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ABSTRACT 

An experimental investigation of turbulent boundary layer flow 

over wavy surfaces was conducted at low speed. 

Two models with the ratio of the amplitude to the wave length 

a/A = 0.03 and wave lengths A = 6" and 1211 were tested in an open-

circuit wind tunnel. The free stream velocity was 15.4 m/sec, giving 

Reynolds number Re 
4 = 2. 54 X 10 per inch. Boundary-layer thickness 

varied from 0 = 1. 5" to 0 = 4.111 by means of boundary-layer trips of 

va rious height, in 0 rde r to chang e the ratio A /0. 

The following measurements were taken: 

* Wall pressure distribution 

* Average velocity and turbulence level, using a single 

element hot-wire probe 

* Wall stress distribution, using Preston's tube 

* Static and total pres sures 

* Turbulence intensities and shear stress using X-array 

hot-wire probe. 

An appreciable modulation of all the flow quantities, imposed 

by the wavy boundary. is observed throughout the investigation. Wall 

pressure is much lower than predicted by uniform, inviscid theory and 

is slightly non-symmetric. Wall stress distribution has a peak with 

C/C f 
o 

= 1. 2 upstream of the crest and a dip of C/C
f 

= 0.6 upstream 
o 

of the trough. Static pressure decays exponentially in the outer layer 

while its gradient is decreased toward the surface in the wall layer. 
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The turbulence intensities and shear stress distributions near 

the wall show oscillatory modulation superimposed on the reference 

flat plate profiles. The amplitude of the oscillations decay exponen-

tially toward the edge of the layer, so that in the outer part of the 

layer the turbulence quantities are practically independent of the 

longitudinal position. 

It was found that Coles' Law of the Wall does not apply in the 

present situation because of the modulation of the slope of the semi-

logarithmic portion of the velocity profiles. A presentation of velocity 

profiles is suggested through the use of total velocity defined by 

-2 1.. 
(u + 2 (p _p ) / p } 2 • 

00 
This quantity obeys the Law of the Wake. 

Mixing length and eddy viscosity profiles based on the derivative 

aut lay are reduced into one curve which is the reference flat plate 

distribution. 
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1. INTRODUCTION 

In the last few years a study was conducted at GALCIT in con­

nection with the phenorn.ena of cros s -hatching ablation. This phenorn.­

ena is the forrn.ation of diarn.ond shaped waves on surfaces undergoing 

ablation in flight test and in a variety of ground test facilities, for 

rn.any types of ablative rn.aterials. The surface waves have character­

istic length and sweep angle with respect to the flow direction. At 

the present tirn.e, the phenorn.ena is not yet corn.pletely unde rstood. 

In particular, it has not yet been established whether the phenorn.ena 

is a reflection of a periodic phenorn.ena in the structure of supersonic 

turbulent boundary layer or a result of unstable interaction between 

the flow and the ablation process. But, regardless of the initiation 

of the surface patte rn, it is corn.rn.only agreed that the proces s of the 

growth of waves has to be considered as a closed loop cycle, i. e., 

once striation starts the resulting change in surface georn.etry is fed 

back into the boundary layer, causing significant changes in the dis­

tribution of such aerodynarn.ic quantities as pressure, wall stress and 

heat transfer that are responsible for the forrn.ation of the surface 

waves. 

In order that one can close the loop of the process, it is 

necessary to be able to evaluate the interaction between turbulent 

boundary layer and a wavy wall. The present study is airn.ed at this 

interaction. Before proceeding to describe the specific goals of the 

expe rirn.ent, the state of art of such corn.putation is briefly reviewed. 

This survey is based on the proceedings of the AFOSR-IFP-Stanford 

Conference on Corn.putation of Turbulent Boundary Layers.(l) 
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Com.putational methods of turbulent boundary layers are usually 

divided into two groups: integral methods and differential methods. 

Bc.::ause of the curvature of the streamlines, it is apparent that the 

velocity profiles commonly used in integral methods (e. g., Coles 1 Law 

of the Wake, Power Law) will not properly des cribe the situation. Also, 

the validity of the friction laws applicable to flat surfaces (e. g. Ludwig 

and Tillmann)(lO) is in doubt. Therefore, studies performed at GALCIT 

* were devoted to the development of differential computational methods. 

The differential methods depend on some models that relate 

Reynolds stres ses to the flow conditions. Thes e cOInInonly us ed 

models relate the turbulent stresses either to the mean flow quantities 

or to the turbulent energy. Common to all the methods is the use of 

empirical functions and constants. Most of these functions and con-

stants were derived from the results of experiments with boundary 

layers over flat surfaces. 

A serious question constantly asked is the validity of these 

laws: How much can their range of applicability be stretched? More 

specifically for the present problem: May these laws be used where 

curvature effects are of importance? 

Curvature effect on turbulent boundary laye r was the topic of 

several investigations. Wattendorf(3) studied a fully developed turbu-

lent flow in a channel. He found that the eddy viscosity and the mixing 

length increase near the outer wall and decrease near the inner wall of 

the curved channel. He also found a strong change in shape parameter 

~< 
Kubota, T., "Analysis of Turbulent Boundary Layer Over Wavy 

Surface, 11 in preparation. 
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of the inner and outer boundary layers through changes of the exponent 

in the power law. Later Eskinazi (4) conducted a si:milar study using 

hot wire ane:mo:metry. He found strong changes in the turbulence in-

tensities and in the Reynolds stresses between the inner and outer 

walls of the channel. Sawyer (5) devised a first order theory for the 

effect of curvature on the :mixing process. His theory is based on the 

:modification of :mixing length by the pres ence of centrifugal accelera-

tion. 

Two publications, based on experi:mental studies, apply directly 

to the present interaction proble:m. Motzfeld(6) studied turbulent 

boundary layer flow over five different wave shapes. He found strong 

changes in velocity profiles, :mainly near the crest and the trough. 

More recently Kendall (7) studied the interaction between turbulent 

boundary layer and a :moving wavy wall. Through an extensive use of 

hot wire ane:mo:metry, he showed strong :modulation of turbulent inten-

sities, and appreciable phase shift of the Reynolds stress and wall shear 

with respect to the surface wave. These findings indicate that, indeed, 

the proble:m at hand cannot be treated as equilibriu:m flow. This con-

elusion encouraged the decision to proceed with wind tunnel experi:ments 

ai:med at better understanding of the wave-boundary layer interaction. 

One of the keys to the under standing of the origin of cros s-

hatching ablation is the :mechanis:m of selection of wave length. One 

suggestion is that there exists a preferred wave length, which gives 

the largest a:mplification rate and therefore shows up first and do:mi­

nates the surface pattern. One of the objectives of the test is to find 

out whether indeed the spacing ratio 1.../6 is of i:mportance in :modulating 
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the turbulent intensities, especially the Reynolds stresses and wall 

stress. 

A compilation of the transverse spacing and surface pattern 

angle is found in Figures (11) and (12) of reference.(2) Typically, 

the transverse spacing ratio is 2 to 4 times the boundary layer thick-

ness. It was decided to cover this ratio in the present text. 

Preliminary velocity survey on the floor of the test section 

showed that by tripping boundary layer thickness can be changed 

between 211 to 4 11 . It was decided to build two models, with wave lengths 

of 6 11 and 121" so that the ratio A/o of 1. 5 to 6 can be covered. Based 

on the results of Motzfeld (6; and Kendall,(7) amplitude to wave length 

ratio of O. 03 was chosen, since for this value, appreciable changes 

in all flow quantities occur, but without any separation. 
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II. TEST FACILITY AND INSTRUMENTATION 

II. 1. Wind Tunnel 

*. The experiment was conducted at JPL In an open circuit, low 

speed wind tunnel. The test section is 21 X 21 by 10 1 long. The major-

ity of tests were carried out at a free stream speed of 15.4 m/sec. 

The wind tunnel is driven by a constant-speed motor, which is 

linked by a magnetic clutch to a fan. The rate of rotation of the fan 

is determined by the amount of slip in the clutch, which is set by a 

speed controller. The driving section of the tunnel leads to a 6.5 1 

X 6.5 1 settling chamber equipped with eight layers of fine mesh screen, 

followed by a contraction section and the test section. The general 

view and dimensions of the '"vind tunnel are shown in Figure (1). A 

photograph of the experimental setup is shown in Figure (2). 

The test section was designed and built especially for the 

present experiment. It is constructed of plywood sheets, framed in 

a welded aluminum structure. The wood was sealed and polished to 

a smooth surface. The front panel of the test section is a lucite plate, 

to allow optical measurements. The floor of the test section is· sup-

ported on an adjustable frame, which is hinged at the upstream edge. 

This provision was made in order to allow constant pres sure test 

section, as will be explained in detail in Section II. 6. 

A traverse mechanism is mounted on a wide channel section, 

which rests on the top of the test section. It can slide by hand from 

STN 4 to STN 9.5. The arm of the mechanism, which carries the 

* Jet Propulsion Laboratory, California Institute of Technology, 
Pasadena, California. 
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probes, protrudes through a slit along the center of the ceiling. The 

slit can be sealed by thin plastic strips to prevent spillage. The arm 

is driven by a lead screw, powered by a D. C. motor. The motor is 

driven by a variable speed controller. The stroke of the arm is 8 11
• 

A mechanical counter is geared to the lead screw and is used to indi-

cate the vertical position of the probes, with accuracy of 0.00111. 

A cathetometer with accuracy of O. 05 mm is used to obtain the 

initial position of the probes, above the surface, at the beginning of 

each run. 

The wind-tunnel is located in an air conditioned laboratory. 

Room temperature was kept 73 ± 2° F. The barometric pressure was 

measured several times during the test period, and was found 

729 ± 1 mm Hg. For these conditions: 

p = 
2 2 

0.1188 Kg/m /sec. 

v = 0.000605 min/sec. 

II. 2. Wavy Wall Models 

Two models were designed and built for the pres ent test, both 

with nominal amplitude to wave length ratio of O. 03. Each has five 

waves, with the following lengths: 

WWl A = 12" 

WW2 

The models were constructed by using the following technique 

(see Figure (3) for details): An aluminum frame, 24" wide and 5 X All 

long was built out of flat material. On the two side frames, holes were 
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drilled, with their centers along a sine curve of the desired amplitude 

and wave length. Two layers of aluminum sheeting were deformed to 

the sine -curve shape and held in place by pairs of rods spanning the 

frame through the holes on the sides. Epoxy cement was applied, in 

generous quantities, on the underside of the lower sheet, thus glueing 

the sheet, the lower rods and the frame into a solid unit. After the 

epoxy was cured, the upper rods and sheet were removed. 

For the measurement of wall pres sure, a row of ports, O. 020 11 

in diameter were drilled O. 5 11 off the centerline of the models. The 

spacing is 111 for WW1 and 0.75 11 for WW2. This operation was done 

on a milling machine to as sure accuracy in spacing the ports. At the 

time that the models were mounted on the milling machine, the wave 

form was measured with a 0.00111 accuracy indicator. It was found 

that because of the deformation of the rods, the actual amplitude of 

the wave is lower than planned. But, measurement in several trans-

verse planes showed that the center 20 11 of the models were flat in this 

direction. The measured wave form is shown in Figure (4) from which 

it was found: 

WW 1: a = O. 335 11 a/)...,. = 0.0279 

WW 2: a = 0.157 11 a/)...,. = 0.0261 

Finally, the models were polished to a shiny, wax coated 

surface. 

For a surface shape 

= . !21TX) -a s III \-)...,.-

the radius of curvature is 
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R = (1 +y/2)2 

/I 

Y 
.9.. 2 

1 + (2if ~ ) 2 (2ifX)2 
COS --

A = (2 ,2 if, . (2ifX) 
-a T) SIn --

A 

The minimum (absolute value) of the radius of curvature is 

R . = 
a 

mIn 

which for the two models give: 

WW 1: R . = I O. 3 II 
mIn 

WW 2 : R . = 5. 8" 
mIn 

II. 3. Wind-Tunnel Boundary Corrections 

The linearized velocity potential of inviscid flow over a wavy 

wallis (i.e. (8)): 

-~ . (2ifX) A er 0 = V 0 a SIn -1.- e 

On the other hand, for a channel formed by a wavy wall of the 

same amplitude and a straight wall at a distance H apart is: 

-~ 
= Vo a sin (2~x)e A 

y-H 4if A 
l+e 

4ifH 
l+e- -1.-

Though the wavy wall models are finite in length, the ratio of 

the two expressions given above will be used as a measure to the pos-

sible effect of the top wall of the test section 
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Y.:.!i.. 4rr Ie 
l+e 

= 4rr H - _.-
l+e It 

For H = 2411, and It = 6 11 or 1211, this ratio is practically a unity 

near the wavy wall (y'" 0) and up to the center of the test section 

(y'" iH). Hence it is concluded that the top wall effect is null. 

II. 4. Pres sure Measurement 

* The heart of the pressure measurement system is a Statham 

transducer with a range of ± 0.2 PSID. The sensitive element of this 

transducer is a four arm strain gage bridge. The excitation voltage 

to the bridge is provided by a regulated D. C. power supply, operated 

with a battery connected as an external reference. See Figure (6). 

This arrangement as sures excellent stability of the supply voltage. 

The output of the bridge is amplified and filtered, and then read by a 

digital voltmeter. The same voltmeter is used to adjust the bridge 

input voltage before each test. 

