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Abstract

PartI:

This thesis is motivated by the increasing demand for power quality improvement.
Power factor correction topologies for both single- and the three-phase utility lines are
investigated and new modes of operation are introduced. The discussed topologies are
so-called automatic power factor correctors. The current shaping function is a natural
property of these circuits, and no extra current control loop is necessary.

In both the single- and three-phase cases, a control method is introduced which
provides full output regulation and simultaneously reduces the distortion of the input
current at no extra cost.

Whereas in the single-phase topology, galvanic isolation is easily obtained, in the
three-phase topology, some obstacles have to be overcome. The isolated three-phase
converter has an inherent output voltage ripple. This problem is analyzed and a solution
1s presented.

Results obtained on experimental circuits agree well with the prediction and

therefore confirm the validity of the analysis.

Part II:

The small-signal behavior of converters in discontinuous conduction mode (DCM) is
investigated using an alternative approach. Transfer functions obtained by state-space
averaging in DCM do not provide accurate results at higher frequencies. A correction
term is introduced that can be added to the transfer function. This greatly enhances the

accuracy.



vi

For converters operating in DCM, the state-space averaging method as originally
introduced is relatively complicated if more than one element operates in discontinuous
conduction mode. In this thesis, a standardized procedure is introduced to perform
state-space averaging. Also, the complexity of this procedure does not increase as the

number of discontinuous states increases.
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Part 1

Single-Phase and Three-Phase

Power Factor Correction



Chapter 1

Introduction

In today’s world the need for electrical power is ever present. Electrical power
appears in two different forms, namely as dc-power or ac-power. The discipline of
power electronics is concerned with the conversion of power from one form to another.
Power converters can be classified into four basic categories. The four types are dc-to-
dc converters, ac-to-dc rectifiers, dc-to-ac inverters and ac-to-ac cycloconverters. This
part of the thesis is concerned with ac-to-dc rectification.

Electrical power is predominantly distributed in the form of ac-power. In recent
decades the demand for dc-power has increased exponentially. This is due to electronic
equipment such as computers, consumer electronics and communication systems to
name a few. All these loads require dc-power in order to operate. Therefore, there is a
rapidly growing need for ac-to-dc rectification circuits. These circuits constitute the
interface between the ac-power line and the dc-load.

Ideally, the input voltage and input current to an ac-to-dc rectifier are both in-phase
sine waves, and the output voltage is constant, independent of the current drawn from
the rectifier. Thus, the input impedance is purely resistive, and the output impedance is
zero. The subject of power quality is concerned with how closely the ideal situation is
obtained at the input to the rectifier. In Chapter 2, the basic definitions quantifying
power quality are defined and their mutual relation is derived. The two most important
indicators of power quality are total harmonic distortion (7HD) and power factor (PF).
The THD is a measure of the distortion of a signal. A pure sine wave has a THD equal
to zero. The power factor indicates what fraction of the apparent power (VA-product)

present in a system is actually delivered to the load. Ideally, the power factor is unity.



Ac-power systems can be divided in two groups, namely single-phase systems and
three-phase systems. The simplest, and historically most frequently employed, method
of the ac-to-dc rectification is the use of a full-wave rectifier bridge followed by a large
energy storage capacitor. This type of rectifier, discussed in Chapter 3, generates a
large amount of distortion in the input current. Since the utility line is a non-ideal
voltage source with a finite impedance, the current distortion also causes a voltage
distortion. Although a single rectifier circuit has little effect on the voltage waveform,
the immense number of these rectifiers causes severe problems. Chapter 3 also deals
with conventional three-phase ac-to-dc rectification. In this case, the distortion is
naturally less severe but still substantial.

Because the distortion problem has increased so dramatically, international standards
have been imposed with the objective to limit the current distortion. In order to meet
these limits, new and more sophisticated ac-to-dc rectifier circuits are necessary. In the
past decade, power electronics engineers have invested a considerable amount of effort
in search of suitable topologies which avoid the current distortion, or reduce it to an
acceptable level. These circuits are called power factor correctors (PFC) or current
shapers.

A vast number of topologies have been proposed. The most straightforward
approach is a two-stage solution. The first stage removes the distortion from the input
current, and the second stage regulates the output voltage. Both stages are decoupled by
means of a large energy storage capacitor between them.

There are two distinct types of power factor correctors, controlled PFC circuits and
automatic PFC circuits. In the topologies of the first group, the input current is
monitored and compared with an ideal reference. The difference is used in a fast
feedback loop which controls the input current so that it closely follows the reference.

Automatic PFC circuits do not require current sensing as current shaping is a natural
property of these circuits. When the basic automatic power factor correction topologies,
such as the Boost and the Buck-Boost, were first introduced, they were operated with
constant duty ratio over one line cycle. However, in many practical cases, the output

voltage of the converter must be tightly controlled by some means. The most obvious



method is the implementation of a feedback loop. The bandwidth of this loop, however,
must be well below the line frequency in order to ensure the required constant duty ratio
over one line cycle. This does not allow tight load regulation, and is therefore
contradictory. These ac-to-dc rectifiers also exhibit an undesirable output voltage ripple
at twice the line frequency, requiring in most cases a post regulator.

These two-stage solutions are however, bulky, complex and expensive. It is
therefore natural to search for single-stage solutions which can simultaneously provide
low distortion of the input current, and well-regulated output voltage. This search has
lead to single-stage solutions which incorporate a high bandwidth output voltage control
loop, and inherently possess a high quality input current waveform.

All topologies presented in this thesis are automatic power factor correctors. A fast
feedback loop is not only possible but is in fact essential for optimum performance with
regard to the input current distortion. Such a topology for a three-phase ac-to-dc
rectifier is introduced and analyzed in Chapter 4. This circuit is not able to completely
avoid the input current distortion, but can drastically reduced it. If a fast output
feedback loop is employed, the current waveform can be further improved. Thus, with
a fast control loop, two goals are achieved simultaneously, an improved input current
waveform and a well-regulated output voltage. Therefore, in this topology the fast
output regulation is not merely an option; it is required to achieve optimum
performance at the input of the rectifier. In addition, because the topology is based on a
Boost converter high efficiency is achieved.

The disadvantages of this converter are the high output voltage and also the fact that
galvanic isolation is not easily implemented. In Chapter 5, two extensions of the
converter are discussed. These extensions, derived from the Cuk and the Sepic
converters, are able to solve both problems. Galvanic isolation is easily included, and
the output voltage can be chosen arbitrarily. The principal problem associated with
these topologies is that they tend to have an output voltage ripple at six times the line
frequency. The nature of this problem is investigated, and a solution is presented.

In Chapter 6, a single-phase ac-to-dc rectifier is investigated. It can be realized as

both, an isolated or non-isolated version. The topology exhibits similar characteristics



to the three-phase ac-to-dc rectifier discussed in Chapter 4. Optimum performance is
achieved when a fast output feedback is employed. If the converter is designed
appropriately, the input current distortion nearly vanishes. Once again, a fast control
loop performs two tasks simultaneously, both improving the input current waveform

and providing full output regulation.



Chapter 2

Definitions

In this chapter the definitions of the most important quantities characterizing the
power quality of ac systems are briefly reviewed. Most power electronics and power
processing engineers are familiar with the concepts introduced here. Nevertheless, it is
important to clearly state all the definitions since some quantities may be defined slightly

differently by various sources.

2.1  Periodic Signals

All the definitions introduced in this chapter apply to periodic functions. A function

£.(2) is periodic with a period length T'if it satisfies

@)= £(+T) (2.1.1)

It is common practice to normalize f,(z) with respect to 7 such that the period of the

function becomes 2nt. The normalized function £() must satisfy

T
7@)= ft(ez—j (2.1.2)
T
The periodicity of £(0) stated in (2.1.1) can be expressed as

f(6)=f@+2n) (2.1.3)

The normalized expressions tend to be simpler. Therefore, in this thesis, this form is

always used.



2.2  Fourier Series Representation of a Periodic Signal

Each function satisfying (2.1.3) has a Fourier series expansion of the form

7(6)=a, + V2> (a cos(k0) + b, sin(k0)) 22.1)
k=1
where
1 2z
a,=>- { f(®)d (2.2.2)
1 2n
a == g 7(®)cos(kB) o (2.2.3)
1 % ppis
be=7- g £ (®)sin(k0) o (2.2.4)

This definition was chosen because a; (k = 0,1,2,...) and b, (k = 1,2,3,...) are the rms-
values of each individual component of the expansion in (2.2.1). The definition of the
rms-value is stated in the next section. Sometimes an alternative form of the Fourier

series expansion is more useful because it consists of a single term for each frequency.

f®)=c, +x/§ick sin(k8 + @, ) (2.2.5)
k=1
where
1 2n
S { 7(e)d (2.2.6)
¢ = k| (2.2.7)

ok = arg(ky) (2.2.8)



. 2n .
k, = \/—%; g FB)e ™ a® (2.2.9)

The relation between the coefficients of the two forms of the Fourier series is as follows:
¢, =a, (2.2.10)

In this thesis both versions, i.e., (2.2.1) and (2.2.5) respectively, are used depending on
the particular case. The components of the Fourier series expansion (2.2.5) are also
called harmonic components or simply harmonics. The component of order 1 (i.e., for

k =1) is called the fundamental component.

