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ABSTRACT

In this project, the buckling of imperfect circular cylindrical
shells under uniform axial compression has been investigated. The
imperfection considered is prismatic and is in the form of flat spots
along the complete length of the shell. The problem is solved by
considering it as an interaction problem between curved and flat
panels, Shell equations are satisfied in the curved portions of the
shell while flat plate equations are used in the flat spot regions. At
the common edge between two adjacent panels, forces and displace-
ments are matched to arrive at the eigenvalue problem for the critical
load of the shell.

Two flat spot configurations have been studied. In the first
case, a single flat spot along the complete length of the shell is
considered. Curved and flat panels join to form sharp corners at
their common edges. Numerical results are presented to show the
effect of the width of the flat spot, thickness ratio and length to radius
ratio of the shell, on the buckling load of the shell.

In the second case, the imperfection is in the form of two or
more identical flat spots distributed uniformly along the circumfer-
ence of the shell. Between two consecutive flat spots is a uniform
radius cylindrical panel joining smoothly to the flat panels. This
analysis is valid for any integral number of identical flat spots.
Numerical results are presented for 2, 3, 4, 8-flat spots. The effect
of width of flat spots, radius of curved panels, thickness ratio of the

shell has been investigated.
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The results, presented in this paper, clearly demonstrate a
very significant reduction in the buckling load of the shell below its
classical value. This is true even in the presence of relatively small
flat spots. This reduction becomes more severe with a decrease in

the thickness of the shell or an increase in the width of the flat spot.
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NOMENCLATURE
a1’bi - Components of vectors {2} and {E} respectively
{Ei} - Vector of unknown coefficients for the ith panel
2b - Width of flat panels (unless otherwise specified)
[Cc] ,[CA] , [CB] - (8 x 8)real matrices relating forces and dis-
placements across sharp corners
D - Bending rigidity = Eh3
12(1- vz)
- Young's modulus of the material of the shell
F - Non-dimensional Airy stress function, non-dimension-
alized
w.r. t, % L
\/12(1 - vz)
F',f - Non-dimensional prebuckling and perturbation parts
of F respectively
g - Determinant of the final matrices of the shell. g =0
determines the critical load of the shell
hp’hs - Thickness of the flat panels and the curved panels
respectively
Wb /b, B = E/L CE h /L
pos P 2 S 2
12(1-v7) 12(1-v7)
[H], [HI] - (8 x 8 real matrices relating forces and displacements

of two panels with different thicknesses (Eqns. (96) and
(117))

mn

Length of the cylindrical shell

Number of half waves in axial direction
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2T

W', w

x’y’z

-
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Bending moment on y = constant edge

Number of panels of each kind in multiple flat spot
shells (unless otherwise specified)

In-plane shear and y-direction normal stress resultants
respectively

Final matrices of the shell

Out-of-plane shear on y = constant edge

Inscribed radius of the multi-spot shell

Radius of the curved panels. Also the radius of the
single flat spot shell

State vector of the ith panel

Width of the curved panel

Non-dimensional displacement in axial direction, non-
dimensionalized w. r.t. thickness of the panel
Non-dimensional displacement in the circumferential
direction, non-dimensionalized w. r.t. thickness of
the panel

Non-dimensional out-of-plane displacement, non-
dirhensionalized w. r. t. thickness of the shell
Prebuckling and perturbation parts of W
Non-dimensional coordinates. Non-dimensionalized
w, r.t. the length L of the shell (unless otherwise

specified)

2
L R 2
E) (—hs> 12(1-11 )
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Subscript s - for the curved panels

Subscript p - for the flat panels

a - Nth root of unity (Eqn. (179))

2[31, 2[32 - Angle subtended by the flat panel at the center of the
shell or inscribed circle and the angle subtended by the
curved panel at the center of the circle describing it
respectively

9,7, gl’ gZ’nl’T'Z’ 2152559, ¢ - See Eqns. (32) through (39)

t,»%, -  See Eqn. (57)

(d)y) - Rotations (see Appendix I)

A\ =cos8 = o/oCL, N = o/cCL(R, h_)

o) - Uniformly applied axial compressive stress

Ehs/R Eh/r
GCL(R,hs)-z _, GCL(r,h) =z —

‘, 2 v
3(1-v) 3(1-v2)
2 2 2

V4 = VZ VZ = (—87 + LZ) = Biharmonic operator

ox oy

* w. r. t. - with respect to
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I. BUCKLING OF IMPERFECT CIRCULAR CYLINDRICAL SHELL

UNDER AXIAL COMPRESSION: SHELL WITH SINGLE FLAT SPOT

1. INTRODUCTION

Since the beginning of the twentieth century the buckling of
circular cylindrical shells has been investigated theoretically and
experimentally, Ever since the first experiments on the buckling of
thin shells under axial compression, it has been common knowledge
that theory and experiments differ substantially. While the classical
theory, based on the small deflection shell theory, predicted the
critical stress for axial compression as ——E—hﬁ, experimentally
obtained values were as low as 10% of thi3s(1v-alilzle. Moreover, there
has usually been considerable scatter in the experimental results.
Much effort has gone into trying to explain this large discrepancy.

Various possible causes have been investigated to account
for the deviations, Among them are

(i) presence of geometric imperfections in the assumed

perfect shell,

(i) residual stresses in the shells due to manufacturing

methods,
(iii) difference between theoretical and experimental boundary
conditions,

(iv) possible non-isotropic behavior of the materials of shells,

(v) accidental or unintended loads on the shells, etc.

Using improved theories, various investigators, among them

19 1o (6)

Donnell, (5) Karman and Tsien,

(8)

Koiter, Donnell and Wan,

Hutchinson, and many others, have, over the years, established
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the initial imperfections in the assumed perfect shell as the prime
cause of the difference between the classical values and experimental
values of the buckling stress of such shells. In addition, various

(4)

experimental investigations, e.g., Babcock and Sechler, Tenny-
son, 2) Horton and Durham(7) and Almroth, Holmes and Brush, (1)
have indicated that the experimental buckling stress of the shells can
be improved considerably by manufacturing the shells very carefully
so that imperfections are reduced to the minimum. In fact, Tenny-
sonﬂz') obtained an experimental critical stress which was over 90%
of the classical value for shells spun cast from a photoelastic plastic.
The solution of the problem of circular cylindrical shells with
general imperfections is very difficult to obtain. To make the prob-
lem amenable to a solution, various investigators have used special

types of imperfections. Koiter(lo’ 1)

considered the effect of a single
axisymmetric imperfection mode (with trigonometric distribution
along the axial direction). His solution indicated a marked reduction
in the buckling load even with deviation amplitudes equal to a small
fraction of the shell thickness. However, he pointed out the fact that
the axisymmetric imperfection was not very general and was used
primarily because it simplified the solution. This fact has been
further emphasized by Arbocz(z) in his surveys of experimental
shells. His results indicate that the amplitudes of the axisymmetric
components of the initial imperfection are generally very very small,
except when the shell is specifically designed to have axisymmetric

imperfections built into it.

More general imperfections (axisymmetric and asymmetric)
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have been considered by Hutchinson(s) and Arbocz, (2) and their effect
on the buckling load evaluated. However, not much effort has been
directed towards studying the effect of purely prismatic imperfec-
tions in thin shells. They are more likely to occur in large circular
cylindrical shells, especially if the shell is made by rolling flat
sheets to a cylindrical shape and welding the free edges together to
form a closed shell, With this in view, in this chapter and the next,
we present the results of a study of a special type of prismatic im-
perfection in basically circular cylindrical thin shells.

The imperfection considered is in the form of constant width
flat spots along the complete length of the shell. The reason for
considering flat spots may become obvious from the following well-
known observations:

Under uniform axial compression, (i) theoretical critical
Eh/R

3(1-v2)
the shell is highly imperfection sensitive; (ii) the critical stress for

2
a flat plate is given by _kE (z) where b is a typical dimension

VlZ(l-vz)
of middle surface, but plate under axial compression is not imper-

stress for a circular cylindrical shell is given by , but

fection sensitive and theoretical and experimental results are in fair
agreement. These observations lead one to conjecture that it may
be possible to explain the low buckling load of shells on the basis of
the presence of flat spots.

The constant width flat spots will satisfy the requirements
of prismatic initial imperfections while, at the same time, give an
indication of the possible effect of general flat spots. In the analysis

to follow, it will be assumed that the critical load is not affected by
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the stress concentrations associated with the sharp corners at the

common edges.

2. DEFINITION OF THE PROBLEM

Let us consider a circular cylindrical shell of length L, radius
R, thickness hs' The shell is assumed to be geometrically perfect
except that, along a part of its circumference (for the complete length
of the shell), the curvature is zero, i.e., it is like a flat plate in this
portion, Let this flat part subtend an angle 2[31 at the center of the
circle. The thickness in the flat plate region is hp' A schematic
representation of the shell is given in Fig. 1. If this shell is sub-
jected to a uniform axial compressive stress o, we shall attempt to

find the effect of the flat spot on the stress at which the shell becomes

unstable,

3. GOVERNING EQUATIONS

The problem can be solved by considering the flat spot as an
imperfection on an otherwise perfect circular cylindrical shell. The

value of imperfection can be shown (Fig. 2) to be:
cosBl

Wo = Rl - <55g ) - Py <P <P

0 |[3|>pl

(1)

Using appropriate shell equations, in principle, the problem
can be solved. However, because of the discontinuous nature of the
imperfection defined above, the actual solution may be very difficult
to obtain. To overcome this difficulty, the problem is considered

as an interaction problem between a curved panel of uniform radius R
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and a flat panel of central angle ZBI. Donnell's shallow shell equa-
tions (in terms of out-of-plane displacement and stress function) will
be used in the curved panel, In the flat panel, von Kdrmdn's plate
equations are used. At the common edges between the panels, forces
and displacements from the two sides are matched to maintain
equilibrium of forces and continuity of displacements across the
interface.

The coordinate system used in the problem is shown in Fig. 1.
A typical shell element with appropriate forces and displacements is
shown in Fig. 3.

As derived in Appendix I, the governing equations and match-
ing conditions in terms of non-dimensional variables become:
(a) In the curved panel

\ |
vir .z w eNzavd ) w.  w. w2 =0 (2)
s 7s 's,xx S,XX 8,Yy  8,XY

viw iz v N120-v) (F. W -2F W
s Ts” s,xx 8,XX 8,yy 8,Xy 8,Xy
s,yyws,xx) =0 (3)

(b) In the flat panel

4 2 2
V'F_ +N12(1-v7")(W W -W = 4
P o o™y, vy W, xy) )
V4W - V12(1 vz)(F W 2F w +F w ) =0 (5)
P P,XX P,YY T P,XY P,Xy " P,YY P,XX
(c) At the common edges (see Figs. 1 and 4)
: -_R =R
Edge A: Yo = - L(w-ﬁl), yp =1, sin ﬁl 6)
_ _ R _ R .
Edge B: y, = 1 (7-B,), yp = - T, sin By
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(d) Boundary conditions

In what follows, it shall be assumed always that the boundary
conditions at x = 0,1 are to be applied only during the buckling pro-
cess, i.e., the shell is free to expand during the loading process
from the unloaded state to the critical load. During the buckling
process, the following simply-supported boundary conditions will be
applied:

Atx =0, x =1, for ally.

w =W = f =v =0 (15)
s S, XX S, yy s

w =W = f =v =0 (16)
P P, XX PsYY P

4. PREBUCKLING SOLUTION

It can be easily verified that, for a uniform axial compressive

stress 0, the solution of Eqns. (2) through (14) is:

ohst V1z2(1-v2)

F o= 2 ! voR

= - vy, W_ = —=— = const, (17)
s 2 Eh> 2
!
ch L2 VlZ(l-vz) ' hsvvs
F' = - P 3 hZ, W = ———11——— COSE)I = const.
p 2 En> P P

(18)
which solution leads to a bending free deformation, In (18) w' is not
determined by any force-displacement relations. hPWI; is the rigid
body motion of the flat panel normal to its plane from the unstressed

state to the stressed state (see Fig. la).
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5. ANALYSIS OF THE BUCKLED STATE

To determine the critical value of o at which the shell becomes

unstable let us consider

F =F' +f , W =W' + w

S S S S ] S
(19)

F =F' +f{, W =W' +w

p P P P P p

where fs, W, fp, w_are infinitesimal perturbations on the solution
n (17)-(18)., Now we must find that o for which Fs’ Ws’ Fp, Wp in
the form (19), when substituted in the governing equations, lead to

non-trivial values for fs’ w

s y W__.
s P P

Substituting (19) in (2) through (5) and linearizing with respect
to small perturbations we get:

In the curved panel:

V4f -7 w =0 (20)
S 8

5, XX

viw +1Z f vz w -0 (21)
s S 8, XX S 8,XX

? y

In the flat panel:

v -0 (22)
P
vie + 2z =0 23)
P PP, xx (
where
2
z_ =@ (—hﬁ)\hzu-vz) (24)
s
h, 2
Z, =) Z, (25)
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EhS/R
A= o/oCL(R,hS) LB b)) = ———— (26)

Vi3(-v?)

5a. Buckled State (Curved Panel)

From (20), (21)

V4f -7Z w =0 (20)
s 5 8,X%XX
V4w +7Z { +2NZ w =0 (21)
s 8 s5,XX 8 8,xX
Let
fs =p1(y)sinkx, W =p2(y)sin(kx), k = mmn (27)

0<£x <1

where pl(Y)’ pz(y) are functions of the circumferential coordinate y
only and m is a positive integer denoting the number of half waves
in the axial direction.

(20), (21), (27) ==

2 2
2
05 -0 ) + 2,k py(0) = 0 (28)
y
2 2
-2 K2 (y) + [(kz - diﬁ) . zxzskz] p,(y) = 0 (29)

This is a set of two ordinary differential equations in depen-
dent variables pl(y) and pz(y). Substitute pl(y) =
Aeyy and pz(y) = Beyy in (28), (29) and solve for vy, A, B and hence,

pl(y) and pz(y). Using (27), the final solution can be put in the form:
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&1y : -¢)
fs =le {Alcosn1y+A251nn1y}+ e

o2

y

{A3cosnly+A4s inn, y}+

: -62y . .
A5cosn2y+A6s1nn2y}+ e {A7cosn2y+A851n-q2y} sinkx (30)

w, = -le {Alcos('qu+9)+A281n('ﬂly+9)}+e {A3C05("11Y'9) +
. &2y . }
+A4s1n(n1y—9)}+ e {Ascos(nzy-e) + A6 sin (nzy-e)

2

A7co s(n2y+6 )+A8 sin(n2y+9 )}] sin kx

(31)
where
A =cos 0 I | (32)
22 Z
(1 -5 = — [+ N2 (33)
k k
vy = EFing, v, =E,-in,, v, = Ei-iny, vy = €, %in, (33a)
= 2 =
€= NI cos 3, my =VI,

b VT cos ¥ r v eind
sin 5 , §2 = 12 cos %, m, _\/1_251n?

oy

(34)
Zs (3] Zs
£, = 1+ 2‘/—— cos = + — (35)
1 k2 2 k2 ‘
VZ—S sin9
k2 2
Tang = ‘z (36)
1+ ——Slcosg
k2 2

(37)
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Tany = (38)

The expressions given below will be useful in the derivation

of various formulae used in what is to follow:

2 2 2 .
§1+n1—£1, §l-n1—11 cos ¢ , Zgl'ql—!l sing
(39)
2 2 2 2 .
E5+my =4, , &5 - n, =4, cos ¢, 2£,n, = [, siny
Strain in axial direction =
h 89U h? /L2
s ) s
‘xT T Tox T > [Fs,yy_ VFs,xx]
VlZ(l-v )
auU hS/L
or 5 = [F -VF ] (40)
X 5 5,Yy 8, XX
12(1-v"™)
Strain in circumierential direction =
h_ oV h hZ/LZ
€ = 1> ==+ =W_ = —°>____ [F___-vF ]
y L 9y R s = s,Xx  8,yy
12(1-v™)
vV h /L
or S - X [F -VF ] - % W (41)