A Betz, silicon-oil micromanometer, is used to calibrate the 

transducer. The readout is accurate to O. 02 mm. The electronic 

circuit that was described above was used during the calibration. 

The transducer (P5TC-0. 2D-350) was calibrated at the beginning 

of the test giving the constant K = 5.5017 gr/cm
2

/mV at 12V input. 

The deviation from linearity and zero shift were less than 0.1% of full 

scale. Two calibration checks were done during the test, which showed 

deviations of less than O. 2~ in K. 

* Statham Instrument Co., Los Angeles, California 
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II. 5. Calibration of the Test Section 

The O'oal ofthis calibration is to establish relation between the 
b 

airspeed in the test section and the setting of the driving fanls speed 

control. Such relation is essential for the calibration of the hot-wire 

and pres sure probes, as will be dis cus sed below. 

Calibration tests were run with plain floor TIlounted parallel 

to the ceiling, with a boundary layer trip T = O. 5" TIlounted 611 up-

streaTIl of the entrance to the test section. 

A Pitot tube was TIlounted at S TN 5, at the center of the test 

section, aligned along its axis. The transducer and TIleasuring systeTIl 

des cribed in Section II. 4. were used to TIleasure directly the dynaTIlic 

pressure as the difference between the Pitot pressure and the static 

pres sure frOTIl the sidewall port at the saTIle station. The airspeed is 

t d f 1 P u2 
COTIlpU e rOTIl P d = "2 Figure (7) shows the result of the calibra-

tion. 

Repeatability of the airspeed was tested by turning the tunnel on 

and off several tiTIles. Stability was tested by running it for a long 

tiTIle ( ....... 1 hr.). Both tests showed that at speed control 7, variations 

in airspeed are within ± 1 %. 

II. 6. COTIlpensation for Boundary Layer Growth 

The thickening of the boundary layer along the walls of a parallel 

test section causes a reduction in the effective cross section area, by 

displaceTIlent effect. This forces the flow to accelerate and the static 

pressure to decrease in downstreaTIl direction. The effect is unwanted 

in the present experiTIlent and an atteTIlpt was TIlade to cOTIlpensate for it. 
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In order to maintain a constant pressure test section, the floor 

is tilted such that it forms a slightly divergent tunnel. For complete 

cancellation of the unwanted pressure gradient, the increase in cross 

section area must be equal to the increase in boundary layer displace-

ment. 

The amount of divergence was determined experimentally for 

the four boundary layer trips that were used in the test. It was done 

according to the following procedure: The static pres sure was meas-

ured along the center of the back side wall of the tunnel at STNls 6, 7, 

8 and 9, with STN 5 as reference, while the exit end of the floor was 

lowered by h = O~ 111 and 211. Then, by interpolation followed by trial 
c 

and error the best h was found, for minimum variation of static pres­
c 

sure along the test section. Sample results (for T = 0.5") of the 

process, together with the geometrical data are given in Figure (8). 

The values of h , for the other cases are: 
c 

T (in) h 
c (in) 

O. 05 O. 7 

0.25 0.5 

0.50 0.9 

O. 75 O. 7 

Note that Figure (8) shows a slight scatter in the static pres-

sure distribution along the test section. This was found repeatable and 

caused by small waviness in the back wall plate. The pressure gradi-

ents associated with this are less than 1% of that generated by the wavy 

wall models, and hence are considered insignificant. 
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All the results presented below were taken with floor tilted for 

best boundary layer compensation. 

II. 7. Velocity Measurements 

Airspeed measurements were made by means of hot wire ane-

mometry. The equipment is a constant temperature, linearized output 

>.'( 
set made by DISA. 

For the measurement of average velocity and turbulence level, 

type 55A25 miniature, straight prong, single sensor probe was used. 

The sensing wire is Pt-coated tungsten, 0.005 rrlm diameter by 1. 2 mm 

long. 

Two channels of measurement were used. Each channel con-

sisted of a constant temperature anemometer, a linearizer and an 

RMS unit, as shown in Figure (9). 

The probes were calibrated at the center of the test section, 

under the same conditions as des cribed in Section II. 5. The results 

for three pro bes that were used in the test are shown in Figure (10). 

A single element probe with its sensor parallel to the surface, 

does not distinguish between longitudinal (u) and normal (v) velocity 

components. Its output is proportional to the resultant velocity which 

is: 

q = 

--;z: 2 ----;2« V 2 h D d M S 1 Assume that u «U J v J t e . C. an R. . . va ues 

of this signal are proportional to: 

* DISA - Sand B, Inc., Franklin Lakes, New Jersey 
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I 

Q = (U2 + V 2 )2 

Q' ( U
2 

,2 V
2 --;z 

+ 
2UV -'-'l = 2 2 u + 

U
2

+V
2 v 

U
2

+V
2 u v 

U +V 

In order that distinction is made between results obtained by a 

single element and an X -array hot wire probe, notation ( Q, Q') will 

be used for the first one. 

The readout of the anemometer IS D. C. meter, the R. M. S. unit 

and the vertical position indicator were recorded on coding charts. 

The data was manually key-punched for computer processing and 

plotting. 

II. 8. Freestream Flow Conditions 

In order to find the uniformity of the flow outside of the bound-

ary layer, and its turbulence level, velocity survey was perfo rmed 

using a single sensor hot wire probe. The survey was done above 

plain floor, at STN 5, with boundary layer trip T = 0.5 11 and covered 

the range from 6 11 to 14" of distance from the floor. 

The results are shown in Figure (11), from which the following 

is concluded: The deviation of the average velocity, from its value at 

the centerline, does not exceed O. 5%. The free stream turbulence 

level is 0 .. 83%, but it exists only above the centerline of the test section. 
-/ -

The turbulence level increases sharply toward the edge of the boundary 

layer. 
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III. TEST REFERENCE CONDITIONS 

III. 1. Reference Boundary-Layer Profiles 

As mentioned in the introduction, a trip was inserted about 6 11 

upstream of the entrance to the test section in order to thicken the 

boundary layer. Square bars of different thicknes ses were us ed, ex-

cept one case: T = 0.75 11
• It was found that such a thick trip generated 

velocity profile with practically no wake component and unusual turbu-

lence distribution near the ed.ge of the boundary layer. After trial and 

error, a 0.25 11 bar, mounted on 0.5 11 high legs gave good results. 

This combination trip is still referred to as O. 75 11 high. 

The boundary layer on the plain floor was surveyed, by means 

of a single sensor probe, in order to provide knowledge about the on-

coming flow and as reference to compare with. STN 6 and STN 7 were 

surveyed in order to serve as reference to WW2 and WW 1 respectively. 

This is illustrated graphically in Figure (12), At each station, survey 

was carried out for three trip heights according to the following table: 

T U STN 61 STN 7 
in. m/sec. 

O. 05 15.54 + 

0.25 15.43 + + 

0.50 15.43 + + 

0.75 15.41 + 

The results are shown in Figure (13), where normalized average 

velocity (U Iv ) and turbulence level (Q I Iu ) are plotted against distance 
e e 

from the wall on logarithmic scale. Note that all cases show maximum 
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turbulence level of about Q I lu = o. 107 at a distance O. 01- O. 013" 
e 

from the wall, depending on boundary layer thickness. 

III. 2. Law of the Wake Fitting to the Data 

To gain qualitative knowledge about the reference boundary 

layer profiles they were analyzed by fitting Coles I (9) Law of the Wake 

similarity profiles to the experimental data. 

Recall, from (9) 
J 

the Law of the Wake: 

u 
C + ~ 0n ( Y :7 ) 2 7T sin 

2 (; ~) (1 ) = + 
u K 

T 

with: C = 5. 0 

K = 0.41 

Parameter 7T can be eliminated from (1) by using edge condi-

tions: 

u = u @ y = 5 
e 

2~ 
u e ~ 0n ( 5:T

) 

(2 ) 
= - C -

K u 
T 

Substitute (2) into (1 ), and one finds: 

Eq. (3) contains two parameters, namely u and 5. A computer 
T 

program was written to evaluate these parameters for least square 

deviation from the experimental data. Points with y+ = Y u Iv < 60 
T 

or ulu > 1 were omitted from the fitting process. The program uses 
e 

a standard subroutine (LSQENP in CIT routine library) to find the 

desired parameters. 
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The best fit curves, together with the data, are shown in 

Figure (14) for all reference profiles. The presentation is in universal 

coordinates, i. e. u+ = u/u vs. y+ = Y u /v. The important parameters 
'T 1" 

are tabulated below: 

T STN U'T 0 1T C
f 

in. m/~ec in. 

O. 05 7 0.61 1. 50 0.59 0.00301 

0.25 6 0.59 1. 96 0.51 O. 00297 

0.25 7 0.58 2.43 0.51 o. 00286 

0.50 6 0.60 3. 08 0.21 O. 00306 

0.50 7 0.59 3.41 0.23 O. 00298 

O. 75 6 0.61 3. 70 0.23 O. 00293 

After knowing reference boundary layer thicknesses, it is pos-

sible to summarize the range of ,,/0 parameter for the present test. 

T STN 0 A/o for 
WW1 WW2 In. in, 

..-

O. 05 7 1. SO 8. 00 

0.25 6 1. 96 3. 06 

0.25 7 2.43 4.93 

0.50 6 3. 08 1. 95 

I 0.50 7 3.41 3.52 I . 

0.75 6 3.70 I~ 
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III. 3. Boundary Layer Thickness and Shape Factor 
,~ 

The displacement thicknes s (6 ) and the momentum thicknes s 

(8), are uniquely determined by the thickness (6) and the wake compo-

nent coefficient (iT). But, since numerical integration was incorporated 

in the data processing program, the two quantities were evaluated this 

way. By definition: 

= 

u,l u ) U ~ 1 - u dy 
e e 

e = 

The results, together with the shape factor H * = {) /e are sum-

marized in the table below. 

Note that the reference profiles are not similar. The shape 

factor varies from 1.25 to 1. 34. 

T STN 6 f/~ e H 
in. in. in. in. 

0. 05 7 1. 50 
I I I 0.226 I o. 189 1. 34 
1 

0.25 6 
i 

1. 96 ! 0.282 0.213 1. 33 
I 

0.25 7 
r . 

2.431 O. 344 0.262 1. 31 

I 

0.50 6 
I 

3.08 0.356 0.284 1. 25 

0.50 7 3.41 0.388 0.307 1. 27 
I 

; 

0.3341 
I 

0.75 6 3.70)0.425 1. 27 
I 

A check un the quality of the reference profiles is a comparison 

between the actual skin friction coefficient and that evaluated by 
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Ludwig and Tillmann friction law. (10) This commonly used law 

predicts: 

= 0.24610-0.678H R -0.268 
ee 

Coles I presentation of this law (Figure No. 11 of (9)), in 

terms of Tr rather than H is used. His correlation is plotted in 

Figure (15), on Cf-Re e coordinates. 

For presentation of the test data, the following is used: 

2 
C f = 2 (u

T 
,IV

O
) from re,llts of fitting law of the wake to the data; 

Re e = V 0 e Iv from results of integration reported before. 

The comparison is shown in Figure (15). It is observed that 

present test data falls very close to the correlation, which shows 

that the oncoming boundary layer is fully turbulent and equilibrated. 
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IV. MEASUREMENTS AND RESULTS 

The models were mounted in the test section with their front 

end at S TN 5, as shown in Figure (12). The leading edge of the models 

is at the same height as the flat plate that composes the upstream part 

of the floor. In the cas e of the short WW2, another plate was installed 

behind the trailing edge to complete the floor to the full length of the 

test section. 

The test was conducted with floor dive rgence as for the plain 

floor (Section II. 6). 

IV. 1. Wall Pres sure 

The distribution of static pressure on the two models was 

measured by a series of ports, 0.020 11 in diameter, located 0.5 11 off 

of the center line. The ports are spaced 111 apart for WW1 and 0.75" 

for WW2. The measurements were done for the different boundary 

layer trip heights, as mentioned in Section Ill. 2. 

The transducer and measuring .scheme that were described in 

Section II. 5 were used. The reference pressure is the port located at 

STN 5 on the side wall of the test section. The wall ports were con-

nected in turns to the transducer. 

The results were reduced to the non-dimensional form: 

Cp w = 

where PO is the reference pres sure and U 0 is refe rence speed meas­

ured 6" ahead of the leading edge of the model outside the bounda ry 

layer. 
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Since the effect of boundary layer thickness upon wall pressure 

was found to be ve ry small, the complete distribution is shown for 

one case only (T = 0.5 11
) in Figure (16). For the two models, we 

observe that the first and last waves show lower pressure peaks than 

the three center waves that are about equal in shape and amplitudes. 

This reflects the surface shape as mentioned in Section II. 2. Note 

that the first wave of WW2 had a local kink at x'"'" 5". This gave ab-

normal result that was not included. 

A summary of all the cases for wave No. 3 only is given in 

Figure (17), together with results from other sources. The following 

observations are made: 

(i) The maximum positive pressure peak is lower by 31% for 

WWl and 20% for WW2 from the maximum negative value. 

(ii) The positive part of the pressure curve occupies more 

than half wave: it covers 188 0 for WW1 and 191 0 for WW2. 