2.3 Root-Mean-Square Value

The root-mean-square value (rms-value) is defined for periodic functions, i.e.,

functions satisfying (2.1.3). The rms-value F,,, of a function f{0) is given by

2n
’ﬁ [FROL: (2:3.1)
0

The result is of course unique for any choice of the integration interval. Substituting the

FI'”IS

Fourier series expansion of the f{8) according to (2.2.5) into the formula for the rms-

value leads to the following expression:

2n © 2
Foe = —l-j o +V2Y ¢ sin(k0+ ¢y ) | B (2.3.2)
27 4 P

In order to simplify this relation, the following two equalities are useful:

2n
Jsin(me +0)d®=0 ; for m=integer (2.3.3)
0



27 0 if m=n
J- sin(m0 + (p)sin(ne +9)dd = ;  for m,n=integer (2.3.4)
0 n if m=n

The rms-value can then simply be expressed as

F .= / >’ (2.3.5)
k=0

This relation is known as Parseval’s theorem.

If the function in question is a voltage v(B) or a current i(0) respectively, then the

corresponding rms-values are given by

V.= /ZV,} (2.3.6)
k=0

I, = /21,3 (2.3.7)
k=0

2.4 Total Harmonic Distortion

The Total Harmonic Distortion (7HD) is defined for periodic functions, i.e., functions
satisfying (2.1.3), with no dc-component. It is a measure of the amount of higher order
harmonics of a signal normalized with respect to the fundamental component. In this

thesis the following, widely accepted definition for the 7HD of a function f{6) will be

Ck2
THD = k2 (2.4.1)

C;

used:

where ¢, is defined according to (2.2.7) and (2.2.9). By assumption ¢, is zero. Using

(2.3.5) and the fact that ¢, =0, the THD can be rewritten as
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THD = |~ms__1 (2.4.2)

It is evident that the 7HD is zero if the function f{) is a pure sine wave since under this

condition ¢; is identical to Fps.

2.5 Power Factor

The power factor is defined if both the voltage and the current have periodic
waveforms with the same frequency. That means the voltage waveform v() and current
waveform #(0) satisfy (2.1.3) simultaneously. (Note that the dc quantities are also

allowed.) The power factor PF is then defined as

P
PF == 2.5.1
3 25.1)

where P is the averaged power over one period (P is also called the active power) and S

is the apparent power. P and § are defined by

_ 1 2n ‘
P { v(0)i(6)d0 (25.2)
S=V D (2.5.3)

Equation (2.5.2) can be rewritten using the Fourier series expansion of v(0) and #(0)

according to (2.2.5).

P= %T{Vo +\5in Si“(ke‘“ka)J (Io +\Eilk sin(k9+(pik)jd6

k=1 k=1

(2.5.4)

Also this expression can be simplified using (2.3.3) and the following equality.
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27 0 if m#n
I sin(mG + (pl)sin(ne + (pz)de = ;  for m,n=integer
0 ncos(p, —@,) if m=n
(2.5.5)

With this the power given in (2.5.4) can be expressed as

P=V,I,+ SVl cosloy, -9 ) (2.5.6)
k=1

From (2.2.7) it can easily be concluded that V7 and I, are both real non-negative

numbers. Therefore, the following inequalities hold:

P= VOIO = ZVklk COS(([)V.k —(pik)S ZVka < \/Zsz 'JZIkZ =8
k=1 k=0 k=0 k=0

=Vrms =Ipms

(2.5.7)

The left inequality is obvious since the cosine of real arguments is always equal or

smaller than unity. This inequality becomes an equality if and only if

oy, =0; forall £ (2.5.8)

Therefore, the voltage and current of any given harmonic component must have the same
phase displacement. The right inequality in (2.5.7) is the well-known Schwarz inequality
with equality if and only if

V,=o-I, forall k (2.5.9)

Note that oo must be real and non-negative since /; and Vj are real and non-negative. If

the conditions (2.5.8) and (2.5.9) are satisfied then the following holds:
v(0)=a-i(6) (2.5.10)

This can be concluded due to the linearity of the Fourier series expansion given in

(2.2.5), or equivalently, since the value of a resistor is a real non-negative number,
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v(6)=R-i(0) (2.5.11)

Thus, to achieve the special case where P =S, the current waveform must be
proportional to the voltage waveform. Conversely, if v(6) and #(0) are related according
to (2.5.11), then a substitution into (2.2.9) must lead to the conditions (2.5.8) and
(2.5.9). Therefore, it can be concluded that

PF <1 (2.5.12)

with equality if and only if the voltage and current exhibit resistive behavior on the

observed terminals; or equivalently if and only if (2.5.11) is satisfied.

2.6  Power Factor Under Ideal Voltage Condition

The voltage waveform in most ac power systems such as the utility line is ideally a
clean sine wave. Even though in many cases some distortion in the voltage waveform is
present, unless otherwise mentioned in this thesis an ideal sine wave is assumed.
Without loss of generality it is further assumed that this sine wave has no phase shift, i.e.,

@y, =0. Thus, the line voltage is represented by

v(6) =V;+/25in(B) (2.6.1)

With this choice:
V=V s (2.62)

Substituting this voltage into the general expression for the power (2.5.6) and into
(2.5.3) leads to

P=V,1;cos{o;, ) (2.6.3)
8=V, (2.6.4)

The power factor can now be found by substituting these two equations into (2.5.1)



13

Pr = J; cos(cpi ) (2.6.5)
Irms :
or equivalently
PF = DF -cos(o) (2.6.6)
where
pr=_1_ (2.6.7)
Irms

and ¢ is the phase displacement between the voltage and fundamental current component
1;. The subscript of ¢ has been dropped because it is the only relevant phase shift. DF is
commonly referred to as the distortion factor whereas the cos(¢) is called the

displacement factor. Clearly, each of these two components of the power factor is either

equal to or smaller than unity.
If the voltage is an ideal sine wave, then the power factor, the distortion factor and

the total harmonic distortion can be related. Equations (2.4.2) and (2.6.5) can be

2
THD = JM—) -1 (2.6.8)
PF

pr=_cos0) (2.6.9)

VTHD* +1

combined to result in

which can be rearranged as

2.7  Symmetrical Current and Ideal Voltage Waveform

Very often special current waveforms are encountered which even further simplify the
expressions. The input currents of the circuits discussed in this thesis satisfy the

following two relations:

i®)=i(n-0) (2.7.1)
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i0)=~i(n+0) (2.7.2)

Thus, each half wave is symmetrical with respect to the vertical line through its center
and the negative half wave is equivalent to the positive one (except for the sign).
Applying the Fourier series expansion according to (2.2.1) through (2.2.4) to these
currents yields zero for all a; and for all even order b,. These results are derived in the
Appendix of [1]. The above conditions combine the definitions for the odd periodic
expansion and the alternating periodic expansion as defined in [1]. Therefore, currents

satisfying the above conditions can be decomposed using only sine terms of odd order.
Thus,

i(0)=+2 ilzk_l sin((2% - 1)0) (2.7.3)

The fundamental component of such a current is in phase with the voltage. Under this

condition the power factor given in (2.6.5) reduces to

I,

PF=_—1 (2.7.4)
Irms
And (2.6.8) and (2.6.9) simply become
THD = |——-1 (2.7.5)
= 7.
1
PP (2.7.6)

NTHD? +1

Thus, there is a one to one correspondence between the power factor and the 7HD.

More properties concerning the special waveform are stated in Appendix A.2.

2.8 Unity Power Factor Versus Zero Total Harmonic Distortion

In energy processing systems a unity power factor is very desirable. One reason is

that at unity power factor the rms-values of the voltage and current are minimized for a
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given power level. The current ratings of the components of energy generation and
transmission systems can be minimized under this condition. This topic is treated in
greater detail in Chapter 3.

In Section 2.5 it has been shown that the current must be proportional to the voltage
to achieve unity power factor. If the voltage waveform is not an ideal sine wave, then its
THD 1is not zero and, thus, the current 7HD is also not zero. In fact, both the voltage
and the current 7HD are equal. If the voltage is an ideal sine wave, then unity power
factor implies that the displacement factor is 1. Therefore, the conditions under which
(2.7.5) is valid are satisfied and it can be easily concluded that the 7HD is equal to zero.

