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Abstract

The study of various quantum phases and the phase transitions between them in

low-dimensional disordered systems has been a central theme of recent developments

of condensed matter physics. Examples include disordered thin film superconductors,

whose critical temperature and density of states can be affected by a normal metallic

layer deposited on top of them; amorphous thin films exhibiting superconductor-

insulator transitions (SIT) tuned by disorder or magnetic field; and bilayer two-

dimensional electron systems at total filling factor ν = 1, which exhibit interlayer

coherent quantum Hall state at small layer separation and have a phase transition

tuned by layer separation, parallel magnetic field, density imbalance, or tempera-

ture. Although a lot of theoretical and experimental investigations have been done,

many properties of these phases and natures of the phase transitions in these systems

are still being debated. Here in this thesis, we report our progress towards a better

understanding of these systems. For disordered thin film superconductors, we first

propose that the experimentally observed lower-than-theory gap-Tc ratio in bilayer

superconducting-normal-metal films is due to inhomogeneous couplings. Next, for

films demonstrating superconductor-insulator transitions, we propose a new type of

experiment, namely the drag resistance measurement, as a method capable of point-

ing to the correct theory among major candidates such as the quantum vortex picture

and the percolation picture. For bilayer two-dimensional electron systems, we pro-

pose that a first-order phase transition scenario and the resulting Clausius-Clapeyron

equations can describe various transitions observed in experiments quite well. Finally,

in one-dimensional optical lattices, we show that one can engineer the long-sought-

after random hopping model with only off-diagonal disorder by fast-modulating an
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Anderson insulator.
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Chapter 1

Introduction

1.1 Superconductivity primer

Superconductivity was first discovered almost 100 years ago by Onnes[1], when he

cooled down various metals such as mercury, tin, and lead, and observed that the elec-

tric resistance completely disappeared under a certain temperature. Other phenom-

ena of superconductivity, such as perfect diamagnetism, were also observed subsequently[2].

However, the microscopic theory for superconductivity, the BCS theory[3, 4], only

emerged half a century later. Based on simple principles, the BCS theory gives a sur-

prisingly good description of various properties of conventional superconductors, and

it remains a paradigm in our understandings of various phenomena in condensed mat-

ter physics. Modern renormalization group theory has also demonstrated that BCS

pairing instability is actually the only instability of a Fermi liquid with non-nesting

Fermi surface[5]. The status of the BCS theory is challenged after the discovery of

cuprate[6, 7] and iron-based high-temperature superconductors[8], but it still serves

as a good starting point to understand these unconventional superconductors.

The intuitive picture of the BCS theory is that in a superconductor, electrons with

opposite spins and momenta near the Fermi surface pair up to form an object called

“Cooper pair”. Formed by two fermions, a Cooper pair is approximately a boson,

which can Bose-Einstein condense and flow dissipationlessly. The starting point of



2

the BCS theory is the following Hamiltonian

H =

∫
r

∑
s=↑,↓

ψ†
s

(
−∇2

2m

)
ψs − Uψ†

↓ψ
†
↑ψ↑ψ↓, (1.1)

where ψs is the electron field operator with spin-s, and U > 0 represents an at-

tractive interaction crucial for the pairing of electrons. In conventional s-wave su-

perconductors, this attractive interaction comes from electron-phonon interactions,

and renormalization-group analysis shows that this attractive interaction is a rele-

vant perturbation[5], which explains why superconductivity occurs despite the strong

Coulomb repulsion between electrons. Conventional BCS theory focuses on the case

of a uniform coupling constant U , and in Chapter 2 we will analyze the consequence of

an inhomogeneous coupling U(r⃗) and show that it corresponds to some experimental

situations.

The crucial concept in the BCS theory is the identification of the electron pairing

order parameter

∆(x) ≡ UF (x) ≡ U⟨ψ↑(x)ψ↓(x)⟩, (1.2)

where F (x) is called the anomalous average or anomalous Green’s function, because

unlike in the Fermi liquid phase it has nonzero expectation value in the superconduct-

ing phase. With this order parameter ansatz, one can decouple the quartic interaction

term in the original Hamiltonian, and reduce it to a quadratic mean-field Hamiltonian

HMF =

∫
r

∑
s=↑,↓

ψ†
s

(
−∇2

2m

)
ψs −∆ψ†

↓ψ
†
↑ −∆∗ψ↑ψ↓. (1.3)

It is simple exercise to diagonalize this mean-field Hamiltonian by defining a new

quasiparticle operator which is a coherent superposition of the original particle and

hole operators:

c↑,k = ukψ↑,k + vkψ
†
↓,k. (1.4)

The ground state, a vacuum for the new quasiparticle operators, is simply a conden-
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sate for Cooper pairs:

|Ground State⟩ =
∏
k

(uk + ckψ
†
↑,kψ

†
↓,−k)|0⟩; (1.5)

and the quasiparticle excitations have an energy gap ∆, with spectrum

Ek =

√
k2

2m
+∆2. (1.6)

To find the value of ∆, one needs to solve the self-consistency equation

∆(x) = U⟨ψ↑(x)ψ↓(x)⟩. (1.7)

The highest temperature T that permits a nonzero solution ∆ is the mean-field crit-

ical temperature TMF
c . An important result of the BCS self-consistency equation

calculation is that the ratio of the zero-T gap (=order parameter in uniform systems)

∆ and the TMF
c is a universal number

2Eg

TMF
c

= 3.52. (1.8)

More refined microscopic theory of superconductivity, namely the Eliashberg theory[9],

takes into account the phonons explicitly, and 3.52 serves as a lower-bound on the

gap-TMF
c ratio albeit not universal. Years of experiments on Bulk conventional su-

perconductors have verified this result[9]. However, we will show in Chapter 2 that

if the coupling constant U is non-uniform, this ratio can become lower than the BCS

value 3.52 as indeed happened in some experiments.

The most important length scale in the BCS theory is the superconducting coher-

ence length ξ, which characterizes the length scale of spatial variations of the order

parameter ∆. For “clean” superconductors with no disorder,

ξ =
~vF
∆

, (1.9)
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where vF is the Fermi velocity; for disordered “dirty” superconductors,

ξ ∼
√

~D
∆
, (1.10)

where D is the diffusion constant.

1.2 Phase fluctuations and superconductor-insulator

transitions (SITs)

The BCS theory, although extremely successful in describing conventional bulk super-

conductors, does not provide a satisfactory framework for disordered superconducting

films. This is because BCS theory is simply a mean-field theory, while in disordered

thin film superconductors, fluctuation effects are much stronger due to the low di-

mensionality and disorder.

The effect of disorder on superconductivity has been extensively investigated since

the pioneering work of Anderson[10] and Abrikosov and Gorkov[11], who found that

nonmagnetic impurities have no considerable effect on the thermodynamic proper-

ties of s-wave superconductors, including the mean field Tc and the gap; this result

is known as the “Anderson theorem” for weakly-disordered dirty superconductors.

Nevertheless, the superfluid stiffness is reduced by disorder. For a weakly-disordered

superconductor, the superfluid stiffness is given by[12]

ρs =
σn∆

2σQ
tanh

|∆|
2T

, (1.11)

where the effect of disorder enters through the normal state conductivity σn, and

σQ = e2/h is the conductance quantum.

One immediate consequence of the suppression of superfluid density by weak non-

magnetic disorder is that the resistance transition gets widened. Below the mean field

transition temperature TMF
c , although the order parameter amplitude |∆| is nonzero,

phase θ of ∆ could fluctuate strongly and destroy long-range phase coherence and
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thereby dissipationless supercurrent. In two dimensions, only below the Kosterlitz-

Thouless transition[13] temperature TKT is the phase coherence established, and the

resistance is truly zero[14, 15]. In weak disorder regime, where BCS theory is still

valid, the transition width, i.e., the difference between TMF
c and TKT , can be simply

estimated as follows. Near TMF
c , BCS theory gives[16]

ln
T

TMF
c

= −7ζ(3)

8

(
∆

πT

)2

, (1.12)

where ζ(3) ≈ 1.202. From (1.11) the superfluid stiffness for a dirty superconductor

near TMF
c is

ρs =
σn∆

2

4σQT
. (1.13)

TKT is obtained by self-consistently solving TKT = π
2
ρs:

(
∆T=TKT

TKT

)2

=
8

π

σQ
σn
, (1.14)

and thus

ln
T

TMF
c

≈ TKT − TMF
c

TMF
c

= −7ζ(3)

π3

σQ
σn
. (1.15)

We can see that in more disordered films which are characterized by lower values

of the normal state conductance σn, the resistive transition is considerably broadened.

Naturally, one expects that if the disorder is strong enough, the phase coherence tem-

perature TKT can be driven to zero while TMF
c remains finite (see FIG. 1.1). The

nonsuperconducting state in this scenario is expected to be the quantum analog of

the Kosterlitz-Thouless vortex proliferated state - the vortex condensed state. In

the strongly-disordered regime, vortices are believed to be fairly light and mobile

bosons[17], and they could Bose-Einstein condense and destroy the phase coherence.

Thus, the insulating (or vacuum) phase for vortices is the superfluid phase for Cooper

pairs, and the “superfluid” phase for vortices is the physical insulating phase in which

Cooper pairs are localized. The effect of a perpendicular magnetic field is quite simi-

lar: it increases the density of vortices, degrades the phase coherence, and eventually
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Temperature

Phase coherence T

Magnetic fieldDisorder

Mean field Tc

Figure 1.1: Schematic phase diagram of disordered superconducting films. Disorder
and magnetic field reduce the phase coherence temperature and eventually drive the
system into insulating phase in which Cooper pairs are localized.

the vortices condense and dissipationless supercurrent is lost.

This is one of the major explanations[20, 21, 22, 23, 24, 17] for the superconductor-

insulator transitions observed in experiments[18, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 19], where an amorphous superconducting film (Bi, MoGe, InO, Ta, TiN,

etc.) can be tuned to an insulator by either decreasing its thickness (enhancing

disorder) or increasing a perpendicular magnetic field. FIG. 1.2 shows some typical

experimental results, where at large thickness or small magnetic field, the resistance

drops with decreasing temperature which is characteristic of a superconductor, but at

small thickness or high magnetic field, the resistance rises with decreasing temperature

which is characteristic of an insulator. In the vortex scenario for superconductor-

insulator transitions, the amplitude of the superconducting order parameter remains

finite even in the insulating phase, but the Cooper pairs are localized in this phase

due to loss of phase coherence. For completeness, we also mention that another school

of thoughts tries to explain this phenomenon by attributing the loss of dissipationless

state to BCS electron-depairing mechanism and extending BCS theory to strongly

disordered regime[36, 37, 38]. In this theory, Cooper pairs are completely destroyed

in the insulating phase, and the phase transition is due to order parameter amplitude
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Disorder−tuned SIT, Bi film Magnetic−field−tuned SIT, InO film

Figure 1.2: Resistance vs. temperature traces in typical superconductor-insulator
transition (SIT) experiments tuned by disorder (left, taken from Ref. [18] ) or per-
pendicular magnetic field (right, taken from Ref. [19]).

fluctuations.

1.3 Vortex-boson duality

Before diving into more experimental work on superconducting films that motivated

our theoretical work, we discuss in more details the vortex picture for superconductor-

insulator transitions and introduce the basic idea of the vortex-boson duality[39, 20,

21, 40, 41, 42] which has the power of exposing vortex degrees of freedom from a

superfluid. This duality is also referred to as the duality between the XY model and

the Abelian Higgs model. This formalism will also be generalized to describe some

quantum Hall states in subsequent sections. One starts with the quantum XY model
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which is the low energy theory of the BCS theory or the Bogoliobov superfluid theory:

Z =

∫
Dθe−

∫
dxµL

L =
1

2
ρs(∂µθ)

2,

(1.16)

where ρs is the superfluid stiffness, θ is the phase of the superconductor/superfluid

order parameter, and we set the phonon velocity to be 1 (for illustration purposes, we

neglect the complication of non-linear dispersing phonons in superconducting films.

See Chapter 3 for more details). Next, one introduces the current field jµ by a

Hubbard-Stratonovich transformation:

Z =

∫
DθDjµe−

∫
dxµL

L =
1

2ρs
j2µ + ijµ∂

µθ.
(1.17)

Then we split the phase field into a smooth part and a vortex part θ = θs + θv, and

integrate out the smooth part to obtain the continuity constraint ∂µj
µ = 0:

Z =

∫
DθvDjµδ(∂µjµ)e−

∫
dxµL

L =
1

2ρs
j2µ + ijµ∂

µθv.
(1.18)

Now notice that the continuity constraint is automatically satisfied by introducing a

gauge field αµ and parametrizing jµ as

jµ =
1

2π
ϵµνρ∂ναρ. (1.19)

Therefore upon integrating by parts, and noting the definition of vortex currents

jvµ =
1

2π
ϵµνρ∂ν∂ρθ

v, (1.20)
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the partition function now looks like

Z =

∫
DaµDjvµe−

∫
dxµL

L =
1

8π2ρs
(ϵµνρ∂ναρ)

2 − ijvµαµ.
(1.21)

This dual theory looks just like charges (which are vortices) interacting with a Maxwell

gauge field αµ, and it contains all the physics of the original XY model. For example,

phonon excitations in the original XY model now become photons with a Maxwell

term; the well-known logarithmic interaction between vortices is represented as two-

dimensional “Coulomb” interaction here if one integrates out α0 in the transverse

gauge of αµ; the supercurrent now becomes the dual “electric field” (rotated by 90

degrees), while the boson density fluctuation becomes the dual “magnetic field”, which

is easy to understand from (1.19); the Magnus force[43], which is the transverse force

exerted by a supercurrent on a vortex, is simply recovered as the electric force in this

dual formalism.

Interestingly, the Cooper pair supercurrent acts as the electric field for vortices,

and the vortex current also acts as the electric field for Cooper pairs (AC Joseph-

son effect[4]). Consequently the physical conductance is the inverse of the “vortex

conductance”:

σphysical =
j

E
=
Evortex

jvortex
=

1

σvortex
. (1.22)

Due to this relation, a “vortex superfluid” (σvortex = 0) is an insulator (σphysical =

∞), and vice versa. Alternatively, this correspondence between the phases of the

original XY model and those of the dual theory can be also understood by including

an external electromagnetic field Aext,µ from the beginning and integrating out all

fluctuating fields of both theories to show that in the superfluid phase of the original

theory and in the “insulating phase” of the dual theory,

L ∼ ρsA
2
ext,µ, (1.23)
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which gives a superfluid response

jµ =
∂L

∂Aext,µ

∼ ρsAext,µ, (1.24)

while in the insulating phase of the original theory and in the “superfluid phase” of

the dual theory

L ∼ (ϵµνρ∂νAext,ρ)
2 (1.25)

which is just the Maxwell theory giving an insulator response.

Since in disordered superconducting films, vortex mobility is µ ∼ e2ξ2/(~2σn)

where σn is the normal state conductance, vortices are immobile in less disordered

films[15, 14, 17]. Hence, the ground state is an insulating phase for vortices, i.e.,

physical superfluid phase. On the other hand, in strongly disordered films vortices

are mobile, or when there is a strong external magnetic field which would be translated

to a large background vortex density, the system is in a “Higgs” phase and vortices

“condense”. This is an insulator where all excitations are gapped. That completes

our discussion of the vortex picture for superconductor-insulator transitions.

1.4 Overview of our work on thin film supercon-

ductors

Motivated by the physics of superconductor-insulator transitions in thin-films, more

experimental studies have been undertaken in recent years in several different direc-

tions. One of them is to focus on the nature of the density of states (DOS) and the

quasi-particle energy gap in superconducting thin films[44, 45, 46, 27, 30, 29, 32] and

superconductor - normal-metal (SN) bilayers [47, 48, 49]. Interestingly, these studies

found a broadening of the BCS peak and also a subgap density of states[45, 27, 30,

29, 32, 48]. Of particular interest to us is the work in Ref. [49], which studied a thin

SN bilayer system, and found a surprisingly low value of the ratio of the energy gap to

Tc, in contradiction to standard BCS theory, and the theory of proximity[50, 51, 52]
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InO film Ta film 

Figure 1.3: The resistance vs. inverse of temperature (left) and resistance vs. tem-
perature (right) in the metallic phase at intermediate values of magnetic field. Left:
experiment on InO film, taken from Ref. [19]. Right: experiment on Ta film, taken
from Ref. [53].

where it is claimed that the energy gap-Tc ratio should be bounded from below by

∼ 3.52. A drop below this bound, 2Eg/Tc < 3.52, was also observed in amorphous

Bi films as it approaches the disorder tuned SIT[27, 30]. Similar trends were also

observed in SN bilayers in Ref. [47] and in amorphous tin films in Ref. [46]. In

Chapter 2, we show that a reduction of the 2Eg/Tc ratio in a dirty superconductor

could be explained as a consequence of inhomogeneity in the pairing interaction.

Another direction of recent experimental studies is to investigate the films exhib-

ing magnetic-field-tuned superconductor-insulator transition at lower temperatures

(< 100mK) and higher magnetic fields (ranging from 1T to 15T). One puzzling ob-

servation is that a metallic phase intervenes between the superconducting and the

insulating phases[54, 55, 56, 35, 19, 57, 53, 58] (see FIG. 1.3). Near the “SIT critical

point”, as temperature is lowered below ∼ 100mK, the resistance curve starts to level

off, indicating the existence of a novel metallic phase, with a distinct nonlinear I −V

characteristics at least in Ta films[57]. Another interesting experimental finding is

the nonmonotonic behavior of the magnetoresistance[35, 59, 19, 60]. As one increases

magnetic field further from the “SIT point”, the resistance climbs up quickly to very

large value in InO and TiN films, before plummeting back to the normal state resis-
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B
super−

metal(?)conductor
insulator unpaired

state

R

strange

Figure 1.4: A typical magnetoresistance curve of amorphous thin film superconduc-
tors. As the magnetic field B increases, the superconducting phase is destroyed,
and a possible metallic phase emerges. After which the system enters an insulating
phase, where the magnetoresistance reaches its peak. The resistance drops down and
approaches normal state value as B is further increased.

tance, as shown in FIG. 1.4. In Ta and MoGe films, as well as some InO films, the

resistance peak is not as large, but is still apparent[54, 55, 56, 19, 57, 53].

Two competing paradigms may account for the metallic phase as well as the giant

magnetoresistance. On one hand, the quantum vortex pictures [21, 40, 61, 62] attempt

to explain these phenomena by extending the original simple superconductor-insulator

transition theory as we dicussed in Sec. 1.3. The insulating phase at the peak of the

magnetoresistance implies the condensation of quantum vortices as before, but to

explain the high field negative magnetoresistance, one needs to explicitly incorporate

unpaired electrons into the model and interpret the negative magnetoresistance as the

gradual depairing of Cooper pairs and the appearance of a finite electronic density of

states at the Fermi level. The intervening metallic phase is described as a delocalzed

but yet uncondensed diffusive vortex liquid as described in Ref. [62]. In this picture

disorder and charging effects are most important on length scales smaller or of order

ξ (the superconducting coherence length, typically of order 10nm).

On the other hand, the percolation paradigm[64, 65, 63, 66, 67] describes the

amorphous film as a mixture of superconductor and normal or insulating puddles,

with disorder playing a role at scales larger than ξ. Particularly germane is the pic-
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Figure 1.5: Schematic representation of the percolation theory explanantion to the
negative magnetoresistance in magnetic-field-tuned superconductor-insulator transi-
tions. Taken from Ref. [63].

ture in Ref. [63] which phenomenologically captures both a metallic phase as well as

the strongly insulating phase by assuming superconducting islands exhibit a Coulomb

blockade for electrons. This theory also assumes that the major effect of the mag-

netic field is to decrease the portion of superconducting puddles. This way the peak

in the magnetoresistance arises from electron transport through the percolating nor-

mal regions consisting of narrow conduction channels. To be more specific (see FIG.

1.5), when the magnetic field is large, superconducting islands are small, charging

gap is large for electrons, and therefore conduction is mainly through the normal

metal region (FIG. 1.5a). When the magnetic field is slightly lowered (FIG. 1.5b),

superconducting islands become larger, but the charging gap is still large enough to

penalize electrons trying to enter superconducting islands; however the enlarged su-

perconductors squeeze the conduction path in the normal metal region, and therefore

the resistance increases with decreasing magnetic field. When the magnetic field is

further lowered (FIG. 1.5c,d), superconducting islands are finally large enough so that

tunneling into them becomes energetically favorable, and the resistance is decreased

with smaller magnetic fields. Finally, when superconducting islands percolate, the

system enters the superconducting phase.

We also note that yet a third theory tries to account for the low field superconductor-
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metal transition using a phase glass model [68, 69] (see, however, Ref. [70] which

argues against these results), but does not address the full magnetoresistance curve.

Qualitatively, both paradigms above are consistent with magnetoresistance obser-

vations, and recent tilted field[71], AC conductance[72], Nernst effect[73], and Scan-

ning Tunneling Spectroscopic[74] measurements cannot distinguish between them.

Particularly intriguing is the origin of the metallic phase - is it vortex driven or does

it occur due to electronic conduction channels dominating transport through the film?

In Chapter 3, we propose a new type of experiments, namely the drag resistance mea-

surement, as a method capable to point to the correct theoretical picture.

1.5 From superconductivity to quantum Hall ef-

fect

The classical Hall effect, discovered more than a century ago, is straightforward to

understand with classical electromagnetism. When charge carriers move in a per-

pendicular magnetic field, charge will accumulate in the transverse direction which

generates an electric field to balance the Lorentz force exerted by the perpendicular

magnetic field. The Hall resistance, namely the transverse voltage drop divided by

the longitudinal electric current, is therefore proportional to the magnetic field.

For two-dimensional electron gas (2DEG) in semiconductor heterostructures and

later in graphene, when a strong perpendicular magnetic field commensurate with the

electron density is applied, a series of remarkable quantum Hall states emerge[76, 77,

78]. What makes these states different from the classical Hall effect is the existence of

plateaus in Hall resistance and the simultaneous vanishing of longitudinal resistance

near certain integer and fractional filling factors (defined as ν ≡ ρ/(B/ϕ0), ρ is the

carrier density, B is the magnetic field, ϕ0 is the flux quantum). When the filling

factor slightly deviates from these special values, the Hall resistance stays quantized

at Rxy =
1
ν

h
e2

(see FIG. 1.6).

Integer quantum Hall effect (for integer ν) can be understood with non-interacting
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Figure 1.6: Experimental results of the Hall resistance and the longitudinal resistance
in 2DEG. Taken from Ref. [75].

electrons by invoking quenched disorder. Disorder is necessary for the existence of this

plateau, which can be understood either through a Galilean invariance argument[79]

or a vortex argument (see below). For fractional quantum Hall effect, the Coulomb

interaction plays a crucial role[79, 80, 81] instead. The fractional quantum Hall ef-

fect with odd-integer-denominator filling factor can be understood with Laughlin’s

wavefunctions[82], and Chern-Simons flux attachment approaches including compos-

ite boson[83, 84] and composite fermion approaches[85, 86]. Both integer and frac-

tional quantum Hall effect have a gap for all bulk excitations, but it has been shown

that gapless chiral excitaions exist on the edge[81]. In recent years, a lot of interest

have been generated by the possibility of non-abelian quantum Hall states in higher

Landau levels and their possible applications to topological quantum computations[87,

88].

To lay down the foundation for later sections, we now focus on Laughlin states at

ν = 1/(2k+1). At these filling fractions, in the non-interacting limit, the ground state

is highly degenerate due to the flat dispersion of Landau levels. Naturally Coulomb

interaction will lift the degeneracy and select the true ground state, and Laughlin’s
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answer is[82]

ψ =
∏
i<j

(zi − zj)
2k+1 exp

[
−
∑
i

|zi|2/(4l2)

]
, (1.26)

where l is the magnetic length, and zj = xj+iyj. This wavefunction has almost unity

overlap with the exact ground state, and its virtue could be understood by the fact

that it has no wasted zeros[89, 80], which means the following. Given N electrons

and therefore N(2k + 1) flux quanta, when we view the Langhlin wavefunction as a

wavefunction of z1 and take this electron around the sample in a loop, the wavefunc-

tion should pick up a Aharonov-Bohm phase 2πN(2k + 1), which implies that there

have to be N(2k + 1) zeros in the wavefunction. Among these zeros, Pauli-exclusion

principle only requires N of them to lie on other electrons, however in the Laughlin

wavefunction all zeros do lie on other electrons, which is very efficient in keeping

electrons apart and lowering the interaction energy.

Next, we proceed to discuss the composite boson theory which carries the features

of quantum Hall states in a very compact way. From the Laughlin wave function, we

see that in terms of Berry’s phase, essentially electrons see each other as a 2π(2k+1)

flux source, in this way they are kept apart and the interaction energy is lowered. In

the same spirit, we can trade each electron for 2k + 1 flux quanta and a composite

boson, and transform the original Lagrangian for electron ψ

L = ψ†(i∂t − At)ψ +
1

2m
ψ†
(
−i∇− A⃗ext

)2
ψ + V (|ψ|), (1.27)

where V is the potential energy including the Coulomb interaction and disorder po-

tentials, into the Lagrangian for composite boson ϕ and a Chern-Simons gauge field

aµ:

L = ϕ†(i∂t − at − At)ϕ+
1

2m
ϕ†
(
−i∇− a⃗− A⃗ext

)2
ϕ+ V (|ϕ|) + 1

4π(2k + 1)
aµϵ

µνρ∂νaρ.

(1.28)

One can check that 2k+1 flux quantum of aµ is attached to ϕ by minimizing L with
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respect to at, which leads to

(2k + 1)ϕ†ϕ =
1

2π
∇× a⃗. (1.29)

Therefore at the mean-field level, the Chern-Simons flux and the external magnetic

field cancel each other, and composite bosons see zero net flux. As bosons, they

condense and form a superfluid. Since the total electric field vanishes inside a charged

superfluid, we have

e⃗+ E⃗ext = 0, (1.30)

where the “electric field” e⃗ ≡ −∂ta⃗ −∇at. Minimizing the action with respect to a⃗,

we obtain

(2k + 1)⃗j =
1

2π
ẑ × e⃗, (1.31)

and hence the defining property of quantum Hall effect

j⃗ =
1

2π(2k + 1)
E⃗ext × ẑ at filling fraction ν =

1

2k + 1
.

