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Search for Gravitational Waves from a nearby neutron star using
barycentric resampling
by
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Abstract

Rapidly spinning neutron stars in our Galactic neighborhood are promising sources
of quasi-monochromatic continuous gravitational waves observable by the current
LIGO detectors. I describe a search done on the LIGO S5 data, looking for an
isolated neutron star hypothesized to be at a distance of about 100 parsecs. This
kind of search is computationally bound and is made possible by the implemen-
tation of barycentric resampling, which is described here as well. I also describe
the work done at the Hanford LIGO site, while taking data for the Astrowatch

program.
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Chapter 1

Thesis overview and introduction to

Gravitational Waves

This thesis describes a search done for gravitational waves (GW) from a nearby
neutron star using LIGO (Laser Interferometer Gravitational-Wave Observatory)
data. This suspected neutron star is called Calvera, which is hypothesized to be
between 80-260 parsecs from Earth. The search for GWs from Calvera falls in
between the traditional all-sky searches for GWs from neutron stars and targeted
searches for known pulsars. In the case of Calvera, the sky location is known, but
there is no information about its age, its spin frequency or frequency derivatives.
Certain assumptions are made about the age and distance of the suspected neutron
star and a broadband frequency and frequency derivative search is conducted.
Such broadband searches are computationally bound and this thesis describes the
technical challenges involved in conducting such a search. It also describes the
implementation of barycentric resampling, without which this search would have
been impossible to conduct, given current computational resources.

This chapter briefly introduces GWs and their effects on a detector like LIGO.
Also discussed in this chapter are the potential sources of GWs which include
compact binary coalescences (CBC) of neutron star-neutron star, neutron star-
black hole and black hole-black hole systems, bursts of gravitational radiation from
sources like core collapse supernovae, a gravitational wave stochastic background

and continuous quasi-periodic GWs (CW). The LIGO detectors are introduced



in Chapter 2. The interferometers are described from an operations perspective
and a procedure for maintaining them in data collection mode is also described.
Chapter 3 describes neutron stars and CW sources. Chapter 4 is a summary of
techniques used to search for GWs from CW sources. Chapter 5 focuses on one
of these techniques and the implementation of barycentric resampling. Calvera is
introduced in Chapter 6 and a search for CWs from it using barycentric resampling
is presented in Chapter 7. Conclusions and future work prospects are discussed in

Chapter 8.

1.1 General Relativity and Gravitational Waves

General Relativity (GR) is one of the pillars of modern physics. It was developed by
Albert Einstein in 1915. It is a theory that describes gravity as a curvature in the
four dimensional spacetime. It predicts the existence of exotic objects like neutron
stars and black holes and it forms the basis of our understanding of cosmology. One
of its predictions is the existence of gravitational waves (GW), which are a strain of
spacetime propogating at the speed of light. These GWs are practically unaffected
by intervening matter between the source and us and are exceedingly weak by the
time they reach us. They have been indirectly observed by noting the evolution of
the orbits of the binary pulsar system PSR 1913416, discovered by Russell Hulse
and Joseph Taylor. For this discovery, they received the Nobel Prize in Physics in
1993. The evolution of the orbits matches the theoretical predictions of GR, which
predicts the loss of angular momentum carried away by GWs, to within 0.3%
[1]. However, given the weak nature of GWs, their direct detection has been a
challenge. LIGO, the Laser Interferometer Gravitational-Wave Observatory aims
to detect and study GWs.

The major result in GR is Einstein’s equation, which in geometrized units of
G = ¢ =1 is written as [2]

Gap = 8113, (1.1)

where G is the Einstein tensor and T, is the stress energy tensor. The indices o



and § run from 0 to 3 and correspond to the spacetime coordinates of time and the
three spatial axes. The KEinstein tensor which also contains the metric, specifies
the geometry of spacetime. The stress-energy tensor 7,3 specifies the source terms
from all forms of matter and energy. The stress-energy tensor, which is symmetric,
can be divided into three parts, with Ty specifying the energy density, Tp, = 1),0
being the energy flux or the momentum densities and the remaining 3 x 3 matrix
being the stress tensor. While equation 1.1 looks compact and elegant, it is non-
linear and has not been completely solved analytically.