Thus, a unity power factor is equivalent to a zero 7HD of the current if the voltage is
an ideal sine wave. In the more general case of a distorted voltage, unity power factor is
usually preferred over zero 7HD. This is because a current proportional to the voltage
tends to reduce the voltage distortion. However, this effect is only weak. More
important is the fact that a proportional current is much easier to generate than an ideal
sine wave if the voltage is distorted.

The question might be posed why then the THD is used to describe the quality of
power systems. The THD was originally introduced to specify the quality of audio
amplifiers. One reason is that the power factor can be very low even with a THD equal
to zero. This is the case when the displacement factor is low. Another reason is that the
THD provides a better measure for the distortion of the current waveform even under
ideal voltage conditions. The power factor can still be very high even with a quite severe
current distortion. The uncorrected three-phase ac-to-dc converter is an example for this
behavior. It will be treated in Section 3.2. In order to illustrate the dependence between
the power factor and the total harmonic distortion, the following approximate relations

are introduced. Using (2.7.6) it can be shown that for reasonably low 7HDs (~<30%),

the following relations hold:

PF? + THD? ~ 1 (2.8.1)

or
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PF ~1-Y% THD? (2.82)

These two approximations permit a much better understanding of the relation between
power factor and current 7HD. For example, a THD of 10% still allows a power factor
of 99.5%. These approximations have proven to be very helpful in making estimations.
However, they are only valid if the voltage is approximately an ideal sine wave and if the

fundamental component of the current is in phase with the voltage.



17

Chapter 3

Power Quality of Uncorrected Systems

In this chapter two different aspects that influence the power quality are briefly
introduced on different examples. The distinction is made between the power factor
reduction due to a phase-shift between the voltage and the current at the input terminals
of a load and due to the harmonic distortion of the current. The goal is to establish the
motivation for power factor correction, that means, the introduction of switching
converter circuits, which avoid or at least reduce both of the above. Another aspect of
power quality, which is not the subject of this thesis, is the high frequency noise

commonly referred to as EMI (Electro Magnetic Interference).

3.1 Single-Phase Systems
3.1.1 Phase Displacement

Until recently the only concern in power distribution systems was the phase-shift
between the voltage and current. This phase-shift is caused by loads that have a linear
impedance with a reactive part. Examples of such loads are motors and fluorescent
lamps with inductive ballasts. The simplified circuit shown in Fig. 3.1a represents this
type of load.

Only the resistance R consumes power from the line. The necessary current /; to
deliver a given power level P to the load is given by

Jp = 3.1.1
R (3.1.1)
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Figure 3.1: Example of a system with phase displacement. (a) A load with a reactive
component connected to the utility line and (b) the corresponding current
phasor diagram.
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The line current 7 contains a second component I, which is 90° out of phase with respect

to Iz. Its magnitude is given by

Iy e 312
- ol ( )

where o is the angular frequency of the ac source.
The magnitude of the current that has to be provided by the utility line is the sum of

the two currents above. Considering the 90° phase-shift, this sum is described by

I=I2 +1,° (3.1.3)

This relation is illustrated in the phasor diagram belonging to this circuit shown in Fig.
3.1b. The distortion factor DF of such a circuit is unity since this linear circuit does not
generate any harmonics of the current drawn from the source. Thus, according to
(2.6.6) the power factor coincides with the displacement factor cos((p), which is given

by
FF = cos((p) = —I]ﬁ (3.1.4)

Obviously, I > Ip with equality only if I; =0, or equivalently cos(p)=1. Therefore,
the power companies are interested in a unity power factor because this minimizes the
line current they need to provide for a given power delivered to the load. As the power
factor decreases, the magnitude of the line current / and its rms-value increases (Fig.
3.1b). This causes extra loss in the power generation and transmission system.
Moreover, all components such as generators, transformers and transmission lines must
be able to handle the increased current, and consequently, must be rated for higher
power (higher VA rating). In a given design the maximum current is limited due to the
saturation of the magnetic components, to name one reason. A reduced power factor,

therefore, reduces the maximum power processing capability of this system.



20

These, efficiency, size and economical considerations are reasons why the power
companies are interested in systems with a high power factor. In the case of a simple
phase-shift, unity power factor can be achieved by connecting a capacitor in parallel with
the load. This method is often used if the power is reasonably low. For high power

levels other methods are available. However, this is not subject of this thesis.

3.1.2 Harmonic Distortion

In modern days the power factor problem has developed a new dimension which is
discussed in this section. In the previous case an entirely linear network was considered.
In recent years a growing number of non-linear loads have been connected to the utility
line. A major source of the harmonic distortion is due to the use of simple ac-to-dc
rectification circuits, such as diode bridges, which form a non-linear load. Such circuits
constitute the interface between the ac power line and dc loads like computers, home
electronics and motor drives to name a few. A similar problem exists in ac-to-ac
cycloconverters, which are also in motor drives and similar applications.

A typical realization of an ac-to-dc converter is shown in Fig. 3.2. It consists of a dc-
to-dc converter preceded by a full wave rectifier bridge and an energy storage capacitor
C. This circuit acts as a peak detector. C is charged to the peak line voltage each half of
the line cycle. This causes a high and relatively narrow peak in the line current /. The

exact shape depends on the line impedance Z; and on the size of the capacitor C. During

DC
. x

Rectifier .
T C == Vin Vout DC Load

S
Utility Line i ? DC
1

Figure 3.2: Conventional ac-to-dc rectifier circuit with “peak detector” input stage.
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most of the line cycle the current 7 is zero and the dc-to-dc converter is fed with the
energy stored in the capacitor C which is slowly discharging.

The resulting current shape is shown in Fig. 3.3a. This is a measurement on a real
circuit. The consequence of such a current shape is a distorted line voltage waveform
since the line impedance Z; is not zero. The voltage waveform is also shown in Fig.
3.3a. The third trace in this figure is the ac-component of the capacitor voltage V.

The phase-shift between the voltage and the current is in this case not severe.
However, the THD was measured to be 106% and the power factor was 67%. Equation
(2.6.9) is valid if the voltage is an ideal sine wave. Given the shape in Fig. 3.3a, it can
still be applied to obtain reasonably accurate results. Thus, the displacement cos(¢) can

be determined using (2.6.9), which leads to

cos(p)= PF -NTHD? +1 (3.1.5)

For the current waveform shown in Fig. 3.3, the displacement factor is found to be
97.6%.

Similarly, as with a phase displacement, in the case of a distorted line current, the
rms-value of the line current / is also increased for a given active power delivered to the
load. This leads again to increased losses. Magnetic components can saturate at a lower
power level. It is easy to conclude that both the phase displacement and current
distortion reduce the efficiency and the maximum power capability of power systems.
Moreover, the distorted line voltage can cause other equipment connected to the line to
malfunction.

Therefore, international standards have been set forth which limit the maximum
allowed distortion in load currents. This topic is treated in greater detail Section 3.3.
One way to alleviate the problem is to connect a low pass filter between the utility line
and the ac-to-dc converter. However, for this to be effective, the bandwidth of that filter
must be very low, well below 60Hz. An extensive discussion of this topic is presented in
[1]. These types of filters tend to be the bulkiest and by far the heaviest part of the

whole converter since they are designed for the 60Hz operation. In addition, they may
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Figure 3.3: Harmonic distortion of a “peak detector” input stage. (a) Current and
voltage waveforms and (b) frequency spectrum of the current. (Scales:
200Hz/Div and 10dB/DIV.)
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solve the distortion problem, but not necessarily the displacement problem, particularly if
the converter operates over a wide power range. In many cases different solutions are
preferred. Two of the basic alternative concepts are briefly introduced in the next
section. They can not only handle both the distortion problem and the displacement
problem, but they can achieve that with a much smaller size and weight. Oddly enough
the solution is found in the use of switching converters as power factor corrector (PFC)

circuits, which can even achieve unity power factor in some cases.

3.1.3 Controlled Power Factor Correctors

In the last decade a great deal of research in the power electronics discipline has been
devoted to finding more sophisticated ways of improving the input current waveform
while simultaneously avoiding phase displacement. The designation power factor
corrector is widely accepted to describe converters suitable for this purpose. These
topologies are also called current shapers, because in many cases it is primarily the
harmonic distortion present in the current waveform that has to be reduced.