- 1 -
Here FS_ S+fs_- 3 y+fs [
2 Eh
VO R s (42)
We =%n t Y
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Using (30), (31), (40), (41), (42) we arrive at the following expres-

sions to be used in the matching conditions:

vor . 517 8y -6y
w, o= —ETS -[e cos(n1y+6)A1+e s1n(n1Y+9)A2+e COS(‘HIY'G)A3

-gly i gzy
+e sm(’qu—e)A4+e cos(ﬂ?_y-B)A5

te cos (nzy-O)A6+e cos('r]2y+6)A7

"gzy
te sin(n2y+6)A8] sin(kx) (43)
kh_/L 1, t.v|e
Vs =+ — S 71_ 1 —%— cos(n1y+ —-32(—/,)-(2+V )cos(nly + %) Al
2 k k
12(1-v™)
£, E.v|s
1 1 . 3 .
%J:Z e — s1n('q1y+ -—22)-(2+v)s1n(n1y + %) A2
k k
£, -&.y|¢
1 1 1 3
\/p °© |z eostny - 3 (@w)cos(nyy - §) 1 A,
i, -€,v|¢
1 1 1 . 3 .
- ? e F sin (nly - -—2—(3)-(2+V)51n('qu - %) A4
ﬂ E5y (£
2 2 2 3
+ F e ? cos(n,y + T¢)-(Z+v)cos('q2y + %) Ag
1, &,y | ¢
2 "2 2 . 3 .
+ F e —k—z sm(n2y+ T¢)-(2+v )sm(qzy + —%)’ A6
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-ty | 2
_‘/% e 21 costnyy - F-(@2+viconinyy - )

fz e"gzy
\kz

= - oLx khS/L [ g y

En_
s V12(1-v2)

A

= sin(n,y - S¥)-(2+V)sin(n,y - $){ Ag|sin(kx) (44)

kz cos(n;yte)tvcos(n;y) A

t+e F sm(q1y+¢p)+vs1n(n1y) A2+e kz cos(nly -@)

+vcos(n1y) A3

{
1 . .
— sin(n;y-¢)¥vainin;y)

£,y
2 2
——kz cos(n2y+¢)

+e A4+e

+ v cos(nzy) A5

AR

2 . : "y
;?: 51n('q2y+¢)+ vsin(n,y) A

+e + e

—z-COS(ﬂZY $)

+ vcos(‘qzy] A

'gzy

te ‘—2 s1n(n2y 4J)+vsm(q2y) ]cos (kx) (45)
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€ 1Y !7_ E Y 0
— = -k 2 cos(n y+8+2)A + s1n('q1y+9+2) A2

El 'gly 11 -E,ly ) @
Nze© cos(n,y-6- £)A, Nz sin(n, y-6- 5) A,

2 cos(nzy e+ 2)A + sin(nzy—e+ 7) A()

T, &,y I, -8y
2 2 2 27 . :
- ;Z e cos(n,y+6- %)A7 - F e sin(n,y+6- %) Ag‘ sin(kx)
(46)
azws azwS ARIAES
> +v =) = -k“|e — cos(n1y+6+<p)-v cos(n1y+9)
3% ax k
Ev)e, . Syl
+ e [F sin(n,; y+0 +¢)-v 31n(n1y+9) ate EZ cos(ny-0-¢)

-V cos(nly—e) A

"gly
te A

2 Sin(nIY'e'q’)' VSin("]IY-e) 4

k

te

£,y 2
—2 cos(n,y-6+y)-vcos(n,y-6)

E,y| 4
+e2

—% sin(n,y-8+y )-v sin(n,y-6)

i

? cos(n2y+6—¢ v cos(n2y+ 0)

6oy 4, . .
F sm(-q2y+9-¢ )-v s1n(n2y+e) l A8 sin(kx) (47)

-E,y
+te 2

+e
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£, &,y £, €.y
_ .2 1 1 @ 1 17 . @
Foxy =K [vFe cos(n1y+2)A1+\]l—?e sin(n, y+ 5)A,
2, -y £ -ty
1 1 1 1 .

NG oy - 9y AL tninyy - D

k k

!2 £,y {1 £,y
+ kz e 2 cos(nzy + %)A5+ kz e 2 sin(‘nzy + %)Aé

fr, -8,y 1, -&,y
- Eg e 2 cos('qzy - -ZKI—J)A7 -‘/—g e 2 sin(nzy- %)AS] cos(kx)

k
(48)
Fs,xx = k" |e cos(nly)A1+e sm(qu)A2+e cos(nly)A3
-6,y €,y P87
te sin(nly)A4+e cos(nzy)A5+e sin(nZy)A6
"gzy "gzy
te cos(nzy)A7+e sin(-r]Zy)A8 sin(kx) (49)

3 3
oW "W 0, E.y|2
( 35 +(2-v) SZ) = -k3[ ——%— e | l—é cos(n;y+6+ %‘E)
ay dy ox k k

-(2-v)cos(n1y+6+-(§) A1

+‘/::—£ egly ‘%sin(nlﬁm %ﬁ)-(z-v)sin(nly+e+ %) A,
_ée-glyl\% cos(nly_e-f’z?)-(z-v)oos(qu-e- L) 1A,
\@— -§1Y|§ sin(n,y-6- 32)-(2-v )sin(n,y-6- £) | A,
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1, &E,v|¢
+ ;% e 2 ||—-2' cos(n,y-6+ _E) (2-v)cos(n,y-6+ qu)‘ Ag
f, &y )4, 30 , "
+ }—(—2— e IZ 51n(n2y-9+ —2—)-(2-v)s1n(n2y-6 + z.) A6
L, -E.y[¢
- _% 2 l coS(T]ZY+8- _.kk) (2- V)Cos(ﬂ2Y+9 - %) A,]
k l k
£, -,y
2 "e2 : 3 _ .
- _k_z k—g sm(’nzy+9- -2—¢)-(2-v)s1n(n2y+9- %) AS] sin(kx)

(50)
The values of the expressions (43) through (50) at y = + % (7r-[31)
will be used in the matching conditions (Eqns. (7) through (14)).

In the next section, analogous expressions for the flat panel

region will be derived.

5b. Buckled State (Flat Panel)

From Equations (22)-(25), in the flat panel region

vi =0 (22)

P
4

V'w_+2\Z w =0 (23)

P » XX
where
hs 2
Z, =) Zg (25)

z_ = @A \1202) (24)
S

Again, as in section 5a,

let f = ql(y)sin(kx) (51)
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W = a,(y) sin(kx) (52)

0<x<1l, k=mw, m=apositive integer,

where ql(y), qz(y) are functions of the circumferential coordinate y

only. Substituting (51), (52) in (22) and (23), we get

22
k% - 2L) q (y) = 0 (53)
dy
2 2
2 -4 iz kZJ ap(y) = 0 (54)
dy P
(53) =
B, By
ql(y) = cosh(ky)B1+(ky)cosh(ky) S +sinh(ky)B3+(ky)sinh(ky)T
(55)
Let qz(y) = Be?Y (56)
Substituting in (54),
I(kz—cx.z)2 - 2\Z kZ] =0
P
or
Z ’ Z
azzkz[l- 2)"—22] 0.2=k2[1+ 2)\—22]
k k (57)
2 2
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y4 Z Z
Case . 2A—% > 1 g, =K 2 —F-1, ¢, =k 1+V2>\—_J_a
- k k

k
qz(y) = cos(§’1y)B5+sin(§‘1y)B6+cosh(§2y)B7+sinh(§’2y)B8 (59)
“p
Case II: 2\ kz =1 g’l =0 §’2 =2k
Bg
qz(y) = B5 + ky . + cosh(2ky) B7 + sinh(Zky)B8 (60)
Zp Yor 22 Vor 22
Case III: 2)\2<1 §’1= 1 - 2)\2 §2=k l+2)\2
k k k
qz(y) = cosh(§’1y)B5+sinh(§’1y)B6+cosh(§’2y)B7+sinh(§’2y)B8 (61)
Using (55), (59), (60), (61) in (51), (52)
B, By
fp = cosh(ky)B1+(ky)cosh(ky) e + cosh(ky)B3+(ky)sinh(ky)T sin(kx)
(62)
Z k2
Case I 2 —=>1 or A> o—
—_— 27
k P
wp = cos(§’ly)B5+sin(§1y)B6+cosh(§’2y)B7+sinh(§’2y)B8 sin(kx) (63)
Z k2
Case II: 2A—F =1 or X\ =o5—
_— Kk 27
P
w IB +(ky) _ké +cosh(2ky)B +sinh( Zky)B sin(kx) (64)
Z kZ
Case III: Ig or A< 7

wp = Icosh(fly)B5+sinh(§’ly)B6+cosh(§’2y)B7+sinh(§2y)B8]sin(kx) (65)



Strain in axial direction =

h_ 8U hZ/LZ
P _P p

€ = = IF -vF ]
X L ox P,YY P, Xx
Viz(1-v2)
or
aUp hp/L o
= ¥ - VvFE ( )
2 ) o, vy p. xx]
,/12(1-1: )
Strain in circumferential direction =
h AV he /L%
T Ey T ,——zp L s = " p, yy]
12(1-v7)
or

ov h /L
P P/

IF - VvF ] (67)

ay p, XX P, Yy
Viz2(1-v%)

Here, from (18)

thLZ\hzu_vZ) 5

- ' = _
FosF) HL = 3 ARES (68)
W_o=W ' +w = 2R + 69
P = p WP = EF COSB:l Wp ( )
1%

Using (68), (69) in (62) through (67), we can easily obtain the

various terms to be used in the matching condition:

Case I: N> s

VOR i
WP = ETI; COSBI+[COS(CIY)B5+Sln(§1Y)B6

+ cosh(g’zy)ﬂ7+sinh(§’2y)B8] sin (kx) (70)
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L kh_/L
- ‘}’:hx - P [(1+v)cosh(ky)Bl+{(1+v)(ky)cosh(ky)
P Viz2(1-v%)

B
+Zsinh(ky)}—r2 + (14v )sinh(ky)B3

By
+{(1+v)(ky)sinh(ky)+2cosh(ky)}—k—]cos(kx) (71)

kh_/L

_ voL o]

y - (1+v)sinh(ky)B1+{(l+v)(ky)si_nh(ky)

"~ Eh
P \iz(1-v?)
B

-(1-v )cosh(ky)}—iz— +(1+v )cosh(ky)B3+ 3(1+v Xky)cosh(ky)

B
4]sin(kx) (72)

-(l-v)sinh(ky)s—k—

¢ 4 9
P k‘-— _kl sin(g’ly)B5+ —El- cos(g’ly)B6 + _kZ Sinh(§’2Y)B7

pP,Xy

¢
+T2 cosh(g’zy)BS]sin(kx) (73)
o°w 2 f% 5?
— P v _BX_ZE = -k (F + v)cos(g’ly)B5+(?2 +v)sin(¢, y)Bg
2 2
2 2 . .
- (F - v)cosh(¢,y)B, - (F -v)sinh(§,y)Bg | sin(kx) (74)

2 B,
=k [sinh(ky)Bl+ {(ky)sinh(ky)+cosh(ky)}E—

B
t+cosh(ky)B 3+{(ky)cosh(ky)+sinh(ky)}—k—4 ]cos(kx) (75)
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B
2 2 .
Fp, = -k [cosh(ky)Bl+(ky)cosh(ky)T +s1nh(ky)B3

+(ky)sinh(ky) —k"i ] sin(kx) (76)

—L + (2- v)—E =k —li_g
By ayax

Iv's
(N [ ¥

+(2-v)£sin(§’1y)B5
k

5 ¢, (2
3— +{2-v) cos((ly)B T 3— -(2-~ v)$ 51nh(§2y)B
k

e
23—— - (2- v)écosh(fzy)BS]sin(kx) (77)
2
Case II: A =£Z—
P
W_ = 2B cos B +|B +(k )3 +cosh(2ky)B,+sinh(2ky)B ]sin(kx) (78)
p ~ ER_ 17 [Bs )¢ Y159 at:
kh_/L
U = - 32 P |(14v)cosh(ky)B, +](1+v)(ky)cosh(ky)

P Eh
P \12(1-v3)

B
+Zsinh(ky)}T2 + (1+v)sinh(ky)B+ {(1+v)(ky)sinh(ky)

B

+2cosh(ky)}T4]cos(kx) (79)

vo L kh /L
Vp = T y - _ P [(1+v)sinh(ky)B1+{(1+v)(ky)s‘mh(ky)

P \1z2(1-v%)

B2
-(l-v )cosh(ky)}—E— + (1+v )cosh(ky)B3

B4
+ {( 1+v)(ky)cosh(ky)-(1-v )sinh(ky)}—E-]sin(kx) (80)
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oW B
P ) : : .
By k [0 B5 + K + Zs1nh(2ky)B7+2cosh(2ky)B8 sin(kx) (81)

B

+ v P _kz vB +vky—6 + (4-v)cosh(2ky)B
2 2 5 k 7

oy ox

+(4-v)sinh(2ky) BS]sin(kx) (82)

B
2| . _ 5
Fp,xy =k [smh(k)’)Bl +{(ky)s1nh(ky)+cosh(ky)}—k—

B
+cosh(ky)B , +{ (ky)cosh(ky)+sinh(ky)}—1-<f‘— cos (kx) (83)

B
- 12 2 .
Fp, = -k [c:osh(ky)Bl+(ky)cosh(ky)-——k +sinh(ky) B3

+(ky)sinh(ky) —E‘%]sin(kx) (84)

3 3

W B(,
(—P +(2-v) _—P-> [o Bg-(2-v) o +29 4-(2-v)}sinh(2ky)B7
oy dy ox

+2{4-(2-u)}cosh(2ky)38] sin(kx) (85)
k2
Case 11I: A < ZT
1Y
R
Wp = Eah cosBl+lcosh(§ly)B +s1nh(§’1y)B

+cosh(§2y)B7+sinh(§2y)BB sin(kx) (86)
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L kh /L
Up = - ‘P’:h - P [(1+v)cosh(ky)Bl+{(1+v)(ky)cosh(k}') +
P Aiz2(1-v%)
B

ZSinh(ky)}-—kE +(1+v)sinh(ky)B3+{(1+v)(ky)COSh(kY) +

B
+2cosh(ky)}T4 ] cos(kx)

(87)
kh /L
Vp = ;:;;L y - [(1+v)s1nh(ky)B +{(1+v)(ky)51nh(ky)-
p \’12(1 v
B
(l-v)cosh(ky)}TZ
+(1+v)cosh(ky)B3+ {(1+v J(ky)cosh(ky) -
By
(1- V)s1nh(ky)} ]sm(kx) (88)
W 4 ¢ ¢
a_yP = k[—El— sinh(¢,y)Bg+ T}COSHCIY)B()+ ?2- sinh({,y)B
$2
t cosh(tzy)BSI sin(kx) (89)
BZW 82W f 2

e ¢
B _ZP) = k2 [(—z - v) cosh(t, y)B, +(—é v) sinh (¢,y)Bg
oy % k k

2

¢ ¢
+ (;2- - v) cosh(§’2y)B7+ (k—g - v)sinh(g’zy)BS]sin(kx) (90)
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2 B2
Fp’xy = k [sinh(kY)Bl+{(kY)Sinh(kY)+COSh(kY)}T+COSh(kY)B3
By
+{(ky)cosh(ky)+sinh(ky)}—k— ]cos(kx) (91)

B
2 2 .
Fp, = -k [cosh(ky)B1+(ky)cosh(ky) - +sinh(ky)B 5

By
+(ky)sinh(ky) .= ]sin(k.x) (92)

3 3 2
"W "W ISERY
<—3-R + (Z—V)——R)= k3[—1{—% - (Z-V)}sinh(CIY)BS

oy oy ox° <l
€. ¢ ¢ ¢
2
+ CZ {fz 2-v } h B in(kx (93)
e ;‘2' - (2-v)¢ cos (§2Y) 8 sin(kx)

’

It can be easily observed that expressions for U_, V_, F
p p p, Xy

Fp xx 2T€ identical in all three cases, This is because of the fact
that fp is independent of A, The expressions have been repeated to
make each set vcomplete. In the next section we shall use these

expressions in the matching conditions to obtain the eigenvalue prob-

lem,

5c. Matching Conditions and Evaluation of KCR

The expressions for displacements and forces in the curved
and flat panels have 16 arbitrary constants of integration - {Ai}’

{Bi}’ (i =1,8), From equations (43) through (50) for the curved
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panel and Eqns. (70) through (77) or (78) through (85) or (86) through
(93) for the flat panel, it is obvious that the perturbation parts of
the forces and displacements identically satisfy the boundary condi-
tions (15)-(16) at x = 0,1, To evaluate the sixteen constants, there-
fore, we must match the appropriate forces and displacements at
edges A(ys = - % (w-ﬁl), yp =% sin [31) and B(ys =%(7r-ﬁl), Yp =
- % sin Bl). (See Fig. 1). This gives sixteen equations for the
sixteen unknowns, {Ai}, {Bi}’ (i=1,8).