Therefore, the quantum Hall effect at filling factor ν = 1/(2k + 1), the so-called

Laughlin fraction, can be understood as a condensate of composite bosons which

is formed by attaching (2k + 1) flux quanta to each electron, and these background

fluxes cancel the external magnetic field exactly at these special filling factors. Vortex

excitations of this composite boson superfluid are introduced when the filling fraction

is slightly moved away from ν = 1/(2k+ 1), but similar to the situation of supercon-

ductors, vortices will be pinned by quenched disorder, and the conductance remains

the same. This explains the Hall plateau. One can also generalize the vortex-boson

duality formalism to transform the above Lagrangian to reveal the vortex degrees of

freedom explicitly and show that they have fractional charge and statistics. In the

low-energy long-wavelength limit, denoting θ the phase of the composite boson, we

have

L =
1

2
ρ(∂µθ − Aext

µ − aµ)
2 +

1

4π(2k + 1)
aµϵ

µνρ∂νaρ. (1.32)
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Next, one introduces the composite-boson current field jµ through the Hubbard-

Stratonovich transformation:

L =
1

2ρ
j2µ + ijµ

(
∂µθ − Aext

µ − aµ
)
+

1

4π(2k + 1)
aµϵ

µνρ∂νaρ. (1.33)

Again, we split the phase field into a smooth part and a vortex part θ = θs + θv, and

integrate out the smooth part to obtain the continuity constraint ∂µj
µ = 0 which is

solved by introducing a gauge field jµ = 1
2π
ϵµνρ∂ναρ :

L =
1

8π2ρ
(ϵµνρ∂ναρ)

2 + i
1

2π
ϵµνρ∂ναρ

(
∂µθ

v − Aext
µ − aµ

)
+

1

4π(2k + 1)
aµϵ

µνρ∂νaρ.

(1.34)

Integrating by parts, noting the definition of vortex currents jvµ = 1
2π
ϵµνρ∂ν∂ρθ

v, and

integrating out the Chern-Simons field aµ, we can rewrite the Lagrangian into the

following form:

L =
1

8π2ρ
(ϵµνρ∂ναρ)

2 +
(2k + 1)

4π
αµϵ

µνρ∂ναρ − i
1

2π
ϵµνρ∂ναρA

ext
µ − ijvµαµ. (1.35)

Unlike the case of superconductors, the gauge field αµ which represents the (compos-

ite) boson density fluctuation now acquires a Chern-Simons term, which renders it

a gap. Therefore the quantum Hall fluid is incompressible at ν = 1/(2k + 1), while

superfluid and (1D,2D) superconductors are compressible. The Chern-Simons term

for αµ also indicates that 1/(2k + 1) flux quantum is attached to each vortex, which

explains their fractional statistics. According to the third term in this Lagrangian,

Aext
t is coupled to the one flux quantum of αµ, which means one flux quantum of αµ

has one unit of electric charge. Since each vortex has 1/(2k + 1) flux quantum, each

of them has 1/(2k+1) electric charge as well. When vortices are absent, one can also

integrate out all fluctuating fields and obtain

L =
1

4π(2k + 1)
Aext

µ ϵµνρ∂νA
ext
ρ , (1.36)
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which gives

jµ =
δL
δAext

µ

=
1

2π(2k + 1)
ϵµνρ∂νA

ext
ρ , (1.37)

which is again the defining property of the quantum Hall effect at ν = 1/(2k + 1).

1.6 Bilayer quantum Hall effect: a hidden super-

fluid

In bilayer two-dimensional electron systems with negligible interlayer tunneling and

total filling factor νtot = 1, when the layer separation d is comparable to the magnetic

length l, a remarkable bilayer quantum Hall state with interlayer phase coherence

emerges due to the interlayer Coulomb interaction[90]. The extra layer index degrees

of freedom adds a lot of interesting physics to the system, and many remarkable

experimental signatures of this phase predicted by theories have been observed in

experiments, including enormous enhancement of zero bias interlayer tunneling[91],

linearly dispersing Goldstone mode[92], quantized Hall drag[93], and vanishing resis-

tance in counterflow[94].

There are several equivalent and complimentary ways to understand this bilayer

quantum Hall state. In the pseudospin ferromagnet approach[95], one treats the

layer index as pseudospin, and by Hund’s rule, the ground state is a pseudospin

ferromagnet which makes the spatial wavefunction completely anti-symmetric and

therefore lowers the interaction energy. In addition, due to the charging energy at

nonzero layer separation, the SU(2) symmetry is broken down to the easy-plane U(1)

symmetry, and the ground state has a pseudospin lies in the xy-plane. Denoting ψ1,X

and ψ2,X the electron field operators at guiding centerX in the two layers respectively,

we have

⟨ψ†
1,Xψ2,X⟩ ∼ eiθ, (1.38)
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and the ground state can be written as

|Ground State⟩ ∼
∏
X

(
ψ†
1,X + eiθψ†

2,X

)
|0⟩. (1.39)

These are what we meant by interlayer phase coherence. Note its remarkable conse-

quence: each electron wavefunction is a coherent superposition of the state in each

layer, even though we start with no interlayer tunneling! In addition, since at each

guiding center there is only one electron, we have avoided paying for the strong inter-

layer Coulomb repulsion, which is partly the reason why this state has a low energy.

Also note that the ground state wavefunction (1.39) can be written in a BCS form

(cf. Eqn. 1.5)

|Ground State⟩ ∼
∏
X

(
1 + eiθψ†

2,Xψ1,X

)
|G⟩, where |G⟩ ∼

∏
X

ψ†
1,X |0⟩. (1.40)

Contrary to the canonical BCS form Eqn. 1.5, ψ1,X is the hole creation operator

in a filled Landau level. Consequently, the bilayer quantum Hall state can also be

viewed as an exciton condensate in which electrons in one layer and holes in the other

layer pair up[90]. Since the ground state (1.39) breaks the easy-plane pseudospin

U(1) symmetry, a linearly-dispersing Goldstone mode is expected. In addition, the

analog of supercurrent in exciton condensate is easily seen to be currents flowing in

opposite directions, i.e., the counterflow in this state is expected to be dissipationless.

Furthermore, if one puts a bias voltage between the two layers, it is easy to see in the

exciton picture that the tunneling conductance will be huge near zero bias, because an

electron is perfectly correlated with a hole in the other layer, and when it tunnels into

the other layer, it rarely bumps into other electrons. These fascinating predictions

have been observed in experiments [91, 92, 93, 94] (see FIG. 1.7). However, there

are still important discrepancies between theories and experiments. For example,

the height of the interlayer tunneling conductance is observed to be finite[91], while

theories predict it to be infinite[96, 95]. Also, transport in counterflow experiments

should be completely dissipationless under a critical temperature for phase coherence,
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but in experiments dissipationless counterflow is only seen in the zero-temperature

limit[94]. The effect of quenched disorder is believed to be crucial to reconcile these

discrepancies[97, 98, 99], although a quantitative understanding is still lacking. Us-

ing the pseudospin analogy, one can also deduce the actions for various excitations

including spin waves, skyrmions, merons, etc., and estimate the parameters in these

effective actions using microscopic parameters[95].

Next, we briefly introduce the composite boson formalism[96, 95], which gives the

same results in an elegant way. The basic physical picture is the same as those in

the pseudospin ferromagnet picture and the exciton condensate picture: since the

interlayer distance between electrons d is comparable to the intralayer distance (∼

magnetic length l), both interlayer and intralayer Coulomb interactions are strong,

and electrons tend to get as far as possible from other electrons both in the same

layer and in the other layer. Now we formulate this idea by following the previous

section’s idea that when electrons avoid each other, they see each other as an odd

integer number of flux quanta. Here, because of the total filling factor νtot = 1 and

because the strong interlayer interaction, each electron see those both in their own

layer and those in the other layer as 2π flux source (equivalently, one zero in their

wavefunction). Thus, each electron is traded for one composite boson and one flux

quantum, and this background flux cancels the external magnetic field due to the

total filling factor νtot = 1. Generalizing the formalism of the previous section, in the

low-energy long-wavelength limit, the Lagrangian for composite bosons is

L =
1

2
ρ(∂µθ1 − aµ − Aext

µ )2 +
1

2
ρ(∂µθ2 − aµ − Aext

µ )2 +
1

4π
aµϵ

µνρ∂νaρ, (1.41)

where θ1,2 are the phases of the composite boson fields of each layer due to the flux

attachment transformation. Performing the same duality transformation as in the

previous section, and defining

α±µ = α1µ ± α2µ, j±µ = j1µ ± j2µ (1.42)
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Josephson−like tunnelingLinearly−dispersing mode

Figure 1.7: Experimental evidence of the interlayer coherent bilayer quantum Hall
state at ν = 1. Left: excitation energy vs. wavevector - evidence for a linearly-
dispersing Goldstone mode. Taken from Ref. [92]. Right: interlayer tunneling con-
ductance vs. bias voltage - evidence for the Josephson-like interlayer tunneling. Taken
from Ref. [91].

where α1,2 and j1,2 are the gauge fields introduced in the duality transformation

and the composite boson currents in the two layers, respectively, we can rewrite the

Lagrangian as

L = L+ + L−,

L+ =
1

16π2ρ
(ϵµνρ∂να+ρ)

2 +
1

4π
α+µϵ

µνρ∂να+ρ − i
1

2π
ϵµνρ∂να+ρA

ext
µ ;

L− =
1

16π2ρ
(ϵµνρ∂να−ρ)

2

(1.43)

when vortices are absent. Apparently, the transport property of the “+” sector

corresponds to treating the bilayer system as a whole. In this sector, one can neglect

the less relevant Maxwell term and integrate out the fluctuating gauge field αµ to

obtain

L+ =
1

4π
Aext

µ ϵµνρ∂νA
ext
ρ , (1.44)

which is again the defining property of a ν = 1 quantum Hall state.

On the other hand, the transport property of the “-” sector corresponds to coun-

terflow, i.e., currents flowing in opposite directions in two layers. What is unique for
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this state is that its “-” sector has no Chern-Simons term! It looks exactly the same

as the dual representation of a superfluid [cf. Eqn. (1.21)]. Immediately this leads to

the prediction of dissipationless counterflow, a linearly dispersing mode which is rep-

resented as “photons” here, and the analog of Josephson tunneling, as we discussed

earlier.

1.7 Half-filled Landau level: a hidden Fermi liquid

This interlayer coherent quantum Hall state only survives when the ratio of layer

separation d and the magnetic length l is relatively small. In the opposite limit

d/l → ∞, two layers are decoupled, and each layer is at half-filling. Surprisingly, a

half-filled Landau level behaves as a Fermi liquid, and much progress has been made in

understanding this “composite fermion” Fermi liquid phase using the Chern-Simons

approach[100, 101, 102, 103, 104] and the dipolar quasiparticle approach[105, 106,

107, 108, 109, 80].

The basic idea for this composite fermion Fermi liquid phase is quite simple to

illustrate using flux attachment. At half-filling, if we try to trade electrons for com-

posite particles and flux quanta to cancel the background flux as we did in previous

sections, we have to attach two flux quanta to each electron. Therefore when two

electrons are interchanged, we obtain an additional 2π phase instead of a π phase

for Laughlin states or bilayer νtot = 1 state. Hence, what we have obtained are com-

posite fermions instead of composite bosons. Consequently, electrons at half-filling is

equivalent to composite fermions with no magnetic field, which is naturally in a Fermi

liquid state. However, due to the strong coupling of composite fermions with fluctuat-

ing Chern-Simons gauge fields, the composite Fermi liquid is much more complicated

than conventional ones.

Halperin et al.[100] was the first who seriously pursued this picture and studied

various properties of this composite fermion Fermi liquid phase in detail. Many

interesting predictions were made. For example, if the filling factor ν deviates from

half-filling and ν = p/(2p+ 1), composite fermions will see a magnetic field, and it is
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Figure 1.8: Activation gap of quantum Hall states ν = p/(2p+1) as a function of the
filling factor ν, measured in Ref. [110]. The linear relation supports the composite
fermion picture, and the slope is inversely proportional to the composite fermion
mass.

easy to see that (~ = e = 1):

∆B ≡ B −B1/2 = 2π
ρ

p
, with B1/2 ≡ 4πρ, (1.45)

where ρ is the electron density. Thus, the composite fermions are in an integer

quantum Hall state with p Landau levels filled. In other words, the fractional quantum

Hall effect at ν = p/(2p + 1) can be understood as integer quantum Hall effect of

composite fermions, and the activation gap in these states can be identified as the

cyclotron gap of composite fermions:

Eg =
∆B

m∗
=

2πρ

pm∗
, (1.46)

m∗ being the composite fermion mass, which can be determined by fitting measured

gap values near ν = 1/2. Experiments have indeed confirmed the linear relation

between the gap Eg and ∆B (see FIG. 1.8), which gives strong support for the

composite fermion picture.

Many other experimental works have been undertaken to detect composite fermions
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in half-filled Landau levels, and typically there are at least qualitative agreements with

composite fermion theories, although it is often difficult to find very good quantita-

tive agreements (see review articles by Refs. [111, 104, 80]). These efforts include

measuring surface-acoustic-wave velocity shift[111], cyclotron orbit radius[112, 113],

NMR relaxation rate T−1
1 [114], specific heat which is expected to be linear in T but

with logarithmic corrections[115], Coulomb drag resistance which is expected to scale

as T 4/3[116], etc.

1.8 Overview of our work on bilayer quantum Hall

systems

Although we understand well both the coherent phase at d/l → 0 and the composite

Fermi liquid state at d/l → ∞, the transition between them has been shrouded in

mystery. There have been many experimental[117, 118, 119, 120, 121, 122, 123, 124,

125, 126, 127, 128, 129, 130] and theoretical[131, 132, 133, 134, 135, 136, 137, 138, 139,

140, 141, 142, 143] studies regarding the nature of this transition. While some of these

theoretical works point to a direct transition between the two limiting phases, either

continuous[140] or of first order[137, 138], some other works predict the existence of

various types of exotic intermediate phases, including translational symmetry broken

phase[131, 132, 133, 141], composite fermion paired state[134, 135, 142], phase of

coexisting composite fermions and composite bosons[139, 143, 144], and quantum

disordered phases[136], etc.

These theoretical works typically assume that the physical spin is fully polarized

and hence irrelevant across the transition. However, recent experiments have shown

that spin plays an important role in the transition. Ref. [121] has found that by

applying a NMR pulse or heat pulse to depolarize the nuclei and hence increasing

the effective magnetic field coupled to the spin, the coherent phase is strengthened,

and the phase boundary shifts to higher value of d/l. Similar behavior has also

been observed by applying a parallel magnetic field[125]. These experimental results
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indicate that at least one of the phases involved in the transition is not fully polarized,

and that the polarization changes significantly across the transition. The most likely

possibility is that the incoherent composite Fermi liquid phase at large d/l is only

partially polarized, as shown by other experiments on single layer at ν = 1/2[114, 145].

If the transition between the coherent phase and the less polarized incoherent phase

is a thermodynamic phase transition, it must be of first order: The magnetization is

discontinuous across the transition, and, as the experiments of Ref. [121] found, the

transition can be tuned using a Zeeman field which is conjugate to the magnetization.

These two facts together imply the first order nature of the transition. An alternative

to the thermodynamic transition scenario is a singularity-free quantum crossover as

was suggested recently in Refs. [142, 143].

In Chapter 4, we assume that the transition tuned by d/l is a thermodynamic

first-order transition between spin-polarized coherent νtot = 1 quantum Hall state and

partially-polarized composite Fermi liquid state, and derive the Clausius-Clapeyron

relations for this system. The Clausius-Clapeyron relations will allow us to obtain

the phase boundary shapes for the transition; a comparison of these boundaries with

experiments presents a stringent consistency test of the first order transition scenario.

1.9 One-dimensional random hopping model

In this section, we switch from two-dimensional systems to one-dimensional cases.

Being particularly interesting to us is the one-dimensional non-interacting random

hopping model, namely tight-binding model with off-diagonal disorder:

H = −
∑
n

Jnc
†
ncn+1 + h.c., (1.47)

where n is the site index, and the hopping amplitude Jn is random. This model

has been investigated theoretically using various techniques for many years, and it is

also known to be equivalent to many other models, such as quantum particles con-

nected by random strength strings, spin 1/2 random XX chains, random quantum
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Ising chains in transverse field, and random mass Dirac fermions. This model exhibits

many surprising features. Early theoretical works[146, 147, 148, 149] focus on prop-

erties derivable from the mean local Green’s function, notably the typical localization

length and the mean density of states. For example, the state with zero energy is a

delocalized state[148]. To illustrate this, we start with the Schrodinger equation of

this system

−Jnψn+1 − Jn−1ψn−1 = Eψn, (1.48)

where ψn is the wavefunction at site n. For zero energy, this equation gives

ψn+1

ψn−1

= −Jn−1

Jn
. (1.49)

Thus,
ψ2n+1

ψ1

=

(
−J2n−1

J2n

)(
−J2n−3

J2n−2

)
...

(
−J1
J2

)
. (1.50)

Using the definition of localization length λ [147]

1

λ
= − lim

n→∞

1

2n
ln

∣∣∣∣ψ2n+1

ψ1

∣∣∣∣ (1.51)

and the central limit theorem, one readily sees that the inverse of the localization

length vanishes. Therefore this state has infinite localization length. More detailed

analysis[149] shows that the localization length diverges as ∼ ln |E| near the band-

center, and the mean density of states (DOS) also diverges as ∼ 1/|E(lnE2)3| as

energy E approaches band-center. These behaviors are very different from Anderson

insulators in which case disorder comes into diagonal terms and there are no singu-

larities in the spectrum of the localization length or the density of states (see FIG.

1.9).

Recent work have studied this model using real space renormalization group

method[150] and supersymmetry method[151] and have uncovered more interesting

results, most importanly a different length scale - mean localization length which

diverges as ∼ ln2 |E|. More recently, the effect of random hopping amplitude on in-
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Figure 1.9: Comparison of the inverse of the localization length vs. energy in (left)
random hopping model and (right) Anderson insulator.

teracting fermion and boson systems have also been investigated. In fermion case[152],

it has been shown that random hopping amplitude could lead to a novel type of in-

stability; in boson case[153, 154], novel “Mott glass” phase has been predicted in

addition to usual Mott insulating and superfluid phases.

Nevertheless, pure random hopping model behavior is extremely difficult to engi-

neer experimentally. This is mainly because diagonal disorder inevitably comes in,

and any amount of diagonal disorder would break the particle-hole symmetry of the

random hopping model and thereby destroy the interesting properties near the band-

center. Hence, it is highly desirable to find a feasible and robust way to experimentally

realize a random hopping model.

1.10 Realizing random hopping model with dy-

namical localization

In Chapter 5, we propose that a pure random hopping model can be realized in optical

lattices by first creating an Anderson insulator and then modulate the disordered

on-site potential energy periodically. Our idea is closely connected to recent work

on the phenomena dubbed “Dynmaical Localization” or “Coherent Destruction of

Tunneling” in double wells and optical lattices[155, 156, 157, 158, 159, 160, 161, 162,
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163, 164, 165, 166, 167, 168, 169]. The basic idea of Dynamical Localization is the

following. Consider a double well with a tunneling amplitude J/2 and a potential

energy difference oscillating at frequency ω:

H = −J
2
(a†b+ b†a) +

V

2
cos(ωt)(a†a− b†b). (1.52)

Switching to spin representation

Sx =
1

2
(a†b+ b†a), Sz =

1

2
(a†a− b†b), (1.53)

we have

H = −JSx + V cos(ωt)Sz. (1.54)

By performing a unitary transformation with

ψ = Uψ̃, U = e−iV
ω

sin(ωt)Sz , (1.55)

one transforms the original Schrodinger equation i∂tψ = Hψ into

i∂tψ̃ = Heff ψ̃, (1.56)

where

Heff = U †HU − U †(i∂tU)

= −Jei
V
ω

sin(ωt)SzSxe
−iV

ω
sin(ωt)Sz

= −J
[
Sx cos

(
V

ω
sinωt

)
− Sy sin

(
V

ω
sinωt

)]
,

(1.57)

which can be expanded as a series of Bessel functions. In the limit of fast oscillation,

the leading order term is

Heff ≈ −JJ0

(
V

ω

)
Sx = −J

2
J0

(
V

ω

)
(a†b+ b†a), (1.58)
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where J0 is the zeroth Bessel function. Thus one can see that the effect of os-

cillating potential energy is simply to renormalize the tunneling amplitude J in

the large-ω limit. This “Dynamical Localization” phenomena has been observed in

experiments[165, 166], and it has been proposed to be used as a method to tune inter-

acting bosons through superfluid-insulator transition[159, 161], to observe the analog

of photon-assisted tunneling[160], etc. For our purpose, it suffices to notice that the

original potential energy V now resides in the renormalization factor of the hopping

amplitude. Thus, if one modulates an Anderson insulator in a one-dimensional lattice

instead, one expects that the randomness in the onsite energy should be transferred

into the randomness of hopping amplitude in the same way. In other words, one ob-

tains the random hopping model by fast-modulating the disordered potential energies

of an Anderson insulator. We will demonstrate these ideas in detail in Chapter 5.
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Chapter 2

Effect of Inhomogeneous Coupling
On BCS Superconductors

2.1 Introduction

As discussed in Chapter 1, motivated by the thin-film physics, the experimental work

in Ref. [49] studied a thin SN bilayer system, and found a surprisingly low value of

the ratio of the energy gap to Tc, in contradiction to standard BCS theory, and the

theory of proximity [50, 51, 52] where it is claimed that the energy gap-Tc ratio should

be bounded from below by ∼ 3.52. A drop below this bound, 2Eg/Tc < 3.52, was

also observed in amorphous Bi films as it approaches the disorder tuned SIT [27, 30].

Similar trends were also observed in SN bilayers in Ref. [47] and in amorphous tin

films in Ref. [46].

In this Chapter we show that a reduction of the 2Eg/Tc ratio in a dirty supercon-

ductor could be explained as a consequence of inhomogeneity in the pairing interac-

tion. In SN bilayer thin films, thickness fluctuations of either layer result in effective

pairing inhomogeneity (in thin SN bilayers the effective pairing is the volume averaged

one, c.f., Ref. [51, 52] and Sec. 2.4). Such inhomogeneities in other systems occur

due to grain boundaries, dislocations, or compositional heterogeneity in alloys[170].

For simplicity we will assume in our analysis that the pairing coupling constant takes

a one-dimensional modulating form:

U(r⃗) = Ū + UQ cos(Qx). (2.1)
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In bilayer SN films, the effect of localization and Coulomb interaction is minor

compared to proximity effect, and therefore we will neglect these complications in

this chapter.

In our results, the ratio between the inhomogeneity length, L ≡ 1/Q, and the

superconducting coherence length ξ, plays a crucial role. When Qξ ≫ 1, the super-

conducting properties are determined by an effective coupling Ū . Ueff < Ū + UQ

[171]. In this limit, the ratio 2Eg/Tc is preserved at the standard BCS value ∼ 3.52.

Small corrections are obtained when 1/(Qξ) is finite. In the opposite limit, Qξ ≪ 1,

the system tends to be determined by the local value of U(x). Within mean field the-

ory, the ratio 2Eg/Tc is generally suppressed from the BCS value 3.52; in 2d, however,

when one includes the thermal phase fluctuation and studies the Kosterlitz-Thouless

temperature, TKT , the ratio 2Eg/TKT can be larger than the usual BCS value. These

results on 2Eg/Tc are summarized in FIG. 2.6.

Our analysis is inspired by similar previously studied models. Particularly, the Tc

of the clean case of this model has been analyzed in Ref. [171]. Here we extend the

study of non-uniform pairing to both Tc and zero-temperature properties of disordered

films, in the regime where the electron mean free path l obeys 1/kF ≪ l ≪ ξ0 ∼ ~vF
Tc

,

which is relevant to the experiments of Long et al.[48, 49]. Note that while Anderson

theorem states that the critical temperature and gap of a homogenous superconductor

do not depend on disorder[10], in an inhomogeneous system the theorem does not

hold. Indeed, we find that the results of Ref. [171], are modified in the dirty case.

In another related work, a system with a Gaussian distribution of the inverse pairing

interaction was studied [172, 173]. It was shown that an exponentially decaying

subgap density of states appears due to mesoscopic fluctuations which lie beyond the

mean field picture. Finally, inhomogeneous coupling in the attractive Hubbard model

[174, 175] and lattice XY model [176] were also analyzed, with relevance to High-Tc

materials.

This chapter is adapted from our published work Ref. [177], and it is organized

as follows. In Sec. 2.2 we review the quasiclassical Green’s function formalism which

we use, and briefly demonstrate how it works for the usual dirty superconductors
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with spatially uniform coupling constant. Then, in Sec. 2.3 we discuss the cases with

nonuniform coupling classified by the competition of two length scales: the coherence

length ξ and the length scale associated with the variation of the coupling constant

L = 1/Q. We will also discuss the effect of other types of inhomogeneities briefly. In

section 2.4 we provide a useful analogy with superconductor-normal metal superlattice

to provide more physical intuition about our results on the energy gaps. In section 2.5

we will summarize our analysis and discuss the connection with experimental results.

2.2 The gap equation of a nonuniform film

The starting point of our analysis is the standard s-wave BCS Hamiltonian:

H = H0 +Hint +Himp,

H0 =
∑
σ

ψ†
σ(r⃗)ξ̂ψ(r⃗)σ,

Hint = −U(r⃗)ψ†
↓(r⃗)ψ

†
↑(r⃗)ψ↑(r⃗)ψ↓(r⃗), (2.2)

where ξ̂ ≡ −∇2

2m
− µ, and U(r⃗) > 0 is the attractive coupling constant between elec-

trons, and Himp includes scattering with nonmagnetic impurities. When the pairing

interaction, U(r⃗), is nonuniform, so is the order parameter in this system. A standard

technique to tackle this non-uniform superconductivity problem is the quasiclassical

Green’s functions [178, 12, 179]. In the dirty limit ℓ ≪ ξ0 ∼ ~vF
Tc

, the quasiclassical

Green’s functions obey a simple form of the Usadel equation, which in the absence of

a phase gradient is:
D

2

(
−∇2θ

)
= ∆cos θ − ωn sin θ, (2.3)

where D = 1
d
vF l is the diffusion constant, l is the mean free path, d is the spatial

dimension, and ∆ is the superconducting order parameter. θ is a real function of

space and Matsubara frequencies ωn and is a parametrization of the quasiclassical
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Green functions g and f :

g = cos θ, f = f † = −i sin θ. (2.4)

Also, we list the relation between the integrated quasiclassical Green’s function and

Gor’kov’s Green’s function G and F :

g(r⃗) =

∫
dΩp

4π

∫
dξp
iπ
G(r⃗, p⃗) =

1

iπNF

∫
d3p

(2π)3
G(r⃗, p⃗),

f(r⃗) =

∫
dΩp

4π

∫
dξp
iπ
F (r⃗, p⃗) =

1

iπNF

∫
d3p

(2π)3
F (r⃗, p⃗),

where r⃗ is the center of mass coordinate, and p⃗ is momentum corresponding to the

relative coordinate; Ωp is the angle of momentum p⃗ and NF is the density of states

(per spin) of the normal state at the Fermi energy. The self-consistency equation

reads:

∆(r⃗) = U(r⃗)NFπT
∑
n

ifωn(r⃗). (2.5)

For simplicity we assume the pairing is as given in Eq. (2.1),

U(r⃗) = Ū + UQ cos(Qx).