(iii) The invis cid, uniform flow, linearized theory for flow 

over a wavy wall predicts 

= a 
4'iT r 

For the present models this gives 

WW1: Ie I 

Pw'v=O = 0.352 

WW2: = 0.340 

The actual measured values are cons ide rably lower than the 

above values. For example, for T = 0.5 II we have: 
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! Cp I 

I Model I 
STN C I w(meas. ) 

pw(meas.) CPw(v=O) 
I 

WW 1 i max. 0.175 ! 0.497 
i 

WW 1 

I 

min. -0.255 ! O. 725 

I I I 
WW 2 max. 0.155 

I 
0.440 

I 
WW 2 

I 
min. - O. 195 0.554 I I 

The asymmetry in pressure distribution gives rise to form 

drag, defined by: 

A 

CD = 1 f Cp Y I dx 
P X" w s 

o 
This integral was evaluated graphically for T = 0.5". The 

results for the two models are: 

WW 1: CD = O. 001 2 
P 

WW2: CD = 0.0017 
P 

Comparison between the present results and those of Kendall( 7 ) 

and Motzfeld ( 6 ) shows consistency in the trough area. On the other 

hand, present measurements show lower crest pressure than expected 

from Kendall IS presentation of ~.educed pressure coefficient (Figure 4 

of ( 7 ). 

From the p res sure curve, the following four stations were 

chosen for further survey inside the boundary layer: 
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STNi Defined by 
Phase Angle (deg. ) 

I 

WWl WW2 

(1 ) Cp = 0, dp Idx > ° -3 -5 
w 

(2 ) I Cp = max. +6 +9 
w 

(3 ) Cp = 0, dp Idx < ° +5 +6 
w 

(4 ) Cp = min. +2 +5 
w 

IV. 2. Velocity Profiles 

The first field survey was the measurement of average velocity 

profiles and turbulence level, using a single sensor hot-wire probe. 

Each of the two models was surveyed at the four stations, listed in the 

table given above. 

The results of the survey are presented in two forms. The first 

(Figure (18)), on a linear y-scale with velocity and turbulence profiles, 

are shown at the station where they were taken. For comparison, the 

plain floor profiles and for reference the wall pressure are also shown. 

In the second form (Figure (19)), log (y)-scale is used, as is common 

for presentation of turbulent boundary layer data. 

The following observations are typical to all the cases tested. 

(i) At the crest, the velocity profiles are full at a very close 

distance from the wall. A typical value is Q I u ° = 0. 7 at y = O. 025". 

(ii) On the other hand, the trough profiles grow slowly near 

the wall. This shows also in a relatively low (Q I lu 0 "-' O. 08) turbulence 

level nea r the wall. At a distance of 0. 15 II froITl the wall turbulence 

and slope of velocity increase. 
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(iii) The two profiles corresponding to CPw = 0 have 

the same shape for distances from the wall larger than O. IS". 

Only in the wall layer they corne apart, which shows also in 

differences in turbulence level near the wall. 

(iv) Among the four stations surveyed, the largest 

turbulence level for WW1 was found at the crest, with O'/UO = 0.12. 

For WW2, it takes place at the uphill slope with Q '/UO = 0.13. 

(v) At distances from the wall where the reference 

profiles possess a semilogarithmic section, the present pro-

files show a small degree of waviness. This phenomena will 

be observed throughout the data that will be discussed below. 

(vi) There exists a correspondence between the slope 

au / ay of the mean velocity profiles and the turbulence intensity. 

High slopes are always accompanied by increased turbulence 

intensity (i. e. the crest profile near the wall) while low slopes 

are correlated to reduced intensity (i. e. the trough profile near 

the wall). 

Effect of Boundary Layer Trip 

One of the goals of this experiment is to find an effect 

of A/6 on the behavior of the boundary layer, especially on the 

modulation of turbulent quantities. Therefore, a cross plot of 

the result was done (Figure (20)) with boundary layer trip height 

as parameter. 
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It is obs erved that for the two models and the four 

stations of survey, the behavior of the wall layer is almost 

independent of the boundary layer thicknes s. This shows up 

for the mean velocity and the turbulence intensity distributions 

at distances from the wall up to 0.211 

DeveloDment of the Flow 
! 

The two models in the present test are composed of 

five waves each. Only the center wave was surveyed for 

velocity and turbulence level distribution. A question rose 

on how the reported results represent a situation over a 

long train of waves. In other words, how many waves does 

it take for the boundary layer to become periodic. 

To answer this question, waves No. 2 and 4 of WW1, 

with T = 0.50", were surveyed at four stations, as defined 

for wave No.3. The results for velocity distribution are 

shown in Figure (21). Though there are small differences 

between the cases, which might be the result of experimental 

errors and minor differences in the wave form, there is no 

consistent trend in the shape of the profiles. The same was 

found true for the turbulen ce level. Hence it is concluded that 

the data discussed above is in fact representative of a long 

wavy wall. 
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Test for Two -Dimensionality 

Final test for the quality of the results is for two -dimensionality 

of the flow. This test was conducted for WWl with T = 0.50" at the 

four stations of survey. A dog-leg extension was attached to the arm 

of the traverse mechanism. The probe was attached to the extension, 

thus enabling the survey at 4" from the centerline of the test section. 

Results are presented in Figure (22), together with the center-

line profiles, for comparison. Again, small differences are found, 

but there is no change in shape that implies deviation from two-

dimensionality at the center core of the test section. 

IV.3. Wall Stres s 

Preston Tube Probe 

A flat-mouth preston tube was used to evaluate the wall shear. 

When the tip of such probe touches a wall, it measures an overpressure 

. (11) (12) 
gIven by: ' 

p - p = p w 
K 

d
2 J t s 

2 
p u do 

where S is the area of the opening of the probe and d is its cha racter-

istic height and the calibration factor K is a function of the shape of 

the probe and the velocity profile. In the case of similarity profiles, 

for which u/u
T 

= f(u
T 

Y /v), K becomes a function only of the shape and 

u d Iv. In the present situation, similarity profiles do not exist becaus e 

of the curvatu re effect and the as sociated pres sure gradients. Hence, 
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no siITlple calibration can be provided for the desired K. To overCOITle 

this probleITl, it was decided to use a probe which will be fully sub-

ITlerged in the linear portion of the viscous sublayer. Therein, the 

velocity is given by: 

u 
u ,. = 

\! 
y 

and the calibration factor K can be considered as a constant. 

The thickness of the viscous sublayer can be estiITlated froITl 

the results of a siITlilarity-law fit to the plain floor boundary layer 

profiles (Section III. 2). For exaITlple, for T = 0.25", u,. = 0.6 ITl/sec. 

Hence: 

y = O. 001 y+ 

If the viscous sublayer extends up to y+ = 5, say, its edge is 

0.005 11 above the surface. 

But, froITl the results of the previous section, wall shear is 

expected to reach a ITlaxiITluITl at or near the crest. This ITlaxiITluITl 

is accoITlpanied by the thinning of the sublayer. To estiITlate the ITlin-

iITluITl thickness of the sublayer, wall shear distribution ITleasured 

by Kendall (Figure 15 of Ref. (7)) is used. There it was found that 

the ITlaxiITluITl value of C/C
f 

is 1. 3. But, for y+ = 5: 
o 

Yl u ,. 
= --

Y uTI 
1 

= (C/C f 
)2 

1 

""" 0.877 
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Hence the smallest sublayer thickness is expected to be: 

Ymin = 0.0044 11 

Finally, an evaluation is made of the effect of streamwise pres-

sure gradient on the deviation from a linear laminar sublayer profile. 

In the sublayer (cf. (11), (12»: 

u = 
'T" 

w + 1 ~ 2 
p v y 2pv dx Y + ..• 

which can be rewritten in a non-dimensional form as: 

u 
u'T" 

= + [ 1 Y 1 + AU 
4 __ 'T" 

V 

d CPw + ] 
y + ... 

d ( ~ )_t~;: ' 

The most severe case is WW2, with A = 6 11
• There, based on a 

flat floor friction velocity: 

-- = 6000 v 

the normalized wall pres sure gradient parameter, from Figure (17) 

is: 

dCp 
w 

= 1.2 

+ At the edge of the viscous sub1ayer (y = 5) we find 

1 
AU 

4 _'T"_ 
V 

= 
1 

4000 

Hence, the nonlinear term can be neglected compared to the leading, 

+ linear one, for y < 5. 
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The probe was designed to have the upper edge of its opening 

less than 0.0044" from the wall. Its general dimensions and a com-

parator picture of its front end are given in Figure (23). 

Method of Measurement 

Becaus e of the large variation in wall static pres sure, the 

measurements were obtained by recording the pressure difference 

(p -p ) at each station that has a static pressure port. At each 
p w 

station, the tip of the probe was aligned on a normal to the flow direc-

tion at a distance O. 7" to the side of the static port. The measuring 

schematic of Figure (6) was used, with the Preston tube connected to 

one side of the transducer and the wall port to the other. This arrange-

ment is shown in Figure (23c). 

The calibration of the probe was made on the plain floor, under 

the same conditions used for the measurement of the reference velocity 

profiles. The value measured is given by: 

= K II 2 -Z z p u da 
d S 

= 
2 

.!S....e... (au) J y2 da 
2 d 2 ay w, 0 S 

K I P <::l 2 2 
(~) d 

2 ay w, 0 
= 

This can be rewritten in a non-dimensional form 

2 
(p -p ) d 

P w 0 

2 
P v 

= 

which is a linear form of Preston's (14) original expression: 
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P -p ) d 

P w 0 

2 
pV 
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= 

Therefore, the ratio of skin friction coefficients becoznes 

= 
T 

w 
T 

w 
o 

The sensitivity of the pressure difference (p -p ) to the inclina­
p w 

tion angle of the probe was exaznined in the range 0 ~ ~ ~ 8°. The re-

suIts given in Figure (23), show alznost no change in this range. 

The znagnitude of change in p caused by the proxiznity of the 
w 

probe was also zneasured on the plain floor. The probe was znoved 

acros s the boundary layer until it touched the floor and changes in 

p were recorded. The corresponding changes in Cp are also shown 
w w 

in Figure (23). Since 6 Cp /Cp is less than 2%, no correction for 
w p 

this effect was incorporated in the data reduction. 

A few factors znake this zneasureznent difficult and sus ceptible 

to errors. 1) At the slopes, where dp /dx is large, sznall deviations 
w 

of the tip of the probe, frozn the transverse line, can cause appreciable 

error. 2) At the valley, optical inspection of the orientation of the 

probe at the surface was iznpossible. 3) Turning the flow on and off 

znany tiznes during the test can cause changes in U . 
o 

Measureznents 

Wave No. 3 of the two znodels, and its vicinity, was surveyed 

with all of the boundary layer trips. As will be shown below, WW2 

gave an unusual wall shear distribution. In order to gain confidence 

in this peculiar behavior, four additional static pressure ports were 
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fixed between the existing ones. The results, in a non-dimensional 

form C/C
f 

are presented in Figure (24). 
o 

The scatter in the data is large, reflecting the difficulties 

mentioned above. Therefore, no consistent trend of the effect of 

boundary layer height can be discerned from the present results. 

Nevertheless, the shape and phase angles of the wall stress distribu-

tion are apparent. 

WWl: The wall stress reaches a peak with C/C
f 

= 1. 18 and 
o 

a phase shift of 45° upwind of the crest. The minimum value is 

C/C
f 

= 0.63, with a phase shift of 30° upwind of the trough. 
o 

WW2: The maximum wall stress is C/Cf = 1. 25, a phase shift 
o 

of 20° upwind of the crest. Proceeding downwind, the curve declines 

sharply to a value of 0.7, at about 50° downwind of the crest. At the 

center of the downhill slope, a second, low peak is observed, followed 

by a gradual increase, from a value of O. 65, along the uphill slope to 

the next peak. 

* Kendall found a b('havior similar to that of WW2 in an un-

published extension of his moving wave experiment.(7) This occurred 

with waves moving into the wind, hence increasing wall pressure 

gradients. 

The wall shear curves have been integrated to find the skin 

friction drag coefficient defined by: 

= .!. J A C dx 
CDf A 0 p 

(cos y''''''I) 

The results are: 

WWl: CD = 0.0027 
f 

WW2: CD = O. 0028 
f 

* Kendall, J. M. Jr.: Private Communication 
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The results so far, including wall pressure, shear stress and 

velocity profiles, do not show a significant effect of the ratio 6/)",. It 

was therefore decided to proceed and do the flow field surveys with one 

boundary layer trip only. T = 0.5 11 was chosen arbitrarily for the rest 

of the test. 

IV. 4. Static Pressure Survey 

The distribution of static pressure along the surface of the wavy 

walls was described in Section IV. 1. Here the technique and results 

of the static pressure survey within the boundary layer are reported. 

The knowledge of the distribution acros s the boundary layer is of 

importance, since its gradients considerably alter the velocity profiles. 

The measurement of static pressure in non-uniform flow fields 

is known to be difficult. In the present investigation this difficulty is 

amplified because of the curvature of the streamlines and the conse­

quent changes in the turbulent quantities. It was decided, therefore, 

to try three possible probes and find which of them demonstrates mini­

mum sensitivity to flow direction and turbulence. 

The calibrations of the three probes, whose forms are described 

below, was carried out in two steps: 

(i) Calibration in the free stream to find sensitivity to 

airspeed or to Reynolds number. This was accomplished 

with plain floor, using boundary layer trip T = 0.50", 

and with the probe oriented along the cente rline at STN 6. 