One can distinguish between the two different types of power factor correction
configurations, the controlled power factor correctors and the automatic power factor
correctors. Into the first category belong the converters working in continuous
conduction mode (CCM). In these topologies the input current is measured and shaped
using a high bandwidth control loop. A very popular example is the boost converter
shown in Fig. 3.4. The inner loop with fast controller C; controls the rectified input
current such that it is proportional to the rectified input voltage. The purpose of the
input filter is to remove the switching ripple. In these circuits, the switching frequency is
typically more than three orders of magnitude higher than the line frequency. Thus, the
bandwidth of the filter is very high and it can be realized with small components. Due to
this high bandwidth, the filter does not affect the current and voltage waveforms at the
line frequency. Therefore, this control method forces the input current 7 to be

proportional to the voltage V. The second loop with slow controller C, has its
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Figure 3.4: A typical Boost converter configuration in power factor corrector
applications using a two-loop control structure.

bandwidth below twice the line frequency. It stabilizes the output voltage by providing
the proper scale factor for the current reference in the inner loop.

It should also be pointed out that this method of current shaping is not restricted to
converters in CCM. The same idea can be applied to converters in discontinuous

conduction mode (DCM).

3.1.4 Automatic Power Factor Correctors

Automatic power factor correctors do not possess a current control loop. In general,
no current measurement is necessary. This is advantageous since measurement of the
current as shown in Fig. 3.4 can be both lossy and expensive. All converters in this
group operate in DCM. The simplest example is the Buck-Boost topology as shown in
Fig. 3.5a. It can be easily illustrated on this circuit how automatic current shapers

operate.
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The input filter is again designed with a high corner frequency, since its purpose is
solely to remove the switching ripple. It does not affect the line frequency related
variations of the waveforms. Thus, the switching frequency must be much higher than
the line frequency. The output voltage feedback loop has to have a low bandwidth;
consequently, over one line period the duty ratio is considered to be constant. If the
active switch turns on, the current I, in the inductor and 7, at the input start to increase.
The initial value is zero due to the DCM. Since the line frequency is much smaller than
the switching frequency, the line voltage is approximately constant during one switching
cycle. With this, the current during the on time of S can be described by the following
equation:

q:g:%t (3.1.6)

Since the duty ratio is constant, the peak value at the end of the on time of the switch §

is given by

it =-Z—DTS G.1.7)

where D is the duty ratio and 7 is the switching period. The input filter averages the
triangles out such that a continuous current is observed at the input of the filter. Using

simple geometry on the triangles leads to a formula for the averaged current.

i
5 =—125D=%D2Ts (3.1.8)

Since all quantities except v are constant in (3.1.8), it can be concluded that the average
current #; is proportional to the instantaneous value of the input voltage. Therefore,
unity power factor is achieved without any extra effort, that is automatically, hence the
name automatic current shaper.

All the automatic power factor correctors work in a similar manner. Some do not

provide unity power factor but instead a significantly improved current waveform as
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Figure 3.5: (a) Automatic current shaper using a Buck-Boost converter operating in

DCM. Only a single low bandwidth control loop is present. (b) Salient
current waveforms.
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compared to the one in Fig. 3.3. This is the case, for example, for the Boost converter in
DCM, operated with constant duty ratio over one line cycle.
The question might arise, why search for different topologies if a simple Buck-Boost

converter solves the problem? A few reasons are discussed in the next section.

3.1.5 Motivation for the Search for New Topologies Suitable as Power Factor

Correctors

The problem with the Buck-Boost topology is that its efficiency is lower than in many
other circuits. For this reason it is limited to application in the low power range (about
300W and lower). The main reason for that is that all the processed energy is
temporarily stored in the inductor L. The inductive energy storage is far less efficient
than the capacitive energy storage.

Furthermore, the input power is pulsating with twice the line frequency and the
output power is constant. That requires at least one energy storage element in the circuit
to provide the required energy while the power delivered to the input of the converter is
smaller than the output power. The only reasonable way to store energy on a line
frequency scale is a capacitor. The energy density of a capacitor is much higher than the
one for an inductor. The energy storage function produces a ripple voltage across the
capacitor at twice the line frequency. This topic has been explored in Chapter 4 of [1].
The capacitor in the Buck-Boost topology is at the output of the converter. Therefore,
this ripple is directly visible at the output. In many cases this can not be tolerated.

The feedback loop is required to have a low bandwidth in order to achieve a good
power factor. On the other hand this limits the dynamic response of the converter. A
fast load step response is not possible with this type of converter. This, and the presence
of the output ripple, require the addition of a post regulator in most cases. Thus, the ac-

to-dc conversion is in many cases realized as a two-stage solution.
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In order to reduce cost, size and complexity, single stage ac-to-dc converters are
preferred. Such a switching converter, which provides a very good power factor and

allows a fast output regulation, is proposed and investigated in Chapter 6.

3.2 Three-Phase Systems
3.2.1 Field of Application

At higher power levels it is very often beneficial to use three-phase powered systems.
Some properties of three-phase systems, which will be used in this thesis, are derived in
Appendix A. One advantage of these systems is that the instantaneous power is constant
if the voltage and current have no harmonic distortion. For the case of unity power
factor this result is derived in Appendix A.1. This property makes three-phase sources
well suited for ac-to-dc applications since an energy storage capacitor is not required,
while, as pointed out earlier, capacitive storage is essential in single-phase systems due to
the pulsation nature of the instantaneous power.

Three-phase sources are not commonly used in low power applications. The range of
application is limited to power levels of 2kW and higher. The extra effort to bring the
three-phase line to smaller loads is not usually justified. When discussing three-phase

systems it should be kept in mind that higher power applications are assumed.

3.2.2 Three-Phase-to-DC Rectification

Some aspects in a Three-phase system are different than in the single-phase case. For

now it is sufficient to consider the voltage sources v, v> and v; in Fig. 3.6a as three

separate sources. They are equal in magnitude and have 120° mutual phase

displacement. This can be written as

v,(e)sz sin(0) (3.2.1)

v,(0)=V, sin(e—%"j (3.2.2)
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v;(0)=7, sin(Q -%’5) (3.2.3)

where V, is the peak value of these voltages. The resulting instantaneous voltage
diagram over one line cycle is shown in Fig. 3.6b.
The input voltage vi, of the dc-to-dc converter is always the difference between the

input voltage source with the highest and lowest instantaneous value.

Vin (e) = Vmax (9) ~ Vomin (9) (3 ~2-4)
This is indicated in Fig. 3.6b. Unlike in the single-phase case, this voltage never goes to

zero or even to low values. It can easily be verified the v,, satisfies
—V <v,,(0)< 3 v 8 (3.2.5)

Therefore, an energy storage capacitor is not necessarily required as in the single-phase
case. In fact, in most cases such a capacitor increases the harmonic distortion of the
input current significantly since the input acts again as a “peak detector.”

Since the output is dc, it can be assumed that the converter processes a constant

power P for which the current i;, is given by

in(6) =

(3.2.6)

Vin (9)

The input current belonging to the voltage source with the highest instantaneous voltage
value is carrying i;,,, The voltage source with the lowest value delivers minus #;,, The
voltage source with the intermediate value is disconnected from the dc-to-dc converter.
The resulting v;, and i; are shown in Fig. 3.6c. Using the definitions of Chapter 2.4 the

THD of this current waveform can be found to be

THD:,/i—l =032 (3.2.7)

This current combined with the voltage v, results in the following power factor:
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19
PF = |— =0.952 3.2.8
V23 (3:2.8)

It is evident that the power factor in the three-phase ac-to-dc converter is relatively high
( > 95%) even if the system has no power factor correction. This is due to the fact that
this circuit does not cause a phase displacement between the voltage and the current.
Thus, there may not be a need for the extra effort to improve the power factor, which is
already very good. However, the harmonic distortion is still quite large (i.e., 32%). This
is the more severe problem in this case and it must be corrected since the international
standards limit the allowable distribution of the harmonics over the frequency spectrum.
Although they do not necessarily require a minimum 7HD, they do impose a severe
restriction on the magnitudes of the lowest order harmonics. (The allowed limits
decrease as the frequency increases, but at a slower rate as the values of the harmonics
of waveforms encountered in many practical circuits.)

According to (2.6.6) the power factor is determined by two components, namely the
displacement factor and the distortion factor. It should be pointed out that the second
one is more severe in its consequences. The displacement merely introduces circulating
currents at the same frequency as the voltage into the system. It requires an extra effort
to handle these currents. However, they do not have a negative impact on other
equipment connected to the utility line. In contrast, a harmonic distortion of the line
current causes a distortion of the voltage. This can affect the operation of sensitive
equipment, which share the same utility line. It is therefore important to limit the
harmonic distortion even if the power factor is relatively high, as in the three-phase
example treated in this section.

The terms power factor correction and current shaping are used interchangeably in
the power electronics community. Nevertheless, the first one is used more often,
whereas the main objective is more often than not, especially in three-phase systems, the

reduction of the current distortion.
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3.3 International Limits

The most relevant international limit concerning the current distortion is IEC 1000-3-
2 [27]. This standard is predominantly enforced in Europe. It applies to equipment with
input currents smaller of equal to 16A. A good overview of the relevant aspects for this
standard is provided in [28].