The Einstein equation 1.1 can be solved under certain assumptions. One such
assumption is the linearized weak field limit of gravitational waves far from a source
such that T, g = 0. The metric can then be written as a small perturbation hqs(z)
of the metric of flat spacetime 7,4, also known as the Minkowski metric [2]. This

means

ga6($) = Nap T haﬁ(x)v (1'2)

where the Minkowski metric can be written as

-1 0 0 0
0 1 00
T]ag = (13)
010
0 0 01

Here the definition is that the coordinates are in the order of (¢,z,y,2), with ¢
being time and the remaining being the three spatial coordinates. By choosing a
transverse-traceless gauge, Einstein’s equation can be written as a flat space wave
equation

<—g—; + 62> hap(z) =0 (1.4)

where V2 = ;—;2 + 59—;2 + g—;. The generic solution to equation 1.4 is the general
wave solution

hap() = Aage™™, (L5)



where, A, is a 4 x 4 amplitude matrix and k is a four dimensional wave vector,
such that k - x is
k-x=wt+k- -2 (1.6)

Using equations 1.4 and 1.5, the fact that we have chosen a transverse-traceless
gauge and orienting the propogation of the wave along the z axis, the amplitude

matrix becomes

0 0 0 0
0 Ape Ay O
Aaﬁ - (17)
0 Ay —Age O
0 0 0 0

Using equations 1.7 and 1.4 we can write the gravitational wave strain amplitude

hag as
0 O 0 0
0 h h 0 4
has(t, 2) = . ei(t=2), (1.8)
0 O 0 0

Here hy and hy are the “plus” and “cross” polarizations of the gravitational wave.
There are only two polarizations that exist according to GR. A schematic of their
effect on a ring of particles if a gravitational wave incident into the page and
consisting of only one of the two polzarizations can be seen in Figure 1.1. As
can be seen in Figure 1.1, gravitational wave polarizations are invariant under a 7
radian rotation. In the language of quantum gravity this means that the exchange
particle for gravity, the graviton has a spin of 2?” = 2.

Electromagnetic radiation can be produced by accelerating charge dipoles,
charge-current dipoles and other multipoles. However in the case of gravitational
radiation, the conservation of mass prevents radiation due to an accelerating mass
monopole. The emission of gravitational radiation via an accelerated mass dipole
is forbidden by conservation of linear momentum. Conservation of angular mo-

mentum similarly prevents radiation due to the acceleration of current dipoles.



Time

Figure 1.1: The effect of a gravitational wave consisting of only one of the two
polarizations “4” and “x” on a ring of particles. The lines are just a guide to the
eye. The GW would be passing perpendicularly through the page and the figure
shows snapshots in time as the wave passes. It shows one whole wavelength for

each polarization.

Thus the first multipole that can produce gravitational radiation is from the ac-
celeration of a mass quadrupole. Such accelerating mass quadrupoles are common
in nature; examples include orbiting binary stars, rotating non-axisymmetric stars

etc.

1.2 Gravitational Wave Sources

The plausible gravitational wave sources that have been studied so far can be
divided into four broad categories. Compact Binary Coalescences (CBC) have
a transient, but well modeled waveform, usually divided into three parts called
the Inspiral, Merger and Ringdown phases. Unmodeled transient waveforms are
known as gravitational wave bursts. Among the long-lived forms are the modeled
sinuosoidal waveforms emitted by spinning neutron stars, known as continuous
waves (CW) and the stochastic gravitational wave background from the Big Bang

or from a large number of weak astrophysical sources. Thus far, no searches for



GWs from these searches have yielded plausible detections.

