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Abstra.ct 

Core-mantle boundary (C:tv1B) structure is mapped with travel-time data 

in the International Seismological Centre (ISC) catalog. Different subsets of 

ISC data yield inconsistent results for CMB topography. Correlations of 

anomalies in well covered areas indicate a common source of signal above the 

CMB. Allowing for heterogeneity above the C:tv1B yields models of 4 km 

peak-to-peak C:tv1B topography and 2.5% velocity variations in the D 1/ layer. 

The models contain a large degree-two, zonal component. This agrees with 

the results of a stacking procedure employed in search of an axisymmetric 

pattern in the ISC data. It is concluded that the axisymmetric p~ttern in 

antipodal PKIKP data must at least in part be explained by CMB structure. 

A method is developed to extract estimates of random data-errors and 

statistical measures of the earth's structure from global, travel-time data. 

Application of this method to teleseismic P-wave data yields an estimate of 

the signal-to-noise ratio in excess of unity. Heterogeneity is found to be 

strongly concentrated near the earth's surface. It extends over a wide range 

of scales in the upper mantle, but is restricted to relatively large scales in the 

lower mantle. The root-me an-square level of heterogeneity is found to be of 

the order of 0.1 % in the lower mantle, but several times higher at its top and 

bottom. 

Synthetic (2D) tests of lower-mantle and CMB travel-time inversions 

indicate only partial success for the lower mantle and a 5 to 10 km uncer­

tainty in CMB mapping. This is consistent with the inconsistencies in the 

ISC data, when mapped onto the C:tv1B, and suggests that the above results 

pertaining to CMB structure may be obscure. 
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1 INTRODUCTION 

The research presented in this thesis utilizes data from the International 

Seismological Centre (ISC) catalog to study the aspherical structure of the 

earth on a global scale. Much of this effort has been devoted to an attempt 

to evaluate the quality of the models that we and previous workers have con­

structed. 

The ISC catalog contains over twenty years of worldwide travel-time 

readings of many seismic phases. This database of more than nine million 

picks is being actively used to map the aspherical structure of the earth's 

interior on a global scale as well as regional lateral velocity variations near 

the earth's surface. As time has progressed the global studies have sought to 

image ever deeper structure. Clayton and Comer (1983) (see also Hager and 

Clayton 1989) and Dziewonski (1984) used fifteen years of ISC mantle P-wave 

data to map the lower mantle. Creager and Jordan (1986b) and Morelli and 

Dziewonski (1987) used compressional core-phases to map the core-mantle 

boundary. Morelli et al. (1986) and Shearer et al. (1988) used PKIKP-waves 

to map anisotropy in the inner core. The regional studies have concentrated 

on the structure of subducting slabs (e.g., Creager and Jordan 1984, Zhou 

and Clayton 1989). These studies together with surface-wave tomography 

and long-period, body-wave synthesis provide important constraints on the 

style and scale of mantle convection, on the workings of the geodynamo, and 

on the evolution of the earth. 

There are, however, some concerns about the ISC data and the tech­

niques used to analyze them. The uncertainty of measurement is high com­

pared with the signal attributable to aspherical structure. The data are con­

taminated by systematic errors that are due to misidentification of phases, 
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earthquake mislocation, earthquake time-function complexity, and potentially 

biased picking. The geometrical coverage of the data is uneven, because of 

the clustering of seismic sources in tectonically active regions and the lack of 

recording stations in the oceans. The images suffer from complex artifacts, 

which depend on the particular technique employed, because of the uneven 

coverage. The strong small-scale velocity variations in the earth's outermost 

layers are simplistically accounted for by station corrections. The severity of 

these problems is currently poorly understood. 

This research was initiated by a class project in Professor Anderson's 

class, Physics of the earth's interior, which involved mapping the core-mantle 

boundary (CMB) using ISC PcP travel-time residuals. From there the sub­

ject developed to include other subsets of the ISC data to map the CMB, and 

to study the hypothesis of anisotropy in the earth's inner core. Two papers 

have been published in recent years on each of these subjects (Creager and 

Jordan (1986b), Morelli and Dziewonski (1987) on CMB structure, and 

Morelli et al. (1986), Shearer et al. (1988) on inner-core anisotropy). Incon­

sistencies between the results of these papers and the results presented in this 

thesis led us to focus on the accuracy of the results and potential causes of 

the inconsistencies. We subsequently developed a technique to measure sta­

tistical characteristics of the perturbations to a hydrostatically ellipsoidal 

earth in the mantle, and, finally, undertook a synthetic study of the resolu­

tion power of global, travel-time tomography. 

This thesis is divided into four somewhat independent chapters in addi­

tion to this introduction and a summary at the end. Chapter 2, entitled 

"Mapping the core-mantle boundary," presents the results that we get for 

CMB topography or structure from compressional travel-time residuals in the 
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Figure 1.1 Travel time as a function of epicentral distance for surface focus 

and the reference model of Jeffreys and Bullen. Only those branches that are 

used in this study are included. The small figure in the upper left-hand 

corner is an enlargement of the section of the PKP curve, which contains the 

Be branch. 
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ISC catalog. Chapter 3, entitled" Core-mantle boundary structure or core 

anisotropy? ," presents the results of a search for an anisotropic pattern in the 

travel-time residuals of the same compressional data. Chapter 4, called" Sto­

chastic analysis of global, travel-time data," outlines a method of extracting 

statistical parameters of the earth's slowness field from travel-time data and 

the results for the earth's mantle obtained by applying it to P-wave data in 

the ISC catalog. Work for this chapter was in part done in cooperation with 

Huw Davies. Finally, Chapter 5, entitled "A synthetic study of global, 

travel-time tomography," discusses the results of synthetic tests of recovera­

bility of artificial, earth models by deterministic, travel-time inversion. 

Before embarking on the main body of this thesis, it may be useful to 

some of its readers to define the terminology used to Cliscuss the different sub­

sets of the ISC data. All the data used here are compressional-wave data. 

We use mantle P-waves in Chapters 4 and 5. In Chapters 2, 3, and 5 we use 

the compressional core-phases. Their travel-time curves and a ray diagram 

depicting their ray geometry are shown in Figures 1.1 and 1.2. Reflections off 

the GNID are named PcP-waves according to convention. The naming con­

ventions of the other (true) core phases are both mixed and more complex. 

These include all compressional waves that refract at the GMB and enter the 

earth's core. They are collectively called PKP-waves or P '-waves. We will 

stick with the former. The subdivisions of these waves is often according to 

the alphabetical names of the extremes and caustics on their travel-time 

curves (see Figure 1.1); i.e., PKPab represents waves that fall between the 

points A and B on the travel-time curve. One notable exception is that of 

PKPdf-waves. These waves refract at the inner core boundary (ICB) into the 

inner core, and are accordingly sometimes named PKIKP-waves. We will use 
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~~----~~----~--------L-----~--------~F 

Figure 1.2 A ray diagram for the data used in this study. Labeling is analo­

gous to that in Figure 1.1. P and PcP rays are ad hoc examples. PKP rays 

correspond to the labeled extremes on the PKP travel-time curves (see Figure 

1.1). 
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the alphabetical names in the text of this thesis. In figures and tables we will 

sometimes abbreviate the names (AB = PKPab, BC = PKPbc etc.), and 

sometimes use the PKIKP name. The point "E" marked on the travel-time 

curves in Figure 1.1 at the intersection of the PKPbc and PKPdf branches is 

sometimes used to subdivide PKIKP-waves into two sets, PKPde and PKPef. 

We will use this convention in the text. Figures in Chapter 3 will use 

PKIKP1 and PKIKP2, respectively, for this subdivision. In summary, P­

waves are compressional waves in the earth's mantle. PcP-waves are 

compressional reflections off the CMB. PKPab-waves are compressional 

waves that bottom or turn in the central third of the outer core, PKPbc­

waves turn in the bottom third of the outer core, PKPde-waves (PKTI<P1) 

turn on the bottom side of the ICB and PKPef-waves (PKIKP2) traverse the 

body of the inner core. PKPdf-waves (PKIKP) is a collective term for 

PKPde and PKPef. 

Finally, we use the term D III in Chapter 2 to refer to the region on the 

core side of the CMB. This is not according to any convention and is simply 

done for the lack of a better name. The term D" is conventionally used for 

the mantle side of the CMB (originally a thin layer of low, radial, velocity 

gradient in the model of Jeffreys and Bullen (JB), (Bullen 1979). This uncon­

ventional term thus renders the two boundary layers adjacent to the CMB of 

similar names, but it is inconsistent with the naming scheme of Bullen, of 

which D" is part. 
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2 MAPPING THE CORE-MANTLE BOUNDARY 

2.1 Introduction 

The core-mantle boundary (Clv1B) is the sharpest discontinuity in the 

earth. It represents a 4.3 g j em 3 density contrast, a 5.5 km jsec compres­

sional velocity contrast, a major chemical discontinuity, with silicates on one 

side and an iron alloy on the other, and a sharp transition from a solid above 

to a liquid below. It is fair to say that the Clv1B in many ways resembles the 

free surface of the earth, although physical conditions in terms of pressure 

and temperature are vastly different. It is the interface between two radi­

cally different regimes; the core, where the source of the geodynamo lies, and 

the mantle, which through convection controls many of the features of sur­

face tectonics. In the structure of the Clv1B lie the answers to many ques­

tions pertaining to the coupling of these two regimes, such as heat flux, 

chemical reactions, and dynamical effects. The nature and structure of the 

CMB has a strong bearing on the thermal and chemical evolution of the 

earth. It is clearly of much geophysical interest to map its structure. 

Seismology has provided the best tool for studying the structure of the 

CMB. The absolute timing of seismic waves reflected off the CMB has long 

since provided good estimates of the depth to the CMB. Gutenberg's (1914) 

estimate of 2900 km and Jeffreys' (1939) estimate of 2898 ± 2.5 km are 

remarkably close to the 2889 ± 4 km estimate of Dziewonski and Anderson 

(1981). Other estimates have ranged from a depth of about 2885 km to 

2900 km. The recent estimates are based on free oscillation data as well as 

body-wave travel-times. As early as 1939, the presence of a thin layer ( 
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~ 200 km thick) of a low, radial velocity gradient immediately above the 

CMB was identified by Gutenberg and Richter (1939) and Jeffreys (1939). 

Bullen (1 949) later termed this layer D ". 

The decrease in the radial velocity gradients in D /I in global velocity­

models has been explained in terms of a simple, thermal boundary-layer 

between the mantle and core (e.g., Stacey and Loper 1983). Doornbos et al. 

(1986) pointed out that reversed velocity gradients may be consistent with a 

simple, thermal boundary-layer. On the other hand, Brown (1986) pointed 

out that allowing for uncertainties of a number of physical parameters, radial 

heterogeneity cannot be ruled out. Williams et al. (1987) presented evidence 

for higher core temperatures than previously assumed, which implies higher 

heat flow through the CMB, a more pronounced thermal boundary-layer, and 

thus lends support to seismic models involving reversed velocity gradients 

immediately above the CMB. Jeanloz et al. (1988) discussed evidence for 

higher mantle temperatures, which would alleviate this effect of increased 

core temperatures. Zarkov et al. (1985) discussed a model of a complex, ther­

mal boundary-layer in D", which is thermally heterogeneous (laterally) and 

temporally unstable. Other suggested mechanisms for heterogeneity around 

the C}...1B include dynamically sustained C}...1B topography (Hager et al. 1985), 

isostatic topography on the CMB that is due to chemical heterogeneity in 

D" (Creager and Jordan 1986b) and mantle dregs aggregated at the C}...1B 

and modulated by the flow of the overlying mantle (Davies and Gurnis 1986). 

Jeanloz et al. (1988) predicted vigorous chemical reactions between mantle 

and core across the C}...1B, and Stevenson (1988) suggested interaction via 

infiltration, dissolution, and underplating. 
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The basic structure of a solid-liquid interface and an overlying D /I layer, 

has served as a guideline for studies of the GMB for decades. Recently (the 

last 15 years), however, much data have been gathered that indicate rela­

tively subtle, but significant, changes to the basic, radially-symmetric struc­

ture of D", as well as strong lateral heterogeneity at or around the CMB. 

Studies of the apparent velocity of diffracted waves, which is sensitive to the 

velocity at the base of the mantle, in the late sixties yielded low estimates of 

D" velocity, and thus introduced a positive, radial velocity-gradient above 

the CMB (Sacks 1967, Bolt 1970 and 1972, Cleary 1969, and Bolt et al. 1970). 

These studies did, however, suffer from disregard for the dispersive nature of 

diffracted waves. More recent studies have applied waveform modeling to 

diffracted waves, and thus utilize amplitude information as well as timing, 

and account for dispersive effects (Alexander and Phinney 1966, Mondt 1977, 

Doornbos and Mondt 1979a and 1979b, Mula and Muller 1980, Mula 1981, 

and Doornbos 1983). These studies are localized in nature and give widely 

varying results or a large degree of scatter when scattered samples are 

grouped together. Some prefer a positive, radial velocity gradient in D" 

(e.g., Doornbos and Mondt 1979b). Ruff and HeImberger (1982) used short 

period P-wave amplitude-data from the arctic region to construct a series of 

acceptable models, all with a small low-velocity zone at the top of D". 

Young and Lay (1988) used the same kind of data as Ruff and Heimberger 

(including the same) from three different regions to argue against positive 

radial velocity gradients in D" and for strong lateral heterogeneity (approx 

1%). Wright (1973b), Wright and Lyons (1975 and 1981), and Wright et al. 

(1985) used short-period, array data of deeply refracted P-waves to infer the 

complication of a triplication due to a sharp, but small (2%), velocity 
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increase about ISO km above the CMB. Lay and HeImberger (HlS3b and 

19S3c), Zhang and Lay (19S4), and Young and Lay (19S7a) show long-period, 

SH-wave data from four distinct regions, which show a waveform complica­

tion consistent with a reflection (Scd) off a small (2.75%) velocity increase 

some 280 km above the C11B. Schlittenhardt et al. (19S5) showed that a 

shear velocity discontinuity like that proposed by Lay and others is incon­

sistent with long-period observations of SH waveforms from a number of 

regions, few of which overlap with those of Lay and others. Garnero et al. 

(1988) presented SH-wave data from a fifth (central Pacific) region, which 

show no evidence for the reflected Scd phase of Lay and HeImberger (1983b 

and 1983c). They used anomalous, differential travel-times between S-waves, 

SKS-waves, and SKKS-waves to argue that the anomalous D" models of Lay 

and others for regions surrounding the Pacific fade out in the central Pacific. 

The different local models for D" may be indications of lateral hetero­

geneity in this region and are indeed often interpreted as such. Many of the 

above studies have, however, been subject to justified, albeit inconclusive, 

criticism. Cormier (1985) points out the importance of considering the poten­

tial effects of lower-mantle heterogeneity, in particular the possibility of con­

tamination from SKS scattering in the data shown by Lay, Helmberger, and 

Young, giving rise to an Scd type signal. Haddon and Buchbinder (1986 and 

1987) point to inconsistencies in the Scd data and nonuniqueness in their 

interpretation. They point out that a minor apparent phase like the Scd 

phase may be due to scattering off localized, smooth, velocity anomalies in 

the lower mantle. Both the above rebuttals have been vigorously refuted by 

Lay (1986) and Young and Lay (1987a). The high degree of scatter in obser­

vations of the amplitude decay of diffracted signals has given rise to 
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suspicions about contamination from shallow structure. Menke (1986a) 

showed that scatterers in D" may significantly affect the decay rate of 

diffracted waves, without invoking a change in the overall velocity structure 

of D". 

Precursors to PKP-waves have proven to give valuable information 

about the CMB region. These small, variable wiggles precede PKPdf-waves 

in the distance range from A ~ 125 0 to 143 0
• They were originally 

explained as a distinctive phase (PKPgh), that was caused by a velocity 

discontinuity near the base of the outer core (Bolt 1962 and 1964), but are 

now attributed to scattering at the CMB (Cleary and Haddon 1972, Doornbos 

1974, Doornbos and Vlaar 1973, Haddon and Cleary 1974, King et al. 1974, 

Wright 1975, and Husebye et al. 1976). The characteristic scale of the 

scatterers is tens of km; they are velocity perturbations of the order of 1 % in 

rms (root-mean-square) amplitude distributed through a thin « 200 km) 

layer above the CMB, or undulations on the CMB of height of the order of 

hundreds of meters, depending on the study. Sacks et al. (1979) used varia­

tions in the amplitude ratios of PKPab- and PKPdf-waves to argue that the 

scatterering characteristics of the D" layer are laterally variable; specifically, 

they identified a region of high scattering with a correlation length of 150 km 

and 1% velocity variations and another region of much lower scattering. 

Precursors to PKKP-waves are consistent with the estimates of CMB topog­

raphy from PKP precursors (Doornbos 1978 and 1980, and Chang and Cleary 

1978). Menke (1986b) showed by physical modeling that small-scale corruga­

tions on the CMB (2 - 50 km in scale) would drastically affect the apparent 

reflection coefficient of PcP-waves, were they any bigger than few hundred 

meters in size. This would in turn contradict observations (Frasier and 



12 

Chowdhury 1974). 

Inversions of body-wave, travel-time residuals of mantle P-waves have 

consistently resulted in an increase in the level of heterogeneity at the base of 

the mantle, indicating that the D" layer is highly heterogeneous (Sengupta 

and Toksoz 1977, Sengupta et al. 1981, Clayton and Comer 1983 (see also 

Hager and Clayton 1989), and Dziewonski 1984). These studies generally 

resolve only very large-scale structure and are thus not directly comparable 

with the scattering results. We provide later in this thesis (Chapters 4 and 5) 

evidence that implies that these studies may suffer significantly from noisy 

data. One particularly relevant observation presented in Chapter 4 is that of 

a marked increase in the incoherent scatter of global travel-time data at epi­

central distances sensitive to the D" region. This noise in the data may con­

tribute to the high level of heterogeneity in D" in global mantle-models (see 

chapter 5). Body-wave, travel-time residuals have also been used to map the 

very large-scale topography on the C1v1B (Creager and Jordan 1986b, Morelli 

and Dziewonski 1987, hereafter referred to as CJ and MD, respectively, and 

Gudmundsson et al. 1986). These studies have resulted in peak-to-peak 

amplitudes of C1v1B topography of the order of 10 km. Large discrepancies 

exist between the locations of the major anomalies. It is with this approach 

that we concern ourselves in this chapter. We present the results of inver­

sions of all of the subsets of PKP and PcP data from the ISC catalog for 

CMB topography as well as the results from combined data sets and for a 

layered structure around the GMB. It is of particular interest to us to dis­

cern the degree to which inconsistencies arise between the different data sets 

and what their cause may be. 
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In summary, the array of models that have been proposed for the D /I 

and CJV1B region is perplexing. Some of the differences are explainable by 

discounted scattering effects in the lower mantle and near the earth's surface. 

Other differences are best explained as manifestations of lateral heterogeneity 

on relatively large scales. There is ample evidence that the lower mantle is 

heterogeneous, particularly at depth (D ") and at small scales. 

2.2 Data processing 

We use the travel-time residuals of the ISC catalog (1964 - 1982), which 

are referenced to the spherically-symmetric earth-model of Jeffreys and Bul­

len (JB). The ellipticity correction of the ISC is replaced by the more accu­

rate corrections provided by Dziewonski and Gilbert (1975). We then omit 

all observations exceeding five seconds in absolute value, as well as all obser­

vations from events or stations with fewer than 50 primary picks (first arrival 

picks). Static station and event corrections are computed iteratively from 

the ellipticity-corrected residuals of P-waves and then applied to the core 

data. Then baseline shifts and linear trends in the average residual as a 

function of epicentral distance are removed. 

Each of the subsets of data that we use has some problems associated 

with it. The travel-time curve of PcP data crosses with that of S-waves at 

around 20° epicentral distance, and that of PP- and PPP-waves at about 

45°. It then merges with the travel-time curve of P-waves at the core sha­

dow at ~ 100° (see Figure 1.1). The cross-overs with S-waves and PP-waves 

are windowed out of the data set. The time separation of PcP- and P-waves 

remains larger than 5 seconds out to about 85° epicentral distance. It should 
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be possible to pick PcP out to that distance. We did, however, notice spuri­

ous streaking of residuals along the time axis between 70 0 and 75 0 epicentral 

distance and opted to cut off the set at 70 0
• Note that the reflection 

coefficient of PcP-waves at the GMB starts falling off rapidly at about 

~ = 70 0
• If a triplication exists in the travel-time curve for P-waves 

(Wright 1973b, Wright and Lyons Hl75 and 1981, and Wright et al. 1985), it 

could introduce difficulty in picking PcP at large ranges. The total number 

of individual picks in this data set is 9784. 

PKPdf-waves are first arrivals throughout the range from about 115° to 

1800 
, except for the short span of the PKPbc branch from about 143 0 to 

1450
• This is again with the exceptions of diffracted waves, which extend 

into the core shadow from mantle P-waves, and also extend the B-caustic of 

PKP-waves toward 1400
• As discussed in the introduction, these waves are 

preceded by precursors at distances less than A = 143 0
• The rms amplitude 

of the precursors does, however, decay rapidly away from the B-caustic, by 

about an order of magnitude at ~ = 1300 (see Figures 2 and 3 in Haddon 

and Cleary 1974). We use data from the distance range form 115 0 to 1300 

to avoid the precursors, and term this subset PKPde. We also use data in the 

range from A = 1550 to 1800 
, and term that subset PKPef. Theoretically, 

the BC branch of PKP-waves extends out only to 147 0 for the JB model. 

The extent of this branch is, however, quite model-dependent (it goes out to 

1540 for PREM), and diffractions around the inner-core boundary (ICB) may 

extend it further yet. The travel-time separation of the PKPbc and PKPef 

branches reaches 5 seconds at about 1520
• To avoid contamination from the 

high-amplitude BC branch, we use data at ranges larger than 155 0 only. The 

numbers of data in the PKPde and PKPef data set are 104989 and 35514, 



15 

respectively. 

PKPbc-waves are the highest amplitude, compressional core-waves, as 

they are focused in a very small epicentral distance range. They are the 

front branch of a caustic at B (see Figure 1.1) with PKPab-waves as the back 

branch. For the JB model PKPbc-waves are a first arrival between 

Do = 1430 and ~ 1450
• This branch is crossed by the DF branch, which 

becomes the first arrival at 145 0
• The BC branch is almost an order of mag­

nitude higher in amplitude than the DF branch (see Muller 1973). Anderssen 

and Cleary (1980) reported that between Do = 144 0 and 148 0 PKPbc 

arrivals are several times higher in amplitude than PKPdf arrivals and that 

85% of the picks in this interval in the ISC catalog are PKPbc. We thus 

take the same approach as MD and interpret all arrivals in this interval as 

being PKPbc. It is likely that where PKPbc is a first arrival, the relative 

picking frequency of PKPbc is higher than the overall picking frequency. 

We truncate the PKPbc subset of data at Do = 147 0 
, since the JB travel­

time tables extend no farther. This also has the advantage that at greater 

ranges the differential travel-time of the two phases becomes significant, and 

while PKPbc picks may be much more abundant than PKPde picks, the 

latter provide large outlyers to the distribution of data. Furthermore, the 

amplitude ratio of the two phases becomes more even and the relative pick­

ing frequency is likely to even at larger ranges. The ISC residuals in this 

PKPbc range are referenced to the PKPdf travel-time. We have rereferenced 

the data to the appropriate phase. The number of data in this data set is 

56348. 

The last subset of data that we use in this study is that of PKPab­

waves. We truncate this set at Do = 1550 
, where the travel-time separation 
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of it and the other core phases exceeds ten seconds. These waves are grazing 

at the GMB and thus are very sensitive to D" heterogeneity. They suffer 

from the complications of tunneling effects at the CMB discontinuity 

(Richards 1976). The number of PKPab data is 10229. 

We form summary rays on an equal-area grid of 15x15° at the equator. 

We then correct the summary rays for contributions from harmonic degrees 1 

through 3 of the mantle model of Clayton and Comer (1983). We limit this 

correction to the lowest harmonics because of the lack of correlation between 

the model of Clayton and Comer (1983) and Dziewonski (1984) at higher 

degrees (see Hager et al. 1985). Finally, it has been suggested on the basis of 

the travel-time residuals of PKPef-waves and free-oscillation data that the 

inner core is anisotropic (Morelli et al. 1986, Woodhouse et al. 1986, and 

Shearer et al. 1988). We correct the PKIKP data for the anisotropic inner­

core model of Shearer et al. (1988), but also retain the data that are not 

anisotropy corrected for our inversions. 