(ii) Calibration in the boundary layer in order to determine 

the effect of turbulence and of the proximity of a solid 

wall on the probe reading. Again, this was accomplished 
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using the plain floor, tilted to provide constant pressure 

for boundary layer trip T = O. 50". Recall that Figure 

(13c) describes the average velocity and turbulence level 

for these test conditions. 

Disc Probe 

This probe is recoITlITlended by Bryer et. al. (15) for survey of 

two-diITlensional flow fields where the direction of flow is not well 

known. Results of calibration of such probe (Figure 12 of (15)) show 

that it ITleasures Cp = -0.12 and that this value reITlains alITlost con­
ITl 

stant for angles of attack in the range ± 20° . 

The probe that was tried in the present test is described in the 

upper part of Figure (25). It was aligned carefully along the centerline 

of the test section, with its plane perpendicular to the floor. 

Results of the calibration in free streaITl are shown in the lower 

part of Figure (25). The average ITleasured pressure coefficient is 

Cp = -0. 14, and the deviations do not exceed ± O. 003 in Cp . 
ITl ITl 

The results of pres su re coefficient, ITleasured within the bound-

ary layer are presented in two forITls: The first is norITlalized by edge 

velocity U and the second by local velocity U 
o 

(1) CPITl 0 , = 
P-Po 

~U2 
2" P 0 

(2) C = P -Po 
PITl ~ 1 -2 

I 2" P U 

The dependence of these two coefficients on the height above 

the surface is plotted in Figure (26). The velocity profile of the bound-

ary layer is also shown for reference. We observe that the two curves 
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have a strong gradient near the wall, which reflect interference. The 

Cp curve grows monotonically toward the free stream value outside 
m, 0 

the boundary layer, while Cp ~ has a peak at h = 0.5" which is appar-
m, AI 

ently caused by the turbulence. 

Sphere Probe 

This probe consists of 1/8" diameter sphere with four equally 

distributed pres sure taps inclined at 42° with respect to the free stream 

direction. The inclination angle of 42° was chosen because the surface 

p res sure vanishes at that location for subcritical Reynolds numbers .(16) 

Indeed, calibration in free stream (Figure (27» shows almost 

zero pres sure coefficient. Actual values range from Cp = -0.001 at 
m 

U = 7.5 m/sec to Cp = 0.003 at U = 15.7 m/sec. 
o m 0 

Calibration inside a boundary layer (Figure (28» shows a strong 

gradient near the wall, a plateau of Cp = O. 032 that ranges from 
m 

h = o. 9" to h = 2. 0", and a gradual decrease toward the free stream 

value for h > 5. 0". 

Needle Probe 

This is a sting type static pressure probe constructed from 

0.042" O. D. tubing. It has a rounded nose and three pressure taps 

located at a distance t = 10d from the front end. It is described in 

Figure (29). 

Results of the free stream calibration show that the measured 

pressure coefficient is 0.0075 independent of velocity. 

Next, the probe was tried inside the boundary layer, with its 

axis parallel to the floor. The results (Figure (30» show erratic 
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variations across the layer, but the changes about the average value 

of Cp = O. 0055 do not exceed 6 Cp = ± O. 002. This range of 
m m 

variation is tolerable in use. 

From what was des cribed above. it is clear that the needle 

static probe gave the best performance by being less sensitive than 

the other two probes to turbulence and proximity of the wall. 

The final test for this probe was to find its sensitivity to incli­

nation of the flow. This was done for angles of attack of +5° and -5°. 

The results of this test are shown in Figure (30). We observe from 

the plots the same unpredicted variation across the boundary layer as 

in the zero angle of attack case. The average values of pressure co-

efficient are: 

e CPm 

-5 .003 

0 . 0055 

+5 .008 

The s ca tter I in all cases, is ± O. 0002 about the average. But 

the differences between the averages and the scatter are small enough 

to permit the use of this probe in the present test. 

Results 

The surveys were obtained at the standard four stations for 

the two models with T = 0.5". The needle probe was aligned with its 

measuring holes at the desired station at an angle which is the average 

between the local wall slope and free stream direction. By so doing, 

it is assured that the relative angle between the probe and the local 

flow does not exceed 4. 5° . 
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The results, normalized to a form of static pressure coeffi-

cient, are shown in Figure (31) for the two models. The following 

observations are made: 

(i) For the two models and the two stations where Cp = 0, 
w 

the static pressure remains nearly zero over the entire layer, reach-

ing a value of -0.01 or less in the free stream. 

(ii) WWl: At the trough station a layer of constant static 

pressure O. IS" in height is observed. Proceeding the static pressure 

declines until above h = 0.55" it decays exponentially. At the crest, 

the layer of constant static pressure is O. OS" thick, followed almost 

immediat ely by exponential decay. 

(iii) WW2: No tendency to form a layer of constant static 

pressure near the wall is observed for this model. Static pressure 

curves decay exponentially above O. 35 II distance from the wall at the 

trough and 0.25" distance from the wall at the crest. 

Because of the observed exponential form of the pressure curves 

away from the wall, a curve fit was obtained whose form was chosen 

from the uniform, inviscid solution for flow over a wavy surface. 

Corrections made for the actual reduced amplitude of the wall pressure 

and for the existence of a layer of constant pres sure near the wall, 

yielding the function 

-a(y-A) 
Cp (y) = Cp e 

s w 

where a = 2-rr/)... and A is a parameter to be optimized for least square 

deviation. Only data points with y > 0.5" were included in the curve 

fitting. The results are shown togethe r with the data in Figure (31). 

The values found for A are: 



Model 

WW1 

WW1 

WW2 

WW2 

STN 

(2 ) 

(4 ) 

(2 ) 

(4 ) 
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A in. 

0.45 

O. 12 

0.20 

O. 10 

Note that the values of A are very close to the displacement 

thickness of the boundary layer at the same locations. 

IV. 5. Total Pres sure Survey 

In principle, knowing both the velocity and the static pres sure 

distributions acros s the flow field, one can determine the total pres-

sure using Bernouli's equation. Even so, it was decided to measure 

the total pressure because direct measurement is more accurate and 

can provide a check for the quality of the static pressure. 

In order to get good resolution, a flat mouth Pitot tube was 

used with opening 0.010" high. Measurements were made with p as 
o 

reference. The two models with T = O. 5 ", were surveyed, each 

at the standard four stations. 

The analysis of the results of the total pressure survey are 

given in the next chapter. Here they are used to check the static 

pressure distributions discussed above. 

Check of the Static Pressure Distribution 

A non-dimensional form of Bernoulli's equation for a point 

in the flow field is 
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= Cp + (D/U )2 
s 0 

Therefore, a cOITlparison is ITlade between the direct ITleasure-

- 2 
ITlent of CPt and the value calculated froITl the SUITl Cps + (U /U 0) . 

(Sections IV. 4. and IV. 2.). Two typical plots are given in Figure (32). 

It is observed that the differences do not exceed O. 025 out of 1. O. All 

other cases show the saITle accuracy or better, and therefore are not 

shown. 

IV.6. X -Array Probe Survey 

Probes 

The ITlain purpose of using an X-array hot-wire probe is to 

ITleasure Reynolds stres ses and related quantities, i. e. ITlixing length 

and eddy viscosity. 

DISA type 55A38 probes were used. The two sensors are 

1. 2 ITlITllong, 0.005ITlITl diaITlecer, Pt-plattedtungstenwires, placed In 

an X-array. Two probes were used during the investigation. One, 

a standard 55A38, was used to survey the flat plate and WWl. For 

WW2 a special probe with bent prongs was built in order to allow 

ITleasureITlent very close to the wall without exceeding the range of 

linearity. This special probe has the saITle sensors as the standard 

one and is shown in Figure (33). 

The s cheITlatic of ITleasureITlent is shown in Figure (34). Two 

channels, each containing DISA aneITloITleter and linearizer are used 

for the two sensors. In addition, a DISA RandoITl Signal Analyzer and 

Correlator is used to produce the SUITl and difference of the turbulence 
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signals. Two RMS units are used, in turns, to record four signals: 

]';1' E"'2'E"'s = (E 1 +E 2 ), Ed =(E~Ez)' Details about the utilization 

and calibration of the probes are presented in Appendix A. 

If the calibration constants of the probes are defined by 

El = Au + Bv 

E2 = Cu - Dv 

where E I , E2 are the linearized outputs in volts and u, v are the axial 

and normal velocity components in m/sec., then their results of the 

calibration gives; 

Probe: X-I 

Calibration constants: A = 0.402 

C = 0.399 

Range of linearity: ± 23 0 

Probe: X-S 

Calibration constants: A = 0.462 

D = 0.457 

Range of linearity: + 23 0
, _200 

Stations of Survey 

B = 0.556 

D = 0.423 

B = 0.475 

D = 0.490 

Data presented above showed a strong modulation of the flow 

quantities over the wavy wall models. Therefore, it was decided to 

increase the number of stations of survey for the present measurement. 

The boundary layer was surveyed at eight stations, four of which are 

the standard stations, and the remaining four are interspersed between 

them. In this way, a more complete picture of the flow field, including 
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the distributions of the turbulent quantities is obtained. 

Comparison with the Results of a Single Element Probe 

Because of the tedious process of calibration of the X-array 

probes, the results are compared with those obtained by a single 

element probe (Section IV. 2. ) in order to gain confidence in the 

accuracy of the present measurements. Five sample cases are shown 

in Figure (35). The first one is the flat plate case, and the other four 

are the standard stations of survey for WWl. The two velocity com-

ponents, and the turbulent quantities U', V' and u I v I are shown on a 

log (y) scale as inSection IV.2. The following observations are made: 

(i) Longitudinal velocity component, U, and turbulence 

intensity, U~ differ by no more than 5,% of their maximum values from 

their counterparts Q and Q I measured with a single element probe. 

In spite of these small differences, the two curves always show the 

same trends. 

(ii) Normal velocity component, V, is practically zero in the 

case of the plain floor, and at the crest and trough stations of the wavy 

wall, as expected. At the downhill and uphill stations, V has negative 

and positive values respectively, that diminish tm,\,lrn the edge of the 

boundary layer. The ratio V tIT near the wall agrees with the local 

surface inclination. 

(iii) For the case of the plain floor the Reynolds stress is 

constant near the wall with a value 

-'-'/1 u2 
uv Z:P 0= 0.00298 
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This value is in good agreement with the wall shear coefficient 

C
f 

= 0.00306 found in Section III. 2. by fitting Cole's Law of the Wake 

to the velocity profiles. 

Turbulent Intensities 

The results of the measurements of the two turbulent intensities, 

v' and V', are presented in Figure (37). The distributions of the 

turbulence intensities and the shear stress that will be discussed in 

the following section, exhibit oscillations of damped amplitude super-

imposed on the reference flat plate boundary layer distributions. This 

wave phenomena will be related in Section V. 5. to the Rayleigh prob-

lem. Here, the important findings are summarized. 

(i) At distances exceeding 1. 2" for WWI and 0.6" for WW2, 

above the line connecting the centers of the waves, the two turbulence 

intensities are practically independent of the station along the surface 

wave and are given by the reference case. The changes in these quan-

tities are large near the wall and decay as the outer layer is approached. 

Qualitatively, the changes are the same for the two models, but it is 

apparent that the normal gradients in WW2 are larger than those in 

WWl. 

(ii) In the vicinity of the trough, the normal distributions of V' 

increase with increasing y, reaching a peak for which V' lu = 0.05 at 
o 

y = O. 17" for WWl and y = O. 12" for WW2. With incre~sing y, the 

curves undershoot the reference curves and then merge into the unper-

turbed distributions. On the uphill slope of the models V' increases 

very close to the wall. This trend is strongest just behind the crest, 
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where a value Vi lu = 0.05 is measured at the points closest to the 
o 

wall. This local maximum again approaches the reference distribution 

in an 0 sci lla to ry manne r. 

(iii) In the vicinity of the wall, the oscillatory behavior of U ' is 

I 
more pronounced than that of V. The distributions reach a peak near 

the wall at the station just downstream of the crest. The maximum 

measured values are U'IU = 0.130 for WW2. Proceeding outward 
o 

at the same station, the distributions decrease below the reference 

value, form a second peak and then merge into the reference distribu-

tion. Further downstream, on the downhill slope, the peak closest to 

the wall flattens somewhat and the intensity is reduced. At the trough, 

a flat maximum with U' Iu = O. 11 is found at a distance y = O. 25" for 
o 

WWl and y = 0.16 11 for WW2. 

Turbulent Shear Stres s 

The turbulent shear stress distributions given in Figure (38) 

show large variations across the layer as well as along the wall wave. 

The oscillatory nature of the normal distributions is apparent at all 

stations; the amplitude of oscillation about the reference curve being 

much larger than noted for the turbulent intensities in each cas e. 