One distinguishes between four different classes of equipment. The limits for the
majority of loads fall into class A. A balanced three-phase equipment is similarly defined

as the symmetrical three-phase system in Appendix A. However, certain tolerance is

Harmonic order Class A: Class B: Class C: Class D:
Balanced three- | Portable tools Lighting Special wave
phase equipment shape and
and equipment P<600W
not covered in
class B, CorD [%] of
n [Amps] [Amps] fundamental [mA/W]
0Odd harmonics
3 2.30 3.45 30 PF 34
5 1.14 1.71 10 1.9
7 0.77 1.16 7 1.0
9 0.40 0.60 5 0.5
11 0.33 0.50 3 0.35
13 0.21 0.32 3 0.30
15<n<39 2.25/n 3.38/n 3 3.85/n
Even harmonics
2 1.08 1.62 2 -
4 0.43 0.65 - -
6 0.30 0.45 - -
8<n<40 1.84/n 2.76/n - -

Table 3.1: Limits for current harmonics according to IEC 1000-3-2.
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allowed between the voltages. In the terminology of IEC 1000-3-2, the special wave
shape refers to current waveforms similar to the one shown in Fig 3.3a. It should not be
confused with the symmetrical waveform defined in this thesis.

The limits of the harmonics in classes A and B are specified with absolute values,
whereas in classes C and D, relative limits are used. No limits have been determined for
most of the even harmonics in classes C and D. The Equipment in these two classes has
naturally low even harmonics. Thus, there was no need for specifications.

Figure 3.7 shows the limits of class A in a logarithmic plot. In many cases, the
magnitudes of the harmonics decay faster than the limits as the frequency increases. In
particular, this holds for the circuits discussed in this thesis. In single-phase cases, the
third harmonic is the most difficult to meet. In three-phase cases with no neutral, it is the
fifth harmonic as in this case no third harmonic is present (Appendix A.).

The theoretically highest allowed 7HD in class A is 19%. This value is evaluated
assuming the rms-value of the current is 16A and all harmonics are present with their

magnitudes at the allowed limit. This appears to be a high level of distortion. However,
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Figure 3.7: Limits for the current harmonics according to IEC 1000-3.2, class A.
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in realistic cases, the even harmonics are typically very small, as are harmonics of order
3n in three-phase systems. If these harmonics are eliminated from the spectrum, the
largest possible THD is reduced to 9.1%. Note that this value can not be reached in a
practical case, as each individual harmonic must be below its specified limit. Thus, the
realistically allowed maximum possible 7HD is significantly smaller than this value.
Because the limits for class A equipment are absolute, any signal can be reduced in
magnitude to satisfy the standards. The rms-value of the quasi-rectangular signal in Fig.
3.6c must not exceed 2A. The 25" harmonic reaches its limit at 2.06A. This would be
an extremely low value for a three-phase system. (These limits apply to equipment with

input currents as large as 16A.)
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Chapter 4

A Single Active Switch Three-Phase

Power Factor Corrector

In this chapter a power factor correction circuit for the three-phase utility line is
investigated. The current shaping occurs naturally in this circuit; therefore, no extra
control circuit is necessary in order to achieve a good current waveform. Thus, it is an
automatic power factor corrector according to Chapter 3.1.4. This fact and the
simplicity of the circuit make this a favorable topology for the lower power three-phase
power range, i.e, approximately 2kW to SkW. Because the circuit works in
discontinuous inductor current mode (DICM), the topology might not be very well
suited for applications in the high power range.

With the converter discussed in this chapter, a unity power factor can not be
achieved. There is always a limited amount of distortion remaining in the input currents.
Several operation schemes are investigated which lead to different results concerning the
harmonic distortion. It is the goal of this chapter to establish which of these operational

schemes is the most favorable solution.

4.1 The Topology

The circuit investigated here is shown in Fig. 4.1. It is a boost-derived topology
suitable for connection to a three-phase source, e.g., the utility line. All three input
inductors operate in DICM. This must be accomplished by proper design of the circuit.

The analysis of the converter is based on the following assumptions.
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The three line voltage source v;, v, and v; are ideal sine waves, equal in magnitude
and with 120° mutual phase. Thus, the converter is connected to an ideal three-

phase source as defined in Appendix A.1.

The capacitance C, is sufficiently large to allow the six times the line frequency ripple

of V/, to be neglected.
The inductance values of the three inductors L,, L, and L; are equal.
The three inductors L,, L, and L; operate in DICM.

For the waveform analysis during one switching cycle, the input voltages are
considered to be constant, i.e., the line frequency is assumed to be much lower than

the switching frequency.

The input filter eliminates the switching ripple of the input current, but it does not

affect line frequency related varniations.

The converter is loss-less.

In accordance with the above assumptions, the following definitions are made:
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Figure 4.1: The boost derived single active switch three-phase power factor corrector

connected to a three-phase source.



v,(6) =V, V2 5in(B) (4.1.1)
v,(0)=V,42 sin(e —%"J (4.1.2)
v;(0)=V,42 sin(e —%"] (4.13)
and
M= JEI/. o (4.14)
R, :3T£ 4.1.5)

where V7 is the rms-value of the line to neutral voltage. It should be pointed out that the
conversion ratio M is defined by the ratio of the output voltage to the peak line to line
voltage.

Firstly, the line voltage dependence of relevant currents will be found, namely the
three input currents 7, i, and i; and the current 7, in the output diode D,. The three input
voltage sources satisfy the symmetrical waveform condition as defined in Appendix A.2
and they also satisfy (A.3.1). Moreover, due to the symmetry of the circuit the input of
the converter appears identical at each phase. Therefore, the three currents 7;, i, and i;
must satisfy the condition (A.3.2). It turns out that in addition the current waveform
satisfies the special waveform condition according to Appendix A.4. Thus, only the first
30° of one line period must be analyzed and the rest of the current waveform can be
derived using these symmetry properties. The fact that the special waveform condition is
fulfilled will be apparent after the results for the first 30° are obtained. Therefore, in the

following analysis it is assumed that the phase angle 6 is somewhere between 0 and 30°.

Concerning the phase voltages this means

0<v,(8)<v;(8)<—v,(6) (4.1.6)
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Each switching cycle can be divided into four subintervals. The four equivalent circuits
for each subinterval are shown in Fig. 4.2. Since the output voltage is considered to be
constant, the load together with C, is replaced by a voltage source. The four equivalent
circuits in Fig. 4.2 are valid for every 6 with the range from 0 to 30° because (4.1.6)
holds for any possible 6 in this range.

The first subinterval is defined by the ON-time 7, of the switch §. Due to the
symmetry of the circuit, during this interval each inductor is exposed to the

corresponding phase voltage. The three input currents are given by

iz,(t)=_‘%z (4.1.8)
i, (t) = ‘%t (4.1.9)

The diode D, is reversed biased during the first interval, thus

ig(t)=0 (4.1.10)

The second interval starts when the switch § turns off. The two positive input currents
(i.e., i; and 5) start to flow through the diode D, to the output whereas phase 2 provides
the return path. The initial values of the second subinterval are the same as the final
values of the first subinterval. For simplicity it is assumed that the time variable is reset

to zero at the beginning of each subinterval. Thus, the currents during the second

subinterval are given by

i,z(t):vL—1T1+3"1_V°z (4.1.11)
. v 3v,+ 2V,

zzz(z)zfzrj +—Zf——t (4.1.12)
i )= ag + Ve, (4.1.13)

L 3L
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Figure 4.2: The four equivalent circuits during one switching cycle.
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i) = —is(t) (4.1.14)

The output voltage must be sufficient to decrease the magnitude of all currents. Since v,
has the smallest absolute value of all three-phase voltages, i;(r) becomes zero first. This
instant concludes the second interval. To find the length 7, of this subinterval, the

following equation must be solved:

i;5(T3)=0 (4.1.15)
This yields
3v
foud; L 4.1.16
% 1V0—3V1 ( )

During the third subinterval 7; stays zero because the diode D, prevents it from becoming

negative. According to Fig. 4.2c the currents can be found to be

i3(t)=0 (4.1.17)

. I; ., vi=vy Vyo+vy—v;

i (t)=-V +-2 t 4.1.18
23 () LoV, Z3, 21 ( )
; ]} V3"V] V +vZ“‘V3

isst)=—=V, = t 4.1.19
33(0) A o1 ( )

i45(t) = i33(7) (4.1.20)

The end of this subinterval is reached when the remaining currents become zero. Thus,

the length T’ of this interval can be found by solving
i53(T3)=0 (4.1.21)