Using the proper expressions, we obtain the following equa-

tions from the matching conditions, Eqns. (7) through (14):

P, || 4 | ca H QAW B,
(8 x8)||8 x1 {(SXS)M_(SXS)L(SXS) 8 x1
u 2 - o agheg -1 {(94)
PB A1 ) CB H QB Bl
L(sxs)_ 8 x 1 -(8><8)__(8><8)_L(8x8)_ 8 x 1

where PA’ PB’ QA’

Row 1 through 8 of each of the matrices PA’ PB’ QA’ QB has as its

QB, CA’ CB and H are real 8 X 8 matrices.

elements the coefficients of Ai (for the curved panel) or B, (for_the

1 2
2 oc¢F
flat panel) in the expressions of W, U, V, 8_w’ (8 w +v 9w )s S ,
P oy 2 2
d FS _ 83W 83W oy ox ox oy
> and h( 3 + (2-v) 2) respectively. Here
0x oy 0y 9x

- _h/L
Viz(1-v3)

implied and the expressions are evaluated using values of Y and y

. In all the expressions, appropriate subscripts are

corresponding to the edges A or B as the case may be.
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The matrix C, has the following form:

[ cosp, sinp, © 0 0 o0 0 o
-sinﬁ1 cosB1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 ;
[ “a ] ) 0 0 0 0 1 0 0 0 )
0 0 0 0 0 1 0 0
0 0 0 0 0 0 cosﬁ1 sinﬂl
0 0 0 0 0 0 -sinB1 cosB1 J

Matrix Cg is identical to matrix CA except that ""sine'" terms

have signs opposite to those in CA'

Matrix H is a diagonal matrix of the form

lH‘:Fh‘ o h h w? o wd ow? wi] (96)

Eqn. (94) forms a set of 16 homogeneous algebraic equations
for 16 unknowns, For a non-trivial solution, the determinant of the
16 x 16 matrix of coefficients of {Ai}, {Bi} must vanish, The lowest
value of N\ at which the determinant vanishes gives the critical load of
the shell. The corresponding value of {Ai}’ {Bi} is the eigenmode
and hence determines the variation of the state variables in the shell,

Symmetric and Antisymmetric Modes

The computation time for evaluating AcR ¢an be considerably
reduced if the order of the matrices is reduced. In this problem,

if we introduce the following changes:



_A1+A3 _By-hAy ) _BgrA, . Bg-Ag 5 B
A FTTT s AT T T B3 T T 3y T 18550y 3 TR
aq =B5. ag =B7 (97)
) _AI-A3 ) _A2+A4 ) _A5-A7 ) _A6+A8 Coaw __13_2
1 -2 P T Py Py T3 P5g TP Pg T
b7=B6, b8 =138 (98)

All the expressions in Eqns. (43) through (50) and (70) through (93),
~ split into symmetric and antisymmetric parts - symmetric parts
associated with coefficients a; and antisymmetric parts with coeffi-
cients bi' Here symmetry is considered in the circumferential
direction with respect to the origin in each panel. When the change

mentioned above is made, Eqn. (94) can be expressed in the form:

' a.
; 0 1
88 . e\ _ Vo (99)
S b,
0 !
i 1 (8x8)] \ (8x1)

or Det. [P] Det. [Q] =0



-29-

This implies either Det. [P] = 0 = Symmetric Mode

(100)

or Det.[Q] =0 = Antisymmetric Mode

or both Det. [P] =Det. [Q] =0

Symmetric and antisymmetric modes are decoupled. Also,
instead of one 16 x 16 matrix, we have 2 - 8 x 8 matrices which are
comparatively easier to handle.

Matrices [P] and [Q) are listed in Appendix II.

6. NUMERICAL EVALUATION OF THE CRITICAL LOAD

At this point in the analysis, we can make the following obser-

vations about A:
EhS/R

(1) A= U/GCL(R’hs) where OcL = —3(1—‘})2— is the buckling
stress for a circular cylindrical shell of radius and thickness equal
to that of the curved panel.
(i) N\ occurs non-linearly in every element of the matrices. For
example 0, £ys L5, &l, ny gz, N, @ ¢ are non-linear functions of
\ (see Eqns. (32) through (38)).
(iii) At X =1, i.e., an applied stress equal to OCL(R,hS), 0, Nys Mpo
¢, ¢ vanish (Eqns. (32), (34), (36), (38)). This results in the van-
. ishing of all "sine" terms in the expressions (43)-(50) for the curved
panel. Therefore, from Eqn. (94), the determinant of the coefficient
matrix is zero at A = 1 and the upper limit for KCR is 1.
(iv) For A >1, from Eqn. (32), X\ = cos is no longer valid. Instead,

A = coshO can be used, Proceeding as before, we obtain y either

real or pure imaginary and not complex (y = § + in) as in Eqn. (33).
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This radically changes the character of the solution for fs and W and
hence all the state variables of the curved panel.
From (ii) above, it is fairly apparent that it is almost

impossible to obtain a closed form value of )\C as a function of

R

the geometric and material parameters of the shell. To obtain )\CR

numerically, we use the fact that :\ is the lowest value of \ for

CR

which at least one of the determinants (Eqn. (100)) vanishes, Let
g(\) be one of the determinants as a function of A\. We can use the

Method Of False Position (Ref. (9 ), p. 99) to pinpoint \ In this

CR’
method, successive approximations to N\ for which g(\) = 0 are given
by

Y
o == g(h) =l j = 101
M TNy By g )ghv ) b2 (1on)

To start the iterative scheme we must guess the first two
values, )\1, )\2. A geometric interpretation of the method is given
in Fig. 5a . This method should work fairly well except when

(a) there are more than one zeroes of g(\) between )\j and )\J.;

1

(b) one of the )\j's in (101) is greater than 1, which in view of (iv),
may mean trouble in our case, Therefore, we should use some

other method.

From (iii) above, we know )\CR lies between 0 and 1 and also

we are interested in the lowest value of kCR in this range. So to

compute )\CR’ we can divide the interval 0-1 into N parts, Starting

from 0, we compute g(\) at each node and find two consecutive nodes

between which g(\) changes sign. This means )\CR lies between
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those two nodes. Making the two nodes as the lower and upper limits
of the interval, the process can be repeated to obtain )\CR to any de-
sired accuracy. A geometric representation of the method is given
in Fig.5b . The exact method followed is described below:
(a) For given values of L, R, hs’ hp’ v, choose m, the
number of haif waves in the axial direction.

(b) For each value of 61, find N corresponding to the

CR

assumed m,

(c) Vary m and repeat the process until, at the given Bl,
)\CR reaches a minimum with respect to m.

(d) When the information is required for a range of Bl's,
plots of )\CR Vs, Bl at different m can be obtained. The locus of the
lowest )\CR as a function of [31 will be the final curve representing
the shell. A representative plot to illustrate the method is shown
in Fig. 6.

It may be pointed out that the problem of two or more zeroes
of g(\) between two consecutive nodes is present in this method also.
However the problem can be easily identified and corrected as follows:
For a given shell, at a fixed m, the determinant g is a continuous
function of \ and [31 and KCR is determined by g()\CR, [31) = 0. This
implies )\CR is a continuous function of [31 for fixed R, L, hs’hp’ vV and
m. Therefore in the plot of \ vs, Bl at a given m, we can expect

CR

a sudden jump in the value of )\CR at ﬁl, for which the lowest \ was

missed because of multiple zeroes. We can find the actual value by
specifying the obtained value for \ as the upper limit and repeating

CR
the method described in (a), (b), (c) above,
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7. RESULTS

Numerical results were obtained in order to study the effect
of radius/length and radius/thickness ratios of the shell. For the
sake of simplicity in all the computations, the thickness of the flat

panel was taken to be the same as that of the curved panel, i.e.,

hS = hp = h = thickness of the shell, h' = 1.0

In Table I, numerical values of )\CR as a function of ﬁl (half

of the angle of flat spot) and m (no. of half waves in the axial direc-
tion) are presented for a shell of R/h = 1000, R/L = 0,25, v =0, 3.

By examining this table we observe

(i) For a fixed ;31, there is a particular wave no. m for which

)\CR reaches a minimum (this \ is underlined in the table).

CR

(ii) This value of m and corresponding )\CR decrease with an

increase in [31. Also for a fixed m, \ decreases monotonically

CR

with increasing Bl .

Similar values of )\CR for shells of the same thickness ratio
and v, but for R/L = 0.50 and R/L = 1.0 are given in Tables II and
IlI. By comparing Tables I, II, III, it can be seen that, for the same
R/h, v and Bl, )\CR remains unchanged if mR /L remains fixed, i.e.,
NcR for half waves m in case of R/L =1.0, 2m for R/L = 0.5 and
4m for R/L = 0.25 have the same value. This point is justified ana-
lytically in Appendix IIl. It may be mentioned here that the last

observation is strictly valid only when we consider \ VS, Bl at a

CR

fixed number of half waves and it may not hold generally for the

general curves for shells having R/L =1.0, 0,5 and 0.25. For
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example, for some Bl, in the shell with R/L = 1,0, the lowest )‘CR
is obtained for m = 2. For shells with R/L = 0,50, 0.25 at the same

[31, the same \ will be obtained for m = 4 and 8 respectively, but

CR

these )\CR may not be the lowest values for the shells at that ﬁl. It

is possible that m = 3 or 5 (for R/L =0.50)and m =6, 7, 9, 10, etc.
(for R/L = 0.25) may give the lowest critical loads.

Tables similar to I, II, III are presented for shells with
R/h =500 (Tables IV, V, VI) and R/h = 100 (Tables VII, VIII, IX).

The discussion above equally applies to the results for the thicker

shells.

The results presented in Tables I through IX, correspond
to the symmetric buckling mode of the shell., They represent the
lowest value of )\CR for each [31 and m, because it was found numer-

ically that the antisymmetric mode always had a \ higher than

CR

that for the symmetric mode at the same Bl and m.

In Fig. 7 and Fig. 8, final plots of A vs. B for shells

CR
of R/h =1000, v =0.3, R/L =0,25 and R/L = 1.0 respectively are

presented, Numbers on each curve indicate the number of half
waves m in the adjoining range of ﬁl. In addition to the plot for the

shell, in each figure is plotted the A\ vs. ‘31 variation for a simply-

CR
supported flat panel of width and thickness the same as that of the

flat spot of the shell, )\CR for a simply-supported flat panel is given
by

47r2 Eh2

)\ —
12(1-v2)b?

CR = °cr/9cL(®:B)s Ocp = (102)

b = width of the panel

2Rsinﬁ1 (in the present case)
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It can be seen that there is a wide difference between the
results for the shell and the s.s. panel. This is especially true at

low values of [31 (small flat spots) when \ for the shell is lower,

CR
However, agreement between the two improves for bigger flat spots

(large Bl) and the A R for the s. s. panel may be considered as a

C
lower bound to the critical load of the shell.

In Fig. 9 , the out of plane or radial displacement distribu-
tion is plotted for some representative flat spot widths, It can be
observed that, for small flat spots, the displacement is not limited
to the flat panel only, but a very large portion (many times the width
of the flat spot) of the curved panel is also affected. On the other
hand, for very large Bl (big flat spots), the buckling is essentially
localized in the flat panel. Only a small region of the curved panel,
near the common edges, is distorted in the buckling, This very

much explains the better agreement between the A\ vs. (31 curves

CR

for the shell and the panel, at larger values of ﬁl's.

In Fig. 10,11 and 12(for R/h = 500) and Fig. 13,14 and 15

(for R/h = 100), analogous plots of A vs, ‘31 and out of plane dis-

CR
placement distribution have been plotted. Further, in Fig. 16, the

effect of very wide flat spot on X (for a shell of R/h =100) is

CR
indicated and a representative set of radial displacement distributions
are shown in Fig, 17. The comments and discussion for the shells

of R/h = 1000, applies equally well to the thicker shells (R/h = 500,
100).

Finally, in Fig. 18 is presented a composite plot showing the

effect of varying R/h on )\CR vs, Bl. An analogous plot for the
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simply-supported panels is also presented in the same figure

for comparison, Fig. 19 shows the displacement distribution for

a fixed flat spot width (8, = 4.0) as R/h changes, All these graphs
show (i) for the same flat spot width, the thinner the shell, the more
severe is the effect on the critical load, (ii) for the same flat spot
widths, larger portions of curved panel are affected in thicker shells

than in thinner shells,

8. CONCLUSIONS

In concluding this chapter, we can make the following obser-
vations:

(a) Cylindrical shélls are indeed affected by the presence of
flat spots, The severity of reduction of their critical loads increases
with an increase in the width of the flat spot and the radius to thick-
ness ratio of the shell., However the trend of the curve of )\CR Vs,
width of flat spot is not substantially affected by changing the radius
to length ratio of the shell,

(b) Beyond a certain width of the flat spot, the critical load
of a simply-supported panel with thickness and width the same as
those of the flat spot may provide a good lower bound to the critical
load of the shell, The width beyond which this is true increases
with the thickness of the shell.

(c) Koiter (Ref, 11) and Hutchinson (Ref. 8 ) in their analysis
of axisymmetric imperfections, have shown that the critical load is

very seriously affected by even very small amplitudes (e —~ 0) of the

imperfection. However, in the case of single flat spot prismatic
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imperfections, this is not true. This is indicated by the horizontal
tangent of the )\CR VS, [31 curve at )\CR =1.0, [31 = 0.0, In fact, up
to a certain [31, )\CR remains at unity. This value of Bl decreases
as the shells become thinner. If ﬁl increases beyond this ﬁl, there
is a rapid decrease in the critical load.

(d) This analysis of a very simple flat spot configuration
has clearly indicated that prismatic imperfectioné in general, and
flat spots in particular, are of importance, if we wish to predict
the behavior of cylindrical shells under axial compression. It is
certainly of great interest to find how a prismatic imperfection
more general than a single flat spot would affect the critical load of

a cylindrical shell,
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II. BUCKLING OF IMPERFECT CIRCULAR

CYLINDRICAL SHELL UNDER AXIAL COMPRESSION:

SHELL WITH MULTIPLE FLAT SPOTS

1. INTRODUCTION

In the last chapter, buckling of a circular cylindrical shell
with a single flat spot was considered. The principal conclusion
was that the critical load of the shell is severely reduced because
of the flat spot. However, in the analysis, it was assumed that
there was no effect on the critical load of the shell due to the stress
concentrations associated with the sharp corners between the panels.
In actual structures, the designer tries to avoid unnecessary sharp
corners to keep down problems of stress concentrations. In the
introduction to the last chapter, it was mentioned that the shells may
be formed by rolling flat sheets into the shape of the intended shells.
This will help in eliminating the sharp corners. Also, we can expect
that the imperfection will be more general than the single flat spot
we considered in the last chapter.

Sometimes it may be possible to approximate a circle by a
regular polygon with rounded corners. Or in other words, the shell
may be formed from the flat sheet by bending it at discrete points
instead of by continuous rolling. Let us for the moment assume
that the inscribed radius of the shell has been prescribed. Now the
-obvious question arises: how does the critical load of the shell, so
formed, vary with the number of sides of the polygon, the radius of

the rounded corners, or the size of the flat panels? To illustrate
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this point, in Fig.20 are shown only a few of the infinite ways to form
the shell, having a given radius for the inscribed circle.
With the above considerations in view, in this chapter the

imperfection again will be assumed in the form of flat spots. How-

ever, the shell will have two or more flat spots distributed uniformly
along the circumference of the shell. Instead of sharp corners, two
adjacent panels will join smoothly at their common edges. The
analysis of this configuration will answer some of the questions posed
above, while at the same time it will indicate the effect of more

general (cyclic) prismatic imperfections,

2, DEFINITION OF THE PROBLEM

Let us consider a shell which has length L and r as the radius
of the inscribed circle. Let the shell be formed from N identical
flat panels and N identical uniform radius curved panels., Each flat
panel has a thickness hp and subtends an angle 2[31 at the center of
‘the inscribed circle. The circular panels are of radius R, width =
2T and thickness hs. The flat panels and the circular panels are so
arranged that: (a) no two panels of the same kind are adjacent to
each other, (b) two adjacent panels join smoothly without a sharp

corner at their common edge. The configuration of the shell and

details are shown in Fig. 2la.

If this shell is subjected to a uniform axial compressive
stress o, we shall study the effect of N (the number of panels of each
kind), R/r (the radius of the circular panel as a fraction of the radius

of the inscribed circle) and [31 (width of the flat panels) on the value ¢
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at which the shell becomes unstable.

3. GEOMETRIC PRELIMINARIES

Angle subtended by each flat panel at the center of the in-

scribed circle = 2[31.
Width of each flat panel = 2b = Zrtanﬁl (103)

Let the angle subtended by the curved panel at the center of the in-

scribed circle = 2[32.
2(8,+B,) = 57 or (B|+B,) = & (104)
1 "2 N 1 72 N
From Fig.2la, the angle subtended by the curved panel at the center
of its own circle = 2([31+[32).