(i) As in the case of the turbulent intensities, the shear stress 

distribution is practically independent of longitudinal position at dis-

tances exceeding 1. 2" for WW 1 and O. 6 II for WW2, above the mean 

sur face line. Again, the two models show simila r trends but the layer 

of strongest variations in C']" is appreciably thinner in the case of WW2 

than that of WWl. 
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(ii) The downhill slope of the wave is characterized by a layer 

of high shear stres s near the wall, followed by a damped os cillatory 

behavior with increasing y. Just downstream of the crest, the maxi-

mum measured C
T 

= O. 0072 is found adjacent to the wall. Further 

downstream the layer thickens until at the trough it is O. 5" wide with 

a peak value C = O. 005. At the next station a rapid change takes 
T 

place, i. e. the layer exhibits a reversed curvature forming an S shape 

distribution adjacent to the wall. This profile evolves on the uphill 

slope into a dip; i. e. C
T 

""" 0 close to the wall, followed by a shallow 

peak. At the crest, the dip begins to flatten, and it is followed by a 

rapid change from a dip to an overstress layer at STN (4i). 

Mixing Length and Eddy Vis cosity 

The mixing length is defined by the equation 

_ u'v' = 1,2 (~ 

Hence, for the evaluation of1" aU / oy must be computed from the data. 

In order to overcome the difficulty associated with differentiating ex-

perimental data, smoothing was introduced graphically for y > I". In 

addition, in the vicinity of the crest the velocity profiles exhibit a flat 

maximum near the edge of the layer. Because the derivative vanishes 

there, causing unacceptable errors, this part of the data was ignored 

in the evaluation of the mixing length. 

In order to determine the effect of curvature on the distribution 

of mixing length, Sawyer's(5) theory was used. The essentials of this 

theory, and an attempt to evaluate the empirical constant k are given 

in Appendix B. Sawyer's expression can be written as 
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Since the results of Appendix B are not conclusive, the value 

k = 10 was chosen arbitrarily for computations. As will be explained 

in detail below, the correction for curvature is not large, therefore 

the choice of k is not critical. For the computations, local radii of 

curvature of the mean streamlines were evaluated graphically from 

Figure (41). 

The results are shown in Figure (39), on which the following 

summary is based: 

(i) The distribution of t near the wall is linear, as in the 

case of the flat plate, for only part of the stations. For the others, 

mainly those in the vicinity of the crest, the function oscillates, 

showing different trends at different stations. Hence, there is some 

uncertainty in the evaluation of the slopes of the t-vs -y curves near 

the wall. In spite of this uncertainty it is apparent that the slopes are 

appreciably larger in the vicinity of the crest than in the vicinity of 

the trough. 

(ii) On the uphill slope of the wave, and at the crest, t is nearly 

zero for y < 0.08", reflecting the low shear stress in that zone. 

(iii) The mixing length is modulated in the outer layer as well 

as in the vicinity of the wall. Typically, at the trough t/6 = O. 07, 

while at the crest t/ {) = o. 16. Note that for the reference profile, a 

value t/6 = 0.10 was found in the outer layer. 

c') Sawyer's theory was applied at the crest and at the trough 

only, since for the remaining stations the wall curvature is small 
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enough to make the correction unimportant. 

At the trough the slope of J., -vs -y near the wall is 15% larger 
s 

than that of J., -vs -y, for the two models. 

At the crest Sawyer IS analysis can be applied only to the first 

two data points for WWl, because at all the other points it was found 

that aU/ay < k UIR, even for k = 5, thus predicting negative J., , which 
s 

is meaningless. 

Eddy vis cosity is defined by the equation 

-,-, aU 
- u v = 8-ay 

The results of the computation of eddy viscosity are presented in a 

non-dimensional form 8 Iv-vs -y in Figure (40). The modulation of the 

eddy viscosity distributions, which is apparent near the wall and in 

the outer layer, is similar to the modulation of the mixing length. 

The values of 8 Iv = 140 at the trough and 8 Iv = 300 at the crest are 

found in the outer layer of WWl. For WW2, the values are 8/v = 230 

at the crest. 
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V. ANALYSIS OF TIIE RESULTS 

V.1. Boundary Layer Thicknesses, Shape Factor and Stream Lines 

The common definitions of flat plate boundary layer thicknesses 

fail to des cribe the situation over a wavy wall. The reason is that u 
e 

loses its meaning, since inviscid theory predicts velocity perturba-

tions across the flow field. Definition of boundary layer thickness, 6, 

as the distance where ulu reaches a certain value (0. 995, say) is not 
e 

valid. Also, as will be discussed below, the velocity profiles do not 

obey the Law of the Wake and hence the technique used in Section III. 2. 

cannot be applied here to evaluate 6. Becaus e of the lack of a better 

way, a definition based on the turbulence level was adopted for the 

present case. The turbulence level Q I IU , at y = 6, for the reference 
o 

profiles (Chapter Ill) was found from Figure (13), and for the wavy 

wa1l profiles 6 is determined as the distance from the wa1l where 

turbulence level reaches the same value as the corresponding ref~r-

ence profiles. The results are summarized in the table on page 47. 

It is found that at the two slopes, boundary layer thickness is within 

O. 1" from the reference profile. At the crest, it is from O. 111 to O. 3" 

thinner, while at the trough O. 1" to O. 3'1 thicker. 

As mentioned above, the usual definition of displacement thick-

ness and momentum thickness do not describe properly the situation 

over a wavy wall, since u is not a constant. 
e 

To account for this, 

wi1l be replaced by a reference velocity, u , which is the invis cid 
r 

u e 

local velocity, modified for the fact that the actual wall pressure is 

lower than predicted by inviscid theory. 
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u = U (1 + 6 u e- 2rry/A ) 
r o w 

Cp 
6u = w U 

w -2-
0 

u = U o (1 + C;w e -2rry IA) 
r 

Here measured value of Cp (Section IV. 1. ) is used rather 
w 

than theoretical. 

The displacement thicknes s and momentum thicknes s take the 

form 

0* 
0 

= J (u -u)dy lu 
oro 

o 2 
8 = J u(u -u)dy IU 

oro 

The velocity profiles, as obtained by a single-wire probe 

(Section IV. 2), were integrated numerically to yield the location of 

the streamlines and the integral thicknesses defined above. The 

* results, together with the form factor H = 0 18, are summarized in 

the following tables. The same was done for data obtained by the 

X-array probe, for T = 0.5". 
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WW 1 

10REF. 
, )" 

I T STN ° 
° ,. e H 

i i' ! I 
1 1 1. 58 0.253 • 0.180 1. 41 I 

I 

2 1. 82 I 0.401 i 0.243 1. 65 
0.05 1. 50 3 1. 60 i 0.252 

I 
0.190 1. 33 

4 1. 43 ; 0.217 0.190 1. 14 
I I I 

I , 2.40 0.298 I 0.219 

I 
1. 36 J. 

0.25 2.43 2 2.53 0.415 I 0.258 1. 61 
I 3 2.40 0.306 0.234 1. 31 

I I 
4 2.25 0.307 O. 271 1. 13 

I I 1 

I 
3.38 0.377 0.290 1. 30 

2 3. 70 0.467 0.308 1. 52 O. 50 3.41 
3 3.43 0.365 0.291 1. 25 
4 3. 10 0.364 0.327 1. 11 

WW2 

I I 
I STN I I 0* 

, 
T °REF. ° i 

e H 

I 
,-

I 2.00 

I 
0.266 O. 192 1. 39 

I 0.25 ! 1. 96 
2 2.26 0.368 0.237 1. 55 

! 3 2.03 0.275 0.210 I 1. 31 

I 4 1. 85 0.251 I 0.206 I 1. 24 , ! .- ,-----

! 
I 1 3.06 0.336 ' 0.250 1. 31 , 

2 ! 3.26 0.454 0.313 
I 

1. 45 0.50 3.08 I 

I , 
0.264 1. 26 I 3 3. 10 0.333 

4 2.80 0.302 0.258 1. 19 

1 3. 70 0.466 0.354 1. 32 

O. 75 3. 70 2 3.88 0.554 0.380 1. 46 
3 3.74 0.455 0.357 1. 28 
4 3.50 0.414 0.347 1. 19 

Boundary Layer Thicknesses and Shape Factor 

(All dimensions are in inches) 
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The results are presented in Figure (40) where the shape of 

the streaITllines and the boundary layer thicknesses are shown. The 

ITlost iITlportant obs ervations are: 

(i) The shape of the streaITllines can be traced for T = 0.5 11 

only, because only in this case data exist for eight stations of survey. 

It is clearly seen that the aITlplitude of the streaITllines decreases 

rapidly froITl that at the wall to alITlost zero at the edge of the boundary 

layer. 

(ii) The aITlplitude of the displaceITlent line is sITlaller than 

that of the wall itself, reflecting the appreciable changes in the shape 

of the velocity profiles along the wavy wall. 

(iii) The line defining the edge of the boundary layer is practi­

cally straight for WW2 with all trip heights. For WWl, this line is 

practically straight for the thick boundary layer case (T = 0.75") 

only. For the other two cases, sITlall aITlplitude is observed. 

V.2. Conservation of MOITlentuITl 

In Section IV. 2. a check for two-diITlensionality of the flow 

field was repo rted. based on a cOITlparison of the cente rline velocity 

profiles and those 4"off the centerline of the test stations. Here, an 

additional test is presented, based on the conservation of ITlOITlentUITl 

along one surface wave. Noting that the contribution of the skin 

friction along one wave is sITlall cOITlpared to the ITlOITlentUITl flux in 

the boundary layer, i. e .• that it is cOITlparable with the experiITlental 

error involved in the ITleasureITlents of velocity and pressure, there­

fore the skin friction ignored in the ITlOITlentUITl balance. 
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The following contour is chosen as a control volume. 

'--T----;&·L.· 
I I 
I I 
I ~ I 
I 

~ J ____ »>ht\l;m ---
/. A,V/7 

I-><~ 

The upper bound is the streamline pas sing the edge of the boundary 

layer at STN(I). In section V. 1. i it was shown that for T = 0.5 11 

this streamline is nearly straight, and parallel to the line connecting 

the centers of the wall wave. Hence, there is no contribution to the 

x-momentum from this surface of the control volume. 

The momentum balance is given by 

~ p. dy = f pu. u dy 

Ignoring the diffe rences between U and Q one finds 

Let: 

h h 

J - 2 1 r 
I = (U / U) dy' I = - J C dy' 1 0'2 z p' 

o 0 

x s 

13 = J C dy, 
o Pw 

where h is the height defined in the sketch. 

We will compare the sum II + 12 + 13 at three stations with 

I 1 at S TN ( 1 ). 
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WWI 

STN I 2 3 4 

II 2.67 2.54 2.74 2.82 

12 0 O. 18 0 -0.19 

13 0 -0. 03 0 O. 02 

L) 2.67 2. 69 2.74 2.65 

WW2 

STN 1 2 3 4 

II 2.44 2.41 2.56 2.49 

12 0 O. 08 0 -0. 10 

13 0 -0. 02 0 0.01 

~ 2.44 2.47 2.56 2.40 

The maximum deviations from the values at STN(1) do not ex­

ceed 4% and hence it is concluded that the flow is two-dimensional 

within the accuracy of the measurements. 

V.3. Validity of Ludwig and Tillmann Skin Friction Law 

The Ludwig and Tillmann skin friction law is one of the most 

commonly used in the study of turbulent boundary layers. This em­

pirical law is based on measurements in boundary layers over flat 

plates. It relates the local skin friction to the form factor and 

Reynolds number based on momentum thickness by the equation 

= 0.246 Re e-
O' 268 10-0.678H 

Since this is a local law, it is expected to be valid only for 

equilibrium flow. Nevertheless, it was decided to examine its 
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applicability to the present test conditions. The needed data (H and e) 

were taken from the tables of the previous section. The results, 

normalized by the reference profiles skin friction coefficient, together 

with the measured values (Section IV. 3. ) are presented in Figure (42). 

Since only four data pOints are available along a surface wave, 

the comparison is not conclusive. Nevertheless, it is apparent that 

the Ludwig and Tillmann formula predicts properly the magnitude of 

the change in wall shear, but fails to predict the phase shift in the 

shear distribution, especially on the downhill slope of the wave. 

V.4. Law of the Wall 

The widely used Coles .(9) Law of the Wall is given by the 

equation 

u 

u,. = 

with the constants C = 5. 0 and Ie = O. 41. 

The foundation of this law is the functional and dimensional 

analysis given by Millikan. (1 7) It is based on the following observa-

tions for constant pressure boundary layer; 

u-u 
e 

u,. 
u 

u,. 

= velocity defect in outer layer 

= g (u~ y) velocity in the viscous layer 

There exists a region of overlap, where the two expressions are valid. 

The equivalence of the velocity profiles given by f(y/o) and by 

g (y u,. Iv) in this intermediate region generates the above mentioned 

law. 
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In the present situation, another length parameter (A) exists 

and hence the functional analysis given above is not expected to be 

valid. 

Nevertheless, the velocity profiles (Figures (19) and (36) ) 

do show semilogarithmic sections at distances typically ranging from 

0.3" to 1" of distance from the wall. In most cases, this semiloga-

rithmic section can be traced without ambiguity, as shown by the 

slopes traced in Figure (36). Only in a few cases in WWI this section 

is either so short or the waviness in the data is so large, that some un-

certainty is caused in the determination of the slope. Note that within 

the range of distances from the wall, where the semilogarithmic 

section exists, the characteristic waviness in the distributions of 

C
T 

is still apparent for WWI and almost completely decayed for 

WW2. Indeed, most of the difficulties in the determination of the 

slopes are associated with WW l. 