2.2.1 The uniform pairing case

Before analyzing the inhomogeneous pairing problem, let us briefly review the calcu-

lation of Tc, the superconducting order parameter ∆(T = 0), and the DOS ν(E) of a

dirty superconductor with a spatially uniform coupling constant U , using quasiclas-

sical Green’s functions. In this case Eqs. (2.3) and (2.5) admit a uniform solution for

both θ and ∆:

θ = arctan

(
∆

ωn

)
. (2.6)
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Using (2.5), we obtain the standard BCS self-consistency equation:

1 = UNFπT
∑
n

1√
∆2 + ω2

n

. (2.7)

Tc and ∆(T = 0) are easily obtained from (2.7):

Tc =
2C

π
ωDe

− 1
UNF ,∆(T=0) = 2ωDe

− 1
UNF .

where C = eγ ≈ 1.78, with γ = 0.5772 . . . the Euler constant, and ωD the Debye

frequency. The DOS can be obtained from the retarded quasiclassical Green’s func-

tion: ν(E) = Re{gR(E)}, which can be obtained from g(ωn) = cos(θn) by analytical

continuation iω → E + i0+:

ν(E) = Re
−iE√

∆2 − (E + i0+)2
=

 E√
E2−∆2 , if E > ∆

0, if E < ∆
.

Thus there exists a gap in the excitation spectrum Eg = ∆, and its ratio with Tc is a

universal number π/C ≈ 1.76. As expected, these results for dirty superconductors

are exactly the same as those of clean superconductors, thus explicitly illustrating

Anderson theorem.

2.3 The case of inhomogeneous pairing

Using the formalism reviewed in the previous section, we now discuss the non-uniform

superconducting film. Our discussion will concentrate on the limits of fast and slow

pairing modulations, i.e., large and small Qξ respectively (ξ is the zero temperature

coherence length in the dirty limit: ξ =
√

~D/∆̄T=0 ∼
√

~D/Tc, where ∆̄ is the

spatially averaged ∆(x)).
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2.3.1 Fast pairing modulation: proximity enhanced super-

conductivity

With a nonuniform coupling U(x), uniform solution of either θ(x) or ∆(x) no longer

exists. When fast pairing modulation are present, the angle θ is dominated by its

k = 0 Fourier component, θ0, since it can not respond faster than its characteristic

length scale ξ. Corrections to the uniform solution are of the form θ1 cos(Qx), and are

suppressed by powers of 1
Qξ
. From Eq. (2.5), we see that in contrast to θ, the order

parameter ∆(x) has a factor of U(x) in its definition, and therefore it can fluctuate

with the fast modulation of U(x). The modulating component of ∆(x) is thus only

suppressed by UQ/Ū , while the modulating part of θ(x) is suppressed by both UQ/Ū

and 1/(Qξ). Keeping both 1/Qξ ≪ 1 and expanding in UQ/Ū , we can perturbatively

solve Eqs. (2.3) and (2.5). Starting with:

∆(x) = ∆0 +∆1 cos(Qx), θ(x) = θ0 + θ1 cos(Qx); (2.8)

Eq. (2.3) can be solved order by order:

θ0 = arctan

(
∆0

ωn

)
, (2.9)

θ1 = ∆1
ωn

D
2
Q2
√
ω2
n +∆2

0 + ω2
n +∆2

0

.

The self-consistency equation (2.5) can be Fourier transformed:

∆0 = NFπT
∑
ωn

(
Ū sin θ0 + 2

UQ

2

cos θ0
2

θ1

)
, (2.10)

∆1

2
= NFπT

∑
ωn

(
Ū
cos θ0
2

θ1 +
UQ

2
sin θ0

)
,

where the ωn index of θ0 and θ1 is implicit.

When T → Tc, we can linearize θ0 and θ1 with respect to ∆0 and ∆1, respectively:

sin θ0 ≈
∆0

|ωn|
, θ1(cos θ0) ≈

∆1

|ωn|+ DQ2

2

.
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Note that
N0∑
n=0

1

n+ 1/2
≈ lnN0 + 2 ln 2 + γ for N0 ≫ 1, (2.11)

where γ is the Euler constant, we have approximately

2πT

ωD
2πT∑
ωn=0

1

ωn

≈ ln(2CωD/πT ), (2.12)

2πT

ωD
2πT∑
ωn=0

1

ωn +DQ2/2
≈ ln

(
1 +

ωD

DQ2/2

)
,

where, as before, C = eγ ≈ 1.78 and ωD is the Debye frequency. Defining

K0 = ŪNF ln(2CωD/πT ), K1 = ŪNF ln

(
1 +

2ωD

DQ2

)
, (2.13)

we get

∆0 = K0∆0 +
1

2

UQ

Ū
K1∆1,

∆1 =
UQ

Ū
K0∆0 +K1∆1.

Tc is the temperature at which this equation admits a nonzero solution:

Tc =
2C

π
ωD exp

(
− 1

UeffNF

)
, (2.14)

where the effective pairing strength is:

Ueff = Ū

(
1 +

(
UQ

Ū

)2
K1

2(1−K1)

)
. (2.15)

This is the dirty case analogue of the result obtained by Ref. [171].

Next we turn to the order parameter. At T = 0 the sums in the self-consistency
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equations (2.10) become integrals, which can be performed (see also Appendix 2.A):

∆0 = NF Ū∆0 ln

(
2ωD

∆0

)
+

1

2

UQ

Ū
K1∆1,

∆1

2
=
K1∆1

2
+
NFUQ

2
∆0 ln

(
2ωD

∆0

)
, (2.16)

thus giving the solution

∆0(T=0) = 2ωD exp

(
− 1

UeffNF

)
,

∆1(T=0) = ∆0(T=0)
UQ

Ueff

1

1−K1

.

with the same Ueff defined in (2.15). Noting that ∆0 is the spatially averaged value

of the order parameter ∆̄, we arrive at the conclusion that in the limit Qξ ≫ 1, the

ratio
2∆̄

Tc
=

2∆0(T=0)

Tc
=

2π

C
(2.17)

is preserved.

The modification of the gap, however, must be addressed separately. Although

the gap and the order parameter coincide for a uniform BCS superconductor, this is

not generally true in a nonuniform superconductor. To obtain the DOS and the gap

one has to rephrase the problem in a real-time formalism and calculate the retarded

Green’s function which is parameterized by a complex θ(x,E) = θ′(x,E) + iθ′′(x,E)

with both θ′, θ′′ real, and then compute the DOS via ν(x,E) = RegR(x,E) =

Re cos θ(x,E) = cos θ′ cosh θ′′[12, 179]. Naively one can perform the prescription

iω → E + i0+ in the imaginary time Green’s functions to obtain the retarded ones,

but our perturbative solution will break down as E approaches ∆0, since θ1 diverges

faster than θ0. Therefore to analyze the gap one has to re-solve the real time coun-

terpart of equation (2.3) with ∆(x) given above. Note that our solution of ∆(x) is

still valid, sparing us the need to solve the self-consistency equation.
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Figure 2.1: The energy gap, Eg, measured in units of ∆0, vs. Qξ for Qξ ≫ 1. The two
curves are for ∆1/∆0 = 0.1 and 0.2, respectively. Here, ∆0 and ∆1 are the uniform
and oscillating components of the order parameter, respectively. Q is the modulating
wavevector of the inhomogeneous coupling constant; ξ is the superconducting coher-
ence length. The estimated numerical error of Eg/∆0 is about 0.01. The deviation of
Eg from ∆0 is small, but it increases with larger ∆1/∆0 or smaller Qξ.

In real time, Eq. (2.3) becomes:

− D

2
∂2xθ

′ = cos θ′(∆ cosh θ′′ − E sinh θ′′),

D

2
∂2xθ

′′ = sin θ′(∆ sinh θ′′ − E cosh θ′′). (2.18)

We numerically solved these coupled equations with periodic boundary condition on

[0, 2π/Q], and computed the DOS ν(E) = cos θ1 cosh θ2, and thereby obtained the

gap. We find that despite the fluctuating ∆(x), the energy gap, Eg, is spatially

uniform. Fig. 2.1 shows a graph of Eg vs. Qξ for ∆1/∆0 = 0.1 and 0.2. Again, in the

plot we define the coherence length ξ to be
√
~D/∆̄T=0 =

√
~D/∆0,T=0. One can see

that in the limit Qξ → ∞ Eg coincides with ∆0, and nonzero 1/(Qξ) brings about

only small corrections to make the gap slightly smaller than ∆0. These corrections

increase with smaller Qξ or larger UQ/Ū (i.e., ∆1/∆0). Thus we find that for Qξ ≫ 1

case
2Eg(T=0)

Tc
. 2∆0(T=0)

Tc
=

2π

C
= 3.52. (2.19)
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It is easy to understand the uniformity of Eg, since the wave function of a quasiparticle

excitation should be extended on a length scale 1/Q≪ ξ. Some intuition for the fact

that Eg ≈ ∆0 is provided in Sec. 2.4.

2.3.2 Slow pairing fluctuations: WKB-like local supercon-

ductivity

When the pairing strength fluctuates slowly, i.e., over a large distance, both the

Green’s functions and the order parameter ∆(x) can vary on the length scale of 1/Q,

and we can approximate the zeroth order solution by a ’local solution’:

θ0(x) = arctan

(
∆(x)

ωn

)
, (2.20)

where ∆(x) is to be solved from the self-consistency equation. This ’local’ property of

the system implies a large spatial variation of both ∆(x) and θ(x), in contrast to the

Qξ ≫ 1 case. To improve the zeroth order solution, we write θ(x) = θ0(x) + θ1(x).

Neglecting the small gradient term of θ1, one can solve for θ1 from Usadel’s equation

(2.3) :

θ1 =
D

2

(
ωn∂

2
x∆

(∆2 + ω2
n)

3/2
− 2∆ωn(∂x∆)2

(∆2 + ω2
n)

5/2

)
, (2.21)

thus the self-consistency equation (2.5) becomes

∆(x) = U(x)NF2πT

ωD
2πT∑
n=0

(
∆√

∆2 + ω2
n

+
ωn√

∆2 + ω2
n

θ1

)
. (2.22)

In the Ginzburg-Landau regime, one is justified in keeping lowest order terms in

(2.22):

∆(x) = U(x)NF

{
∆(x) ln

(
2CωD

πT

)
− 7ζ(3)

8π2T 2
∆3(x)

+
π~D
8T

∂2x∆(x)

}
, (2.23)
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where ζ(n) is the Riemann ζ function. Remarkably, equation (2.23) is nothing but

the Ginzburg-Landau equation for a modulating coupling constant U(x) with Qξ ≪

1, and is precisely the dirty case analogue of equation (9) in Ref. [171], with ξ

replaced by the dirty limit expression ξ̃2 = ~πD/8T (ξ̃ is slightly different from the

coherence length defined in this work ξ ≡
√

~D/∆̄T=0, where ∆̄ is the spatially

averaged ∆(x)). In the limit Qξ → 0, ∆(x) would be determined only by the local

value of U(x), and the mean field transition temperature would be given by Tc,max =

2CωD/π exp(−1/(Ū+UQ)). A small but nonzero Qξ leads to a weak coupling between

spatial regions, hence slightly reducing the mean field Tc. Following the analysis of

Ref. [171], one obtains the mean field transition temperature:

TMF
c ≈ 2CωD

π
e−1/NF (Ū+UQ)e−ξ̃QA/

√
2, (2.24)

where A ≡
√
UQ/(NF Ū2).

Although the inhomogeneous U(x) largely increases the mean field Tc, it also

makes the system more susceptible to phase fluctuations. This effect will be more

pronounced in a two-dimensional superconductor, which we will focus on now. A film

becomes superconducting through a Kosterlitz-Thouless transition. To determine the

Kosterlitz-Thouless transition temperature, TKT , we note that the Ginzburg-Landau

free energy corresponding to (2.23) is

F (∆(x)) = NF

∫
d3x{α(x)∆2(x) +

β

2
∆4(x)

+ γ(∂x∆)2)}, (2.25)

α(x) =
1

NFU(x)
− ln

(
2× 1.78ωD

πT

)
,

β =
7ζ(3)

8π2T 2
, γ =

π~D
8T

.

As a functional of ∆(x), F can be minimized numerically, thus giving a solu-

tion of ∆(x). The free energy cost for phase fluctuations is approximately F =
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Figure 2.2: The mean field transition temperature TMF
c , the Kosterlitz-Thouless

temperature TKT , and the minimum mean field transition temperature Tc,min =
2C
π
ωDe

−1/NF (Ū−|UQ|) (a) vs. UQ/Ū with Qξ = 0.3; (b) vs. UQ/Ū with Qξ = 0.1; (c) vs.

Qξ with UQ/Ū = 0.1. In all cases ŪNF = 0.2. T is in units of Tc,a ≡ 2C
π
ωDe

−1/NF Ū .
Here, Ū and UQ are the uniform and oscillating components of the coupling constant,
respectively. NF is the density of states of the normal state; Q is the modulating
wavevector of the inhomogeneous coupling constant; ξ is the superconducting coher-
ence length. The estimated numerical error of TKT/Tc,a is about 0.01.
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1
2

∫
d2xJ(x)(∇θ)2. For quasi-2d films,

J(x) = 2N⊥N
2d
F ξ̃

2|∆MF (x)|2, (2.26)

where N2d
F is the 2d electron DOS, N⊥ is the number of channels, ξ̃ ≡

√
π~D
8T

, and

∆MF is the mean field solution of (2.25). To explain the bilayer thin film experiments

investigated by Long et al.[48, 49], we use the measured value of the diffusion constant

D = 5 × 10−3m2s−1 (see Ref. [48]), and estimate N⊥ = kFd/π ≈ 50, where the film

thickness d ≈ 10 ∼ 20nm[48, 49], and the Fermi wave vector kF ∼ 1Angstrom−1. As

in Ref. [171], one can estimate TKT self-consistently from

TKT =
π

2

√
J(x)(1/J(x))−1, (2.27)

since J(x) is the stiffness along the ”stripes”, while (1/J(x))−1 perpendicular to the

”stripes”. Although our estimation of N⊥ is crude, the value of TKT is very insensitive

to it. This is because TKT is solved self-consistently from (2.27). If one attempts to

use a larger N⊥ in (2.26), the enhancement of TKT is limited by J(x) which itself is

suppressed as temperature increases. Typical solutions of TKT are shown in FIG. 2.2.

One can see that the phase fluctuation region, i.e. the difference between TMF
c and

TKT , increases with stronger inhomogeneity (FIG. 2.2(a) and (b)). Also for longer

wave length modulation TKT is reduced more strongly (FIG. 2.2(c)). Heuristically,

this is because for smaller Qξ the superconducting stripes become farther apart, and

therefore it is more difficult for them to achieve phase coherence.

Moving our focus to the zero-temperature order parameter and gap, we note that

at T = 0 the integrals in equation (2.22) can be done:

∆(x)

U(x)NF

= ∆(x) ln

(
2ωD

∆(x)

)
+
πD∂2x∆

8∆(x)
− πD(∂x∆)2

16∆2(x)
,
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This can be approximately solved by:

∆(x) ≈ ∆0(x)e
−η(x), (2.28)

∆0(x) = 2ωDe
− 1

NFU(x) ,

η(x) =
πD

8∆0(x)
Q2A2

(
cos(Qx)− 1

2
A2 sin2(Qx)

)
.

Note that ∂x∆(x) ≈ −A2Q sin(Qx)∆(x) [with A defined under Eq. (2.24)], for our

WKB analysis to be self-consistent, we need to require the that A . O(1), thus UQ/Ū

needs to be small. Also, when this is satisfied, η(x) leads to a slight averaging between

∆(x), which is a manifestation of proximity effect.

To analyze the gap, we must switch to a real time formalism again, since our

perturbative solution for the Green’s function becomes invalid as E → ∆(x). Thus

we have to solve the real time Usadel equation (2.18) with ∆(x) obtained above.

Using the same numerical code as in Sec. 2.3.1, we have obtained the local gap

Eg(x), which is plotted vs. x in FIG. 2.3 for half a period of modulation. One can

see that in general Eg(x) is lower than ∆(x), and when Qξ = 0.3, Eg(x) is largely set

by the region with weakest coupling; but when Qξ → 0, Eg(x) tends to follow much

closer to ∆(x) as expected. In addition, the minimum of Eg(x) is always slightly

higher than the minimum of ∆(x) by an amount that also diminishes upon Qξ → 0.

This behavior will be further clarified in the next section.

The ratio Ēg/∆̄ vs. UQ/Ū or Qξ is plotted in FIG. 2.4. The suppression of the

gap strengthens when either the inhomogeneity becomes stronger (UQ/Ū is large) or

its length scale L ∼ 1/Q becomes smaller, consistent the results in FIG. 2.3. The

Ēg suppression relative to ∆̄, together with the fact the TMF
c is largely determined

by strongest-coupling region, implies that the ratio 2Ēg/T
MF
c is generically reduced.

The ratios 2Ēg/T
MF
c and 2Ēg/TKT are plotted in FIG. 2.5 for several representative

cases. As expected, there is always a strong suppression of the ratio 2Ēg/T
MF
c from

3.52; for a two-dimensional system, however, the ratios with TKT are more subtle: for

very small Qξ the ratio 2Ēg/TKT might be enhanced due to the large deviation of TKT

from TMF
c (see also FIG. 2.2(c)), while for larger value of Qξ the phase fluctuation
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Figure 2.3: The local order parameter ∆(x) and the local gap Eg(x) (in units of
∆(UQ = 0) = 2ωDe

−1/ŪNF ) vs. spatial coordinate x ∈ [0, π/Q]. Qξ = 0.3 and 0.1 in
subfigure (a) and (b), respectively. ŪNF = 0.2, UQNF = 0.02. Here, Ū and UQ are
the uniform and oscillating components of the coupling constant, respectively. NF

is the density of states of the normal state; Q is the modulating wavevector of the
inhomogeneous coupling constant; ξ is the superconducting coherence length. The
estimated numerical error of Eg(x) is about 0.01.
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Figure 2.4: The ratios of the spatially averaged gap Ēg to the spatially averaged ∆̄
(a) vs. UQ/Ū with Qξ = 0.3; (b) vs. Qξ with UQ/Ū = 0.1. ŪNF = 0.2 in all
cases. Here, Ū and UQ are the uniform and oscillating components of the coupling
constant, respectively. NF is the density of states of the normal state; Q is the mod-
ulating wavevector of the inhomogeneous coupling constant; ξ is the superconducting
coherence length. The estimated numerical error is about 0.01.
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Figure 2.5: The ratios of the spatially averaged gap Ēg to TMF
c or TKT (a)vs. UQ/Ū ,

Qξ = 0.3; (b) vs. UQ/Ū , Qξ = 0.1; (c) vs. Qξ, UQ/Ū = 0.1. In all cases ŪNF = 0.2.
Here, Ū and UQ are the uniform and oscillating components of the coupling constant,
respectively. NF is the density of states of the normal state; Q is the modulating
wavevector of the inhomogeneous coupling constant; ξ is the superconducting coher-
ence length. The estimated numerical error is about 0.02.
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region is narrow(see also FIG. 2.2(a)), and 2Ēg/TKT is reduced from 3.52.

For the purpose of comparison with the thin film experiments, a comment on the

determination of TMF
c and TKT is in order. Due to disorder and phase fluctuations,

the resistive transition curve can be significantly broadened. TMF
c can be estimated

as the temperature at which the resistance drops to half of its normal state value,

while TKT can be defined as the temperature at which the resistance drops below the

measurement threshold (see, for example, Ref. [32]). Alternatively, one can extract

TMF
c from fitting the fluctuation resistance to Aslamazov-Larkin theory[180], and

obtain TKT from nonlinear I-V characteristics or from fitting the resistance below

TMF
c to Halperin-Nelson form[181] (see, e.g., Refs. [182, 14]). Thus both TMF

c and

TKT in principle can be measured from experiments, and can be used for comparison

with our theoretical results here.

2.3.3 Additional inhomogeneities

Apart from modulation of the coupling U , one may also be interested in a simulta-

neous modulation of other properties. For example, in the small Qξ limit, one may

expect the periodicity of U to be accompanied by a periodicity of the local density of

states at the fermi level, or the mean free path. Another possible modulation, that

of a periodic potential, is suggested in [171], and in practice is equivalent to local

modulation of U . Indeed, one may use an effective description of the self consistency

equation (2.5), taking NF → NF +NQ cos(Qx) to lowest order in the amplitude NQ

of the local DOS in the form:

∆(r⃗) = NFUmod(r⃗)πT
∑
n

ifωn(r⃗). (2.29)

where Umod = U+
NQU+NFUQ

NF
cos(Qx), andNF is the spatially averaged DOS. Formally

this is exactly the same as Eq. (2.1), and can be treated similarly, taking

UQ → NQU +NFUQ

NF

(2.30)
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In practice, a local periodic potential may be imposed on the system externally by

either acoustic means or an electromagnetic field. Thus it might be interesting to

check the change in TC of a superconductor in the presence of an acoustic wave

experimentally.

Another possibility of interest is that along with U the electron mean-free path is

modulated in the system. This can be naturally occurring if the periodicity in U is a

consequence of spatial variation in the properties of the material used. Alternatively,

one may obtain this case by a periodic doping of the superconductor.

In this case we may describe the system effectively by modification of the Usadel

equation (2.3) to:

− 1

2
∇ · (D∇θ) = ∆cos θ − ωn sin θ, (2.31)

and taking the diffusion coefficient D to be spatially dependent. Choosing D =

D+DQ cos(Qx) and repeating the treatment above, we find that DQ does not change

the values of the Green’s functions θ0, θ1 above (It however appears at higher orders

of the equation), and so doesn’t change the results of this chapter within this order.

2.4 Superconductor-normal-metal (SN) superlat-

tice analogy

Some insight into the nature of the lowest-lying excitations for both large and small

Qξ cases can be gained by considering a simplified system: superconductor-normal-

metal-superconductor (SNS) junctions. First, consider a single SNS junction with

length L = 2π/Q, and ∆(x) = ∆, 0 in the S, N part respectively. Andreev bound

states will form in the normal metal, and the energy of these states can be obtained by

solving Bogoliubov-de Gennes (BdG) equations for the clean case, or Usadel equations

for the dirty case. In the limit L → 0, the energy of the lowest-lying state is ∆,

while in the opposite limit L ≫ ξ, the (mini)gap is much smaller than ∆: in the

clean case Eg ∼ vF/L ∼ (Qξ)∆ and in the dirty case the gap equals the Thouless

energy D/L2 ∼ (Qξ)2∆ [51, 183, 184]. These states exponentially decay into the
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superconductors for a distance ∼ ξ.

Based on a single SNS junction, one can build an SN superlattice with alternating

superconductor and normal metal, each with length L = 2π/Q, and ∆(x) = ∆, 0 in

the S, N part respectively. If L ≫ ξ, Andreev bound states remain localized in the

normal regions with the gap much smaller than ∆. On the other hand if L≪ ξ, these

states strongly mix with each other, and they form a tight-binding band. Therefore

the gap, namely the lower band edge, is lower than ∆, and in the limit Qξ → ∞ it is

precisely at ∆/2, the averaged ∆(x) (see the analytical calculation by Ref. [185]). The

SN superlattice thus allows a qualitative understanding of the gap’s behavior in the

problem we addressed above: if Qξ ≫ 1, all excitations are extended in space, with

the uniform gap Eg ≈ ∆̄; if Qξ ≪ 1, the lowest-lying excitations are localized in the

weakest coupling regions whose gap is close to the minimum of ∆(x). This analogy

also elucidates the features in FIG. 2.3: given a point in space x0, Eg(x0) is generally

lower than ∆(x0), because the wave function of the low-lying excitations originating

at a nearby region (within ∼ ξ) with smaller ∆(x) are exponentially suppressed at

x0, and when ξ is smaller this effect is reduced; thus Eg(x) follows closer to ∆(x) in

the limit Qξ → 0. Finally, the difference between the minimum of Eg(x) and the

minimum of ∆(x) resembles the minigap in SN superlattice ∼ vF/L or D/L2, which

approaches zero as Qξ → 0.

2.5 Summary and discussion

In this chapter we investigated the properties of dirty BCS superconductors with

a fluctuating pairing coupling constant U(x) = Ū + UQ cos(Qx). Particularly, we

analyzed the change in the mean field Tc, the zero-temperature order parameter ∆(x),

and the energy gap in quasiparticle excitation Eg(x) using the Usadel equation for

quasiclassical Green’s functions. In addition, we estimated the Kosterlitz-Thouless

transition temperature TKT . Our analysis found four different regimes:

(1)Qξ → ∞. In this case the mean field Tc and the spatially averaged order parameter

∆̄ are determined by the effective coupling constant Ueff & Ū [see Eq. (2.15)].
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Moreover, since in this regime any quasiparticle wavefunction is extended over the

length scale L = 1/Q, the local energy gap Eg is uniform in space, and we found it to

coincide with the spatially averaged ∆̄. The ratios 2∆̄/Tc = 2Eg/Tc = 3.52 maintain

their universal BCS value.

(2) Qξ & 1. In this regime the physics is qualitatively the same as that of the

previous case. The gap Eg, however, is smaller than ∆̄ by an amount that grows with

decreasing Qξ or increasing UQ/Ū . Therefore 2Ēg/Tc . 3.52 (see FIG. 2.1).

(3) Qξ . 1. The system tends to divide into regions which behave according to the

the local value of U(x). Thus the mean field Tc is determined by the first formation

of local superconductivity upon lowering temperature, and therefore TMF
c is close to

highest ’local Tc’. In contrast, the global energy gap or the spatially averaged local

gap is largely determined by the region with smallest U(x). Consequently, in this

regime the ratio 2Ēg/T
MF
c is always suppressed from the universal BCS value, 3.52

(see FIG. 2.5a). Moreover, although the system is affected by phase fluctuations, in

this regime TKT is close to TMF
c for small values of UQ (see FIG. 2.2a). Thus 2Ēg/TKT

is also smaller than 3.52 (see FIG. 2.5a).

(4) Qξ → 0. As opposed to the previous regime, here phase fluctuations lead to a

large suppression of TKT relative to TMF
c (see FIG. 2.2b). Although 2Ēg/T

MF
c is still

below 3.52, the ratios 2Ēg/TKT is close to or larger than 3.52 (see FIG. 2.5c).

The value of 2Ēg/T
MF
c and 2Ēg/TKT vs. the entire range of Qξ is plotted schemat-

ically in FIG. 2.6, with regimes 1-4 explicitly labeled in the graph. Schematic results

of TMF
c and TKT vs. Qξ are summarized in FIG. 2.7.