. _2m _ 2T
SRR SRV T 3

or (B8, = & == (105)

Also from Fig.

b

rtanfp 1 +Rtan([31+[32)
R Rtan(p, 8,

or ta.n[B1 = (1 - %) tan (%)
R T
or b :rtanﬁ1 = r(l -?) tan (N) (106)

4, GOVERNING EQUATIONS

The method used to solve the problem will be exactly the same

as that for the case of a single flat spot shell, Donnell's shallow
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shell equations will be used in the curved panels and the flat plate
equations in the flat panels of the shell. At the common edges be-
tween adjacent panels, matching conditions will be prescribed.
Before proceeding further with the analysis, it will be appropriate
to make the following comments on the notation used in the analysis:

(i) All the panels are identified by numbers from 1 to 2N
and the panels are numbered consecutively. Thus all odd numbered
panels will be curved panels, while the even numbered panels will |
be flat panels,

(ii) The coordinate system used is shown in Fig.2la. The
origin for the coordinate system for a panel will be at the center of
the panel.

(iii) The two edges of each panel will be identified by sub-
scripts F (for the forward or positive y edge) and B (for the back or
negative edge of the panel). Thus the forward edge of the ith panel
will be in contact with the back edge of the (i+1)st panel. For
example, WlF is the displacement in the z direction at the forward

edge of the first panel, while Vi is the displacement in the circum-

B
ferential direction at the back edge of the ith panel.

Since all the curved panels are identical, as are all flat
panels, we can write, without any risk of confusion:

(a) In every curved panel

V4F -Z W + '12(1-1}2) (W W -W2 ) =0 (107)
s , XX VXX L, YY L, XY

V4W+Z F - 12(1-u2) (F w -2F W +F W )
8", XX , XX

» YY Xy L,Xy LYYy ,XX
=0 (108)
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(b) In every flat panel

4 2
V'F+ V12(1- w w -W =0 10
Viza-v®y ow wo o wE ) (109)

V4W-V12(1-u2) (F W -2F W _+F W _ )=0(110)

» XX, Yy P XY LXYy LYY
It is understood here that Eqns. (107), (108) are valid for all
curved panels (numbered 1, 3, 5,....,2N-1), and Eqns., (109), (110)
are valid for all flat panels (numbered 2, 4, 6,....,2N).

(c) At the common edges (see Fig., 2la)

In the curved panel, the forward edge is at y = T back
edgeatyz-% (111)
In the flat panel, the forward edge is at y = E tanﬁl,
back edge at y = - _rL tan[?:l (112)
If, in a panel, we define a vector {_§r1r} by
[ W \
w ,  o°w
2 VT2
oy ox
U
82F
2
{§}1 = 4 o >,E=-——/—hL (113)
oW 12(1-v2)
9y
3 3
W 4 (2-) 2T
oy dy ox
v
°F
\ ox oy )
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Then we can write the matching conditions as

T T :

{§i}F = [H,] {§(i+1)}13 i=1,3,5....,(2N-1) (114)
T T :

[H1]{§i}F= {§H+IQB i=2,4,6,....,(2N) (115)

Panel No. 1 and (2N+1) refer to the same panel. [Hl] is a

real (8 x 8) diagonal matrix of the form
[H, ] :fh' AESNENERNENERN h'3J (117)

It may be noted here that the order of using various matching
conditions is different in (113) than that used in (7) through (14).
This is done so as to utilize fully the separation of the solution into
symmetric and antisymmetric components. This will become appar-
ent as the analysis progresses towards the numerical computation
stage.

(d) Boundary conditions

As before, it is assumed that the boundary conditions at

x = 0,1 are applied only during the buckling process and they are
given below:

Atx =0,1 for all y
wew =f =v=0 (118)

in all panels, The lower case quantities are the perturbations (on

the prebuckling state), which occur during the buckling process,
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5. Prebuckling solution

It can be easily verified that the following is the solution of
the governing equations:

In the curved panels

ch 2 —
P —5 57 Yiz0-,2) 42 (119)
2 Eh3
S
_ woR vortanﬁ )
W' = - + 5 s1nﬁrf) cos(——) (120)

The amplitude of cos(—L—RX) in Egn. (120) is the rigid body
motion of the circular panel parallel to the line joining the centers
of the inscribed circle and the circle of the curved panel,

In the flat panels

ch 2
A Viz(i-,2) 2 (121)

Eh>
p
W' = ﬁ.{ = rigid body motion of the flat panel (122)

normal to its plane

Again, very simple calculations will show that Eqns. (119)
through (122) imply a bending free stress state. (See Fig.2la for a

pictorial representation of the prebuckling deformation. )

6. ANALYSIS OF THE BUCKLED STATE

Proceeding as in section 5 of Chapter I, let the buckled state

in each panel be given by:



—44_
F=F'+f }
(124)

W =W'+w
where F' and W' constitute the prebuckling solution and are given in
Eqns. (119) through (123) of the last section and f and w are infini-
tesimal perturbations on the prebuckling solution. The compressive
stress o, at which non-vanishing values for f and w are possible, is
the critical stress of the shell. Substituting (124) in Eqns. (107)

through (110) and linearizing with respect to the infinitesimal quan-

tities f and w, we obtain:

In every curved panel (panels numbered 1, 3,5,....,2N-1)

. .
vi-zZw =0 (125)

b

v4w+z f + 2N Z w =0 (126)
s ,XX s s ,

XX

In every flat panel (panels numbered 2, 4,6,....,2N)

v =0 (127)

4

Viw+ 2N Z w =0 (128)

S p ,XX
h 2
_ (L2 33—'V 2 _(_S -
Here Z_ =(R (hs) 12(1-v ), ZP_(g) zs,xs_o/cCL(R,hs)

EhS/R

ocp (R, hy) = ——2 (129)
3(1-v7)

2
z =@ ) Y120-v%) , \=0/o () (130)

Eqns. (125) through (128) are identical to Eqns., (2) through
(5) of Chapter I and we can write their solution and hence the match-

ing condition expressions as follows:
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In Every Curved Panel (from Eqgns. (43) through (50))

w VoR . vortan(Bl)
- Ehs Ehssin(w/N )

cos (LTY)

-€.y

£y
-Ke cos(n1y+0)+e cos('r]ly-e)}a1

£,y

&1y 2
s1n(n1y-0) az+ e cos(nzy—e)

€,y
+{e sin(n1y+9)-e

'gzy gzy 'gzy .
+e cos(n2y+9)}a3+{e sin(nzy-e)-e s1n(n2y+9)}a4

£y

Y 1Y .
cos('qu-e-) ag +<e s1n(nly+6)

£y
+{e cos(n1y+e)-e

'gly gzy 'gzy
te sin(nly—e)}a6+{e cos(nzy—e)-e cos(-quwLG)}a7

-€,y

£,y
+{e 2 sin(nzy-9)+e 2 sin(n2y+6)}a8]sin(kx) (131)

2 2 E.y(1
T
oy ox k

te (1—;2— cos(nly-e—qo) —vCOS(nIY-e))}al
£,y /4, Syt
+{e (_7 sin(r]ly+e+<p)-vsin('q1y+9 ))-e (—2- Sm(ﬂIY'e'fp)
k k

€y 1,
-y sin(nly-e ))}a2+{e (—}:Z cos(nzy-9+¢)— v cos(nzy-e ))

'gzy £2
te (—2- cos(n2y+9-xp)-vcos(-r|2y+e ))}a3
k
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€,y /1
+{e 2 (——?1 sin(nzy-eﬂp )-v sin(nzy-e))

P

-6,y
2 (;2— s1n(n2y+9 -y)- V51n(n2y+9))}

-€

§1Y £

o

cos(nly+9+<p)- Vcos(n1y+9))

gx

(
€1Y(11

cos(nly-6-¢)— veos(‘nly-e))}a5

W

l -

+{ €1Y(

£y
+e °1 (—% sin(nly-6-<p)-Vsin(’qu-e))}a6
k

sin(nly+9+¢)_v sin(-r]ly+6 ))

)

k
£

£,y
+{e 2 (—-2- cos(-qzy 0+y )- VCos('qzy 6))

-e

&,y
2 (—%vc050ﬂ2Y+9 b)- VCOS(nzy+99}

9% '
+{e 2 (k—g sin(nzy-ehp )-vsin(nzy-e))

NP TErE , :
e <;—2— 51n(n2y+e—¢ )-v sm('q2y+9)>}a8 sin(kx)

kh /L Y
- (]JEII:;X _ s [{ (_.é. cos(nlY+<p)+vcos(-r|ly))

k

VlZ(l-vz)

-le(fl

te F cos(nly-<p)+vcos(n1y)>}al

Sy (4 .
+{e (1:7 sin(n1y+¢)+v51n(q1y))

(132)
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-e

-£.y /1
1 (k_é sin(nly-¢)+vsin('q ly))} a,

£,y 11
2 2
+{e (F cos(n2 y+¢)+vcos(n2y))

-€2Y(£2

te — cos(nzy-¢)+vcos(n2y)>}a3
k

€,y /1
+{e 2 (k—g sin(q2y+¢)+vsin(n2y))

-e

-Ey (2
2 (k_g sin(nzy—¢)+vsin(n2y])}a4

v/,
+{e (—g cos(n, yte)tvcos(n Y))
K 1 1

- — (n,y-¢)tvcos(n,y)pa
¢ 2 0% 1 5

V(4

% Sin(nly+¢)+vsin(nly))

(_2 sin(nly_¢)+vsin(nly))} ag

+e
— cos(nzyhp )+v cos(nzy))
;—2- cos('qzy- Yt cos(nzy))}a7

€,y 1L
+{e 2 (——— sin(n2y+¢)+vsin(n2y))
(—Z sm(qzy-q,)+vsin(n2y))} as] cos(kx)

(133)
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-£ y
xx = kz[{e cos(nly)+e ! cos(nly)}
3

1Y -€y
+ <e s1n(n1y) e s1n(nly)}

€,y -6,y

+ <e cos(-r]zy)+e 2 cos(nzy)}a3

27 .
+4e s1n(n2y)-e 51n(n2y)}a4

-Ey

1
+4e cos(nly)-e cos.(-qu)}a5

{
{
{ £,y -6,y
{e

{ 8% -§.y

+{e sin(nly)+e 1 sin(nly)}a

£,y -€,y
+{e cos(nzy)-e 2 cos(nzy)}a.?

+

{e cos(nzy)+e cos(r\zy')}a8 sin(kx) (134)

[ -8,y
- = —k[ cos -qu+e+ —‘E) e 1 cos(nly-e— %)§ a,

£y -8,y
1 1 .
+ —k—;‘ %e s1n(n1y+6+ %)+e sninly—ﬂ—-(g)za
1 £y -E,y
2 2 2
+ F 3e cos(nzy-6+ %)—e cos(n2y+9- %)ga:,’

+Y— e sm(nzy-9+ 7)+e s1n(nzy+9-§ a,
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Y

e cos(n1y+9+ -‘g—)+e 1 cos(nly-e- _‘2’1) a

5

Y

e Sin("'llY+9+ _2'(p)‘e ' ! Sin(nIY’e' %) 3.6

£,y -Ey
+_J—2;e 2 cos(n,y-0+ %)+e 2 cos(n,y+6 - i)$a7

. 2
[2 £,y -E,y
+ —k—% e 2 sin(n,y-0 +%)-e 2 sin(n,y+0- %)25‘8 ] sin(kx)
(135)
3 h /L
ji%¥.+(2_u) 9 “;):=_ K3 . ___jii__
y 9y ox \]12(1-1;2)

] €.y /4
1 1 1
[VF (3 costnyyro+ 32)-2-vcosin, yro+ )

-Ev (4
-e 1 (—k—z cos(nly—e- %E)-(Z-V)COS(ﬂIY'e' %))gal

SRR 3 .
+ I<~2 e EZs1n(-nly+9+7‘£)-(2-v)s1n(~qu+9+—‘23)

Sy 3¢ , P
te —k—z— s1n('q1y—9— > )-(2-v)s1n(n1y—9— 2))2 a,

‘/f £y (1
+ ;% }e 2 (;% cos(ﬂzy-e+%¢- )“(Z-V)COS('nZy'..9+ %%)

-E,y( 2
-e 2 (I{% cos(n,y+6- 3741)-(2-1/)005(112)"*9 - % ))i aj

{z E,y (1
2 2 .
+ ;2— 3e (;—g- s1n(n2y-6+ -%‘P)-(Z- v)sin('qzy-9+ %))



-50-

+e

-E,y /4
2 (k_g sin(n2y+9 - —Z%p-) -(2—v)sin(n2y+6— %))} ay

4y

Y
+ ;f ie 1 (cos(n1y+9+ %‘E)-(Z-V)cos(n 1y+6+ -52‘-’))

+e

304
1 (cos(nly-e- %‘Q-(Z-v)cos(n ly-e— —%))Sas

’l £y
1 1 . 3 . @
+ ———kz s e <51n('r|1y+9+ _2<p)_(2_ v )s1n('qu+6+ —2))

_e-gly(sin(nly-e- 39)-(2-v)sin(n, y-0- %)) gab
2 | 5o 3y W
+ = ge (cos(nzy-9+ =)= (2-v)cos(n,y-6+ i))
o 2 (cos(n2y+9- 3%).(2-v)cos(n,y+0- %’))f a,
¥ % ;egzy (sin(nzy-6+ 3Y-(2-v)sin(n,y-0+ -‘g))
_e'ﬁzY (sin(n2Y+9' %p')—(Z-v)sin(nzy+e - %’))gas] sin(kx) (136)

vartan(Bl) Ly khS/L

Eh_sin(r/N) sin (R )+
S \112(1-\/2)

[ﬁ €.y (£
[ ;—%(el ?—k—écos(n1y+%(£)-(2+v)cos(nly+%)%

£,y (¢
-e 1 3;12 coS(nly- 222)-(2+V)C05("11Y - %)i)al

V = -

[] E.y (2
+ -k—lz (el gésin(nly+¥)-(2+v)sin(n1y+%)z
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-6,y (1L
ve ! ;1_:12 sin(nly_%ﬂ)-(y v)sin(nly—%)f)az
+ 2 ( S | &2 +3¥)_(2+v)cos(n,y+ L)
_1:2 e ?cos(nzy 5 )= vicosin,yT 5
-E,y
-e 2 ;——% cos('qZY- lp)-(2+V)COS("’\2Y' %)f)a3
PR EL 9
i (e —5 sin(n,yt 57)-(2+v)sin(n,y + 3)
k k
-E,y (£
ve ° 3k—§ sin(nzy-;—kp)-(zw)sin(nzy- %)f)%

£,y (4,
+ ? (e kz cos(n, y+ —) (2+V)COS('f]1Y+ z)g

-§.y
te 1 g—z cos(n,y - —-‘E) (2+v)cos(ny - "E)f)
] £y (4
+\(;% (e ! 3;—% sin(n, y+ %"1)-(2+v>sin(n1y +—‘§—>§

-6y (4
e 1 ;;12 sin(nly-;’z‘ﬂ)_(2+v)sin(nly-%)E)aé

1 £,y
+ k—g (e 2 3;%— cos(n2y+ 3T¢)—(2+V)COS(T]2Y+ Hzi);

-6,y (2
ve 2 ?;—% cos(n,y- 3T¢)-(2+V)COS(TIZY - ipz‘)i)aﬁ

] £,y
+ k—g (e 2 )kg sm(n2y+ -—qJ) (2+v)s1n(n2y + l121)§
-,y (¢4
e ¢ 3% s1n(n2y-3—¢) (2+v)sin(n,y - 7)% ] sin(kx) (137)
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/1 £y -€.y
F,xy =k2[ ;—é— ze 1 cos(n1y+ -qzl)-e 1 cos(nly- %)&a

gly . @ -gly . [
e 51n(n1y+§)+e s1n(nly—2) a,

+

+
| o
N

e cos(n2y+ 7)-e cos(nzy- %

(8]

62)’ li 'gzy )fa
3

P

+
W|m
™ o

-E,y
2 cos(n,y- %)% ay

[Tay)
Y]
~

£ &y -E.y
+J—é 3e 1 sin(-nly+-‘§)-e 1 sin(nzy— %)faé

£,y -6,y
e 2 sin(n2y+ %)-e 2 sin(nzy- %)s as] cos(kx) (138)

By examining Eqns. (131), (132), (135) and (136), one may
observe that, in the last three equations, there are no terms cor-
vcrrtan(B )

Eh sin( wﬁ\l ) €°° (R

was mentioned in Section 5 (Prebucklmg Solution) that this term is

responding to the term =%) of Eqn. (131). It
contributed by the rigid body motion of the curved panel, and it
should not contribute anything to forces and moments, etc. How-

ever, the expression for the w-contribution of the rigid body motion
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is a function of y and apparently should affect Eqns. (132), (135)
and (136)., The last mentioned equations are, in effect, equations
for equilibrium of moment, continuity of tangent, and equilibrium
of out-of-plane shear respectively. As indicated in Appendix I,
in the Donnell's shallow shell equations, the terms provided by
the in-plane displacements to curvature, etc. are neglected.
This is true only if in-plane displacements are small. It can be
seen from expression (137) for V, that the perturbation part is
of the order of hs/L times the perturbation part of W, but the
prebuckling solutions are of the same order for V and W. There-
fore, if we use the full expressions for slope and curvature with
V and W as listed in (131), (137) and then use Donnell's assump-
tion, we will obtain the expressions (132), (135) and (136). Details

for this can be found in Appendix I.
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In Every Flat Panel