This leads to

,(vs —vy)

T =
3 "V, —3v, )V, +v,—v3)

(4.1.22)

Through the remainder of the switching cycle, all currents stay at zero. Therefore,
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i14(0) = i24(0) = i54(t) = igs(£) = O (4.1.23)

The length of the fourth subinterval 7 is given by
et —T-B-5 (4.1.24)

This can be simplified using (4.1.16) and (4.1.22)

T4=];_]}f/;+—l‘?;_—"3 (4.1.25)
Typical waveforms of the currents i, i, and i; are shown in Fig. 4.3. It is again assumed
that the line voltage phase angle is somewhere between zero and 30°.
Both 7, and T; must be positive. Using (4.1.6), (4.1.16) and (4.1.22), it can be
concluded that

v, —3v;(8)>0 (4.1.26)
V. +v,(8)-v;(0)>0 (4.1.27)

This provides a lower limit for ¥, for a given set of phase voltages. It turns out that if
(4.1.27) is satisfied, (4.1.26) is also satisfied for any © in the 0 to 30°. The worst case

occurs at 8 =0 which leads to

Vv, >J6V;, (4.1.28)
or equivalently using (4.1.4)
M>1 (4.1.29)

In addition, the fourth subinterval must be equal to or greater than zero, i.e., I, 20.
This provides an upper limit to the length of the first interval 7; and thus, to the
maximum possible duty ratio. Using (4.1.25) the following restriction on 7; can be
found:

% sTsV°+v2(§)"’3(e) (4.1.30)

o

The duty ratio has to satisfy
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D, < V0+v2(§)'v3(8) (4.131)

o

This equation must be satisfied for every possible 8. The worst case appears again at
0 =0°. Under the assumption that the duty ratio is constant, i.e., D, is not a function of

8, the equation (4.1.31) reduces to

1
D <il—-— 4132
1 ( ikl’j ( )
or equivalently
1
M > 4133
- (4.1.33)

This equation requires again that M is greater than unity because D, is a positive number.
Moreover, M can not be close to 1 because this would require a duty ratio of

approximately zero.

Al

i3(l) \
i(?)
t
i?)
T; E T; T
T

Figure 4.3: Typical current waveforms under the assumption that the input voltage
phase angle is between 0 and 30 °.
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In order to reduce the voltage stress on the switches a small conversion ratio M is
preferred. On the other hand, a large duty ratio is preferred because this reduces the
current stress in most components of the converter. Equation (4.1.33) shows that there
is a trade off between a low conversion ratio and a large duty ratio.

The next step is to find the currents averaged over one switching cycle. These
quantities will still be a function of the phase angle 6; with the switching ripple removed.

In the real circuit the input filter accomplishes this effect. The three inductor currents

are given by
i :w)T_zﬁ (4.1.34)
1 ) 7
;2:1'22(0),T1+T2+i23(0)_T2+T3 (4.1.35)
2 i 2 ;8
iy =—i; —1i, (4.1.36)

The diode current 7, averaged over one switching cycle can be written as

# _igp0) Ty 143(0) To+T; (4.1.37)
2 T, 2 T,

Substitution of the previously derived expressions and simplifications using (A.1.5) and
(A.1.6) lead to

2
g, V¥ (4.1.38)
2L V,=3v
2 2 ( 2 2)
2 eV Ty ol (4.1.39)
2T 2L W, -3V, +vy—vs)
DPT, v,2 V(2 2)
=L Seos H = als ~ (4.1.40)
2L (V, =3V, +v, —v;)
- _ DT, 3VV2+3v(v2—v2)
id: 11s . o' L 2\"2 3 (4141)

2LV, =3V NV, +v,—v3)
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The phase angle dependence of these equations is directly related to the three input
voltages v,, v; and v;. No other phase angle dependent quantities and no derivatives are
involved. It can therefore be concluded that the current #; at 180°-0 is the same as at 6
since a look at the voltage diagram in Fig. A.2 confirms that the input voltages are the
same at both instants except that the positions of v, and v; are interchanged. This does
not affect the current i; due to the symmetry of the input of the circuit. The same can be
said for any other interval between 0 and 180°.

By a similar reasoning, the negative half wave must be equivalent to the positive one
except for the inverted sign since all the voltages are inverted. This establishes the fact
that the current exhibits the symmetrical waveform as defined in Appendix A.2.

Equations (4.1.38) through (4.1.41) can be further simplified using the definitions
(4.1.1) through (4.1.5).

7,(6)=D;? ;VL () (4.1.42)

i,(8)=D;? J?;VL -a,,(0) (4.1.43)

7,(0)=D; ;VL ) (4.1.44)

ITd (9) = D12 J—f;VL -0y (9) (4145)
where

o, (6)= M sin ) (4.1.46)

M - \/Esin(e)

M? sin(G - 2—;) + M sin(26)

o2 (6)=
(M —+3sin (9)) (M - cos(6))

(4.1.47)
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M? sin(e — %E) — %M sin(26)

(1\/[ —\3 sin(e)) (M - cos(p))

o3(8) =

(4.1.48)

5 Mesm (2G)sin(6 _ 2?")
2 (M- J35in(8)) (01 - cos(0))

This set of equations (i.e., (4.1.42) through (4.1.49)) describes the current waveforms as

a4(6)= (4.1.49)

a function of the phase angle 6 for a given input voltage V7 and a conversion ratio M.
Even though the expressions are valid only for the range 0<6<30°, the remainder can
be found according to the discussion in Appendix A.4 since the necessary conditions
have been established. It is important to note that the duty ratio D; can be a function of
0, thus, the above expressions are not restricted to the case of a constant D;. The

current #; over one quarter line cycle is, therefore, given by

7,(0) for oses—’6E
- - T T T
ij (B)=<i3;l ——0 for —<0<— 4.1.50
1900( ) 3(3 j 8 3 ( )
—z}(e—ﬁj for T<@< X
| 3 2
Over one full line period the input current of phase 1 becomes
(171 (6) for 0@ <X
o 2
) 1o (H—8) for%SGSn
ilep 0)=1 4o (4.1.51)
—1190,,(6—11) for nSBS;
L—ITIW (2n-6) for -:%R-SBSZTE

As shown in Appendix A.5 the output power of this converter contains only harmonics

of order six and multiples thereof (besides a constant part). Since the output voltage is
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assumed to be constant, the same must apply to the diode current 7;. Consequently, the

ripple frequency of the diode current is equal to six times the line frequency, or
equivalently, the period length of that ripple is 60° of one line period. Therefore, one full

period of i is given by

i,0) for 0<0<
(4.1.52)

In this converter the only energy storage element on the line frequency scale is the output
capacitor. Since the inductors operate in DICM, they can not contribute to any energy
storage lasting longer than one switching cycle. This means that the instantaneous
power (or more precisely the power averaged over one switching cycle) at the input p;
must be the same as p, (the power provided to the output capacitor and load). The

input power is given by the sum of the voltage and current products at each individual

phase, whereas the output power is the product of the diode current and the output
voltage. They are given by

P, =1V, (4.1.54)

Using (4.1.1) through (4.1.4) and (4.1.42) through (4.1.45), the above two equations

can be written as

2
p:=Df ZZL (al(e)sin(9)+ o, (B)sin (e - 23-"} + a3(6)sin(9 -~ %"D (4.1.55)

(4

23MV; >
2 —R‘L—ad (9)

e

Do =D

o

(4.1.56)

Equating these two expressions leads to
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o;(0)sin (B)+ at, (e)sm(e - —] +0t3(0)sin (6 - —) VB3May(6)  (4.1.57)

This equality is used to simplify some expressions in the following sections of this
chapter. This result was derived using the power conservation theorem. Of course, the
same conclusion can be obtained using trigonometric identities.

In the case of a constant duty ratio, the currents satisfy the symmetrical waveform
condition as defined in Appendix A.2 and exhibit three-phase symmetry as defined in
Appendix A.3. These properties are preserved if the duty ratio is a function of 6 and

satisfies the following conditions

D,(0)= DI(G +-735) (4.1.58)

D,(0)= DIG-G) (4.1.59)

The duty ratio D, must be periodic with a frequency that is six times higher than the line
frequency. Each period is symmetrical with respect to the vertical line at its center.
Once D, is known over the range from 0 to 30°, then it is determined for any 6, whereas
any arbitrary function in the interval from 0 to 30° can be expanded to satisfy the above
conditions. Therefore, the simplified expressions due to the special waveform and
symmetrical three-phase condition still apply even for an arbitrary D;.

The formulas derived below will be useful in the following sections. The output
power and thus, by assumption 7 in Section 4.1, the processed power P averaged over

one line cycle can be found by averaging (4.1.56) over the first 30° of the line period.