Finally, we discuss connections with thin film experiments [48, 49]. A straightfor-

ward realization of inhomogeneous coupling is in disordered superconductor-normal-

metal (SN) bilayer thin films. In a homogeneous bilayer SN with thickness smaller

than the coherence length ξ, mean field analysis yields that Tc and the energy gap Eg

of the system are determined by the averaged coupling constant [50, 51, 52]

Ueff =
dSNS

dSNS + dNNN

U, (2.32)
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Figure 2.6: Schematic plot of the ratios 2Ēg/T
MF
c and 2Ēg/TKT vs. Qξ. Here Ēg

is the spatially averaged gap in local DOS; TMF
c is the mean field Tc; TKT is the

Kosterlitz-Thouless transition temperature in 2d; Q is the modulating wavevector
of the inhomogeneous coupling constant; ξ is the superconducting coherence length.
1,2,3, and 4 are labels of different regimes described in the text.

-

6

1 Qξ

Tc,a

Tc,max

1234

TMF
c

TKT

?
U

Figure 2.7: Schematic plot of the mean field transition temperature TMF
c and the

Kosterlitz-Thouless temperature TKT vs. Qξ, where Q is the modulating wavevector
of the inhomogeneous coupling constant; ξ is the superconducting coherence length;
Tc,max = 2C

π
ωDe

−1/NF (Ū+UQ) is the maximum TMF
c ; Tc,a ≡ 2C

π
ωDe

−1/NF Ū is the mean
field Tc for a uniform coupling Ū . 1,2,3, and 4 are labels of different regimes described
in the text. The qualitative feature of these results on Tc are similar to those of Ref.
[171] on clean superconductors.
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where U is the pairing coupling in the superconducting layer, d is the thickness, N is

the DOS at the Fermi energy, and the subscripts S and N denote the superconductor

and normal metal layers respectively. Thus the ratio 2Eg(T=0)/Tc is expected to remain

at the BCS value 2π/C ≈ 3.52 in a homogeneous SN bilayers. Nevertheless, from

(2.32) one observes that a spatially inhomogeneous thickness dS,N(x) (which is also

consistent with the granular morphology of the sample[186]) leads to a nonuniform

coupling U(x) even if the original coupling U is homogeneous. Therefore thickness

variation generically leads to a superconductor with inhomogeneous pairing coupling.

According to our results, a deviation of 2Eg/Tc from 3.52 is expected in such a system.

Indeed our study was motivated by such observations. In Refs. [48, 49] Long et

al. report measurements of recently fabricated a series of Pb-Ag bilayer thin films,

with thickness dPb = 4nm and dAg increases from 6.7nm to 19.3nm. They observed

a significant reduction of 2Ēg/T
MF
c from the expected value ∼ 3.52, where Ēg is the

spatially averaged gap extracted from tunneling measurement of the DOS, and TMF
c

is measured as the temperature at which R(T ) drops to half of its normal state value,

and the resistive transition is sharp and well-defined. This suppression of 2Ēg/T
MF
c

is more pronounced in systems with thicker Ag thereby lower TMF
c . In these samples

with TMF
c decreasing from 2.55K to 0.72K with increasing dAg, the ratio 2Ēg/T

MF
c

decreases from ∼ 3.6 to ∼ 2.6 (see FIG 3(b) of Ref. [49]).

These results can be qualitatively well understood by our study. The reduction of

2Eg/T
MF
c from 3.52, together with the observed fact that the resistive transition is

sharp and well-defined[48], implies that the experimental systems are in the regime

(2) or (3) of our theoretical results summarized above (see FIG. 2.6). In these regimes

both 2Ēg/T
MF
c and 2Ēg/TKT are lower than 3.52, and the phase fluctuation is either

absent or small enough to keep TKT close to TMF
c , explaining the sharp resistive

transition. For samples with lower Tc, Ū is smaller. Therefore, if we assume roughly

the same amount of UQ for all samples, the effect of inhomogeneity will be stronger

for samples with lower Tc samples, and, consequently, the gap-to-Tc ratio is even

smaller for them. To make a rough comparison, we have calculated the gap-Tc ratio

vs. Ū for fixed UQ and plotted the results in FIG. 2.8. Although not claiming more
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Figure 2.8: The ratios of the spatially averaged gap Ēg to the mean field transition
temperature TMF

c or the Kosterlitz-Thouless transition temperature TKT vs. ŪNF .
UQNF = 0.002, Qξ = 0.3. Here, Ū and UQ are the uniform and oscillating components
of the coupling constant, respectively. NF is the density of states of the normal
state; Q is the modulating wavevector of the inhomogeneous coupling constant; ξ
is the superconducting coherence length. Since TMF

c monotonically increases with
Ū , this result resembles the experimental data of Ref. [49] (see FIG. 2.9 below for
comparison), which shows that the lower the measured Tc of a thin-film bilayer is,
the smaller the ratio 2Eg/Tc.The estimated numerical error is about 0.02.

Figure 2.9: Experimentally measured gap-Tc ratio vs. Tc in Ref. [49]. Taken from
Ref. [49].
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than a qualitative explanation of the bilayer measurements, we note that our FIG.

2.8 resembles FIG. 3(b) of Ref. [49].

An interesting venue for future research, which may extend to more 2d supercon-

ducting systems, is to consider a general fluctuation of the pairing interaction, not

restricted to a particular wave number, but rather having a particular correlation

length. In addition, aside from the low gap-Tc ratio, Ref. [48] has also reported

an unexpected subgap density of states of quasiparticles in the same bilayer materi-

als. Although our current model does not produce this behavior, one expects that

it could be explained by including large spatial fluctuations of the pairing interac-

tion (e.g.
UQ

Ū
∼ 1), which strongly suppress the gap, and the effect of mesoscopic

fluctuations which tend to produce subgap states[173].

2.A Calculation of ∆(T=0) in the limit Qξ ≫ 1

Here we show some calculation details in deriving equation (2.16). At T = 0 the

self-consistency equations are

∆0 = NF Ū

(∫ ωD

0

dω sin θ0

)
+
NFUQ

2

(∫ ωD

0

dωθ1 cos θ0

)
;

∆1

2
=
NF Ū

2

(∫ ωD

0

dωθ1 cos θ0

)
+
NFUQ

2

(∫ ωD

0

dω sin θ0

)
.

The evaluation of the integrals gives (define a = DQ2/2
∆0

and x0 = ωD/∆0):

∫ ωD

0

dω sin θ0 = ∆0 arcsinh

(
ωD

∆0

)
≈ ∆0 ln

(
2ωD

∆0

)
;
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∫ ωD

0

dωθ1 cos θ0 =
∆1

2a
{−2 arctan(x0) + 2a arcsinh(x0)

−
√
a2 − 1

[
arctanh

(
x0
√
a2 − 1 + 1

a
√
x20 + 1

)

+ arctanh

(
x0
√
a2 − 1− 1

a
√
x20 + 1

)

− 2 arctanh

(
x0√
a2 − 1

)]}
. (2.33)

We take the limit x0 =
ωD

∆0
≫ 1 and a = (Qξ)2 ≫ 1 simultaneously, but their relative

ratio might be either large or small. Also using arctanh(z) = 1/2 ln(|1 + z|/|1− z|),

one can show that in this limit the above integral equals

=
∆1

2a

{
2a ln(2x0)− a

[
1

2
ln

(
2x0a

a
2x0

+ x0

2a
− 1

)

+
1

2
ln

(
2x0a

a
2x0

+ x0

2a
+ 1

)
+ ln

(
|x0 − a|
x0 + a

)]}

=
∆1

2

{
2 ln(2x0)−

[
ln

(
2x0a

|x0

2a
− a

2x0
|

)
+ ln

(
|x0 − a|
x0 + a

)]}

= ∆1 ln
(
1 +

x0
a

)
= ∆1 ln

(
1 +

2ωD

DQ2

)
=

∆1

ŪNF

K1,

where K1 has exactly the same form as defined in (2.13).
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Chapter 3

Drag Resistance in Thin Film
Superconductors

3.1 Introduction

As discussed in Chapter 1, recent experiments on amorphous thin films have re-

vealed surprising results, including a metallic phase intervening the superconduct-

ing and the insulating phase[54, 55, 56, 35, 19, 57, 53, 58], and a huge peak in the

magnetoresistance[35, 59, 19, 60, 54, 55, 56, 19, 57, 53]. Most theoretical work regard-

ing these phenomena can be classified into two categories: quantum vortex picture

[21, 40, 61, 62], where the insulating phase at the peak of the magnetoresistance

implies the condensation of quantum vortices, and the high field negative magne-

toresistance indicates the gradual depairing of Cooper pairs and the appearance of a

finite electronic density of states at the Fermi level, while intervening metallic phase

is described as a delocalized but yet uncondensed diffusive vortex liquid as described

in Ref. [62]; the percolation paradigm[64, 65, 63, 66, 67], where the amorphous film

is decribed as a mixture of superconductor and normal or insulating puddles, and the

peak in the magnetoresistance arises from electron transport though the percolating

normal regions consisting of narrow conduction channels.

Given the similarity in the predictions of the distinct vortex-condensation and per-

colation paradigms, an experiment that distinguishes between them would be highly

desirable. We propose that a thin film ”Giaever transformer”[187] experiment (FIG.
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Figure 3.1: Our proposed bilayer setup for the drag resistance measurement. A
current bias I1 is applied in one layer, and a voltage V2 is measured in the other layer.
The drag resistance RD is defined as RD = V2/I1.

3.1) can qualitatively distinguish between these two paradigms. The original design

of a Giaever transformer consists of two type-II superconductors separated by an

insulating layer in perpendicular magnetic fields. A current in one layer moves the

vortex lattice in the entire junction, yielding the same DC voltage in both layers.

Determining the drag resistance RD = V2/I1 in a similar bilayer structure of two

amorphous superconducting thin films should qualitatively distinguish between the

two paradigms (see also Refs. [188, 189]): within the vortex paradigm, vortices in

one layer drag the vortices in the other, but within the percolation picture, the drag

resistance is solely due to interlayer ”Coulomb drag”, as studied in semiconductor

heterostructures [190].

The first qualitative difference between vortex drag and Coulomb drag is the sign

of the drag voltage V2. Denoting the voltage drop in the driving layer as V1, it is

easy to see that V1 and V2 have the same sign if they are produced by vortex motion,

because vortices in the two layers move in the same direction transverse to the current

bias I1. This would induce a current in the opposite direction in the secondary layer,

since no outside voltage source balances the EMF produced by the vortex motion.

On the other hand, V1 and V2 would have opposite signs if they are due to electron

Coulomb drag, because V2 has to balance the drag force to ensure the open circuit

condition in the second layer. In other words, Coulomb drag would try to produce

current in the same direction in the primary and secondary layer.



59

More importantly, we have found that in the vortex scenario, the drag resistance is

expected to be several orders of magnitude larger than that in other models. Partially

this is expected because in these films, the sheet carrier density ∼ 1016cm−2 is much

larger than the vortex density ∼ B/Φ0 ∼ 1010cm−2, and the drag effect is typically

smaller for larger densities. For example, two identical films as in FIG. 2(b) of Ref.

[35] with 25nm center-to-center layer separation at 0.07K would produce a drag resis-

tance ∼ 10−4Ω according the vortex theory (see FIG. 3.2), but only ∼ 10−12Ω for the

percolation theory (see FIG. 3.3). But as we shall show below, the large vortex drag

effect is also a consequence of the extremely high magneto-resistance slope, which

has different implications for the vortex condensation and percolation pictures. The

strength of the thin-film Giaever tranformer experiment would therefore be in the

transition region where the metallic phase transforms into the insulating phase, and

the magneto-resistance is at a maximum.

We believe that these qualitative differences between the drags in the two paradigms

are quite general for each paradigm, and does not depend the various microscopic

assumptions made in various flavors of these phenomenological pictures. We will

support these claims by analyzing the drag resistance between two identical thin

films within a representative theoretical framework in the vortex [62] and percolation

paradigms [63]. We will restrict ourselves to the standard drag measuring geometry

assuming zero tunneling between the layers. We expect that allowing small tunneling

will stregthen the effect; we will pursue this possiblity in future work.

This Chapter is based on our published work Ref. [191] and unpublished work

Ref. [192], and it is organized as follows. In Sec. 3.2, we extend the quantum vortex

formalism to bilayers, and then we calculate the drag resistance in the insulating

and the metallic regime, respectively. The effect of unpaired electrons on the drag

resistance is also studied. In Sec. 3.3, we review the percolation theory of Ref.

[63], and then extend this theory to bilayers as well, in order to calculate the drag

resistance. In Sec. 3.4, we briefly discuss the drag resistance behavior within the

phase glass model of Refs. [68, 69]. Finally, we summarize and discuss our results in

Sec. 3.5. Some details are provided in appendices.
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3.2 Drag resistance in the quantum vortex paradigm

3.2.1 The vortex description of double-layer amorphous films

Within the quantum vortex paradigm, the insulating phase has been explained as a

superfluid of vortices by the ”dirty boson” model of Ref. [21], while the metallic phase

is expected to be an uncondensed vortex liquid (see also Ref. [40]). This picture has

been pursued by Ref. [62] which argues that vortices form a Fermi liquid for a range

of magnetic field, thereby explaining the metallic phase. At larger fields, where the

insulating phase breaks down, it is claimed that gapless bogolubov quasi particles

nicknamed spinons, i.e., unpaired fermions with finite density of states at the Fermi

energy, become mobile, impede vortex motions, destroy the insulating phase, and

suppress the resistance down to normal metallic values.

We will concentrate on the case where no interlayer Josephson coupling exists,

and the vortex drag comes from the magnetic coupling between vortices in different

layers which tends to align themselves vertically to minimize the magnetic energy.

To calculate the drag resistance in a bilayer setup, it is crucial to derive the vortex

interaction potential due to the current-current magnetic coupling between the layers,

which is captured by the B2 term in the Maxwell action. We achieve this by both a

field theory formalism and a classical calculation. The classical calculation is relegated

to Appendix 3.C.

Let us next derive the vortex action. Treating the superconducting film as a

Cooper pair liquid, we have the following partition function

Z =

∫
Dρ1Dρ2Dθ1Dθ2DA⃗e−S, (3.1)
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where

S =

∫ β

0

dτ

{∫
d2r

∑
n=1,2

~ρn∂τθn +H0 +Hint

}
,

H0 =

∫
d2r

∑
n=1,2

ρs
2~2

(
~∇θn −

2e

c
A⃗ext −

2e

c
A⃗

)2

+
1

4π

∫
d3rB⃗2,

Hint =

∫
d2r

∫
d2r′

1

2

∑
n=1,2

ρn(r)Vi(r − r′)ρn(r
′)

+ ρ1(r)Ve(r − r′)ρ2(r
′),

where a is the (center-to-center) layer-separation, ρn and θn are the 2d density and

phase fluctuation of the n−th layer Cooper pair field, respectively, A and Aext are

the fluctuating and external part of the electromagnetic field, respectively. The in-

tralayer Coulomb interaction Vi(r) = (2e)2/r (whose 2d Fourier transform would be

2π(2e)2/q), and the interlayer Coulomb interaction Ve(r) = (2e)2/
√
r2 + a2 (whose 2d

Fourier transform is 2π(2e)2/qe−qa). ρs is the superfluid phase stiffness of each layer,

which can be determined approximately from the Kosterlitz-Thouless temperature

TKT :

TKT =
π

2
ρs. (3.2)

Next, we follow a procedure of vortex-boson duality transformation taking into ac-

count the B2 term (which will be the origin of the interlayer vortex interaction), and

obtain the following dual action for the vortex field ψvn of the n-th layer and two
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U(1) gauge fields αµ and βµ (see Appendix 3.B for details):

S =
∑
q⃗,ω

{∑
n=1,2

[
−i~δρvnωϕn +

1

2
δρvnUiδρvn

+
1

2mv

((
~q⃗ − e∗1

α⃗

c∗1
+ (−1)ne∗2

β⃗

c∗2

)
ψvn

)2


+ δρv1Ueδρv2 +
1

4π
(ω2 − c2∗1q

2)

(
α⃗

c∗1

)2

+
1

4π
(ω2 − c2∗2q

2)

(
β⃗

c∗2

)2
 , (3.3)

where δρvn = ρvn − B/Φ0, Φ0 is the flux quantum, ρvn = ψ†
vnψvn, ϕn is the phase of

the vortex field ψvn, and mv is the vortex mass. Since there is still controversy over

the theoretical value of mv, we chose to determine the vortex mass from experiments.

As discussed in Appendix 3.A, for the InO film of Ref. [35], we obtain mv ≈ 19me

where me is the bare electron mass.

αν and βν are gauge fields which mediate the symmetric and antisymmetric part

of the vortex-vortex interaction. They are related to the Cooper pair currents jnµ in

the n−the layer by

j1µ + j2µ =
e∗1
π~
ϵµνη∂ναη,

j1µ − j2µ =
e∗2
π~
ϵµνη∂νβη. (3.4)

For ν = 1, 2, the dual charges and the dual ”light speeds” are

e∗ν =
√
πρs

√
q

q + qc(1− (−1)ne−qa)
, (3.5)

c∗ν = c

√
qc(1− (−1)ne−qa)

q + qc(1− (−1)ne−qa)
, (3.6)

where qc is the inverse of the 2d Pearl screening length[193], which can be estimated
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from the value of TKT :

qc =
d

2λ2
=

2πρs(2e)
2

~2c2
=

16e2TKT

~2c2
. (3.7)

For example, the film in Ref. [35] has TKT around 0.5K. This corresponds to qc ≈

(4cm)−1, and it is much smaller than the inverse of typical sample size 1/L ∼1mm−1.

In (3.3), we have chosen the transverse gauge for the gauge fields αµ and βµ and

integrated out α0 and β0 to obtain the vortex interaction potentials. The intralayer

vortex interaction potential

Ui(q) =
Φ2

0qc
2π

q + qc
q(q2 + 2qcq + q2c (1− e−2qa))

, (3.8)

and the interlayer vortex interaction potential

Ue(q) = − qc
q + qc

e−qaUi. (3.9)

When r < 1/qc, Ui(r) gives the familiar log interaction; for r > 1/qc, i.e., beyond

the Pearl screening length, Ui(r) is still logarithmic but with half of the magnitude

[194], in contrast to the 1/r behavior of the single layer case (which is Eq. (3.8) with

a → ∞). The interlayer interaction Ue is purely due to the magnetic coupling, i.e.,

vortices in different layers tend to align to minimize the energy cost in the B2 term.

As expected, the interaction between two vortices with the same vorticity in different

layers is attractive, although its strength is suppressed with increasing distance a and

decreasing qc. Ui and Ue can also be derived classically by solving London equations

and Maxwell’s equations, which we will show in Appendix 3.C. In addition, the form

of Ue is equivalent to those derived in Ref. [195, 196].

Following Ref. [40], one can examine the strength of the interaction between

vortices and transverse gauge field modes by looking at the dimensionless coupling

constant

αT ≡
e2∗1,2
mvc2∗1,2

∼ ρs
mvc2

· q

qc(1± e−qa)
≤ 10−5 (3.10)
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for the entire range 0 ≤ q ≤ 1/ξ, ξ ∼ 10nm being the coherence length. Thus, the

transverse gauge field excitations can be neglected. For a comparison, the dimension-

less parameter for the strength of the longitudinal interactions Ui and Ue is

αL ≡
e2∗1,2mv

~2nv

∼ ρsmv

~2nv

· q

q + qc(1± e−qa)
≤ ρsmv

~2nv

∼ 1. (3.11)

With these simplification, we now rewrite the action for the bilayer system as

S =
∑
q⃗,ω

[−δρv1i~ωϕ1 − δρv2i~ωϕ2

+
1

2
δρv1Uiδρv1 +

1

2
δρv2Uiδρv2 + δρv1Ueδρv2

+
1

2mv

(~q⃗ψv1)
2 +

1

2mv

(~q⃗ψv2)
2

]
.

(3.12)

As the magnetic fields increases, αL gets suppressed, and therefore the vortex system

goes from a interaction-dominated localized phase (Cooper-pair superfluid phase, i.e.,

superconducting) to a kinetic-energy-dominated superfluid phase (Cooper-pair insu-

lating phase), possibly through a metallic phase. Finally, when the applied magnetic

field is large enough that unpaired electrons (“spinons“ in Ref. [62]) are delocalized,

they impede vortex motion through their statistical interaction with vortices and

therefore suppress the resistance down to values consistent with a normal state in the

absence of pairing (see Ref. [62]).

3.2.2 Drag resistance in the vortex metal regime

As explained in the introduction, essentially all films undergoing a magnetic field

driven SIT also exhibit the saturation of their resistance at the transition. Within

the vortex picture, the intervening metallic phase is interpreted as a liquid of uncon-

densed vortices [62], and the vortices are diffusive, and have dissipative dynamics.

At intermediate fields and low temperatures, where the intermediate metallic phase

appears, the vortices are delocalized but uncondensed. In this phase one can de-

rive the following form of the the drag conductance σD (which for the vortices is the
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equivalent through duality to the drag resistance of charges) using either the Boltz-

man equation or diagrammatic techniques, irrespective of the effective statistics of

vortices[190, 197, 198, 199, 200, 201, 202]:

σD =
~2

8π2T

∂σ1
∂n1

∂σ2
∂n2

∫ ∞

0

q3dq

∫ ∞

0

dω
|U |2 Imχ1 Imχ2

sinh2
( ~ω
2T

) , (3.13)

where σi, ni, and χi are the conductance, density, and the density response function

of the vortices in the i−th layer. In addition,

U =
Ue

(1 + Uiχ1)(1 + Uiχ2)− U2
eχ1χ2

(3.14)

is the screened interlayer interaction, Ue is the bare interlayer interaction, and Ui

is the intralayer interaction, and T is the temperature. ∂σv/∂nv appears since RD

is related to the single layer rectification function, Γ, defined as j⃗v = Γϕ2, with ϕ

being the vortex potential field. Γ is generally proportional to ∂σv/∂nv (see Ref.

[201]). Combining the vortex density expression ni = B/Φ0 and the relation between

physical resistance and the vortex conductance R = ( h
2e
)2σv with (3.13), one obtains

the drag resistance

RD =
e2Φ2

0

8π4T

∂R1

∂B

∂R2

∂B

∫ ∞

0

q3dq

∫ ∞

0

dω|U |2 Imχ1 Imχ2

sinh2
( ~ω
2T

) . (3.15)

Remarkably, the drag resistance is proportional to ∂R1,2/∂B, and thus RD peaks

when the MR attains its biggest slope. This is one of the most important results of

our analysis. Intuitively, the dependence of the drag on ∂σV /∂nV = ∂R1,2/∂B arises

since the drag effect is the result of the nonuniformity of the relevant particle density;

how this nonuniformity affects the voltage drop in the medium both in the primary

and secondary layers is exactly the origin of the square of the magneto-resistance

slope.

The only model-dependent input is the density response functions χ1,2. As one

choice of χ1,2, we follow the vortex Fermi liquid description for the metallic phase of

Ref. [62] and use the Hubbard approximation form for χ1,2 considering the short-range
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repulsion between vortices and also the low density of this vortex Fermi liquid[202,

203]:

χ(q⃗, ω) =
χ0(q⃗, ω)

1− Ui(q⃗)χ0(q⃗, ω)G(q⃗)
, (3.16)

where G(q⃗) = q2/(q2+k2F ), and kF of the vortex Fermi liquid can be easily calculated

from the vortex density:

kF =
√
4πnv =

√
4π

B

Φ0

. (3.17)

One can define the mean free path l and the transport collision time τ for vortex

Fermi liquid. Their value can be estimated by combining the expression for vortex

conductivity σv = nvτ/mv and the relation between the physical resistance and the

vortex conductance R = ( h
2e
)2σv:

τ = R
mv

nv

(
2e

h

)2

,

l =
R

π2~/e2

√
4π

nv

. (3.18)

When ql > 1 or ωτ > 1 we approximate χ0 by the noninteracting ballistic fermion

result[204]:

χ0 = ν
(
1− C+

√
|s+| − C−

√
|s−|

)
, (3.19)

where

s+ ≡
(
kF
q

)2

−
(
mvω + q2/2

q2

)2

;

s− ≡
(
kF
q

)2

−
(
mvω − q2/2

q2

)2

, (3.20)

and

C± = sgn

(
q2

2mv

± ω

)
, if s± < 0,

C± = ±i, if s± > 0. (3.21)
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For ql < 1 and ωτ < 1, we use the diffusive Fermi liquid result:

χ0 = ν
Dq2

Dq2 − iω
(3.22)

Plugging (3.16) into (3.15), one can numerically compute the drag resistance. The

result is given in Sec. 3.2.5.

Note that this result does not crucially depend on choice of fermionic density re-

sponse function above. As stated earlier, as long as vortices form an uncondensed

liquid, (3.15) remains valid. We have also computed RD by modeling the metallic

phase as a classical hard-disk liquid of vortices[205, 206], and putting the correspond-

ing density response function into (3.15). The resulting magnitude and the behavior

of RD are extremely close to the results we obtained above within the vortex Fermi

liquid frameworks (see Appendix 3.D). This demonstrates the universality of our

results.

3.2.3 Drag resistance in the insulating (vortex superfluid)

regime

According to the vortex theory, the insulating phase is a superfluid of bosonic vortices.

In this regime, the vortex dynamics is presumably nondissipative. A mechanism of

nondisspative supercurrent drag between bilayer bosonic superfluid systems has been

studied by Ref. [207, 208, 209]. Here, we apply this approach to the superfluid of

vortices in the insulating regime. In the absence of current bias, we have the following

action from (3.12) deep in the insulating phase:

S =
∑
q⃗,ω

{
−iδρ1ϕ1ω +

nv

2mv

(−q2ϕ2
1)

− iδρ2ϕ2ω +
nv

2mv

(−q2ϕ2
2)

+
1

2
Ui(δρ1)

2 +
1

2
Ui(δρ2)

2 + Ueδρ1δρ2

}
. (3.23)

Switching to the canonical quantization formalism and using mean field approxi-
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mation for the quartic interaction term[208], the above action (3.23) corresponds to

the following Hamiltonian for bilayer interacting bosons:

H =
∑
s=±

∑
q⃗

{
q2

2mv

a†s(q⃗)as(q⃗) +
nv

2
[Ui(q) + sUe(q)]

× [a†s(q⃗)a
†
s(−q⃗) + as(−q⃗)as(q⃗)]

}
, (3.24)

where

a±(q⃗) =
1√
2
[ψv1(q⃗)± ψv2(q⃗)], (3.25)

ψv1 and ψv2 are the bosonic vortex field operators for the first and second layer,

respectively. (3.24) can be diagonalized using Bogoliubov transformations:

a±(q⃗) = u±(q⃗)b±(q⃗) + v±(q⃗)b
†
±(−q⃗), (3.26)

where in the long wavelength limit

u2±(q⃗) =
1

2

{
nv[Ui ± Ue]

ω±(q)
+ 1

}
,

v2±(q⃗) =
1

2

{
nv[Ui ± Ue]

ω±(q)
− 1

}
,

ω±(q⃗) =

√
q2nv

mv

[Ui(q)± Ue(q)]. (3.27)

A vortex current bias v⃗1 in layer 1 (the driving layer) is represented by a perturbation

term H1 in our Hamiltonian:

H1 =
∑
q⃗

mv j⃗1 · v⃗1. (3.28)

The drag current in the second layer can be calculated using standard perturbation

theory. The new ground state to the first order in v1 is given by

|Ω⟩ = |0⟩ −
∑
n̸=0

|n⟩⟨n|H1|0⟩
En − E0

, (3.29)
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where |0⟩ is the vacuum state of b†±, and |n⟩ represents all possible states obtained by

acting b†± on |0⟩. Thus, at this order,

⟨⃗j2⟩ = ⟨0|⃗j2|0⟩ −
∑
n̸=0

⟨0|H1|n⟩⟨n|⃗j2|0⟩
En − E0

(3.30)

−
∑
n̸=0

⟨0|⃗j2|n⟩⟨n|H1|0⟩
En − E0

.