2
Case 1 >\5> —ZIEZ—— , (from Egns. (70) through (77))
P
W = 1;:or +[cos(§ yia +cosh(§,2y)a +s1n(§ y)a +s1nh(2;2y)a8] gin(kx)
P
(139)
2 2
2 2 ¢ ¢
oW 9 W) 2 1 2
+ v = k" [ -(—5 +v)cos(¢ y)a +(— - v)cosh({ y)
(ayz o5 ;:Z 1 K2 2
2 2
& 52 .
-(—2 +v)sin(§1y)a7+ (—2 -v)sinh(gzy)ag] sin(kx) (140)
k k
: o Lx khp/L
U=- Fn_ [(1+V)COSh(ky)a1+{(l+v)(ky)sinh(ky)+2cosh(ky)}a2
12(1-v"7)

+ {(1+ v)(ky)co sh(ky)+Zsinh(ky)} a5+(1+ v )sinh(ky)aé] cos(kx)

(141)
F,xx = -kz[cosh(ky)al+(ky)sinh(ky)a2
+(ky)cosh(ky)a5+sinh(ky)a6] sin(kx) (142)
& g 4
%\;Y = k|- = s1n(§ yla ag ?2 sinh(gzy)a4+ Tlcos(gly)a.7
52 .
t cosh(gzy)as] sin(kx) (143)

.3 3 h /L o1&, ¢
5 (8 W, (2-v) "W ) =k3 N A —R_l_{——l_+ (2-v)}sin(t_,ly)a3

2
oy dy 0x 1’12(1_‘}2)

+T{i2 (2- 1})}s1nh(t_‘2y)a4 —i—{

C.
] +H2- v)}cos(gly)a
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2

4 4
+ TZ- {—g - (z-v)} cosh(z_;zy)aS] sin(kx) (144)
k
vols khE/L .
V = Th y - [(1+v)smh(ky)a1 +{(1+v)(ky)cosh(ky)
p Q12(1-v2)
- (l-v)sinh(ky)}a2 +{(1+v)(ky)sinh(ky)-(l-v)cosh(ky)}a5
+(l+v)cosh(ky)a6] sin(kx) (145)
F = kz[sinh(k Ja +{(k Jcosh(ky)+sinh(k )}a
b, xy y)a y y )¢ a,
+{(ky)sinh(ky)+cosh(ky)} ag + cosh(ky)ab] cos(kx) (146)
k2
Case II )\S = 55 (from Eqns, (78) through (85))
P
W = ﬁ‘-:- + [aj+cosh(2ky)a +(ky)a +sinh(2ky)ag] sin(kx) (147)
(BZW + v azw)= k? [-va,+(4-v)cosh(2ky)a - v (ky)a
ay BXZ 3 4 7
+(4-v)sinh(2ky)a8] sin(kx) (148)
g .. oL kh_/L

R X - —P——Z— [(1+v)cosh(ky)al+{(l+v)(ky)sinh(ky)
P V12(1-v9)

+2cosh(ky)} at {(1+ v )(ky)cosh(ky)+25inh(ky)}a5

+(l+v)sinh(ky)a6] cos(kx) (149)
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F xx='k2[ cosh(ky)a1+(ky)sinh(ky)a2+(ky)cosh(ky)a5+sinh(ky)a6] sin(kx)

?

(150)
i’%: k[0 a +2sinh(2ky)a + a,+2cosh(Zky)ag] sin(kx) (151)
. 23w 83w h /L
hp (_3_ + (2-v) 5) =k S - [0a3+2{4-(2—v)}sinh(2ky)a4
By dy % Vi2(1-v2)
-(2-v)a7+2 {4-(2-v)}cosh(2ky)a8] sin(kx) (152)
ol kh_/L
V = E‘}’l y - P [(1+v)sinh(ky)al+{(1+v)(ky)cosh(ky]
P Q12(1-v2)
-(l-v)sinh(ky)}a2 +{(l+v)(ky)sinh(ky)-(l-v)cosh(ky)}a5
+(1+v)cosh(ky)a6] sin(kx) (153)
2. .
F,xy = k" [ s1nh(ky)al+{(ky)cosh(ky)+sinh(ky)}a.2
+{(ky)sinh(ky)+cosh(ky)}a5+cosh(ky)a6] cos(kx) (154)
L2
Case III )\S<Z—Z— (from Eqgns. (86) through (93))

p

vor .
W = Ehp + [cosh(gly)a.3+cosh(gzy)a4+smh(§1y)a7

+sinh(§,2y)a8] sin(kx) (155)
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2 2
2 2 g
(il%¥-+ v Q_%;) = kz[‘_%'_ v)cosh(gly)a3+c—% - v)cosh(gzy)a4
oy ox k k
2 §2
+(;%—- v)sinh(gly)a7+(;%-- v)sinh(gzy)asl sin(kx) (156)
L kh /L
Us=- 22 x- —B— [(1+v)cosh(ky)a1+{(l+v)(ky)sinh(ky)
P Viz(1-v3)
+2cosh.(ky')}az+{(1+v)(ky)cosh(ky)+2sinh(ky)}a5
+(1+v)sinh(ky)a6] cos(kx) (157)
:Fp,xx = —kz [cosh(ky)al+(ky)sinh(ky)a2+(ky)cosh(ky)a5

+sinh(ky)a ] sin(kx) (158)
L S )+§z.h L
By - + sin (gly azt = sin (gzy)a4 T cos (gly)a7

&2 .

+~T;-cosh(§2y)a8] sin(kx) (159)
83W 83W 3 h /L ;’l éf
h ( 3+ (2-v) 2)=k S — T{—z -(z-u)}sinh(gly)a3
P \ay dy dx ,f—lz(l_vz) k

¢, L2

4 —EZ- {k—g N (z-v)}sinh(gzy)a4
2 2

L, (¢ L, (&

e {k—é - (2- v)}cosh({,ly)a7+ TZ {L% -(2—v)}cosh(gzy)aB]sin(kx)

(160)



kh_ /L
vV = ‘g}f y - —E2—— [(I1+v)sinh(ky)a +{(1+v) (ky)cosh(ky)
p \ﬁz(l-vz)
-(1-v)sinh(ky)} a2+{(1+v)(ky)sinh(ky)-(l- v) cosh(ky)}a5
+(1+v)cosh(ky)a6] sin(kx)
F = kz [sinh(ky)a1+{(ky)cosh(ky)+sinh(ky)} a,

s XY
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+{ (ky)sinh(ky)+cosh(ky)} atcosh(ky)a ] cos(kx)

(161)

(162)

In Egns. (131) through (138) and Eqns. (139) through (162),

the expressions for the state variables have been split into sym-

metric and antisymmetric components.

write for the ith panel:

[

\

Using Eqn. (113), we can

> <{si}+1s,}

(163)
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where {S:} and {Si} are the prebuckling solution and the perturba-
tion respectively, From Eqns. (131) through (162), {Si} can be

represented in matrix form as:

\ 3i

{s,n} = [P,(y)] {gi}.{gi}= %} = < a,. ? (164)

—1

where aj; through ag; are the same as a, through ag respectively in

Eqns. (131)-(162).

Pi1 1P A
] - (208
Pi3z 1 Pig
| 1
) o P P()-[P()
BEEARA i 1 Pial-y)] = i4'Y/ |

/

The left half of matrix [Pi] represents the symmetric mode,
while the right half is the antisymmetric mode. Again, symmetry
and antisymmetry are considered with respect to the circumferential

coordinate y about the origin in each panel.
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Each set of Eqns. (131) through (138) for the curved panels
and Eqns. (139) through (146) or (147) through (154) or (155) through
(162) for the flat panels, has eight constants of integration ai(i =
1,2,....,8). Thus in all, we have 2N x 8 constants to determine.
It is obvious from the x-dependence of various state variables in
expressions (131) through (162) that, in each panel, the boundary
conditions at x = 0,1 are identically satisfied. Therefore, as before,
we must match various forces and displacements at 2N common
edges to arrive at 2N x 8 equations for 2N sets of unknowns of type
a, (i=1,2,....,8).

6a. Matching Conditions and the Formulation of the Eigenvalue

Problem

The matching conditions at the common edges are given in

(114) and (115) as follows:

{§T}F = 1] {_S_fim}B i =1,3,5,....,(2N-1) (114)
[H, ] {_S_l;}F = {_S_l(qm)}B i=2,46,....,(2N)  (115)

where from (163)

Ty _ o _ Prebuckling , Perturbation
{§1} _{§i} * {§1} = solution solution (163)

We may repeat here that:
(i) All the odd numbered panels are curved panels and Eqns. (131)
through (138) apply. All the even numbered panels are flat panels
and, depending on the value of \, Eqns. (134)-(146) or (147)-(154)

or (155)-(162) apply.
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(ii) The subscripts F and B denote that the expressions are eval-

uated at the front and back edges of the panel respectively, The

front edge is at y = 'ITj (or y = —E tanﬁl) and the back edge at
y = - % (ory = - i tanﬁl) for each of the curved (or flat) panels.

Substituting (163) in the matching conditions (114) and (115),
it can be seen that the prebuckling parts {_S_oi} of vectors {Sf} iden-

tically satisfy Eqns, (114) and (115) and we obtain

"

{gi}F = [H]] {§(1+1)}B (i=1,3,5....,(2N-1)) (166)

2,4,6,8,...., 2N) (167)

[HI] {§_1}F = {_S_(i+l)}B (i

Panels numbered 1 and (2N+1) refer to the same panel.

Using Eqn. (164) in (166) and (167) and rearranging the matrix

equations
\
[Hl] [PZF]{EZ} = [P3B] {3:3}

............................. & (168)
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Each of the matrices in [ ] is an (8 x 8) real non-singular
matrix, Thus we have 2N x 8 equations for 2N eight component
vectors {3.1} (i=1,2,....,2N). The last of the matrix equations
(168) is the closure condition, indicating that we are considering
a closed shell. Equation (168) is a set of 16(N) homogeneous equa-
tions in 16(N) unknown a's. For non-trivial values of a's, the deter-
minant of the 16(N) x 16(N) coefficient matrix must vanish. The
determinant is a function of N (number of panels of each k'ind),

% (radius of the curved panels),—z?b(width of the panel) and other
geometric parameters like r/hs, hs/hp’ etc. The lowest value of
Ag for given geometric parameters at which the determinant van-
ishes gives the critical load for the shell. The corresponding
eigenvector of a's determines the displacement distribution at the
critical load. To actually locate the lowest \, we may use the
method employed in the case of a shell with single flat spot (Section
6, Chapter I).

6b. Simplifications for Numerical Evaluation of \cg

It is obvious from (168) that the order of the final matrix,
for which the determinant has to be found, is 16 times N (the
number of panels of each kind). Evidently, for large N, the storage
requirements in the computer may become prohibitive, This situa-
tion can be improved by rearranging the equations and making full
use of the large nuinber of zeroes in the matrix. The final form

of (168) becomes:
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For N = 5 (for example)

(169)
Here x's denote 8 x 8 real non-singular matrices. All the
empty squares indicate (8 x 8) null matrices. The same procedure
applies to any value of 2ZN. The order of vectors in the general

case 1s al, a a(

as; Format (169)

2N) 23> 2(2n-1) 24 2(2n-2) ©FC
reduces the storage requirements for the final matrix and is valid in
general, even if all the panels are different. However, in the prob-
lem under consideration, all the odd numbered panels are identical
and so are the even numbered panels. Every panel of either type is
identically positioned along the circumference of the shell. In fact,
in the numbering of the panels, the location of panel number one is

completely arbitrary, This arrangement of the panels implies

certain symmetries in the shell configuration and hence in the
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buckling modes of the shell as discussed below,

The problem of the shell with a single flat spot was reduced
to solving a set of 16 homogeneous algebraic equations in 16 unknowns
(Eqn. (94)). By redefining the unknown coefficients (Egns. (97),
(98)), Eqn. (94) was reduced to Eqn. (99) in which the symmetric and
antisymmetric modes had been decoupled. This meant that the
buckled configuration of the shell was either symmetric or antisym-
metric with respect to the line joining the centers of the flat panel
and the curved panel. This line was also the line of symmetry of
the undeformed shell. Now if a multi-flat spot shell with N panels
of each kind is considered, it can be easily shown that it has N lines
of symmetry. In Fig. 21lb, the lines of symmetry for shells with
N =3 and N = 4 are shown. Reversing the arguments of the single
flat spot case, it may be expected that the buckling modes of the
shell with N-lines of symmetry will also exhibit certain symmetries.

It may be mentioned here that this method of using symmetry
of geometry and loading, has been extensively used in the numerical
solution (e.g., by finite difference or by finite elements method) of
certain problems. There, by symmetry considerations, the problem
of complete structure is reduced to that of a part of the structure.

In the problem under consideration, for very large N it may not be
easy to take into account and analyze all the symmetries, so that
the buckling analysis of a part of the shell will give the lowest
critical load. With this in mind, the study of the symmetries will

not be carried further., Instead, a systematic reduction of matrix
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equations employing the properties of matrices and the roots of unity
will be used to reduce the orders of matrices and hence, the compu-
tations. In Section 9 of this chapter, it will be shown that the solu-
tions so obtained do have the required symmetries.

In (168) matrices [PiF] , [P.

1B), i=1,2,....,2N) and [Hl]

are non-singular., Therefore, by the elimination process, we can

write

(Pypl{a)} =011 1P, 1 (PRI [H [Pl [P LI [H] [P, o] [PLI[H] . ..

cone T By g1 TP el [ H 11 1P g1 {2y} (170)

[L[Hll [P,pl [Pyl [, 1P, [ PLLIH . ...

[ TP gyl [P oy L1 P ) [PTR ] Py {3y F={0} (17D)

Here

[ Péjl?] [PZF] =[I] = Identity matrix
(172)
[H‘ll] [Hl] =[1] etc.

For non-trivial {31 }

Det.[l-[Hl] [ PZB] [ Pii_‘] [ Hil] ceen .[PIB] [ PE;]] -Det(PlF] =0

(173)

Incidentally, the method for block-tridiagonal matrices,

described in Ref, ( 9 ), p. 58, can be applied to the matrix in (169)
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to reduce it to a product of a block lower triangular matrix and a
block upper triangular matrix. The determinant of this matrix
product can be shown to be the same as (173) with some rearrange-
ment of terms,

Since all the odd numbered panels are identical, as are all

the even numbered panels, in (168)

[Pypl =[P3pl =[Pgpl=-.. =[P 18]
[Pyl =LP3F] =[Pypl=cio =[P npyp)
(174)
[Popl =[Pupl =[Pgpl=... =[Pl
[Popl =[Pupl =[Pegl=-cr =[P 5

Using (174) in (173), for non-trivial {31}

N
Det. | 1-(1 1) [ Pl [P 1111 P I[P, 1 7)) |pet. [P, ] =0

(175)
For the sake of brevity, let

[P] =[H)[P,5] [P, I[P gl [P 7 (176)

Then (175) =>  Det. [ I-[P] N] Det. [P =0

1F]
Det. [PIF] # 0, because [PIF] is non-singular.

This implies that the eigenvalue problem (168) can be posed as

(P1N {b} ={b} where {b} =[P ] {2} (177)



-67-

Now, we must find the lowest N\ for which one of the eigen-
values of [P]N is unity.

By using a well-known theorem for the eigenvalues of a

matrix and its powers, (177) =

[P] {b} = e{b} (178)
where
a = Nth root of unity
= cos(I")+isin(I"), T =% , (n=0,1,2,..., —Zlﬂor Nz_l) (179)
% if N is even
and N2-1 if N is odd

If @ is the Nth root of unity, so is @ where @ is the complex
conjugate of . Alsoa =1/a.

Therefore, from (177)

[P] {b} =a{p}

(Pl [P, ] {2,} =alP ] {a,}
or using (176)

(8,1 (P51 P H] 1P 5] {2} =P L1{a}

or  alP g l{a} =[H 1P, 1P;L1H] (P, L 1{a;}



By interchanging @ and a

e [P 51{z,} =181 [P, 1[P;p] [H]'1[P, 1{a;}  (180)
From the first two sets of (168) and (174),

[P, gl{as} =18, 1[P, 1P L11H; 1P o1{a; } (181)
(180), (181) =

{aj} =a{a;}
similarly {a.} =of{a,} =0®{a }, {a,} =a¥{a,} etc.