1.2.1 Compact Binary Coalescences

Compact binary coalescences are perhaps the most highly anticipated sources of
gravitational waves detectable by LIGO. They consist of three distinct phases of
gravitational wave emission. The first stage consists of the inspiralling of two
compact objects like two neutron stars, one neutron star and one black hole or
two black holes. These compact objects lose energy and angular momentum in the
form of gravitational radiation and inspiral in, eventually merging. The waveform
is well understood for the inspiral phase and it depends on the masses of the two
objects inspiralling. The merger waveform is however not well understood, but
it is under active research in the field of numerical relativity. After the merger
phase, the distorted black hole relaxes to a stationary Kerr state through a strong
emission of gravitational waves, which is known as a ringdown.

An inspiral produces a signal that is commonly known as a chirp, which is
a sinusoid increasing in amplitude and frequency until the merger phase begins.
Since the frequency of the signal increases as a function of time, inspiral signals
enter the LIGO band of interest from about 40 Hz onwards only in the last few
minutes or seconds (depending on the masses) before the merger. This makes these
signals transient in nature. A binary neutron star system consisting of two typical
neutron stars of mass 1.4Mg would undergo about 1630 cycles in the LIGO band
before merging in 26 seconds. A typical chirp signal can be seen in Figure 1.2.

The analysis of LIGO data for CBC waveforms includes a match filtering step,
where analytical or phenomenological waveforms are used as filter templates. The
output of the filter is then thresholded. Events whose SNR crosses the threshold
are considered triggers for further analysis. The threshold is set low enough to let
a potential signal through, but keep the number of triggers to a manageable value.
The triggers are first generated independently for each detector. This is followed
by a coincidence analysis, with appropriate sized windows allowing for light travel

time between the the detectors involved. Such coincidence analysis helps reduce
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Figure 1.2: An example of an inspiral gravitational wave signal, emitted by a CBC.

This plot is in arbitrary units and only to give a qualitative idea.

the number of total triggers by suppressing the background. These triggers are
then subjected to consistency checks like the x? [3] and 72 [4] tests. CBC searches
conducted by the LSC are optimized for detection of a signal (i.e. the cuts are
loose). If no signals are found, then upper limits are set on the rate of CBCs
per Milky Way Equivalent Galaxy or per sensitive search volume in Mpc3. The
searches conducted so far for CBCs can be found in [5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15).

1.2.2 Bursts

A second category of transient searches involve unmodeled “bursts” of gravita-
tional radiation. These bursts are usually assumed to be shorter than about 1
second, but with significant enough power to rise above the noise fluctuations in

the detector. The possible astrophysical sources include asymmetric core collapse



supernovae [16], ringdowns of black hole-black hole mergers [13], whose inspiral
phases are not within the LIGO band and thus only the high frequency ringdowns
can be seen, and disturbances along hypothesized structures known as cosmic
strings. Some other astrophysical phenomena are used as external triggers for
burst searches such as extra-galactic Gamma-ray bursts (GRBs) and galactic Soft-
Gamma repeaters (SGRs), both of which are highly energetic events and which
could potentially emit prodigious amounts of gravitational radiation. Short GRBs
(lasting only a few seconds to minutes) are suspected to be neutron star-neutron
star or neutron star-black hole mergers. SGRs are believed to be neutron stars
with huge magnetic fields which flare up from time to time and emit prodigious
amounts of electromagnetic radiation. A discussion of an SGR search in which
I contributed with vetoes will be discussed in Chapter 2. Besides all this, burst
searches aim to be inclusive in case a completely unmodeled and ill-understood
source is emitting gravitational radiation.

The search techniques for burst searches always include a correlation between
detectors, since the LIGO and Virgo detectors undergo numerous “glitches”, which
can mimic a burst signal. These glitches and other noise fluctuations are how-
ever unlikely to happen within the light travel time between any two detectors
and thus coincidence is an efficient technique to reduce the background noise.
The LIGO Scientific Collaboration (LSC) has developed many different search
pipelines, which include techniques like excess power, cross-correlation and coher-
ent methods. Some of the searches done by the LSC for burst sources can be found

in [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33).