It is straightforward to check that the only excited states |n⟩ that contribute to the

sum are of the form b†+(q⃗)b
†
−(−q⃗)|0⟩. One thus obtains

⟨⃗j2⟩ =
v⃗1
4mv

∑
q⃗

q2
[v+(q⃗)u−(q⃗)− v−(q⃗)u+(q⃗)]

2

ω+(q⃗) + ω−(q⃗)

=
v⃗1

16mv

∑
q⃗

q2
[ω2

+(q⃗)− ω2
−(q⃗)]

2

ω+(q⃗)ω−(q⃗)[ω+(q⃗) + ω−(q⃗)]3
. (3.31)

Now, plugging (3.27) into (3.31), to the second order in interlayer interaction Ue we

have

⟨⃗j2⟩ = v⃗1
~

128a2Φ0

√
q3c

2πnvmv

.

Divding this result by ⟨⃗j1⟩ = nvv⃗1 and recalling that the resistance is proportional to

the vortex current, one is ready to obtain the drag resistance,

RD

R
=

⟨j2⟩
⟨j1⟩

=
~

128a2Φ0

√
q3c

2πmvn3
v

. (3.32)

When spinons are mobile, they will suppress the drag resistance, as we will show in

section 3.2.4.

3.2.4 The effect of mobile spinons

The discussions in previous sections apply to the case where no mobile unpaired

electrons, i.e. spinons in Ref. [62], exist in the system. However when the magnetic
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field is strong enough to pull apart Cooper pairs and delocalize spinons, as is signaled

by the downturn of the magnetoresistance, the drag resistance is modified by the

spinons. In this subsection, we analyze how mobile spinons affect our drag resistance

results above.

We follow the semiclassical Drude formalism as in Ref. [62] which takes into ac-

count the statistical interaction between Cooper pairs, vortices, and spinons. Vortices

and spinons see each other as π-flux source, while electric current exerts Magnus force

on vortices. Denoting the electric current, vortex current, and the spinon current in

the n−th layer as J⃗n, j⃗v,n, j⃗s,n, we have the following equations for the first (driving)

layer (see Ref. [62]):

j⃗v1 = σvẑ × (⃗js1 − J⃗1),

j⃗s1 = σsẑ × j⃗v1.

Similarly, denoting the vortex drag conductance without spinons as σD, we incor-

porate the drag effect in the following way in the equations of the second (passive)

layer:

j⃗v2 =
σD
σv
j⃗v1 + σvẑ × j⃗s2,

j⃗s2 = σsẑ × j⃗v2.

This set of equations is a consequence of the absence of electric current but the

presence of vortex drag effect in the second layer. We can solve these two sets of

equations, and obtain the effective vortex drag conductance:

σeff
D =

jv2
J1

=
σD

(1 + σvσs)2
. (3.33)

Since the physical resistance R = (h/(2e))2σv, we have

Reff
D =

RD

(1 +Rv/Rs)2
. (3.34)
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where RD is the drag resistance if spinons are localized, Rv = (h/2e)2σv is the vortex

contribution to the resistance, and Rs = σ−1
s is the spinon contribution to the resis-

tance. Thus, we see that when Rs ≪ Rv, the drag resistance is quickly suppressed to

unmeasurably small as spinon mobility increases.

3.2.5 Results of the drag resistance in the vortex theory
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Figure 3.2: Drag resistance RD (in Ohms) between two identical films as in FIG. 2b
of Ref. [35] vs. magnetic field B, according to the vortex picture[62] (log scale);
. The drag resistance has been smoothened to avoid discontinuity at the boundary
between the metallic and the insulating phase. Center-to-center layer separation
a = 25nm, temperature T = 0.07K and 0.35K. Insets: single layer magnetoresistance
(magnetoresistance, log scale) reproduced according to the quantum vortex theory..
The parameters are tuned to make the magnetoresistance resemble the experimental
data in FIG. 2b of Ref. [35]. RD has a peak at the steepest point (∼ 8T) of the
magnetoresistance, which is due to the fact that RD is proportional to the square
of the slope of the magnetoresistance in the small magnetic field side of the peak.
Also, RD is larger at lower temperature, because the magnetoresistance curve is then
much steeper. Carrying out the experiments at even lower temperatures may further
enhance the vortex drag effect.

Collecting the above results and the value of the vortex mass mv discussed in

Appendix 3.2.1, tuning the value of the vortex (spinon) contributions to the resistance

Rv (Rs) so that R = RvRs/(Rv+Rs) (see Ref. [62]) resembles the resistance observed
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in the experiment of Ref. [35], and setting temperature to be 0.07K and 0.35K,

we have calculated the drag resistance between two identical films with single layer

resistance given by the inset of FIG.3.2, and with center-to-center layer separation

25nm. We assume that vortices form a Fermi liquid (thus (3.15) is applicable; however

see also Appendix 3.D) when B < 9T, and a bosonic superfluid (thus (3.32) is used)

when B > 9T. We smoothen the drag resistance curve by convoluting it with a

Gaussian function to avoid discontinuity across the phase boundary between the

metallic phase and the insulating phase.

The results of vortex drag are summarized in FIG.3.2. One can see that The drag

resistance has a peak at the steepest point (∼ 8T) of the magnetoresistance. This is

due to the fact that in the vortex metal regime, the drag resistance is proportional to

the square of the slope of the magnetoresistance. Also, the drag resistance is larger at

lower temperature. This is because the magnetoresistance curve is much steeper as

one approaches zero temperature(see (3.15)). For the film of Ref. [35], the sheet drag

resistance is about 10−1 mΩ at its maximum, which is measurable despite challenging.

We suggest to carry out experiments to even lower temperature, which should leads

to a larger drag resistance. Using a Hall-bar shape sample would also amplify the

result.

3.3 Drag resistance in the percolation picture

3.3.1 Review of the percolation picture of the magnetoreis-

tance

Within the percolation picture of Ref. [63], it is argued that the non-monotonic

magnetoresistance arises from the film breaking down to superconducting and normal

regions (described as localized electron glass) [63]. As the magnetic field increases,

the superconducting region shrinks, and a percolation transition occurs. Once the

normal regions percolate, electrons must try to enter a superconducting island in

pairs, and therefore encounter a large Coulomb blockade absent in normal puddles.
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The magnetoresistance peak thus reflect the competition between electron transport

though narrow normal regions, and the tunneling through superconducting islands.

This picture is captured using a resistor network description. Each site of the

network has a probability p to be normal, and 1− p to be superconducting; each link

is assigned a resistance from the three values RNN , RSS, RSN , that reflect whether

the sites the link connects are normal (N), or superconducting (S). An increase of

the magnetic field is assumed to only cause p to increase. Since the normal region is

described as disordered electron glass, RNN , the resistance between two normal sites,

is assumed to be of the form of hopping conduction:

Rij ∼ RN0 exp

(
2

ξloc
+

|ϵi|+ |ϵj|+ |ϵi + ϵj|
kBT

)
, (3.35)

where ξloc is the localization length, and ϵi is the energy of the i−th site measured

from the chemical potential (taken from a uniform distribution [−W/2,W/2]), and

for simplicity we allow only nearest neighbor hopping. The resistance between two

superconducting sites, RSS, is taken to be very small, but still nonzero, and vanishes

as T ∼ Tα → 0. Most importantly, the resistance between one normal site and a

neighboring superconducting site, RSN , is assumed activated:

RSN ∼ RSN0 exp

(
Ec

kBT

)
(3.36)

to model the charging energy electrons need to pay to enter a superconducting island.

We have reproduced the work of Ref. [63] where the parameters of this model

are chosen to reproduce the magneto-resistance curves and temperature dependence

observed in the strong-insulator InO sample [35]. The total resistance vs. the proba-

bility of normal metal (assumed to increase with increasing magnetic field) is shown

in the inset of FIG.3.3. Indeed, the peak of the magnetoresistance can be explained

by this theory. However, as we demonstrate now, this theory predicts a very different

behavior for the drag resistance.
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3.3.2 Calculation of drag resistance within the percolation

picture
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Figure 3.3: Drag resistance RD (in Ohms) between two identical films as in FIG. 2b
of Ref. [35] vs. normal metal percentage p (corresponding to normal magnetic field),
according to the percolation picture[63]. Center-to-center layer separation a = 25nm,
temperature T = 0.07K and 0.35K. Insets: single layer magnetoresistance (mag-
netoresistance, log scale) reproduced according to the percolation theory. The pa-
rameters are tuned to make the magnetoresistance resemble the experimental data in
FIG. 2b of Ref. [35]. The sign of the voltage drop of the passive layer is opposite to
that of the driving layer, and the maximum magnitude value of RD is much smaller,
∼ 10−12Ω.

To calculate RD, we first follow Ref. [63] and tune the parameters to make the

single layer resistance resemble the experimental data in FIG. 2(b) of Ref. [35]: ξloc =

0.1,W = 0.4K, Ec = 0.6K, RSN0 ∼ 106Ω, and RN0 ∼ 10−5Ω. Next, we place one such

network (active layer) on top of another one (passive layer). Each link is treated as a

subsystem, which might induce a drag voltage (an emf) ε = IRD in the link under it

in the passive layer. When a link is between two normal (or superconducting) sites,

it is treated as a disorder localized electron glass (or superconductor). In Appendix
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3.E, we find RD between two localized electron glass separated by vacuum is:

RD ≈ 1

96π2

R1R2

~/e2
T 2

(e2nad)2
ln

1

2x0
. (3.37)

Here, n ≈ 5× 1020cm−3 is the typical carrier density of InO[19], d = 20nm is the film

thickness, a = 25nm is the center-to-center layer separation, R1,2 are the resistances

of the two normal-normal(NN) links, x0 = a/(2πe2νdξ2) where ν is the density of

states and ξ ≈ 1nm is the localization length. The value of the localization length

ξ is estimated by following Ref. [63] to take ξ ∼ 0.1× plaquette size (reflecting

the fact that it is a disordered insulator), and we estimate the plaquette size as the

superconducting coherence length ∼ 10nm. Although this estimation of localization

length is crude, the drag resistance RD has only logarithmic dependence on it in

(3.37). Setting T = 0.07K, and R1 = R2 = 105Ω, we can estimate RD ∼ 10−12Ω.

On the other hand, we will show in Appendix 3.F that a genuine (i.e., without

mobile vortices) superconductor has no drag effect at all in a resistor network, either

when it is aligned with another superconductor link or a normal link. Thus, drag

effects associated with a superconducting link can only come from vortices. How-

ever, The small resistance for the superconducting islands in this theory implies that

vortices in the superconducting islands, if any, have very low mobility. If two super-

conducting links are vertically aligned, we can estimate the drag resistance due to

mobile vortices using our vortex drag result (3.15): roughly RD ∝ R2, for R ∼ 109Ω

we obtained RD ∼ 10−4Ω, therefore for R ∼ 1Ω we have RD ∼ 10−20Ω, which is

negligible compared to the Coulomb drag resistance between two NN links ∼ 10−12Ω.

Finally, Ref. [210] has shown that a current off the plane where vortices reside does

not exert any force on vortices. By Newton’s third law or equivalently the Kubo

formula for the drag conductance, this also implies that moving vortices does not

exert any DC emf in another layer. Therefore, there is no drag effect when a NN link

is aligned with a SS link. Consequently, the Coulomb drag between two vertically

aligned NN links (Eqn. (3.37)) dominates the drag effect.

Thus, we solve the Kirchoff’s equations for the two layers, and obtain the voltage
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drop and thereby the drag resistance. The results are shown in FIG. 3.3, with T =

0.07K and 0.35K, film-thickness 20nm, and the center-to-center interlayer distance

25nm. We observe that the sign of the voltage drop of the passive layer is opposite to

that of the driving layer (not shown in the Figure), as expected and explained in the

introduction, and the maximum magnitude of the drag resistance is around 10−12Ω,

indeed much smaller than that in the vortex paradigm.

3.4 Discussion on the drag resistance in the phase

glass theory

A third theory, namely the phase glass theory[68, 69], focuses on the nature of the

metallic phase intervening the superconducting and insulating state. In this theory,

the system is described as interacting bosons (Cooper pairs), but it is argued that

the glassy phase is in fact a Bose metal, due to the coupling to the glassy landscape.

Specifically, Ref. [68] has studied the quantum rotor model

H = −Ec

∑
i

(
∂

∂θi

)2

−
∑
⟨i,j⟩

Jij cos(θi − θj), (3.38)

where the Josephson coupling Jij obeys a Gaussian distribution with nonzero mean.

This model is appears to exhibit three phases: superconducting phase, phase glass

phase, and a Mott insulator phase. Ref. [68] has employed replica trick to obtain the

Landau theory of the the phase glass phase near the glass-superconductor-transition

critical point, and has calculated the conductance in this regime. It was found that

in this regime the DC conductance is actually finite at zero temperature. For com-

pleteness, we note that Ref. [70] argued against these results and obtained infinite

conductance instead.

This analysis has recently been extended to include the external perpendicular

magnetic field[69], which is more relevant to the experiments on the magnetic field

tuned transition. However, Ref.[69] has only studied the regime of small magnetic field
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where one just enters the resistive glassy phase and left out issues such as the peak

in the magnetoresistance. Therefore, we leave a complete analysis to future work and

simply observe that according to this theory, the resistive state is a glassy phase where

phase variables θi’s of the bosons are ordered locally. In other words, there are no

mobile vortices moving around. Consequently, the current coupling as we considered

in the vortex drag should is absent, and the Coulomb interaction should dominate

the drag effect. Therefore, we expect that the sign of the drag voltage is opposite

to the voltage drop of the driving layer, as we discussed in the introduction to be a

general feature of the Coulomb drag, and the magnitude of the drag resistance should

be small. This is in part because for a bosonic system, the phase space available for

excitations is much smaller than fermionic systems due to the absence of a Fermi

surface.

3.5 Summary and discussion

One of the most exciting possiblities is that the SIT in amorphous thin films realizes

the vortex condensation scenario [20, 21, 62]. The amorphous-films Giaver trans-

former experiment [191], would be able to measure a distinct signature of mobile

vortices, which is a drag resistance opposite in its direction to that of coulomb drag.

Therefore such a measurement would able to disclose whether the vortex paradigm

is suitable for explaining the complex phase diagram of amorphous films in a normal

manetic field, or whether the percolation paradigm is indeed more appropriate. We

provide a detailed computation of the drag resistance according to the vortex theories

of Ref. [21, 62] and the percolation theory of Ref. [63]. The drag resistance implied

by the phase glass model[68, 69] is also briefly discussed. We find that vortex picture

predicts a drag resistance orders of magnitude stronger than non-vortex pictures.

In addition, the drag resistance and the single layer resistance have the same sign

according to the vortex picture, but the opposite sign for non-vortex pictures. There-

fore, drag resistance measurement are indeed able to distinguish different theoretical

paradigms qualitatively.
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We considered specifically a bilayer device which will contain two identical films as

in Ref. [35] with 25nm layer separation and at 0.07K. A calculation within the vortex

paradigm yields a drag resistance RD ∼ 10−4Ω at its maximum value. This drag

arises solely from the attractive interaction of the demagnetizing currents of vortices.

The value we find is probably near the limit of measurability; we suggest, however,

to carry out experiments at even lower temperature, in which case the single layer

magnetoresistance is even steeper, and the drag resistance should be larger. Within

the percolation picture of Ref. [63], the dominating drag effect is the drag between

two vertically aligned normal regions in the different layers. For two identical films

as in Ref. [35] with 25nm layer separation at 0.07K, we find the drag resistance

RD ∼ 10−12Ω at its maximum value, which is indeed orders of magnitude smaller

than the drag resistance predicted by the vortex picture. Also, we find the sign of

the drag resistance is the opposite of that of the single layer resistance, as expected.

The answer we find should not depend crucially on the details of the microscopic

picture which we use. If vortices are not responsible for the inhibitive resistance

which the films display, then drag effects will appear primarlily due to Coulomb

repulsion of single electrons. This drag effect will be low because of the relatively

high electronic density in the films. On the other hands, if vortices are responsible

for the large resistance in the intermediate magnetic fields leading to the insulating

phase, then they will produce a drag opposite in its direction to the Coulomb drag.

To carry out the vortex drag calculation in the metallic phase intervening between

the superconducting and insulating phase we used the picture of Ref. [62], which

treats the vortices as fermionic diffusive particles. This picture is justified due to the

strong long-ranged interactions within the vortex liquid, which render the question of

statistics secondary, intuitively, since vortices rarely encircle each other. Nevertheless,

to demonstrate the universality of our results, we also carried out the drag calculation

in the metalic phase assuming that the vortices are hard core disks, and obtained

essentially the same answer (c.f. App. 3.D).

Indeed our strongest results are obtained in the intermediate-field metallic phase.

The controversy surrounding this phase requires some special attention. First, we
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note that all experiments of thin amorphous films exhibit a saturation of the resis-

tance at temperature below about 100mK at intermediate resistances. This is clearly

seen in, e.g, the resistance vs. field traces which overlap at subsequent temperature

sweeps as in Fig.2b of Ref. [35]. Second, there are reasons to believe that this satura-

tion is not the result of failure to cool electrons. Resistances that are too low or too

high continue to change as the temperature is lowered. But the two heating mecha-

nisms most likely are current heating, with power ∼ I2R, and therefore affecting the

highest temperatures, and ambient RF heating, which would have a voltage-biased

power ∼ V 2/R, and therefore most effective in the lowest resistances. Neither mech-

anism explains resistance saturation at intermediate temperatures. Furthermore, ex-

periments on Tantalum films show distinct signatures in the metallic regime which

disappear in the insulating and superconducting regimes, and also distinguish it from

the thermally-destroyed superconducting phase[53]. Third, even if the metallic be-

havior of the films is a finite temperature phenomena, within the vortex paradigm,

the resistance still arises due to vortex motion. Therefore the drag calculated within

this paradigm using a diffusive vortex model should still be adequate, and our results

do not depend crucially on the existence of a zero-temperature intervening metallic

state.

The signatures we expect to find in the proposed magnetic and Coulomb drag

measurements are not large. Incorporating interlayer electron and Josephson tun-

neling will increase both the vortex-drag effect and the competing Coloumb drag

effects. As we point out here, the drag signature of vortex motion, or single electrons

or Cooper-pairs motion will have opposite signs. Quite possibly, allowing interlayer

tunneling will render both drag effects measurable. Indeed, such a setup will be a

deviation from standard drag measurements where charge transfer between layers is

forbidden. Nevertheless, a careful choice of tunneling strength and sample geometry

will make such experiments plausible and useful. We intend to analyze the vortex

and Coloumb drag in the presence of interlayer tunneling in future work.
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3.A The determination of the vortex mass

In this appendix, we demonstrate in detail the derivation of the vortex-boson duality

for a single layer and discuss the value of the vortex mass. Our starting point is the

following partition function for Cooper pairs:

Z =

∫
DρDθDA⃗e−S, (3.39)

where the action S is

S =

∫ β

0

dτ

{∫
d2r(~ρ∂τθ +H0 +Hint)

}
,

H0 =

∫
d2r

ρs
2~2

(
~∇θ − 2e

c
A⃗ext −

2e

c
A⃗

)2

+
1

4π

∫
d3rB⃗2,

Hint =

∫
d2r

∫
d2r′

1

2
ρ(r)V (r − r′)ρ(r′). (3.40)

Here, ρ and θ are the density and phase fluctuation of the Cooper pair field, re-

spectively, A⃗ is the fluctuating electromagnetic field, and A⃗ext is the applied external

electromangetic field, typically a perpendicular magnetic field. V (r) = (2e)2/r (whose

2d Fourier transform would be 2π(2e)2/k) is the Coulomb interaction between Cooper

pairs. ρs is the bare stiffness for phase fluctuations. The value of ρs can be determined

approximately by the zero-field Kosterlitz-Thouless temperature TKT :

TKT =
π

2
ρs. (3.41)

The 2d number current of Cooper pairs is

j⃗ =
ρs
~2

(
~∇θ − 2e

c
A⃗ext −

2e

c
A⃗

)
. (3.42)
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One can introduce the dynamical field j⃗ by Hubbard-Stratonavich transformation (or

Villain transformation in the lattice version of this derivation) and transform Z to be

Z =

∫
DρDθDj⃗DA⃗e−S, (3.43)

where

S =
∑
ω,q⃗

{
−i~ωρθ + 1

2
ρV ρ+

~2

2ρs
j⃗2

+ i⃗j ·
(
~(∇θ)q −

2e

c
A⃗ext −

2e

c
A⃗(q⃗, z = 0)

)
+

∫
dkz
2π

q2 + k2z
4π

A⃗2(q⃗, kz)

}
. (3.44)

Here, i is the imaginary number unit, q⃗ is the in-plane 2d wave vector, while kz is

the 3rd wave vector component perpendicular to the plane, and subscripts q⃗ mean

Fourier transformed variables. Next we split the θ field into a smooth part θs and

a vortex part θv: θ = θs + θv. Afterwards one can integrate out θs to obtain the

continuity constraint:

Z =

∫
DρDj⃗DθvDA⃗δ(∂tρ+∇ · j⃗)e−S, (3.45)

where

S =
∑
ω,q⃗

{
−i~ωρθv +

1

2
ρV ρ+

~2

2ρs
j⃗2

+ i⃗j ·
(
~(∇θv)q −

2e

c
A⃗ext −

2e

c
A⃗(q⃗, z = 0)

)
+

∫
dkz
2π

q2 + k2z
4π

A⃗2(q⃗, kz)

}
.
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Furthermore, noting that A⃗(q⃗, z = 0) =
∫

dkz
2π
A⃗(q⃗, kz), one can integrate out A⃗ in its

transverse gauge, and the action S now reads

S =
∑
ω,q⃗

{
−i~ωρθv +

1

2
ρV ρ+ i⃗j ·

(
~(∇θv)q −

2e

c
A⃗ext

)
+

~2

2ρs

(
1 +

qc
q

)
j⃗2
}
, (3.46)

where qc is the inverse of the 2d Pearl screening length[193], and typically it is much

smaller than 1/L, where L is the sample size.

The continuity constraint is solved by defining a new gauge field aµ = (a0, a⃗) such

that

jµ =
1

η
ϵµνη∂νaη, (3.47)

where jµ = (c∗ρ, j⃗) and ∂µ = ( 1
c∗
∂τ ,∇), and the value of constant η and the ”speed

of light” c∗ are to be determined. Writing in components, (3.47) is

e⃗ = ηj⃗ × ẑ, b = ηc∗ρ, (3.48)

where e⃗ and b are the dual ”electric field” and ”magnetic field” associated with α,

respectively. To fix η and c∗, we require

1

4π
e⃗2 =

~2

2ρs

(
1 +

qc
q

)
j⃗2,

1

4π
b2 =

1

2
ρV ρ, (3.49)

thus

η ≡

√
2π~2
ρs

q + qc
q

, c∗ =

√
2π(2e)2ρs
(q + qc)~2

. (3.50)

Using (3.47), we express the partition function Z as

Z =

∫
Da⃗Da0Dθve−S, (3.51)
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where

S =
∑
ω,q⃗

{
1

η
ϵµνηqνaη

(
~(∂µθv)q −

2e

c
Aext

µ

)

+
1

4π
(ω2 − c2∗q

2)

(
a⃗

c ∗

)2

+
q2

4π
a20

}
. (3.52)

Integrating by parts, and noting the definition of the vortex current density

jvµ =
1

2π
ϵµνη∂ν∂ηθ

v, (3.53)

we obtain

S =
∑
ω,q⃗

{
−e∗ia0

(
ρv −

Bext

Φ0

)
+ ie∗j⃗v · a⃗

c∗

+
1

4π
(ω2 − c2∗q

2)

(
a⃗

c ∗

)2

+
q2

4π
a20,

}
. (3.54)

where Φ0 = hc/(2e), and the ”dual charge” of vortices is

e∗ =
2π~
η

=
√
2πρs

√
q

q + qc
. (3.55)

In the above, we have assumed that the only external electromagnetic field is a per-

pendicular magnetic field Bext.

The magnitude of the Magnus force, which now appears as the electric force, can

be easily verified:

F = e∗ × |e⃗| = 2π~
η

× ηj = hj, (3.56)

as expected.

Introducing a vortex field ψv and making the action explicitly gauge-invariant, we
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write the action as

S =
∑
q⃗,ω

{
δρv(−~iωϕ− ie∗a0) +

1

2mv

[(
~q⃗ − e∗

a⃗

c∗

)
ψv

]2

+
1

4π
(ω2 − c2∗q

2)

(
a⃗

c∗

)2

+
q2

4π
a20

}
, (3.57)

where δρv = ρv − Bext

Φ0
, and we have introduced the vortex mass mv. Integrating out

a0, one obtains

S =
∑
q⃗,ω

{
−δρv~iωϕ+

1

2
δρvUδρv

+
1

2mv

[
(~q⃗ − e∗

a⃗

c∗
)ψv

]2
+

1

4π
(ω2 − c2∗q

2)

(
a⃗

c∗

)2
}
, (3.58)

where

U(q) =
Φ2

0qc
2π

1

q(q + qc)
(3.59)

is the well-known Pearl interaction potential[193].