(182)

And also {a,} =a{a,}, {a} =a%{a,}, ete.
or  {a, iy =@¥a b, {2t =a{a,)

Using (182), (174), (165), (164) in (168), we get

[P, ez} =111 [P, {a,}

a[P gz, } =1H1[P,] {a,}

or
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Since [HI] is a diagonal matrix, we can write the two matrix

equations

]
1
P11 Pyp
_—— e ——-
1
]
P13 Pra]
1 -
[}

P11 Prp
P i
]

t
P31 Py

-

v
Il

_——— e = - - -

Eliminating {3'2} and {3'2'} in (a) and (b) above,

(3 110p,, 1410530 0P ) { o)

(1-o]
(1+a)

(1e3111P 14551 P 1) {ay} ={o}

(183)

23%

(a)

0

===t (b)
23'2'
(184)

(185a)
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-1 -1 ,
(103811, ) +1a3hitp, ) {2}

¥ Eifg; ([ Qéé][Pm] ¥ [QE‘I;][PM]) {ay} ={o} (185b)

or in matrix form

I+a _ l+cos(I')+isin()
l-a =~ 1-cos(I')-isin(T)

_ isin(I') . T
T I-cos() * COt(-Z_)
(186)
l-a2 2T
or (—1+—a = -tan (7)

Using (186) in (185), the matrix is found to be a real matrix.

(185) is a set of 8 homogeneous equations for the 8 components
of the vector {31}. For a non-trivial vector {3} , the determinant
of the matrix ﬁmst vanish. The lowest value of )\s at which this
happens is the critical load of the shell and the corresponding {i}
gives the eigenmode,

From (185) we can see that now, instead of a 16N x 16N matrix

as in (168), the order of the matrix to be considered is at most 8.
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In fact, for some special cases below, it can be further reduced to 4.

Special Cases

(i) a =1, n=20

This corresponds to the buckling mode in which all the curved
panels have identical displacement distributions--symmetric or anti-

symmetric, From (184), (185) the matrix for this case reduces to

i |

(5111, )] +[Q331[P 5] !

E 0 a
----------------------- e I e
0 i [Qié][Plz] +[Qit11][P14] 2

(187)

With @ =1, there are two possibilities, namely symmetric
modes and antisymmetric modes of buckling. They are uncoupled
and the order of corresponding matrices is reduced to 4.

(ii) ¢ =-1, n =12\]— (Possible only when N is even)

This mode occurs when the consecutive panels of the same kind
have the same type of deflection distribution, but of opposite sign.
1f the curved panels have a symmetric mode, the flat panels will have
an antisymmetric mode and vice versa. Again, from (184), (185),

the final matrix reduces to:

1
2
""1""""""1 """ ittt === = {071 (188)
- - \ o =
(95,0 [P 141Q; J [Py 5] 0 2,
Again the symmetric and antisymmetric modes are uncoupled

and the order for their matrices is 4, From (184), it can be observed

that for @ = -1, the symmetric mode in panel 1 is associated with an
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antisymmetric mode in panel 2 and antisymmetric in 1 with symmet-

ric in 2,

7. SHELL MADE UP OF FLAT PANELS ONLY

In this case, the shell is in the form of a regular polygon

without any rounded corners., The critical load for such a shell
should be the limit for the c ritical load for the shell considered

in the previous sections of this chapter as the radius of the curved
panels is reduced to zero. The analysis for this shell follows
exactly that used for the shell with both flat and curved panels and
it will not be repeated here. Only the points of departure from the
last analysis and the final form of the equations will be presented.

(i) Numbering of Panels

To maintain the uniformity of notation, the panels will be
numbered 2,4,6,.....,2N, because all of the N panels are flat
plates. Again the front and the back edges will be differentiated

by subscripts F and B respectively., The coordinate system remains

unchanged.

(i1) Reference Shell

In the previous analysis of the flat panels, the critical load

was defined by )\s = G/UCL(R,hs) (Egn. (129)), where OCL(R, hs) =
EhS/R

V3(1-v2)

of radius and thickness equal to those of the curved panels. Simi-
h, 2 >

] L2 R 2
larly, from Eqn. (129), Zp = (HI;) Zs where Zs = (ﬁ) (E)VIZ(I-V )e

is the buckling stress of a circular cylindrical shell

However, in the present case, there are no curved panels. Hence

R =0, For the purpose of analysis, we define:
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Eh_/r
\ = o/oCL(r,hp), GCL(r,hp) =

2
V3(1-v ) (189)

2
z =z =(%) ES Viz(1-v%)
p

P
Using this information in the analysis of the flat panels, we
arrive at expressions similar to Eqns. (139) through (146), Eqns.
(147) through (154) and Eqns. (155) through (162).

(iii) Matching Conditions at the Common Edges

In this shell, as in the case of the shell with a single flat spot,
the adjacent panels do not join smoothly at the common edge. With
reference to Fig. 4b , we can write the matching conditions (analogous

to Eqns. (115)) as follows:

{S(T.HZ)} = [c(2p)] %SIT}F (i=2,4,6,8,....,2N) (190)
B

Panels numbered 2 and (2N+2) refer to the same panel. If we
use expressions similar to Eqn, (139) through (162) with changes
mentioned in (ii) above and Egn. (190), we obtain matrix equations

similar to (168);

P,pllas) =lc@s ) [P, {a,} \
[Pyl {agh =[C2B) NPl {a,t

[Pgpl {2g} =lc(2B N[ Pypl {20}
------------------------------ \ (191)

annp! L2y =GB IIP oy 2)pl {2an. 2y

PZB] {9_2} = 2[3 NP (ZN)F {a(ZN)}
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The last of (191) is again the closure condition, As before,
all the matrices [PiB] or [PiF] are 8 x 8 real nonsingular matrices.
Matrix [C] is also an (8 x 8) matrix analogous to matrix [CA] of

Eqgn. (94) for the shell with a single flat spot and is given below:

:05(2[51) o 0 o0 0 0 sin2p,)0|

|
|
|
0 1 0 ol o o 0 0
|
. 0 0 1 o! o 0 0 0
[C(zpl)]_ R S S0 Dcos(2h)0 ein(2B) 0 9
: 0 0 0 © 1 0 0 0
C4(28,)1C4(28,)
0 0 -8in(2pB,) Ocos(ZBI) 0 0

-sin(Z[il) 0 0 0 0 0 cos(ZBl) 0

|0 0 o 0 0 0 0 1
(192)
Matrix [C] has the following properties
Det. [C] =1

- ~2 - . T
Cy(By)1 Cl8)) C1(28) 1 C,(2))
CHGRHCKEN] C5(2B))1G4(28)) |

_ (193)
- ' T-l B :

Here 2[31 = Angle subtended by each of the N flat panels
) at the center of the inscribed circle

28, =57 or B =% (N = 3) (194)
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(iv) Analysis and the Final Equations

From the fact that all the N panels are identical and by using

arguments similar to those in the last section,

{24} = a{iz}v {36} =a2{§2}"--°’ {E(ZN)} =°‘N-1 {32}

aN =1, a =cos(I') +isin(), F=% , (179)
(n=0,1,2,....,5000r 220
—}—J_r% =i cot(I'/2)
, (186)
(%:I%) = - tan® (T'/2)
Also from (191)
Cy(28)) 1 Cyl2p))
@\ Pop| Y22 = |- )T Por| ) 22
C4(28,) ! C,(28))
Using (193) and (191),
Cy(By) 1 -G oy 1= Fop||22) [C18))1C0B|[ P21t P2z |22
M HASR N i S | I
-C3(B)) 1 CyByMLP, a0 Py Jlagh LCy(B) i, (B LY, 51 E, (e

or by rearranging

((o5B TP, 141640 0P,,1) 1)

+ (%;—g)([c3(51)][P22]+[C4(I31)][P24]) {a,"} ={0} (195a)
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(16,8, 011 Py) + (S, 1L P ,3)) fay)

()6 U gl +1C, e 1P, ) fas} = {0} (95w

or

LRI E R TEN)

3'2

O = 0 (195)
l+a '
T-5) 22

As before, this corresponds to the buckling mode in which all

Special Cases

a =1, n=20

the panels have identical displacement distributions and the symmetric
and the antisymmetric modes are decoupled. The corresponding

matrix (195) becomes, in view of (195a) and (195b):

a : -
""""""""""""""" e | T 6 1Y
0 (10,8 [Py) HLC By P 1) N
N (196)
a =-1, =72 (Possible only if N is even)
In this case, matrix (195) becomes:
0 N CRODIE M ECACHTE0) |
""""""""""""" et I N 2
(CXERIENECRUR TSI 0 2!
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Comparing Eqns. (195), (196), (197) to (185), (187), (188),
it is easily observed that the equations are similar and the orders of
matrices in similar cases is identical. Because of this similarity,

the method of obtaining A\ numerically, outlined in the next section,

CR
is equally applicable to the shells with multiple flat spots and the

shells with flat panels only.

8. NUMERICAL EVALUATION OF THE CRITICAL LOAD

The method used to obtain the critical value of the load
parameter \ is similar to the one used in the case of the shell with
a single flat spot. The arguments given in the last chapter, for
using that method, apply equally well in the present case. The var-
iables in the present case are the number of panels of each kind (N),
the radius of the curved panel (R/r), the width of the flat panels
(b/r) and the other material and geometric characteristics of the
shell. N is greater than or equal to two in the case of the multiple
flat spot shell. Therefore, unlike the case of single flat spot shells,
the buckling modes for multiple flat spot shells are no longer
limited to one symmetric and one antisymmetric mode. In fact,

g (or N—él for N odd) different modes have to be investigated to
obtain the lowest critical load for the shell for a fixed set of geo-

metric constants and every wave number in the axial direction.
In order to use the method of the last chapter, we have to

know the upper and the lower bounds to }\CR' Between these two

values, )\CR is that N at which the determinant of the appropriate

matrix changes sign. The vanishing of all the "sine" terms in
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Eqns. (131) through (138), at the compressive stress o (R,hs)

CL
indicates that \_ = U/O‘CL(R,hS) =1 can be taken as a suitable upper

bound. For the case of a shell with flat panels only, \ = o/oCL(r,hp) =
! is a suitable upper bound. The lower bound may be fixed at any
positive value of \ less than the upper bounds mentioned above. In

the absence of better information, a positive value close to zero is

a good choice. At a fixed R/r and for a particular number of half

waves in the axial direction, \ has to be determined as n (in Eqn.

CR
. N N-1
(179)) varies as 0,1,2,3,....., - Or ——. If only the lowest )\CR

is required and not )\CR for every n, we can use the upper and the

lower bounds mentioned above for n = 0. For the higher values of

n, the upper bound may be fixed at the \ obtained for the previous

CR

value of n.

With the above remarks in view, the various steps in obtain-

ing )‘CR are summarized below:
(i) For a fixed R/r (or -}:: in the case of N = 2, for which % =
1. 0 and the shell configuration is changed by varying flat spot width)

and at a constant m, the lowest value of )\CR is obtained as n is varied
1

from O to g (for N even) or N—é— (for N odd).

(ii) Step (i) is repeated at the same % for various values of m

until the lowest )\CR of step (i) as a function of m reaches a minimum.

This minimum )\CR is the critical load of the shell with a given —rf—(—
The corresponding values for m, n determines the eigenmode and
hence the displacement distribution in the buckling mode at that

critical load.
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(iii) Steps (i) and (ii) are repeated for different values of
R/r or b/r. Half waves, for which the computations are to be car-
ried out, may be selected to be in the neighborhood of m, at which
a minimum is expected to be reached. (This information may be
guessed from the data corresponding to the previous values of R/r
or b/r.) A typical set of data points is shown plotted in Fig. 22.

(iv) All the values of \ are reduced to a common basis,

CR
In the present case, the reference stress is GCL(r, hs)’ i.e., the
critical stress of a circular cylindrical shell with a radius equal to
that of the inscribed circle and thickness the same as that of the

curved panel.

(v) Plots of A vs. R/r or b/r or B, are obtained with m

as a parameter. The locus of the minimum )\CR is obtained and is
the final curve for the shell indicating the critical load as a function

of R/ror b/R or By-

9. EIGENMCDES AND DISPLACEMENT DISTRIBUTIONS AT CRITI-

CAL LOADS

Equations (185) and (195) give the final form of the equations,

the satisfaction of which determines )\CR for the shell with both
curved and flat panels and the shell with flat panels only respectively.
Either of (185) and (195) is a set of 8 homogeneous equations. After
obtaining )\CR’ we can regenerate the corresponding matrices for
)\CR and solve for the eigenvector {31} and {_a_z} respectively. If

we examine the matrices of coefficients in (185) and (195), it is easy

to see that they are real matrices, although a is complex. This is
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because of Eqn. (186). For a real matrix, the solution of the unknown

vector of coefficients has real components. Therefore,

'
= S R 22__
(1+a ya'! (j-"'a)au
l-a’'—1 l-a’'=2

are real vectors, and so are {3‘1} and {_a_'z} . From Eqns. (186},
%{L—g =i cot(I' /2) is an imaginary number. Therefore {_a;'l'} and {3'2‘}
are also imaginary, but all the state variables of the shell have to be
real quantities,

In Eqn. (179), it was mentioned that, if ¢ is the Nth root of

unity, so is @, the complex conjugate of . From Eqn, (178), it is

easy to show that
[P) {B} =a{B} (198)

where {E} is the complex conjugate to vector {’P_} Using (177),

{E} can be written as:

{8} =[P, 1 {3, } (199)

Eqgns. (198) and (199) imply that at a \ if {31} is a solution

CR’
of Eqn. (185), then so is its complex conjugate vector {El }
From Eqns. (131) through (138), the state variables in the

curved panel are of the form

ETQN

where the elements of matrix [ | are functions of x and y. For

panel 1, if {31} and {El} are the solutions of (185) at a particular
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)\CR’ a linear combination of {31} and {E} is also a solution.

Therefore, to obtain real values for the state variables,

N

From Eqn. (182), for other panels

T
53

2

{3(21-1)} = o' {31} and {5(21_1)} - @' {El} (201)
(i=2,3,4,....N)

Formats similar to (200) may be used to obtain the variation
of the state variables in all the odd numbered panels. The vectors
{3.1} for the even numbered panels can be obtained from (168) after
substituting the vectors for the odd numbered panels. This procedure
can be applied to the case of a shell with flat panels only.

Symmetries of the Eigenmodes

In Section 6b of this chapter, it was mentioned that a cylin-
drical shell with N panels of each kind, has N lines of symmetry.
This implies that the buckling modes will also be symmetric and

antisymmetric about these axes. This is demonstrated qualitatively

below:

N = 2 (Two Panels of Each Kind)

From (179),

As shown in (187) and (188), for these values of o, the sym-

metric and antisymmetric modes of panels (here symmetry is implied
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in the sense of local symmetry in the panel about the origin) decouple.
Therefore we can consider them separately, Let the panels 1 and 3 be
curved and 2 and 4 be flat panels.
(a) a =1 Sy'mmetri'c Mode

Let {31} = _Tl} sym. mode

'
Then {33} = a{gl} = {%Ol—} = sym, mode of same sign as {31}.

This means {_a_z} aTnd {54} are also symmetric modes and
have the same sign (not necessarily similar to {9_3}. In other words,
the buckling mode of the shell considered as a whole is symmetric
about its two axes of symmetry, viz., lines joining centers of 1 and

3 and centers of 2 and 4.

(b) o = -1 Antisymmetric Mode
0
Let {31} = {-T-"—} antisym. mode
a
0 -1
As before {33} = {fﬁ} antisym. mode of same sign as {_3;1}
-1

Similarly {32} and {34} are antisymmetric modes and have
the same sign. Now, if we keep in mind that the forward edge of panel
1 is a mirror image of the back edge of panel 3 with respect to the
line of symmetry through panels 2 and 4 and the back edge of panel 1
is the mirror image of the front edge of panel 3 (and similarly for
panels 2 and 4 with respect to the axis through 1 and 3), the above
arguments for the vectors indicate that the buckling mode of the shell
is antisymmetric about the two axes of symmetry of the shell.

{c) o =-1, Symmetric Mode
Proceeding as in (a) and (b) above, it can be easily shown

that this mode is symmetric about an axis of symmetry through
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panels 1 and 3 and antisymmetric about the axis through 2 and 4.
(d) a =1 Antisymmetric Mode
This mode is symmetric about the axis through 2 and 4, but
antisymmetric about the axis of symmetry through panels 1 and 3.
In exactly the same way, the symmetry (antisymmetry) of
the various modes of buckling of the shell can be demonstrated for

the cases when N is greater than 2,

10. RESULTS

Numerical results have been obtained to evaluate the effect
of the following on the critical stress of a shell:

(i) The number of panels of each kind, (ii) the radius of
curvature of the circular panels and the width of every flat panel,
and (iii) the inscribed radius to thickness ratio of the shell.