Table 2.1 summarizes the numbers of data in the different subsets as 

individual picks, as summary rays and as summary rays with at least five 

composite rays. Table 2.2 summarizes the variances of the individual sets at 

stages in the data-reduction process. The PKPbc and PKPde data sets stand 

out in terms of numbers of data and low scatter. The secondary phases (PcP 

and PKPab) are present in considerably fewer numbers than the primary 

phases (PKPbc, PKPde, and PKPef). It is interesting to note that the aniso­

tropy correction increases the variance of the PKPef data set when we res­

trict ourselves to summary rays with at least five picks. This is because 

much of the polar antipodal data in the set, which contain the strongest 

anisotropic signal, have but a few individual picks per summary ray. 
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Phase picks srays srays 
n > 0 n > 4 

PcP 9784 810 300 

PKPab 10229 362 150 

PKPbc 56348 761 422 

PKPde 104989 1300 790 

PKPef 35514 588 329 

Table 2.1 Numbers of data in the different subsets of core data from the 

ISC catalog. The first column indicates numbers of individual picks, the 

second column the total number of summary rays, and the last column the 

number of summary rays with at least five contributing rays. 
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Mantle Anisotropy 
correction corrected 

phase picks srays srays srays srays 
n > 0 n > 4 n > 0 n > 4 

PcP 2.89 2.39 0.61 xxxx xxxx 

PKPab 2.50 2.10 0.72 xxxx xxxx 

PKPbc 1. 77 1.01 0.55 xxxx xxxx 

PKPde 1. 90 1.14 0.48 1.14 0.48 

PKPef 3.28 2.07 0.95 1. 95 1.05 

Table 2.2 Variances (sec2) of the five subsets of ISC core data at different 

stages in the data processing. The first column shows the variance of all 

individual picks taken together, the next two columns show the variance of 

all summary rays after mantle correction, and the last two columns show the 

summary-ray variance after the PKPdf data have been corrected for the 

model of Shearer et al. (1988) for inner-core anisotropy. The minimum 

number of contributing rays to a summary ray is indicated above columns 2 

through 5. 



2.3 Method 

The travel-time residual of PcP-waves, bt, is related to a small pertur-

bation in CMB radius, 8h , by the simple expression: 

8t = -28h cos(B)jVm' (2.1) 

where B is the angle of incidence at the CMB and V m is the compressional 

velocity at the base of the mantle. The analogous expression for refracted 

waves is: 

[ 
cos( Be) cos( B m ) 1 

bt = bh - V ' 
Vc m 

(2.2) 

where V m is as before the velocity at the base of the mantle, Vc is the velo­

city at the top of the core, and () m and () c are the angles of incidence at the 

mantle and core sides of the CMB, respectively. Note that waves that refract 

through the CMB do so at two loci, whereas reflected waves sense only one 

region of the CMB. Travel-time residuals that are due to small velocity 

anomalies above or below the CMB, 8V, are: 

8V 
8t =--dS 

V 2 ' 
(2.3) 

where dS is the path length within the anomalous region. When mapping 

CMB topography with PcP data, we simply need to project the data along 

their ray paths to the CMB. When using the refracted core phases, we are, 

on the other hand, faced with an inherent inverse problem due to the inter-

coupling of the data as they relate to the model, because of the double sam-

pling. 

We divide the model space into 192 equal area patches, equivalent to a 

15x15° square on the equator. The same equal area grid is used to group 
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summary rays. We compute ray geometry by power-law ray-tracing (see Bul-

len 1979) through the JB model. Each summary ray is defined by the aver­

age epicentral distance of the composite rays and the azimuth of the center 

of one grid cell as seen from the other. Denote the patches containing the 

refraction points of the i -th datum by k and l. Assuming a constant model 

value within each patch we write: 

[ 
cos( () ci ) cos( () mi ) 1 

bti = (bhk + bhd V - V . 
c m 

(2.4) 

Grouping all these linear equations, we have the matrix equation: 

d i = GijXj' (2.5) 

where Xj = bh j , Di = bti , and 

cos( () ci ) cos( () mi ) 
G ij = - ----

Vc Vm 
(2.6) 

where i = k or I, and zero elsewhere. We can similarly translate Equation 

2.3 into a linear matrix equation of the form of Equation 2.5 with Xj = bVj 

and 

G·· = -dS··/V2 
lJ IJ' (2.7) 

where dSij is the path length of the i -th ray in the J. -th grid cell. We com­

pute the path lengths explicitly for a layer thickness of 200 km above and 

below the CMB, rather than use the analytical limit dS = H / cos( ()) at the 

CMB (H = 200 km). Finally, we normalize the topography kernels by 

1/ V m and the velocity kernels by 2~:m, such that both are dimensionless 

and of order 1. 



21 

A range of inversion procedures are at our disposal. CJ used a variant 

of the stochastic-inverse method, MD used a least-squares inversion for the 

coefficients of a truncated expansion in terms of spherical harmonics, Gud­

mundsson et al. (1g86) used an iterative back-projection scheme. The model 

size (1g2 parameters for one layer, 576 parameters for three) does not call for 

an iterative scheme. The distribution of data over the CMB is very uneven 

(see figures of resolution in the next section). The data are quite redundant 

for some regions, notably between New Zealand and Europe and under the 

Americas, but very sparse in others, notably the Pacific ocean and the south­

ern hemisphere. This distribution of data calls for localized smoothing in the 

solution, rather than an expansion in terms of relatively few, smooth, global 

functions as MD did. We find the stochastic inverse scheme of CJ appealing, 

since it constrains the solution to be smooth, and allows for trade-off between 

the enforcement of the constraint and the fitting of the data. Their choice of 

a cosine, model-covariance function renders the smoothing constraint not 

strictly local. We use instead a Gaussian of 25° width. 

This variant of the stochastic inverse solution to the inverse problem 

stated in Equation 2.5 may be written on the form: 

x = [CGT G +aI r1CGT d, (2.8) 

where C is the presumed model-covariance matrix, x is the solution approxi­

mating the true model, x, and G and d are defined as before. a is a dimen­

sionless parameter used to trade off between model variance and resolution. 

The resolution matrix is: 

(2.g) 

and the covariance matrix of model estimates is: 
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(2.10) 

where n is the data-covariance matrix. This method deviates from the stan­

dard stochastic-inverse scheme in that the data-covariance matrix does not 

enter the solution explicitly. (see Aki and Richards 1980, and references 

therein). This is because of the choice of not weighing the data inversely to 

their estimated error. We estimate the data variances by computing the 

average variance within summary rays in each of the five data sets and 

assigning that value divided by the number of composite rays in each sum­

mary ray. Weighing the data inversely to the estimated data variances 

would defeat the purpose of summary rays, which is partly to even the distri­

bution of data and reduce the dominance of densely sampled, shallow 

features. In our construction of n we assume that the data errors are not 

correlated. These error estimates are not a complete description of errors in 

the data, simply a reflection of the randomness. 

In the solutions presented in the following section we followed the exam­

ple of CJ and selected the trade-oft" parameter a such that the number of 

degrees of freedom in the solution was fixed. The degrees of freedom may be 

computed from the trace of the resolution matrix. We chose to fix the 

degrees of freedom at twenty-five, which equals the number of parameters in 

a harmonic expansion that is truncated at degree four (MD). In the cases 

where we solve for more than one layer (including heterogeneity above and 

below the CMB), we fix the degrees of freedom in the CMB-topography layer 

at twenty-five. In these cases we did not couple the presumed model covari­

ances for the different layers in the solution (i.e., we used a block diagonal, 

laterally-Gaussian model-covariance). In our solutions to the single layer 

problem (CMB topography), we define resolution length, ¢J, measured in 



degrees, according to 

R jj 
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1 - cos(15°) 
- 1 - cos( tPj) , (2.11) 

where R jj are the diagonal elements of the resolution matrix. This assumes 

that the resolution function for each model parameter may be simplified as a 

function of constant value inside a circular area of radius tP on a sphere, that 

its value is zero outside the area, and that it integrates to unity. In the mul-

tiple layer cases we define a simple measure of resolution of the i -th model 

parameter according to: 

t- (2.12) 

where the sum is taken over nearest neighbors in the case of lateral resolution 

and the adjacent elements of the other two layers of the solution in the case 

of vertical resolution. The number of elements participating in the sum is 

denoted by N j • 

Finally, we comment that we find the above parameterization of an 

inverse problem for the structure of a continuum, with no known or 

presumed discontinuities, appealing. An effectively over-parameterized solu-

tion with local smoothness constraints yields a smooth (continuous if one 

wishes and goes to the expense) model, which avoids discretization artifacts. 

Local smoothness constraints avoid potential artifacts that are due to uneven 

sampling of a global smoothing function. 
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2.4 Results 

We present a large array of models in this section; models obtained by 

the inversion of individual subsets of the ISC data, models obtained from 

data including a correction for inner-core anisotropy, and models obtained by 

simultaneous inversions of all the data for a one-, two-, and three-layer struc­

ture at the CMB. The reader can thus get a flavor of the inconsistencies in 

the data and the effects of varying the above parameters. All the models are 

presented as harmonic expansions of the direct inversion results, with degrees 

1 through 4 included. All measures of solution goodness (model standard­

error and measures of resolution) are presented in a smoothed form as har­

monic expansions out to degree 8. This is done for display purposes only, 

since the smoothed versions of model error and resolution maps make it 

easier to discern regions of good resolution from regions of poor resolution. 

When referring to individual harmonic coefficients, they are relevant to fully 

normalized, spherical harmonics, normalized according to: 

J Xi~dA = 1, 
globe 

where Xlm is the normalized spherical-harmonic basis-function for degree I 

and order m , and the integral is taken over the area of a globe. 

Figures 2.1 through 2.6 show the results of inversions for CMB topogra­

phy using the different subsets of the data. The top frames are the models, 

the middle frames are the diagonal elements of the covariance of model esti­

mates, and the bottom frames are the resolution lengths as defined by Equa­

tion 2.11. Figure 2.1 shows the results for the PKPef data set. The model is 

dominated by a degree-two, zonal harmonic (C ~ ~ 9.5 km) and has a 

peak-to-peak amplitude of 15 km. This model is similar to the model 
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Figures 2.1 - 2.6 Top: Model of CMB topography in km. Contours are at 

0.0, ± 0.4, ± 1.2, and ± 2.0 km. Striped areas are topographic highs; dotted 

areas are topographic lows. The data set used is indicated at top. Middle: 

Square root of the diagonal elements of the covariance matrix of the model 

estimates. Contours are at 0.33, 0.67, and 1.0 km. Densely striped areas are 

areas of much uncertainty. Bottom: Resolution length measured in degrees as 

defined in text. Contours are at 35, 45, and 55 degrees. The minimum possi­

ble value of 15 is indicated. Densely striped areas are areas of wide lateral 

smoothing. 
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Figure 2.1 Results for CMB topography from the PKPef data set. Data 

have not been corrected for inner-core anisotropy. 



27 

2 .0 

0.0 

-2 .0 

~ 10 
0.0 

~ 550 
15.0 

Figure 2.2 Results for eMB topography from the PKPde data set. Data 

have not been corrected for inner-core anisotropy. 
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Figure 2.3 Results for CMB topography from the PKPbc data set. 
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Figure 2.4 Results for CMB topogra.phy from the PKPab data set. 
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Figure 2.5 Results for CMB topography from the PcP data set. 
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Figure 2.6 Results for CMB topography from simultaneous inversion of al\ 

data sets . Data have not been corrected for inner-core anisotropy. 
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obtained by CJ (Figure 1) and the expansion of travel-time residuals 

presented by Morelli et al. (1986, Figure 1). Both are based partly on the 

same data. Note that the lateral resolution (roughly equivalent to density of 

coverage) is poor for most of the globe. Regions of good resolution extend 

from New Zealand through southeast Asia towards Europe and the island 

arcs of the northwest Pacific, and along the Americas. The level of error in 

this model is high (> 1 km). Figure 2.2 shows the results for the PKPde 

data set. Similar results from this data set have not been published. We 

have in this case a much better constrained model with random error less 

than 1 km and overall better resolution. Note that the regions of good reso­

lution are much the same as for PKPef. The model, however, is drastically 

different. There is a significant degree-two, zonal harmonic (C ~ ~ 2.0 km ). 

The peak-to-peak amplitude of this map is about 6 km. Figure 2.3 shows the 

results from PKPbc data. This model bears little resemblance to the results 

obtained by MD (Figure 5) from similar data. Here the peak-to-peak ampli­

tude is about 8 km. This far exceeds the standard error of the model. This 

model has a significant, degree-two, zonal component (C ~ ~ 3.0 km ), 

although not as dominating as the PKPef model. The pattern of good reso­

lution is similar to the previous cases, but more dispersed. Figure 2.4 

presents the results from PKPab data. This model does not correlate well 

with analogous results by CJ (Figure 1). Here the peak-to-peak amplitude is 

about 6 km. The level of the standard error is relatively high. The pattern 

of good resolution is somewhat different than before and much more 

dispersed. Figure 2.5 shows the results from PcP data. Again we have a 

major discrepancy with the previous study of MD (Figure 3). The peak-to­

peak amplitude is about 8 km. Standard errors are high. The resolution 
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Figure 2.7 A summary of results for CMB topography from data that have 

not been corrected for inner-core anisotropy. 
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pattern is similar to the previous cases. Figure 2.6 presents the results 

obtained by simultaneous inversions of all of the above subsets of data. Once 

again the pattern of resolution is similar, but the standard error of the model 

is much reduced. This is because we design the solution such that the overall 

resolution is fixed. The inconsistencies between the models in Figures 2.1 

through 2.5 yield a model in this case with a somewhat reduced pp.ak-to-peak 

variation of 5 km. The degree-two, zonal pattern of the PKPef, PKPde and, 

PKPbc models survives the averaging and is perhaps the most prominent 

feature of this model (C ~ ~ 2.2 km). Figure 2.7 summarizes the results 

presented in Figures 2.1 through 2.6. There is no clear common feature to all 

of these models. It is worth concentrating on the common regions of good 

resolution. In the narrow band of good resolution extending from New Zea­

land to Europe, the PcP model has its three biggest anomalies. They are a 

large high under New Zealand and eastern Australia, a deep low under 

southeast Asia and a high under southwest Asia. On the other hand, the 

PKPde model has this pattern almost perfectly reversed. The pattern in this 

region of the PKPbc model is similar to the PKPde pattern, except that the 

New Zealand anomaly is an indentation in a steep gradient. The New Zea­

land low is a clear feature in the PKPef modeJ. The pattern in this part of 

the PKPab model is similar to that in the PcP modeJ. Under the Americas 

all the refracted core phases (PKPef, de, bc, and ab) have a topographic high 

under S. America and a low under N. America, although less clear for PKPab 

than the other models. On the other hand, the PcP model has a high under 

N. America and a low under S. America and the East Pacific Rise. The ker­

nels for eMB topography are reversed in sign for PcP relative to the other 

phases (see Equations 2.1 and 2.2). Thus, this apparent reverse correlation in 
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Figures 2.8 - 2.10 Top: Model of CMB topography in km. Contours are at 

0.0, ± 0.4, ± 1.2, and ± 2.0 km. Striped areas are topographic highs; dotted 

areas are topographic lows. The data set used is indicated at top. Middle: 

Square root of the diagonal elements of the covariance matrix of the model 

estimates. Contours are at 0.33, 0.67, and 1.0 km. Densely striped areas are 

areas of much uncertainty. Bottom: Resolution length measured in degrees as 

defined in text. Contours are at 35, 45, and 55 degrees. The minimum possi­

ble value of 15 is indicated. Densely striped areas are areas of wide lateral 

smoothing. 
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Fisure 2.8 Results for CMB topogra.phy from the PKPef data. set. Data 

have been corrected for inner-core anisotropy. 
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Figure 2.g Results for CMB topography from the PKPde data set. Data 

have been corrected for inner-core anisotropy. 
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Figure 2.10 Results for CMB topography from simultaneous inversion of all 

data sets . Data have been corrected for inner-core anisotropy. 
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Figure ~.11 A summary of results for CMB topography from data that have 

been corrected for inner core anisotropy. 
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the models between PcP on one hand, and particularly PKPef, de, and bc on 

the other, implies a positive correlation of time residuals, indicating a com­

mon source for the residuals above the CMB. The most prominent of the 

anticorrelated features is perhaps the anomaly underlying New Zealand. 

There the sense of the anomaly indicates fast travel-time residuals, leading to 

the suspicion of contamination from the Fiji-Tonga subducting slab. This 

subduction zone is the most active seismic zone on earth and provides 

numerous events in the ISC catalog. On the other hand, the anticorrelated 

anomalies under S. America are due to slow residuals, despite the Andean 

slab. It is also possible that the discrepancies between the above models are 

due to structure immediately above the CMB. \Vhile we have corrected our 

data for lower-mantle structure (model of Clayton and Comer 1Il83), the 

correction may be lacking at the base of the mantle because of relatively poor 

coverage there. 

Figures 2.8 through 2.10 show results analogous to Figures 2.1 - 2.6, 

where the PKIKP (PKPef and PKPde) data have been corrected for a pro­

posed model for anisotropy in the inner core (Shearer et al. (1988)). The 

strong degree-two, zonal harmonic in PKPef data is one of two main argu­

ments for this proposition, the other being observations of normal-mode split­

ting. Figure 2.11 summarizes the results from all subsets of data with an 

anisotropy correction applied. The only striking difference between Figures 

2.11 and 2.7 is the absence of the degree-two, zonal harmonic in the PKPef 

model. The anisotropy corrected PKPef model is not strikingly correlated 

with any of the other models, although some similarities exist between it and 

the PKPde model. The composite model in Figure 2.10 is only slightly 

affected by the anisotropy correction (compared with Figure 2.6) and still 
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Variances (s*s) for summary rays at N > 0 

Phase initial CMB.phase CMB.all DCMB . all DCD .all 

PcP 2 . 39 2.24 ( 6 . 3%) 2 . 38 0.4%) 2.24 6.3\) 2 . 20 7.9\) 

PKPab 2.10 1. 85 (11. 9\) 2 . 05 2.4\) 2.05 2 . 4%) 1. 99 5 . 2\) 

PKPbc 1. 01 0 . 88 (12 . 9\) 0 . 97 4 . 0\) 0.92 8.9\) 0 . 91 9 . 9\) 

PKPde 1.14 1.04 ( 8.8\) 1.11 2.6\) 1.06 7.0\) 1. 04 8.8\) 

PKPef 2 . 07 1.65 (20.3\) 1. 98 4.3\) 1. 89 8 . 7\) 1. 80 (13.0\) 

cPKPde 1.14 1.04 ( 8.8\) 1 . 10 3.5\) 1.06 7.0\) 1.04 8 . 8\) 

cPKPde 1. 95 1.61 (17.4\) 1. 90 2 . 6\) 1. 92 1 . 5\) 1. 81 7 . 2\) 

All 1. 61 1. 57 2 . 5\) 1. 57 2.5\) 1. 51 6 . 2\) 1.47 8.7\) 

cAll 1. 59 1. 56 1 . 9\) 1. 56 1.9\) 1.50 5 . 7\) 1.47 7.5\) 

Table 2.3. Variances (sec2) of the various subsets of data before and after 

inversion. The data set is specified in the first column. The prefix " c" refers 

to data that have been corrected for anisotropy. The first numerical column 

gives the initial variance of the data set. The column labeled "CMB.phase" 

gives the residual variance after inversion for a one-layer structure (CMB 

topography) using the given data set only. The column labeled " CMB.all" 

gives the residual variances after inversion for a one-layer structure using all 

data. The column labeled "DCMB.all" gives the residual variances after 

inversion for a two-layer structure (D" and CMB) using all data. The 

column labeled "DCD.all" gives the residual variances after inversion for a 

three-layer structure (D", CMB, and D III). The variance reduction is given 

in brackets. This t able is based on data sets that include all summary rays. 
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Variances (s*s> for summary rays at N > 4 

Phase initial CMB.phase CMB . all DCMB.all OCO.all 

PcP 0 . 61 xxxx x.x\> 0.66 (-8.2%> 0.46 (24.6%> 0.45 (26.2%> 

PKPab 0.72 xxxx x . x%> 0.66 ( 8 . 3\> 0.55 (23.6%> 0 .51 (29 . 2%> 

PKPbc 0.55 xxxx x . x%> 0.49 (10.9%> 0 . 42 (23.6\> 0.41 (25 . 5%> 

PKPde 0.48 xxxx x.x%> 0.43 (10.4\> 0.36 (25.0%> 0.35 (27.1%> 

PKPef 0.95 xxxx x . x\> 0.84 (11.6\> 0.74 (22.3%> 0.70 (26.3%> 

cPKPde 0.48 xxxx x . x\> 0.42 (12.5\> 0.36 (25.0\> 0.35 (27.1% > 

cPKPde 1.05 xxxx x.x\> 0 . 93 (11. 4\ > 0 .88 (16 . 2%> 0 . 83 (21. 0\ > 

All 0.61 0.56 8.2\> 0 .56 8.2\> 0.46 (24.6\> 0 .45 (26.2%> 

cAll 0.63 0.57 9 .5%> 0 . 57 9.5'> 0.49 (22.2\> 0.47 (25.4%> 

Table 2.4. Variances (sec2) of the various subsets of data before and after 

inversion. The data set is specified in the first column. The prefix" c" refers 

to anisotropy-corrected data. The first numerical column gives the initial 

variance of the data set. The column labeled "CMB.phase" gives the residual 

variance after inversion for a one-layer structure (CMB topography) using the 

given data set only. The column labeled "CMB.all" gives the residual vari­

ances after inversion for a one-layer structure using all data. The column 

labeled "DCMB.all" gives the residual variances after inversion for a two­

layer structure (D" and CMB) using all data. The column labeled "DCD.all" 

gives the residual variances after inversion for a three-layer structure (D" , 

CMB, and D III). The variance reduction is given in brackets. This table is 

based on data sets that include all summary rays with at least five composite 

rays. 
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contains a significant C ~ term (1.1 km), although not dominant. This is to 

be expected since PKPef data are only 15% of the entire data set and the 

only subset to be significantly affected by the anisotropy correction. 

A number of the above models of CMB topography would be deemed 

significant, at least in parts, if one were to assume that the standard error of 

the model estimates were a full description of the error. We have good reso­

lution over limited regions of t he globe and model amplitudes that exceed the 

standard error. However, the inconsistencies of the models imply t hat the 

physical model of CMB topography is not consistent with the signal in the 

data. Furthermore, the variance reduction of data by these models is rat her 

low . 

Tables 2.3 and 2.4 list the variances of the individual data sets, the resi­

dual variances after inversion and the percentage variance reduction by 

different models . The CMB topography models inverted from individual sub­

sets of data yield variance reductions of the order of 10% to 20%. When all 

the data are used simultaneously to map a single layer structure on the 

CMB, the variance reduction is only 2%. This is very small and is indicative 

of the inconsistencies between the individual data sets. 

Summary rays are applied in order to even the distribution of data over 

the globe, to reduce the relative weight of clustered data that sense a pot en­

tially discounted anomaly outside of model space, and to reduce the problem 

size. But summary rays also give us means to estimate random errors in the 

data. The random error of summary rays is high when the number of com­

posite rays is low for two reasons. Firstly, redundancy within a summary ray 

suppresses random noise in the individual data. Secondly, a populous, even 

distribution of data over the area of a summary ray filters out signal from 
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Figure 2.12 Results for CMB topography from simultaneous inversion of all 

summary rays with at least 5 composite rays. Data have not been corrected 

for core anisotropy. Legend same as for Figures 2.1 through 2.6. 
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Figure 2.13 Results for CMB topography from simultaneous inversion of all 

summary rays with at least 5 composite rays . Data have been corrected for 

core anisotropy. Legend same as for Figures 2.1 through 2.6. 
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Figure 2.14 A comparison of the present results for CMB topography and 

previous results. Model CIT is the present result from summary rays with at 

least 5 composite rays. Model HARVARD is from Morelli and Dziewonski 

(1987), model MIT from Creager and Jordan (1986b). 
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PcP AB Be DE EF Alll Al15 cDE cEF cAl 11 cAllS 

PcP 1. 00 0 . 28 -0 . 36 -O.H 0 . 04 0 . 07 -0.27 -0.44 -0 . 01 0 . 08 -0.28 

PKPab 1. 00 -0.18 -0.26 -0 . 33 -0 . 03 -0.21 -0 .23 -0.20 0 . 10 -0.17 

PKPbc 1.00 0 . 57 0 . 25 0 . 67 0.66 0.54 0.04 0.59 0.56 

PKPde 1. 00 0.26 0.66 0.72 0.99 0.11 0.66 0 . 71 

PKPef 1. 00 0.68 0.63 0.23 0.71 0 . 47 0.49 

Al1-1 1. 00 0.84 0.63 0.42 0.91 0.74 

All-5 1. 00 0.72 0.41 0. 75 0.93 

cPKPde 1.00 0 . 13 0.67 0 .73 

cPKPef 1.00 0 . 48 0.49 

cAll-1 1. 00 0. 78 

cAll-5 1.00 

Oth PcP AB Be DE EF Alll Al15 cDE cEF cAlll cAllS 

Harvard 0.20 -0 . 06 0.12 0 . 18 0.11 0.12 0.24 0.29 0.16 0.26 0 . 35 0 . 42 

MIT 0.20 -0 . 19 -0.24 0 . 36 0.38 0.64 0 .59 0 . 75 0 . 37 0 . 49 0.47 0.68 

Table 2.5. Correlation coefficients of the various CNID models. The models 

are named after t he data sets that are used to compute them, as in t he text. 