In the case of a flat plate, the von K~rm~n constant K in the 

Law of the Wall is also the slope of the mixing length distribution near 

the wall. The existence of such relation for the present situation was 

examined. 

Let the semilogarithmic portion of the velocity profiles be 

described by the equation 

u 
u 

T 

= * 1 (YU) 
C +a0n v

T 

The distribution of a along the surface wave was determined 

from the measured velocity profiles and wall shear distribution and 

is summarized in Figure (43). 
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The mixing length distributions that were dis cussed in Section 

IV. 6. and presented in Figure (39) are linear near the wall for part 

of the stations of survey. Let such linear part in the t-vs -y curves 

be given by 

t = O'y 

Wherever possible, the slope 0' was measured and the result plotted 

in Figure (43), from which the following is observed: 

(i) The agreement between 0 based on velocity profiles and u
T 

and 0' based on mixing length distribution is good. 

(ii) The maximum value of 0 is reached at the crest and is 

o = 0.95 for WWl and 0 = 0.66 for WW2. The minimum is obtained 

at the trough and is 0 = O. 20 for the two "models. 

(iii) For the two models, 0 = K: at, or close to, the inflection 

points of the surface wave. 

V.5. Analysis of Total Pressure and Total Velocity 

The results of Section IV. 2. and IV. 6. show that most of the 

turbulent action (i. e. production, dissipation and conduction) take 

place in the wall layer. It is suggested, therefore, that the outer 

part of the layer be treated as inviscid. In order to check this assump-

tion, the variation of the total pressure along streamlines is studied. 

The stream function in the form V IU is found by integration 
o 

of the velocity profiles of Section IV. 2. and the total pres sure from 

the results of Section IV. 5. . Using proper interpolation, the varia-

tions of CPt as a function of V/Uo were evaluated for the four stations 
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of survey fo r each of the lTIodels. The results are shown in Figure (44). 

It is found that outside the wall layer the profiles are allTIost identical, 

with differences that do not exceed acceptable experilTIental error. In 

particular, there is no trend for the total pressure to decrease along 

strealTIlines. 

This conclusion led to the analysis of the outer layer by using 

inviscid, non-uniforlTI flow slTIall perturbation technique. This analy-

sis is given in Appendix B. 

In the previous section it was noted that the Law of the Wall 

fails to apply in the present situation. The reason is the lTIodulation 

of the slope factor a along the surface wave caused by the distributions 

of static pressu reo It was decided, therefore, to seek a presentation 

of an equivalent velocity which is preserved along the strealTIlines. 

Based on the findings discussed above, a total velocity, based on total 

pressure, was defined by 

U
t -2 1-

= (U + 2(p _p )/p)2. 
S 0 

ut 1 

or = (2(Pt -po)/ p)a 

t -
Note that U is reduced to U where Ps = Po' that is for the case of 

the flat plate and at STN(l) and STN(3). 

Total velocity profiles were cOlTIputed and Coles I Law of the 

Wake was fitted to thelTI. The results are shown in Figure (46). It 

is found that, indeed, total velocity profiles obey the Law of the Wake 

at all four stations of survey. The paralTIeters of silTIilarity are SUlTI-

ITIarized below. Note, however, that u
T 

does not have the lTIeaning 

of friction velocity, and serves only as a norlTIalizing paralTIeter. 
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-Model STN u iT 6 ,. 
in. m./sec 

1 . 61 · 15 3. 15 

WWl 
2 .59 .30 3.26 
3 .60 · 18 3.18 
4 .62 · 03 3.00 

1 .61 · 16 2.81 

WW2 2 .59 .35 2.89 
3 . 61 .12 2.94 
4 .63 .02 2.68 

Note that com.pared to the reference profiles (Section III. 2. ), 

u,. is decreased at the trough and increased at the crest, while 'iT is 

increased at the trough and decreased at the crest. This phenom.ena 

is caused by the stretching of stream.tubes near the trough and their 

contraction near the crest. 

The sam.e finding can be seen by plotting the velocity and total 

velocity profiles on log-log chart. This presentation is aim.ed at 

exam.ining the applicability of the power law to these profiles. The 

plots are shown in Figure (46) for the two m.odels with T = 0.5 11
• It 

is found, as before, that the two profiles at STN(l) and STN(3) are 

practically identical and obey the power law. At the other two stations, 

nam.ely the crest and the trough, only total velocity profiles behave 

according to this law. The exponent n in the power law was found 

graphically and is: 

= 
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STN 
n 

WW1 WW2 

1 8.6 7.5 
2 6.9 6.3 
3 7.9 8.2 
4 9.2 8.6 

V. 6. The Wall Layer 

The distributions of turbulent shear stress and intensities 

near the wall (Section IV. 6. ) show a wavy structure with amplitudes 

decreasing toward the edge of the boundary layer. This phenomenon 

resembles that of a flow near an oscillating flat plate known as 

Rayleigh problem (i. e. (18\ In the present problem the wall is 

stationary but the wall layer is subjected to alternating pres sure, 

and must match its edge velocity to that of the outer layer. The 

analysis of the outer layer presented in Appendix B shows that the 

perturbations in velocity at a distance y = O. 2" from the wall are 

t::,u = ± O. 15 U. This alternating matching condition induces the 
o 

wavy structure of the turbulence quantities. 

In Section IV. 6. it was mentioned that the wave phenomenon 

is practically decayed at distances above the wall of 1. 2" for WWl 

and 0.6" for WW2. 

The laminar rayleigh problem predicts no perturbation in 

shear stress at the wall for phase angles (/)1 = Tr/4 and (/)2 = 5Tr/4. 

Assuming that in the turbulent case there is no additional phase shift 

due to delay in the formation of turbulent quantities, these locations 
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correspond approximately to STN (Ii) and STN (3i) respectively. 

Half wave length of the shear wave near the wall was measured at 

these stations as the distance from the wall of the intersection be-

tween the reference and the local shear stress profiles. The average 

values found are 

WW 1: L 1 = o. 21 
a 

WW2: Ll = 0.33 a 

In some of the stations the wave form is pronounced away 

from the wall and the wave length can be evaluated without sacrifice 

in accuracy. The average values measured outside the layer of 

formation of the first wave are 

WW 1: L 1 = O. 55 
a 

WW2: Ll a = 0.35 

The predicted half wave length for the Rayleigh problem (18) is 

Kl = 2'TT'Yv/2n a 

where n is the angular velocity of oscillation. In the present problem 

n is replaced by 2'TT' U fA. and V is replaced by E: measured in the outer 
o 

layer of the reference profiles. The results are 

WWl: Kl = 0.49 
"2 

WW2: Kl = 0.34 
a 

The agreement between the measured and the predicted values is good. 

Note also that near the wall Ll is smaller than away from the wall, 
a 
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since the local e: is relatively low. 

As sociated with the alternating velocity that induces the wave 

phenomena in the wall layer is alternating longitudinal pres sure 

gradient. Clauser's (19) 13 parameter is intended solely to character-

ize the equilibrium boundary layers. Nevertheless, its local extreme 

values were evaluated in order to demonstrate the strength of the 

pressure gradients. 

= * o dp/dx 
T 

w 

For the present case, dp/dx is replaced by dp /dx. A1l the local 
w 

quantities are measured values. The results are: 

WWI: P. = 14.0, P. = -12.4 t-'max t-'min 

WW2: P. =31.4, P. =-24.0 t-'max t"min 

These values can cause appreciable changes in the shape 

factor H for equilibrium flow. Actually, as the table in Section V. 1. 

indicates, the changes do not exceed ± 0.25 in H. 

In Section IV. 6. it was shown that the trends in the changes 

in the distributions of u I and v' are similar to the changes in the 

distributions in C. However, near the wall the relative changes in 
T 

the turbulent shear stress are much larger than those of the velocities. 

Typically C changes by 100% with respect to the flat plate values near 
T 

the wall, while U I changes by ± 20% only. It is concluded therefore 

that the changes in velocity intensities is not a necessary condition 

for change in shear stress. This can be accomplished by change in 

correlation factor which, according to the findings is a rapid process. 
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V.7. Turbulent Shear Models for Flow Over Wavy Boundary 

One of the major objectives of the present investigation was to 

examine the validity of the assumptions and models currently used in 

the computation of turbulent boundary layers in the case of a wavy 

boundary. In the present section, a comparison is made between 

some of the models and the findings of the experiment. As in the 

introduction, this survey is based on the proceedings of AFOSR-IFP­

Stanford Conference. (1) 

Mixing Length and Eddy Vis cosity Model 

Cebesi -Smith Model 

In the wall layer this model assumes 

t = Kly(l-exp(-y/A')) 

1 

where Kl = 0.40 and A' = 26v(Tw/P+Y dp/dx/p)2:. This model ap-

proaches t = Kl Y at distances from the wall larger than the thickness 

of the viscous layer. 

In the outer layer the model as sumes 

€ = 

with K2 = 0.0168. 

In Section IV. 6. it was shown that the slope of the mixing 

length distributions near the wall varies appreciably along the surface 

wave. Therefore the inner model does not apply. The outer model 

predicts eddy viscosity which is proportional to 0* Actually the 

* present situation is reversed: € is large at the crest where 0 
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*. decreased and small in the trough where 0 Increased. 

Ene rgy Methods 

Bradshaw-Ferris Model 

This model relates the turbulent shear stress to the turbulent 

energy by the equation 

, , 
u v 

-z = O. 15 q 

which can be written in the following non-dimensional form 

C T = 0.30 q2/u 2 
o 

Qualitatively, it was observed that the changes in Care appre­
T 

ciably larger and more rapid than the changes in U' and V'. There-

"2 
fore, proportionality is not expected between C and q as assumed by 

T 

the model. To demonstrate this, the measured values of C
T 

are 

plotted vs q2 in Figure (47). Note that since w,2 was not measured 

2: -;c: -;z 
in the present test, q is approximated by the sum u + 2 v 

Figure (47) shows that indeed near the wall the deviation between the 

model and the actual measurements is appreciable. 

Note, however, that one aspect of this model seems to prevail 

in the outer layer; namely u'v' is converted without appreciable 

variations, even though the velocity profiles change measurably. 

Mellor-Herring Second Method 

This model relates the eddy viscosity to the mean turbulent 

energy. In the wall layer: 



2 
E: = __ -,Xl... __ 
V 550 + x/O. 16 
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where x = 

1 

(
-;[)2 

yq 

v 

For the outer layer the rrlOdel gives 

€ 

V = o. 029 Q 
V 

where 
00 

Q = I q' dy 
o 

The validity of the inner part of the model was checked 

by plotting the measured values of E: /v vs X. This presentation 

is shown in Figure (48) from which the following is observed: 

near the wall, the uphill and downhill stations give € /v distribu-

tion which deviate appreciably from that predicted by the model, 

but at larger distances from the wall they approach the model. 

On the other hand, the trough and crest stations give € /v distri-

bution which is close to the model near the wall, but deviate 

from it appreciably away from the wall. 

The changes in Q along the wall wave to not exceed 

± 5%, since the changes in q' distributions are restricted to 

the vicinity of the wall. On the other hand, the changes In 

the distributions of E: /V in the outer layer are as much as 

± 50% of the reference value. Hence, this model does not 

apply in the present case. 
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Hence, within the accuracy of the measurements, shear stres s is 

constant along streamlines. Therefore, the modulation of the mixing 

length and the eddy viscosity in the outer layer are caused solely by 

the changes in au/aYe In view of the facts that total velocity is con­

served along streamlines and that total velocity profiles obey Coles I 

Law of the Wake, it was decided to examine the behavior of mixing 

length and eddy vis cosity based on this quantity and defined by the ex-

pressions; 

, , 
u v 

, , 
u v 

= 

= 

t The derivative au lay was evaluated from results of total 

pres sure survey, using the same way as dis cus sed in Section IV. 6. 

t t t 
Since U is based on total pres sure survey, t and e were evaluated 

only at the four basic stations of survey. 

The distributions of tt for the two models are presented in 

Figure (49). It is observed that, indeed, the curves corresponding 

to the four stations are reduced to the distribution of t for the refer-

ence profile. Note in particular that this observation is equally true 

near the wall and in the outer layer. t 
The slope of the t -vs-y curves 

near the wall is 0.41 as expected. In the outer layer the value 

tt/ o = 0.10 is found, which is larger by 11% from the value t/o = 0.09 

commonly quoted in the literature. 

The distributions of et are given in Figure (50). In this case 

the differences between the four stations are larger than in the case of 

l, but they are much smaller than the differences between the 
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distributions of 8. 

The slope of the curves near the wall agrees with that predicted 

by the Mellor-Herring first model which gives 

= K u Y 
T 

and are 11% lower than predicted by Lees (20) model, which is given by 

8 = O. 018 U Y a 
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VI. SUMMARY AND CONCLUSIONS 

VI. 1. Effect of the Ratio Ie /0 

One of the main ~oals of the present study was to explore the 

importance of the ratio of wave length to boundary layer thickness on 

the flow field. The measurements of wall pres sure, velocity profiles 

and turbulence level and wall shear did not indicate any strong trend 

or phenomena related to this parameter. Furthermore, survey of 

the turbulence intensities and shear stress, using an X-array probe, 

showed that changes in these quantities take place in a wall layer, 

which is very thin compared with o. 