In the insulating phase, i.e., the vortex condensed phase with vortex superfluid

stiffness ρvs, we have

S =
∑
q⃗,ω

{
−δρv~iωϕ+

ρvs
2~2

(
i~q⃗ϕ− e∗

a⃗

c∗

)2

+
1

2
δρvUδρv +

1

4π
(ω2 − c2∗q

2)

(
a⃗

c∗

)2
}
. (3.60)

Due to the Higgs mechanism in this ”symmetry broken phase”, the gap of the two

modes in the vortex superfluid phase coincide to be

Egap =
√

2πρvse2∗ ≈ 2π
√
ρvsρs (3.61)

for qc ≪ L−1. Roughly speaking the two modes correspond to a density fluctuation
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of the vortices, or of the underlying Cooper-pairs Deep in the insulating phase, i.e.,

near the peak of the magnetoresistance, the vortex stiffness is simply

ρvs = ~2
nv

mv

, (3.62)

where the vortex density nv ≡ B/Φ0. Therefore, in this regime we have

Egap = 2π~
√
nv

mv

ρs. (3.63)

Since the gauge field aµ is actually the fluctuation of Cooper pairs, we conjecture that

its gap Egap can be identified with the activation gap observed in the experiments

of Ref. [35, 19] near the insulating peak. Ref.[35, 19] have also found that with

increasing disorder strength, the ratio Egap/TKT is enhanced. This is natural from

our expression (3.63): dividing (3.63) by (3.41), we have

Egap

TKT

= 4~
√
nv

mv

1

ρs
; (3.64)

increasing disorder makes vortices more mobile and thereby suppresses the vortex

mass mv [17]; it also suppresses the superfluid stiffness ρs. Therefore, Egap/TKT is

larger for more disordered sample.

Since there is still controversy over its theoretical value, we chose to use the exper-

imental value of Egap as an input to deduce the vortex mass from (3.63). Combining

(3.41), we can express the vortex mass mv as a function of observable quantities:

mv =
8πnvTKT

E2
gap

. (3.65)

Again, the vortex density nv = B/Φ0. For the InO film of Ref. [35], TKT ≈ 0.5K,

and Egap ≈ 1.6K at B = 9T. Plugging these into (3.65), we obtain mv ≈ 19me where

me is the bare electron mass. For comparison, this value is not far from that of the

so-called core mass of dirty superconductors[211, 212, 213, 214]m ∼ (kFd)me ∼ 49me

if we use carrier density ∼ 5× 1020cm−3 and d ∼ 20nm (see Ref. [35, 19]).
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3.B Field theory derivation of the vortex interac-

tion potentials

For identical bilayer superconducting thin films separated by a (center-to-center) dis-

tance a, we have the following partition function for Cooper pairs:

Z =

∫
Dρ1Dρ2Dθ1Dθ2DA⃗e−S, (3.66)

where

S =

∫ β

0

dτ

{∫
d2r

∑
n=1,2

~ρn∂τθn +H0 +Hint

}
,

H0 =

∫
d2r

∑
n=1,2

ρs
2~2

(
~∇θn −

2e

c
A⃗ext −

2e

c
A⃗

)2

+
1

4π

∫
d3rB⃗2,

Hint =

∫
d2r

∫
d2r′

1

2

∑
n=1,2

ρn(r)Vi(r − r′)ρn(r
′)

+ ρ1(r)Ve(r − r′)ρ2(r
′),

where ρn and θn are the density and phase fluctuation of the n−th layer Cooper pair

field, respectively, A and Aext are the fluctuating and external part of the electromag-

netic field, respectively. The intralayer Coulomb interaction Vi(r) = (2e)2/r (whose

2d Fourier transform would be 2π(2e)2/q), and the interlayer Coulomb interaction

Ve(r) = (2e)2/
√
r2 + a2 (whose 2d Fourier transform is 2π(2e)2/qe−qa). ρs is the

superfluid phase stiffness of each layer.

Similar to the single layer case in Appendix 3.A, we can again introduce Hubbard-

Stratonavich fields j⃗1,2, split θ’s into smooth parts θs and vortex parts θv, integrate

out θs and A⃗, and obtain

Z =

∫
Dρ1Dρ2Dθv1Dθv2Dj⃗1Dj⃗2

× δ(∂tρ1 +∇ · j⃗1)δ(∂tρ2 +∇ · j⃗2)e−S (3.67)
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where

S =
∑
ω,q⃗

{
−i~ωρ1θv1 + i⃗j1 ·

(
~(∇θv1)q −

2e

c
A⃗ext

)
− i~ωρ2θv2 + i⃗j2 ·

(
~(∇θv2)q −

2e

c
A⃗ext

)
+

1

2
ρ1Viρ1 +

1

2
ρ2Viρ2 + ρ1Veρ2

+
~2

2ρs

(
1 +

qc
q

)
j⃗21 +

~2

2ρs

(
1 +

qc
q

)
j⃗22

+
~2

ρs

qc
q
e−qaj⃗1 · j⃗2

}
. (3.68)

The difference from the single layer case is that now the continuity constraint is solved

by introducing two new gauge fields αµ = (α0, α⃗) and βµ = (β0, β⃗) such that

j1µ + j2µ =
1

η1
ϵµνη∂ναη,

j1µ − j2µ =
1

η2
ϵµνη∂νβη;

Denoting the electric field and the magnetic field associated with αµ(βµ) are e⃗1 and

b1 (e⃗2 and b2), respectively, we have

e⃗1 = η1(⃗j1 + j⃗2)× ẑ, b1 = η1c∗1(ρ1 + ρ2)

e⃗2 = η2(⃗j1 − j⃗2)× ẑ, b2 = η2c∗2(ρ1 − ρ2). (3.69)

To fix η1,2 and the ”speeds of light” c∗1,2, we require

1

4π
(e⃗21 + e⃗22) =

~2

2ρs

(
1 +

qc
q

)
(⃗j21 + j⃗22) +

~2

ρs

qc
q
e−qaj⃗1 · j⃗2;

1

4π
(b21 + b22) =

1

2
ρ1Viρ1 +

1

2
ρ2Viρ2 + ρ1Veρ2,
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thus for n = 1, 2,

ηn =

√
π~2
ρs

(
1 +

qc
q
(1− (−1)ne−qa)

)
, (3.70)

c∗n = c

√
qc(1− (−1)ne−qa)

q + qc(1− (−1)ne−qa)
. (3.71)

Using (3.69) and (3.53), we can again integrate by parts and express the partition

function Z as

Z =

∫
DαDβDθv1Dθv2e−S, (3.72)

where

S =
∑
ω,q⃗

i

{
−(e∗1α0 + e∗2β0)

(
ρv1 −

Bext

Φ0

)
− i(e∗1α0 − e∗2β0)

(
ρv2 −

Bext

Φ0

)
+ i⃗jv1 · (e∗1

α⃗

c∗1
+ e∗2

β⃗

c∗2
) + i⃗jv2 · (e∗1

α⃗

c∗1
− e∗2

β⃗

c∗2
)

+
1

4π
(ω2 − c2∗1q

2)

(
α⃗

c∗1

)2

+
q2

4π
α2
0

+
1

4π
(ω2 − c2∗2q

2)

(
β⃗

c∗2

)2

+
q2

4π
β2
0

 , (3.73)

and for n = 1, 2, the dual ”charges” of the vortices are

e∗n =
π~
ηn

=
√
πρs

√
q

q + qc(1− (−1)ne−qa)
,

(3.74)

When a (number) current bias j⃗1 is applied in layer 1, the force on a vortex in

this layer is

F = e∗1 × |e⃗1|+ e∗2 × |e⃗2| = e∗1η1|⃗j1|+ e∗2η2|⃗j1|

= h|⃗j1|,
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and the force on a vortex in the other layer is

F = e∗1 × |e⃗1| − e∗2 × |e⃗2| = e∗1η1|⃗j1| − e∗2η2|⃗j1|

= 0,

as expected.

Again, introducing vortex fields ψv1 and ψv2 for each layer and making the action

explicitly gauge-invariant, we can write the action as in

S =
∑
q⃗,ω


∑
n=1,2


((

~q⃗ − e∗1
α⃗
c∗1
+ (−1)ne∗2

β⃗
c∗2

)
ψvn

)2
2mv

+ δρvn (−i~ωϕn − ie∗1α0 + (−1)nie∗2β0)]

+
1

4π
(ω2 − c2∗1q

2)

(
α⃗

c∗1

)2

+
1

4π
(ω2 − c2∗2q

2)

(
β⃗

c∗2

)2

+
q2

4π
α2
0 +

q2

4π
β2
0

}
. (3.75)

Integrating out α0 and β0, one obtains the intralayer vortex interaction potential

Ui(q) =
Φ2

0qc
2π

q + qc
q(q2 + 2qcq + q2c (1− e−2qa))

, (3.76)

and interlayer vortex interaction potential

Ue(q) = − qc
q + qc

e−qaUi. (3.77)

Which concludes the field-theory derivation of the interaction potential.
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3.C Classical derivation of the vortex interaction

potential

In this appendix, we present an alternative way of deriving the vortex interaction

potential between two vortices in a single superconducting thin film and in bilayer

thin films.

First, consider the current and electromagnetic field configuration of a single vor-

tex at r = 0 in a single superconducting thin film with thickness d located at z = 0.

Combining the expression for the 3d current density of the vortex

j⃗ =
c

4πλ2

(
Φ0

2πr
θ̂ − A⃗

)
δ(z)d (3.78)

where d is the thickness, and the Maxwell’s equation, we have

∇2A⃗ = −4π

c
j⃗ =

d

λ2

(
A⃗− Φ0

2πr
θ̂

)
δ(z). (3.79)

Next, we Fourier transform both sides of Eqn. (3.79):

− A⃗(q⃗, kz) =
1

(q⃗2 + k2z)

d

λ

2(
A⃗(q⃗, z = 0)− Φ0

iq
θ̂q

)
, (3.80)

where q⃗ is the 2d wave vector, kz is the wave vector in z−direction, and θ̂q is the

azimuthal unit vector in q−space. Defining the inverse 2d screening length qc =

d/(2λ2) and integrating both sides
∫∞
−∞ dkz, one obtains

A⃗(q⃗, z = 0) =
qc

q + qc

Φ0

iq
θ̂q. (3.81)

From (3.78), we have

j⃗(q⃗) =
qc

q + qc

cΦ0

2πi
θ̂q. (3.82)

Now, we calculate the interaction potential between two vortices in a single super-

conducting thin film. The first vortex is located at r = 0, whose current distribution
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is given by (3.82):

j⃗1(q⃗) =
qc

q + qc

cΦ0

2πi
θ̂q. (3.83)

The second one is located at R⃗ away from the origin:

j⃗2(q⃗) =

∫
d2rj⃗2(r⃗)e

−iq⃗·r⃗ =

∫
d2rj⃗1(r⃗ + R⃗)e−iq⃗·r⃗

= j⃗1(q⃗)e
iq⃗·R⃗.

(3.84)

Their interaction potential is given by

U(R⃗) =
2π

c2

∫
d2q

(2π)2

(
1

qc
+

1

q

)
j⃗1(−q⃗)⃗j2(q⃗), (3.85)

where the first term is the kinetic energy contribution, while the second the term is

from the magnetic energy B2 term. Using (3.83) and (3.84), we have

U(R⃗) =
2π

c2

∫
d2q

(2π)2

(
1

qc
+

1

q

)
j⃗1(−q⃗)⃗j1(q⃗)eiq⃗·R⃗

=

∫
d2q

(2π)2
Φ2

0qc
2π

1

q(q + qc)
eiq⃗·R⃗

≡
∫

d2q

(2π)2
U(q)eiq⃗·R⃗,

(3.86)

where the vortex interaction potential

U(q) =
Φ2

0qc
2π

1

q(q + qc)
(3.87)

is exactly the same as what we obtained earlier in Appendix 3.A with field theory

formalism.

For the case of bilayer thin films with interlayer separation a, we can proceed in the

same way. But there is one subtlety in that case. A vortex in layer 1, characterized by

a phase singularity in layer 1, will also induce a circulating screening current in layer

2. Suppose the two identical layers are located at z = 0 and z = −a, respectively,
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the one-vortex configuration is given by

j⃗1 =
c

4πλ2

(
Φ0

2πr
θ̂ − A⃗(z = 0)

)
δ(z)d,

j⃗′1 =
c

4πλ2

(
−A⃗(z = −a)

)
δ(z + a)d,

∇2A⃗ = −4π

c

(⃗
j1 + j⃗′1

)
.

(3.88)

Performing Fourier transform, one obtains

A⃗(q⃗, kz) =
2qc

q2 + k2z

×
(
Φ0

iq
θ̂q − A⃗(q⃗, z = 0)− eikzaA⃗(q⃗, z = −a)

)
.

Integrating over kz, one obtains two equations for A⃗(q⃗, z = 0) and A⃗(q⃗, z = −a),

whose solution is given by

A⃗(q⃗, z = 0) =
qc[q + qc(1− e−2qa)]

(q + qc)2 − q2ce
−2qa

× Φ0

iq
θ̂q,

A⃗(q⃗, z = −a) = qcqe
−qa

(q + qc)2 − q2ce
−2qa

× Φ0

iq
θ̂q.

(3.89)

Thus, one can obtain j⃗1 and j⃗′1 from (3.88)

j⃗1 =
qc(q + qc)

(q + qc)2 − q2ce
−2qa

cΦ0

2πi
θ̂q,

j⃗′1 = − q2ce
−qa

(q + qc)2 − q2ce
−2qa

cΦ0

2πi
θ̂q.

(3.90)

Next, one put in the currents j⃗2 and j⃗′2 of another vortex either in the same

layer or the other layer, and calculate the intralayer and interlayer vortex interaction

potential Ui and Ue in the same way as we did for the single layer case. For example,

to calculate the vortex interlayer interaction Ue, we put in another vortex with its

core at the second layer, and it has a current j⃗2 in the second layer, and a circulating
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j1

j’1

j’2

j
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Figure 3.4: The setup for calculating vortex interlayer interaction potential Ue. A
phase singularity in layer 1 leads to current j⃗1 and j⃗′1 in laye 1 and 2, respectively,
and similarly a phase singularity in layer 2 leads to current j⃗2 and j⃗′2 in layer 2 and
1, respectively.

screening current j⃗′2 in the first layer (see FIG. 3.4). Thus,

Ue(R⃗) =
2π

c2

∫
d2q

(2π)2

[(
1

qc
+

1

q

)
(⃗j1j⃗

′
2 + j⃗2j⃗

′
1)

+
e−qa

q
(⃗j1j⃗2 + j⃗′1j⃗

′
2)

]
.

(3.91)

The final results are exactly the same as what we found in the field theory formalism

in Sec. 3.2.1 and Appendix 3.B:

Ui(q) =
Φ2

0qc
2π

q + qc
q(q2 + 2qcq + q2c (1− e−2qa))

,

Ue(q) = − qc
q + qc

e−qaUi.

(3.92)

3.D Hard-disc liquid description of the vortex metal

phase

As explained in Sec. 3.2.2, we expect that our results for the vortex drag do not

depend sensitively on the microscopic model we use for the vortices. In Sec. 3.2.2

we used the fermionic vortex response function to determine the drag resistance in

the intermediate metallic regime. Here we demonstrate the robustness of this result

by reproducing the drag resistance results while modeling the vortex liquid in this

regime as a classical hard-disc liquid.
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The density response function χ(k, z) for a liquid of hard-core disks in the hydro-

dynamical limit is[205, 206, 215]

χ(k, z) = χ(k) + i
z

T
C(k, z), (3.93)

where z is the frequency, T is the temperature, χ(k) is the static compressibility, and

C(k, z) = iTχ(k)

[
1

γ

z + ik2(Γ +D(γ − 1))

z2 − c2k2 + izk2Γ

+

(
1− 1

γ

)
1

z + ik2D

]
,

(3.94)

showing a diffusive mode with weight 1 − 1
γ
, and a propagating mode with velocity

c, weight 1/γ and life time 1/(Γk2). Thus

χ(k, z)

χ(k)
=

(
1− 1

γ

)
Dk2

Dk2 − iz
+

1

γ

c2k2 − izDk2(γ − 1)

c2k2 − z2 − iΓk2z
, (3.95)

which satisfies the defining property of χ:

χ(k) = lim
z→0

χ(k, z). (3.96)

Here, γ = Cp/Cv, Cv = 1 is the constant volume specific heat, and

Cp = Cv + TχTβ
2
V /n (3.97)

is the constant pressure specific heat, where n is the vortex density, χT = 1
nT

limk→0 S(k)

is the isothermal compressibility, and S(k) is the structure factor of the vortex liquid;

βV ≡ n(1 + y), where y ≡ π
2
nσ2g(σ),

g(σ) ≡ 1− 7ζ/16

(1− ζ)2
− ζ3/64

(1− ζ)4
, (3.98)

ζ = πnσ2

4
is the packing fraction, and σ is the diameter of the hard-disc vortex which

we take to be the core size of the vortex, which in turn is approximately supercon-
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ducting coherence length ∼ 10nm.

In addition, Γ = a
(

γ−1
γ

)
+ b, and the diffusion coefficient D = a

γ
, where

a =
νσ2

4
+

2

ν
(1 + 3y/4)2v20,

b = 3νσ2/8 + v20(1 + y/2)2/ν,

(3.99)

ν = 2
√
πnσg(σ)v0 is called the Enskog collision frequency, and the thermal velocity

v0 =
√

T
m
, m is the vortex mass. Finally, the speed of sound is

c =

√
Cp

Cv

v0
nTχT

. (3.100)

The static compressibility χ(k) is related to the structure factor S(k) (strictly

speakly, the Ursell function [216]) by

χ(k) =
n

T
S(k), (3.101)

and the structure factor S(k) of a hard disk liquid is determined by following the

so-called Percus-Yevick approximation of Ref. [217, 218]:

S(k) = 1/(1− nh(k)), (3.102)

where

h(k) = 2π

∫ ∞

0

dRRJ0(kR)h(R), (3.103)

h(R) =

 h(0) + ζh(1)2S(R)
2µD

, 0 ≤ R < 1

0, R ≥ 1
. (3.104)

Here, µD = π/16, ζ = πnσ2

4
is the packing fraction,

h(1) =

√
(1− 4ζ)2 − 4(α− β)− (1− 4ζ)

2(α− β)
, (3.105)
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Figure 3.5: Drag resistance in the vortex paradigm at T = 0.07K, with the metallic
phase modeled as classical hard-disc liquid. Everything else is the same those in FIG.
2.

h(0) = h(1)− βh(1)2, (3.106)

β =
ζS(R = 1)

2µD

, α = 2ζ2A, (3.107)

A =
1

µD

(
2

ã

)3 ∫ ã
2

0

dzz2(1− z2)1/2, ã = 1 + ζ, (3.108)

S(R) =
1

ã

arcsin

(
ãR

2

)
+
ãR

2

[
1−

(
ãR

2

)2
]1/2 . (3.109)

Putting these formulae together, we can compute the vortex density response

function in (3.93) and insert it into the drag resistance formula (3.15). The drag

resistance is shown in FIG. 3.5. One can see that it is remarkably close to our

results obtained in Sec. (3.2.2), and thereby demonstrating that the scale of the

drag resistance in the metallic regime is mainly set by the factors dR/dB and is not

sensitive to the statistics of the vortex particles.
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3.E Coulomb Drag for disordered electron glass

In this section, we calculate the drag resistance due to Coulomb interaction between

two disordered electron glasses with finite thickness. This calculation is related to the

work of Ref. [219], but in our case the screening of the interlayer Coulomb interaction

is important (see below), and we take into account the effect of finite film thickness.

The general formula for Coulomb drag resistance in d dimensions is[198, 199]

ρijD =
~2

e2
1

2πn2T

1

Ω

∑
k⃗

kikj
∫ ∞

0

dω

sinh ~ω
2T

|U |2 Imχ1 Imχ2. (3.110)

For the quasi-2d film we are considering, we can break the wavevector summation into

two summations: one over kz, another over the 2d wavevector q⃗. The kz summation

is dominated by the term with kz = 0 component, which physically corresponds to

the configuration with constant density along z-direction. In this case, we can use

the quasi-2d form of the intralyer and interlayer Coulomb interaction potentials

Ui(q⃗, kz = 0) =
2πe2d

q
, Ue(q⃗, kz = 0) =

2πe2d

q
e−qa,

where d is the film thickness, and a is the center-to-center layer separation. The

real and imaginary parts of the density response function for a localized electron gas

is[220, 221, 222]

Reχ(q⃗, kz = 0, ω) = ν(q2 + k2z)ξ
2
∣∣∣
kz=0

= νq2ξ2,

Imχ(q⃗, kz = 0, ω) = ν
(q2 + k2z)ωξ

4

D

∣∣∣
kz=0

= ν
q2ωξ4

D
,

where ν is the 3d density of states at the Fermi energy, and ξ is the localization length,

and D is the diffusion constant in the conducting phase. The above expression is valid

so long as Imχ ≪ Reχ, which is straightforward to verify in our case recalling that

ω is cut off by the temperature T in (3.110).
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Thus, in the screened interlayer interaction we can neglect Imχ compared to Reχ:

U =
Uie

−qa

(1 + Uiχ1)(1 + Uiχ2)− (Uie−qaχ1)(Uie−qaχ2)

≈ 1

2Ui Reχ1 Reχ2 sinh(qa)
, (3.111)

where in the last line we have made an approximation that Ui Reχ≫ 1, i.e.,

qa≫ x0 ≡
a

νξ22πe2d
. (3.112)

We have verified that the contribution from 0 < qa < x0 is negligible compared to

that from qa > x0. Therefore,

RD =
ρxxD
d

=
1

8π2(nd)2T

~2

e2

∫ ∞

x0

q3dq

×
∫ ∞

0

dω

sinh2 ~ω
2T

Imχ1 Imχ2

4U2
i (Reχ1)2(Reχ2)2 sinh

2(qa)

=
T 2

128π4~e2(nda)2(D1e2dν)(D2e2dν)

×
∫ ∞

x0

xdx

sinh2 x

∫ ∞

0

x2dx

sinh2(x/2)

=
T 2

128π4~e2(nda)2(D1e2dν)(D2e2dν)
log

1

2x0

4π2

3

=
T 2

96π2~e2(nda)2(D1e2dν)(D2e2dν)
log

1

2x0
.

Note that

De2dν =
1

R
, (3.113)

we have

RD =
T 2R1R2

96π2~e2(nda)2
log

1

2x0

=
1

96π2

R1R2

~/e2

(
T

e2nda

)2

log
1

2x0
. (3.114)
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Since D is the diffusion constant in the conducting phase, R in the above expression

should also be the resistance of the conducting phase. Thus this expression gives a

slight overestimate of the drag resistance in the percolation paradigm if we use the

value of RNN of the insulating phase for simplicity.

Note that our derivation relied on momentum summations. There are concerns

that such an approach, although quite common in the literature, is incorrect when

attempting to describe drag in strongly disordered systems. For our purposes, the

derivation based on Eq. 3.110 is sufficient; this issue is taken up, however, in Ref.

[223].

3.F No drag resistance for a genuine superconduc-

tor

In this section, we show that a genuine superconducting link (i.e., without mobile

vortices) has no measurable drag effect in a resistor network.

I

I

V

V

1

2

2

1

R1

R2

R0

Active Layer

Passive Layer

Figure 3.6: The typical setup for a drag effect experiment: in the active layer, a
driving current I1 flows through a resistor R1 (normal or superconducting) with a
voltage drop V1 = I1R1. In the passive layer, certain interaction effect takes place in
a resistor R2 (normal or superconducting), which may result in a drag current I2 and
a voltage drop V2 across R2. R2 is also connected to another resistor R0, which can
be of any value.
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FIG. 3.6 illustrates the typical setup for a drag effect experiment: in the active

layer, a driving current I1 flows through a resistor R1 (normal or superconducting)

with a voltage drop V1 = I1R1. In the passive layer, certain interaction effects take

place in a resistor R2 (normal or superconducting), which may result in a drag current

I2 and a voltage drop V2 across R2. R2 is also connected to another resistor R0, which

might represent a voltmeter, an open circuit (R0 = ∞), or something else.

When one talks about the drag effect, there are two different concepts one needs

to distinguish. The first one is the ”intrinsic” effect, which manifests itself by the

appearance of a drag current ID in the passive layer if R0 = 0. Generically, we have

ID ≡ I2|R0=0 = ηI1. (3.115)

For example, for the case of R1, R2 > 0, i.e., both R1 and R2 are non-superconducting,

I2|R0=0 = σDV1 = σDI1R1 (e.g., Coulomg drag between two 2DEGs), thus η =

σDR1; for R1 = R2 = 0 (superconductor), we have the Cooper pair version of the

supercurrent drag effect Eqn. (3.32), thus η is finite in this case as well. For the case

of R1 > 0 (normal) and R2 = 0 (superconducting), it would be unphysical to have

η = ∞, thus we have η < ∞ and σD,NS = η/R1 < ∞. From Kubo formula for the

drag conductance, we expect that σD,SN = σD,NS < ∞, and hence for the case of

R1 = 0 and R2 > 0 we have η = σD,SNR1 = 0.

In contrast, the second drag effect is the drag current I2 in the presence of R0, in

which case he drag current at R0 = 0 may or may not survive. In a large-size resistor

network we are considering for the percolation picture, when we focus on the drag

effect of one specific link R2, we can simplify the circuit of the passive layer to be of

the form in FIG. 3.6, in which case R0 representing the rest of the circuit is almost

always larger than 0. If the drag effect survives the presence of the nonzero R0, it

will manifest itself as the appearance of a non-zero drag emf εD on R2. To see this,

first consider the case R2 > 0, and R1 can be either 0 or > 0. I2 receives contribution
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from both Ohm’s law and the drag effect:

I2 =
V2
R2

+ ηI1 = −I2R0

R2

+ ηI1, (3.116)

thus

I2 =
(ηR2)I1
R0 +R2

≡ RDI1
R0 +R2

≡ εD
R0 +R2

, (3.117)

where εD = RDI1 is the drag emf, and RD = ηR2 is the drag resistance. If R1 = 0

(superconducting) and R2 > 0 (normal), we argued earlier that η = 0, and thus

εD = RD = 0 and there is no drag effect.

If R2 = 0 (superconductor), no matter if R1 = 0 (superconducting) or > 0 (nor-

mal), it is straightforward to see from Kirchoff’s Law that we have only one steady-

state solution I2|R0>0 = 0. More insight into this case can be gained by considering

what happens in real time. Suppose at time t = 0, the drag effect takes place, a drag

supercurrent I2(R0 = 0) starts to flow in the circuit. But due to the presence of the

normal resistor R0, a voltage I2R0 now exist on the supercondutor, which will crank

up the phase winding of the superconductor and degrade the drag supercurrent, until

a steady state is reached where the total supercurrent is zero. Thus, we see that for

the case R2 = 0 and R0 > 0, there is no observable drag effect, i.e., I2|R0>0 = 0,

εD = I2(R2 + R0) = 0, RD = εD/I1 = 0, although there is nonzero “intrinsic” drag

effect η.

We can also understand this result RD = 0 for R2 = 0 by examining the expression

RD = ηR2. For both the case of R1 = R2 = 0 and the case of R1 > 0 and R2 = 0, we

found earlier that η < ∞, and thus the drag resistance RD = ηR2 and the drag emf

εD are 0 for R2 = 0.