The prefix" c" is used to refer to data that have been corrected for inner- core 

anisotropy. The models HARVARD and MIT are after Morelli and Dziewon­

ski (1987) and Creager and Jordan (1985b), respectively. 
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small-scale structure. From the point of view of random uncertainty it may 

be advantageous to discard the poorest data. We tried selecting data accord­

ing to the criterion that any given summary ray have at least five composite 

rays. This omits unstable data points based on only a few individual picks. 

Note the reduction in data variance by the application of this selection in 

Table 2.2. However, another effect of this data selection is to reduce redun­

dancy, and in some cases to cancel coverage of entire large geographical 

areas. Figures 2.12 and 2.13 show the results of inverting all these data for 

CMB topography. In Figure 2.13 an anisotropy correction has been applied. 

Note how similar the two models are, and how low the estimates of model 

error are. The similarity of the two models is enhanced because polar antipo­

dal PKIKP data are lacking in redundancy. They are thus excluded from the 

data. But those are the data that contain the strongest anisotropy signal. 

Note that the variance of the selective PKPef data set is increased by the 

application of an anisotropy correction (see Table 2.2). The models in Fig­

ures 2.12 and 2.13 have a strong degree-two, zonal component, 

(C 2° ~ 2.5 km and 1.6 km, respectively) with a major disruption in a topo­

graphic low under New Zealand. A topographic high along the equator is 

also disrupted by a saddle point under India. It is interesting to note that if 

we could discount the deep, topographic low under New Zealand as contami­

nation from the Fiji-Tonga subduction slab, the remaining model would 

correlate with the predicted CMB topography of Hager et al. (1985). Furth­

ermore, only a minor amplitude discrepancy would remain. These models 

yield an overall variance reduction of 8% and g% respectively. 

In Figure 2.14 we compare the model in Figure 2.12 with the models of 

MD and CJ. This is not to be taken as our preferred model of CMB 
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Figures 2.15 - 2.22 Results from inversions for a two-layer structure at the 

CMB (CMB topography and D /I velocity variations). Top: Model of CMB 

topography in km or D /I velocity anomalies in percent relative deviation 

from the JB reference model as indicated at top. Contours are at 0.0, ± 004, 

± 1.2, and ± 2.0 km or percent. Striped areas are positive (topographic highs 

or fast regions); dotted areas are negative (topographic lows or slow). Second 

from top: Square root of the diagonal elements of the covariance matrix of 

the model estimates. Contours are at 0.25, 0.50, and 0.75 km or percent. 

Densely striped areas are areas of much uncertainty. Second from bottom: 

Vertical resolution (unitless) as defined in text. Contours are at 0.25 , 0.50, 

and 0 .75. Densely striped areas are regions of good vertical resolution. Bot­

tom: Lateral resolution (unit less) as defined in text. Contours are at 0.25, 

0.50, and 0.75. Densely striped areas are regions of good lateral resolution. 
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vertical resolution 
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Figure 2.15. Results for D /I velocity variations. Data were not corrected 

for inner-core anisotropy. All summary rays were included. 
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Figure 2.16. Results for CMB topography. Data were not corrected for 

inner-core anisotropy. All summary rays were included. 
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Figure 2.17. Results for D /I velocity variations. Data were not corrected 

for inner-core anisotropy. All summary rays with at least five composite rays 

were included. 
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Figure 2.18. Results for CMB topography. Data were not corrected for 

inner-core anisotropy. All summary rays with at least five composite rays 

were included. 
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Figure 2.1Q. Results for D 1/ velocity variations. Data were corrected for 

inner-core anisotropy. All summary rays were included. 
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lateral resolution 
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Figure 2.20. Results for CMB topography. Data were corrected for inner­

core anisotropy. All summary rays were included. 



56 

vertical resolution 

lateral resolution 

1.0 

0.0 

: -1.0 

~0.75 
0.0 

~0.75 
0.0 

~0.75 
0.0 

Figure 2.21. Results for D" velocity variations. Data were corrected for 

inner-core anisotropy. All summary rays with at least 5 composite rays were 

included. 
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Figure 2.22. Results for CMB topography. Data were corrected for inner-

core anisotropy. All summary rays with at least 5 composite were included. 
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topography; it is simply an example. All three models have a deep topo­

graphic low under New Zealand, a broad high under western Australia and 

the Indian Ocean, and a high near the East-Pacific Rise. However , t he 

overall agreement is poor. In Table 2.5 we list the cross-correlation 

coefficients of all the models that we have discussed to this point . The 

models in Figure 2.14 correlate at the 0 .35, 0.47, and 0.20 level, with the 

highest cross-correlation between our model and that of CJ. The highest 

correlation coefficients in the table are 0.57 between the PKPbc and PKPde 

models, 0.67 between the PKPbc, PKPde, and PKPef models on one hand 

and the All model on the other, and related correlations. The model of CJ 

correlates with our PKPef model at the 0.64 level, but at -0.24 with its other 

counterpart, the PKPab model. The model of MD correlates at the 0.18 level 

with our PKPbc model, but is slightly negatively correlated with its other 

counterpart, PcP. 

Some of the discrepancies between the above CMB topography models 

may be explainable by structure immediately above the CMB in the D" 

layer. We performed inversions of all subsets of data simultaneously for a 

two-layer structure at the CMB, including both topography and velocity 

anomalies in D". The results are presented in Figures 2.15 through 2.22. 

Variance reductions obtained by these inversions are listed in Tables 2.3 and 

2.4. Figure 2.15 shows the results for D", when we have not corrected 

PKPdf (PKIKP) data for aniSotropy, and include all summary rays in the 

inversion. The model has 2.5% peak-to-peak velocity variations. Note that 

we presume the thickness of this heterogeneous layer to be 200 km. In fact, 

we have no resolution to separate the product of the velocity anomaly and 

the layer thickness. Predictably, from the discrepancies between the CMB 
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Figures 2.23 - 2.34 Results from inversions for a three-layer structure at 

the CMB (CMB topography and D /I and D "' velocity variations). Top: 

Model of CMB topography in km or D II or D ,/I velocity anomalies in percent 

relative deviation from the JB reference model as indicated at top. Contours 

are at 0.0, ± 004 , ± 1.2, and ± 2.0 km or percent. Striped areas are positive 

(topographic highs or fast regions)j dotted areas are negative (topographic 

lows or slow). Second from top: Square root of the diagonal elements of the 

covariance matrix of the model estimates. Contours are at 0.25, 0.50, and 

0.75 km or percent. Densely striped areas are areas of much uncertainty. 

Second from bottom: Vertical resolution (unitless) as defined in text. Con­

tours are at 0.25, 0.50, and 0.75. Densely striped areas are regions of good 

vertical resolution. Bottom: Lateral resolution (unitless) as defined in text. 

Contours are at 0.25, 0.50, and 0.75. Densely striped areas are regions of 

good resolution. 
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Figure 2.23. Results for D /I velocity variations. Data were not corrected 

for inner-core anisotropy. All summary rays were included. 
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standard deviation 
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Figure 2.24. Results for CMB topography. Data were not corrected for 

inner-core anisotropy. All summary rays were included. 
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Figure 2.25. Results for D '" velocity variations. Data were not corrected 

for inner-core anisotropy. All summary rays were included. 
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Figure 2.26. Results for D /I velocity variations. Data were not corrected 

for inner-core anisotropy. All summary rays with at least five composite rays 

were included. 
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Figure 2.27. Results for CMB topography. Data were not corrected for 

inner-core anisotropy. All summary rays with at least five composite rays 

were included. 
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Figure 2.28. Results for D III velocity variations. Data were not corrected 

for inner-core anisotropy. All summary rays with at least five composite rays 

were included. 
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Figure 2.29. Results for D" velocity variations. Data were corrected for 

inner-core anisotropy. All summary rays were included. 
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Figure 2.30. Results for CMB topography. Data were corrected for inner-

core anisotropy. All summary rays were included. 
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Figure 2.31. Results for D /If velocity variations. Data were corrected for 

inner-core anisotropy. All summary rays were included. 
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Figure 2.32., Results for D" velocity variatio"'3. Data were corrected for 

inner-core anisotropy. All summary rays with at least five composite rays 

were included. 
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Figure 2.33., Results for CMB topography. Data were corrected for inner­

core anisotropy. All summary rays with at least five composite rays were 

included. 
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Figure 2.34~ Results for D Iff velocity variations. Data were corrected for 

inner-core anisotropy. All summary rays with at least five composite rays 

were included. 
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models, the model has a large, fast anomaly under New Zealand and an 

hourglass-shaped, slow anomaly under the East-Pacific Rice and S. America. 

The model far exceeds its standard error. Vertical resolution is reasonably 

good, particularly at the poles, and lateral resolution mimics the pattern of 

coverage by the data. Figure 2.16 shows the results for GMB topography, 

when anisotropy corrections have not been applied and all data are included. 

The peak-to-peak amplitude of this model is about 4 km. The model is dom­

inated by a degree-two zonal pattern (C ~ ;=::;j 3.6 km), with saddle points 

under the Indian and western Pacific Oceans. Vertical resolution behaves 

much the same as for the D" layer and lateral resolution mimics coverage 

density. Figures 2.17 and 2.18 are analogous to 2.15 and 2.16, except for 

that they are constructed from data with a minimum number of five rays per 

summary ray. The pattern in D" is similar, but enhanced in amplitude. 

The pattern for CMB is also similar, but the New Zealand low is more pro­

nounced. Figures 2.19 through 2.22 are analogous to Figures 2.15 through 

2.18, except for that anisotropy corrections have been applied. This has little 

effect on the models. The models presented in Figures 2.15 - 2.22 yield vari­

ance reductions of the order of 5%, when all summary rays are included, and 

20 - 25%, when data are required to be based on at least five picks. 

CJ suggested that the core side of the CMB may contain regions of 

anomalous seismic velocities, while constituting only minor density anomalies, 

and would thus be stable in the low viscosity regime of the outer core. 

Stevenson (1988) suggested that the mantle and core may interact with each 

other by ungerplating of core material under the CMB, infiltration of core 

material into the mantle, and dissolution of mantle material by the core. 

This scenario could entail anomalous seismic velocities on the under side of 
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the GMB. We inverted our data (all data simultaneously) for a three-layer 

structure at the GIVffi, including topography on the CMB and velocity varia­

tions above and below. The results of that inversion are plotted in Figures 

2.23 to 2.34. Variance reductions achieved by these inversions are listed in 

Tables 2.3 and 2.4. The models for D" are only slightly altered from the 

two-layer solutions. On the other hand, the CMB models are changed from 

the two-layer case, particularly in the case of unselected data. Note that 

despite a significant increase in the number of degrees of freedom in these 

solutions from the two-layer case, the variance reduction of the data remains 

similar. This is particularly clear in the case of selected data, and indicates 

that the data do not prefer the addition of the D Iff layer to the parameteri­

zation of the model. The models for the underside of the CMB, D Iff, have 

2.5% peak-to-peak velocity variations, and are slow along the equator. The 

variance reduction for these models is about 8% (unselected data) and 25% 

(selected data). 

2.5 Discussion a.nd conclusions 

Models of CMB topography based on different subsets of ISC core-data 

are inconsistent. Furthermore, our analysis of PcP, PKPbc, and PKPab data 

in terms of CMB topography does not agree well with results of previous stu­

dies with the same phases (l\1D and CJ). On the other hand, our analysis of 

PKPef data does agree well with previous workers. The inconsistencies that 

we observe between the various models indicate that their sources lie above 

the CMB, as possibly unaccounted for upper-mantle structure or D" struc­

ture. 
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The core phases all have small take-off angles at the surface of the earth 

in their observable epicentral ranges. Their ray paths through the mantle are 

near radial and particularly PKPdf, but also to a lesser extent PKPbc, have 

little room to disperse within the mantle. PKPef data in the range from 

A 1550 to 1800 hit the C~ at a distance smaller than 7.5 0 from the source 

or receiver. The range for the hit points of PKPde is 9.0 0 to 11 0 , for PKPbc 

130 to 210. For this reason, contamination from shallow structure in the 

travel-time residuals of core phases is more likely to map coherently on to the 

C~ than in the case of mantle P-waves used to map the lower mantle, 

where rays disperse widely around each source or receiver, and the residual, 

upper-mantle signal becomes incoherent relative to the model parameteriza­

tion. The upper mantle is known to be strongly heterogeneous (e.g., Wood­

house and Dziewonski 1984). We present evidence in Chapter 4 of this thesis 

that implies a large difference in the overall level of heterogeneity between 

the upper and lower mantle. The simplistic method of station corrections or 

event/station statics may very well account insufficiently for the large, 

upper-mantle signal in the data. There is thus clearly a potential for 

significant contamination from upper-mantle structure in our results, which 

may account for some of the inconsistencies within them. We present in 

Chapter 5 of this thesis evidence that the mantle may, in fact, completely 

mask the structure of the C~ from the eyes of travel times. 

The strong structure of the upper mantle and the straight connection of 

PKP rays of the surface of the earth with the CMB may also explain some of 

the discrepancies between our results and the results of previous workers with 

partly equivalent data. MD used shallow events only, while we use events 

from all source depths. JVID used the entire BC branch as defined by PREM 
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(Dziewonski and Anderson 1981), while we use a much smaller JB BC 

branch, which remains a first arrival for more of its range. MD used station 

corrections and relocated events, CJ used station corrections, but did not 

relocate, while we compute iteratively static corrections for events and sta­

tions. These different procedures to filter out the effects of shallow structure 

may account for differences in results. A number of decisions are made in the 

processing of the data in regard to how to window out potentially poor data. 

These decisions are considerably different in the three above studies. That 

could help explain some of the differences in results. 

Models obtained by simultaneous inversion of all the compressional 

phases in the ISC catalog, that are sensitive to C11B structure, are lower in 

amplitude (5 km peak-to-peak) than previously published models (CJ and 

MD) and correlate only marginally with those models. Consistent features of 

these models (see Figures 2.6, 2.10, 2.12, and 2.13) include topographic highs 

under western Australia and the Indian Ocean, under the East Pacific Rise, 

and under the central Atlantic Ocean. Consistent topographic lows lie under 

southeastern Asia, under N. America, under New Zealand, and under the 

South pole. Discounting the major topographic low under New Zealand, 

which might be due to slab contamination, the model becomes similar to the 

predicted CMB topography of Hager et al. (1985). This would imply direct 

coupling of mantle flow and C11B topography. 

Models consisting of a two-layer structure at the CMB, including D" 

velocity anomalies and CMB topography, require 2.5% peak-to-peak varia­

tions in the p" layer and about 4 km topography on the CMB. This model 

of D" heterogeneity assumes a thickness of 200 km for the heterogeneous 

layer. It should be noted that this heterogeneity is relative to a model 
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containing degrees 1 through 3 of the model of Clayton and Comer (1983). 

This is roughly equivalent to previous estimates of heterogeneity in D" (e.g., 

Dziewonski 1984, Young and Lay 1988). In Chapter 4 of this thesis we 

present a stochastic estimate of the heterogeneity level in D" of the order of 

0.4% rms. This would be equivalent to about 1.2% peak-to-peak velocity 

variations. The present level of heterogeneity in D" is thus a mere factor of 

two different from our stochastic estimate. The consistent features of these 

models (see Figures 2.15 through 2.22) include fast D" anomalies under New 

Zealand, the South pole, and N. America, and slow D" anomalies under the 

East-Pacific Rise, S. America, and the south-central Atlantic Ocean, and 

under southeastern Asia, the East Indies, and the Indian Ocean. A band of 

topographic highs align not far from the equator under Australia, under the 

north-central Atlantic, under the East-Pacific Rise, and under Arabia. The 

consistent topographic lows are under the poles, under eastern Asia, under N. 

America, and under New Zealand. 

Morelli et al. (1986) and Woodhouse et al. (1986) suggested an anisotro­

pic model for the inner core on the basis of travel times of PKPef-waves and 

the splitting of some normal modes. The proposed anisotropy is transverse 

anisotropy, symmetric about the earth's rotation axis. We see the same pat­

tern in antipodal PKIKP data (PKPef). However, we also see hints of a simi­

lar pattern in PKPde and PKPbc data, and when inverting all our data 

simultaneously, we see a C 2 component in our maps, despite correcting 

PKPef data for the anisotropic model of Shearer et al. (1988) (see Figures 

2.12 and 2.13). We also observe that those of the PKPef data that hold the 

strongest anisotropic effect (if that is what it is) are from polar paths, which 

are somewhat lacking in redundancy. We thus conclude that a part of the 
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anisotropic pattern in the travel-time residuals of PKPef-waves is poorly con­

strained and that the remaining portion of the pattern may at least in part 

be explained by a degree-two, zonal anomaly on the C11B. 

Multiple layer structures at the C:N1B help explain inconsistencies 

between data when modeled in terms of GMB topography only. Such models 

require 2.5% peak-to-peak velocity variations in D" and 4 km peak-to-peak 

undulations on the CMB with a strong degree-two, zonal pattern. A 

significant component of that pattern persists despite anisotropy corrections 

of PKlKP data. When allowing for a heterogeneous layer under the C:N1B it 

absorbs some of the degree-two zonal. In that case D" structure remains 

unchanged, C:N1B topography is 3 km peak to peak and the underside layer 

has 2% velocity variations. The velocity anomalies in D" do not appear to 

correlate with results from studies reviewed in the introduction to this 

chapter. 

In light of the limited variance reduction, the inconsistencies among sub­

sets of data, and the apparent correlation of at least some common features 

in the data that may be due to contamination from above, we remain in 

doubt about the truthfulness of the present models as descriptions of C11B 

structure. 
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3 CORE-MANTLE BOUNDARY STRUCTURE OR CORE 

ANISOTROPY? 

3.1 Introduction 

Since 1964, the travel-time picks (9 million) of some 3000 world-wide 

seismic stations have been catalogued in machine-readable form by the Inter­

national Seismological Centre (ISC). While the majority of these picks (2/3) 

are of mantle P-waves, a substantial number (1/6) of compressional phases 

(PKP, PKIKP, PcP, and P-diffracted), that interact with the earth's core, 

have been recorded. The ISC data are noisy. The variance of random noise 

is of the order of seconds (see Chapter 4 of this thesis and Morelli and 

Dziewonski 1987). The structural signal is of the same order as the noise, so 

much redundancy is needed. We can hope to resolve only the earth's gross 

structure with these data, and a statistical appraisal is critical. 

After concentrating on the mantle for the first half decade of availability 

of the ISC data (Clayton and Comer 1983 (see also Hager and Clayton 1989) 

and Dziewonski 1984), our attention has focused on the earth's core. The 

above studies agree on very large-scale features (degrees 2 and 3) (Hager et 

al. 1985). However, they differ in one aspect pertinent to the present study. 

Clayton and Comer's model includes a significant, but small, degree-two, 

zonal (C 2° ) term, while Dziewonski's model does not. 

There have been a number of studies of the core-mantle boundary 

(C1113) using1SC data. Morelli and Dziewonski (1987) used PcP and PKPbc 

data to map CMB topography. Separate mappings of the two data sets 

resulted in fair agreement, indicating the absence of aspherical heterogeneity 
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at the top of the core. Furthermore, the agreement of their models may be 

used to argue that the present lower-mantle models are reasonably accurate. 

Their results do not include a significant C ~ term. Creager and Jordan 

(1986a and b) used PKPdf (actually PKPef) and PKPab. Their maps are 

dominated by a C ~ pattern and correlate at the 0.2 level with the results of 

Morelli and Dziewonski (1987). Furthermore, there is a large amplitude 

discrepancy between the two models. In Chapter 2 of this thesis we present 

yet another study of CMB topography using travel times of core phases from 

the ISC catalog. Our results do not agree with those of Morelli and Dziewon­

ski (1987), Creager and Jordan (1986b), or internally. The differences in 

results could be due to structure within the core, structure at the CMB, 

structure near the earth's surface, or errors. 

Poupinet et al. (1983) first reported a spheroidal term in PKIKP data. 

They found a 2 second differential travel time between fast regions at the 

poles and slow regions along the equator. They suggested a spheroidal pat­

tern of heterogeneity in the vicinity of the inner-core boundary (ICB) to 

explain their observation. In a series of papers Morelli et al. (1986) and 

Woodhouse at al. (1986) explained this feature in the data, as well as some 

observations of normal mode splitting, by an axially symmetric, transversely 

anisotropic, inner-core model. Shearer et al. (1988) reanalyzed the travel­

time data and got a technically different, but conceptually identical model to 

that of Morelli et al. (1986). 

Ritzwoller et al. (1986) and Giardini et al. (1987) studied the splitting of 

normal mode,s sensitive to the structure of the core. Ritzwoller et al. (1986) 

explained their data by a 0.3% C ~ density anomaly in the outer core, and a 

0.5% density anomaly at the base of the mantle. Giardini et al. (1987) 
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required strong zonal undulations at the inner- and outer-core boundaries as 

well as 5% heterogeneity in the inner core. They suggested anisotropy in the 

inner core as an alternative explanation. 

In summary, a number of anomalously split normal modes (Masters and 

Gilbert 1981, Ritzwoller et al. 1986, Giardini et al. 1987) and the differential 

travel time between polar and equatorial paths in PKIKP (Poupinet et al. 

1983) and PKPab (Creager and Jordan 1986a) require significant aspherical 

structure at or below the CIVIB. Much of these data could be explained by 

excess ellipticity of the CIVIB. Inner-core anisotropy is certainly another can­

didate explanation as well as heterogeneity within the core. Heterogeneity in 

the fluid outer core will, however, be difficult to justify in light of the argu­

ments of Stevenson (1987), as velocity anomalies are likely to be associated 

with density anomalies. The heterogeneity in the inner core or at the inner­

core boundary, that is required to explain the anomalous travel times of 

PKPef, is likely too large to be acceptable (Morelli et al. 1986). 

We have conducted a search for a similar effect in the travel times of 

PKPbc to that found in PKIKP and PKPab data. While the results of 

Chapter 2 might reveal excess heterogeneity at the CIVIB (and there are hints 

of it there), they are hampered by inconsistency and errors. The philosophy 

that we employ here is to stack the data as densely as possible in order to 

still resolve the parameters of interest to us. It is not clear what the optimal 

way to extract information from the noisy ISC data might be. Dense stack­

ing, where account is taken for the uneven geographical distribution of data, 

may reveal si~ple features in Earth structure that are obscured by the uncer­

tainty and artifacts of complex inversion schemes. 
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3.2 Method and results 

A simple way to search for a C 2 pattern in the travel times of any 

phase is to restrict oneself to longitudinal rays and to map the travel-time 

residual of each datum onto its turning point. We have isolated 6 data sets 

from ISC data from 1964 to 1982. These are 2 epicentral ranges of PKIKP 

(PKPef and PKPde) and PKPbc, PKPab, PcP, and P-diffracted. The data 

have been corrected for hydrostatic ellipticity (Dziewonski and Gilbert 1975) 

and station and event statics calculated from mantle P-waves (25 0 _95 0 
). 

Data from events or stations with less than 50 picks were omitted. The data 

are referenced to the JB tables, but corrected for baseline shifts and linear 

trends in the average residual as a function of epicentral distance. Details of 

the selection, windowing, and processing of the data were the same as 

described in Chapter 2.2, except for that a mantle correction was not applied. 

We compute summary rays on a 5x5° equal area grid over the globe. 

The average residual is taken as the summary-ray datum. We then select all 

data with azimuth less than 15 0 from north or south. Each datum is then 

projected onto its turning point and the data binned in terms of the latitude 

and longitude of their turning points. For each latitude bin we group the 

data within ten longitude windows, compute the average residual within each 

bin, and then average the estimates for the longitude bins. The northern and 

southern hemispheres are stacked. We have thus applied the summary-ray 

concept twice, at the earth's surface and at the turning point of rays. In this 

geometry the latitude of the turning point of rays is approximately the same 

as the angle between the ray itself and the rotation axis of the earth. Thus, 

if axially symmetric transverse anisotropy exists in the earth's core, it should 

be detected by this process. In fact, this stacking procedure is sensitive to all 
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Ray geometry 

N N 

polar equatorial 

Figure 3.1. The ray geometry of the stacking experiment as described in 

the text. The rays are contained in great circle planes that are normal to the 

equator. Polar paths bottom parallel to the rc .. ation axis of the earth, while 

equatorial paths turn parallel to the plane of the equator. 
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even-order, zonal harmonics. Figure 3.1 demonstrates the geometry of our 

stacking procedure. 