/6

Pe 2‘/_241/ &2 jD,Z(e)ad(e (4.1.60)

(4

The rms-value of the current can be found using (A.4.10)
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n/6
Lopms = \/% [i7©)+1*(®)+i5*(0)® (4.1.61)
0

Using (4.1.42) through (4.1.49) this can be written as

v 1 n/6
Ioms =222 |= | D (@) (0)a® (4.1.62)
R\~ 5
where
os(0)= a12(6)+ a22 ©)+ a32 ®) (4.1.63)

Since the input currents exhibit the symmetrical waveform and are part of a symmetrical
three-phase system according to Appendix A.4, the fundamental component of the input
currents can be found using (A.4.15). A much simpler way is to realize that only the
fundamental component is contributing to the energy processing since the input voltages
are ideal sine waves. According to (A.4.11) there are only sine terms, thus, the
fundamental harmonic is in phase with the voltage. Therefore, the rms-value of the

fundamental component /; of any of the input currents can be found simply using

i

= — 4.1.64
= (4.1.64)

1)
Using (A.4.14) each individual odd harmonic is given by

/6
. i,sin(ke)ugsin(ke-%)ﬁssin(ke—ig‘—"]de (4.1.65)
T
0

where |I;| is the rms value of the #* harmonic. All even harmonics are zero. For the

purpose of comparison, a more useful quantity is the value of each individual harmonic

relative to the fundamental. Thus,

. | (4.1.66)
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Using the previously derived formulas in this chapter 7, , can be written as

127;2

n/6
2 o
=¥ J; DA(®)B(B)d for k=135,

kyer (4 1 67)

0 for k=24,...

where B, is defined as
) . . 4tk
Bk(G)Eal(e)sm(k6)+a2(8)sm(ke—E;Ej+a3(9)sm(k9—7) (4.1.68)
By substituting (4.1.46) through (4.1.48) into (4.1.68), it can be shown that the
harmonics of order 3 and its multiples are indeed zero as it was generally derived for
symmetrical three-phase three-wire systems in Appendix A.3. The final result after this
substitution has been performed is reported in Appendix B.2.
It is important to understand the duty ratio variation for a particular control scheme.
In this thesis the modulation depth AD, is defined as the maximum value minus the

minimum value of D;(0), i.e.,

AD] =D]max _DI (4169)

Another quantity of interest is the ripple of the current i,(0) in the diode D,. This ripple
is ideally zero in order to have a constant output voltage. In this thesis the relative ripple

is defined by the absolute value of the peak to peak ripple divided by the average value.

The average value of 7,;(8) over one period is given by

= P F
.=t _ 4.1.70
17y T Jemy, 58
Thus, the relative ripple current Ai, is given by
JeMy, (- -
Ay i3 (,dm _ dmm) (4.1.71)

P
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This concludes the derivation of a basic set of equations that will be used for the analysis

of the different cases in the following sections.

4.2  Constant Duty Ratio Operation

When this topology was first introduced it was assumed to work with a constant duty
ratio in the steady state condition [3] (i.e., D; does not depend on the phase angle 6).
Several authors have extended the topology in order to introduce galvanic separation or
soft- or resonant switching [4-7]. Howeuver, in all these cases, the constant duty ratio
operation was kept in place. This case is reviewed here for two reasons. First it serves
as a reference against which any improved scheme can be compared. Second, to the best
of the author’s knowledge, formulas this simple describing the current quality for this
case have not been previously published.

If the duty ratio is constant the processed power P averaged over one line cycle as

given in (4.1.60) can be simplified to

1243V, 2mD2 ™S5
_ ‘/-152 DL [ag(0) 0 (4.2.1)
0

(4

P

This equation can be solved for the required duty ratio D, to process a certain power

level
D] = Ref (422)
12V;7 4,
where the constant 4; is defined as
n/6
4 = IM [ag(®)a0 (4.23)
T
0
Using (4.1.62) and (4.2.2) the rms-value of the currents can be written as
_P 4 o

™6V, A
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where the constant A4, is defined by

1 n/6
A = /; [os@)a® (4.2.5)
0

Using (2.7.4), (2.7.5) and (4.1.64) the expected power factor and 7HD can be expressed

as

BE =il (4.2.6)
2
A 2

THD = 4;2 -1 (4.2.7)
1

In the constant duty ratio case, the formulas for each individual harmonic relative to the

fundamental given in (4.1.67) becomes

L 5,6)
—- |Bx(6)d® for k=13,5,...
.y ™ g

rel

(4.2.8)
0 for k=2,46,...

'y

where B is defined in (4.1.68). At k =1 By reduces to the left-hand side of (4.1.57) and
by comparing the right-hand side of the same equation with the definition of 4, in
(4.2.3), it can be concluded that the integral in (4.2.8) equals to A, and thus /j,.; is
unity. This can be used to support the reasoning preceding (4.1.64).

The modulation depth is of course zero in constant duty ratio case. Thus,
AD; =0 (4.2.9)

If D; is constant it can be shown that the maximum value of i, appears at 6=0 and the

minimum value appears at 8 =30°. Therefore, using (4.1.71) the relative ripple is given

by
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Al = ﬁ%@(i‘d (0)-?,,(%)) (4.2.10)

After substitutions and simplifications this can be written as

M 2-43
44 (v -1)ers - 3)

2 (4.2.11)

All the quantities derived above were evaluated using Mathematica®. Fig. 4.4 shows the

expected input current shape and the expected ripple in the diode current i, for different

conversion ratios, including plots of the magnitude of each harmonic component of the
input currents. As predicted in Appendix A.3 there are no harmonics of order 3», and of
course, there are no even harmonics.

The above-mentioned ripple in the diode current is undesirable because it causes a
ripple in the output voltage ruling out this topology as a single-stage converter. A large
capacitor C, is necessary to alleviate this problem. By comparing Fig. 4.4a through 4.4c
it becomes obvious that increasing the conversion ratio simultaneously reduces the
distortion of the input current and the ripple at the output of the converter. Since in
most applications the input voltage is given (e.g., the utility line), a higher conversion
ratio means a higher output voltage. On the other hand, this also increases the voltage
stress in the switches and in the output capacitor. This is not desirable since this
topology operates with high voltages even with M close to unity. (As previously stated,
the circuit requires a conversion ratio greater than unity.)

Figure 4.5a shows how the expected THD is related to the conversion ratio, whereas
Fig. 4.5b shows the dependence of the lowest order non-zero harmonics on the
conversion ratio. The 5" harmonic is clearly the worst for any value of M. Figure 4.5¢
shows the diode current ripple normalized with respect to its average value as a function
of the conversion ratio. This ripple is evaluated from peak to peak, and therefore, it can

be greater than 100%.
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Figure 4.4: Constant duty ratio with different conversion ratios: (a), (b) and (c)
Calculated input current waveform and output voltage ripple. (d), (e) and
() Harmonic content of the input current in dB normalized with respect to
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Figure 4.5: Constant duty ratio: (a) The calculated THD versus the conversion ratio.
(b) The magnitudes of the lower order harmonics versus the conversion
ratio. (c) Six times the line frequency ripple of the diode current iz as a
Junction of the conversion ratio normalized with respect to the average
value of is. (d) The calculated conduction angle of the inductors L,, L,, or
L; and the necessary duty ratio to achieve a maximal conduction angle of
0.9 for three conversion ratios. (One of the 3 inductors becomes
discontinuous first. This shorter conduction angle is not shown here.)
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Finally, Fig. 4.5d shows the conduction angle of the inductors L;, L;, or L; for 3
different conversion ratios. The conduction angle is defined as the fraction of the duty
cycle while the inductor current is non-zero. Thus, referring to Fig. 4.3 the conduction
angle is given by
_L+T+T

T

5

D, (4.2.12)

One out of the three inductor currents becomes discontinuous before the other two.
Because this shorter conduction angle is not important for design purposes, it is not
shown in the graph. The necessary duty ratio to achieve a maximum conduction angle of
0.9 again for three different values for M is also shown.

As mentioned above, it is very undesirable to increase the conversion ratio in order to
improve the performance of this topology. This gave rise to the question whether it is
possible to improve the current shape and possibly reduce the output voltage ripple
without increasing the conversion ratio. Probably the most promising idea is to give up
the constant duty ratio operation and find schemes to modulate the duty ratio such that
the overall behavior of the converter is improved. Several of such schemes are discussed

in the subsequent sections.