All the results to be presented in this section are for a shell
with r/L = 1.0 and hs = hp =h, h' =1, i.e., the same thickness in
the curved and flat panels. The discussion in Section 7 of Chapter I
and the analysis of Appendix III regarding the effect of r/L on )\CR is
easily applicable in the present case also. It may be mentioned
here that one may not get detailed results for a shell with r/L, # 1.0
from the results corresponding to r/L = 1.0, yet the final envelope
of )\CR vs. R/rof b/r or ﬁl at r/L = 1,0, does represent, to a very
good approximation, similar curves at r/L values other than unity.
In the latter curves however, the number of half waves in the axial

direction have to be adjusted suitably (see Appendix III).



-84~

In Table X, numerical values of )\CR as a function of m and
B,(22) are presented for a shell with N = 2, r/h = 1000, v = 0. 3,
For N =2, % is always 1. 0 and the configuration of the shell is
changed by varying [31. (This is not true for shells with N equal to
or greater than 3. In that case, by Eqn. (106), there is a unique [31
and 2—: for every R/r.) The observations made in the case of a
single flat spot shell are borne out by the results of a shell with
2 flat spots (and also by the later results of shells with N equal to
or larger than 3). There is a certain m for which KCR reaches a
minimum; the m at which the minimum is reached decreases with
increasing Bl and for a fixed m, )\CR decreases monotonically with
increasing flat spot width. In Fig.23 are plotted the above results
in the form of NcR VS- width of the flat spot ErB . It indicates a
quite rapid decrease in the buckling load of the shell. In the same
figure a similar plot is given for a simply supported panel having
a width equal to that of the flat spot. The critical load for the
simply supported panel is considerably larger than the critical load
of the shell for small flat spots, but the agreement improves as the
width of the ﬂaf spots increases. Even then, the )\CR for a s. s.
panel is greater than that for the shell. This result may seem to be
at variance with the observations of the last chapter. There, it is

mentioned that, for single spot shells, for a s.s. panel is

MR
higher than that for the shell having small flat spot widths, but
lower for large flat spots. That this difference in results of single

and multiple flat spot shells is justified and should be expected, is

explained in the next paragraphs.
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Due to a larger moment of inertia, an angle section has a
higher bending rigidity than a flat plate of the same thickness and
cross-sectional area. The bending rigidity is the same as that of
the flat plate when the angle between the two limbs is 180° and it
increases as the angle is reduced. The flat panels of the shells have,
at their edges, constraints on the out-of-plane displacement and the
slope in the circumferential direction due to the adjoining panels.
For the same width of the flat panel, the slope constraint is of the
same order in the single flat spot (sharp corners) and multi-flat
spot (rounded corners) shells, However, due to the angle section
effect, the support in the w-displacement direction, for the flat panel
in the single flat spot shell is stiffer than that in the multi-spot
shell. Moreover, in the former this stiffness increases with the
width of the flat panel while, in the latter, it is fairly constant,
The result is that in the single spot case, for small flat panel widths,
the increase in the buckling load due to small slope constraint does
not compensate the reduction in the critical load due to weak out-of-
plane displacement support (compared to the rigid support in the
simply supported panel). Therefore, the critical load of the flat
panel and hence, of the single spot shell, is lower than that for the
simply supported panel. For larger flat panel widths, the 'angle at
the edges is much less than 180°, This means a stiffer support in
the w-displacement direction. This, coupled with the slope restraint,
increases the critical load of the single flat spot panel above that of

the simply supported panel.
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For the case of multiple flat spot shells (rounded corners),
there is no change in the support conditions at the edges as the flat
spot width increases. As a result, the critical load of the flat panels
and hence, of the multiple flat spot shells, continues to be lower
than that of the s. s. panels, For large flat panel widths, however,
the difference from simply supported panels decreases and this is
in agreement with the results for a compressed plate supported by
elastic beams (Ref. 13, pp. 368-369). The difference between the
critical loads for an elastically supported plate and a rigidly supported
plate is small at large widths and decreases as the width increases.
The above discussion thus establishes qualitatively the validity of
difference between the results of a single flat spot shell, multi-flat
spot shell and a simply supported panel. Comparison of single and
two flat spot shells illustrating the above points, is presented in
Fig. 32.

Returning to the results of multiple flat spot shells, in Tables
XI, XII, XIII )\CR is presented as a function of R/r, —2-117) and m for
3, 4 and 8 panels of each kind. The above results are presented in

Fig.24 through Fig. 26 as \ vs. Widl:h—zrE of the flat panel, (%

CR
is related to Zr—b by Eqn. 106.) As before, in each figure is plotted

)\CR Vs, % for a simply supported panel of thickness and width the

same as those of each flat panel in the shell. In Fig. 27 is given a

2b

composite plot of A Vs, — for the above cases, In addition,

CR
)\CR values are given for shells with no curved panels (% = 0.0),
but with a very high number of flat panels. These shells are of the

same thickness ratio and inscribed radius to length ratio as above.
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In Table XIV and Fig. 28, values of \ are given for a shell

CR
with r/h = 100, r/L = 1.0 and 8 panels of each kind. In this figure

Z2b

is also plotted X Vs, — for a similar shell with r/h = 1000 and

CR
for simply supported panels of thickness r/h = 100 and r/h = 1000.
As expected, the rate of decrease in the critical load with the flat
spot width is considerably less for the thicker shells and the mode
shape is limited to a low number of half waves in axial direction.

One of the questions posed in the introduction to this chapter
was: How does the critical load of the shell change with the radius
of curvature of the circular panels? In Fig. 29 and Fig. 30 are
presented plots for )\CR vs. R/r for shells with different numbers
of panels of each kind and different thicknesses. It can be easily
observed that the smaller the number of panels and the thinner the
shell, the sharper is the decrease in the critical load.

The effect of the number of panels of each kind is presented
in Table XV. For the sake of simplicity it is assumed that there
are no circular panels (l:— = 0. 0) and the shell is an N sided regular
2b

CR VS, T, but

are presented again in Fig, 31 as the variation of )\CR with the

number of panels at a constant radius of the circular panels. Though

polygon. These results were plotted in Fig., 27 of \

N, the number of panels, is an integral number, a continuous curve
is drawn to emphasize the trend of the results. In Fig. 31, are also
plotted values of )\CR for a simply supported panel. From the curves,
it is apparent that )\CR for an N sided regular polygon approaches
asymptotically to the critical load of a shell of radius and thickness

the same as the inscribed radius and the thickness of the polygonal
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shell. As an incidental result, the curves indicate a limit on the
common assumption of simple support condition at a sharp corner
between two flat panels. As shown, this assumption may not hold

when the angle between the two panels approaches 180°,

11. CONCLUSIONS

In concluding this chapter, we can make the following remarks
regarding the stability of shells with flat spots:

(a) The performance of the shell is better if it is formed
from the flat sheet by bending into large numbers of small flat panels
joined by curved panels, In other words, this means that the contin-
uous rolling method to form shells is better than bending at discrete
points.

(b) If the shell has to be formed by discrete bending, the
radius of curvature of the bend should be as close to the inscribed
radius of the shell as possible. The critical load is very sensitive
to this, and becomes more so as the thickness of the shell and the
number of panels of each kind decrease.

(c) From the comparison of the results of single spot shells
(sharp corners) and two flat spot shells (rounded corners), a possible
conclusion may be drawn that the flat spots with sharp corners give
higher critical loads, However it may be mentioned that, in the
analysis, the effect of stress concentrations on the critical loads
have not been considered, Although they may not be serious by

themselves, they may trigger collapse of the shell.
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(d) In this and the last chapters, the effect of the prismatic
imperfections in the form of flat spots has been studied. The re-
sults indicate sharp reductions in the critical loads. If we express
these flat spots as imperfections on the perfect circular cylindrical
shell, and compare the results with those for axisymmetric imper-
fections (Koiter (11), Hutchinson (8)), we may conclude that the flat
spots are not as damaging as the axisymmetric imperfections.
However, it must be kept in mind that, even the multiple spot case
considered in this chapter is not the general form of a distributed
prismatic imperfection and also, the prismatic imperfections occur
more commonly than the axisymmetric imperfections (Abrocz and
Babcock (3)).

This analysis was started with some questions regarding the
effects of flat spots and prismatic imperfections. The results demon-
strate the reductions in critical loads due to the former and give
an indication of the effects of the latter. Only a detailed analysis of
general prismatic imperfections may be able to give information

regarding which imperfections are the most critical.
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APPENDIX I

GOVERNING EQUATIONS AND MATCHING CONDITIONS

(i) Donnell's Equations :

The common form of Donnell's shallow shell equations in the

dimensional form is :

1 4 1 2

Eh_ VEL TR Voot W Wi,y =W =0
Eh, 4 1
T VW AR e " Frx Wi yy "2 F 1,5y, xy
+ Fl,yywl,xx) =0

If we non-dimensionalize x and y with respect to the length
L of the shell and introduce the following changes :

3

Eh

_ s _ _ (L2 R - 2

Fls————F,, W;=h W, 2z = (R G )'/12(1 vE)
,/12(1-v2) s

the equations become

4 2
v'F, - sts,xx+‘/ 12(1- v5) W oWe gy = Vo) =0 (a)
viw 1z F - VO (F. W “2F W
s 8" 5, XX - S, XX S,Yy S, Xy 5,Xy

+ F w y=0 (b)
8,y S,XX

(ii) von Karman's Plate Equations :

1 4 2
En_V 1 (WZ,xxwz,yy B wZ,xy) =0
Eh3

viw =0

12(1-v%) % FoxxV2,yy ~ Fo,xyW 2, xy ¥ F2,yyV 2, xd
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Again non-dimensionalizi

introducing the following:

Eh3
F,=—FP F ,W,=hw

2 V——z— P’ 2 pp
12(1-v )

the equations reduce to

V4Fp + J12(1-v2) (W
v‘*wp - V1201-v2) (F

=0

(iii) Matching Conditions

W -W
p,XxX p,yy P,Xy

ng x and y with respect to L and

2 )=0 (c)

w -2F w +F w )
P, XX Pp,YY Py»Xy pPXy PpP,YY P,XX

(d)

In a single flat spot shell, the following are the matching con-

ditions which must be satisfied to insure continuity of displacements

and equilibrium of forces across

R
At Edge A (y'S = -1 (- [31), Yp
Wl = chosplﬂfzsmﬁl

V1 Vzcos;?’l-wzsinﬁ1

U, =0,

(b)) = 6,),
(M) = (M),

(ny)l = (ny)Z

(Nyy)l = (Nyy)Z cosﬁl-(Qy)zsinB1

(Qy)l = (Qy)2 cos[31+(Nyy)2 sinpl

the common edge:
_R .
=1, sin [31)

out-of-plane displacement
circumferential or y displacement
axial displacement

rotation about x-axis

moment in y-direction

inplane shear

y-direction normal force

out-of-plane shear
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In the above expressions:

oW

_ 1,1 _ 2
Eh> ER>
M)y, = —5 K __+tvKk_ ) (M ), = (kK tvK_ )
y'l 12(1_1,2) vy xx’1 y'2 12(1-v2) Yy xx'2
2w %W,
(Kedy ==~ (Kgdy == —2
ax xx ax
92w v a%w.
(K )1-" 21 +_1—R. 81, (K )2:_——72
yy 3y y yy oy
0°F, o°F,
(ny)l © T oxoy ' (ny)Z T T xoy
9°F 9°F
Ny == Ny o = —F
yy'l T o yy'2 T T
oM ) 0
Q). = y'l + ( xy)l
y'l oy
=D —Q—(K +tvK_ ) i(K )] ( )y = 82W1+1 V1
s| 9y ¥y xx’1 " ox VU xy’l} ? xy’l T 7 xdy @ 2R ox
@) =D |2 )+ Ew ) (k. ), = W,
y'2 ploy Vyy xx’2  ox Txy'2|°’ xy’'2 T 7 @xoy

The underlined quantities are neglected in the Donnell's
approximation of shell curvatures and slopes by the corresponding
flat plate curvatures and slopes.

Making the following changes:

Eh>
s

w =hsW,V =h V , U =hU,F=-———-Fsand

1 s 8 1
'lZ(l-vZ)



3
Eh
W,=h W ,V,=hV,U, =hU,F,=—=EL _F,h hs=h
2 "pp 2 'pp 2 "pp 2 —> P p/hs
Viza-»9)
The matching conditions reduce to:
- 1 :
W =h (Wpcos [31+Vps1n[31) (e)
- t :
Vs =h (Vpcos[31 - Wpsmﬁl) ()
- 1
U ,=h u, (g)
oW oW
S D
oy oy

azws 92w . o%w 9%wW
D) (T I .
ox

9y dy ax
8°F 92 F
8 = h'3 P (i)
3% 0y 0% By
o°F, |o°F h /L (oW 23w

> = Zp COSﬁ:l + P P + (Z_V)——RZ) sin [31 h! (J)
ox ox 1,12(1_‘}2) oy oy ox

hS/L a3ws a3ws h_/L 3w 3w
- 3 + (2-v) > | P 3p+(2_v)__&2 cos[31

12(1-v%) ' % Oyl I\ 12(1-%) \ ¥ dy ox
' (k)
2
°F 3
= 2 smﬂl (1)
ox

_R _ R _.
At Bdge B (yg = T, (m-B; ), y, = - T sinf;)
The matching conditions at edge B are obtained by changing

ﬁl to -ﬁl.
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Multiple Flat Spot Shells

In the multi-spot shells with rounded corners, the matching
conditions are obtained by setting pl =0,

(iv) Rigid Body Motion of Curved Panels

In the case of multiple flat spot shells, the prebuckling solu-
tion admits a rigid body motion of the curved panels, viz. the panel
moving parallel to the line joining the centers of the circle of the
curved panel and the inscribed circle. This motion contril:mtes
y-dependent components to Ws and Vs in the expressions (e) through
(1) above,

Prebuckling solution

vortan(pl)

_ voR Ly
w! = ER_ * ER_sin(r/N) °° R (120)
vortan(ﬁl)
| - N
vi=- Eb_sin(r/N) sin (R°)

There are no similar terms contributed by the flat panels,
Therefore, this W', V' substituted directly in the matching condi-
tions will remain unbalanced. However, if we do not apply the
Donnell's approximation and retain the underlined terms in slopes
and curvatures, the contributions of W' and V' to the slopes and
curvature cancel each other. Now applying the Donnell's approxima-
tion, we obtain the matching condition in the form of Eqns. (e)

through (1) with pl = 0.
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APPENDIX I1

FINAL MATRICES FOR SINGLE FLAT SPOT SHELLS

In Eqn. (99), the eigenvalue problem for the single spot shells

was reduced to the solution of the following:

B P E 0 ] a1
(8x8) (8x1)
_______ e ____\v=1{o
Q b
0 : 1
L . (8x8) (8x1)

Matrix [P] and vector {ai} are associated with symmetric
modes and {Q] and {bi} with antisymmetric modes of buckling, In
the flat plate region, the form of Wp and its functions changes depend-

2
ingon \, If\> —Z—kz—— (Casel), Wp has both trigonometric and hyper-
P 2
bolic terms (Eqn. (70)), while for A < % (Case III), there are only
2
k

=2z

p
case with constant, linear in y and hyperbolic terms (Eqn. (78)).
2
A= ;—Z corresponds to Euler buckling of a panel in m half waves.
P

However, due to the constraints at the edges, we can expect

k2

Ncr ~ 77—+ Therefore, final matrices [P] and [ Q] will be
P 2
presented for the case of A > ZkZ only, For the other two cases,

hyperbolic terms (Eqn. (86)). X\ (Case II) is the intermediate

the matrices can be easily formed in a similar way by the use of
Eqns, (70) through (93).

