, this will give the orbital elements in this form.

Now equation (43) for A6 can be written

4 4
o = 1 I3 |Z] AR' + 2 To |Z] AR
PO E-z Poxo c2

C
o



2 o .3 3 ,—» 1 0.3 3 T
- [ ° Pox, 3] polde - = [ °P2x3 3] == ae
PoCo GS Co S °° lal
) F
1 o 4 4 - r
- > f P x ]a' - de
PoCo 0g °c o lal
when Fr/lgl = Asin®  + Bcos6 .
Therefore
3
a0 = [3] g {ar' + 25 -1, }
o
B
= |a 63
gz- ‘ (63)
o
where
A6 = AR' +AR! 4 (64)
x A6

o

is non-dimensional and a function of a, e, 90, and 6_,and I is

S’ AO
P -
the integral terms with —g— Ia] factored out, The evaluation of
C

I A0 is straightforward but ‘iengthy. It is done in Appendix B giving

The = Alpga T Blpgp (65)

where

. 1 i ' ! '
InoA = o, T3 o Forsinfgxg(b] Fg thyFgptbyAf)

IAOB = b1 FSI +b2Fsz+b3FS3+b4Af

] 1 ]
-cosesxs(blFSl+b2FSZ+b4Af) (66)
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and the quantities not previously defined are

€o 2
' = e— -
b1 = = (4 eo)

€o
t = m——
b2 ==
_ 3
by = =
E 4 _2
-4eo+15eo+4
1 2E3
—e4-3e2+4
b =..__0__§2__
2 2E
b, = 1/E
3e
2
by = '—% (6-e0)

2E

Finally, equation (39) for A8' may be written

S
88' = — [a] A (68)
o
where
A . AR 2 A
— 1 _AKAR
A9 = eosmeoAR -5 (1+xo) + X, Ir (69)

o

is non-dimensional and a function of a, e, Qo, and es only.

In summary, and renumbering the equations here for con-

venience
150N
Ar = — [a|AR (70)
C :
o
Pr
Ar' = — ,alAR' (71)



where

and

Ae'

AR

AR'

A
AS

A
AO' = e sind AR' -
o )

= B(sineoFBs

+ A(CoseoFAC

= B(coseoFBS

+A(- s1n9°FAC

_ y LAR!
=AR +—x -IAG

o

+cosf F
o

+s1n90F

-8in F
o

+coseoF

AR

o

=33

BC)

As)

BC)

As)

(1+xo) + x

2
o

A

I

r

(72)

(73)

(74)

(75)

(76)

(77)

(78)
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Orbital Elements

The pertinent equations in reference 1 were manipulated to
provide equations (70) through (78) for Ar, Ar', A6, A8', and Av.
Thus it is now necessary to express the changes in the orbital ele-
ments - AP, Ae, Aw - in terms of Ar, Ar', A6, A®', and Av.

First an expression for Aa, the change in semi-major axis,

can be found from the expression for velocity on a Keplerian orbit.

1
2
v=vo+Av=\l (—-l

a

Using the binomial expansion on (ro+Ar)-1 and (a,°+Aa)-1 and ignoring

second order terms in Ar and Aa gives

1
- 2 1 2Ar | Aa 2
v +AV-\/E(';—- = " 2 +_2)
o o r a
o o
Using the binomial expansion again gives
H -2
2
v, +AV =V§ [(— -4 z(——-——) Pa cox ]
o o o
o
But
1
_ 2 12
Vo © Vi -3
o o
Therefore
= Aa 2Ar
AV = oy G- 7)
o a r
o o
Solving for Aa gives
2 2 2
2a 2a
fa= —2° Av, o)Ar (79)

v T T
B o o o
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which is good for any eccentricity.
The change in angular momentum, AC, may be found from

the definition of angular momentum

C= 1'2 6
with
ro = 1‘0 + Ar
8§ =06_+A0
°
C =Cof!AC

This gives, ilgknoring second order terms in the changes,

20

2 ,° :
C0 +AC = roeo + T A9 + ZrOGOAr

0

2
o o

Since Co =T

2 .
AC = rer + ZroeoAr

Now
No - a0 _ dae %%
=& T a6 @
(o]
- 1 A
= 40" 6
Therefore
AC = C_[a0' + 227 (80)
(o]

which is good for any eccentricity.

The change in semi-latus rectum, AP, may be found from
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the definition of angular momentum in terms of P
C =\pP
Using the binomial expansion on VP gives

1
G +AC =\ (PZ + 355

P 2
o
Therefore
AC = '%_' AP \Ip,
\,PO

Solving for AP and using (80) gives

AP = 2P_ (4@’ +2—r‘3—r (81)

o
The change in eccentricity, Ae, may be found from the defi-

nition of P in terms of a and e

P=a(1-e2)
with
P =a(1-e2)=aE
o o () ()
P=P +AP
(o]
a =a_ +tAa
o

e=eo+Ae

and ignoring second order terms
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A::tP0

AP = -Zaeer +
o

Solving for Ae gives

Ae = (-AP + 22 p )/2a e
ao (o] O O

Substituting (81) and (79) for AP and Aa gives

2a v2 2a
fe = [-er- ¢ 0% Av Ar +_9.)]
e n v T T
o o o )
Po
By using (78)=§9r Av and a, = 5
2 2
2ao o Av _ ) Ar ZPoIr
=-la,—+ 2
p- v r EC
o o
Therefore
2
. 2P1
Ae = 21‘2_ [-ZAG' R 4‘%] (82)
o EC o

The last expression needed is for Aw, the shift in line of

apsides, Referring to figure 7,
Aw+ (0 -7) = 6°-ﬂ+Ae

where 0 is the polar angle on the final orbit, Thus
Aw = 90-6 + A0

Thus an expression for 6,-9 is needed (an expression for AO has

already been developed). Consider

s'm(eo-e) = s1neocose - coseosme (83)
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Old Perapsis
Vector

New Perapsis
Vector

Aw+ (8-7)=(8o-7)+ A8

Figure 7
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Expressions for cosf and sin® may be obtained by equating r to r
on the osculating orbit and the rate of change of r with angle with

the rate of change of r with angle on the osculating orbit,
r, tAr = P/(1-ecosb)

Solving for ecosf gives

P
r +Ar
o

ecosf =1 -

Using the binomial expansion for (ro+Ar)'1 gives

- P Ar
ecosf -‘1 - (1=~ T (84)
o
Now
112 ) d(ro+Ar)
3] ,d(eo+A9§

-— ]
d(6_+A6) = de_(1 +Ae')

Therefore by using the binomial expansion and ignoring second
order terms

d(r°+Ar) d(r°+Ar)

%% i de_(1+ae') ] 9, (hose!
o o
Now
dr - -esiner2
de P

. 2
dr -e 8ind r
o o oo

o
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Thus

e sinf 1_2

-esinfr  _ ' (o) oo
B = =) +Ar' + B
o o

A0’

. 2
-¢ 8in0G r
o o

Solving for esin® gives

P 1 2 2
esing = P, 2 [ e,8ind r -Ar'P +e sind r_ A6

with r = ro+Ar, the binomial expansion, and ignoring second order

terms

P Ar'Po
. _ P . ) . . . i
esing = B, [eosmeo —z e sin®_A® 2eos1ieoAr] (85)
o T,

Equation (83) gives an expression for 60-9 for small 0,-8
0 -0 =s8in®_cosO - cosO_sind
o o o

Using (84) and (85) gives

Ar'Po
3(90-9) = -coseo[eosmeo-Zeosmeo-r; - —rz——
o
. AP .
' —

-eosmeoAG + Po eosmeo]

+sinf [1- =2 (1- ar) - &F

o Tr ro

O

The first order terms cancel leaving

_Ar . o .
(6 -0) = [Zeosmeocoseo t smeo]

) o
P
AP . o .
- P [eosmaocoseo +—1;; sin6_ ]

Ar!
+ 2 1
T P _ cos6 +e 8ind® cosO A0

o
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The first two brackets simplify leaving

s Ar . Ar . AP
e(9o 0) = smeo = + eosmeocoseo = - smeo —130—

Ar'Po
3 1
+ —rr coseo + eosmeocoseer

o
. 1 _ 1 Ae .
Since < - —e-o— - :2— , to first order

o
0 -0 = L[sine 2T, ¢ sind cose ST sing 2F
o e or o o or oP
o o o o
Ar'Po '
et ———— i '
+ rz coseo + eosmeocoseer ] (86)
o