VI. 2. The Outer Layer 

The measurements with a Pitot probe show that in the outer 

part of the boundary layer the total pressureis almost conserved along 

streamlines. Based on this finding, the outer layer was analyzed 

by applying inviscid, non-uniform small perturbation method which 

gave good agreement with the measured velocity. 

It was found that the velocity profiles in the vicinity of the 

crest and the trough do not obey Coles I Law of the Wall, because of 

mismatch between the actual and the required slopes of the semi-

logarithmic section of the profiles. However, total velocity profiles 

that are defined by 

= 
2 1:. 

(U + 2 (p _p / p) 2-
o 

do obey the Law of the Wake. 
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The static pres sure in the outer part of the boundary laye r 

decays exponentially according to the m.odified result of uniform. 

inviscid theory given by 

= ) -2Tr(y-A)/A 
(pw - poe 

where (p - p ) is the actual access wall pressure and A is of the w 0 

order of the displacem.ent thickness of the boundary layer. 

VI. 3. The Wall Layer 

The inner part of the boundary layer is characterized by very 

strong variations in turbulence intensities and shear stres s. The 

changes in norm.al distributions of these quantities are osci1latory 

with am.plitude decaying exponentially toward the edge of the layer. 

This nature of the m.odulation of the shear stress distributions re-

sem.bles qualitatively the flow field of the Rayleigh problem., i. e. 

flow near an os cillating flat plate. On the downhill slope of the wall 

the first half wave of the perturbation shear wave form.s a layer of 

high shear stress near the wall, while on the uphill slope a layer of 

near zero shear stress is form.ed near the wa1l. 

The direct effect of the wall curvature, as predicted by 

Sawyer1s theory. was found sm.all. The flow field is affected m.ainly 

by the alternating static pressure near the wa1l, which is an indirect 

consequence of the wall shape. An appreciable phase shift was found 

in the distribution of skin friction. The changes in shear stres s are 

very rapid and appreciably larger than the corresponding changes in 

turbulence intensities. 
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VI. 4. Model for Turbulent Shear Stress 

The results of the present study were compared with three 

models for shear stres s frequently us ed in the computation of turbu-

lent boundary layers (Cebeci-Smith, Mellor-Herring second methods, 

Bradshaw-Ferris). It was found that because of the rapid changes in 

stress distribution near the wall and the modulation of mixing length 

and eddy viscosity in the outer layer, none of the above mentioned 

models described the situation over the wavy wall models. 

However, it was discovered that if mixing length and eddy 

viscosity are based on total velocity, i. e. 
1 --z 

(u I V ') 

a ut = and 

ay 
= 

I I 
U v 

aut 
By 

then the distribution curves are identical with the corresponding 

curves obtained for flat plate boundary layer. 

VI. 5. Suggestion for Further Research 

On the basis of the results and conclusions of the present 

experiment, several related investigations are suggested, aimed at 

better understanding of turbulent boundary layer over a wavy boundary 

and the origin of cros s -hatching ablation. 

1. Extension of the range of geometrical parameters (a/A and 

A/O) to include the asymptotic short and long wave lengths. 

2. Experimental investigation of turbulent boundary layer 

over a wavy wall in supersonic speeds. Because of the different phase 

shift in pressure distribution, the net effect of curvature and pressure 

gradient may be different than in the present case. 
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3. Further research is needed to study the three-dimensional 

effects associated with flow over wavy boundaries. The existence of 

streamwise counterrotating vortices in turbulent boundary layers is 

well established now. Their strength is expected to be amplified on 

the concave portion of the surface wave because of Taylor-Goertler 

instability. The alternate growth and decay of such vortices will 

generate lateral distribution of flow quantities. The present test did 

not intend to explore such phenomena. Howeve r, it is believed that 

furthe r research in this direction will contribute to the understanding 

of turbulent shear stress. 
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I. Settling chamber 

2. Test section 

3. Traverse mechanism 

4. Cathetometer 

5. Hot-wire equipment (DISA) 

6. Speed controller 

FIG.2 EXPERIMENTAL SET- UP . 
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Front : WW I 
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FIG. 4 WAVY WALL MODELS 
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Heatkit 
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o 

Battery 
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I II I I II 

Dynamics Dynamics Instruments 
Diff. Amplifier Digital Multimeter 

Model 7514B Model 630 

Gain: 1000 
Filter: I cps 

{Voltmeter Mode} 

FIG.6 MEASUREMENT OF PRESSURES 
(a) Schematic Of Set - Up 

(b) Calibration Of Transducer 
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FIG.33 SPECIAL X-ARRAY HOT WIRE PROBE 
(MODIFIED DISA MODEL 55A38) 
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APPENDIX A 

Calibration and Data Reduction of X-Array Hot-Wire Probes 

A. 1. Measurement and Data Reduction 

The schematic of the measurement of turbulent quantities was 

described in Figure (34). Within the range of linearity, the linearized 

outputs of the two sensors are related to the axial (u) and normal (v) 

velocity component by: 

El = Au+Bv 

E Z = Cu - Dv 

where A, B, C and D are calibration constants, to be determined 

experimentally. 

The D. C. components of the output are read from the meters 

belonging to the anemometers. They are related to the average velocity 

components by: 

El = Au + Bv } A-Z 

E Z = Cu - Dv 

System A-Z can be solved for u, v. 

--;z --;z 
u v Since we are interested in three turbulent quantities, 

and u I v' , it is not sufficient to measure the R. M. S. outputs of the two 

sensors as was done for a single element probe. In order to gain 

another equation, the sum and difference of the two turbulent signals 

are generated by a random signal analyses and correlator. 
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By definition, the squared RMS values of the two output signals, 

their sum, and their difference are given by: 

(E ')Z "'" "-JZ = (Au + Bv) 1 

(E
Z 

,)2 ~ ",2 
= (Cu - Dv) 

A-3 

(E '}Z = [(A+C}u + (B_D}v]2 
s 

(E ,)2 [ -- ~J2 = (A-C)u + (B+D}v 
d 

By rearranging the right hand side of A-3 we find the redundant system: 

(E ,}2 = A2 u,2 + B2 -;;z + 2AB 
, , 

1 u v 

(E
2

' )2 C Z u,2 + D2 v,2 2CD 
, , 

= - u v 

A-4 
(E ,}2 Z ~ 2 ---;z -,-, 

= (A+C) u + (B-D) v + Z(A+C}(B-D) u v s 

(E ,)2 Z --;z- Z -;z- -,-, 
= (A-C) u + (B+D) v + 2(A+C}(B-D) u v d 

To eliminate one equation, we subtract the second equation from the 

first, and use the difference together with the third and the fourth 

equations. This yields a system that, for the ideal probe (A=B=C=D), 

has a diagonal form: 

z---;2" 2 -;z -,-, 
= (A+C) u + (B-D) v + 2(A+C}(B-D)u v 

(E
d

,)2 = (A_C)Z u,2+(B-D)Z7+2(A-C}(B+D)u'v' A-S 

(E{)Z_(E{)Z = (A_C}Z:;r+(B2_D2 )v,Z+Z(AB+CD) u'v' , 

where E 1', E 2' and E s " Ed' are meas ured and recorded by two R. M. S. 
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units that are connected to the output terminals of the random signal 

analyzer. Then system A-5 can be solved for the three turbulent 

quantities. 

A.2. Calibration of X-Array Probes 

If the probe is mounted at an angle {} to the axis of the test 

section, at its center, the axial and normal velocity components 

become: 

u = U cos {} 
o 

v = U sin {} 
o 

...,,_u 
\ 
v 

Substituting these values into equations A-I, the output voltages are 

rela ted to U and {} by 
o 

= U (A cos {} + B sin {}} 
o 

E2 = Uo(C cos {} + D sin {}} 

For several angles of incidence, within the range ± 30°, the 

velocity was changed using the speed control setting and the linearized 

hot wire output was recorded for the two channels. The results are 

shown in Figure (AI) for one of the probes used. The slopes of the 

calibration, J.i.l and J.i.2' were measured, and are related to the cali­

bration constants and the angle of incidence by; 

J.i.l ({}) = A cos {} + B sin {} 



which can be written as; 

J.i.Z (",) 

cos ", 

= A + B tg ", 

= C - D tg ", 
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To determine the constants, J.i.1 ("')/cos'" and J.i.Z("')/cos'" were 

plotted vs. tg ", in Figure (AZ). The intersection of the curves with 

the axis'" = 0, and their slopes, yield the desired constants. Also, 

the range of linearity can be found from the curves in Figure (AZ). 

The results are: 

Probe X-I X-S 

A 0.40Z 0.46Z 

B 0.556 0.475 

C 0.399 0.457 

D 0.4Z3 0.490 

Limit of {upper +Z3° +Z3° 
Linearity lower _Z3° -ZOo 

Another factor to be considered when using X-Array probes at 

large inclination angles is the noise produced by vortices, shedding 

from its prongs. To evaluate this factor, the turbulence output from 

the two sensors was recorded for the maximum speed used during the 

calibration. The results are shown in Figure (A3), from which it is 

seen that within the range of linearity. this noise is admissible. 
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A.3. Transformation of Coordinates 

The Analysis given in the previous two sections was done 

in coordinate system attached to the probe. Actually, the probe was 

aligned with its prongs only approximately parallel to the local slope 

of the wall. Therefore transformation of coordinates is needed for 

consistent presentation of the data. For rotation of coordinates, 

we have 

* u = u cosa + v sina 

* v = -u sina + v cosa 

Using these relations one finds: 

""""*72 u = 

= 

~*, u v = 

-;z Z + ViZ . Z I I Z 
U cos a Sin a + u v sin a 

-;z . Z -;z 
u Sin a + v Z + ' , . Z cos a u v Sin a 

" Z 1 ,-. ,Z --;2} Z u v cos a + a, u -v sin a 

The data presented below is given in free stream coordinates. 
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APPENDIX B 

Curvature Effect on Mixing Length 

Sawyer ' s(5) theory of the effect of curvature on the mixing 

length was used in Section IV. 6. for the evaluation of the mixing length 

distribution. In the present appendix, the principle of this theory is 

recalled and the results of the application of the theory to curved 

channel flow are presented, because of the resemblance of this flow 

to the boundary layer flow through their mutual dependence on the 

Law of the Wake. 

According to mixing length theory, the turbulent mixing process 

is characterized by the speed U ' and the length t. In curved flow, the 

fluid experiences a deceleration U /2 / t which is of order t(au/ay)2 and 

[ 2 2 - -
a centrifugal acceleration U(y-t) -U(y) J/R = -2t U(aU/ay)/R. 

Hence, the ratio of the mixing length for a flow with curvature to that 

of a similar flow without curvature is given by 

t k U/R y- = 1 - 2 
s aU/ay 

where k is a constant to be determined experimentally. The turbulent 

shear, expressed in terms of zero curvature mixing length is 

T 

P 

Sawyer used this expression to analyze two types of turbulent 

flows. For the first, a reattaching curved jet, (5) he found that k = 5 

gave best agreement between experiment and theory. For the second 

flow, a wall jet,(21) k = 3 gave the best results. 
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In the present study, the results of the measurements of the 

mixing length distributions obtained by Watendorf( 3 ) and Eskinazi, ( 4 ) 

in the fully developed portion of a curved channel were reduced to 

those of a straight channel by using the above expression with different 

values of k. 

The results are summarized below for the two listed flows 

Reference Watendorf Eskinazi 

width of channel 5 cm 5 11 

inner radius 20 cm 25 11 

a verage speed 27 m/sec. 30 m/sec. 

turbulent shear computed based measured 
on measured by cross-
wall shear wire probe 

k for best fit 7 15 

The results are shown in Figures (Bl, B2). It is found that the theory 

predicts the mixing length distribution in both cases but with different 

values of the parameter k. Since only two cases were analyzed, no 

conclusions can be drawn about the range of the parameter k or 

about the factors affecting it. However, as mentioned in Section IV. 6., 

it was found that in the present experiment the curvature effect is not 

large and therefore the knowledge of the parameter k is not critical. 
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APPENDIX C 

Inviscid, Small Perturbation Analysis 

of Non-Uniform Flow Over a Wavy Wall 

The results of the analysis of total pressure distribution 

(Section V. 3), show that the flow outside the wall layer can be con-

sidered inviscid. This conclusion motivated the present analysis of 

the outer layer as inviscid, but non-uniform flow over a wavy surface. 

By its nature this analysis will not predict wall shear. 