As before

2[31 = angle subtended by the flat (a)

spot at the center of the circle
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Let 2[32 = angle subtended by the curved
panel at the center of the circle
= 2(7" "31)
or [32 = 7r-[31 (b)
Also let 2T = 2R(7- [31) = width of the curved panel

(c)
2b = 2R sin ﬁl = width of the flat panel

h_ /L h_ /L h
= ———, B =—E—, w=g (@
V12u-v2) Vlzu-vz) y

With this notation in mind, the final matrices [P] and [ Q]

are given in the following pages.
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Matrix [P]
&, = ¢ L .
) L
P(1,1) =+ [e 1 LCOS(‘nl%-B)+e 1 Cos(nl_ﬂ+e)]
P(1,2) = - [e lLSin(ﬂl%—B)-e 1Lsin('r11%‘l_::—+9)]
¢ L ¢ T
P(1,3) =+[e 2 cosin, = +8)+e > " costn, - 8)]
¢ I ¢, L
P(l,4) =-[e 2L sin(nz—TI:+9)- e ZLsin(nz%_e)]

P(1,5) = - hﬁpk(lﬂ)sinh(i‘fb)sinpl

P(1,6) = -h'E_k[(1+v) k—Lb cosh(k—f)-(l—v)sinh(%)] sinf
b

P(1,7) = th' cos(gl -l—l)cos{il

P(1,8) = +h' cosh(g2 %)cosﬁs1

T
P(2,1) = +Esk[ %1 T [% cos(n, % - %‘E)-(2+v)cos(ql % - 923)
gl% 4 T .3 T
-e [F cos('q1 T + —2(1‘3)-(2+v)co_~=.('q1 T +—2—¢)]§]
/] &, Loy
P(2,2) = -Hsk[e {e 1L [k_; sin('ql %-22-‘2)-(2+v)sin(nl% - %)]

re ! ¥ sintn, T+ 38)-(2+v)sin(n, T + %)]g]
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T
_ L, ( -6, 1 2
ez, - (V2 e 1 contny E - P-izrvrcontn - 9

I
— costny T + 3)-(@2+v)cos(n, L + L‘”)]f]

T
2 £, 1
P(2,4) = -Fsk[v—% 3e 2L [-k—g sin(n, T - 2¥)-(2+v)sin(n, T - )
k

T
gzr[

¢ I
2T |

£
2 P 3 y
— sin(n n, T + 3)-(2+v)sin(n, <+ )]ﬂ

+e
P(2,5) = +h' B_k (1+v)sinh(2)cosp
’ P L 1
P(2,6) = +h' Bk [(1+v) %2 cosh($2)-(1- v)sinh(E2)] cosp
’ P L 1

P(2,7) = th' cos(L, %)sinﬁl

P(2,8) = +h'cosh(y, %)sinﬁl

T
— €. = (¢
P(3,1) = +hsk [e ng_kTI cos(nl% - @)t vcos(nl%)i

gl% 4 T T
+ e j‘l? COS(T]IL + (p)+ vCOS(nlL)z

iy
L

-£ Ji
o= 1 1 . T . T
P(3,2) = - hsk [e 3? s1n(-r]lz - o)t vmn(nlt);

e, L (s
L) 1 sin(m, L +¢) +vsin(n, =)
-¢ W2 Sy e rveming g
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§2 T
P(3,3) =+ h kle — COS(TIZ‘E - )tV cos(nz—ﬂ)
£, (1
2L 3}(—% cos(n2 — + ) +Vcos(n2 L)
t I
P(3,4)=-h k[e 2L )72 s1n(n2— - Y )tV sin(1'12 %)t
T
€ = (L
2T 3k2 n2L+¢)+vs1n(n2L)£:|

P(3,5)

- kb

-h!' hpk cosh(-i—)

P(3,6) = -b' B k [(1+v) -li—b smh(k_f)ncosh(k—f)]
P(3,7)=0.0

P(3,8) =0.0

{ -£ I 3 I
- “ 1 1L T [ 1L T @
P(4,1) =+ ——kz %e cos(nlr -0 - 2)-e cos(qlr+9+ 2)!

7 (-t < g L
1)y "°1L . T ) 1L T @
P(4,2) = - ¥ ie sin(n, = -0~ 5)te sin(n T +0 + )g
T T
] -£, = £ =
P(4,3) =+ —% 3e 2Lcos(nz% +06- %')"e chos(nZ{- -0 + %)z
k

il

0, (-t £
\/k_g %e 2T Linin, L +0- Y)-e 2

P(4, 4) s'm(qz-IT: 0+ %)%



P4, 5)

P(4, 6)

P(4,7)

P(4,8)

P(5,1)

P(5,2)

P(5, 3)

P(5, 4)
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0.0

0.0

L

-h'

g
=h' -2 sinh(g, %)

k
T
-E. = 2
1L 1 T T
=+|e - — cos(n,< -0-¢)t vcos(n,~ - 0)
[ K 1L 1L
T
E.= [ ¢
+e 1L ——lcos(‘ql%+9 +¢)+vcos(nl%+e)
k
T
-£. = J
_ 1IT| "1 . T . T
_..[e -kz s1n(n1L—9-<p)+vs1n(r|1L-9)
T
E. = £
-e 1L -1 sin(nl%— + 9+¢)+vsin(~q1% +0)
k
T
-6
2L 2 T T
=+ [e - ‘k—z COS(T]ZI + 0 -¢)+VCOS(T]2-1: +0)
T .
£, g
2L 2 T T
te - ;—Zcos(nz—L— - 6+mp)+vcos(nzi- 8)
= e-€ZE 2-s,'n( To-)+vsin(n,L + 0)
- T2 TR T
T
2T | %2

|
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P(5,5) =0.0
P(5,6) = 0.0
2
EERE El_ le
P(5,7) =h > + v cos (—-——L
k
2
a( 52 b2b
P(5,8) =-h' (—Z—- v) cosh (—
k
0161 T gl% T, o
P(é,l) =+ > e COS(‘r]l-E —-‘22) -e Cos(nlr-}- 2)
k7L
T T
£ [ -8, + £ =
L . T 1., . T
P(6,2) = - ;% © L sm(nl']j-%ﬂe s1n(n1—1_-l+5§)]

-t ¢ I
2
6.9 =Yg e contngf - - o cosin, £ 4 )

2 | '62% T ¢ 52% T . ¢
P(6,4) = - ? {e sin(n, 1 - 5) + e sin(n, T + 3)
P(6,5)= -h'> sinh(52)

P(6, 6) = -h'> |2 cosh (52) + sinh(ER)

P(6,7) =0.0

P(6.8) = 0.0



P(7,1)

P(7,2)

P(7, 3)

P(7,4) =
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¢ T
=+|e 1 cos(nl%)+ e 1L cos(nl%)l

e 3
_ TP1L T 1 . T
==-]le sm(nlt) -e s1n(nl—ﬁ)

ol

gl

.t L ¢
2L T 2 T
=+ ]e COS(T\Z‘E) +e cos(nzr)

T
TS NS T
e s1n(n2t) - e sm(nz-]:)

b

3

P(7,5) = -h' cosh(k—f)cos {31

P(7,06)

P(7,7)

P(7,8)

P(8,1)

P(8,2)

= - h'3 -l%)- sinh(k—l}? )cos[i1
5o (é‘f’ 1) 200
= +h hpk P + (2-v) &) sin (—I—_‘—)smﬁ1
3
g £,b
= +h' Bk (—‘;: _ (2-v) k2> sinh(—2— f )sing |
/ -£ JZ
= +h k [ lL —7 cos(nl—-e- > H(2- v)cos('nl—-e- %)}
6T 4 T, T
-e { —Z cos('r]1 L )+(2 v)cos('q1 L+e+ -‘B}]
_g ?
= - v [ IL - —% s1n(n1—-9- 2 2L)+(2- v)sin(nl—TL--G- %)}
¢ L
te “‘ -;é—sm(nl;l: )+(2 v)sm(nl—+9+ )}]
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T
{ -§,= £
P(8, 3) =Bsk\}—% le 2L {- —% c08(n2-;l; +6- %)HZ- V)COS(nZ%O-%)}
k k
52% Lo
-e {- — cos('qz—--9+ -—*)+(2 v)cos('qz f -0+ LlJ) ]
_ ‘°=2L ‘2 T, 3¢ P
P(8,4) = -h k - — s1n(112 L+6- ShH(2- V)s1n(n2L 0- —2-)

3 { 2
2L 2 . T 3y . T y
te - — sin(n,+-06+ S-)+(2-v)sin(n,+— - 6 + ) ]
Kk 2L 2 2L 2 }

P(8,5) = -h' cosh(2)sing|
kb, .
P(8,6) = - h'> 51? sinh(>)sing
5o (b 51 £1P
P(8, 7) = -h! hpk ('1:3 + (Z—V) T) sin (—L—) Cosﬁl
3
- 4 4 £,b
P(8,8) = -h'> R k <—-23- - (2-v) TZ) sinh (——)cosp,
Matrix [Q]

This matrix can be formed from the elements of the matrix

[P] by making the following changes:

61% §1 L gz% gZTT;
(i) Change e to - to -e . Signs of
T
_gli. g —_—
e and e terms remain the same.

(ii) Except for the elements given below, change
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L. b . b t.b £ b

cos(—L—) to sin (%), sin (—L—) to cos (—Ll,—) s

cosh (—) to smh(—), h(%) to cosh(l—%)-) s

C,zb L b {, b g b
cosh(—) to s1nh(———) and smh(——) to cosh(—)

Exceptions are:

b g1 )b

4
P(4,7) = -h' ?1 sin ( changes to Q(4, 7) = h' —cos(—w— i )

Q(8,7) = +h'> & k

3 gf SR U L
P(7,7) = +h hpk (F + (2-v) ?) s1n(—L—)s1n[31 changes to
3 gﬁ ‘1 LN
Q(7,7) = -h hpk (;— + (2-v) %) cos { T )s1n(31
3
P(8,7) = -h'> & k "1, h
,7) = - o (3 ( -V)T sin (—E-—)cosﬁ1 changes to

U
[
N SN— Sa—
[T
ot
lop
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APPENDIX III

EFFECT OF CHANGING RADIUS TO LENGTH RATIO

In the analysis of the single flat spot shell, we had:

2
z =@ ) Viza-v?) (24)

k = m7 (27)
2 ‘/ Z Z
1 s 0 8
— =W 1+2Y—5 cos 5+ (35)
12 Nkz 2 ;Z
Z—s sin 9
k2 2
tane = (36)
Z
1¥ ——Scos2
K 2
f Z Z
2 \/ s 0 s
— =yl -2 cos 5 + — (37)
kz F 2 k
Zs n @
K 2
tan = (38)

(39)
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hS 2
Zp =(E;) Z, (25)
L Z 6y ‘/ Z
- L P
—k—_‘/1- zng = = 1+V zxkz (57)
Also from Appendix II,
.lfg_szR(w_ﬁl), -Ll—b=—krR sin B, II (c)
- khs/L 1 hs kR
kh = = (f) (—L')
2 2,
VIZ(l-v ) VlZ(l-v )
II (d)
kh_/L h
KR = —P S ) &)
VIZ(l—vz) ‘12(1-\/2)
h' = hp/hs

Now, if for a single flat spot shell, R/hs’ hp/hs and v remain
fixed, (24) and (25) imply that Zs/k2 will remain unchanged as long
as m (the number of half waves in the axial direction) and —% change

such that mTR is constant. For a given A <1, 0 is fixed. Therefore,

2 2 €,
at a particular value of \ and fixed EB, —%,rp ) —g L Tl, El—,

L7y K
2 m 4 &
T ' k' k'K remain unchanged. If in addition, 261, the angle

of the flat spot is prescribed, it can be easily observed that all the
elements of matrix [P] (and also of matrix [Q] ) in Appendix II are
unchanged and so is the determinant of [P]. Reversing the argument,
for a fixed R/lls, hp/hs, v, ﬁl’ the value of A\ at which the determi-

R

nants of [P] and [Q] vanish, remain the same as long as m and o5
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vary such that mR

I, is constant. Thus, if \

CR is the value of the
critical load of a shell at a particular m, the critical load of a simi-
lar but twice as long shell will be the same for 2m half waves in the
axial direction. It may be pointed out again that the results of this
section can be used only to relate )\CR Vs, [31 (or width of flat spot)
variation of a shell at a fixed m to a similar variation of different
length shell at a corresponding m. The results do not apply to the
final envelope of )\CR vs. B, curves of the two shells.

It can be easily proved that the results obtained above also
apply to the multiple flat spot shells, which are identical except

for their lengths. The wave number m and length L vary such that

__L_r is constant, where r is the inscribed radius of the shell.
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R for a Single Flat Spot Shell

(R/L. =1.0, R/h =100, v = 0. 3)

m
5 4 3 2 1

By

1.00 [0,99987 1.00000

2.00 |0.99875 0.99938 0.99938 1.00000

3,00 | 0.98840 0,98740 0.99077 0.99913

3.50 | 0.97555 0.97255 0.98041

4,00 | 0.95684 0.94948 0.96245 0,98341

5.00 | 0.90269 0.88036 0.90032 0,94723

6.00 | 0.83820 0,79528 0.81075 0.88336

7.00 | 0.77358 0.71058 0.71183 0.79578

8.00 | 0.71495 0. 63523 0. 61889 0. 69786 0.88947

9.00 | 0.66417 0.57173 0.53482 0, 60217 0, 82498
10.00 | 0., 62151 0.51946 0.47193 0.51672 0. 74925
11.00 | 0.58620 0.47692 0,41792 0. 44386 0. 66916
12.00 | 0.55689 0.44237 0.37438 0.38349 0.59045
13. 00 0.41417 0.33920 0.33408 0.51734
14. 00 0.39106 0.31063 0.29367 0.45172
15. 00 0.37201 0.28718 0.26073 0, 39421
17. 00 0.34294 0.25212 0.21146 0. 30240
20. 00 0.31425 0.21807 0.16442 0.20983
30. 00 0.27283 0.17079 0.10223 0. 08555
40. 00 0.25898 0.15544 0.08343 0, 05081
50. 00 0.25275 0.14883 0,07571 0.03749
70. 00 0.24801 0.14372 0.06986 0.02828
90. 00 0.24688 0.14259 0.06861 0.02641
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SPOT
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S.S. Panel
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Acr = 9cr/ %L (R,h)

FIG. 14 AggrVS. HALF OF THE ANGLE OF
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FIG.16 AgrVS HALF OF THE ANGLE

OF FLAT SPOT

R/h =100, R/L=1.0,v=0.3
XCR = O'CR /O'CL(R,h)




(S10dS Lv1d 399V -HLAIM 10dS 1v1d ONIAYVA JO 103443)
TT3HS 10dS 1Vv71d 37TONIS V HO4 NOILNGIY1SId IN3N3OVIdSIa-m Li'9id

|jeubd peaind woi4 jods 0|4
$9}04DdeS 8AIND UODTJ UQ BUIT] |DOIJIBA

€0=4"'0"1=71/4 ‘00l =Usy
T._.mv.G.a.u\mobu«_o,A -0’l-
8616°0=489y {80-
oe8eo 9 "%ﬂx £20920 = ‘p=w's0v=gdo0-
“4=W %0 0L= 2=w4"oGl="
° g 0 & ~0-
. 00l 06 Jzo-
°
: _ 0
4zo
M
7 685800 =52y il
AA. y ‘“G=w'%00¢ =g 190
828200=90y |mw%00L: 'g—> 80




113HS 10dS 1V14 3I19NIS V
40 @vOT1 ONITIMONE JHL NO OIllVvYH SSINMOIHL 40 103443

8l '9I3
So I_Q
o) or (Oe] 00l (O)e; 0
S—— e cepme o |
. eI~ IW/ Il’l’lll
llllll ~—— ///m III
S 12 I~ L N, 0001=u/y 120
~~ N Il
e 00G=4748 Sy £\y
1 1ouDd pajdoddng Kldwig - Is, \ \8 :
& N\ 6 % 0
~ |18us jods jol4 81buls — o =y/y
. // \ \ IO&
N \ \\OlI
\¢ k ! —9°0
\ \ !
“ / \ v
- / ._ 8 ._
y / ,_ m._ 21 4180
\ \
Aﬂamv l._Ob\mOb NKOK // ¢ —- 1 m_
1
€0=a'0"1="1/Y 5 LN |,
jods 4DI4 JO 21Buy 8Ul JO JIOH - g I




o0 =g ‘seso) 1y
u] jods 014 0 eibuy 8ul jO 3IDH

(U'Y) o /¥Op = ¥Iy
€0=a‘'0"1=11/4

NOILNBIY1SIa
LNIW3IOVdSIa-M ONIANOdS3HN0D ANV ¥y NO SSINMOIHL 40 193443 61'914

_ _0'l-
- auo aAINn “ L—OQw .
] dP 0 "mhﬁ uo_&|.'lm0l
_ 190-
_ '0-
© 002 08 09l vl_ 021 00 08 09 Ov 02 1
0 So— ¢ § “ 20-
X T H‘”u + I _ mo o
80t es 0= 82X

‘8=W-20

_Q Ur_\m M

£ 8v6v6°0 =8°X 4 0

C =w* =
F\m Iy b =w‘00l=4/Y loo
266¢G°0 =89y 80
*2=W'00G =U/Yy

o'l



-164-

|
|
|
*\ :

i
|
|
|

Fixed Radius R Of The Curved Panels(Here R=0),
But Varying N R/r=00

Fixed Number Of Panels
Of Each Kind (Here N=4),
But Varying Radius Of

Curved Panels

FIG.20 SOME OF THE APPROXIMATIONS TO A CIRCULAR
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FIG.2lb LINES OF SYMMETRY OF MULTI-SPOT SHELLS
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FIG.30 AcrVS RADIUS OF CURVED PANELS OF

MULTI-SPOT SHELLS

AR

/a. (r,h) ,R=Radius Of Curved Panel

R CL
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