Thus
Aw = 60 -0 + A6

when A@ is found from (72) and (76) and (90-6) from (86). 3
P
The changes AP, Ae, and Aw can be written as ——% lal times a
C
function of ( a, Po, OO,GS) since the terms in their expressior?s may

be written in this way. First, equation (81) for AP with use of (70)

for Ar and (73) for A8' gives

p? A
oP =2-3 3] (26" + 228,
p. 4
C o
(o}
Define
A A
AP = 2(88' + 2 —éxﬁ) (87)
[o]
Then
p R
AP (88)

I
OON| o
»

D>

e
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Next, using (82) for Ae and (70) for Ar, (73) for A9', and (61)

for Ir gives

3 A
P 21
_ "o = E 40R N, r
be = lalge (- -200"+ )
(o]
Define
2/\
A E , 4aR A, %
Ae = Ze (- > 200" + =) (89)
Then
p3 A
Ae = ——%— IZI Ae (90)
c0

Finally using (86) for 00-9, (70) for Ar, (88) for AP, (71) for Ar',

and (73) for A8' gives

3
- A
0 -6 == —2 ]al L(sine AP-e_sin® cos6 AR
o CZ e o o o o X
o o
(o] Al
-e sin® cosO AQ
o o o
1
- égi cos® - sin@ AR
o o X
X o

o A
Now using (72) for A8 and (87) for AP and remembering that Aw =

eo-e+A0
3
P - A
Aw = __(2’_ la, [_.I_(sine AP -e_sind cose 2SR
C eo (o] o o o xo
[o}
SAR' ose - sing 2R )1 Ap)
x2 o o x°
o
or

3
P> A
Aw = -E:—z— |a| Aw (91)
o
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where
A A
Aw = - 2 sin AQ' - 3 -A—Bsine +e _8in@® cosod AR
€, e, X, o ©O o o x
4+ AR A
e—xz coseo + ] (92)
oo

A A A
Finally, AP, Ae, and Aw can be written as
A fn(eo, OS, eo) + B fn(eo, es, eo) ’ (93)

since the terms in their expression can be written in this way.
A A A
First using (87) for AP, (62) for Ir’ (74) for AR and (77)) for A@'

gives

A
2
- 2 ]
AP = 2_[eo(s1neoAR -coseoAR) tx (AFSI+BFCI)]

Here the forms used for AR and AR' (equations (74) and (75) elimi-

nate algebra since

] . _ _
smeo AR -coseoAR = -BFBC AFAC (94)
Therefore
A
AP = glA + ng _ (95)
where
= -2 2x%
By = -2e,Fpc t 2% Fg)
2 (96)
gy = =2e Fpo+2x Fr ‘
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A A
Next, using (89) for Ae, (74) for AR, (77) for A®' and (62)

A
for Ir gives

A
_E : N2 52
Ae = 2e° [Zeo(coseoAR-smeoAR )+(E -Zxo)(AFSI+BF

and using (94)

N
Be =g,A+g,B
where
: Fs1 E":
83 S EFpct o= -5 Fg;
. (o] [o]
2
F Ex
_ Cl o
4= EFpot —— - Fq

A
Finally, Aw may be written as

A
Aw=g5A+g6B

A A
Using (92) for Aw, (77) for A8', (74) for AR, (75) for AR', (76)

A A
for A0, and (62) for Ir gives

A 1 A
Aw = - 2 sing [e sine AR'- AR ~AR+x% I ]
e, o‘“o o X o°r

3 AR . . AR AR
-— 51neo+eos1n9°coseo—x——-+ > coseo
o

o o o 0 x
o

AR'
! ——
+ AR' + = IA(-)

o

(97)

(98)

(99)

Using (74) for AR, (75) for AR', (65) for IAG and arranging the

equation in the form of (99) gives
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1 (1-2c08290)c0390
g5 = FAS[+ s, + = + (2-coseo)c056°]

28in@ cosze
o

+ FAC[+Zsineo + + (eocoseo-Z)sinBO]

o
2 sineo
“#%Fs1 e, " laea
2
1 (1-2cos Bo)coseo
g = FBS[ + % + = +(?-coseo)coseo]

2s8ind cosze

: : o . :
+ ?‘BC [2811’160 + - + (eocosﬁo-Z)smeo]
2 sin@
"% oo Fo1 " laen

Note that the coefficients of FAS and FBS are the same, those of

Fac

and F are the same, and those of FSl and F are the same

BC Cl

also, The coefficients of FAS and FAC can be simplified, Define

Then

P + 1 + 2cosB@_ - 2e cosze - 2cos36 + 2e cos49
51 e o o o o o o

° (100)
) 2 3.
P52 = (+e°coseo+2cos 90-2eocos 00)81n90
insineo
85 = P51 FagtPsaFac - S Fs171a0a (101)
szsineo
g8, = P51FpstPs2Fpc - e Fci~laem (102)

(o]
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Summarizing and renumbering the equations

A
AP =g At+g,B (103)
A
De =g, At+g,B (104)
R | |
Aw = g Avg,B (105)
2
g = -2e_F , +2x-Fg) (106)
2
g, = -2e Fp +2x F (107)
2 Fgi (l‘eg)"i
g3 = (1=e)F, o+ 21 — Fg, (108)
) (o] (o]
2. 2
F (1-e7)x

B 2 Cl oo

84 =ll-e)Fgct == - ——<— Fq, (109)
(o] (o]
2x"sin 90

85 = P51 FagtPsFac - o Fs1 - Iaea (110)

2x§ sineo
8 = F51FpsPs52Fpc - o Fe1-laeB (111)

Evaluation of D

In previous sections, it was shown that in the linearized
limit D< O was both necessary and sufficient for a separation. D

was linearized in equation (31) as

_ 2 2 2 2
D= (eoAP-POAe) - AP + ZPoeo [} (31)‘

Equation (11) defined 6. In the linearized limit
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§ = aw?
-2
Therefore
_ 2 222, 2
D= (eoAP-Per) - AP +Po ko

Now equations (88) for AP, (90) for Ae, and (91) for Aw may be used

to factor out 4 Ia l Defining
A
A A 2 2 A
D = (AP - 29) - LP% L A2 (112)
o e .
o
gives
8
D = 1?- |a| (113)
C,

For completeness, note that equation (10) for cosei can be written as

cosei = fn(a, e, 90, GS)

as P, I:l, and C _all divide out.
o o

A A A
The quantities AP, Ae, and Aw in equation (112) have been

written previously in the form
A fn(eo, 60, GS) + B fn(eo, 60, GS)

A
Thus D can be written in the form

A 2 2
D = dlA + 2d,AB + d,B (114)

where each di is made up of combinations of the g5 which are given

N
by equations (106) through (111). Using (103) through (105) for AP,
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A A
Oe, and Aw gives

g 2g. g
_ -E 3 162 2
dl— :z_g1+;7- ps + 5 (115)
(o] (o]
£:8, §&,8 g8
E 3°4 5283 154
dZ" 2g1g2+ 2 e e +g5g6 (116)
e [0} (o]
(o} o]
gz 2g.,¢g
_ -E 2 4 2854, 2
B=Z 8Tz < T (117)
o o

A
The sign of D is determined by the sign of D, Thus the sign

A A
on D must be investigated. To do this, note that D has been written

as a general quadratic form, Thus it can be factored into the form

A d2+~IE dz-xch
D= dl[A+ B (—d—)] [A+B ¢ 3 )] (118)
1 1
where
d=d%-4d.d (119)
2 13

First, consider d greater than zero so that \/d is real. Remember

that

A = cos(a-0,)
S (45)

B

sin(o,-OS)

and that the di's are not dependent on a. Thus equating a linear

A
factor of D to zero gives a relation for the alignment, 9y to make

A
D equal zero., This can be written
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d, +Nd
A+B (—d———) =0 (120)
1
so that
d
B 1
— =tan(a_ - 0.) = = ——— (121)
A ° 5 4, +\a
This gives two alignments, agl) and QE’Z), one for each sign on the

radical, Further, since the tangent has a period of 7, (121) really

A
gives four valyes of a that make D =0,

d
o.‘()” =0g+ tan“l(-———l——)i'rr
d2+VE'
(122)
(2) a1 4
a, =eS+tan (¢ —=——) 1t
d,-Nd