Our results are presented in Figures 3.2 through 3.4. Figure 3.2 shows 

the results for PKPef (PKIKP1) and PKPde (PKIKP2) waves, which enter 

the inner core. The upper frames show the variation of the average stacked 

travel-time residual with the ray angle to the rotation axis. The lower 

frames show the number of summary rays contributing to each estimate. 

The total number of summary-ray data is indicated. The square on the side 

margin of the upper frames represents an average of summary-ray data, 

which are within 15° from traveling in the plane of the equator. These 

results confirm the findings of Poupinet et al. (1983). A clear and simple 

trend is evident between polar (left) and equatorial (right) paths for near 

antipodal (PKPef) data. Polar paths are about 2 seconds faster than equa­

torial paths. Note, however, the large error bars at low angles and the low 

numbers of data. The PKPde (PKIKPl) data set is a much bigger one and 

yields better constrained estimates, and also a much smaller trend. The 

differential travel-time between polar and equatorial paths is about 0.5 

second here. Figure 3.3 shows analogous results for the outer core phases. 

The PKPab data set exhibits a strong trend of the same sense as PKPef and 

PKPde data, but over a limited range of angles. This is a very small data set 

and uncertainties are large. The PKPbc data set is fairly large and renders 

reasonably stable averages. Here there is an apparent differential travel time 

between polar and equatorial paths of the order of 0.5 or 1.0 second. This 

observation is in contradiction with Shearer et al. (1988), who find no aniso­

tropic effect in PKPbc data. They did not apply summary rays and their 

results are thus more susceptible to contamination from shallow 
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heterogeneity. Figure 3.4 shows the results from PcP and P-diffracted data. 

Both sets are of intermediate size in terms of numbers of summary rays. The 

PcP data do, however, have relatively little redundancy within their sum­

mary rays. The behavior of P-diffracted is irregular, while PcP displays a 

weak, but poorly constrained trend (we could fit 0.0 through all of the error 

bars), with polar paths slower than equatorial paths. Note, however, that 

what we term polar PcP paths are rays that reflect off the CMB at the equa­

tor. 

Subject to a stacking procedure that is designed to even the weight of 

geographical regions at the endpoints and turning points of rays, we observe 

an anisotropic pattern in the travel times of compressional core phases. Polar 

paths are fast relative to ray paths, either in the plane of the equator or 

turning parallel to it. The effect is strongest for near antipodal PKIKP and 

generally weakens as bottoming depth decreases. The exception to this is the 

PKPab data set, which yields the largest anomaly. As discussed earlier this 

estimate is poorly constrained and will be ignored later. 

3.3 Modeling and discussion 

To explain the patterns presented in Figures 3.2 through 3.4, we con­

structed a number of very simple models of heterogeneity at the CMB and 

anisotropy in the core. The parameters of the models were then adjusted in 

order to fit the data in Figures 3.2 - 3.4. The models we consider are the fol­

lowing: 

1) CMB topography with a linear transition between polar and equa­

torial positions, 
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2) D" velocity variations with a linear transition between polar and 

equatorial positions, 

3) A combination of 1) and 2), 

4) Axially symmetric transverse anisotropy in the core with cos(2B) tran­

sition between polar and equatorial directions, where e is the angle a ray 

makes with the earth's rotation axis. 

We allow for only two layers in model 4), i.e., the inner core and the bottom 

third of the outer core, or the inner core and the whole of the outer core, and 

assume a constant model within each layer. The inner-core anisotropic 

models of Morelli et al. (1986) and Shearer et al. (1988) do contain a cos( 48) 

component. There is a hint of cos(4B) behavior in the data in Figures 3.2 and 

3.3, but it is hardly resolved given the error bars. 

We can only assume that if core anisotropy is the cause of the above sig­

nal in the PKPef data set, it is also the cause of the similar, albeit weaker, 

signal in the PKPde and PKPbc data sets. That would require anisotropy in 

the outer core. Assuming the parameterization for core anisotropy described 

above, that would entail 0.5% anisotropy in the inner core and about 0.25% 

anisotropy in the lower third of the outer core, or equivalently 0.1% aniso­

tropy throughout the outer core. The fit to the data by this model is 

presented in Figures 3.6 and 3.7. The PKPbc and PKPde data are well fit, 

but this model explains only a little over half the total effect in PKPef data. 

We could make the anisotropy stronger in the inner core and thus explain 

more of the PKPef signal by including a constant shift term. However, we 

point out ~hat the data that we do not fit are relatively poorly constrained. 

The models that we have constructed for CMB structure are presented in 

Figure 3.5, in terms of the equivalent travel-time anomaly for antipodal 
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Figure 3.5. Models of structure in the C11B region obtained by forward 

modeling to explain the data in Figures 3.2, 3.3, and 3.4. The models are 

presented in terms of the equivalent travel-time anomaly of antipodal 

PKIKP-waves (multiply C11B models by 10.0 km/s to get topography, multi­

ply D" by 3.4%/s to get percent velocity variation, or by 0.5 km/ s 2 to get 

absolute velocity anomaly (assuming a thickness of 200 km)). Modell con­

siders C11B structure only, model 2 D" structure only, and model 3 both. 

The fourth model considered is that of an anisotropic core, which has no 

effect on D" or the C11B. 
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PKIKP, and the resulting fits in Figures 3.6 and 3.7. Modell) of CMB 

topography has more than 1 second differential travel-time through the CMB. 

This model corresponds to about 12 km peak-to-peak topography, with a 

bulge on the equator and a low at the poles. It explains the PKPde and 

PKPbc data nicely and about as well as the above anisotropic model, but 

only about half the variation in PKPef. It does not explain the PcP data or 

PKPab and P-diffracted. Similarly, model 2) of D" velocity variations has 

about 1 second differential, vertical travel-time through the CI\1B. This 

model corresponds to a differential, relative velocity-anomaly of about 3.5% 

(assuming a thickness of 200 km), with the equatorial region being slow, 

while the polar region is fast. This model fits the data very similarly to 

model 1). Model three has about 1.7% velocity variation in the D /I layer 

and a 5 km peak-to-peak topography. This model explains the PKP phases 

about as well as models 1) and 2), but now the trend in PcP is also 

explained. This is because the two effects of heterogeneity in D" and CMB 

topography collaborate to affect PKP, but compete to affect PcP. 

Admittedly the above PcP observation is weak. Furthermore, model 3) 

does not explain the PKPab and P-diffracted data and explains PKPef data 

only in part. The stacking procedure employed in this study is not 

specifically geared towards observing CI\1B structure, and the predicted 

PKPde and PKPbc data from models 1), 2), and 3) are much reduced from 

PKPef, because the stacking procedure for the PKPde and PKPbc phases is 

relatively insensitive to CMB structure. However, we refer to the models 

presented in Chapter 2 of this thesis, which entail a 4 km peak-to-peak CMB 

topography" with a strong C g component and 2.5% velocity variations in 

D". We also point out that the anisotropic pattern in PKPef data is 



93 

explainable in terms of GMB structure, less the poorly constrained polar 

paths. 

If anisotropy is used as the sole explanation of the travel-time variations, 

then both the inner core and the outer core must be anisotropic. While 0.1 % 

anisotropy in the outer core (0.25% if confined to the bottom third) cannot 

be ruled out, it certainly stretches the imagination to conceive of a mechan­

ism. If outer-core anisotropy is rejected as a possibility, then some degree of 

heterogeneity near the CJvffi appears to be necessary. A model based on 

CMB topography alone explains most of the data. The violated data are 

PKPab, which are weak observations. A model that includes D" hetero­

geneity also explains the (poor) PcP data. This model reduces the required 

CMB topography, which is in accord with length of day studies (Speith et al. 

1986, Hide et al. 1989). 
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4 STOCHASTIC ANALYSIS OF GLOBAL, TRAVEL-TTh1E DATA 

4.1 Introduction 

Great advances have been made in recent years in the mapping of the 

aspherical structure of the earth's interior. One field that has contributed is 

global, travel-time tomography, invigorated by advances in inversion tech­

niques, improved computing facilities, and improved data. This field has, 

however, raised considerable controversy; various model results agree only 

marginally if at all, and are met with some scepticism. 

Most global, travel-time, tomography studies have utilized data from the 

International Seismological Centre (ISC) Catalogue, which contains over 

twenty years of worldwide, travel-time readings, more than nine million 

picks. Clayton and Comer (1983) (see also Hager and Clayton 1989) and 

Dziewonski (1984) used fifteen years of ISC P-wave data to map the lower 

mantle. Creager and Jordan (1 986b) and Morelli and Dziewonski (1 987) used 

compressional core-phases to map the core-mantle boundary. Morelli et a1. 

(1986) and Shearer et al. (1988) used PKIKP-waves to map anisotropy in the 

inner core. These studies, together with surface-wave tomography, free­

oscillation studies and long-period, body-wave synthesis provide important 

constraints on the style and scale of mantle convection, on the workings of 

the geodynamo, and on the evolution of the earth. 

The concerns about results of global, body-wave tomography stem pri­

marily from .concerns about the ISC data. While serving well to map the 

overall seismicity of the earth, the uncertainty of measurement in the ISC 

data is high compared with the signal attributable to aspherical structure. 
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The data are contaminated by systematic errors that are due to 

misidentification of phases, earthquake mislocation, earthquake time-function 

complexity, and potentially biased picking. The geometrical coverage of the 

data is uneven, because of the clustering of seismic sources in tectonically 

active regions and the lack of recording stations in the oceans. The images 

may suffer from complex artifacts, which depend on the particular technique 

employed, because of the uneven coverage. The strong velocity variations in 

the crust and upper mantle are simplistically accounted for by station correc­

tions. The severity of these problems is currently poorly understood. 

In order to assess the quality of images obtained from the ISC data, it is 

important to have robust estimates of the level of random errors in the data. 

Random errors can be propagated through inversion schemes to estimate 

their effect (Davies and Clayton 1987). This, however, gives only a lower 

bound on the model uncertainty, as systematic errors and model­

parameterization errors are ignored. It is not clear to what extent model 

amplitude exceeds random model-error in some of the previous studies. This 

will vary spatially within each model. 

Systematic errors are perhaps the most serious limitation of the ISC 

data. The effect of phase mispicks can be dealt with by windowing out cross­

overs in the travel-time curves. Gross errors are typically handled by exclud­

ing residuals exceeding a given value (4 - 5 seconds for compressional phases), 

thought to represent the maximum feasible structural signal. Beyond that, 

we are forced to assume that single station, single event, or regionally sys­

tematic errors get randomly mixed within the model. This assumption is 

better justified in a stochastic, spherically symmetric model than in a deter­

ministic laterally varying model. 
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Because of the size of global, multidimensional, inverse problems and the 

level of redundancy needed to suppress random scatter in the ISC data, 

models have been parameterized as truncated expansions in terms of continu­

ous, orthonormal functions (Dziewonski 1984, Morelli and Dziewonski 1987, 

and Morelli et al. 1986 used spherical harmonics and Legendre polynomials in 

depth) or in terms of discrete cells of fixed size (Clayton and Comer 1983, 

Humphreys et al. 1984, Zhou and Clayton 1989). This could give rise to 

significant truncation effects or aliasing of small-scale signal, and is particu­

larly worrisome, since the variance reduction of previous studies has invari­

ably been very low (5% - 15%). It is not clear if summary rays effectively 

filter out signal contributions from scales smaller than their lateral extent, 

because of the clustered geometry of both seismic sources and stations. It is 

not clear either that the remaining small-scale signal gets randomly mapped 

into the model. To understand this effect, we need to know the power spec­

trum of the structure beyond the truncation wavenumber or harmonic 

degree. Creager and Jordan (1986b) applied summary rays on a large scale 

(20 0 x20 0 
) and thus obtained a much higher variance reduction than other 

studies. They employed an intrinsic, exponential, spatial filter in their 

stochastic-inverse scheme to suppress the aliasing problem. 

It is well known from a variety of studies, ranging from array-scattering 

studies to surface-wave, tomography studies, that the earth's crust and upper 

mantle contlin lateral velocity variations in excess of 5% on length scales 

ranging from tens to thousands of kilometers. This exceeds the level of 

heterogeneity in models of the earth's deep interior by an order of magni­

tude. Because of lack of resolution, teleseismic travel-time studies account 

for this region by applying static station (and event) corrections or by using 



differential travel times (Creager and Jordan 1987). Since small-scale velocity 

variations may extend to considerable depths (e.g., Aki 1973, Flatte and Wu 

1988), where the separation of teleseismic rays to the same station may 

exceed the correlation length of the medium, shallow small-scale signal is 

potentially mapped into models of the earth's deep interior. Again, a sto­

chastic model describing the characteristic power spectrum of velocity varia­

tions provides sufficient information to study this effect synthetically. 

We address some of these problems in this chapter through a statistical 

approach to the interpretation of the data. We have formulated the analysis 

of global, travel-time data in terms of the stochastic properties of the earth's 

heterogeneity pattern and random errors in the data. The formalism relates 

the coherency of travel-time residuals within bundles of rays (summary rays) 

of varying size to the spherical, harmonic, power spectrum of the slowness 

field of the medium. The measure of coherency is the variance within sum­

mary rays. It is estimated within bins in source depth, epicentral distance, 

and the scale size of the area that defines a summary ray. The variation of 

the variance with scale length contains information about the autocorrelation 

function or power spectrum of slowness perturbations within the earth. The 

variation with epicentral distance reflects the depth variation of the spec­

trum. The variance at infinitesimal scale length represents the incoherent 

component of the data (random errors). This stochastic approach allows for 

the separation of random variance (incoherent) from signal variance 

(coherent). It includes the entire volume through which the data pass, and it 

seeks to explain all the variance in the data. One can argue that spatially 

systematic errors in the ISO data are less likely to have a significant effect in 

this stochastic approach than in deterministic inversions, because global 
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averaging is applied. Nevertheless, the interpretation of incoherent variance 

as strictly random and coherent variance as being due to structure is an 

assumption. We do not address the problem of systematic errors in this 

study. 

In our view, a stochastic model of the earth's aspherical structure may 

yield more robust, but less specific, conclusions than previous deterministic 

models. The loss of specificity inherent in the stochastic approach does, how­

ever, not lessen the usefulness of its conclusions as the modeling of mantle 

dynamics is still largely limited to idealized style or scale simulations. 

4.2 Data processing 

In order to estimate summary-ray variance as a function of epicentral 

distancE', A, source depth, Z, and scale length, 8, we construct equal area 

grids covering the earth's surface. The grids range in density from one cell, 

covering the entire surface of the globe, to one million cells. Eighteen 

different densities are used. The grids' cells are rectangular in latitude­

longitude coordinates (see Figure 4.1). The grids possess a symmetry about 

the equator and the Greenwich longitudinal great circle. We use ellipticity­

corrected (Dziewonski and Gilbert 1975) ISC residuals from events with at 

least fifty picks reported. We omit events located at the surface or at a 

source depth of 33 km, because the ISC assigns poorly located events to these 

depths. Travel-time residuals larger than 4 seconds in absolute value are 

omitted. The data are binned in 2° windows of epicentral distance, ranging 

from 0 to 100° and six windows of source depth; 0 to 30 km, 30 to 60 km, 60 

to 100 km, 100 to 200 km, 200 to 450 km, and 450 to 650 km. 
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A summary ray is defined as the collection of all the data that fall inside 

a given epicentral-distance window and a given source-depth window, and 

share both a source grid-cell and a receiver grid-cell (see Figure 4.1). The 

scale length is defined in terms of the scale angle, 8: 

8 = cos-1 
[ 1 - ~), 

where N is the total number of cells in the grid. If we consider a circular 

area centered on the north pole of a sphere and measure its size by the colati­

tude of its margin, 8, its area is given by 2rr(1-cos8). The grid cells in a 

grid with N cells are of area 4rr / N. Equating the two we get the above 

definition of the scale angle. The variance within the k -th summary ray is 

calculated as the variance of its residuals referenced to their mean. 

where nk is the number of data in the k -th summary ray, 6ti are the indivi­

dual time residuals and 8tk is the mean residual for the summary ray. A 

summary ray is included only if nk > 4. The variance estimate for each 

scale, distance, and depth combination is taken to be the average of the vari-

ances of all the summary rays found for that combination. Finally, each grid 

is rotated four times in equal increments that span the width of the grid 

cells, and the variance estimates averaged. This is done to minimize the 

effects of spatially irregular ray populations. At the small scale end of the 

spectrum, e < 5°, estimates of variance based on fewer than 25 summary 

rays are omitted. 
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depth bins. The shallowest depth bin consistently has the highest variance 

and the deepest one the lowest variance. 
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Figure 4.3. "Same as Figure 4.2 except only showing the data at very small 

scales. Symbol legend same as in Figure 4.2. 
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A reference ray is ascribed to each .6. - Z bin. It is defined by the aver­

age epicentral distance and average source depth of the composite rays. A 

ray parameter is calculated by tracing through the JB (Jeffreys and Bullen) 

model. 

The variance estimates are plotted as functions of scale length for each 

pair of .6. and Z. Some examples are shown in Figure 4.2. The behavior of 

the data is systematic. The curves rise rapidly at small scales and become 

relatively fiat at large scales. The fiat level of the curves invariably decreases 

with source depth. The behavior with epicentral distance is more complex. 

At teleseismic distances there is a gradual decrease with .6. out to about gOo, 

where the variance starts to increase again. Figure 4.3 shows examples of the 

behavior at small scales. Extrapolation of the curves to vanishing scales does 

not yield a zero intercept with the variance (vertical) axis. 

The overall behavior of the data is in accordance with the formalism 

developed in the following section. A nonzero intercept is expected because 

of picking errors, event mislocations, the finite binning of the data (particu­

larly in source depth), and the lack of scale resolution at small scales. A 

finite correlation-length characterization of the medium predicts the general 

shape of the curves (see Figure 4.2). As the cross section of the summary ray 

tube increases, more and more component rays travel through uncorrelated 

slowness anomalies and the variance increases. As source depth increases the 

length of the path within the heterogeneous earth decreases and the variance 

decreases. If the earth were uniformly heterogeneous, the variance would 

increase as the total path length increased and hence as epicentral distance 

increased. The overall decrease in variance with epicentral distance at telese­

ismic distances thus implies that the strength of heterogeneity is 
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concentrated at shallow depths (see Figure 4.5). The small, but consistent, 

drop in variance at 8 = 60 - 90° at shallow source depths does not fit in 

with the above scenario. We cannot explain this feature, but suggest that it 

is due to biases in sampling. While at small scales the sampling is dominated 

by continental and tectonic regions, oceanic regions come increasingly into 

play at large scales, but only at shallow source depths. If the small scale 

structure of oceanic crust and upper mantle is weaker than that of continen­

tal and tectonic regions, the above effect would be produced. 

The intercepts of the individual curves in Figures 4.2 and 4.3 with the 

variance axis represent incoherent variance or random errors independent of 

the structure of the earth. We estimate the intercepts by a constrained 

linear extrapolation to the variance axis. We calculate a least-squares linear 

fit through the small-scale data (8 < 1.5°), but constrain the slope to be 

inversely proportional to cos( i), where i is the angle of incidence for all 

curves at a common source depth; i.e., the curves that share a source-depth 

bin have a slope, b, described by the common constant, B, according to 

b = B / cos (i). The behavior of the data at small scales is generally linear 

as is evident from Figure 4.3. We assume that the small-scale signal (the 

slope at the origin), is primarily accumulated at shallow depths, where the 

path length is inversely proportional to the cosine of the angle of incidence, 

hence the form of the constraint. The constraint is needed in order to 

minimize the effects of potential biases and errors at small scales. The result­

ing intercept estimates are plotted as a function of epicentral distance in Fig­

ure 4.4. The behavior is similar for all six source depth bins. The static 

variance peaks sharply in the triplication region (15° < ~ < 25°), stays 

relatively flat at teleseismic distances, and increases beyond ~ = 85° , as the 
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travel-time curves for P- and PcP-waves merge. The static variance 

decreases with source depth. The behavior of the static variance with epicen­

tral distance may be attributed to picking errors, since it is high where com­

plexities occur on the travel-time curve. The behavior with source depth 

may be partially attributed to the variation of picking errors or location 

errors with depth, but is likely to have a contribution from the finiteness of 

the source-depth binning and the lack of scale resolution, because of the very 

fine structure of the earth (scale lengths of the order of tens of km). 

We use the smoothed description of the intercepts as our estimates of 

random error (see Figure 4.4 b). We then remove the random variance from 

the data. The remaining variance may be interpreted in terms of statistical 

measures of the earth's slowness field as formulated in the following section. 

Figure 4.5 summarizes the behavior of the reduced data with epicentral dis­

tance. Plotted is the asymptotic variance level at large scales. 

4.3 Theory 

The application of stochastic, structural modeling in seismology has been 

limited. It has been restricted to the analysis of dense array data, notably 

from LASA and NORSAR. A number of workers have applied the theory 

developed by Chernov (1960) to study the heterogeneous character of the 

lithosphere and upper mantle (e.g., Aki 1973, Capon 1974, Berteussen et al. 

1975a and b). Flatte and Wu (1988) used a somewhat simpler approach 

based on the parabolic wave equation, which allows for more flexibility in the 

modeling. Frankel and Clayton (1986) used a synthetic approach to this 

problem, utilizing the finite difference method. Other problems that have 
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been analyzed with some success by stochastic means include the generation 

of coda by crustal heterogeneity (e.g., Aki and Chouet 1975, Gao et al. 1983a 

and b) and the generation of PKP precursors by heterogeneity near the core­

mantle boundary (e.g., Doornbos and Vlaar 1973, Haddon and Cleary 1974). 

We take a simpler approach to a greater volume of poorer data than the 

above studies, but apply many of the same concepts, i.e., those of a random 

medium. A full, wave-theoretical (scattering) formulation is inapplicable, 

since we are not dealing with single wavefronts. Yet, the diffraction effects 

described by scattering theory occur, since the data are travel-time readings 

off finite-frequency seismograms. The most important such effect is probably 

wavefront healing, which may be systematic in making the medium appear 

faster than its intrinsic properties imply (Wielandt 1987). 

We take a somewhat simplistic, but pragmatic, attitude in regarding the 

finite wavelength property as an inherent limitation to the data, rendering 

them intrinsically insensitive to the small-scale features of the medium. The 

resulting characterization of the medium may then be interpreted as an 

apparent property, reflecting the true property intrinsically smoothed. This 

implies the existence of an inner scale of sensitivity of the data, which for 

short period teleseismic waves would be of the order of 10 km. 

Our approach is a ray theoretical approach, which may be regarded as 

an adaptation of the linearized inverse problem of travel-time residuals to the 

concepts of stochastic analysis. It is designed to retrieve information about 

the earth's mantle slowness-field from travel-time data as compiled in the 

previous section. First we develop a formalism for a Cartesian, infinite world 

in some detail and then adapt that to the finite, spherical earth. 
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Consider the earth to contain a random function, 8U (x), of small slow­

ness perturbations. Let 8U be characterized by an autocorrelation function, 

R (x,y). Here x is a position vector within the earth and y is the displace­

ment vector between two arbitrary points. Assume that the statistics of 

8U(x) are isotropic and spherically symmetric, such that R (x,y) = R (r ,y), 

where r is distance from the earth's center and y is the length of the vector 

y. Next consider a projection of the medium on to the earth's surface by 

means of curvilinear integrals to be specified later, i.e., that we have a ran­

dom function 8t (E), where E is the position vector on the surface. Let this 

function be characterized by the autocorrelation function T (E, 11), where 11 is 

a displacement vector. Since 8U is isotropic and spherically symmetric, we 

can assume that 8t is isotropic and stationary, if the mapping of 8U to bt is 

one to one or uniformly random. Thus, T(E,fJ) = T(l1), where 11 is the 

length of the displacement vector fJ. We need to estimate the scatter within 

a sample of circular area A = 1T'a 2 of 8t, i.e., the variance of all samples 

within A referenced to the mean of the area. 

Assume that the global mean of 8t is zero. Then the variance is 

Here E {} stands for the statistical expectation over A and 8t (a) for the 

mean of fJt within A. The first term in Equation 4.1 is simply the global 

variance of 8t ; i.e., 

(4.2) 

The second term in Equation 4.1 is the variance of the mean 
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where ba (€) is a scaled sampling function (an irregular 2D comb function). 

where N is the number of measurements within the region A , 'Yfa is the aver-

age sample density within A, and €i are the sample positions. We can 

equivalently think of ba as a normalized, random sample-density. The func­

tion B (a ,p) is then the autocorrelation of the sampling density. By separat­

ing the expectation of the sampling and the structure, we have assumed that 

the two are independent. In other words, it is assumed that the source and 

receiver locations are not correlated with structural anomalies. This assump-

tion is suspect for subduction events. 