In conclusion, we have shown that when connected with a nonzero resistor, as

typically true in a resistor network, a genuine superconducting link has no measurable

drag effect at all, no matter whether it is vertically aligned with a normal link or

another superconducting link.
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Chapter 4

First Order Phase Transitions in
Bilayer Quantum Hall Systems

4.1 Introduction

As discussed in Chapter 1, we assume that the transition tuned by d/l is a thermo-

dynamic first-order transition between spin-polarized coherent νtot = 1 quantum Hall

state and partially-polarized composite Fermi liquid state, and derive the Clausius-

Clapeyron relations for this system. The Clausius-Clapeyron relations will allow

us to obtain the phase boundary shapes for the transition; a comparison of these

boundaries with experiments presents a stringent consistency test of the first order

transition scenario. The first-order scenario was invoked by Ref. [138] to explain the

strongly enhanced longitudinal Coulomb drag for intermediate d/l, and it also has

some support from exact-diagonalization study[137]. Note that we will only consider

the case of negligible interlayer tunneling.

The Clausius-Clapeyron relations are the results of matching the free energies of

the two phases along the phase boundary. To be more specific, we denote the free

energy density of the coherent and the incoherent phases to be Ec and Ei, and define

f(δ, Btot,∆n, T ) = Ec(δ, Btot,∆n, T )− Ei(δ, Btot,∆n, T ),

where δ ≡ d/l, Btot is the total magnetic field coupled to electrons’ physical spin,

∆n = (n1−n2)/2 is the density imbalance, T is the temperature. At any point along
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the phase boundary, we must have

f(δc, Btot,∆n, T ) = 0. (4.1)

This equation can be viewed as defining the δc at which the transition occurs. When

one changes the total field by dBtot, the critical δc(Btot,∆n, T ) also changes by dδc

when the filling factor is kept fixed at νtot = 1. Their relation is determined by

0 =
∂f

∂δ
dδc +

∂f

∂Btot

dBtot, (4.2)

therefore the slope of the phase boundary is determined by the following ODE:

dδc
dBtot

= −
∂f

∂Btot

∂f
∂δ

=
∂Ei

∂Btot
− ∂Ec

∂Btot

∂f
∂δ

. (4.3)

A crucial assumption of our work is that

∂f

∂δ
= η

e2

ϵl3
, (4.4)

where e2/(ϵl3) not only gives the correct units, but is the only energy scale that exists

in this problem if we neglect the Landau Level mixing. η is a universal positive

dimensionless constant. It is positive because f should be an increasing function of

δ = d/l, since the incoherent phase should be more and more energetically favorable

with increasing d/l. In general, η could be a function of δ = d/l, i.e., η(δ) ≈ η(δ0) +

O[(δ− δ0)/δ0], but since in experiments δ does not change much (ranging from 1.7 to

2), (δ − δ0)/δ0 ≪ 1, we will assume η to be a constant for simplicity.

Similar analysis also applies to finite temperature transitions:

dδc
dT

=
∂Ei

∂T
− ∂Ec

∂T

η e2

ϵl3

. (4.5)

For density imbalance experiments, we will focus on the phase boundary near ∆n = 0.
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First, note that by symmetry
∂f

∂∆n
= 0. (4.6)

Thus, we need to expand f to second order in ∆n:

0 =
∂f

∂δ
dδc +

1

2

∂2f

∂∆n2
(∆n)2, (4.7)

and therefore
dδc

d(∆n2)
=

1
2

∂2Ei

∂∆n2 − 1
2
∂2Ec

∂∆n2

η e2

ϵl3

. (4.8)

The above equations constitute the Clausius-Clapeyron relations for the bilayer

quantum Hall systems. In the following sections, we will investigate whether the

phase boundary shapes implied by Clausius-Clapeyron relations are consistent with

experiments, and whether a single universal parameter η can explain all available

experimental results. To obtain the detailed forms of free energy of both phases,

we will primarily work with the pseudospin ferromagnet description for the coherent

quantum Hall phase and the Chern-Simons approach for the incoherent composite

Fermi liquid phase. Spin transitions, finite temperature transitions, and density im-

balance experiments are studied in Sec. 4.2, 4.3, and 4.4, respectively. Finally, we

summarize and discuss our results in Sec. 4.5. Some theoretical details are relegated

to Appendices. This chapter is adapter from our work Ref. [224].

4.2 Spin transition experiments

Ref. [121] and Ref. [125] have studied the effect of NMR/heat pulse and parallel

magnetic field on the transition tuned by d/l, respectively. In the experiment of Ref.

[125], since the interlayer tunneling is negligible, the main effect of the parallel field

is on the spins of electrons. Similarly, in the experiment of Ref. [121], NMR/heat

pulse acts to depolarize the nuclei and therefore also changes the Zeeman field on

the electrons through the hyperfine coupling. Thus, these two experiments can be

analyzed in a similar fashion. Since we assume the coherent phase is spin polarized,
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the spin part of the coherent phase free energy is simply the Zeeman energy:

Ec = −1

2
NT |g|µBBtot = −e|g|µBB⊥Btot

4π~
, (4.9)

where NT is the total electron density of the two layers, B⊥ is the perpendicular

magnetic field, Btot is the total magnetic field coupled to electron spin, g = −0.44 is

the g-factor of the GaAs two dimensional electron gas, and µB is the Bohr magneton.

For the partially spin-polarized incoherent phase, the single layer free energy is

Ei

2
=

1

2χ
M2 −MBtot, (4.10)

where the magnetization

M =
1

2
|g|µB(n↑ − n↓) ≡ |g|µB∆n, (4.11)

and χ is the single layer spin susceptibility. The steady state is obtained by minimizing

Ei with respect to M :

χ =
M

Btot

, (4.12)

therefore

Ei

2
=

 −1
2
χB2

tot, Btot < Btot,p

1
2χ
M2

max −MmaxBtot, Btot > Btot,p

, (4.13)

where the maximum magnetization Mmax and the field for full polarization Btot,p are

given by

Mmax =
1

2
|g|µBn =

e|g|µBB⊥

8π~
,

Btot,p =
Mmax

χ
.

(4.14)

Plugging these forms of free energy into (4.3), we obtain an equation

dδc
dBtot

=


−2χBtot+

e|g|µBB⊥
4π~

η e2

ϵl3

, Btot < Btot,p

0, Btot > Btot,p

. (4.15)
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Note that the RHS also depends on δc through B⊥ which determines ℓ. Eqn. (4.15)

can be solved numerically to yield the δc − Btot curve. For typical experimental

parameters, dδc/dBtot starts out to be positive when Btot is small, and continuously

decreases to zero when

−2χBtot +
e|g|µBB⊥

4π~
= 0, (4.16)

this is nothing but Eqn. (4.14) which determines the magnetic field at which all

composite fermions get polarized.

It remains to determine the value of the composite fermion spin susceptibility χ.

This can be done if Btot and B⊥ at which full polarization occurs are known, because

from Eqn. (4.14) or (4.16) we have

χ =
|g|µBB⊥,p

4Btot,pϕ0

, (4.17)

where the subscript p denotes the point of full polarization. In experimental and

exact-diagonalization studies, one often parametrize χ with the form of non-interacting

Fermi gas with a “polarization mass” mp[225, 109]:

χ =
mp

4π~2
(|g|µB)

2. (4.18)

In the lowest-Landau-level approximation, e2

ϵl
is the only relevant energy scale, and

thus
~2

l2mp

∝ e2

ϵl
. (4.19)

Therefore, presumably mp scales as
√
B⊥:

mp = xme

√
B⊥, (4.20)

where me is the vacuum electron mass, x is a dimensionless number, B⊥ is in units

of Tesla. It is worth noting that unlike free electrons spin-susceptibility which is

proportional to 1/me, the susceptibility of composite fermions is proportional to mp

and therefore to
√
B. The reason for this is that the Bohr magneton µB depends on
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Figure 4.1: Total electron density deduced from the critical d/l = δc vs. the total
magnetic field for the parallel magnetic field experiments. Open and solid circles
are experimental results of Giudici et al. [125] (c.f. FIG. 4a there). Solid line is
our theoretical calculation with the fitting parameter η = 0.8 · 10−3. The boundary
condition in our calculation is chosen as ntot = 11 · 1010cm−2 when B = 10T.

the bare mass of the electron, and therefore does not overturn the proportionality to

effective mass in the density of states factor of the susceptibility.

For the parallel field experiment of Ref. [125], composite fermions get polarized

at total density ntot = 11 · 1010cm−2, tilting angle θ = 58◦, which corresponds to

Btot,p = 8.60T, B⊥,p = 4.56T, x = 0.56 if we parametrize χ in terms of the polarization

mass mp. Then we solve the ODE (4.15) with the boundary condition at the high

field endpoint (Btot = 10T, ntot = 11 · 1010cm−2), and plot the ntot deduced from δc

vs. Btot in FIG .4.1. To tune the result to resemble the experimental results in FIG.

4a of Ref. [125], we get

η = (0.8± 0.2) · 10−3, (4.21)

where the error mainly comes from fitting errors, meaning a finite range of η’s make

the δc −Btot curve resemble the experimental result.

For the NMR and heat pulse experiments of Ref. [121], the phase boundary

before any perturbation is δc0 = 1.967, which correspond to B⊥ = 3.26T. Ref. [121]
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has estimated the effective nuclear magnetic field to be BN = −0.17T, therefore the

total effective magnetic field felt by electronic spin is Btot = B⊥ + BN . After a heat

pulse, nuclear spins are depolarized, and BN is set to zero. Btot is strengthened to

B⊥, and the phase boundary changes to δc = 1.983. We can not determine the spin

susceptibility or the polarization mass directly from experimental information, and

therefore we use the numerical and experimental results from the literature mp =

(0.7± 0.2)me

√
B⊥ with B in units of Tesla [225, 226, 227, 228, 114]. In this way, we

obtain

η ≈ (1.3± 0.4) · 10−3, (4.22)

where the error mainly comes from uncertainty in the value of the polarization mass

mp.

Note that our calculations in this section do not rely on the Chern-Simons de-

scription of composite fermions.

4.3 Finite temperature transition experiments

Ref. [126] has studied the changes in critical δc = d/l as a function of the temperature

T . They found that the phase boundary moves to smaller d/l with higher T . When

analyzing the temperature dependence of the transition, one needs to include the en-

tropy contributions to the free energy associated with various low energy excitations

for both phases. In the interlayer-coherent quantum Hall phase, the only gapless ex-

citation is the linearly dispersing Goldstone mode, which corresponds to in-plane spin

wave in the pseudospin language. Therefore, this mode dominates the temperature

dependence of the free energy of the coherent phase. Denoting its velocity to be v,

we have the free energy

Ec(T ) =
∑
k

T ln(1− e−~vk/T ) ≈ −1.2

2π

T 3

(~v)2
, (4.23)
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Figure 4.2: The phase boundary d/l vs. the temperature T (in Kelvin) for the finite
temperature experiments. Circles are experimental results of Champagne et al. [126]
(c.f. FIG. 2c there). Solid line is our theoretical calculation with the fitting parameter
η = 0.7 ·10−3. The boundary condition in our calculation is chosen as δc = 1.83 when
T = 50mK.

and therefore
∂Ec

∂T
= −1.8

π

T 2

(~v)2
. (4.24)

We use the experimental result of Ref. [92] to estimate the value of v (which we

assume to be a constant independent of δ):

v = 1.4 · 104m · s−1 (4.25)

For the incoherent phase, working in the Chern-Simons framework, we have con-

tributions from composite fermions as well as Chern-Simons gauge fields. The free

energy is

Ei = −T lnZ, (4.26)

where the partition function Z contains both composite fermion fields and Chern-

Simons gauge fields of the two layers. Integrating out the composite fermions, we
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obtain[100, 229] (see Appendix 4.A for details)

Z = Z0Z+Z−, (4.27)

where Z0 is the partition function for free fermions, and

Z± =

∫
Da±e−

∫
dτd2x(a±D−1

± a±/2), (4.28)

where a± are the in-phase and out-of-phase combinations of Chern-Simons gauge

fields of the two layers, and the polarizations D−1
± in the Coulomb gauge have the

following form

D−1
± =

1

2

 Π0
00

iq
4π

−iq
4π

Π0
11 +

2V±q2

(4π)2

 , (4.29)

where the index 0 and 1 denote time and transverse component, respectively.

V±(q) =
1

2

[
2πe2

q
(1± e−qd)

]
F (q) (4.30)

is linear combinations of intralayer and interlayer Coulomb interactions, F (q) is the

finite thickness form factor[230, 231], and Π0
00 and Π0

11 are the fermion density and

transverse current correlations functions, respectively:

Π0
00 ≈

m∗

π

(
1 + i

ω

vF q

)
,

Π0
11 ≈ − q2

12πm∗
+ i

2nω

kF q
.

(4.31)

m∗ is the activation mass of the composite fermions, and, as we discuss below is

different from the polarization mass mp used in the previous section. Continuing the

derivation,

Ei = −T lnZ = −T lnZ0 − T lnZ+ − T lnZ−, (4.32)
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where the free fermion part gives

∂Ei,fermion

∂T
= −∂(T lnZ0)

∂T
= −2π

3
T
m∗

~2
, (4.33)

and the gauge field parts give[81, 100]

∂Ei,±

∂T
= −

∫ ∞

0

ωdω

πT 2

eβω

(eβω − 1)2

∫ ∞

0

qdq

2π
Im ln detD−1

± , (4.34)

A straightforward calculation following Ref. [100] shows that in the zero-thickness

approximation (form factor F (q) set to 1),

∂Ei,±

∂T
= −1.917

4π
· 5
3
C

2/3
1 T 2/3 − 1.645C2

2π2
T ln

ω0

T
, (4.35)

where

C1 =
16πn

kFde2/ϵ
, C2 =

8πn

kF e2/ϵ
, ω0 =

(2kF )
2

C2

,

n is the single layer density of composite fermions, and kF =
√
2πn.

Finite thickness corrections to the form of Coulomb interaction is found to have

negligible effect on the value of η, partly because it only affects the gauge field con-

tribution which is itself dominated by the free composite-fermion-quasiparticle con-

tribution for experimentally relevant temperatures and for the choice of m∗ discussed

below.

The value of the composite fermion mass m∗ is believed to be close to the value

determined by the activation gaps of fractional quantum Hall phases away from ν =

1/2 [100, 102, 229, 104]. Therefore, we use the experimental value of this activation

mass determined from gap measurements in Refs. [110, 232], which is

m∗

me

√
B⊥

= 0.2± 0.02. (4.36)

Note that in numerical calculations the activation mass is typically smaller than ex-

perimental value by about a factor of 2[100, 233, 234], but it is believed that the

theoretical value should approach experimental value once finite thickness effect, dis-
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order and Landau level mixing are taken into account[235, 234, 236, 237]. Therefore,

we feel the use of experimental value stated above is more appropriate. Also note that

the polarization mass mp we used in the previous section is different from the mass

we use here. Conceptually, within the Landau Fermi liquid theory, the two masses

are related by mp = m∗/(1 + F a
0 ), F

a
0 being the zeroth spin-asymmetric Landau

parameter.

Using this value of the mass along with the forms of free energy in Clausius-

Clapeyron equation (4.5) , we get an ODE, which can be solved with the boundary

condition that δc = 1.83 when T = 50mK to yield the δc − T curve plotted in FIG.

4.2. To make this curve resemble the experimental result of Ref. [126], we have set

η = (0.7± 0.2) · 10−3, (4.37)

where the error mainly comes from the uncertainty in the value of the activation mass

m∗ and also the fitting error, meaning a finite range of η’s make the δc − T curve

resemble the experimental result.

In the above calculation, we assumed that the composite Fermi liquid is spin-

unpolarized, and one might wonder how partial spin-polarization would affect the

result. Because the free fermion contribution dominates ∂Ei/∂T and it is proportional

to the density of states of composite fermions, our results would stay the same for

partially-polarized composite Fermi liquid.

4.4 Density imbalance experiments

Refs. [119, 127] have studied the dependence of the critical δc = d/l on the density

imbalance between the layers. They observed that at small imbalance, the phase

boundary has a quadratic dependence on the density imbalance, and the coherent

quantum Hall phase survives at higher d/l with larger imbalance.
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Denoting the density of the two layers n1,2, a density imbalance between the layers,

∆n ≡ n1 − n2

2
(4.38)

costs an energy which includes a dominating geometrical capacitance term and quan-

tum mechanical corrections. This is true for both phases. For the coherent phase, we

follow Ref. [95] to obtain the free energy density to be

Ec =

(
2πe2d

ϵ
+ βm,E

)
(∆n)2,

βm,E =

∫ ∞

0

qdq

2π
V z(q)h(q)

(4.39)

where 2πe2d/ϵ is the geometrical capacitance term, while βm,E is the exchange con-

tribution which tends to offset the geometrical capacitance term. Here, V z(q) =

V (q)−U(q), V (q) = 2πe2

ϵq
F (q) is the intralayer Coulomb interaction, F (q) is the finite

thickness form factor[230, 231], U(q) = V (q)e−qd is the interlayer Coulomb interac-

tion, and h(q) = −2πl2 exp(−q2l2/2) is the pair distribution function of the Halperin

(1,1,1) wavefunction.

The free energy density of the incoherent phase is (see Appendix 4.B for details)

Ei =
(∆n)2

K̃ − K̃ ′
, (4.40)

where

K̃ ≡ 1

βA
lim
q⃗→0

lim
ω→0

⟨ρ1,q⃗,ωρ1,−q⃗,−ω⟩,

K̃ ′ ≡ 1

βA
lim
q⃗→0

lim
ω→0

⟨ρ1,q⃗,ωρ2,−q⃗,−ω⟩,
(4.41)

where β is the inverse of temperature, A is the area of the sample, ρ1,2 are the

composite fermion density of each layer. Treating the Coulomb interaction within

RPA, we obtain (see Appendix 4.B for details)

K̃ = −K̃ ′ =
κ

2
(
1 + 2πe2d

ϵ
· κ
) , (4.42)
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where κ is the ω → 0, q → 0 limit of the 1-particle-irreducible density response

function, namely compressibility, of a single-layer composite Fermi liquid. Plugging

(4.42) into (4.40), one obtains the energy cost of uniform density imbalance in the

incoherent phase:

Ei =

(
1

κ
+

2πe2d

ϵ

)
∆n2. (4.43)

From the Clausius-Clapeyron equation (4.8), the geometrical capacitance term of the

two phases cancels out, and we have

η =
κ−1 − βm,E

dδc
d(∆n2)

e2

ϵl3

. (4.44)

Since κ is the single layer compressibility, it is connected to the ground state

energy per area of the composite Fermi liquid EGS via

κ−1 =
∂2EGS

∂n2
. (4.45)

Note that our definition of the compressibility is slightly different from some literature

where κ−1 = n2 ∂2EGS

∂n2 are used instead.

Alternatively, treating the Chern-Simons interaction within RPA (see Appendix

4.B for details), we obtain

κ−1 = κ−1
0 − 16π2χd, (4.46)

where

κ0 =
m∗

π(1 + F s
0 )

(4.47)

is the compressibility without the Chern-Simons interaction, F s
0 is the zeroth Landau

parameter in the spin-symmetric channel, and

χd = − 1

12πm∗
(4.48)
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is the Landau diamagnetic susceptibility. Therefore

Ei =

(
π

m∗
+
πF s

0

m∗
+

4π

3m∗
+

2πe2d

ϵ

)
∆n2. (4.49)

Clearly, we can identify the four terms as free fermion contribution, exchange/correlation

effect, Landau diamagnetism for Chern-Simons flux[127], and geometric capacitance

term, respectively.

Although the Chern-Simons expression of κ Eqn. (4.49) offers valuable physical

insight into its structure, the precise value of the parameters m∗, χd, and especially

F s
0 are not very well understood. The best way to estimate κ is to use its connection

with ground state energy density EGS of composite Fermi liquid (4.45). In the zero-

thickness approximation, Park et al. [238] have estimated the value of EGS for spin

unpolarized composite Fermi liquid to be

EGS = −0.4695
e2

ϵl
n, (4.50)

thus

κ−1 = −0.4695 · 3πe
2

ϵ
l, (4.51)

where n is the single layer density of composite fermions, and l is the magnetic length.

Using this value of κ−1 and the zero-thickness form of Coulomb interaction to

calculate the coherent phase exchange term βm,E (because the numerical result for

EGS of the incoherent phase quoted above from Ref. [238] was also done with zero

thickness), and extracting the curvature dδc
d(∆n2)

from experiments, we readily obtain

the value of η. This result does not depend on the Chern-Simons description of

composite fermions. We have plotted in FIG. 4.3 the values of η extracted from

density imbalance experiments as well as those determined from spin transition and

finite temperature transition experiments. The error bars for the density imbalance

experiments mainly come from fitting errors.

Note that the main effect of the finite thickness correction to the form of Coulomb

interaction is to reduce the exchange terms of both phases. Since the value of η
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is related to the difference between the exchange term of the two phases, we do

not expect the result of η to sensitively depend on this effect. Nevertheless, we

can include it in the Chern-Simons treatment of κ. We use the activation mass

m∗ = 0.2me

√
B⊥ estimated in Sec. 4.3 as the value of m∗, set χd = −1/(12πm∗), and

use the Hubbard approximation to estimate F s
0 . In the Hubbard approximation, the

exchange effect is taken into account by introducing a many-body local field factor

G(q) = q/(2
√
q2 + k2F ), and F

s
0 = −m∗

π
limq→0 V (q)G(q). Thus, we obtain from Eqn.

(4.46)

κ−1 =
7

3

π~2

m∗
− πe2

ϵkF
. (4.52)

Using this value of κ−1 and the finite-thickness form of Coulomb interaction to

calculate the coherent phase exchange term βm,E, we have calculated the values of η

from density imbalance experiments which turned out to be extremely close to the

results obtained earlier in FIG. 4.3.

Comments about the value of the compressibility in the composite Fermi liquid

phase are in order. First, In Ref. [239], the compressibility of a single layer 2DEG

at zero field was studied in detail, and it was found that aside from the well-known

density-of-states contribution and exchange contribution to the compressibility, there

is a third contribution coming from the so-called Hartree band-bending effect due to

the influence of the finite quantum well width on the out-of-plane direction of electron

wavefunction. For the bilayer system studied here, we expect a similar effect on the

composite Fermi liquid compressibility κ−1 in the incoherent phase and on βm,E for

the coherent quantum Hall phase as well. A quantitative analysis of this effect and its

impact on the density imbalance experiments is beyond the scope of this chapter, and

we simply note that the Hartree band-bending effect is essentially a single-particle

effect[239], and therefore it will contribute equally to κ−1 and βm,E. To obtain the

value of η from Eqn. (4.44), we only need the difference between κ−1 and βm,E, and

therefore we do not expect the Hartree band-bending effect to modify our results.

Second, quenched disorder acts to broaden the Landau levels and therefore adds a

positive contribution to the compressibility. This could account for the close-to-zero
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Figure 4.3: Summary of the value of η extracted from various experiments. Exper-
iment 1: parallel field experiment of Ref. [125]. Experiment 2: NMR/heat pulse
experiment of Ref. [121]. Experiment 3: finite temperature transition experiment of
Ref. [126]. Experiment 4 to 7: density imbalance experiments of Ref. [127], with T =
55mK, 85mK, 125mK, 200mK. Experiment 8 and 9: density imbalance experiments
of Ref. [119] with phase boundary determined by Hall drag and tunneling. To obtain
this result we used the numerical result of Ref. [238] for unpolarized composite Fermi
liquid ground state energy to estimate κ−1. The horizontal line is the average value
of η weighted by inverse of error square, which is ∼ (1± 0.1)× 10−3.
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compressibility measured by Ref. [239]. Again, this effect is likely to be similar

for both phases, and we do not expect disorder to affect the difference between κ−1

and βm,E appreciably. Nevertheless, disorder is important in smearing the first order

transition into a continuous one (see discussion in Sec. 4.5).

We assumed that the composite Fermi liquid is unpolarized above, but again we

do not expect partial polarization to affect our results strongly. For (4.51), Park et

al.[238] also reported the ground state energy for polarized composite Fermi liquid to

be very close to the unpolarized one quoted above:

Epolarized = −0.4656
e2

ϵl
n, (4.53)

and therefore our results would also stay very close. In the Chern-Simons treatment

(4.49) and(4.52), since the Chern-Simons fields couple to both spins and the density

and current response function stays the same for partially-polarized and unpolarized

composite Fermi liquids, our calculation also remains valid (see Appendix 4.B).

4.5 Summary and discussion

To summarize, we derived the Clausius-Clapeyron relations [Eqn. (4.3, 4.5, 4.8)] for

the phase transition tuned by d/l in bilayer νtot = 1 quantum Hall system, assuming

that it is a first-order transition between spin-polarized coherent quantum Hall state

and spin partially-polarized composite-fermion Fermi liquid state. In Sec. 4.2, we

studied the changes of phase boundary (d/l)c when the magnetic field coupled to spin

is changed by either NMR/heat pulse or parallel magnetic field. The phase boundary

as a function of temperature was studied in Sec. 4.3. The temperature dependence

of free energy in the coherent quantum Hall phase is dominated by the linearly-

dispersing Goldstone mode, while the incoherent composite Fermi liquid phase has

contributions from both fermions and gauge fields. In Sec. 4.4, we investigated the

changes of phase boundary when there is density imbalance between the two layers.

We use the result of Ref. [95] for the free energy cost of density imbalance in the
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coherent quantum Hall phase. The free energy for the incoherent phase is shown to

be connected to the compressibility of single layer composite Fermi liquid.

Our main goal was to check the consistency of the Clausius-Clapeyron relation

with the observed transition. Each experiment which observes the change in (d/ℓ)c

due to changing another parameter in the system indicates a value for η, as defined

in Eq. (4.4); all values should agree.

In FIG. 4.3, we have plotted the values of η determined from spin transition, finite

temperature transition, and density imbalance transition experiments. The horizontal

line is the average value of η weighted by inverse of error square, i.e., the maximum

likelihood estimator of η. One can see that, indeed, all nine values of η extracted

from various experiments roughly lie in the range 1 ∼ 2 × 10−3, and the weighted

average value of η = (1±0.1) ·10−3 is roughly within all the error bars. Our analysis,

therefore, confirms the consistency for the scenario of a direct first-order phase tran-

sition between coherent quantum-Hall phase and incoherent composite Fermi-liquid

phase. Furthermore, the analysis provides a unified framework within which we can

understand the observed phase boundaries for several distinct experiments.