Only o.f)l) and o.f)z) will be mentioned from here on, with the under-
standing that if they are selected to be between +90° and -90°, there

is a corresponding pair 180° away. Finally, since d # 0, af)l) and

A A
af)Z) are different (there is no double root for D = 0), and thus D is

positive on one side of an a, and negative on the other side.
Second, consider d less than zero. Here vd is imaginary,

and it is not possible to find a physically existing alignment to give
A N A
D = 0. Thus D will not change sign. Since a = GS gives D = dlAz,

A A
the sign of D will be the sign of dl' (D could also have been written

in the form of (118) by factoring out d3 instead of d_; the above

1

argument would be equally valid for d3. )

Thus the criterion for separation of D< 0 has become a
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criterion on d and dl’ specifically D will be less than zero if

d< 0 and d1<0

or an alignment can be chosen to make D less than zero if

d>0

The expressions for dl’ d2’ d3, and d can be written in
terms of FBC’ FAC’ etc. by using equations (106) through (111)
for the gi's. The resulting expressions can be rewritten by using
the deﬁ.nitions. of FAC’ FBC’ etc. This was tr?ed, but simple

expressions for d and d, were not found. Thus the signs of d and d

1

could not be determined analytically. However, since the di's are

1

functions of only e, GS, and 90, it is not unreasonable to find the

signs of d and d1 numerically and thus find regions where separa-

tion is possible, if such regions exist,
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NUMERICAL RESULTS

Linear Theory

To search numerically for regions where separation is pos=~
sible, a program was written for the IBM 370/155 to calculate d1
and d (along with other pertinent quantities) with e, GS and 90 as
inputs. For a given 64, 6 was scanned from 6 _ = 8¢ to 0 =0g +
to compute di and d; es was changed and 60 scanned again, etc.
This was done for e, == 1, .5, and .9. Tables 1 through 3 show
the various OS and 60 combinations used for each e, These tables
are presented since not all values of OS and 90 goul‘d be done, and
there is alway;‘ the question of whether or not any regions of sepa-
ration were m1s sed. Tables 1 through 3 indicate the size, in terms
of 60 and es, of any regions that possibly were missed,

The computations never resulted in d1 being less than zero
when d was less than zero. Thus there is no point (i. e., combina-
tion of 60 and GS) where the orbits always separate as a result of
a fixed attitude burn, regardless of the alignment, This is to be
expected; it is known from experience that a fixed attitude burn can
be fit to an impulse and, since 90 is equivalent in a sense to time,
all 60 points can be generated by increasing the length of the impul-
sive AV vector. Consequently the rest of the results concerning
separation regions are based on the d > 0 criterion; d1 < 0andd< 0
will no longer be considered.

Separation regions were found based on the d > 0 criterion.
The initial computer run for each e, was made for BS =0 to es =330°,

inclusive, in steps of 30°, When separation regions were noted,
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more cases were run to determine the boundaries of the regions,
i.e., for a given OS, the value of eo for d = 0. No attempt was made
to find this value more accurately than +. 5° (except for a few cases
where the separation regions were small). The separation regions
are tabulated in tables 4 through 6 in terms of § = BO-OS, which is
the angle on the initial orbit associated with the burn time. These
separation regions also are plotted in figures 8 through 10. These
figures are to be interpreted as follows. For example for e, = 1
and es = 1200, it is possible to select an alignment at ignition that
will result in an orbital separation at B = 10°, Italso is possible
to select an alignment at ignition that will result in an orbital sepa-

ration at B = 5°; but this alignment may not be the one which gave

a separation at B = 10° and, in fact, may result in an intersection
at p = 10°.
Figures 8 through 10 are shown for BS between 0 and 360°,
with slight extensions beyond 360° and before 0°. It is unnecessary
to investigate any other QS values since everything is periodic in eS
with a period of 360° (see equation (48) and the following equations).
Note the small region around (-)S = 0 on the e, = 5 plot. It
is conceivable that regions like this could have been missed in the
scan (and hence tables 1 through 3 are presented). When two orbits
are separated, there is some point of closest approach between
the two, a minimum separation distance. When an alignment at
ignition produces separation for a small time (i. e., small AB),

this distance cannot get large with respect to the minimum separa-

tion distance resulting from an alignment that produces separation
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over a much larger period of time. It will be seen later that these
small regions have associated alignments that produce separation
only over very small AB's. Thus any missed regions are probably
negligible for practical purposes, since the minimum separation
distance is probably very small.

It must be remembered that this analysis does not hold for
B =0, i.e., at the start of the burn (although d = 0 there). This is
because the expression for cos@, (from which the criterion for
separation was developed) had a 0/0 form at the start of the burn.
Since the two orbits coincide at the start of the l;prn,‘ there must
be intersection at B = 0. In order to see if this intgrsection con-

tinues for p near zero or becomes a separation region, 0, values

S

from 0° to 330° in steps of 30° and g=. 10, . 20, ey o 90, 1° were

computed. Ti’xe results of these computations were consistent with
the rest of the p # 0 computations. Thus the separation regions
are shown going down to the B = 0 axis with the understanding that
B = 0 is excluded or is the boundary of the separation region.

It is possible to formulate the equations by using

eoze +Aﬁ

S

where AB is small so that the variation of parameters technique

could be used to calculate numerically results for non-linear changes

*For example, on the e = .1 plot, does the separation region extend
down to the B = 0 axis or is there a small strip between the § = 0
axis and the separation region ?
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in the orbital elements. This has not been done, but the cases com-
puted near B = 0 imply that there would be no trouble encountered
in doing this.
Also calculated in the program were the alignments af)l) and
( ) to give d = 0 at a particular GS and 9 . Equation (122) was used
for this, selecting the roots to give a posigrade alignment., (As

(1)

pointed out in the previous section, if a,

(1)

point, then a,

results ind = 0 at some
+ m also results in d = 0 at that point. ) Posigrade
alignments only will be discussed from here on, but the ideas hold
for retrograde alignments.

Flnally, the alignment for a minimum I/; q.. , was calculated

The equation for this was developed from the equatlon for D by dif-

ferentiating wlth respect to a.

dab . dA d
2 =2a524, +24, (A

B dB
)+2BE— d3

Using the definitions of A and B from equation (45) gives

dA _
da - B
(123)

dB _
Ja “ A

A

Thus an extremum of D occurs at

Zd2

tanZ(a-SS) = 'al—_a'; (124)

This gives four extremum values of a between + w. The two posi-

A
grade alignments were selected, D calculated for each, and o

A
selected as the a associated with the minimum D,
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(1)

The alignments a,

E)Z) are tabulated in tables 7

» Qs and a
through 9 for various values of es and B; the alignments aél) and
uf)z) are plotted in figures 11 through 14, the a envelopes. The

particular 6, values were chosen to be in different types of separa-

S
tion regions. For example, for e, = 9, es = 0 goes through a no
separation region, then a separation region; eS = 60 stays in a sepa~
ration region; eS = 150 goes through a separation region, then a

no separation region, etc.

A curve for a particular 6g on the a, envelope plots is shown

coming together at the end of a separation region (for B # 0). This

(1) _ ()
(o I o

is because a =a, at the value of p where d = 0. To see
this, note first that for d = 0, equation (122) can be written

d d

tan(o.o-es) = — 32 oL a—l- (125)
d,+Nd 2
which means that af)l) and af_,z) are identical, Now equation (124)

may be expanded by the double angle formula for the tangent to give

Ztan(a-es) Zd2

1-tan2(a-GS) dy-dj

which can be written

d. -d

tanz(a-e ) +

3 -
S N tan(a-es) -1=0

This can be solved by the quadratic formula, Noting that d = d;‘

d1d3 = 0 gives

_ 371 1
tan(a-es)- Zdz + Zdz (d1+d

3)
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Using the - sign gives

d

_ 1 _
tan(a-es) =-q- = tan(ao-es) (126)

[\

A feeling for the size in some sense of this phenomenon can
be obtained from the a, envelope plots. For example, consider e, =

.1 and 6, =150°, If an alignment of -5° were chosen, then sepa-

S
ration would occur between about g = 4. 8° and B = 5.6°, a Ap of

. 8°. Conversely, if a separation were desired at g = 50, alignments
between -4. 7° and -5, 1° must be used, a Aa of . 4°, Thus the B
range where separation occurs for a given aligaAment is small rela-
tive to the i’;.nge over which separation is poésibie (for this
example, ré)ughly .8% vs. 12°), and the a range for separation at a
particular point is small relative to the total a range which will
result in separation at some point (for this example, roughly

. 4% vs. 5. 50). This holds for e, =- 1 and .5 and for some of the

e, =. 9 curves. In particular, note the a, envelope for the small
separation region around 0g = 0, e, = 5 (figure 12). Here a par-
ticular separation alignment gives separation over a very small

AB relative to other separation regions. Thus as mentioned earlier
in this section, the separation distances between orbits in these
small regions are probably negligible for practical purposes. The
smallness of the AP over which separation occurs for some initial
alignment is probably why the numerical search described in the ‘
introduction for orbital separations failed.