1.2.3 Stochastic Background

Since gravitational waves couple weakly with matter, most of the gravitational
radiation produced just after the Big-Bang would still exist as a stochastic back-
ground. Detecting these GWs would provide unique information on the earli-
est moments of the universe. Other sources of stochastic GWs include phase-

transitions in the early universe, cosmic strings, topological defects formed during
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the symmetry-breaking phase transitions in the early universe, or other unresolved
astrophysical sources like CBCs, neutron stars or supernovae. Most models of the
spectra expected for a stochastic background approximate it by a power law such
that Qgw(f) o f¢, where « is different for different mechanisms. The standard
“slow roll inflation” cosmological model predicts predicts a flat spectrum and thus
an o = 0.

GW stochastic background is expected to be so weak that it would not rise
above the noise floor of the detector, thus requiring an integration over time to
increase the SNR. If two independent detectors are used for a cross-correlation
measurement, then the signal would increase as a function of the integration time
T, while the noise would only increase as v/T. However in the case of some
detectors, the noise is not independent, for example the two co-located detectors
at Hanford (H1 and H2, to be discussed in Chapter 2) share a lot of noise sources.
Even in the case of detectors which are seperated geographically like .1 and H1,
there is a price to pay in the form of a reduction of the signal due to the separation
time delay between the two detectors and the misalignment of their arms. The

LSC’s stochastic background searches can be found in [34, 35, 36, 37, 38, 39].

1.2.4 Continuous Waves

Continuous GWs are expected to be emitted by neutron stars, which are observed
as pulsars spinning at frequencies ranging from a few milli-Hz to about a kHz.
Spinning neutron stars would emit gravitational radiation if there were some non-
axisymmetric asymmetry in their crust, or due to some fluidic asymmetries or due
to accretion of matter. These and other mechanisms of emission are discussed
in Chapter 3. The detection of continuous GWs involves the integration of long
stretches of data to dig out signals buried deep in the noise. The search methods

are discussed in detail in Chapter 4.
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Chapter 2

LIGO Detectors and their Operation

This chapter discusses the basics of the LIGO interferometric detectors and their
operation. It will discuss how an interferometer is brought into a resonance lock
and maintained there. A brief discussion of the data readout scheme then follows.
After a short history of LIGO’s science runs, Astrowatch is introduced and my
participation in it is discussed. Improvements and detector characterization work

done during Astrowatch follow.

2.1 LIGO overview

The LIGO detectors were constructed in the 1990’s by the California Institute of
Technology and the Massachusetts Institute of Technology, with funding from the
National Science Foundation (NSF). Three kilometer scale detectors were built
with one 4-kilometer interferometer each in Hanford, Washington (H1) and Liv-
ingston, Louisiana (L1). At the Hanford site, one 2-kilometer interferometer called
H2 was also built.

A timeline showing the progress of LIGO over the years is shown in Figure
2.1. This figure shows the three stages of LIGO, Initial LIGO which ran from
about 2000 to the end of 2007, enchanced LIGO from 2009 to the present and the
construction and funding of advanced LIGO which is expected to start operation
in 2014. Figure 2.1 also shows the strain sensitivities achieved over the years in

the most sensitive part of the LIGO spectrum. The detectors have been operated
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Figure 2.1: A timeline of LIGO. The figure shows the three stages of LIGO, Initial
LIGO from 2000 to the end of 2007 (science runs S1 through S5), followed by
Enhanced LIGO from 2009 to the present (science run S6) and Advanced LIGO,
which is currently under construction. Astrowatch took place in 2008 between S5
and S6. The strain senstivities achieved over the years in the most sensitive part

of the LIGO spectrum are also shown.

in an observational mode from time to time, during which they are run for data
collection for a significant amount of time. There have been six such official science
runs that have been called S1 through S6. The senstivities achieved during S5 met
the initial LIGO design sensitivity requirement and these are shown in Figure 2.2.
S5 was the longest science run with approximately one year of triple coincidence
time (time during which all three LIGO detectors were operational). S5 ran for a
calendar time of about 2 years from November 2005 to October 2007. At the end
of S5, the H1 and L1 detectors were taken offline and upgraded to enhanced LIGO
during 2008. During that time H2 was run under an Astrowatch mode. For more

details please see Section 2.3.
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Figure 2.2: Strain sensitivities, expressed as amplitude spectral densities of detec-
tor noise converted to equivalent GW strain. The vertical axis denotes the rms
strain noise in 1 Hz of bandwidth. Shown are typical high sensitivity spectra for
each of the three interferometers (red: H1; blue: H2; green: L1), along with the
design goal for the 4-km detectors (dashed grey). Figure and caption courtesy [40].
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Figure 2.3: Cartoon showing the effect of a passing gravitational wave on a Michel-
son interferometer. The wave is assumed to have the plus polarization and is

propagating perpendicular to the diagram. Figure courtesy [40].