The basic equations of motion are expres sed in a cartesian 

coordinate system, with the x-axis taken along the centers of the 

surface waves: 

au + au 1 ~ u- v- = - -ax ay p ax 

av + ov 1 ~ u- v- = ax ay p oy 

au + av 
0 ax ay = 

Let the wall surface be given by 

Ys = a sin (ax) 

so that the slope is 

dy 
s 

dx = € cos (ax) 

We seek asymptotic solution for 

u = u + € u l + 
0 

v = v + € vI + 
0 

P = Po + € PI + 

with a = 2rr/A. , 

with € = 2'Jra fA. 

small E: in the form 
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The boundary conditions are 

VI (x, 0) = U cos (ax) 
o 

where U is the unperturbed velocity away from the wall. 
o 

Substituting the series expansion into the system of equations, 

and collecting terms of like power in 8, the resulting oth order system 

takes the form: 

au 
u ~+ ax 0 

av 
u 

0 

au 
o 

ax 

0 

ax + 

+ 

au 
0 v 

0 ay 

v 
av 

0 

0 ay 

av 
o 

ay 

1 Bpo 
= - ax p 

1 ap 
0 = - - ay p 

= 0 

Mathematically, any parallel flow, u (y), will satisfy this 
o 

system. But, in order to model for the physical situation, Coles' 

Law of the Wake will be used for these computations: 

y u - ] 1 1" ZiT . Z iT 
U (y) = u rC + - /l;n (-) + - Sin (- y.) o 1" t K V K Z 0 

This law applies outside the viscous layer, that is for y u Iv > 70. It 
1" 

cannot be extended to y = 0 because of the logarithmic singularity, and 

hence it will be assumed that u = constant for y < Y , where the value o w 

of y will be discussed below in connection with the actual computa­w 

tions. 
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The complete first order system is: 

+ 

0 
= 0, Po 

aU I 
+ u Bx 0 

BVI 
u ox 0 

+ 

= o 

= 0, and au / ax = 0, 
0 

au 1 apI 
0 

By vI = ax p 

1 OpI 
= p oy 

o 

= -
1 OpI 
P By 

this system takes the form; 

Because of the boundary condition on vI (x, 0), the solution is 

expected to take the following form; 

u
l 

= u(y) sin (ax) 

vI = v(y) cos (ax) 

p/p = P (y) sin (ax) 

The resulting system is then 

du 
'" 0,.. au u+ -d v o y = 

,. 
-ap 

'" '" I - au v = p o 

au + v' = 0 
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By algebraic manipulations, v can be isolated from the system 

giving 

" ,. n 
V (

UUo 2),. + a v = 0, 
o 

with the boundary condition 

v(O) = 

The other two unknown functions, p and u, are related to v by inte­

gration and differentiation respectively. 

The differential equation for v does not have a simple solution. 

It can either be integrated numerically or solved by perturbation tech-

niques. The latter technique is selected because it shows in an analyt-

ical form the importance of the functions and constants involved. 

The asymptotic solution of the differential equation for v is 

based on the fact that in the outer layer u /I /u «a2
• To demonstrate o 0 

this fact the unperturbed profile, u
o

' is rewritten in terms of the 

velocity defect, giving 

[
1 y.. 2'1T 2 1T y.. ] 

U = U -u -fl/n. ( ) + - cos (- ) o 0 T K 6 K 26 

The friction velocity u is small compared with U. Therefore, the 
T 0 

smallness parameter for the present expansion is chosen to be 

= u /U 
T 0 

For the outer layer, the ratio u "/u becomes 
o 0 



/I 
u 

o 
u 

o 
= 
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z- ] .q cos (1T f) 
K [) 

[
1 y. ziT z 1T y. ~ 

1 -IJ. ~ ( [) ) + T cos (2" [) )J 

Hence, to O{IJ.), u /I /u = U /I /U 
o 0 0 0 

Therefore, we seek a solution for v of the form 

,.. 
v = 

th 
The 0 order solution is obtained for 1J. = O. This case corre-

sponds to u = U , that is uniform, unperturbed flow. The associated o 0 

equation is 

- /I 
V 

o 
z-

a v = 0 o 

which yields the solution 

v o = 
-ay 

U e 
o 

This is exactly the result obtained by linearized potential theory. (8) 

The differential equation for VI is 

v 

/I 
u 

o 
o u,. 

1 -ay /I = -e u 
1J. 0 

Using the method of variation of parameters, the solution of this equa-

tion is 

I -ay ay IY -ZdT) /I = - (u + C)e + e e u (T) )dT) 
o 0 0 

Yo 
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The boundary conditions on VI' 

= 0 

and VI (y -- 00) = 0 

are used to evaluate the constants of integration, C and y. The 
o 0 

results are 

Yo = Yw 

and 

6 -Za ,., 
C - - ! e u "(,., )d,., 

0 0 
Yw 

The solution for v (to order € /J.) is 

The strea:mwise co:mponent of the velocity is evaluated fro:m 

the equations 

,. 
u = 

= 

1 ,., 
v 

u cos (ax) 

yielding the result 

{ 
-ay 1 -ay, 1 ay 1 -Za,.,,, } ) u = U e - -z e (u + C ) - -z e e u (n) d,., cos (ax • 

loa 00 a 0 0' 

This result is used to evaluate the wall pressure, by using the linear-

ized pres sure coefficient 
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Cp = -2 u(o) 
w U o 

The velocity perturbation for y .... 0 is given by 

C 
u 1 (0) = (Uo - a 0 ) cos (ax) and 

the associated wall pressure coefficient (8 = 2TTa/"A.) becomes 

C 
CPw = 41T ~ (1- U 00') cos (ax) 

o 

The integrals in the above expression for u l were evaluated 

nwnerically, for values of y ranging from O. I" up to 0.4". It was 
w 

found that, for y < O. IS", the results were out of the expected range. 
w 

H 
The reason is that for these low values of y , u reaches very la rge 

w 0 

values, thus violating the assumption of small a perturbation. Re-

suIts of the computations, together with the measured velocity profiles 

at STN (2) and (4) are presented in Figure (CI), for the two models. 

The main observations are summarized below: 

(i) For WWI, the first approximation for u l ' with Yw = 0.2", 

is about 65% of the Oth approximation. For increasing y , the differ­
w 

ence between the two approximations diminishes. Agreement with 

measurements is good at the two stations for y > O. 3 ". 

(ii) For WW2, the differences between the oth and 1 st approx-

imations are very small for y > 0.2". The agreement with the ex­
w 

perimental data is very good for y> 0.25". 

Finally, the wall pres sure coefficient was evaluated using the 

values of C discussed above. The results are summarized below o 

and compared with the measured values of Section IV. 1. 
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CPw (analysis) Cp 
Model w 

C = 0 Yw = O. 2" Yw = 0.3 11 (meas. ) 
0 

WW1 0.350 .140 .234 +0. 175 
-0.255 

WW2 0,328 .256 .292 +0. 155 
-0. 195 

It must be noted here that the present analysis predicts a 

sinusoidal distribution of wall pressure, while the measurements 

(Section IV. 1. ) show deviations from sinusoidal distribution. Also 

note that the analysis predicts the wall pressure much better than the 

linearized uniform flow theory (C = 0). 
o 
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APPENDIX D 

Analysis of the Wall Layer 

In Section V. 6. a qualitative description of the wall layer was 

given by relating it to the Rayleigh problem. Here. a more rigorous 

analysis is presented, in order to demonstrate the controlling factors. 

The present analysis. unlike that of Appendix C must include viscosity. 

The analysis will be performed in orthogonal curvilinear co-

ordinate system whose x-axis is in the direction of the wall and the 

y-axis being perpendicular to it. The basic equations of motion. 

simplified to the boundary layer approximation (cf. chapter VII of (18) 

and Chapter 3 of (22) are: 

u au + v au + ~ = ox ay R 

2 
u 
If= l£.e. 

P ay 

= o 

with T = P (u 'v ') being the Reynolds shear stres s. 

The boundary conditions at the wall are 

u(x. 0) = 0 

v(x, 0) = 0 

For a surface given by 

y s = a sin(ax) with a = 2TT fA 

the radius of curvature is given approximately by 
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R{x) = 1 /yll (x) 
S 

so that 

l/R(x) = -€ a sin(ax) with € = 21T a/A. 

As in Appendix C. we seek a solution for small € in the form 

u = u + E: u
l 

t 
0 

v = v t €: vI t 
0 

P = Po t € PI t 

,. = 'T"o+e'T"l+···· 

Substituting the series expansion into the system of equation 

and collecting terms of like powers in e. one finds the following oth 

order system: 

au ou 1 Opo 0
2 

u 1 
o 'T" 

0 tv 0 0 t 0 
u ox oy = ---+ \) --2 - ay-0 0 p ox 

oy p 

Opo 
0 

oy = 

ou ov 
0 + 0 0 ax- oy = 
0 

which describes the development of the turbulent boundary laye r on a 

flat plate. This system will not be solved in the usual way with an 

additional relation for the dependence of 'T" upon flow conditions. 
o 

Instead. a standard presentation of flat plate boundary layer with 

Coles' Law of the Wake as outer part will be used. 
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The 1st order system for v = 0, p = 0 and OU lox = 0 
o 0 0 

becomes: 

Z 
sin {ax} au 

o 

oU l oVl --+ ay ox 

= 

= 0 

I OpI 
- -- +v p ox 

1 oPl 

p av-

+ Za 't sin (ax), 
p 0 

Further simplification of the x-momentum equation can be 

obtained if the analysis is restricted to a thin wall layer in which 

viscous terms are important. The thickness, o , of such layer can 
w 

be evaluated by order of magnitude analysis of the leading convective 

and viscous terms in the x-momentum equation. To do so, the eddy 

viscosity models of Mellor -Her ring (1) will be used. 

U 
u 1 u l 
-r € -:--2 00 ow 

so that 

o 2 A € 

W U 
00 

For the outer model: 

€ = K2 Uoo 
0* with K2 = 0.016 

1 

0 '" (A 0 *)Z 
w 

For the inner model: 

= II: u ,. Y 

0 
u,. 

A '" U w 
00 
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Both :models show that for the actual cases 0 /0 < l. 
w 

Fro:m the continuity equation, the nor:mal velocity vI at the 

edge of this layer, is of order 

u [) fA. 
00 w 

Co:mparison of the order of :magnitude of the two convective ter:ms 

shows 

aU l 
U 

U l 
u ax 

,.." y-o 00 

au U Ulow 0 00 

ay vI '" -o- X 

that is the first ter:m is the do:minant. 

Also, co:mparison of the two contributions of the turbulent 

shear stresses, on the right hand side of the equation gives 

a ,. 
o 

which shows that the first ter:m do:minates. 

Then, the si:mplified x-:mo:mentu:m equation takes the for:m 

1 apl 
-- +v 

p ax 

In order to find out about the nature of the solution, a :model 

* equation has been devised by Kubota. The following further approx-

i:mations are introduced in order to derive an equation that can be 

treated analytically. 

* Kubota, T., private co:m:munication. 
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(i) The m.olecular vis cosity is ignored. 

(ii) The unperturbed velocity u in the convective term. is 
o 

replaced by U (Oseen approxim.ation). 
00 

To this approxim.ation, the pres sure is constant across the 

wall layer. 

l~ 
p ox 

Hence 

d Cp 
= l U 2 w 

2 00 dx 

= l U p Cl sin(Clx) 
2 00 

where P is the am.plitude of Cp . w 

Using eddy vis cosity m.odel for the turbulent shear stres s, the 

m.odel equation becom.es: 

1 2 0 oU l 
'2 U 00 P Cl sin(Clx) + oy (8 oy 

First, the outer eddy vis cosity will be used. The m.odel 

equation takes the linear form. 

= ~ U
oo 

P Cl sin(Clx) + K2 5* 

If we seek a solution of the form. 

iClx = ue 

the equation becom.es 

." i r*"" 
1 Cl U = '2 U 00 P Cl + K2 u u . 

A particular solution is given by 

" U = 
P 
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so that the equation for the complementary solution is 

"H 
U 

C 
= 

with the solution 

" u = c 

i a 

K 0* 
2 

.10 
U 

C 

A exp O( 

= 0 

1 + i 

ff 
1..) 
H 

1 

with H = (K2 A 0* /2'lT)2: which is the same wave length as given in 

Section V. 6. by direct analogy with the Rayleigh problem. 

Note that this solution is oscillatory with an exponentially decaying 

amplitude. 

Next, using the inner model for eddy viscosity, the model 

equation becomes 

ia U 
00 

"= i U 2 P K: d ( du) 
u - 2" 00 a + u T dy Y dy 

A particular solution exists as before, and the equation for the 

complementary solution is 

d d U
c 

a U 
( ) • 00.... 0 

d Y Y d Y - 1 K: U'T" u c = 

This equation can be reduced to Kelvin's equation (Section 9. 9. of (23» 

by the trans formation 

= 
aU 

2 ( 00 
K: u 

'T" 

giving the equation 

d 2 " 2 u du 
+ '11 d '11 '11 c 

~ 

1 
2: 

y) 

. ,.,2 .... 
1'1 U = 

C 
o 
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whose bounded solution as TJ .... 00 is 

,.. 
u c = A( ker(TJ} + i kei(TJ} ) 

Then, the complete solution is: 

1 
u l = - 2" UooP cos(ax) + A(ker(n). cos (ax) - kei(Tl} sin(ax» 

Nt thtth tt' bha' fA (Sectl'on9.1l.of(23», o e a e asymp 0 lC e V10r 0 u 
c 

for large values of TJ is 

,.. 
u 

c 

1 

'IT Z 1 +i 
A( "2) exp ( - - TJ 

TJ J2 
'IT - -) 
8 

As before, this solution is oscillatory, with decaying amplitude. 

However, as was shown in the evaluation of the thickness of the 

wall layer, the present wave length is different from the one based 

on the outer model and is given by H = K U 'A./8'IT U . 
'T 00 

The function ker(TJ) is singular at TJ = 0, which predicts un-

bounded u near the wall. This is a result of ignoring the kinematic c 

viscosity which is important in the sublayer. Although it can be 

shown that the shear stress distribution near the wall is bounded, 

the accuracy is not expected to be satisfactory. 
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