Recall that in the Introduction, a qualitative idea of what

possibly was happening physically during a separation was advanced.
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The angle between the velocity vector at the start of the burn and
the acceleration vector was important to this idea; thus the flight
path angles at the start of the burn are indicated on the a, envelope
plots. For the e, = .1 and .5 and some of the e, =- 9 curves, this
qualitative idea seems to be valid. The a, envelopes slope down to
the right in the plots meaning that for separations at larger and
larger p's, alignments farther and farther below 'the initial velocity
vector must be used. This idea is not meant to explain separation
for if it always held, then separation would be possible everywhere.
There is something else happening that prevents separation most
of the time. -

The e, =- 9 a, envelope needs to be mentioned specifically
since it is so different from the a, envelopes for e, = 1 and e, = 5.

The 6. = 150 and the first part of the GS = 200 curves look like the

S
e, = 1 and .5 curves. Note that the separation regions (figure 10)
are more the size of the e, = 1 and . 5 regions., 'The OS = 300 curve
is for a separation region about 2 1/2 times as large as the GS =150
and g = 120 regions so the expanded size of the o, envelope does
not appear unreasonable. However, the es = 350, 0, and 60 a,
envelopes show drastic differences from the other curves in this
plot and from the e, =- 1 and .5 a, envelopes. The alignment
regions for separation and the AP over which separation occurs
for a particular alignment is large (except for the first part of the

0. = 350 curve). The top of the envelope for OS = 0 and 60 have a

S

different shape than is seen elsewhere. Here the qualitative explana-

tion advanced earlier does not appear to hold. Note that the
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separation region (figure 10) is considerably different from that
seen elsewhere and appears to extend for a very long distance (no
cases were run to find the end of the region). In the next section,
numerical integration will be ured to check this linear theory;
because of the difference of the BS =0, e, = 9 a, envelope from

other such curves, this was a case numerically integrated,
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30
60
70
80
85
87
89
90

100
110
120
135
150
170

180

185
190
210
225

240

-59.

TABLE 1

e, = .1 cases run, inclusive

6
L

c1-(.1)-.9; 1=(1)-4; 5-(5)-180

30, 1-(. 1)-30.9; 31-(1)-34; 35-(5)-210

60.1-(.1)=60.9; 61-(1)-64; 65-(5)-240

71-(1)-80

81-(1)-90

86-(1)-95

88-(1)-97

90-(1)-99

90.1-(. 1)-90.9; 91-(1)-94; 95; 100-(1)-104; 105-(5)-270

101-(1)-114

111-(1)-124

120.1-(.1)-120,9; 121-(1)-124; 125; 130-(1)-134; 135-(5)-300
145-(1)-149

150, 1-(. 1)-150.9;151~(1)-154;155;160-(1)-164;165-(5)-330
171-(1)-180

180.1-(.1)-180.9;181-(1)=189;190-(5)-360

186-(1)-195
191-(1)-204
210.1-(.1)=210,9;211-(1)-214;215;220-(1)-224;225-(5)-390
2354(1)-239

240,1-(.1)-240,9;241-(1)-244;245;250-(1)-254;255-(5)-420
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255 265-(1)-269

270 270,1-(.1)-270,9;271-(1)-279;280~(5)-420

271  272-(1)-281
272 273-(1)-282
273 274-(1)-283
274  275-(1)-284
275  276-(1)-285
280  281-(1)-290
290  291-(1)-300
300  300.1-(.1)-300.9;301-(1) ~304;305-(5)-480

330 330,1-(.1)-330.9;331-(1)-334;335-(5)-510

The numbers in ( ) indicate the increment in 60 used to step from
the value of eo on the left to the value of 90 on the right,

Example: GS = 0; 60 =,1,.2,03,000.,.9,1.0,2.,3.,4.,5.,10.,
15.,20.,....,180.
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TABLE 2

e, =- 5 cases run, inclusive

0 .1-(.1)-.9;1-(. 5)-10;15-(5)-180
5 5.5-(.5)-15
10 10. 5-(. 5)-20;25-(5)-180
12.5 13-(.5)-17.5
15 15.5-(. 5)-25
20 20. 5-(. 5)-30;35-(5)-200
25 30-(5)-75
27.5 47.5-(1)-66.5
28 48-(1)-72
29 49-(1)-73
30 30.1-(. 1)-30. 9;31-(1)-34;35-(5)-50;51=(1)-74;75-(5)-210
45 55-(1)-62;65-(5)-85;89-(1)-100;105-(5)-115
60 60.1-(. 1)-60.9;61=(1)-65;70-(1)-74;75-(5)-100;101-(1)-104;
105-(5)-240
70 75;80-(1)-84;85-(5)-100;100-(1)-104;105-(5)-250
75 80;85-(1)=90;95-(1)=100;105-(5)~125
77.5 87.5-(1)-106.5
80 85-(5)-260

90 90.1~-(.1)-90.9;91-(1)-94;95-(5)-270

120 120, 1-(.1)-120,.9;121-(1)-124;125-(5)-300
150 150.1-(.1)~150.9;151-(1)-154;155-(5)-330

180 180.1-(.1)~180.9;181-(1)-184;185-(5)-360



240
250
255
257.5
260

270

285

300

310
312.5
315
320
330
340
342.5
345
346
347

348
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210, 1-(. 1)-210,9;211-(1)-214;215-(5)-390

240, 1-(. 1)-240, 9;241-(1)-244;245-(5)-420

255-(5)-430

260-(5)-305

282.5-(1)-301.5
265-(5)-285;286-(1)-289;290-(5)~300;305-(1)-310;315-(5)-460
270, 1-(, 1)-270.9;271-(1)-274;275;280-(1)-284;

285-(5)-320;321-(1)-324;325-(5)-450

294-(1)-301;305-(5)-325;327-(1)-334

300. 1-(, 1)-300. 9;301-(1)-305;310-(1)-315;320-(5)-330;
331-(1)-335;340-(5)-480

315;320-(1)-325;330-(1)-337;340-(5)-510

322, 5-(1)-341.5

320-(5)-365

325-(5)-520

330.1-(, 1)-330. 9;331=(1)-334;335-(5)-510

340, 5-(. 5)-350

343_(.5)-347.5

345, 5-(. 5)-355

347-(1)-354

348-(1)-355

349-(1)-352
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g

350 350, 5-(. 5)-360

355 355, 5-(. 5)-360

The numbers in ( ) indicate the increment in @ used to step from the
value of 90 on the left to the value of 90 on the right,

Example: GS =90; 0 = 90.1,90.2,...,90.9,91.,92.,93.,94.,
95.,100,,105.,....,270.
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TABLE 3
e =,9, cases run
o

O

0 .1-(.1)-.9;1-(1)-30;35-(5)-180
5  6-(1)-20

10 11-(1)-25

15 16-(1)-30

20  21-(1)-40

25  26-(1)=45;50-(5)-75

27.5 28-(.5)-32.5

30 30.1-(;1)-30.9;31-(1)-34;35-(5)-210

40 45-(@)4200;201-(1)-205;210-(5)-220

50  55-(5)-190;191-(1)-194;195-(5)-210

60  60.1-(.1)-60.9;61=(1)-64;65-(5)-180;180-(1)-184;185-(5)-240
75  80-(5)-125

90 90.1-(.1)-90.9;91-(1)-94;95-(5)~155;156-(1)-159;160-(5)-270

120 120.1-(.1)-120.9;121-(1)-124;125-(5)-155;156-(1)~159;
160-(5)-300

150  150.1-(.1)-150.9;151~(1)-154;155-(5)-175;176~(1)-179;
180-(5)=-325;326-(1)=330

180  180,1-(.1)-180.9;181-(1)-184;185-(5)-205;206=(1)-209;

210-(5)-295;295-(1)-299;300-(5)-360

185 190-(5)-210;211=-(1)-214;215-(5)-365

190 195-(5)-215;216-(1)-219;220-(5)-280;281-(1)-284;285-(5)-370
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195