2.1.1 Michelson Interferometers

The LIGO interferometers are, at the most basic level, Michelson interferometers,
which are a common optical configuration, designed to create an interference pat-
tern by splitting coherent light into two arms and reflecting them off a couple of
mirrors. A cartoon showing the effect of a passing gravitational wave on a Michel-
son is shown in Figure 2.3. The essential idea is to maintain an interferometer in
a “locked” position, with the difference in length of its arms fixed by measuring
it from the light bounced back from it and feeding that back to the mirrors. The
error signal that needs to be fed back would then be the gravitational wave signal,
since it measures the deviation from the resonant working point. An instrument
working on such a principle is known as a null instrument.

If the two arms are termed the z arm and the y arm, then the phase change

of the light due to round-trip travel in each arm is given by
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and

2T

by = 2Ly, (2.2)

where A is the wavelength of the light and L, and L, are the arm lengths. At the
anti-symmetric (AS) of the interferometer (which is kept dark), the power of light

received is a function of the difference in arm lengths and is given by

2
Pas = Pysin®(¢, — ¢,) = Py sin? <77T(2AL)> , (2.3)
where Pag is the power seen at the AS port, Py is the input laser power and
AL = L, — L,. The incident gravitational wave strain can be related to the length

changes in the arm by

h = - (2.4)

Thus the power seen at the AS port in terms of the gravitational wave strain is

(2.5)

Pas=Fy sin? <27ThL> .

Using typical numbers for the LIGO detectors like A = 1064nm, L = 4000m and
h < 1072! in equation 2.5 @ ~ 1078. Thus the sin? (@) term in equation 2.5
can be written as (@)2 ~ 10716, Thus the power change at the AS port due
to a GW is extremely small. It is not possible to distinguish the sign of h using
equation 2.5 and thus using the power as a readout scheme is not the optimal

technique.

2.1.2 Fabry-Perot Cavities

The frequency band that first generation detectors like LIGO could possibly detect
gravitational waves in was constrained by ground seismic noise. This meant that
the detectors would only be sensitive to frequencies greater than about 30 Hz.
Astrophysical sources were expected to have maximum frequencies in the range of a
few kHz. These frequency constraints set the optimal length of the interferometers

to a few hundred km or so. However building an interferometer that is a hundred
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km long is impractical and thus instead of having a simple Michelson configuration,
two more mirrors were added to each of the arms, which would form a Fabry-Perot
cavity with the inner mirrors. These cavities increase the light recycling time by a
factor of about 75, increasing the effective distance from 4 km to around 300 km
or so. This also increases the power recycling in the cavities. The gravitational
wave sensitivity is proportional to the phase change caused by the incoming GW
and the power recycling in the interferometer.

Another method of increasing the GW signal in the interferometer is to add a
power recycling mirror (PRM) before the beam splitter (BS), which would reflect
the light coming out of the interferometer back into it. The power recycling factor,
which is the number that the power gets multiplied by due to the addition of the
PRM depends sensitively on the optical losses in the as-built interferometer; it is
60 for H1, 45 for L1 and 70 for H2 [40]. Thus with the addition of the PRM and
the end test masses (ETMs), with an input power of 4.5 W for H1 and L1, the
power stored in the arm cavities is 20 kW and 15 kW respectively [40]. About 10
kW are stored in H2’s arm cavities with an input of about 2 W [40]. Thus the
initial LIGO interferometers are known as power-recycled Fabry-Perot Michelson
interferometers and their configurations are shown schematically in Figure 2.4.

The LIGO input optics add two pairs of RF