In Sec. 4.4, we also worked in the Chern-Simons description of composite fermions

[i.e. Eq. (4.52)] in addition to our treatment [i.e. Eq. (4.51)] using the numerical

results of Ref. [238], and we obtained extremely similar results. Stepping back a little

from that analysis with the Chern-Simons treatment, one can pretend ignorance of

any knowledge of the parameters including the effective mass m∗ and the exchange

contribution to κ−1, and ask what values of them would give good agreement between

the values of η extracted from experiments. We have plotted the standard deviation

of η extracted from various experiments divided by the their average value in FIG. 4.4

as a function of the composite fermion mass (in units of me

√
B⊥) and the exchange

contribution to κ−1, which is F s
0π/m∗ (in units of e2l/ϵ). The finite thickness form

of the Coulomb interaction is used in calculating the coherent-phase exchange term

when producing this plot. Grey color denotes the region where at least one of the η’s

becomes negative, thus unphysical, while dark blue denotes parameter regimes which

give rise to good agreement among η’s extracted from different experiments. The
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Figure 4.4: (Color online.) Standard deviation of η among various experiments di-
vided by their average value (which measures the goodness of agreement between
ηs) within the Chern-Simons framework as a function of the composite fermion mass
and the exchange contribution to κ−1 [see Eq. (4.52)]. Horizontal axis: composite
fermion mass in units of me

√
B⊥, me being the vacuum electron mass, B⊥ is in units

of Tesla. Vertical axis: exchange contribution to κ−1, which is F s
0π/m∗ (in units of

e2l/ϵ, l being the magnetic length). Grey color denotes the region where at least
one of the η’s becomes negative, thus unphysical. The horizontal line denotes the
Hubbard approximation to the exchange effect (−

√
2π). The vertical line denotes

the experimental value of the activation mass m∗ ≈ 0.2me

√
B⊥, which is the value of

composite fermion mass we used in calculations for FIG. 4.2 and FIG. 4.3.
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horizontal line denotes the Hubbard approximation to the exchange effect (
√
2π),

while he vertical line denotes the experimental value of the activation mass m∗ ≈

0.2me

√
B⊥.

We have not explicitly discuss the role of disorder, which is always present in the

samples. Disorder will bring spatial fluctuations into some variables in the Clausius-

Clapeyron equations we have derived, and therefore smear the first order transition

into a continuous one, as observed in experiments. Roughly speaking, the analysis we

have performed in this work applies to the spatially averaged quantities. For exam-

ple, with disorder, the RHS of the Clausius-Clapeyron equation for spin transitions

(4.15) will acquire spatial dependence most likely through a spatially fluctuating spin

susceptibility χ:
dδc(x⃗)

dBtot

=
−2χ(x⃗)Btot +

egµBB⊥
4π~

η e2

ϵl3

(4.54)

Thus, one can take the spatial average of both sides and study how the averaged

critical δc changes with Btot, as we did in this work. Furthermore, one can also take

the standard deviation of both sides of (4.54), and conclude that the width of the

phase transition, which is the standard deviation of δc, grows with Btot assuming the

standard deviation of χ(x⃗) does not change appreciably with Btot. One can also study

the finite temperature transition in a similar way. Because there the free fermion

term (4.33) dominates, one can conclude that the transition becomes wider at higher

temperature, if one assumes the composite fermion mass m∗ has some temperature-

independent spatial variation. This is in accord with the experimental observation of

Ref. [126].

A major question which is not directly addressed in our analysis is the possibility

of a continuous quantum crossover between the coherent and incoherent phases (see,

e.g., Refs. [142, 143]). If indeed no real thermodynamic singularity exists even in the

clean case, then there is no reason for the Clausius-Clapeyron relations to hold as well

as we find they do. Nonetheless, there is also no contradiction in them holding where

no first-order transition exists. In this case, however, we can draw the conclusion

that the crossover region between the two phases must be very narrow, such that
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it approximates a smeared thermodynamic singularity (just as disorder would widen

a thermodynamic singularity) and therefore follows the Clausius-Clapeyron relations

we presented here for the unmixed phases. In other words, a good agreement with the

relations indicates that already at regions in parameter space close to the transition,

the thermodynamic functions of the pure coherent and pure incoherent phases apply,

and they indicate a smeared phase transition line.

Additional outstanding questions which we did not address, but are noteworthy

are as follows. First, a thermodynamic phase transition between the coherent and

incoherent phases does not have to be first order at high Zeeman fields when both

phases are spin-polarized; a second-order phase transition is not ruled out a priori.

Future experiments should clarify this issue (see the recent experiments of Refs. [129,

130]). In addition, for the density imbalance transitions, we have mainly focused

on the regime of small imbalance, while the experiments of Ref. [127] have studied

the case of large imbalance, e.g., ∆ν = ν1 − ν2 ≤ 0.4. The interlayer incoherent

phase in that regime could be two decoupled single-layer fractional quantum Hall

phase. It would be very interesting to see if a similar Clausius-Clapeyron equation

can describe the phase transition in that case. Finally, although our assumption (4.4)

is very natural on qualitative ground, a microscopic derivation of this quantity would

be very useful.

4.A Temperature dependence of the incoherent phase

free energy

Within the Chern-Simons description of the composite-fermion Fermi liquid at ν =

1/2, we have the following partition function of the system:

Z =

∫
Da1Da2Dψ1σDψ2σe

−
∫
dτd2xL, (4.55)
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where

L =
∑
n=1,2

{
ψ†
nσ(∂τ − µn − ian,0)ψnσ −

i

8π
anµϵ

µνλ∂νanλ

+
1

2m
ψ†
nσ (−i∇− a⃗n)

2 ψnσ

+
1

2

∫
d2x′ψ†

nσ(x)ψnσ(x)V (x− x′)ψ†
nσ′(x

′)ψnσ′(x′)

}
+

∫
d2x′ψ†

1σ(x)ψ1σ(x)U(x− x′)ψ†
2σ′(x

′)ψ2σ′(x′),

(4.56)

where ψnσ is the composite fermion fields in the n’th layer with spin σ, V and U

are the intralayer and interlayer Coulomb interaction, respectively. Here, anµ are

the fluctuations of the Chern-Simons gauge fields in the n’th layer from its saddle

point value which cancels the external magnetic field exactly, and µ = 0, 1, 2 are the

time and two spatial coordinates, respectively. Integrating out an,0, one obtains the

expected constraints

∇× a⃗n = 4πψ†
nσψnσ. (4.57)

Following Ref. [100], we make use of this constraint and replace ψ†
nσψnσ in Coulomb

interaction terms by ∇× a⃗n/(4π). Next, we define

a±µ = a1µ ± a2µ,

V± =
V ± U

2
,

(4.58)
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and reorganize L as

L = Lf + LCS,

Lf = ψ†
1σ

(
∂τ − µ1 − i

a+0 + a−0

2

)
ψ1σ

+ ψ†
2σ

(
∂τ − µ2 − i

a+0 − a−0

2

)
ψ2σ

+ ψ†
1σ

(−i∇− (⃗a+ + a⃗−)/2)
2

2m
ψ1σ

+ ψ†
2σ

(−i∇− (⃗a+ − a⃗−)/2)
2

2m
ψ2σ

LCS = − i

16π
a+µϵ

µνλ∂νa+λ −
i

16π
a−µϵ

µνλ∂νa−λ

+
1

2

1

(4π)2

∫
d2x′[∇× a⃗+(x)]V+(x− x′)[∇× a⃗+(x

′)]

+
1

2

1

(4π)2

∫
d2x′[∇× a⃗−(x)]V−(x− x′)[∇× a⃗−(x

′)].

(4.59)

Denoting the free fermion partition function to be

Z0 =

∫
Dψ1σDψ2σ exp

(
−
∫

dτd2xLf (a± = 0)

)
, (4.60)

and following standard methods[100] to integrate out composite fermion fields ψnσ,

we obtain

Z = Z0Z+Z−, (4.61)

where Z0 is the partition function for free fermions, and

Z± =

∫
Da±e−

∫
dτd2x(a±D−1

± a±/2), (4.62)

In Coulomb gauge, one can treat the polarizations D−1
± as 2× 2 matrices, with index

0 and 1 to be the time and transverse component, respectively. Thus, D−1
± take the

following form:

D−1
± =

1

2

 Π0
00

iq
4π

−iq
4π

Π0
11 +

2V±q2

(4π)2

 , (4.63)
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where Π0
00 and Π0

11 are the density and transverse current correlation functions of

free fermions resulted from integrating out composite fermion fields. Thus, the free

energy is given by

Ei = −T lnZ = −T lnZ0 − T lnZ+ − T lnZ−, (4.64)

and the rest of the steps are given in Section 4.3.

4.B Density imbalance dependence of the incoher-

ent phase free energy

Starting from action (4.55) or any other action for composite fermions, we integrate

out all fluctuating fields and obtain

Z = exp

 1

2βA

∑
q⃗,ω

[Kq⃗,ωϕ1,q⃗,ωϕ1,−q⃗,−ω

+Kq⃗,ωϕ2,q⃗,ωϕ2,−q⃗,−ω + 2K ′
q⃗,ωϕ1,q⃗,ωϕ2,−q⃗,−ω

]}
,

(4.65)

where

Kq⃗,ω =
1

βA
⟨ρ1,q⃗,ωρ1,−q⃗,−ω⟩ =

1

βA
⟨ρ2,q⃗,ωρ2,−q⃗,−ω⟩,

K ′
q⃗,ω =

1

βA
⟨ρ1,q⃗,ωρ2,−q⃗,−ω⟩,

(4.66)

ρj is the composite fermion density of the j’th layer, β is the inverse of the temper-

ature, A is the area of the sample, and ϕj,q⃗,ω is the Fourier-transformed potential in

the j’th layer. For a constant potential ϕj (j = 1, 2), we have

ϕj,q⃗,ω = ϕj · βAδq⃗,0δω,0, (4.67)

and the grand potential Ω is

Ω = −T lnZ = −A
2

(
K̃ϕ2

1 + K̃ϕ2
2 + 2K̃ ′ϕ1ϕ2

)
, (4.68)
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where

K̃ ≡ lim
q⃗→0

lim
ω→0

Kq⃗,ω, K̃ ′ ≡ lim
q⃗→0

lim
ω→0

K ′
q⃗,ω. (4.69)

The density in each layer is

n1 = − 1

A

∂Ω

∂ϕ1

= K̃ϕ1 + K̃ ′ϕ2,

n2 = − 1

A

∂Ω

∂ϕ2

= K̃ϕ2 + K̃ ′ϕ1.

(4.70)

Finally, the free energy is obtained via a Legendre transformation

F = Ω+ ϕ1n1A+ ϕ2n2A

=
A

4

(
(n1 − n2)

2

K̃ − K̃ ′
+

(n1 + n2)
2

K̃ + K̃ ′

)
.

(4.71)

Within the RPA treatment of the Coulomb interaction, the full density response func-

tion K is related to its one-particle-irreducible (1PI) counterpart Π (which neglects

the long range Coulomb interaction) by

K−1 = Π−1 + Ṽ , (4.72)

where K, Π, and Ṽ are 2× 2 matrices in the layer-index space:

Ṽ =

 V U

U V

 , Π =

 Π00 0

0 Π00

 . (4.73)

Here, V and U are intralayer and interlayer Coulomb interaction potential, respec-

tively, and Π00 in the static uniform limit gives the single layer compressibility κ:

κ ≡ lim
q→0

lim
ω→0

Π00. (4.74)
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Solving (4.72), we have

K11 = K22 =
Π00(1 + Π00V )

(1 + Π00V )2 − Π2
00U

2
,

K12 =
−(Π00)

2U

(1 + Π00V )2 − Π2
00U

2
.

Given the form of Coulomb interactions

V (q) =
2πe2

q
F (q), U(q) = V (q)e−qd, (4.75)

and the fact that the finite thickness form factor F (q) → 1 as q → 0, in the limit

ω → 0 and q → 0, the denominators of K11, K22, and K12 become

(1 + Π00V )2 − (Π00)
2U2

→ 4πe2κ

ϵq

(
1 +

2πe2κd

ϵ

)
, as ω → 0, q → 0.

(4.76)

Therefore in this limit

K̃ ≡ lim
q→0

lim
ω→0

K11 =
κ

2 (1 + 2πe2κd/ϵ)
,

K̃ ′ ≡ lim
q→0

lim
ω→0

K12 = − κ

2 (1 + 2πe2κd/ϵ)
,

(4.77)

and the imbalance part of the free energy density is

Ei = lim
q⃗→0

lim
ω→0

∆n2

K̃ − K̃ ′

=

(
1

κ
+

2πe2d

ϵ

)
∆n2,

(4.78)

as shown in Section 4.4. This result does not depend on the Chern-Simons description

of composite fermions. Note also that the total compressibility K̃ + K̃ ′ vanishes

linearly in q as q → 0 due to the long-range nature of the Coulomb interaction,

similar to the single layer case as analyzed by Halperin et al. [100].

To calculate the single layer compressibility κ within the Chern-Simons framework,
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we have the following RPA equation:

(Π)−1 = (Π0)−1 + C, (4.79)

where C is the propagator of the Cherns-Simons field, and Π0 is the correlation

functions without the Chern-Simons interaction. We work in the Coulomb gauge and

treat Π, Π0, and C as 2× 2 matrices in the space of density and transverse current.

In the static and long wavelength limit, we have

Π0 =

 κ0 0

0 χdq
2

 , C =
4π

q

 0 i

−i 0

 . (4.80)

where κ0 = m∗/[π~2(1+F s
0 )] is the density response function neglecting Chern-Simons

interaction, and χd is the Landau diamagnetic susceptibility. Hence,

κ−1 = κ−1
0 − 16π2χd, (4.81)

as shown in Section. 4.4. Note that these results are the same for unpolarized and

partially-polarized composite Fermi liquids, because (4.79) is valid in any case since

Chern-Simons fields couple to both spins, and the value of κ0 and χd in (4.80) stays

the same for partially-polarized composite Fermi liquid. The value of F s
0 in the

Hubbard approximation treatment is also roughly the same for partially-polarized

and unpolarized composite Fermi liquids.
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Chapter 5

Achieving Random Hopping Model
In Optical Lattices

5.1 Introduction

As we discussed in Chapter 1, in analogy to the dynamical localization phenomena,

we expect to obtain the random hopping model by fast-modulating the disordered

potential energies of an Anderson insulator. However, as we will see later sections, if

the modulating frequency ω is much larger than typical potential energy, this random-

ness in effective hopping amplitude is suppressed, and we obtain a uniform-hopping

tight-binding model. Therefore, the random hopping model behavior surivives when

the frequency ω is comparable to the typical potential energy. In summary, as the os-

cillation frequency of the potential energy is gradually increased from zero to infinity,

one can tune a non-interacting system from an Anderson insulator to a random hop-

ping model with diverging localization length at the band center, and eventually to a

uniform-hopping tight-binding model (see FIG. 5.1). Some interesting but puzzling

results when ω is much smaller than γ but larger than 0 is also presented.

In the remaining of this chapter, we will support these claims by analyzing the



130

0 γ

?Anderson
Insulator

Random Hopping
Model

ω

Uniform Hopping

Figure 5.1: Phase diagram of the model (5.1) studied in this work. At zero frequency,
the system is an Anderson insulator; when the frequency ω is comparable to the
disorder width γ, the system behaves as a random hopping model; when ω is much
larger than γ, the system enters the uniform-hopping tight-binding regime. Some
interesting but puzzling results when ω is much smaller than γ but larger than 0 is
also presented.

following model:

H = H0 + 2V cos(ωt),

H0 = −J
N−1∑
n=1

(c†ncn+1 + c†n+1cn),

V =
N∑

n=1

vnc
†
ncn,

(5.1)

where N is the system size, and we assume the onsite potential vn obeys a uniform

distribution between [−γ/2, γ/2]. We will obtain the localization length and the

density of states of this model mainly by directly working with this time-dependent

Hamiltonian using Floquet technique, but but we will also compare the results with

those obtained from the transformed effective Hamiltonian in the high frequency

regime. Note also the related but different model studied by Ref. [162, 163]. This

chapter is adapted from our unpublished work Ref. [240].

5.2 Computation of the density of states and the

localization length

To obtain the density of states, first we recall that in Floquet systems the concept

of energy is replaced by quasienergies. By Floquet theorem, which is the analog of

the Bloch theorem for time-periodic systems, the wavefunctions of a time-dependent
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system with period T = 2π/ω have the form of

ψ(t) = e−iEtϕ(t), (5.2)

where E is the quasienergy defined up to modulo ω, and ϕ(t + T ) = ϕ(t). It is also

well-known that e−iET and ϕ(T ) are the eigenvalue and eigenstates of the Floquet

operator

F = T exp

(
−i
∫ T

0

dtH(t)

)
, (5.3)

where T is the time-ordering operator. Thus to obtain the density of states, we first

compute the Floquet operator F by numerical Trotterization procedure. Next we

diagonalize it to find the quasienergies which we define to be in the “first Brillouin

zone” −ω/2 ≤ E ≤ ω/2. Then, we obtain the cumulative distribution function of the

quasienergies, average it over many realization of disorder, numerically differentiate

it with respect to quasienergy, and finally obtain the density of states.

We would also like to obtain the localization length of this model for arbitrary

frequency ω. For one-dimensional non-interacting time-independent Hamiltonian, we

recall that the localization length of a state with energy E is given by [147]

1

λ(E)
= − lim

N→∞

1

N
ln |G1N(E)|, (5.4)

where the Green’s function

G(E) = (EI −H)−1, (5.5)

I is the identity matrix.

For Floquet system, one instead has the Floquet Hamiltonian[241]

HF = H − i∂t (5.6)

in the augmented Hilbert space H×T , where H is the original Hilbert space, and T
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is the frequency space. And we also define the Floquet Green’s function as

GF (E) = (EI −HF )
−1. (5.7)

Following Ref. [242, 163], we generalize the concept of localization length of a

time-periodic system by defininng it as the localization length of the time-averaged

wavefunction. In terms of the Green’s function, it is

1

λ(E)
= − lim

N→∞

1

N
ln |G1N(E)| (5.8)

where

G = ⟨Ω = 0|GF (E)|Ω = 0⟩. (5.9)

For a Hamiltonian of the form

H = H0 + 2V cos(ωt), (5.10)

from

(EI −HF )GF = I, (5.11)

we insert the resolve of identity in the frequency space and obtain

∑
p

⟨m|(EI −HF )|p⟩⟨p|GF |n⟩ = I⟨m|n⟩, (5.12)

thus

[(E +mω)I −H0]Gmn − V Gm+1,n − V Gm−1,n = Iδmn,

where

Gmn ≡ ⟨m|G|n⟩. (5.13)

To solve G00(E) from this system of equations, we follow Ref. [163] to obtain

G00(E) = (EI −H0 − V +
eff − V −

eff )
−1, (5.14)
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where

V ±
eff = V

1

E ± 1ω −H0 − V 1
E±2ω−H0−V 1

...
V
V
V,

(5.15)

and the number of iterations needed to ensure the convergence of V ±
eff is roughly

proportional to γ/ω.

Finally, it would be interesting to mathematically check if the Thouless relation[147]

between the density of states and the localization length holds for a Floquet system.

5.3 Effective Hamiltonian in the fast oscillation

limit

In this section, we show that if the oscillation frequency ω is comparable or larger

than the disorder width γ, the original Schrodinger equation of a time-dependent

Hamiltonian can be transformed to that of a time-independent effective Hamiltonian.

For the original Schrodinger equation

i∂tψ = Hψ, H = H0 + 2V cos(ωt), (5.16)

we define

ψ = Uψ̃, U = e−2i sin(ωt)V/ω. (5.17)

Then the schrodinger equation becomes

i∂tψ̃ = Heff ψ̃, Heff = U †HU − 2V cos(ωt).

Using

eiηc
†
ncncne

−iEc†ncn = cne
−iη, (5.18)
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we have

Heff = −J
∑
n

[
(c†ncn+1 + c†n+1cn)

×
∞∑

m=−∞

(−1)mJm

(
2(vn − vn+1)

ω

)
cos(mωt)

+ i(c†ncn+1 − c†n+1cn)

×
∞∑

m=−∞

(−1)m+1Jm

(
2(vn − vn+1)

ω

)
sin(mωt)

]
.

For ω larger than or comparable to γ, the argument of the Bessel functions is com-

parable or smaller than 1, and J0 dominates other Bessel functions, and

H
(0)
eff ≈ −J

∑
n

(
c†ncn+1 + c†n+1cn

)
J0

(
2(vn − vn+1)

ω

)
, (5.19)

which is a random hopping model. When ω is not too large, the model should exhibit

behaviors such as logrithmically diverging localization length at the band center. We

can compute the localization length of this effective Hamiltonian by using (5.4) and

compare with the exact calculation using (5.8):

1

λ(E)
= − lim

N→∞

1

N
ln |G1N(E)|,

Geff (E) = (EI −H
(0)
eff )

−1.

(5.20)

However when ω ≫ γ,

J0

(
2(vn − vn+1)

ω

)
≈ 1 (5.21)

regardless of the value of vn, and therefore in this limit the system behaves like a

uniform-hopping tight-binding model (see FIG. 5.1).

5.4 Numerical results

We analyze the case of fixed γ ≫ J and a wide range of ω. The inverse of localization

length and the inverse of density of states computed both from the Floquet technique

(5.8) and from the effective Hamiltonian are plotted in FIG. 5.2. One can see that
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Figure 5.2: Inverse of localization length (a,c,e) and inverse of density of states (b,d,f)
vs. energy E (in units of the hopping J).γ = 10J , ω = 3J, 7J, 35J . Solid line are the
exact results of directly calculation from model (5.1); triangles are from the effective

Hamiltonian H
(0)
eff .
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Figure 5.3: (Color online.) Inverse of localization length λ (in units of 1 / lattice
constant) vs. energy E (in units of the hopping J). Number of sites N = 100,
averaged over 50 realizations of disorder. γ = 10J , ω = 3J, 5J, 7J, 9J, 15J, 35J .

when ω = 7 which is comparable to the disorder width γ = 10 and when ω = 35

which is much larger than γ, the results from the exact Floquet calculation and

those from the effective Hamiltonian calculation agree quite well, as expected. At

ω = 35 ≫ γ = 10, the localization length diverges for all states, and the density

of states diverges at the band edge, as expected for a uniform-hopping tight-binding

model. At ω = 7 which is comparable to γ, the localiztion length and the density

of states diverge only at the band center, as expected for a random hopping model.

The case of ω = 3 is slightly more surprising: although the effective Hamiltonian

is not expected to work well (indeed as we see in FIG. 5.2a,b), it still exhibits a

diverging localization length and diverging density of states at the bandcenter, which

are characteristic of a random hopping model. In FIG. 5.3, we plot the localization

length for more values of ω from 3 to 35, and the trend from random hopping model

behavior to uniform-hopping tight-binding model behavior is clearly seen.

Near the bandcenter, we fit the results of localization and the density of states to
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Figure 5.4: Fitting λ−1 and ρ−1 to their analytical form ρ(E) = N · 2σ2

|E(ln(E/E0)2)3|

and λ(E) = 2 ln(E/E0)2

σ2 . σtheory = Std(ln J2
eff ) = 1.535; σfit,λ = 1.495 σfit,ρ = 1.677.

J = 1, ω = 7, γ = 10.

known analytical results[149] (see FIG. 5.4)

ρ(E) = N · 2σ2

|E(ln(E/E0)2)3|
,

λ(E) =
2 ln(E/E0)

2

σ2
,

(5.22)

where σ is the standard deviation of the logarithm of the effective hopping amplitude

square ln J2
eff , with

Jeff,n = JJ0

[
2(vn − vn+1)

ω

]
. (5.23)

We can easily evaluate σ numerically to be 1.535 given ω = 7, γ = 10. Fitting

numerical results of localization length and density of states, we obtain

σfit,λ = 1.495, σfit,ρ = 1.677, (5.24)

which are quite close to the theoretical value 1.535 obtained above, further con-

firming our expectation that random hopping model behavior can be achieved by

fast-modulating the onsite energy of Anderson insulators.

At frequencies much smaller than γ and the original hopping strength J , inter-

estingly, the system has quite large localization length in this regime. In FIG. 5.5,



138

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Floquet State

1/
λ

 

 

ω=0.01
ω=0.05
ω=0.1
ω=0.5
ω=1
ω=3
ω=7

Figure 5.5: (Color online.) Inverse of localization length λ plotted for every Floquet
eigenstate for ω = 0.05, 0.1, 0.5, 1, 3, 7, system sizee N = 100.

we plot the inverse of the localization length vs. the label (e.g., 1st, 2nd,...) of every

Floquet eigenstate for ω = 0.05, 0.1, 0.5, 1, 3, 7 with system sizee N = 100 (the total

number of Floquet states equals the system size N). One can see that from ω = 7,

when ω is lowered, first the localization length decreases (inverse of the localization

increases), but around ω = 3 this trend is reversed, and all the states become more

and more delocalized at smaller frequencies. At ω = 0.05 and 0.1, all the states have

almost equally large localization length. We do not yet have a good understanding

about this trend of delocalization at small frequencies.

5.5 Discussions on experimental feasibility

Currently, the application of a disorder potential to ultracold atomic systems, and the

resulting localization phenomena is being intensely investigated [243]. Experiments

have relied on two methods to introduce disorder into such systems. The first involves

using two incommensurate optical lattice potentials, providing an effective realization

of the Aubrey Andre model which has been shown to give localization [244]. The

second method uses a speckle potential produced by passing a laser through a diffusing
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plate which directly imprints a disorder potential [245].

The main challenge in realizing the phenomena introduced in this work is produc-

ing time-dependent disorder potentials which periodically attract and repel the atoms

in the optical lattice system. The most direct way to achieve this is to periodically

change the detuning of the disorder potential potential from red to blue. That is, the

disorder potential is given by

V (r) =
3πc2

2ω2
0

(
Γ

∆

)
I(r), (5.25)

where c is the speed of light, ω0 is the atomic resonance frequency, ∆ = ω − ω0 is

the detuning frequency. Thus, the sign of the disorder potential can be periodically

changed by periodically changing the detuning. This can be achieved by using an

acousto-optic modulator to continuously vary the laser frequency. However, sweeping

through the responance can produce undesirable atomic losses. Thus it might be

best to periodically alternate two laser beams (one red and the other blue detuned)

through the same speckle potential.

The main experimental probe to detect Anderson localization in cold atom system

has been time-of-flight spectroscopy [244, 245]. In particular, for weak disorder when

the condensate occupies a delocalized state, the condensate ballistically expands when

the confining potential is removed. On the other hand for strong disorder potentials,

the condensate occupies localized states and ceases to expand at a characteristic time

after released from the trap. As we have seen, in the random hopping model some

of the states are localized while others are delocalized (near the band center). Thus

disentangling such behavior using time-of-flight spectroscopy alone might prove to

be an experimental challenge. On the other hand, the well-developed technique of

Bragg spectroscopy [246, 247] allows the access to the spectral function and therefore

the density of states of quantum gas. Thus, perhaps the most promising way of

detecting the Dyson delocalized state is through its distinct single single-particle

density of states near the band center given by Eq. (5.22) measured through Bragg

spectroscopy.
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[142] G. Möller, S. H. Simon, E. H. Rezayi, Paired composite fermion phase of quan-

tum hall bilayers at nu = (1/2)+(1/2), Phys. Rev. Lett. 101 (2008) 176803.
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