200

205

207
209
210

240

255

270

300

315
330

331
332
332.5
335

340
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200-(5)-375

205-(5)=230;231-(1)-234;235-(5)-270;271~(1)-274;
275-(5)-370;371-(1)-375;380

210-(5)-240;241-(1)-244;245-(5)-265;266-(1)-269;
270-(5)-385

237-(1)-266

210-(1)-268

210.1(.1)-210.9;211=(1)-214;215-(5)-370;371~(1)-374;
375-(5) -390

240.1;(.1)-240.9;241-(1)-244;245-(5)-370;370-(1)-374;
375-(5)-420

260-(5)-305

270, 1=(, 1)=270. 9;271-(1)-274;275=(5)-370;

371(1)-379;380-(5)-450

300, 1-(. 1)-300. 9;301-(1)-304;305-(5)-375;376-(1)-379;
380-(5)-480

320-(5)=360

330, 1-(. 1)-330.9;331(~1)-334;335-(5)-370;371-(1)-379;
380-(5)-510

332-(1)-336

333-(1)-337

333.5-(1)-337.5

335, 5-(. 5)~340

340, 5-(. 5)-345;350~(5)-365;366-(1)-369;370-(5)-520
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9]

345  346-(1)-375;380-(5)-405;406~(1)-409;410-(5)-465;
466-(1)-469;470-(5)-520

350  351-(1)-395;400-(5)-530

352.5 353-(.5)-357.5

355  356-(1)-395

357.5 358,5-(1)-377.5

The numbers in ( ) indicate the increment in 0, used to step from
the value of 60 on the left to the value of 60 on the right.

Example: 0, = 330; 60 = 330.1,330.2,...,330.9, 331., 332., 333.,

S
334, , 335., 340.,..., 370.,371.,372.,....,379.,380,385.,...510.
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TABLE 4

Separation Regions

% P
85 2/3-1/8

87 0/1 -8/9

89 0/1 -9/10
90 0/.1-10/11
100 0/1 -12/13
110 0/1 -12/13
120 0/.1 ~13/14
135 -12/13
150 - 0/.1-11/12
170 0/1 - 9/10
180 0/.1 ~9/10
185 0/1 - 9/10
190 0/1 - 10/11
210 0/.1-12/13
225 -12/13
240 0/.1-12/13
255 -11/12 ~
270 0/.1-5/6
271 0/1 - 4/5
272 0/1 - 3/4
273 0/1 -1/2

a/b - c¢/d means that separation starts between § = a and § = b and
terminates between f = c and B =d.

-c/d means that cases were not run to determine a/b
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TABLE 5
e =.,5

o

Separation Regions

0g B
0 0/.1 - 4/4.5
0/.5 - 4/4.5
10 0/.5-3/3.5
12.5 0/.5-2/2.5
28 30/31 - 35/36
29 23/24 - 41 /42
30 20/21 - 44/45
45 10/11 - 51/52
60 10/11 - 42/43
70 10/11 - 31/32
75 11/12 - 24/25
77.5 12/13 - 20721
200 26/27 - 49/50
270 12/13 - 52/53
285 10/11 - 44/45
300 10/11 - 32/33
310 11/12 - 20/21
312.5 12/13 - 15/16
346 0/1 - 3/4
347 0/1 - 3/4
348 0/1 - 3/4
350 0/.5 - 4/4.5
355 0/.5 - 4/4.5

a/b - ¢/d means that separation starts between 3 =a and  =b and

terminates between p = c and g =d.



27,5
30
40
50
60
90
120
150
180
185
190
195
200
205
207
210
240
270
300
330
331
332
332.5
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TABLE 6

e°=.9

Separation Regions

B
7/8 - > 180
5/6 -
5/6 -
4/5 -
4/5 -
3/4 -
2.5/3 -
0/.1 -> 180
0/5 - 163/164
0/5 - 142/143
0/.1 - 123/124

0/.1 - 68/69

0/.1 - 35/36

0/.1 - 26/27; 175/176 - > 180
0/.1 - 25/26; 116/117 - > 180
0/5 - 26/27; 105/110 - > 180
0/5 - 27/28; 94/95 - > 180
0/5 - 25/30; 80/85 - 175/180

0/5 - 32/33; 72/13 - 172/173

0/5 - 36/37; 60/61 - 165/170
- 39/40; 53/54

0/.1 - 163/164

0/.1 - 134/135

0/.1 -105/106

0/.1-15/76
0/.1 - 42/43
3/4 -
4/5 -

4/5 -
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s B

335 4.5/5 -

340 4,5/5 - 28/29

345 5/6 - 21/22; 60/61 - 121/122
350 5/6 =-12/13; 32/33 - > 180
355 18/19 -

357.5 12/13 -

a/b - c/d; e/f - g/h means that separation starts between § = a and
B = b and terminates between § = c and B = d, then starts again be-
tween B = e and B = f and terminates between p =g and § = h,

a/b - means that cases were not run to determine c/d.



120

150

180

[y

o bW

10
11
12
13

10
11

O N 0w

a

(1)
o

-7
-7
-8
-8

-4
-4
-5
-6
-9
-9
10
10

-2
-2
-3
-4
-7
-7

-1
-2
-3
-4

.19
.67
.15
. 64

. 46
. 88
. 82
.76
.13
.63
.14
. 72

.43
.84
.76
. 68
. 05
. 57

.12
.29
.20
.43
.04
. 01

-7l

TABLE 7

Separation Alignments

a
m

-7.23
-7.72
-8.21
-8.70

-4, 76
-5.19
-6.13
-7.06
-9. 38
-9. 84
10, 30
10.76

-2.68
-3.09
-4, 01
-4,92
-7.20
-7.65

-. 05
-. 45
-1.36
-2.27
-3.18
-4, 09

o2
-7.27
-7.79
-8.28
-8.76

-5, 07
-5, 49
-6. 43
-7.37
-9.63
10. 06
10, 46
10. 79

-2.93
-3. 34
-4.25
-5.16
-7, 34
-7.73

-. 21
-. 62
-1.53
-3.12
-3.32
-4.18

-5,74

-4,72

-2,63

. 00



v

210

240

270

.1 2.84
1 2. 43
3 1. 51
5 .58
10 -1.80
11 -2.31
12 -2.86

.1 4.97
1 4.55
3 3.59
5 2.63
10 .15
11 -. 38
12 -.93

.1 5. 79
1 5. 34
3 4. 32
4 3.80
5 3.28

-72=

2.59
2.17
1.25

.33
-2,00
-2, 47
-2.94

4, 67
4,24
3.29
2.33
-. 08
-. 57
-1. 06

5. 66
5.22
4,22
3.72
3.21

2

2. 34
1.92
1. 00
. 07
-2.20
-2,62
-3.01

4,36
3,94
2,99
2,03
-.32
- 77
-1.19

5.54
5.10
4.12
3.63
3.15

2,63

5.71



346

12.5

28

45

e

31
32
34
35

11
15
20
25
30
35
40
45
50
51

=73~
TABLE 8
e =.,5
o

Separation Alignments

ORI

_° _m
12. 32 12. 30
11. 39 11, 36
10. 44 10. 41

-. 02 -. 10

-.92 -1.00
-1.92 -2.00
-2.93 -3.00
-3.94 -3.99

=12, 37 -12, 40
-13.31 -13.33
-13.78 -13.79 |
-40. 01 -40. 04
-40, 35 -40, 42
=41, 06 -41.16
-41, 44 -41,51
-34, 45 -34,50
-36. 09 -36. 30
-37.93 -38, 32
-39.55 -40.15
-41. 01 -41.77
-42, 34 -43.25
-43, 62 -44, 60
-44. 66 -45, 61
-46., 43 -47.02