Consider a point €l = P a distance s from the center of A, and all 

points €2 a distance p from P, within A (see Figure 4.6). If p < (a - s ), 

the points €2 span a whole circle. If (a - s ) < p < (a + s ), the angle 4> is 

excluded. The cosine rule gives 

(4.4) 

Thus, the arc spanned by the points €2 is of length 28 = 27l", if 0 < p < a 

and 0 < s < (a - p), and 
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20 = 2cos-1 S + p - a , ( 
2 2 2) 

2ps 

if 0 < p < a and (a-p)<s<a, or if a<p<2a and 

(p - a ) < s < a. Since t5t is isotropic, T is a function of p only, and 

assuming that the sampling density is isotropic, we can rewrite Equation 4.3 

as 

a a-p 

E{ 8t 2(a)} = 1f2~ 4 [f 21l"pT (p)B (a ,p)d p f 21l"sds 
o 0 

a a 

+ f21fpT(p)B(a ,p)dpf2cos-l { s2+~:-a2)SdS (4.5) 
o a-p 

2a a 

f f f s 2 + p2 - a 2 ) ] 
+ 21fp T (p)B (a ,p)d p 2cos-1 l 2ps sds, 

a p-a 

which after simple, but tedious algebra simplifies to 

2a 

E{t5t 2(a)} = J w(a,p)T(p)B(a,p)dp, (4.6) 
o 

where 

w (a ,p) = ~ [COS-1 (1-) -1- (1 - [1- )2) +] p. 
1fa 2 2a 2a 2a 

Equation 4.6 describes the variance of the average 8t over area of radius a. 

It is informative to consider a few simple cases. Assume that the sampling is 

uniform. Then B = 1. If the autocorrelation is a constant within the area, 

T (p) = To, the variance of the mean is To. This is expected, since in this 

case 8t is constant within the area, and comparing randomly selected areal 
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Figu.re 4.7. The weighting functions in Equation 4.6, w (a ,p), for a few 

choices of scale length. 
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averages is equivalent to comparing randomly selected points on 8t. The 

variance of the averages should thus be the variance of the function itself, 

T (0) = To. From the above it is clear that if T (p) h&<: a zero derivative at 

the origin, we get 

(4.7) 

Another interesting example is a completely uncorrelated bt function; i.e., 

T (p) = b(p)/ p, where b represents the Dirac delta function. In this case the 

variance of the averages decays as the inverse of the area (analogous to the 

1/ N decay in the case of discrete sampling, where N is the number of sam-

pIes ). 

Figure 4.7 shows some examples of the weighting functions of Equation 

4.6, w (a ,p). Their integral is unity and they go to zero at the endpoints 

(O,2a). They peak just below the center of their domain. Thus, when 

averaging uniformly over a circle of radius a, the main contribution to the 

variance is from a scale length of p = a . 

since 

Substituting Equations 4.2 and 4.6 into Equation 4.1 we get 

2a 

(J2(a) = T(O)- f w(a,p)T(p)B(a,p)dp 
o 

2a 

= J w (a ,p)B (a ,p) ( T (0) - T (p)) d p, 
o 

2a 

f w (a ,p)B (a ,p)d p = 1, 
o 

(4.8) 
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as wB is the probability density of sample spacing within a circular region of 

radius a. Equation 4.8 describes the variance within area A = 1fa 2, refer-

enced to the mean within A . 

At this point we have a tool to relate our observations of the variance 

within summary rays to the autocorrelation function of the travel-time func­

tion. We need to express that in terms of the autocorrelation of the medium. 

In order to do that we must idealize the summary-ray geometry, i.e., assume 

a specific, deterministic or random geometry for the rays that contribute to a 

summary ray. 

We calculate the variance of summary rays subject to fine binning in 

both source depth and epicentral distance. Thus, even when the averaging 

area becomes large, the ray parameter, and hence the ray geometry, stays 

relatively constant within each summary ray. Consequently, the contributing 

summary rays are not dominated by fans of rays stemming from a single 

receiver or a single event, except at the smallest scale lengths. It is thus rea-

sonable to assume that all the rays have the same ray parameter and ran­

domly distributed end points in the two grid-cells that define the summary 

ray. This implies that the rays are approximately parallel and simply shifted 

horizontally relative to each other. We can write 

8t(~)= !8U(x)dS. (4.9) 
ray 

Thus, 

T(p) = E{8t(~1)8t(~z)} = f f E{8U(X1)8U(xz)}dS 1dS z (4.10) 
raYl raY2 

= J J R ( I Xl - Xz I ) dS 1 dS 2' 

ray 1 raY2 
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If we assume that the statistics of 5U are a weak function of position 

within the earth and that the correlation length is small compared to the 

radius of curvature of the rays, we can think of the rays as locally straight 

and the autocorrelation function as locally constant. If p is the horizontal 

distance between two rays, i, the angle of incidence and ¢>, the angle the 

ray-displacement vector makes with the ray azimuth, then the minimum dis­

tance between the two rays is (see Figure 4.8) 

(4.11) 

If we fix our attention to the point PIon ray 1 at Z and define S as ray 

length along ray 2, passing through 0 at P 2' the point on ray 2 that is closest 

to P l' i.e., distance d away, we can write 

(4.12) 

Hence, 

I S I = v' 72-d 2 (4.13) 

and 

I dS I = I dS I = Td T 
2 v'72-d 2 

(4.14) 

The integral over dS 2 (ray 2) in Equation 4.10 can then be translated into an 

integral over T, taken from d to 00. 

00 

(4.15) 

According to Equation 4.11 the close point, d, depends on the azimuth 

of the ray-displacement vector. For nearly vertical rays, B = 0, we have 

d :::::::: p. At the turning point the deviation of d from p is at its maximum 
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with d = I sin4> I p, which on the average is d = 2p/rr. The variation of d 

is thus not a strong effect, particularly if the correlation length is large or the 

level of heterogeneity is small at the turning point, and we will simply 

approximate d by p. 

If we now assume that the autocorrelation function of the medium 1S 

Gaussian, R (r) = Roe -ric?, we can simplify Equation 4.15. 

00 

f f re -r 10:
2 
d r f 2 2 

T (p) = 2 R 0 y' 2 dS = V; R oaf -p 10: dS. 
ray p r - P ray 

(4.16) 

This result holds approximately for many choices of an autocorrelation func-

tion, provided it does not have strong side lobes; i.e., the structure of the 

medium must not have a strong periodic component. Stated in a slightly 

different form, Equation 4.16 becomes 

T(p) ~ c f xl/zR (p)dS, (4.17) 
ray 

where Xl!Z is the half-width of R (r), (R (Xl/Z) = 0.5R (0)), and C is a con­

stant of order 2.0. For a Gaussian autocorrelation function, Equation 4.17 

holds exactly and the constant is C = vrr/ln2 = 2.129, 

If R 0 and a are constant along the ray path we get 

(4.18) 

which agrees with the transverse autocorrelation of phase of Chernov (1960) 

in the high-frequency limit. Chernov derived his results by a wave-

4S theoretical approach and showed that when the wave parameter, D -
- ka2 ' 

is not negligibly small ( D «1 ), diffraction effects (wavefront healing) can­

not be ignored. (Here k stands for wavenumber, S for path length and a for 
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2r-------------------PI 
-------------------

ray 1 ray 2 

------------------ ray 1 
4> 

___________________ ray 2 

Figure 4.8. Geometrical definitions of the parameters used in the derivation 

of Equation 4.17. The top panel is a vertical cross section, the lower one a 

map view. 
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correlation length.) Wavefront healing describes a physical smoothing pro­

cess on a single wavefront. We do not isolate single wavefronts in this study 

and cannot account for this effect properly. 

We can combine Equations 4.8 and 4.17 to write the observables directly 

in terms of the parameters that we seek, namely, R (r ,7) 

a2(a) = c f x 1/2(r) [R (r ,0)-J w (a ,p)B (a ,p)R (r ,p)d p] dS (4.19) 
ray 0 

2a 

= c J X 1/2( r ) J w (a ,p)B (a ,p) [R (r ,0) - R (r ,p) ] d pdS. 
ray 0 

The above formulation assumes the earth to be Cartesian and flat. It is 

applicable to localized studies. For the present global study we need to 

account for the finiteness and sphericity of the earth. 

Let the medium be perturbed by 

00 I 

[)U(r,O,¢) = ~ ~Alm(r)Ylm(O,¢), ( 4.20) 
1=0 ,"=-1 

where Y1m (O,¢) are fully normalized spherical harmonics and ° is colatitude, 

¢ is longitude and Aim (r) are harmonic coefficients varying with earth 

radius. 

1 

Y'm (O,</» = { 21 +1 (l-m )1 ) 2 pm(cosO)e im¢ 
411" (1 +m )! I , 

(4.21) 

where P1m are the associated Legendre functions. We take the harmonic 

coefficients to be independent, random functions of depth. We can then 

define an autocorrelation function in terms of the power-spectral coefficients 

of the structure, Ql. By definition, 
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( 4.22) 

for a given set of surface spherical harmonics. Here the * represents the 

complex conjugate. Allowing for some coherency in the harmonic pattern 

with depth, we thus define: 

(4.23) 

where f describes the depth correlation and D is the Kroenecker delta opera-

tor. Thus, correlating the travel-time residuals for two rays we get: 

(4.24) 

1 1 

[ 
2l + 1 (l-m )! ) '2 [ 2p + 1 (p -q )! ) '2 

411' (l +m )! 411' (p +q )1 

f ool ( r +r ) 
= f:E:E Ql l 12 2 f ( I r C r 2 I ) 

r.y 1 r.y 2 1=0 m =-1 

2l + 1 (l-m )1 P m( O)P m(- 0) im (¢>1-<P2)dS dS 
(l )1 

I cos 1 I cos 2 e 1 2' 
411' +m. 

The latter identity comes about by substituting Equation 4.23 into Equation 

4.24. Using the addition theorem for associated Legendre functions, we can 

simplify Equation 4.24 to 

where 
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Dr = r 1 - r z-

A is the angular distance between two arbitrary points on the two rays. 

Equation 4.25 is analogous to Equation 4.10 for the Cartesian case, except 

that it is cast in the spectral domain. The integrand 

may be thought of as an autocorrelation function for the medium. To 

proceed we make the same assumptions as before; the two rays stay parallel 

along their entire path, the statistics of the medium are isotropic, the statis-

tics vary smoothly along the path, the propagation distance far exceeds the 

correlation length and the radius of curvature of the rays is much greater 

than the correlation length. We can then apply the same arguments as in 

Equations 4.13 through 4.18 to conclude that 

Cf 00 T (A) = 47r x l/Z(r) ~(2l +l)Q/ (r )P1 (cosA)dS , 
'fly 1=0 

(4.26) 

where T is the autocorrelation of the travel-time residuals as they are 

mapped onto the earth's surface and A is the horizontal, angular distance 

between the two rays. 

We proceed in the same manner as in Equations 4.1 through 4.6 to 

derive the effect of areal averaging on a spherical surface. Let e represent 

the angular radius of the area at hand (if the area is centered on the pole, e 

is the colatitude of its margin). Let A represent angular distance between two 

arbitrary points within the area. Then the area is 
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A = 211"(1-cos8), 

and provided that 8 < 11"/2, the areal weighting function w is 

(4.27) 

if 0<A<8, and 

if 8<A<28, where 

_ cos8(1-cOSA) 
a - sin8sinA ' 

/3
1 

= (1-COSA)(1+cOSA-cos8(1+cos8)) 
(1-cos8 )sin 8sinA ' 

and 

/3 = (1-cosA)(1+cosA+cos8(1-cos8)). 
2 (1 +cos8 )sin8sinA 

We have not found a closed-form solution for 8 > 11"/2, except at 8 = 11", 

W here the solution is w (1I",A) = .!.sin(A). In that case this areal averaging 
2 

kernel must be evaluated numerically. Some examples are shown in Figure 

4.9. 

We can now put together an expression relating the observable, 0'2(8), 

to the structural parameters that we seek for the spherical finite earth by 

combining Equations 4.8, 4.26 and 4.27. 

28 
C 00 

411" ~ f f w (8,A)B (8,A)(2l +1)xl/z{r )Qt (r )(1-Pt (cosA))dSd A, 
1=0 0 r.y 

(4.28) 
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0.5 

o.o~----~~----~--~~------~ 
o 45 90 135 180 

Figure 4.9. The weighting functions in Equation 4.27, w (8,A), for a few 

choices of scale length. The curves are labeled by 8 (degrees). 
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which we can cast in matrix form as 

where 

D = GXF T , 

26, 

F jl = .!2 J W (8 j ,)..)B (8 j ,)..)(1 - PI (cos)..))d).., 
41T o 

(4.29) 

where we have transformed the ray integral to an integral over earth radius 

and then discretized that integral. The ~-Z bins are indexed by i. The 

scale sampling is indexed by j. Earth radius and harmonic degree are 

indexed by k and l, respectively. Equation 4.29 describes a double, linear 

inverse problem in depth and harmonic degree (l). The matrix D contains 

the data. Each row of D represents the summary-ray variance as a function 

of scale for a given ~-Z bin. G is a matrix of depth kernels. Each row of G 

represents the path length of the i -th ray (a reference ray, representative of 

the average ray geometry of the i -th ~-Z bin) within the k -th depth bin 

of thickness ~'k' F is a matrix of spectral kernels that relate the variance 

measurement at the j -th scale bin to the l-th harmonic degree. X is the 

unknown model matrix. Each row of X represents the product of the half­

width and the power spectrum of the earth's slowness field at a given depth 

bin. 
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4.4 Inversion and results 

Equation 4.29 in the previous section describes a linear inverse problem. 

The knowns are the data matrix, D, and the kernel matrices, G and F. The 

model matrix, X, describing the product of the correlation length (autocorre­

lation half-width) and power spectrum of the slowness field as a function of 

depth, is unknown. We can isolate the individual columns of Equation 4.29 

and solve the standard, vector inverse-problem 

(4.30a) 

where 

(4.30b) 

for the columns of Y, and then transpose Equation 4.30b and solve it column 

by column for the columns of XT. This involves a matrix of standard, 

inverse problems. We opted to solve the inverse problem by simultaneous, 

damped least-squares for both dimensions of the solution. 

-1 -1 

X = G T (GG T + a 21) D (FF T + (321) F, (4.31 ) 

where the I's stand for identity matrices. The parameters a and /3 are the 

damping parameters, which are global in the sense that the same damping is 

applied to the entire solution. To apply the method of Backus and Gilbert 

(see Aki and Richards 1980, and references therein), which varies the damp­

ing internally to the solution, we would have to break up the problem as in 

Equation 4.30. That involves an unfeasible amount of computation. The 

damping parameters are thus chosen by a global trade-off of model errors and 

resolution. To form a solution for various choices of the damping parame­

ters, it is efficient first to singular-value decompose the kernel matrices, G 
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and F. 

G=UAV T . (4.32) 

F = RnsT. 

We can then transform Equation 4.31 to 

(4.33) 

Thus, as we vary the damping parameters, we need only invert the diagonal 

matrices 

and 

We have chosen to parameterize the model finely and let the damping 

limit the degrees of freedom in the solution. This should yield a smooth solu-

tion and reduce discretization artifacts. We use 47 depth bins, 30 km thick 

at the surface and through the upper mantle and 100 km thick in the lower 

mantle, except at the very bottom where we use 30 km bins again. The 

inherent spectral resolution provided by the uneven sampling of the scale axis 

(see section 4.2) is such that the resolution length increases roughly linearly 

with harmonic degree. We thus decided to bin the spectral dimension para-

bolically. We use a total of 34 bins, of one degree width at low degrees and 

of 100 degrees width at high degrees. Beyond harmonic degree l = 300, a 

power-law decay is assumed for the spectrum, Q/ ~ [-3 (note that the decay 

must be faster than [-2; otherwise, an autocorrelation cannot be defined). 

Thus, we have about 1600 model parameters. 
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We use only data from teleseismic distances in the inversion. At dis­

tances less than .6. = 30 0 the estimate of incoherent variance is unstable (see 

Figure 4.4). Furthermore, the idealization of the summary-ray geometry 

breaks down at short distances. We do not use data from scales smaller than 

8 = 0.5 0
• At smaller scales fan summary rays dominate; i.e., the majority 

of contributing summary rays contain only one recording station, but multi-

pIe events. We thus include 210 variance curves and fifteen points on each 

curve (35 .6.-bins, 6 depth bins and 15 scale bins), or a total of 3150 data. 

In order to form the spectral kernel matrix, F, we need to estimate the 

distribution function, B (8,>..) (see Equation 4.29). We do this by compiling 

histograms of the frequency of spacings in the sampling of a given !:l-Z bin. 

This should be an estimate of the probability density of sample spacings, 

w (8,>..)B (8,>..). We thus estimate B by normalizing the histograms by the 

known functions w (8,>..). The results for !:l=50o , Z =0-30 km are plotted 

in Figure 4.10a. The behavior of B is similar for other .6.-Z bins. The gen­

erally linear behavior of B in the log-log domain implies a power-law distri­

bution. The exponent of the distribution varies smoothly with scale, 8. We 

take a smooth fit through the data in Figure 4.lOa as a universal description 

of the sampling distribution for use in the calculation of the spectral kernels. 

Figure 4.10b shows a comparison of the theoretical kernels, using the above 

distribution (solid curves) and empirical kernels (symbols) evaluated by intro­

ducing a synthetic structure 

(4.34) 

which should yield variance 

28} 

(72(8 j) = 2~ J w (8 j ,>")B (8 j ,>..)( 1 - Pdcos>,,)) d >.. = F jk , (4.35) 
o 



>­ (.
) ~
 

Q
) g. Q
) ~
 

b.O
 

o ....:
:J 

a)
 

1
.7

 

0
.6

 , , 

1
8

0
.0

 

4
1
~
4
~
 

23
~6
 
~
 

0
.6

 

12
.2

~.
 
~
 

5
.0

 
'~
"'
\.
 ~
 

1.
1 

~
 

1.
2 

1.
2 

1.
5 

.
-
I
 

Q
) I::::
 

J...
. 

Q
) 

~
 

b 
) 

1
.0

 

II
 

0.
01

 .
. --

-/
;-

-0
 

~l-
--i

I..
...