-46,83 -47.25

.2
O

12, 27
11.33
10. 39

-.18
-1.08
-2.08
-3.07

4,04

-12,43
-13.35
-13.80

-40. 07
-40, 50
-41,25
-41.59

-34, 56
-36.51
-38.71
-40, 72
-42.53
-44,16
-45, 58
-46. 56
-47.61
-47, 67

-11.94

-22,.80



n

60

77.5

260

285

11
15
20
25
30
35
40
41
42

13
15
17
19
20

27
30
35
40
45
47
49

11
15
20
25
30
35
40
42
44

oV
- 34, 86
-36.27
-37.89
-39. 35
=40, 71
-42.03
-43, 43
-43,76
-44,15

-33,67
-34, 32
-34.97
-35,61
-35.94

11.87
10.25
7,37
4, 27

.89
-.58
-2.19

23,73
21, 65
18.84
15.81
12.53
8. 96
5.01
3.26
1.32

-T4-

-34,93
-36, 46
-38.21
-39.81
-41.26
-42,60
-43, 85
-44, 09
-44, 33

-33.71
~34. 38
~35,04
-35.67
-35.98

11.79
10,07
7. 06
3.85

. 45
-. 96
-2, 40

23.68
21, 46
18. 48
15.25
11.77
8. 06
4.12
2. 49
.83

o2

-34.99
~36. 65
-38. 54
-40, 27
-41,82
-43.18
-44, 27
-44, 42
-44, 51

-33.74
-34, 45
-35.11
-35.74
-36.02

11.72
9.90
6. 75
3.43

.02

-1.33

-2.60

23,62
21,27
18.11
14, 68
11.01
7.15

3.24

1,72

.34

-30. 00

-28.70

24, 37

29,02



n

300

312.5

(ko)

11
15
20
25
30
31
32

13
14
15

o)
(8]

23.93
21,51
18.21
14.58
10.50

9.58

8.52

20,58
19. 86
19. 09

=75

23.86
21. 30
17.83
14. 09
10. 09
9.26
8. 42

20. 56
19.81
19. 06

30. 00

29.10



|ea

350

350

10
12

33
35
40
50
60
70
80
90

10
15
20
25
30
40
50
60
70
80
90

(o]

76-

TABLE 9

=.,9

Separation Alignments

o1

42. 04
36,76
30. 40
22,64

-37.99
-36.59
-36.73
-37.54
-38.40
-39. 37
-40. 42
-41.51

-33.44
-38.16
-45, 45
-48, 48
-49.17
-48. 86
-47, 41
-46.22
-45, 57
-45, 36
-45,43
-45.70

a
m

41.69
35.94
29.28
21,81

-39.08
-41,21
-45,15
-49.71
-52,29
-54. 00
-55,27
-56.28

-33.81
-39.28
-48. 60
-53.76
-56.60
-58.16
-59. 62
-60, 30
-60.78
-61.21
-61.61
-61.99

.2)
O

41.35
35.12
28. 16
20.99

40,17
-45, 83
-53.58
-61.89
_66.18
-68. 64
-70.13
-71. 05

-34.17
-40. 41
-51.75
-59.09
-64, 02
-67. 47
-71.84
-74, 39
-76.00
-77.06
-77.79
-78.29

53.97



s
60 .1 -54,28  -54.82 -55, 35 -54, 79
1 -54,54  -55.08 -55.63
5 -55,59  -56.16 -56.73
10 -56.61  -57.27 -57.92
20 -57.72  -58.88 -60. 04
30 -57.91  -59,92 -61.92
40 -57.64  -60.59 -63.55
50 -57.20  -61.08 -64.95
60 -56.79  -61.47 -66.14
70, -56.56  -61.85 -67.15
80 -56.59  -62.28 -67.96
90 -56.98  -62.77 -68. 56
150 ! -13,42  -14.20 -14,99 -14.14
1 -13.66  -14.44 -15.22
5 -14,72  -15.48 -16.24
10 -16,01  -16.75 -17.48
20 -18,65  -19.23 -19.80
25 -20.18  -20.46 -20.74
26 -20.63  -20.71 -20. 80
300 .1 55. 29 54. 76 54, 22 54,79
1 55, 01 54, 48 53,95
5 53,63 53,12 52. 61
10 51. 69 51.11 50. 53
20 47, 42 45,89 44, 36
30 42,29 38, 84 35. 39
40 35. 85 29. 61 23.37
50 27. 47 17.28 7.08
60 15.99 .78 -14.43
70 -1.36 -16.00 -30. 63

75 -16.53 -22,76 -28.99
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Numerical Integration Verification

In order to check this theory, equation (1) with a coplanar
acceleration was integrated numerically to obtain the actual AP,

Ae, and Aw for two eo-es-a combinations that, according to the
theory, should result in an orbital separation., Then the D < 0 cri-
terion was applied to verify that separation occurred when and
where it should. The integration procedure and equations are dis-
cussed in Appendix C.

Tables 10 and 11 compare the non-dimensionalized orbital
elements obtained from the numerical integration state vector with
tilose obtained from the linear theory for two different eccentricities
and acceleratio:n magnitudes. (The linear theory orbital elements
were calculated in two special runs, not tabulated in tables 1 and 3.)
Table 10 is a low accelerétion, long burn time case while table 11
is a higher acceleration, shorter burn time case.

Tables 12 and 13 show D (equation (12)) as a function of .
Also shown are the various terms that make up the linearized version
of D (equation (31)) as well as the first neglected term in the lineari-
zation. Using equation (31) for the linearized version of D (and
calling it DL here to distinguish it from D of equation (12)) and the
series expression for §, i.e.,

2
5= 2% + o(aw?)

D may be written
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D= DL+AW Poeo(Per+eoAP)+O(Aw 1+O(Aw APAe) (127)

It may be seen from tables 12 and 13 that the terms of O(Aw4) and
O(AWZAPAe) do not affect the sign of D. However the first neglected
term can be important in the sign of D.

Thus tables 12 and 13 show that the acceleration magnitude
must be chosen such that the higher order terms in D are smaller
than might nq»r‘rnally be used in a linear theory. Consider table 12,
B = 17. 376, for example. Note that DL is four cél;ders of magnitude
less than its lé,rgest component term, APZ. Thgs 1f the neglected
term was only:three orders of magnitude less than APZ, the
neglected term would decide the sign of D, i.e., decide if there was
separation or not. For this particular case the neglected term,
‘AWZ(Pzeer+Poe§AP), is one order of magnitude less than DL’ and
thus the linear theory gives the correct answer., This numerical

cancellation of the terms of D, was to be expected since for D

L =0,

L
the terms in DL must cancel completely. This numerical cancella-
tion requires some care in the integration; the significant figures

in the state vector that determine the sign of D are near the end of
single precision accuracy.

It has been mentioned previously that the minimum distance
between separated orbits was expected to be small since separation
did not happen over a large AB. If linear orbital elements were used
to calculate that distance, and these linear orbital elements were

only an order of magnitude or so larger than their squares, then

this distance would be significant (some calculations were done this
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way). However, due to the previously mentioned numerical cancella-
tion problem, linear orbital elements much smaller than these must
be used. When this is done, there is trouble in calculating the
minimum separation distance due to uncertainty about how to round
the last sirIgle precision figure, But the distance is quite small
relative to using the larger linear orbital elements, e.g., O(100 ft)
for €y =+ 1.

Tables 12 and 13, numerical cancellation notwithstanding,
demonstrate orbital separation and are considered verification for

the linear theory. The alignment used in table 12, a = -48. 6°,

H

"should first éivé no separation, then separation, then no separation

again, and finally separation (see figure 14 and/or table 9). And
this is what occurs. Where the linear theory predicts a separation,
one occurs and vice versa.

Table 13 was generated to see if the results of the linear
theory could be extended to substantial accelerations. An accelera-
tion of ., 2 earth radii/hr2 is like that produced by the Apollo reaction
control system engine, which is used for small orbital maneuvers
as well as for attitude control. The D, of the last entry is negative
while the actual D is positive; this is because this point is very
close to the d = 0 boundary and numerical cancellation in DL is much
more pronounced. (This same explanation applies to table 12,

B = 20,281 also.)
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TABLE 11

. 573 1.290
. 171838 . 386656
. 171801 . 386596
. 104368 .236187
. 104253 . 235637
. 147991 . 331948
. 148101 . 332649

|37] =.2 er/hr’, a =-5.3° @

S

2.009

. 601467

. 601349

. 369503

. 368153

. 514725

. 516475

=120°,
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CONCLUSIONS

As a result of the preceding investiation, the following con-
clusions may be drawn:

1. It is possible to obtain neighboring, separated, Keplerian
orbits by using a fixed attitude thrust.

2. The acceleration level that will do this is not insignifi-
cant; no conclusion can be drawn from this theory about how large
this acceleration level may be.

3. This orbital separation phenomenon does not appear too
useful for orbital trim maneuvers to remove dispersions since the
alignment ranges to give a separation are small and the region over
which the orbits separate for a given alignment is small (except
possibly for some ignition polar angles for large eccentricities).
The phenomenon may be useful for avoiding recontact using only
one burn, but its usefulness depends on the necessary margin for
error. However, the separation regions and alignments have been

identified and can be investigated if desired.
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APPENDIX A

Evaluation of &Ar and Ar!