I--
Qdt

~~-
~~~

-~-
~~-

:~~
 

1 
1

0
 

1
0

0
 

L
og

 S
ca

le
 

L
og

 S
ca

le
 

F
ig

u
re

 4
.1

0
. 

a)
 T

h
e 

au
to

co
rr

el
at

io
n 

o
f 

th
e 

sa
m

pl
in

g 
de

ns
it

y,
 (

8
 (a

,A
))

, 
as

 e
v

al
u

at
ed

 e
m

pi
ri

­

ca
ll

y 
at

 .
6

.=
5

0
0 

an
d

 Z
 =

0
-3

0
 k

m
. 

T
h

e 
tr

ac
es

 a
re

 l
ab

el
ed

 b
y

 t
h

e 
sc

al
e,

 8
, 

ab
ov

e,
 a

n
d

 t
h

e 
b

es
t 

fi
tt

in
g 

sl
op

e 
be

lo
w

. 
b)

 T
he

or
et

ic
al

 a
n

d
 e

m
pi

ri
ca

l 
sp

ec
tr

al
 k

er
ne

ls
 f

or
 a

 f
ew

 
ha

rm
on

ic
 d

eg
re

es
 

(l
 =

1
,3

,1
0

,1
5

).
 B

ro
k

en
 l

in
es

 r
ep

re
se

nt
 t

h
e 

th
eo

re
ti

ca
l 

ke
rn

el
s 

fo
r 

un
if

or
m

 s
am

pl
in

g,
 s

ol
id

 l
in

es
 

re
pr

es
en

t 
th

e 
th

eo
re

ti
ca

l 
ke

rn
el

s 
fo

r 
th

e 
sa

m
pl

in
g 

in
 a

) 
an

d
 s

ym
bo

ls
 r

ep
re

se
nt

 t
h

e 
em

pi
ri

ca
l 

ke
rn

el
s 

ev
al

u
at

ed
 b

y 
ge

ne
ra

ti
ng

 d
at

a 
fr

om
 a

 s
y

n
th

et
ic

 s
tr

u
ct

u
re

 (
se

e 
E

q
u

at
io

n
 4

.3
5)

. 

>
-'

 
l'-

:)
 

00
 



129 

if our description of the data geometry holds. The fit of the theoretical ker­

nels to the empirical kernels is good, except for low degrees and large scales. 

The goodness of this fit gives us confidence that we do not suffer significantly 

from the simplistic description of the data geometry in the formulation of 

this problem. For reference, the broken curves in Figure 4.lOb show the 

theoretical kernels for uniform sampling (B (8,A) = 1). Clearly, the cluster­

ing of events and stations on the globe has a significant effect. 

The damping parameters, a and /3, were chosen to minimize a linear 

combination of resolution length in the two dimensions of the model and the 

model random-variance. Those measures of model goodness are global aver­

ages, because of the global nature of the damping in the damped least­

squares technique. This is not an optimal way of solving the problem, as the 

inherent depth resolution in the sampling is quite uneven. This is because in 

using only teleseismic distances we have no rays bottoming in the upper man­

tle. The global damping thus causes an overemphasis on model error in the 

upper mantle and an overemphasis on model depth resolution in the lower 

mantle. It is unfeasible to tune the solution locally because of the size of the 

problem. For that same reason it is unfeasible to place nonnegativity con­

straints on the solution. Since the model is a power spectrum, it cannot phy­

sically take negative values. 

The optimal global damping effectively reduces the number of degrees of 

freedom in the solution to about 100 (5 in the spectral dimension and 20 in 

the depth dimension). In other words, the model spectra at all depths are 

linear combinations of the same 5 eigenfunctions, and the depth variation of 

all spectral coefficients is a linear combination of the same 20 eigenfunctions. 

The resolution matrices in depth and the spectral dimension are shown in 
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d) !., c ) 

Q) 200 
Q) ... 
c.o 
Q) 

0 

100 

o 
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Figure 4.11. Contour maps of the resolution matrices for depth (a) and the 

spectrum (c). The small frames (b) and (d) show a simple measure of resolu­

tion length for each of the matrixes. 
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Figure 4.11 together with the derived resolution length. The resolution 

length is a simple measure of the width of the diagonal ridge of the resolution 

matrix and its off-centeredness. The resolution in depth is good throughout 

the lower mantle, but suffers from the lack of turning rays in the upper man-

tIe, particularly in the transition zone, where the depth binning is coarse. 

The resolution in the spectral domain is poor and deteriorates rapidly with 

increasing harmonic degree, particularly beyond degree I ~50. 

Figures 4.12 and 4.13 summarize the solution of the inverse problem, 

which we will refer to as model STP1 (Stochastic P-wave model). This solu­

tion explains 98% of the variance of the data (variance of estimates of 

travel-time variance). It should be noted, however, that the data are all posi­

tive. As they do not constitute a scatter about zero, the variance reduction 

may not be a fully appropriate measure of the goodness of fit. The rms 

(root-mean-square) value of the data is about 0.6 sec2 and the rms value of 

the residual data is about 0.08 sec2• About half of the residual rms value is 

due to systematic shifts of the data curves (Figure 4.2) relative to the 

predicted data. This discrepancy is best explained by error in the estimate of 

the intercept. We therefore absorb this component of the data misfit in the 

intercept and thus obtain a 99.5% variance reduction. 

At large scales (high 8) all of the spectral kernels, F, take a value close 

C 
to -. Thus Equation 4.28 becomes 

4rr 

00 

(12(8) ~ 4~'Ef(21+1)X1/2(r)QI(r)dS = Cf xl/2(r)Q(r)dS(4.36) 
I =1 ray ray 

where Q is the total power of the slowness field at a given depth. We can 

thus invert directly for the product of the power and the autocorrelation 
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half-width by taking the asymptotic level of the variance at large scales as 

our data (see Figure 4.5). The result of that inversion is shown in Figure 

4.12a, and we will refer to it as model STP. The power is strongly concen­

trated in the top 200 or 300 km of the earth, drops to marginally resolvable 

values in the lower mantle and increases slightly at the base of the mantle. 

Because of the poor resolution in the spectral dimension, we cannot hope to 

resolve the shape of the power spectrum at high harmonic degrees. We do, 

on the other hand, have some resolution at low harmonic degrees. We there­

fore separate the power spectra into a small scale (l >50) part and a large 

scale (l <50) part. The integral power (multiplied by the half-width) of the 

two parts of the spectra in model STP1 is shown in Figure 4.12 band c. 

Much of the total power in the upper mantle is in the small-scale structure, 

while the small-scale power in the lower mantle is not distinguishable from 

zero. The large-scale power is concentrated in the upper mantle, but appears 

to prefer finite power in the lower mantle and accounts for the slight increase 

in power at the base of the mantle. Figure 4.13 shows the results of our 

attempt to separate the power and the half-width of the large-scale spectrum. 

This was done by constructing the autocorrelation of the slowness field from 

the power spectrum and measuring the half-width of it. Taking that meas­

ure for granted, we normalized the solution by it, yielding an estimate of the 

actual power. This is a somewhat dangerous game to play in the upper man­

tle, as there the small-scale structure contains considerable power. Thus, the 

half-width of the low-passed autocorrelation may not be the true half-width; 

i.e., it may be an overestimate. Hence, the estimate of power in the upper 

mantle may be underestimated. 
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o 

~ 1000 

":S 
g- 2000 a) b) 

3000 L--___ i...--__ ---' 

o 1 2 o 1 2 

Figure 4.14. The product of autocorrelation half-width and the power of 

the slowness field as a function of depth according to model STP2. a) 

Small-scale power (l > 50), b) large-scale power (l < 50). Error bars are two 

standard deviations. 
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Figure 4.15. a) The standard deviation of long wavelength (l <50) slowness 

variations as a function of depth according to model STP2. b) The auto­

correlation half-width (Model STP2). Error bars are two standard deviations. 
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Model STPI is hampered by relatively large errors in the lower mantle. 

We would prefer to smooth the solution more in depth in the lower mantle to 

obtain a better estimate of the correlation length and power. To achieve that 

we bin the depth dimension less densely and repeat the inversion. Figures 

4.14 and 4.15 summarize the results that we get when using eight depth­

layers, three in the lower mantle. We will refer to these results as model 

STP2. The quality of fit to the data is comparable to that for model STPl. 

97% of the data variance is explained. Again, much of the residual variance 

is due to systematic shifts of individual data curves, which we attribute to 

the random-variance estimate. Hence, the variance reduction is improved to 

99.3%. This model explains 75% of the rms value of the data that was left 

out of the inversion (~< 30°). Figures 4.4 c) and 4.5 b) show the incoherent 

variance estimates and the asymptotic, large-scale variance with the sys­

tematic data misfits included, based on model STP2. The features of model 

STP2 are similar to the main features of model STPl. Small scale power is 

concentrated at shallow depth and is small in the lower mantle. This may be 

in part due to diffraction effects. If small-scale structure existed in the lower 

mantle, the wavefront perturbations resulting from it would heal as the wave 

propagated to the surface. The large-scale spectrum is also concentrated in 

the upper mantle, but maintains a finite power in the lower mantle and 

shows a sharp increase in power in the deepest depth bin, about 150 km 

above the core-mantle boundary. Most of these general features are evident 

in the raw data. The variance decreases with epicentral distance out to 

about 85° (see Figure 4.5), indicating strong shallow heterogeneity. The 

increase in variance beyond ~:=::::::85° implies an increase in power at the base 

of the mantle. One feature in the data goes unexplained by the model. For 
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Figure 4.16. Examples of data fit by the model STP2. a) ~ = 51 0
, first 

depth bin; b) ~ = 51 0 
, third depth bin; c) ~ = 51 0 

, fifth depth bin. Dots 

are data with two standard-deviation error-bars. The curves are predicted 

data. 
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Figure 4.17. The normalized power spectra of model STP2 in the eight 

depth layers of the model. The central depth of each layer is indicated. The 

zeroth power coefficient is assumed to be zero. The shallow spectra contain 

an artifact at the lowest degrees that is due to features of the data that are 

discussed in the text. 
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shallow source depths the variance drops consistently at .6.=60-90° '. This 

requires a negative power in the lowest harmonics at shallow depths, which is 

unphysical. This feature in the data may be due to some systematic effect in 

the sampling geometry at large scales, where Figure 4.10 demonstrates that 

our idealization of the data geometry fails. 

Figure 4.16 shows some examples of the fit to the data obtained by 

model STP2. Plotted logarithmically is the variance versus scale. The error 

bars are two standard deviations. The overall fit is not satisfactory with 

respect to the error estimates (X2 ~ 15N, N = 3150). This may ,ndicate 

improper error estimates or problems with the applied formalism. The oscil­

lation of the data curve in Figure 4.16 a) at large scales is a feature that can­

not be explained by the formalism. 

Figure 4.17 shows the spectra of the eight depth bins of model STP2, 

normalized to their maxima. The spectra are plotted out to harmonic degree 

I = 25. The median depth of each bin is indicated. The negative power 

coefficients of the lowest few degrees at shallow depths have been set to zero 

and a narrow Gaussian filter applied across the spectra. The zeroth power 

coefficient is assumed to be zero, since the data, as they are processed, are 

not sensitive to it. The greatest change in the power spectrum appears to 

occur between a depth of 400 and 600 km. Above that depth the spectra 

maintain strong power to degrees l = 10-15 and have a slowly decaying tail. 

Below a depth of 400 to 600 km, the power is strongly concentrated at the 

lowest degrees. The deepest depth bin has a noticeably larger tail than the 

ones above it. In comparing Figures 4.15 and 4.16, the low-degree spectra 

and the estimates of correlation half-width, respectively, we notice an 

apparent inconsistency at depths of 600 and 800 km. The spectra at these 
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Figure 4.18. Synthetic maps of slowness variations calculated by a random 

selection of harmonic coefficients according to the power spectra of model 

STP2 at various depths. a) Upper mantle, Z ~200. b) Lower mantle, 

Z ~2000. c) Bottom of mantle, Z ~2800. The maps are projections of a 

spherical shell, linear in latitude and longitude, similar to a Mercator projec-

tion. Positive anomalies are shaded. 
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depths look more like the ones below, while the estimated half-width is more 

similar to that of the bins above. This demonstrates how sensitive the esti­

mate of autocorrelation half-width is to the tail of the spectrum, including 

beyond harmonic degree l = 25. The estimated spectra in the lower mantle 

decay rapidly and become negative at about harmonic degree l = 15, while 

the estimated spectra at depths of Z = 600 and 800 km have small, but 

positive tails beyond degree l = 25. 

Figure 4.18 shows normalized synthetic maps of the slowness field at 

three different depths consistent with the power spectra of model STP2. The 

spectra were truncated at degree l = 25. Since the spectra in the upper 

mantle have strong power beyond 1 = 25, Figure 4.18a should be considered 

as filtered. Figure 4.18b and 4.18c demonstrate how the slowness field of the 

lower mantle and at the base of the mantle might look like according to our 

results. 

The above results are intriguing and consistent with some other studies. 

The model STP, which describes the variation of the product of power and 

correlation length with depth, is the most robust set of information to be 

drawn from this approach. It may, however, suffer from regional biases in 

the upper mantle. This interpretation of the data assumes a representative 

sampling of a laterally statistically stationary field in the upper mantle, 

which is questionable. In the models STP1 and STP2 we attempt to use the 

information contained in the shape of the data curves, presented in Figure 

4.2, to make statements about the power spectrum of the earth's slowness 

field. Because of the limited sampling in the scale dimension, the spectral 

resolution is poor (see Figure 4.l1c and d). We can therefore not claim to 

map the shape of the spectrum with much certainty. However, broad 
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measures of the spectrum, such as the separation into small- and large-scale 

integral power are supported by the data. The least reliable quantity derived 

from the data is the correlation length, and thus also the standard deviation 

of the slowness field (separation of the product of correlation length and 

power). This measure is relatively sensitive to details of the power spectrum. 

Note, however, the small range of estimates (350 km - 1200 km) (see Figures 

4.13b and 4.15b). Since the product of power and correlation length varies 

by orders of magnitude across the models, while the estimates of correlation 

length vary by a factor of four, the main features of the variation of power 

with depth should be resolved. The error in the estimate of power that is 

due to the error in the estimate of correlation length should be within a fac­

tor of two. Our ability to separate the product of correlation length and 

power is dependent on the assumption of statistical isotropy, particularly in 

regions where the sampling is dominated by rays of a given direction. This is 

the case in the upper mantle, where the rays are predominantly vertical. 

Thus, the shape of the spectrum is primarily dependent on lateral variations, 

while the amplitude depends on the vertical correlation length. Furthermore, 

the upper mantle contains significant small-scale power, which is ignored in 

the estimate of half-width presented in Figures 4.13 and 4.15. Thus, the esti­

mate of power in the upper mantle is likely an underestimate. 

4.5 Discussion and conclusions 

The travel-time residuals of mantle P-waves as reported by the ISC 

catalogue have been analyzed in a statistical sense. This statistical approach 

yields estimates of spatially incoherent variance, presumably due to random 
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errors of measurement, and spatially coherent variance and its dependence on 

scale. The spatially coherent variance is most likely due to signal from the 

earth's heterogeneous interior. A formalism has been developed to translate 

the coherent variance into statistical measures of the earth's heterogeneity 

pattern. The formalism has been applied to the ISC P-wave data, yielding a 

statistical model of the heterogeneity pattern in the mantle of the earth. 

The estimates of random-error variance correlate well with complexities 

on the travel-time curve for P-waves, i.e., their variation with epicentral dis­

tance. The estimates also exhibit a systematic decrease with source depth. 

Since we cannot measure the variance at vanishing scales, we are forced to 

extrapolate our observations. Their behavior at small scales (see Figure 4.3) 

is reasonably linear. The data do, however, show signs of convex behavior. 

This would imply the existence of heterogeneity on scales smaller than our 

smallest scale samples (0.06° ~ 6 km), which is comparable to one 

wavelength of short-period P-waves. For this reason the linear extrapolation 

used to estimate the incoherent variance may result in overestimates. If the 

strength of this invisible heterogeneity decays with depth, which is suggested 

by the data (the convexity is strongest at shallow depths), it could explain 

some of the source-depth variation in the error estimates (Figure 4.4). Furth­

ermore, the finite binning in source depth may introduce an are ally 

incoherent component to the variance. If heterogeneity exists on scales 

smaller than the differences in ray length within the source depth bins, it 

would contribute to the variance within summary rays, which would not vary 

with scale. We thus have a further reason to suspect the data presented in 

Figure 4.4 to be overestimates of random measurement errors. It is, however, 

reasonable to expect some variation of picking errors with source depth. 



145 

Shallow events likely occur in an environment of stronger small-scale hetero­

geneity than deep events, and they occur close to the earth's free surface. 

Thus, scattering effects are likely to render the first arrival of shallow events 

more emergent than that of deep events, making them more difficult to pick. 

Assuming that the depth variation of the incoherent variance is dominated 

by small-scale structure and finite-binning effects, we conclude that random 

errors for P-waves at teleseismic distances are given by the upper bound 

(J" ::=:::::! 0.5 sec. The remaining signal variance in the data is of the order of 

(J"2 ::=:::::! 1.0 sec2• Thus, the signal to random noise ratio in the teleseismic, ISC 

P-wave data is about S / N ::=:::::! 2. On the other hand, the incoherent variance 

at local and regional distances is of the order of 1.0 - 2.0 sec2, w hUe the sig­

nal variance is comparable or less. The signal to noise ratio at short dis­

tances is thus less than unity. 

Statistical measures of the heterogeneity pattern of the mantle have 

been obtained, based on the formalism developed herein. Error analysis 

yields a reasonably high level of confidence in the results. However, some 

simplistic assumptions are made in the formalism, rendering the description 

of the forward problem somewhat questionable. A more complete description 

of the sampling geometry is called for. Incorporating the effects of, e.g., 

transversely anisotropic statistics could be useful, and further testing of some 

of the other assumptions is needed. We do, however, feel that these results 

should hold to within a factor of two. 

The most striking feature of the profile of small-scale power is the sharp 

overall decay with depth. In fact, the level of small-scale heterogeneity in 

the lower mantle is not resolvably different from zero in model STP1 (see 

Figure 4.12b). This could result in part from diffraction healing effects; i.e., 
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the propagation distance from the lower mantle to the surface may be great 

enough to allow the healing of small-scale phase perturbations from the lower 

mantle on a single wavefront. If we assume a correlation half-width of 

X 1/2 = 10 km, suggested by array studies at, e.g., NORSAR and LASA (Aki 

1973, Capon 1974), the shallow peak at depths less than about 150 km 

corresponds to small scale velocity anomalies of the order of 4%. This, and 

the depth extent, are consistent with the above small-scale array studies. It 

should be noted in this context that although oceanic events are included in 

this analysis, they are sparse and probably contribute little, particularly at 

small scales. 

We have some spectral resolution at low harmonic degrees and can thus 

separate the product of half-width and slowness variance. Figures 4.13a and 

4.15a show the standard deviation of large-scale slowness variations as a 

function of depth. The three most robust features in this profile are: 1) the 

high level of heterogeneity in the upper mantle; 2) the low level of hetero­

geneity in the lower mantle; 3) the thin layer of strong heterogeneity at the 

base of the mantle. Two interesting details are the sharp drop in the 

strength of heterogeneity at about 300 km and the extension of intermediate 

levels of heterogeneity through the 670 kin discontinuity into the lower man­

tle. It should be noted, however, that this is where the depth resolution is 

worst in the models. In terms of percent velocity variations (one standard 

deviation) this profile yields 0.5% at the top, 0.3% in the transition region 

and into the lower mantle, less than 0.1% in the lower mantle and 0.3% at 

the base of the mantle. Figures 4.13b and 4.15b show the variation of the 

correlation half-width with depth. It stays at about 500 km in the upper 

mantle, increases gradually to 1100 km in the lower mantle and drops 
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Figure 4.19. Comparison of the variation of power with depth in the lower 

mantle according to models STP1 and STP2, and the models of Dziewonski. 

(1984) [DZl and Clayton and Comer (1983) [CCl. The CC model has been 

low-passed at harmonic degree 6. 



148 

sharply to about 350 km at the base of the mantle. These measures of the 

model in the upper mantle are based on the low-passed autocorrelation 

(l <50). Thus the estimate of heterogeneity strength is an underestimate 

and the estimate of correlation length an overestimate. The general features 

of our results (models STP1 and STP2) are consistent with a number of pre­

vious studies. The variation of power with depth is similar to the P-wave 

models of Clayton and Comer (1983) (CC) and Dziewonski (1984) (DZ) (see 

Figure 4.19) and the S-wave model of Tanimoto (1989). The features in the 

lower mantle are similar to the model of Dziewonski, e.g., the apparent 

minimum in power at a depth of 2000 km (see Figure 4.13b). His model 

does, however, have a somewhat higher amplitude (by a factor of R::::2) 

throughout the lower mantle. A correlation half-width of 1000 km in the 

lower mantle corresponds to a spectral band-width of about l =7 (assuming a 

Gaussian autocorrelation). This is comparable with the truncation harmonic 

degree of Dziewonski (l =6). A full description of the boundary-layer half­

widths of 350 km and 500 km would require a harmonic expansion beyond 

degree l =10. Thus our STP models do not agree spectrally with the model 

of Dziewonski (1984). If the structure contains significant power beyond har­

monic degree 6, truncating the model parameterization at that degree may 

result in significant aliasing effects. Comparison with a low-passed depiction 

of the model of Clayton and Comer is also favorable. Here the amplitude 

level is very similar to our results for depths greater than 1200 km. A large 

discrepancy is, however, present above that depth. Some of the discrepancies 

between our models and earlier deterministic models could be explained by 

the mapping of upper-mantle structure into the lower mantle. Our stochastic 

approach is not devoid of that problem, but is likely to suffer less from it 
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than three-dimensional models. Another potential contributor to amplitude 

discrepancies is our assumption of isotropic statistics. 

All three models shown in Figure 4.19 have similar behavior at the base 

of the mantle. The relative slowness variations increase to 0.3 - 0.5% a few 

hundred km above the core mantle boundary. Our STP models have a 

sharper transition and a thinner D". There is a marked difference in the 

modeled spectral content, however. The DZ model and the CC model as 

shown in Figure 4.19 contain only the six lowest harmonics, whereas the STP 

models claim a correlation length of 350 km and a significant spectral tail 

beyond degree 10. The STP models thus fall in between the deterministic 

(DZ,CC) models and the scattering models obtained from PKP precursors 

(e.g., Haddon and Cleary 1974), which yield 1% rms slowness variations on a 

characteristic scale of 30 km. We still have an order of magnitude 

discrepancy. It is, however, interesting to note that the product of slowness 

power and correlation length in our STP models agrees well with that of 

Haddon and Cleary. Our estimate of correlation length in D" of 350 km 

contradicts the 1000 km estimate of Creager and Jordan (1988) for the struc­

ture of the core-mantle boundary region from PKP-waves. 

A comparison of the present stochastic model with other studies cannot 

be as direct for the upper mantle as for the lower mantle, since a global P­

wave model for the upper mantle is not available, and our presentation of the 

upper mantle may be obscured by the strong presence of small-scale hetero­

geneity. The drop in power at a depth of about 300 km is consistent with the 

results of surface-wave tomography (e.g., Woodhouse and Dziewonski 1984, 

Tanimoto 1987 and 1988), the results of long-period, body-wave synthesis 

(e.g., HeImberger et al. 1985) and upper-mantle, S-wave tomography (Grand 
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1987). Those studies are, however, primarily sensitive to large-scale S-wave 

velocity and report variations of the order of 5%, which correlate well with 

surface tectonics. Our models have about 0.5% velocity variations in the 

upper mantle from large scales (>400 km). This value is ambiguous, since it 

is based on an estimate of correlation length from a low-passed autocorrela­

tion function. It is thus an underestimate. Nevertheless, this value is the 

integral strength of heterogeneity over a broad spectrum. Compared with 

5% S-wave velocity variations over less than 10 harmonic degrees, there is a 

clear discrepancy. It is likely that we are in effect blind to the large-scale, 

strong variations between oceans and continents, because of the strongly 

biased distribution of sources and receivers over the globe. In fact, our 

upper-mantle models prefer negative power at the lowest harmonics in the 

upper mantle because of an unexplained feature in the data, possibly related 

to this distribution bias. 

Some of our results have a bearing on the potential resolution of body­

wave tomography. Our finding that the lower mantle is devoid of small-scale 

structure is encouraging. If true, we can get away with coarse parameteriza­

tion of mantle models. Our finding that the signal-to-noise ratio of telese­

ismic ISC P-wave data exceeds unity by a factor of two is also encouraging. 

It demonstrates the value of the ISC data. We find the upper mantle to be 

two orders of magnitude more heterogeneous than the lower mantle (in terms 

of the product of power and characteristic scale), including strong structure 

at small scales. This inherent property of the earth will remain a problem for 

body-wave tomography in spite of improved instrumentation and picking 

procedures. It is as if we are examining the earth's interior through a very 

irregular glass window (random phase screen). 
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Some of our results may be used to make qualitative inferences about 

mantle dynamics. In the steady-state, Bernard-convection scenario, Jarvis 

and Peltier (1986) find that the convective boundary layers have a very nar­

row, low-degree spectrum of lateral temperature variations, while the interior 

of convection cells possess a relatively broad spectrum. This contradicts our 

finding of a decrease in correlation length towards the extremes of the man­

tle. In particular, it suggests that the D" layer may be a chemical layer with 

independent convection, or lateral variations in seismic structure because of 

chemical heterogeneity. T4e possibly more realistic large aspect ratio, time­

dependent, convection scenario of Weinstein et al. (1989) produces a much 

more chaotic temperature distribution, including transient secondary convec­

tion. This mode of convection better justifies our assumption of isotropic 

statistics than does simple steady state high Rayleigh number convection. 

Plumelike boundary-layer instabilities do, however, remain a prominent 

feature of the temperature field. The present stochastic approach is ill 

equipped to describe the effect of such features on the slowness field. In par­

ticular, our conclusion that the lower mantle does not possess significant 

small scale power (l > 10) seems to contradict the existence of confined 

plumes in the lower mantle, since such features would introduce small-scale 

structure at feasible Rayleigh numbers. 

Since the binning of source depth is primarily what gives us depth reso­

lution in the upper mantle, and deep events are restricted to subducting 

slabs, our upper-mantle model may be strongly biased to the regional struc­

ture of subduction zones. The upper mantle part of our model may be most 

properly interpreted in terms of the structure of subducting slabs as they 

penetrate the upper mantle. The extension of intermediate levels of 
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heterogeneity into the lower mantle could be interpreted in terms of slabs 

penetrating the 670 km velocity discontinuity rather than as a manifestation 

of a boundary layer. 

Inversion of the structural signal in the data yields models that concen­

trate heterogeneity strongly in the upper mantle. The product of correlation 

length and power drops by about two orders of magnitude from the surface 

of the earth to the lower mantle. About half of this quantity in the upper 

mantle is due to small-scale features «300 km ). The lower mantle is devoid 

of small-scale structure. It contains 0.1 % velocity variations at a characteris­

tic scale of about 1000 km. This corresponds to a spectral band-width of 

l ~ 7. The D" layer at the bottom 100 - 200 km of the mantle shows up as 

a distinct layer in our results. It has 0.3% velocity variations at a charac­

teristic scale of 350 km. The top of the lower mantle contains 0.3% velocity 

variations on a scale of 500 km and also contains some small-scale power. 

These results are somewhat preliminary, since some aspects of the tech­

nique are not fully tested and some potential improvements have not been 

tried out. We feel, however, that the overall agreement with earlier studies 

and the successful explanation of all the variance in the ISC data prove the 

usefulness of this approach. 
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5 A SYNTHETIC STUDY OF GLOBAL, TRAVEL-TIME 

TOMOGRAPHY 

5.1 Introduction 

The International Seismological Centre (ISC) Catalogue contains over 

twenty years of worldwide, arrival-time readings and event locations. This 

database of more than nine million picks has been used to map the hetero­

geneous structure of the earth's deep interior on a global scale. Clayton and 

Comer (1983) and Dziewonski (1984) used fifteen years of ISC mantle P-wave 

data to map the lower mantle. Creager and Jordan (1986) and Morelli and 

Dziewonski (1987) used compressional core phases to map the core-mantle 

boundary. Morelli et al. (1986) and Shearer et al. (1988), used PKIKP-waves 

to map anisotropy in the inner core. These studies, if successful, together 

with surface-wave tomography, free-oscillation studies, and long-period, 

body-wave synthesis, would provide important constraints on the style and 

scale of mantle convection, on the workings of the geodynamo, and on the 

evolution of the earth. 

There are, however, some concerns about the ISC data. The uncertainty 

of measurement is high compared with the signal attributable to aspherical 

structure. The data are contaminated by potentially systematic errors that 

are due to misidentification of phases, earthquake mislocation, earthquake 

time-function complexity, and potentially biased picking. The geometrical 

distribution of the data is uneven, because of the clustering of seismic sources 

in tectonically active regions, the lack of recording stations in the oceans, and 

the inactive picking of many secondary phases at numerous stations. The 
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images may suffer from complex artifacts, which depend on the particular 

technique employed, because of the uneven coverage. The strong small-scale 

velocity variations in the earth's outermost layers are simplistically accounted 

for by station corrections. The severity of these problems is currently poorly 

understood. 

We attempt in this chapter to assess the quality of images of the lower 

mantle and core-mantle boundary (CMB) obtained from ISC data, by a syn­

thetic test. In order to do that we need reasonable heterogeneous velocity 

models for the mantle as well as estimates of errors in the data. We draw 

our information from the results of crustal-scattering studies (e.g., Aki 1973), 

from the results of surface-wave tomography (upper mantle) (e.g., Wood­

house and and Dziewonski 1984, and Tanimoto 1987, 1988, and 1989), from 

previous lower-mantle, body-wave studies (i.e., Clayton and Comer 1983 (see 

also Hager and Clayton 1989), and Dziewonski 1984) (hereafter referred to as 

CC and DZ, respectively), and from the results of Chapter 4 of this thesis, 

for errors and statistical measures of the structure. 

5.2 Method 

The earth is a three-dimensional (3D) object containing 3D hetero­

geneity. To address the potential problems of lower-mantle, travel-time stu­

dies fully, the full 3D problem should be treated. This entails a great volume 

of computation in order to include small-scale structure in the crust and 

upper mantle, and because of the vast number of individual observations 

over the globe. We thus reduce the problem size by taking a sample, two­

dimensional (2D) great-circle cross-section of the earth. Our choice of cross 
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Figure 5.1. The distribution of stations and events used in synthetic case 1 

(C1). The stations are selected from the ISC catalog within a distance of 2.5 

degrees from the great circle drawn in the top frame. The events are selected 

in the same manner from the ISC catalog, except that events are added in 

the two subduction zones (Tonga/New Zealand and Mexico/N. America) to 

mimic the depth distribution of events in the entire ISC catalog. The great 

circle represents the cross section of the upper-mantle model DSXRG of Tan-

imoto (1988). 
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Figure 5.2. The distribution of stations and events used in synthetic case 2 

(C2). Both distributions are entirely artificial and constructed to mimic a) 

the depth distribution of events in the ISC catalog, b) the lateral distribution 

of events and stations among a partition of the earth's surface into tectonic 

regions, and c) the clustering characteristics of stations and events in the ISC 

catalog. Stations are given a random distribution about the reference great 

circle for plotting purposes only. 
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section is shown in Figures 5.1 and 5.2 together with the distributions of 

events and stations used. Its normal vector is given by 45 0 N latitude and 

135 0 E longitude. This great circle crosses two continents, one with abun­

dant station coverage (N. America), the other with sparse station coverage 

(Africa). The continents cover about 30% of the great circle. It crosses two 

subduction zones, one major and deep (Fiji-Tonga), the other minor and shal­

low (Mexico). It crosses two midocean ridges, the North Atlantic ridge and 

the Indian Ocean ridge. The sparseness of recording stations and seismicity 

in the Pacific and Indian Oceans mimics the sparseness of sampling of the 

southern hemisphere of the globe in the 3D case. 

It is impossible to design a 2D:,.ample cross section of the earth that is 

strictly analogous to the full 3D problem. The aspects of the distribution of 

structure and data that one would like to mimic are: 

1) The overall redundancy in the data relative to the characteristic 

scales of the structure. 

2) The redundancy in the data relative to the number of model parame­

ters. 

3) The clustering characteristics of the data. 

4) The biases in the geometrical data distribution relative to strong 

structural features in the earth. 

5) The characteristic scale and strength of earth structure as it varies 

with depth. 

We infer the characteristics of earth structure from current models for the 

crust and upper and lower mantle. We constructed two case examples of the 

geometrical distribution of data. Case 1 (Cl) is based on the ISC data in the 
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vicinity of the above specified, sample great circle, but is lacking in the level 

of redundancy relative to the parameterization of the models we solve for. 

Case 2 (C2) is a completely artificial distribution of stations and events, but 

has comparable levels of redundancy in terms of numbers of data relative to 

numbers of model parameters, to the 3D problems solved by CC and DZ. 

The station distribution in case C1, shown in Figure 5.1, was con­

structed by including all stations reporting more than 50 picks to the ISC 

catalog between 1964 and 1986, which are within 2.5 0 from the great circle. 

We then added five stations to fill in uncharacteristically big gaps in the dis­

tribution. This yields 164 stations. 

The seismicity distribution in case C1, shown in Figure 5.1, was con­

structed by including all the events reported to the ISC between 1964 and 

1986 by at least 50 stations, which are within 2.5 0 from the great circle. We 

then define Benioff-Wadati zones as linear features at Tonga (New Zealand) 

and Mexico and collapse the seismicity in their vicinity onto them (4/5) and 

in the back arc region (1/5). The Benioff-Wadati zones are given finite 

widths (100 - 300 km) and the events are distributed normally (Gaussian dis­

tribution laterally) within them. We then added events at depth in both 

subduction zones to mimic the depth distribution of seismicity according to 

the ISC catalog. The artificial subduction zones inserted into the distribution 

are not meant to resemble the actual zones the great circle crosses, but to 

mimic typical subduction zones. The number of events in this distribution is 

1024. 

If the geometrical distribution of data in the ISC catalog were uniform, 

model space were cubic, and the model parameterization isotropic, the 3D 

problem would scale to 2D by taking the 2/3 root of the number of data. 
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This is the criterion we used to determine the number of data in case Cl. 

We selected the desired number of picks randomly, assigning probabilities 

proportional to the number of picks in the ISC catalog for each event and 

station included in this case. The resulting number of picks is about 26000. 

Figure 5.2 shows the distribution of stations and events in case C2. We 

divided the great circle into tectonic provinces (subduction, tectonic, mido­

cean ridges, intraplate). The sizes of the provinces were determined such that 

the proportion of the great circle length categorized by a given tectonic type 

was the same as the proportion of the earth's surface area categorized as that 

same type. We then assigned earthquake loci at random within the tectonic 

provinces according to the relative numbers of events within each tectonic 

province type in the ISC catalog. The depth was assigned at random such 

that the ISC depth distribution for the given tectonic type in the ISC catalog 

was satisfied. The lateral position was assigned at random according to a 

Gaussian distribution around the axes of subduction zones and midocean 

ridges, but a uniform distribution in tectonic and intraplate regions. The 

stations were selected at random from uniform deviates in oceanic intraplate 

regions, not at all at midocean ridges, from uniform deviates in tectonic and 

subduction regions, and from a decaying distribution on the continents away 

from adjacent tectonic or subduction zones. The total number of events and 

stations was selected such that the reduction from the number of events and 

stations in the ISC catalog was approximately the square root of the reduc­

tion of the number of generated picks from the number of picks in the ISC 

catalog. The number of P-wave picks was determined in this case such that 

the ratio of picks to model parameters is the same as in the case of CC for 

analogous model parameterization. The picks were distributed among the 
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ISC I II 

stations 1,650 164 245 

events 25,000 1,024 4,981 

P-picks 3,000,000 26,024 120,000 

P-srays 100,000 987 3,671 

PcP-picks 35,000 1,331 1,327 

PKPab-picks 20,000 941 734 

PKPbc-picks 400,000 4,677 15,509 

PKPdf-picks 500,000 6,356 16,493 

Table 5.1. Numbers of events, stations, and picks of various phases in the 

ISC catalog (1964-1986) and the two synthetic cases set up in this study. I 

refers to C1, II to C2. 
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station-event pairs that fall in any given epicentral distance window such 

that the epicentral distance distribution in the ISC data was satisfied. The 

number of stations, events, and picks in this case is 245, 4981, and 120000, 

respectively. 

Table 5.1 shows a count of the number of picks of some of the compres­

sional phases reported to the ISC between 1964 and 1986, as well as the 

number of stations and events with more than 50 picks in the same period. 

No windowing of crossovers of travel-time branches, or selection according to 

maximum travel-time residual has been applied. The P-data include every­

thing between epicentral distances of 25° and 95°. PKPbc picks are 

counted, assuming that 85% of all PKP picks between distances of 143° and 

154° are PKPbc (Anderssen and Cleary 1980). The remaining 15% are 

counted as PKPdf. Numbers of stations, events, and picks of all the 

compressional phases used in this study in both synthetic cases (C1 and C2) 

are also given in Table 5.1. 

We constructed three basic models. Model Ul\t1L is a model of large­

scale slowness variations in the upper mantle. Model UMS is a model of 

small-scale slowness variations in the crust and upper mantle. Model LM is a 

model of slowness variations in the lower mantle. 

Shallow heterogeneity in the earth is known to correlate well with sur­

face tectonics on large scales and thus the distribution of data in the ISC 

catalog. There is therefore potential for the bias of lower-mantle models 

from shallow heterogeneity. The best global models of shallow heterogeneity 

come from surface-wave tomography (e.g., Woodhouse and Dziewonski 1984, 

Tanimoto 1987 and 1988). These studies are primarily sensitive to shear­

velocity variations. We took the DSXRG model of Tanimoto (1988) as the 
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basis for our UIv1L model. For a Poisson solid with correlated velocity varia­

tions (S- and P-wave), travel-time residuals scale with slowness perturbations. 

Observations of the ratio of S- to P-wave station corrections are generally 

close to 4 seconds (e.g., Hales and Doyle 1967, Souriau and Woodhouse 1985), 

although Romanowicz and Cara (1980) suggest that this high ratio may be an 

artifact for USA stations. To convert the DSXRG model to a viable 

compressional-velocity model, we thus scaled it by a factor of 1/4 in terms of 

slowness. We took the same great-circle cross-section of the model as was 

used in constructing the event and station distributions in case C1 (see Fig­

ure 5.1). We then inserted slablike anomalies at Tonga (New Zealand) and 

Mexico, that coincide with the Benioff-Wadati zones in the data distribution. 

These anomalies are Gaussian in the lateral dimension of widths 100 - 300 

km and have a maximum strength of relative velocity variation of 5%. This 

is in accord with seismic studies of slab structure (Mitronovas and Isacks 

1971 and Suyehiro and Sacks 1979) and thermal modeling of slabs (e.g., 

Schubert et al. 1975). The width was increased linearly with depth, and the 

relative strength decreased linearly with depth to 2.5%. We also inserted 

spherical, Gaussian, slow anomalies in the back-arc regions at a depth of 200 

km with a radius of 100 km and maximum strength of 2.5%. These struc­

tures are similar to features in the Hellenic model of Spakman et al. (1988). 

These slab features are not large scale in the lateral dimension, but they are 

strong structural features, which correlate with the data distribution. Model 

DSXRG of Tanimoto (1988) includes harmonic degrees up to I = 8. The 

results of Chapter 4 of this thesis indicate that above a depth of 400 km 

significant power extends beyond that scale. Given the results presented in 

Chapter 4 we added randomly selected harmonic components to model UIv1L 
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Figure 5.3. The large-scale, upper-mantle model (UML) used for both Cl 
and C2. It was constructed from a great-circle cross-section of model 
DSXRG of Tanimoto (1988). This shear-velocity model was scaled by a fac­
tor of one-quarter in terms of slowness. We then inserted artificial slab­
structures into it (at New Zealand and Mexico), and, finally, appended the 
power spectrum of the model according to the decay rates presented in c), 
,given here as the harmonic-degree half-width of the spectrum.. Figure b) 
shows an enlargement of the New Zealand subduction zone and its seismicity. 



164 

consistent with a Gaussian decay of the power spectrum with a half-width of 

I = 10 - 15. The resulting model, UJ\IfL, is plotted in Figure 5.3a. The struc­

ture near the Tongan slab is highlighted in Figure 5.3b. The imposed spec­

tral decay beyond degree I = 8 is shown in Figure 5.3c. 

Model UMS is meant to describe the small-scale structure of the upper 

mantle. Localized scattering studies at dense arrays (e.g., NORSAR and 

LASA) indicate that in the top 150 km of the earth the small-scale velocity 

structure is characterized by 5% variations on a characteristic scale of 10 km 

(e.g., Aki 1973). The results of Chapter 4 are consistent with this. We took 

the results presented in Chapter 4 for the variation of small-scale power with 

depth in the upper mantle, assumed a correlation length of 10 km and con­

structed the UMS model accordingly (see Figure 5.4). This was done by 

parameterizing the model at a 10 km scale and selecting incoherent random 

numbers for the model parameters from a Gaussian distribution with stan­

dard deviation as a function of depth according to Figure 5.4. 

Global models of slowness heterogeneity in the lower mantle agree to 

within a factor of two on the rms (root-mean-square) level of heterogeneity 

(see Figure 4.19). The models of CC, DZ, Tanimoto (1989) (S-velocity), and 

our results from Chapter 4 agree on an rms low in the central lower mantle 

and an increase towards both the core-mantle boundary (Cl\1B) and the 

upper mantle. These studies are also consistent with a characteristic scale 

length of heterogeneity throughout much of the lower mantle of the order of 

1000 km. We took the results from Chapter 4 for the power and correlation 

length of slowness variations in the lower mantle and constructed a model 

accordingly. The construction was done by generating an incoherent random 

field at a parameterization interval of 10 (60 - 100 km). We then convolved 
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1000 

2000 

1000 

2000 

3000 a 

166 

Distance, deg 

sec/km 
a) ~ I I:::I:::H:~ 

-0.0002 0.0 0.0002 

b 

500 1000 1500 0 1 2 3 4 5 

Scale, km 
RMS Slowness 

(0.0001 s/km) 

Figure 5.5. The lower-mantle model (LM) used for both Cl and C2. a) A 

contour map of the model. b) The variation of correlation length with depth. 

c) The variation of the rms level of the model as a function of depth. The 

model was constructed by an incoherent, random, number generator, then 

smoothed according to b), and, finally, the amplitude was adjusted according 
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that field with a Gaussian function of width varying with depth according to 

the specified correlation length. Power was then adjusted according to the 

results of Chapter 4 depth layer by layer. The resulting model, LM, is shown 

in Figure 5.5a. The variation of correlation length with depth is shown in 

Figure 5.5b, and the variation of the rms level of heterogeneity with depth in 

Figure 5.5c. 

We used the spherically symmetric, reference velocity-model of Jeffreys 

and Bullen (JB) (Jeffreys, 1939) and power-law ray-tracing (see Bullen, 1979) 

to construct ray geometries. The above models were densely parameterized 

by small constant value cells and they integrated along the rays according to 

the simple, linearized, ray-theoretical, travel-time integral 

bt = J buds, 
ray 

where bt stands for travel-time residual, bu for slowness perturbation and ds 

for incremental length along the ray. 

Finally, we took the estimates of error in the ISC P-wave data from 

Chapter 4 of this thesis (see Figures 4.4 and 5.6) and added to the data ran­

domly generated numbers with variance according to Figure 5.6. The data 

then consist of four distinct contributions: from models UML, UMS, LM, and 

from random errors. The variances of the individual contributions to all the 

data are shown in Tables 5.2 and 5.3 for cases C1 and C2, respectively. The 

two tables are similar except for the difference in UML contributions to the 

PKPab and PKPbc data sets. This could be coincidental, as the relative dis­

tribution of these data to the UML model is quite different. 
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phase UML UMS LM ERR TOT 

P 0.82 0.20 0.24 0.72 2.11 

PcP 0.96 0.14 0.16 0.87 2.03 

PKPab 0.49 0.12 0.38 0.94 1. 99 

PKPbc 0.53 0.13 0.06 0.93 1. 73 

PKPdf 0.78 0.12 0.14 0.87 2.08 

Table 5.2. Variances of the various contributions to the different data sets 

constructed in synthetic case Cl. UNfL represents contributions from the 

upper-mantle UML model. UMS stands for contributions from the upper­

mantle mantle UMS model. LM stands for contributions from the lower­

mantle LM model. ERR stands for contributions from random errors. TOT 

refers to the total variance of each data set prior to relocations or static 

corrections. 
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phase UML VMS LM ERR TOT 

P 0.90 0.22 0.34 0.63 2.21 

PcP 0.87 0.15 0.21 0.86 1. 98 

PKPab 1.10 0.13 0.20 0.96 2.33 

PKPbc 1.13 0.14 0.16 0.84 2.22 

PKPdf 0.96 0.14 0.19 0.84 2.21 

Table 5.3. Variances of the various contributions to the different data sets 

constructed in synthetic case C2. UI\1L represents contributions from the 

upper-mantle UML model. VMS stands for contributions from the upper­

mantle VMS model. LM stands for contributions from the lower-mantle LM 

model. ERR stands for contributions from random errors. TOT refers to the 

total variance of each data set prior to relocations or static corrections. 
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The ISC travel-time residuals are given relative to the JB model and 

event locations made by the ISC with teleseismic compressional data (mantle 

P-waves and PKIKP-waves). Some studies have referenced the travel-time 

data to the PREM model and appropriately relocated the events. The use of 

teleseismic data to locate events can introduce significant errors in location 

because of small-scale lateral structure, particularly around the event, that 

may introduce spatially systematic errors in the travel-time residuals. We 

therefore relocate all events laterally, based on the synthetic data that we 

compute, based on what are exact locations. The initial location in the relo­

cation is the exact location. We relocate only laterally, because of the 

unresolved trade-off of origin time and source depth, because of the use of 

teleseismic data only. We use our synthetic data sets for P-waves and 

PKIKP-waves in the relocation (These are the first arrivals at· almost all dis­

tance ranges). The results of the relocation are shown in Figure 5.7 for both 

cases (C1 and C2). The patterns of relocations are quite similar for the two 

cases, largest for the subduction events, and of the order of 20 km where 

largest. This is similar to the results of Mitronovas and Isacks (1971), Eng­

dahl et al. (1977), and Fujita et al. (1981) for real subduction-zone events. A 

ten km relocation introduces an error of up to the order of 1 second (mantle 

velocity is of the order of 10 km/sec). 

The next step in the data processing was applying static station and 

event corrections, using the method of CC. This was done by an iterative 

scheme, where first the average residual for each event is explained by an 

event correction, then having corrected the data for the event correction, the 

average residual of each station is attributed to a station correction and 

removed. This cycle is repeated until convergence is reached. The event 
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correction is roughly equivalent to relocation in depth and origin time. The 

results of the statics are shown in Figure 5.8 in the same format as the relo­

cation results. Figure 5.8a shows the individual station statics in case C1 as 

a function of position along the great circle; Figure 5.8b shows the event 

static corrections in case C1 as a function of great-circle position; Figure 5.8c 

shows the station statics in case C2, and Figure 5.8d the C2 event statics. 

Event statics are generally negative in the Tonga subduction zone, particu­

larly within the slab, and in the Mexican subduction zone event statics are 

negative relative to a positive regional trend. The Mexican subduction zone 

is immersed in a regional slow anomaly. The patterns of event and station 

statics are similar for both cases C1 and C2. The shallow fast anomaly under 

N. America is associated with negative event and station statics. The shal­

low, slow anomaly under the western margin of N. America coincides with 

positive station and event statics. The positive corrections in the eastern 

Atlantic and African region are due to an overall slow upper mantle. Thus 

the static corrections correlate well with the strongest features of model 

UML. This is what one hopes for, as the statics are the simplistic way 

lower-mantle, travel-time studies typically attempt to account for upper­

mantle structure. 

The final step in the data processing was the formulation of summary 

rays (see, e.g., Dziewonski 1984). In order to reduce the volume of the 

inverse problem and to give regions at the earth's surface a more equal 

weight in the inversion for lower-mantle structure, previous studies have 

applied the summary-ray concept. The earth's surface is divided into patches 

of uniform size, and all rays with endpoints within common patches are 

lumped together. Those rays have similar travel paths through the lower 
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mantle (and core) and thus sample deep, large-scale anomalies similarly. 

They may pick up a variable signal from small-scale, shallow structure, which 

will cancel. Furthermore, if a large number of rays pass through a shallow 

seated anomaly, its effect is given reduced weight by collapsing all the rays 

into a single summary ray. The density of coverage in the lower mantle is 

evened. We applied summary rays at a scale of 5° in case C2 as did CC 

and DZ, but at a scale of 2.5 0 in case C1 in order to adjust the level of 

redundancy (relative number of summary-ray data and model parameters). 

The number of summary rays for P-waves was 760 and 3670 for cases C1 and 

C2, respectively. 

Finally, we inverted our processed, synthetic P-wave data sets for struc­

ture in the lower mantle, using similar procedures to those applied by CC 

and DZ. This involves two significantly different inversion techniques (which 

yield significantly different results). The technique of DZ expands the model 

in terms of a small number of continuous, orthonormal basis functions and 

applies a standard least-squares method to solve for the coefficients of each 

function. The functions used are the five lowest-order Legendre polynomials 

in depth and the 1 lowest-degree spherical harmonics laterally. We will 

hereafter refer to this technique as THE (truncated harmonic expansion). 

The technique of CC divides the model into discrete boxlike cells, assumes a 

constant slowness perturbation within each cell, and applies an iterative 

back-projection inversion scheme to solve for a large number of model 

parameters. We will hereafter refer to this technique as BP (back­

projection). OUf adaptation of the THE method uses 5 Legendre polynomials 

to expand the depth variation and a truncated (at 1 = 6) discrete Fourier 

transform to expand the lateral variation (spherical harmonics in the plane of 
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Figure 5.Q. Hitcounts in the lower mantle a) for case C1, b) for case C2. 

Here hitcount is presented in terms of the total path length within each 

model cell in the discrete parameterization of the BP method. 
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the equator). This level of parameterization is equivalent to that used by DZ 

for the 3D earth. The level of parameterization in the BP method is also 

kept equivalent to that used by CC. The binning interval in depth is 100 km 

and in the lateral dimension is 5°. The damping parameter used in the 

application of the BP method is J-l = 50 km, or the same used by CC in their 

global inversion. In applying the BP method we used data from all source 

depths, while in applying the THE method we used only data from shallow 

events (Z < 50 km). All comparisons of the results of the two methods and 

with the LM model are done with equally parameterized models. The THE 

parameterization is the sparsest one. The BP and LM models (finely discrete) 

were expanded a posteriori, out to degree 10 and using 8 depth polynomials, 

by a least-squares fit. Only those parameters equivalent to those used in 

THE are included. 

Figure 5.9 shows the ray coverage in the lower mantle in cases Cl and 

C2 in terms of the total, ray path-length within each model cell in the BP 

parameterization. The coverage is considerably better in the C2 case, since 

the total number of summary rays is about five times greater. The coverage 

is relatively poor at the base of the mantle in both cases. Rays from Tongan 

events to American stations give an illusion of reasonable coverage under the 

Pacific. However, this densely covered path is not crossed by many other 

paths. 
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5.3 Results 

The results of the inversion of the P-wave data set, which includes all 

contributions of signal and error, by both the BP and THE methods are 

shown in Figures 5.10 and 5.11 for cases C1 and C2, respectively. The center 

frame shows the LM model for reference. The contouring is the same for all 

models. It is clear from these figures that the success of the inversion is mar­

ginal. The BP model is lacking in power at the top of the lower mantle rela­

tive to LM in both cases C1 and C2. The THE model has excessive power 

throughout the lower mantle relative to LM in both cases. The visual corre­

lation of the models is reasonable at best and poor at the top and bottom, 

particularly in case Cl. Figures 5.12 through 5.15 show the standard devia­

tion (root-mean-square anomaly) of the models and their depth by depth 

correlation. Analogous parameters for the 3D results of CC (model CC) and 

DZ (model DZ) are shown for reference. Figure 5.12 includes harmonic 

degrees 1,2 and 3 and shows the results in case Cl. The behavior of the rms 

slowness is similar for the 2D synthetic case and the 3D case. The DZ model 

is consistently about a factor of two higher in amplitude than the CC model 

and the THE model is about a factor of 2 bigger than model BP. The power 

in model BP falls closer to the power of model LM than does the power of 

model THE. Models CC and DZ correlate consistently positively at this 

parameterization, but at a relatively low level of R :=::::0.6. The correlation of 

models BP and THE is also consistently positive and somewhat higher, 

R :=::::0.7. However, each of the models correlate significantly worse with the 

LM model. In particular, the correlation goes to zero or negative values at 

the top and bottom of the lower mantle. Figure 5.13 shows harmonic degrees 

1 through 6 of the results from case Cl. The behavior of rms slowness is still 
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Figures 5.12 - 5.15. The variation of the rms level of slowness anomalies 

and correlation coefficients as functions of depth in the lower mantle. In a) 

we plot the rms level of models CC (solid line) and DZ (dashed line). In c) 

we plot the correlation coefficient of models CC and DZ. In b) the solid line 

represents the BP model, the dashed line the THE model and the doubly 

dashed line the LM model. In d) the solid line is the correlation between BP 

and THE, the dashed line the correlation between BP and LM and the dou­

bly dashed line the correlation between THE and LM. 
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Figure 5.15. Case C2. Degrees 1 through 6. 
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similar for the 2D and 3D cases. The amplitude discrepancy between THE 

and BP is in this case magnified over the discrepancy between DZ and CC. 

The correlation of CC and DZ on one hand, and BP and THE on the other is 

still positive overall and somewhat higher in the latter case. Figure 5.14 

shows degrees 1,2, and 3 for case C2. In this case the rms slowness is similar 

for all of LM, BP, and THE. The correlation of BP and THE is very high 