Using equations (35), (40, and (47), equation (37) for Or

may be written

: 4 3
, 90 T Zr0
Ar=fe 51n(90-9)[Fr—2+—-c—;—2—(roFr-ro(es)Fr(eS) jJde (AL 1)
S o o
where
F_(6,) = |a| (Asing_+Bcose ) (A.2)

The procedure for finding Ar is straightforward. Equation (A.2) is
substituted into (A. 1), sin(eo-e) expanded, T, expressed as

Po/(l-eocose) and the resulting expression integrated term by

term,
Let
T, = Poxo (A. 3)
ro(es)= POXS (A. 4)
CI= r S)x Ia! (A.S)

Then the indefinite integral for Or is

B
Z

Co

Ar =

f[sme cos@-cosh s1n6]
. 4 4 3 .
[Asm6x0+Bcosexo+2x°(Asmexo+Bcosexo-CI)] de

Expanding and combining terms gives
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- 4
Ar o la]P, . 4 2. 4 3
= — smeo[3Af smecosexod0+ 3Bf cos exode-ZCI cosexode]
% (A.6)

_coseo[3AJk2d6-3AJE0szexgde+3Bj§inecosexgde-ZC&jEinexgde]}

Now fsinexgde may be evaluated by the substitution

p = l-eocose since sin0d6 = dp/eo. Also, by a partial fraction

decomposition,
2, 4 xg 2y %
fcos exode =f(—é—o— -—t ;—z)de
o o

A general formula containing f xl‘:de and f cosexlgde is

M+Ncos6 - 1 mN-Mn
———— db = Z 2 k-1
(mtncos9) (k=1)(m"~=n"") {(m+ncosB)

+ f(k-l)(Mm -Nn)+(k-2)(mN-nM)coso de}

(m+ncosd )k 1

for m # n and k # 1. And finally
l+e
- _2 -1" o 0
fx dé "f (l-e cose) 2 tan” [ T-e_ 3073
o
l-eo

The above allows the individual integrals of (A.6) to be evaluated.

The results are

. 3. _ X
fs1n9xod9 = -3
o
4 x2 x3
fsinecosexode = = - 3
2e 3e

o (o]
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2. 4 sinb 4 2 4 2 2
fcos 0x_de = —2 - [(6e_+10el -1)x+(-be + Te-1)x
6e (1-e7)
o o
12e2 + 3
+(2e§-4e§+2)x3] + _2_—ZT fx do
6(1-eo) °
3 sing 2 3e,
fcosexode = — [(2e°+1)x+(1-e )x ]+ — fx de
2(1-e_) 2(l-e )
fx4d6 - 5ind [(lle +4e )x+5e (1- -e )x +2e (1 e2)2 3]
o 2.3
6(1-e )
6+9e§
b7 [xd0
(1-e_)

where the f xode is not evaluated for notational convenience.
Note the similarity of the first two integrals and the similarity

of the other integrals. The first two are of the form
2 3
( x +( x
while the rest are of the form
. 2 3
sin@[ ( Jx+ ( )x“+( ] +( ) [x_de

where ( ) denotes a ratio of polynomials in e, Thus the indefinite
integral for Ar can be put in the form

- 4

|a|P

52 {ein [ der( P 140 ) [xdor P 1Y

CO

where now A, B, CI’ sineo and coseo are in the ( ). The expression

for Ar may be rearranged as
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- _ 4
A IaIPo{ o o 6e:+10e§-1 2e2+1
r = —m— Bsinb |sin -
o J ( - E3 xscoses Ez )
o : o
. -6e4+7e§-1 xc050 . 12e2+3
+sinfx ( 3 - o ) +8indx ™ ( )+
2e_E E T 2g3
3e -X_.c0s0 3
_ o 3 S S, 2, x
XgCo80y — )fxode] +Bcos60[( -— - x + —7]
E 2e o e
o o
+A[sin6 (k! x2+k x3-sine x.(c!'. sin6x+cl' sinex2+c” fx de))]
o'21 31 s*s'“11 21 41/%

. . 2 . 3
+A[coggo(clzsm6x+czzs1nex tc,,8in0x +c4gfxod9)

-cosﬁp(sinesxs)(k'z'lxz)]} (A.7)

where the k's and c's are given by equation (49) in the text.

The form (A. 7) leads to a convenient form for Ar when the
indefinite integral is evaluated. Making the definitions for FSl’
FSZ’ FS3’ and Af of equation (51) and for FBS’ FBC’ FAC’ and

F, . of equations (52) through (55) and evaluating the indefinite inte-

AS % -1
gral with xscoseS = gives
4 o
P
Ar:-gz Ial {B[smeoFBS+coseoFBC] +
o
A[coseoFAc+sineoFAS ]} (A. 8)

where Ar(es) = 0 is used.
To derive an expression for -g—g—z= Ar', two methods may

be used. First, differentiation of (A. 1) gives



90 rg rg
- - -
Ar' = ‘f; cos(Go 6)[Fr — t 2 —2-(r017‘r ro(BS)Fr(GS)] de
S o :o

This may be evaluated by the same procedure as (A.1). The second

method is to differentiate (A. 8) to give

P4
p _ 0 > i
Ar' = - laIB{coseoFBS smeoFBC}
o
P4
o | .
+EZ- Ia I A{-smeoFAC+coseoFAS} (A.9)
o
P4
o | . ' .
+ -Ez EY {B[smeoFBs + coseoFBc] +
o
1 s !
A[cosGOFAC+sm60FAS]}
It may be shown that
: ! ' -
s1n90FBS+coseoFAc =0
(A.10)
1 3 ! -
coseoFAC+s1neoFAs =0
1 1 ! 1 ] s . .
To do this, compute FBS’ FBC’ FAC’ and FAS by differentiation.

Rearrange the expressions in powers of sineo and cos'IGo by factoring
out the highest power of x_(e. g., x2 = x4 (l-e _cosO )2). Most of

o o o o o
the coefficients multiplying the powers of cosé will cancel, and the
other coefficients will simplify. The results are
Zx4

o 4 2
N coseo + e—o coseo+xocos 60 (A.11)

Flo=-—x

2xS 3
BS e o
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2 4
X 3 2xo 4
! = —— x 8in@ - —— 8inB -sinb cosH x
BC e, © (o} e, o o o o
. o s 3 . 4 . 2
FAC = 251nesxsxo smeo - 3xos1n 60
F' . = -2s8inf_x x3cose + 3x4sin6 cosb
AS SSo o o o o
Thus using (A.11) and (A.12)
3 ] ] —
smeoFBS-i-coseoFBC =0
and using (A.13) and (A, 14)
1 s ] -
coseoFAC+smeoF AS = 0
Therefore
Py
[ - -ai
Ar —EZ ]al {B[coseoFAS smeoFBC]
o

+A[-sineoFAC+coseoFAs]}

(A.12)

(A.13)

(A.14)

(A.15)

For completeness, it can be shown that Ar and Or' satisfy

the differential equation for Ar by differentiating (A. 15) to give Ar''

and adding to (A. 8) for Ar,
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APPENDIX B

Evaluation of I 26

The integral I, was introduced in equation (63) of the text.

A0

It is written as

0 A F F
_[orr,2 3/ .3 _r, 4 r
Ing = fes [x 1 _+2x 1r+ o T3] x| lzl]de (B.1)
A
Now Ir can be written as
F F.(6g)
[ =x X - xg—5- (B. 2)
AR EY EY
Thus
6 F F
1A6=f°[2x§7r-+33 ] ‘s o 2 (B. 3)
65 |2 lal og
Using
F_(0)
—_f— °" = Asing +Bcoseo
|2 °

the first integral of (B. 3) becomes

60 . 3 eo . 4 90 3
2A f smexode+3Af sin0x_do+2B f cosfx_de

6g Os g
0 4

+3B f ocose x ~de
o o O
S

In Appendix A, fsinexgde and fcosexzde were evaluated, The sub-
stitution p = 1-eocose allows fsinexgde to be evaluated. The use of
the general formulas for MitNcosd kde in Appendix A will give

4 (m+ncos0) 3
fcosex do. This general formula also gives fx de and fx de.
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The results are

3 2
[ sinex do = - =
o 2e
(o)
3
[ sinex‘de = - Z—
o 3e
[eosexao = =108 (262 +1)H(1-2) 22 1+ —25 [x do
2(l-e )2 2(1 -e )
4 in6 4,2
fcosexode = —Slgﬁ[(13e +2 )x+(- 3e0 °+2)x
6(1-e )
3 3e3+12e
t2(0, 2 St ] +——-——r fx de
6(1-e_)
2 eosine
fxod9=———2——x+ > fx de
l-e (l-e )
(o}
2
[x2ae °o®t? [3x+(1-¢2) 21 + 2% [x_de
X = —5 X e )X — p. 4
° 2(1-¢2)° 2(1-¢2)
Thus the first integral of (B. 3) becomes
A[xz +X—3] +B[sind(b,x+b Zib 3)+b f de]
“AleT e 1XTRX TRX )R, )X,

o o
where the b's are defined by equation (67) in the text. The second

integral of (B. 3) becomes
3 1 1) 2 1
sin@[b}x+b5x" ] +b4fxod9
where the b's are defined in equation (67) also. Now using

F (6.)
Ii] S = Asinesxs-i-BcoseSxS
a

evaluating the indefinite integral, and using the definitions of (51)
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through (55) in the text

F

F
= - ._2. - _2 - 1 ] ] 1
IAe = A{ s T SmeSxS[blFSI+b2FSZ+b4 Af]}

(B. 4)

1 !
+ B{blFSI+b2Fsz+b3FS3+ b4Af-cosesxS [blFSl+b2Fsz+b'4Af]}
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APPENDIX C

Integration of the Equations of Motion

Because the perturbations to the orbit are small and a
double precision integration routine is not available, it is desirable
to integrate the differences between the Keplerian and actual orbits
rather than integrate the equations of motion directly. This is
known as the Encke method. The perturbations to the orbit (AP,
Ae, and Ow) can be written in terms of these differences, To do
the integration, an Adams-Moulton predictor-corrector with a Runge=-
Kutta-Gill starter was used (which was available in the CIT Com-
puting Center).‘ |

The coordinate system lies in the Keplerian plane of motion,
The variables § and n are associated with the Keplerian motion and x
and y are associated with the perturbed motion. The x and § axes

point toward apoapsis and the y and n axes are 90° from the x and 3

axes in the direction of motion.

The accelerations are constant and given by

- T
a = Ial cos(eS +7 - a)
- . T (C. 1)
a.y = Ia.l 51n(es +7 -a)
At the start of the burn
x=§ = rscoses
y=m= rssinas
. _ 7 T (C.2)
X =§ = chos(eS t 5 - 'yS)
y =% = vSsin(GS +_‘rzr - -ys)
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where

1
_ 2 1 2
vg = (pE=- )
S o
(C. 3)
eosines
tan s = T-e siné
o S
T s
-z S71s532
For _thé Keplerian motion
£ =L ¢
3
4
H=- —&3 M (C. 4)
g
2 2 2
" =¢" +n
and for the perturbed motion
$=-Lt.x+a
3 X
T
[ - _&.
y 3 y + a, (C.5)
r2 =x2 + y2

To obtain equations for the perturbations from the Keplerian

orbit, define

Ax =x - €
Ay =y -

(C.6)
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using (C.5) for x and y and subtract E from X and | from § to give

. -uldx 1 1
=3 -wug-—gEta
r 4
(C.7)
o -ud 1 1
By = T oy -=n+a
r3 3 §3 y
where
1 _ 1
3 2 2 2
r [(g+ox)P(ntay)®] Y/
(C.8)
1
3" 2.3/2
> (%)
The expression for -1—3 can be expanded by the binomial
T
expansion to give
r- &
where @ is made up terms containing Ax and Ay
o =l-—3—5-§Ax --és-nAy
4 g 5 5
R NP 11 YN A TS L YN 1560 pny
2t 2L 2t 2t
ro(ax3, ay3, axlay, sy?ax) (C. 10)

Now the equations (C.7) can be written as a first order

system. Define



Then

Ne
]

or
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£ N 21N
n z,
£ Zy
Aol o= J 2,
< Ox > zg ?
Dy zg
&x z,
\. &y J . zgJ
%3 )
Zq

[Tas 1]

8

g

1
b=z + @)z - p@zz'i'ay

1
--M(—c:3 +(I>)z5 - }‘|L<I>z1+a.x

/

(C.11)

(C.12)
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where

15z2
3 3 3 1,2
P=-c"—2z.2_-—2z.2 +(-—+-———)Z (C.13)
5 5 5 “276 5 7
51y 20> 2tf
2
2¢ 2¢ g

Equation (C. 12) is the form needed for the integration routine.
An equation for AP = P-PO may be developed from the defi-

nition of P as
|¥x ¥|?

(C. 14)

Using (C.6) to substitute for x and y in terms of §, m, &%, and Ay

gives
. > ] . . . 2
P = [£7-nE + £Ay -£Ay + N Ax-ndx +AxAY -AyAx ]/

B

since

. .2
o M
thus

AP = ?-[*E_nu-nél [£Ay-£ Ay+h Ax-nox+AxAy-OySx]

+[ £8Y £ Ay+s Ax-ndx+AxAy -AyDix] A (C.15)
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An expression for Ae may be obtained from
Ae = e-e =1 - P/a - e, (C.16)

where a is the semi-major axis of the perturbed orbit provided the

calculations are in double precision and a is accurately known., An
expression for a can be obtained from an exact integral of the equa-
tions of motion. This integral is obtained by the same procedure

that gives the vis-viva integral. First note that

B 1, x
oxX ' r --;_3
ﬁ.(L):-.X_
gy 'r 1.3

and thus (C. 5) can be written as

g = (&
% = 3 (r+a,xx)
(C.17)
- 0
y = a—y(%*‘aYY)

Multiplying the first equation of (C, 17) by x and the second by y and
adding gives

22, 2

d x+y", _, 9 L
wE )= Erax)tyge (Gt agy)
_d g, d d
=@ ?i'E(axx)-*-E(a'YY)
Therefore

d ,v —dﬁ
T =G raxtayy)
or

2
y_ B
> = + a_x + ayy + constant (C. 18)
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To evaluate the constant, note that at the start of the burn
2
Vs
—— = B SR

rS ZaO

from the vis-viva integral., Therefore

L = BB
TS + axxs + ayYS + constant rg zao

gives the constant, Thus

2 .
-\—;— = % - _Z-I;: +a(x-xg) + ay(y-ys) (C. 19)

Finally, noting that

2
v_ -k _
2 T r 2a

and equating to the right-hand side of (C. 19) gives an equation in-

volving a. This may be solved for a to give

a=a [—IZa ] (C. 20)

1- T°[ax(x-xs)+ay<y-ys)]

Expansion of (C. 20) by the binomial expansion gives a to use in
(C. 16) to obtain Ae.

Finally, an expression for Aw may be obtained from

1 P
coso =< (1 --;) (C.21)
Aw =8-8_ - A6 (C.22)

60 may be found from

where 0-0
o
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cosf = cos(6°+69) = c:oseo + AC (C.23)

and AC found from (C. 21).

Using

e =e + Ae
o

I
=

T = (x2+y2)E = (§2+n2+2§Ax+2nAy+Ax2+Ay?)2
P = Po + AP

and the binomial expansion, (C.21) can be written
cos@ = coseo + AC

where to second order

AP Ae o rlAe , £EOx | mA
AC=-r - St s et =g P
oo e oo o r T
o o
2 P 2 2
Ae o Ae”  Ae £EOx  nldy 2, 3¢ 1
tT3-% T [ z v Cz vt g - )
e o T T 2r 2r
o o o o o o
2 3n2 1 3¢
C+ oyt e - =5+ axay (31
2r 2r T
o o
+ AP [Ae+ EOx +nAy] (C. 24)
e r e 2 2
o o o r T

Now (C. 23) may be solved for 60 by expanding the cosine and keeping

terms of second order in 60.
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662
coseo(l - -T) - s1n9069 = coseo+AC

Solving for §6 to third order in AC

Aczcose AC3cosze
AC [o) o
60 = -tan®_ + <tanb - — - - .
o — o sinB .. 3 2s8inb0
o 2sin 60 o
or
A Aczcose AC3cosze
C o o
6 =-<mp - S 5 (C.25)
o 2sin 90 2sin 60

(Note the singularity at sine0 = 0. This was avoided in the computer
program by avoiding eo's near 0 or w. ) Finally A6 may be found

from
so = ot (25! (C. 26)
rro ¢

which allows Aw to be calculated.
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