throughout much of the lower mantle, drops towards the top and bottom and 

drops slightly in the lower mantle. The correlation of models BP and THE 

with LM is in this case low in the center of the lower mantle and remains 

positive at the top and bottom, while dropping somewhat. Figure 5.15 shows 

degrees 1 through 6 of the results from case C2. Here the amplitude 

discrepancy between BP and THE reappears, but in the lower part of the 

lower mantle both models overestimate the rms slowness of the LM models 

significantly. The correlation of THE and BP is similar to Figure 5.14, only 

slightly reduced. The higher correlation of BP and THE than CC and DZ in 

both cases C1 and C2 may be an indication that the problems with the data 

are underestimated in this 2D synthetic example. Bear in mind, however, 

that the 3D expansion up to degree 6 involves 48 parameters, while the 2D 

expansion up to degree 6 involves only 12: The lower the number of parame­

ters the more likely random components in the field correlate. This 

discrepancy may be a manifestation of this numbers effect. The BP model 

correlates significantly better with the LM model than does the THE model. 

This may be due to the lower level of parameterization, Le., aliasing, or that 

in the application of the THE method we used only shallow events (Z < 50 

km), as did DZ. Shallow data are more evenly distributed than deep data, 

but contain larger random errors (see Chapter 4) and pick up a higher 
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contribution from upper-mantle structure. On the other hand, deep events 

may be more likely to be poorly located because of the strong lateral velocity 

anomalies of subducting slabs. 

We can apply a significance test to the correlation coefficient similar to 

the student T-test or the x2-test. The correlation coefficient of two N-long 

strings of numbers taken from the same Gaussian distribution follows a dis­

tribution that approaches a Gaussian distribution at high N. The standard 

deviation of this distribution behaves as 0 = 1/ m. Thus, we calculate 

that the overall correlation of models CC and DZ for harmonic degrees 1-3 

and 1-6 is about the 20 level. The probability that this correlation is coin­

cidental is very low (2.5%). We calculate that the correlation of models BP 

and THE is about 1.70 in case Cl and about 2.00 in case C2. The probabil­

ity that this correlation is coincidental is about 4.5% and 2.5%, respectively. 

Thus, the lower correlation in the 3D case is actually more significant than 

the higher correlation in the 2D Cl case and about as significant as the corre­

lation is the 2D C2 case. In both cases the correlation is highly significant. 

That is not necessarily to say that the noncoincidental cause of the correla­

tion is lower-mantle structure. In fact, the poorer correlation of the BP and 

THE models with LM than with each other implies that it is not so. The 

problem evidently lies in the data values rather than in their spatial distribu­

tion. 

To estimate the effect of the lack of coverage in the lower mantle on the 

resolution of this problem, we tried inverting data containing contributions 

from the lower mantle only (no upper mantle, no errors). The correlations of 

the results of that inversion are shown in Figure 5.16 (case C1, harmonic 

degrees 1-6). The correlation is nearly perfect down to a few hundred km 
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above the CBM. This demonstrates that the data spatially resolve the 

lower-mantle structure at the present parameterization. 

Figures 5.17 and 5.18 show the rms amplitude (left column) and correla­

tion with LM of models obtained by the BP method from various combina­

tions of the individual contributions to the data for cases C1 and C2, respec­

tively. The top pairs of frames are the same as in Figures 5.13 and 5.15. 

The lower four pairs are from data excluding one or more contributions as 

indicated. REL refers to data excluding relocation errors. Here little is 

changed at the top of the model, but the correlation is significantly improved 

at depth in the Cl case. The correlation is somewhat improved in case C2. 

ERR refers to data excluding random errors and contributions from small­

scale, upper-mantle structure. Again the effect is small at the top of the 

model, but is much improved at depth in case Cl and at central lower­

mantle depths in case C2. The correlation a few hundred km above the 

CMB is reduced in case C2 but increased at the very base of the mantle. A 

common effect of excluding random errors is the reduction in the rms ampli­

tude at the base of the mantle for both cases Cl and C2. This implies that 

the increase in power at the base of the mantle may be at least in part due to 

a combination of poor coverage there and large errors in the data. UML 

refers to data excluding contributions from the UML model. In case Cl the 

correlation is improved at the top of the lower mantle, but reduced at central 

depths. There is remarkably little effect in case C2. LM refers to data 

excluding contributions from the lower mantle. The correlation is low, but 

significantly negative at the top and positive at central depths in case Cl. In 

case C2 this is reversed. This indicates that in these particular synthetic 

cases the geometrical distribution of data and upper-mantle structure are 
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Figures 5.17 - 5.1S. Rms slowness variations and correlation with the LM 

model for the results of BP inversions of various data sets. "All" refers to 

data including all contributions; "rel" refers to data excluding event reloca­

tions; "err" refers to data with random errors excluded; "uml" refers to data 

with contributions from the UML model excluded; "lm" refers to data with 

contributions from the LM model excluded. Scales are the same as in Figures 

5.13 through 5.16. 
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such that pervasive effects manifest themselves throughout the mantle. In 

case C1 the positive correlation in the LM case at central depths is consistent 

with the reduced correlation in the UML case from ALL. The depth profile 

of correlation in the C2-LM case is quite similar to that of C2-ALL, except 

for a constant shift. This constant shift of about 0.3 may be a better meas­

ure of the correlation between the BP model and the LM model, which is 

actually due to the signal from the LM model. Note how little effect the 

exclusion of the various components of the data has on the rms amplitude 

depth profiles. The only notable difference appears to be the effect of random 

errors on rms amplitude at the base of the mantle. The overall differences 

between cases C1 and C2 are only slight. The variation of rms amplitude is 

similar for the two cases, despite a factor of 5 difference in overall redun­

dancy. The behavior of correlation with depth is quite different in the two 

cases, while the overall level of correlation is similar. This points at the sen­

sitivity of the artifacts of these inversions to the specifics of the distribution 

of data and its relation to the structure, and indicates the need for a full­

fledged 3D synthetic test of global, travel-time tomography. 

Figures 5.19 and 5.20 show the results of inverting for Cl\1B structure 

using the various core data-sets. The data were generated using the same 

upper- and lower-mantle structures as the P-wave data, the same relocation 

errors, but estimates of random error obtained by a stochastic approach simi­

lar to that applied in Chapter 4, yielding error variance of about 1 sec2 for all 

of the core data-sets. The core data contain no contribution from the CMB 

or below it. Each frame represents the result for one particular phase. The 

bottom frame shows the result from a simultaneous inversion of all the 

phases, with all summary rays given equal weights. The inversion technique 
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used was damped least squares. The model parameterization in the inversion 

included harmonic degrees up to and including degree 8, and the inversion 

solves for the harmonic coefficients (Fourier coefficients) much like Morelli 

and Dziewonski (lQS7) did. The figures include only degrees 1 through 4. 

The overall peak-to-peak amplitude of these patterns is fairly consistently of 

the order of 10 to 20 kilometers for all the phases, highest for PKPdf 

(PKIKP) , despite the fact that this is the biggest data set. Also note that in 

general the topography is higher in case C2 than in CI, in spite of the higher 

degree of redundancy in case C2. This implies that the uncertainty of 

models of the CMB obtained from ISC travel-time data is at this level of 

parameterization of the order 5 to 10 km, and that this uncertainty is less 

related to random errors in the data than to spatially coherent errors, such as 

relocation errors and upper-mantle structure, that statics do not account for. 

5.4 Discussion and conclusions 

The overall conclusion of this study is a negative one. Our results indi­

cate that the usefulness of the ISC data for mapping the aspherical structure 

of the earth's deep interior is limited. It should be pointed out, however, 

that this kind of synthetic study is only as good as the information that goes 

into it. We have used a specific model of lateral velocity variations for the 

upper mantle, which we claim has a large detrimental effect on lower-mantle 

inversion. How realistic is this model? We have used a specific model for the 

lower mantle. How realistic is it? Are our estimates of error reasonable? Is 

our modeling of event-location errors appropriate? We have simplified a 3D 

problem to a 2D problem. How would our conclusions be changed if we were 
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able to set up a 3D synthetic study? Are there any effects in the ISC data 

that we have left out? We think that our choices of inputs into this syn­

thetic study stand to reason, but that a number of the parameters chosen 

should have the effect of underestimating problems of lower-mantle, travel­

time inversion. 

A number of reports of surface-wave tomographic studies have been 

published (e.g., Nakanishi and Anderson 1984, Woodhouse and Dziewonski 

1984, Nataf et al. 1986, and Tanimoto 1987 and 1988). These studies agree 

satisfactorily, although not impressively. Furthermore, they agree with 

regional, body-wave-synthesis studies (e.g., HeImberger et al. 1985) and 

regional, tomographic studies using S-waves (Grand 1988). The level of 

large-scale, shear-wave heterogeneity in the upper mantle is consistently 

estimated at about 5% and the pattern consistently correlates with surface 

tectonics. As to the scaling of the shear-wave model of Tanimoto (1988) to 

construct a realistic P-wave model, this is done on the basis of P IS-wave sta­

tion correction ratios (e.g., Hales and Doyle 1967 and Souriau and Wood­

house 1985). We take the value of 4, which is at the upper end of the range 

of values obtained by researchers. Using a smaller ratio would increase the 

strength of the upper-mantle structure and make the problems introduced by 

it more severe. We extended the spectra of the model beyond degree 8 based 

on the res~lts of Chapter 4, but in a decaying manner and only out to about 

degree 15. We inserted slab structures into the model, but conservatively 

chose a maximum amplitude of the slab anomaly at 5%. We dispersed the 

Benioff-Wadati seismicity throughout the several hundred km thick slab ano­

maly, whereas it could be more focused within the slab and thus cause larger 

event mislocations. 
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The model we used for the lower mantle was based on previous deter­

ministic and stochastic studies of the lower mantle using the ISC data (CC, 

DZ, and Chapter 4 of this thesis). As we have demonstrated in this study, 

these studies suffer from upper-mantle contamination and random errors. 

Both problems could insert undue power into the models. We thus expect 

the amplitude of the lower-mantle model to be too high rather than too low. 

Reducing its amplitude would effectively reduce the relative signal contribu­

tion from the lower mantle and thus serve to make the problems more severe. 

The main source of errors in the data was assumed to be random in this 

study. There is reason to expect the ISC data to contain some level of spa­

tially systematic errors that are due to phase mispicks, etc. Systematic errors 

do not cancel upon stacking as random errors do and thus more effectively 

obscure images obtained from the data. (We attempt to model the spatially 

coherent errors that are due to relocation errors in this study.) 

The static event- and station-correction results in our 2D synthetic tests 

(see Figure 5.8) correlate well with the main structural features in the upper­

mantle model, UML. This is in general agreement with studies of station 

corrections from ISC data (e.g., Dziewonski and Anderson 1983). Our results 

for the lateral relocations of events (see Figure 5.7) yield maximum reloca­

tions in slab regions of the order of 20 km. This is consistent with slab 

event-:relocation studies (e.g., Fujita et al. 1981) and indicates that our 

modeling of location errors in the ISC data is reasonable. 

We cannot make inferences about the possible differences between these 

2D synthetic test cases and a 3D synthetic study based on the actual data 

geometry in the ISC catalog. The extension of the spectra of model DSXRG 

did assume random phase to construct model UML. It is likely that at least 
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some of the power in the upper-mantle structure at degrees 10 - 15 is due to 

components that serve to sharpen the transitions between the larger-scale 

anomalies and thus are correlated in phase. It is not clear what effect this 

might have on our results, although they are probably minor. 

We argue above that the effects of upper-mantle structure and data 

errors on lower-mantle, travel-time inversion may be underestimated. The 

checks that we have to compare with the 3D models of CC and DZ, namely, 

their correlation and amplitude as compared to the correlation and amplitude 

of our models BP and THE, are similar, however. The significance of the 

overall level of correlation is about the same in our 2D synthetic cases as in 

the 3D case. Furthermore, the amplitude depth profiles are similar, and the 

factor-of-two amplitude discrepancy between the two models is reproduced. 

Correlation of our inversion results with the input model, LM, is consistently 

positive in at least parts of the lower mantle. Inspection of Figures 5.10 and 

5.11 shows that some of the input structures are successfully modeled. This 

indicates that lower-mantle, travel-time inversions for aspherical structure 

are, in fact, partially successful. 

Hager et al. (1985) presented comparisons between the large-scale geoid 

pattern and that predicted from the results of CC and DZ through a 

dynamic, mantle-flow model for a few, simple, mantle-rheology models. The 

comp~riso~ is impressive for harmonic degrees 2 and 3 and those rheology 

models that render the geoid largely insensitive to upper-mantle structure 

and structure at the base of the mantle. The sensitivity kernels are in these 

cases negative throughout the lower mantle. Thus this comparison involves a 

large degree of smoothing in depth. It is because of this smoothing that the 

geoid patterns, that are predicted from models CC and DZ, correlate much 
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better than the analogous patterns in the models themselves. The same is 

likely to hold for the correlation of the predicted geoids with the observed (or 

residual) geoid versus the correlation of the structural models with the true 

structure of the lower mantle. In the results of our synthetic tests, the inver­

sion results from both methods (BP and THE) correlate positively with the 

input model (LM) in the depth range where the geoid kernels are large. Thus 

a similar calculation to that of Hager et al. (1985) would yield similar results. 

We attempt to discern the cause of the partial failure of the inversion 

results of the BP method to correlate with the input LM model in Figures 

5.17 and 5.18. The interpretation of the figures is not clear. The effect of 

random errors appears to be significant and greater at depth in the models, 

where the level of redundancy in the ray coverage is generally less than at 

the top of the lower mantle. The same is true for the effect of relocations in 

case C1. In case C1 contamination from upper-mantle structure appears to 

be greatest at the top of the lower mantle. The insensitivity of the 

amplitude-versus-depth profiles to omitting components of the data (see Fig­

ures 5.17 and 5.18), including contributions from lower-mantle structure, 

casts a doubt on recent lower-mantle results, including some of the results of 

Chapter 4 of this thesis. 

The amplitude ratio of the DZ and CC models is reproduced in THE 

and BP models. In case C1 the ratio is about the same at degrees 1,2, and 3, 

but higher when degrees 4,5, and 6 are included. In case C2 the ratio of 

THE to BP is close to unity for degrees 1,2, and 3, but about 2 (same as DZ 

to CC) when degrees 4,5, and 6 are included. In both cases the relative ratio 

increases at the higher degrees, which approach the truncation degree of THE 

and DZ. This may indicate that the excess power in the THE and DZ results 
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is due to aliasing. In other words, power belonging to harmonic degrees that 

are not included in the model parameterization may leak into the model 

parameters corresponding to scales that are comparable to the truncation 

scale. 

Our estimate of uncertainty of travel-time-based maps of the C1tfB is of 

the order of 5 or 10 km. This is about the peak-to-peak amplitude of recent 

studies of the CMB from travel times (e.g., Chapter 2). If this estimate is 

correct, recent results for the CMB are completely obscured. This level of 

error is high enough to draw a cloud of doubt over even the prominent, large 

scale, degree-two, zonal harmonic pattern in PKIKP data and thus models of 

inner-core anisotropy. 

In closing, we suggest on the basis of the present results, that while the 

ISC data have a reasonably high signal to noise ratio (including small-scale, 

structural signal in the signal) of the order of 2 for teleseismic P-waves (see 

Chapter 4), and a good enough spatial distribution to resolve earth structure 

at the parameterization of say Dziewonski (1984) (see Figure 5.16), greater 

care must be taken to account for shallow structure. We need good, detailed 

models for the strongly heterogeneous upper mantle and good locations for 

the events used. 
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6 SUMMARY 

While the four basic chapters of this thesis are somewhat independent, 

they have one common goal. We have tried to map core-mantle boundary 

(C:tvill) structure using travel-time data provided by the International Seismo­

logical Centre (ISC), and have tried to understand how reliable our maps are. 

The quality of maps of the C:tv1B is dependent on the characteristics of 

lower-mantle structure and how well it is mapped by recent studies. Lower­

mantle maps are, in turn, dependent on the characteristics of crustal and 

upper-mantle structure and on how well the data are corrected for it. Of 

course data errors affect the success of our modeling of both the lower mantle 

and the C:tv1B. We have thus been faced with the following questions: 

1) What are the errors in the ISC data? 

2) What are the characteristics of crustal and upper-mantle structure? 

3) What are the characteristics of lower-mantle structure? 

4) How well can we map the structure of the lower mantle using ISC 

travel times? 

5) How well can we map the structure of the core-mantle boundary 

(C:tv1B) using ISC travel-time data? 

6) If we can map CMB structure with any degree of accuracy, then what 

is it? 

7) Is the large, degree-two, zonal pattern in the travel times of antipodal 

PKIKP-waves necessarily best explained by inner-core anisotropy as has 

been suggested? 

In Chapter 4 we try to answer questions 1, 2, and 3. In Chapter .5 we seek 

an answer to questions 4 and 5. Chapter 2 addresses questions 6 and 7 and 
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Chapter 3 addresses question 7. 

The answer to question 1 (Q1) is summarized in Figure 4.4 in what we 

consider fairly robust estimates of random errors in the ISC data. The error 

variance is of the order of 0.2 to 1.0 sec2 and varies with epicentral distance 

and the source depth of earthquakes in a sensible fashion. 

Our answer to Q2 in Chapter 4 is so mew hat obscured by artifacts in our 

data. A lot of other studies have addressed this same question and come up 

with answers much like ours (surface-wave tomography, crustal scattering). 

This region of the earth appears to contain very strong heterogeneity over a 

wide range of scales. The heterogeneity is strongly concentrated at shallow 

depths. 

Our answer to Q3 in Chapter 4 also agrees to some degree with previous 

studies (lower-mantle tomography and scattering studies). This region of the 

earth appears to have much lower levels of heterogeneity than the overlying 

upper mantle and crust, particularly at intermediate depths. 

These answers to questions 1,2, and 3 are necessary prerequisites for 

addressing Q4 and Q5. In Chapter 5 we .use the results of Chapter 4 and 

other studies to design synthetic tests to address Q4 and Q5. Our conclu­

sions are that travel-time data may be used to map lower-mantle structure 

with some success, but that the uncertainty of C1\113 models obtained from 

ISC travel times is of the order of 5 or 10 km. 

Our results in Chapter 2 for the structure of the CJ\1B are in general of 

amplitude comparable to or less than the above error estimate. This would 

imply that we cannot hope to model this structure with these data (Q6). 

The inconsistencies of the results in Chapter 2 for different subsets of the ISC 

data support that conclusion. Furthermore, the positive correlation of 
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residuals in regions of dense coverage among the various data sets implies 

possible contamination from above. Assuming that this is due to upper man­

tle structure is consistent with our results in Chapters 4 and 5. Lower man­

tle structure might contaminate CMB structure, but probably much less so 

than upper mantle structure, because of the large difference in the level of 

heterogeneity. 

Our answer to Q7 (Chapters 2 and 3) is that the C ~ component of 

antipodal PKIKP data (PKPef) is also present in PKPde and PKPbc data, 

albeit weaker. Thus, at least a part (1/2) of this feature in the data must be 

explained by heterogeneity or anisotropy above the inner core. Our preferred 

explanation is heterogeneity close to the CMB. The large errors in CMB 

maps according to the results of Chapter 5 (degrees 1 through 4) may allow 

us to write off this feature as erroneous or from shallow sources. This would, 

however, contradict some free-oscillation data. 

Despite the problems for lower-mantle modeling and failure of CMB 

modeling, the ISC data remain one source of valuable information about the 

aspherical structure of the earth's interior. It is possible, even likely, that the 

ISC data will become more useful to map earth structure with improved 

upper-mantle models (great advances are being made in surface-wave tomog­

raphy and long-period, body-wave synthesis with digital data sets) and more 

selective procedures in the data processing. We suggest that corrections for 

strong, structural features near the earth's surface, such as subducting slabs, 

including relocations, by means of inserting idealized bodies into the reference 

model, may improve the performance of lower-mantle modeling with travel­

time data. The use of local event-locations, using intra-plate events only, or 

using only impulsive picks (this is often indicated in the ISC data) may also 
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enhance performance. Constraining the inversion of travel-time data for 

lower-mantle structure by means akin to the method applied in Chapter 2, 

on the basis of auxiliary information (such as the results of Chapter 4) may 

be helpful. 

We are somewhat uncertain about our results in Chapter 5, because of 

our 2D approximation to a 3D problem. It would be useful to do the analysis 

in Chapter 5 using the actual 3D data distribution of the ISC catalog. This 

would involve vast amounts of computer time, but is doable. Furthermore, 

that would enable synthetic testing of the method applied in Chapter 4. It 

would be useful to test a number of classes of lower-mantle models, including 

idealized models based on convection simulations. 
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Appendix: Some manipulations of matrix-inverse theory 

We present in this appendix some manipulations of matrix-inverse 

theory. Some are directly relevant to the methodology of this thesis. Others 

are related to some of the suggestions in Chapter 6. We have arrived at 

these manipulations (some are trivial) without direct reference to the work of 

others. Suffice it to point to Aki and Richards (1980), and references therein 

for background information. 

Consider a linear inverse problem of the form: 

t = Gm + bt, (AI) 

where t are data, 6t are data errors, m is the unknown model, and G is a 

matrix of kernels. A model estimate is constructed by a linear combination 

of the data. 

m=At, (A2) 

where A can be thought of as an inverse operator to G. We can compute 

the data that the model estimate (m) predicts by 

t=Gm=GAt. (A3) 

Thus, the data misfit is: 

d t = t - t = (I - GA)t, (A4) 

where 1 is the identity matrix. Often, the inverse problem is solved by 

minimizing some norm of the data misfit, i.e., the elements of the matrix A 

are determined such that this norm is at its minimum. If one chooses to 

minimize the L 2 norm, A becomes the least-squares inverse. If one chooses 

to minimize a linear combination of the L 2 norms of the data misfit and the 

model estimate, the damped least-squares inverse results. One can in 
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principle employ any linear constraint, akin to the minimization of the model 

itself, to the solution of this linear inverse problem. 

Consider a set of linear constraints on the model: 

r = Dm = DAt. (AS) 

We want to minimize the data misfit and r. 

(A6) 

where a is a trade-off parameter that prescribes the relative impornce 

placed on fitting the data and minimizing the constraints. One can write Q 

as: 

Differentiating Q with respect to the elements of A we get: 

(A7) 

where [Ml,i: represents the k -th row of the matrix M. Setting Equation A7 

equal to zero to minimize yields for all k and J: 

(A8) 

In order to satisfy this for arbitrary t, we get: 

(A9) 

Compare this to the stochastic inverse 

(AlO) 

where Cd and C m are the data- and model-covariance matrices, respectively. 

Assuming that Cd = a 2I, i.e., that the data errors are independent and all 
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drawn from the same distribution (same variance), we get: 

Ast = [G T G + a2C~1 ] -1 G T . (All) 

This is exactly the same form as derived above, with C m equated with 

[D T D ]-1. Thus, applying linear constraints to the model is equivalent to 

assuming a specific form for the covariance of the model. One can always 

determine the model-covariance matrix that is analogous to specified linear 

constraints, but one cannot uniquely determine a set of constraints that are 

analogous to a specified model-covariance matrix. Note, that in general, one 

assumes a smooth model-covariance matrix. Any equivalent set of con­

straints will be rough, because of the inverse relationship of the two. For 

example, applying a Gaussian model-covariance matrix to a one-dimensional, 

periodic model is equivalent to minimizing a combination of the zeroth and 

second derivatives of the model, if one consideres only a symmetric set of 

constraints in the continuous model space limit (this equivalence is easily cal­

culable from the singular-value decomposition of C m and simply involves 

replacing the singular values by their inverse, square roots). This analogy 

between the model covariance of the stochastic inverse and linear constraints 

that are applied in a least-squares sence to the solution of an inverse problem 

is useful, because in practice the stochastic inverse is often applied, whereas 

it is in many ways simpler to think of it in terms of linear constraints. 

If we set D = I, Le., minimize the model itself, the analogous model­

covariance matrix is C m = I and we have the damped least-squares inverse. 

Equations A9, AIO, and All are written in a form that involves the 

inverse of a model-by-model matrix. One can equivalently write them in 

terms of the inverse of a data-by-data matrix. For example, Equation AIO is 
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equivalent to 

(A12) 

One need only cross multiply by the inverse brackets of equations AlO and 

A12 to show this. Equation A12 is the more common form of the stochastic 

inverse, but the less practical one. This is because, in general, one has fewer 

model parameters than data. Thus, Equation AlO involves the inverse of a 

smaller matrix. In addition, it allows one to avoid the computer storage of 

data-space arrays, by performing data-space matrix-multiplications on the fly 

as data and their kernels are read one by one. 

Equations A9, AID, All, and Al2 may be further manipulated. For 

example, Equation All may be rearranged as: 

(A13) 

which is the form applied in Chapter 2 of this thesis. Also, Equation A9 may 

be rearranged as: 

(A14) 

where H = GD-1, if D is invertible. In general, D will be a square, near­

diagonal matrix with a well defined inverse. 

Since the model-covariance matrix is always symmetric and positive 

definite, it may be decomposed as 

(AI5) 

where the matrix V contains its eigenvectors, and A is a diagonal matrix of 

positive eigenvalues. One can thus define the square root of em as 

(A16) 
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where Aij = y'A;;. Hence, em = 8 m 8 m = 8~ and 8 m is equivalent to 

D-1• Thus, Equation Al4 may be written as 

(AI7) 

where H = G8 m • This manipulation is interesting in that less the premulti­

plication by 8 m Equation Al7 takes the exact form of the damped, least­

squares inverse of the transformed inverse problem: 

t = Hm = G8 m m. (AI8) 

The transformation involves the smearing of the kernels of G with the 

smooth operator 8 m , Equation Al7 shows how it is not equivalent to 

smooth an unconstrained solution a posteriori on one hand, and constraining 

a solution in the sence of the stochastic inverse on the other. 

Equation Al7 may be of some practical value. Remember, that the 

iterative, back-projection, inversion scheme converges to the damped least­

squares inverse (see Comer and Clayton, unpublished manuscript). Thus, 

provided that 8 m is not too smooth, Equation AlB may be used to constrain 

a large, linear inverse problem. If H, which is less sparse than the kernel 

matrix G, is still manageably sparse, one can use back projection to solve the 

inverse problem with H, and then convolve the solution with 8 m , This 

would be approximately equivalent to applying linear constraints, as derived 

above, to the solution. 