4.3 Optimal Duty Ratio

In the previous section it was assumed that the duty ratio D, is constant. The
question arises, can the input current shape be improved by modulating the D; in a
certain manner? It should be pointed out that there are three input currents but only two
of them are independent. The third is always the negative sum of the other two. On the
other hand, there is only one active switch whose duty ratio can be varied. Every duty
ratio change affects both independent currents, and thus, all three input currents.
Therefore, there are not enough degrees of freedom to shape the currents into any
desired form. In the ideal case, all three input currents are pure sine waves in phase with

the corresponding voltages. This converter operating under the conditions stated in
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Section 4.1 possesses no duty ratio modulation scheme that provides these ideal input

currents. Moreover, in this section a duty ratio modulation scheme is found which

optimizes all three current waveforms simultaneously. A similar approach as introduced

here has been published recently [8] without stating analytical results.

In order to find the optimal duty ratio, the following ideal reference currents are
defined:

i1 (0)= Iz sin(P) (4.3.1)
o) =1 sin(G——Z?nj (43.2)
iR3(e)E IR sin(@—%tj (433)

where the value of Iz remains to be determined.

Next, the quantity A is defined as the square of the sum of the differences between the

actual currents and the ideal reference currents as indicated in Fig. 4.6.

Actual current j;

Al Ideal current ig;

Current, |

A = Ai2+Ai2+Ai2

0 T 27
Phase Angle, 6

Figure 4.6: Definition of A which is minimized with respect to the duty ratio to
optimize the input current shape.
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A(D1,6)=[(6)- ig; O)) +:(0)-ixO)) +(5(8) - irs ) (43.4)

Now, the goal is to find D;(6) which minimizes A for every phase angle 6. This D,
optimizes the input current shape in the time domain in the least square sense. The

derivative of A with respect to D; must be found in order to solve the following equation
for D,.

aA(D1.8) _, (43.5)
dD,
The result is found to be
. . 27 . 4r
g M (6)sin(0)+ az(G)sm(O S —3—) +0ay (9)sm(6 o —3—)
D,(0)=1,—e—. 4.3.6)
O=l 7o 2 B0 ) 0 6) ‘
Using (4.1.57) and (4.1.63) this can be simplified to
J6MR, o4(6)

D,)=|I ol 43.7
1©)= |1z TR0 (43.7)

This optimal duty ratio can be substituted into the expression for the averaged processed

power given in (4.1.60). After some substitutions and simplifications this can be written

as
P = 63215V, As (4.3.8)
where A; is defined as
2 w/6 2
Ay [P | = ) (4.3.9)
T o (0)

Equation (4.3.8) can be solved for the unknown coefficient /; for a given power level

P

[N s (4.3.10)
R 62, 45
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With this the optimal duty ratio in (4.3.7) can be expressed as

_ [MPR,__ 50)
D,;(®)= J4 747 w0 (4.3.11)

Assuming the converter is operated with this optimal duty ratio the rms value of the

resulting input current can be found using (4.1.62) which can now be simplified to

F 1

.3 43.12
s = 4 ( )

The power factor and the THD can be found using (2.7.4) and (2.7.5) respectively where
I; is given in (4.1.64)

PF =24, (43.13)
THD = |——-1 (43.14)
44

The general formula for each individual harmonic is given in (4.1.67). Using the optimal
duty ratio as given in (4.3.11) the coefficients of each harmonic relative to the

fundamental can be expressed as

( n/6
\/51\/21 Otd(e)Bk(e)de for k=135,..
LT O 43.15
Krel = ( - )
0 for k= 2,4,6,...

S

where B, is defined in (4.1.68). It is again easy to show that /,,.; is unity.
It can be shown that the maximum value of the duty ratio appears at 6 =30° whereas
the minimum value appears at 6=0°. Therefore, the modulation depth AD; can be

expressed as

AD; = D](%j—p,(o) (4.3.16)
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Using (4.3.11) and (4.1.46) through (4.1.49) and some algebra AD; leads to

AD = |—TRe 1[M-—‘/i— M -1 (4.3.17)
12MV;% 45 2

Finally, the relative ripple of the output diode current i, remains to be evaluated.
Substituting 6=0° and 6=30° into the equation for i,, i.e, (4.1.45), shows that the
values of i, are identical in both cases. It can be shown that these are the maximum

values. The minimum occurs somewhere within the 30° interval. There is no closed
form expression for the phase angle at the minimum value of i, .

It can be shown that the phase angle 6 that satisfies
sin(e +2) 3sin[30- %)+ Zsin2(20)=0 AND 0<0<X  (43.18)
6 6) M 6

is the phase angle at the minimum value of i, . This equation can be solved numerically

for an arbitrary M. Assuming 0, is the solution of (4.3.18), then the relative ripple of i,

can be found using (4.1.71)

Al = ‘/gfy L ((0)-1:6,)) (4.3.19)

By substituting the corresponding expressions into (4.3.19), the following form can be

found:

Al = L 5 [1 —2M2&2—£e—°)} (4.3.20)
44 o, (6,)

All the quantities derived above have been evaluated and the results are presented in

Figs. 4.7 through 4.9. The current waveform has improved primarily due to a reduction

of the 5™ harmonic. This improvement is most visible in Fig. 4.8b when compared with

Fig. 4.5b. Moreover, at low conversion ratios the reduction of the THD is more relevant

than for higher values of M.
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Furthermore, the ripple in the diode current has almost disappeared as it can be seen
in Figs. 4.7a through 4.7c. This current ripple versus the conversion ratio is plotted in
Fig. 4.8c. The value is roughly 15 times lower than in the constant duty ratio case,
which is shown in Fig. 4.5¢. This greatly enhances the usefulness of this control scheme.
Unlike the single-phase case, this topology does not require a large energy storage /
output capacitor for the ac-to-dc conversion and power factor correction function.

Figure 4.9a shows the duty ratio modulation at a frequency that is six times higher
than the line frequency. In addition, the conduction angle of inductors L;, L, and L; is
less varying as a function of the phase angle (i.e., as a function of the time). This means
the intervals with zero inductor current are shorter. Thus, the rms-values of the currents
are lower for the same processed power and it allows a better utilization of the magnetic
components.

The required modulation depth AD, versus the conversion ratio is shown in Fig. 4.9b.
It is evident that only a very weak modulation is necessary to obtain the optimal duty
ratio.

The major problem with this control scheme is its difficult implementation. The duty
ratio function as stated in (4.3.11) is rather complicated and, thus, not very practical to
accomplish. This control method requires constant monitoring of the output voltage as
well as the instantaneous values of at least two of the input voltages. These quantities
are necessary to evaluate (4.1.49) and (4.1.63), which are needed to calculate the
optimal duty ratio given in (4.3.11). This is a complex algorithm involving a lot of

computation and is therefore difficult to implement.

However, the fact that in the optimal duty ratio case the diode current i, is

almost ripple free provides an interesting simple means to approximate the optimal
duty ratio. All that is required is a fast feedback loop that keeps the diode current
completely constant. This much simpler control method is investigated in the next

section.
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4.4  Controlled Diode Current Operation

Figure 4.4a through 4.4c shows the diode current waveform for the constant duty
ratio case whereas the same information for the optimal duty ratio is shown in Figs. 4.7a
through 4.7c. The percentage of the peak to peak current ripple compared with the
average value of i,is shown in Fig. 4.8c for the optimal duty ratio case and in Fig. 4.5¢
for the constant duty ratio case. It is of note that the six times the line frequency ripple,
observed with constant D,, almost disappears if the optimal duty ratio is applied. (The
ripple is reduced by a factor of approximately 15). Therefore, there is no need to
artificially generate the optimal duty ratio. Closer scrutiny of (4.3.11) reveals that this is

not a simple task, in any event, since o,,(6) and o;(6) are complicated phase angle
dependent functions.

An alternative and simpler approach is to control the diode current i; such that
it remains entirely constant. By doing so, it can be expected that the input current

is only slightly different from the optimal case. In this scenario there is exactly one
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current to control and there is exactly one duty ratio available to exercise proper
control. This problem is well defined and much simpler to solve.

Furthermore, if the control loop is ideal, the output voltage will not have a line
frequency related ripple. Realistically and desirably, the ripple is at least drastically
reduced. The necessary feedback loop must have a bandwidth well above six times the
line frequency. For further considerations an entirely constant diode current iy is
assumed.

Since in this case both ¥, and i, are constant the instantaneous power p, and the

averaged processed power P are the same. Thus, (4.1.56) can be written as

2
P=D}? Mad (6) (4.4.1)
R,
This can be solved for the necessary duty ratio to achieve a constant i, .
DI = Re}; (442)
2\/§MVL Q.d(e)

To find the rms-value of the resulting input current D, can be substituted into (4.1.62).

2
1 =—A4 443
rms 3VL 4 ( )
where the constant 44 is defined by
/6
Ay E\/ 8 “52(9) 9 (4.4.4)
0 %d (9)

Using (2.7.4), (2.7.5) and (4.1.64) the power factor and the THD are found to be

1
PF = 445
A4 ( )

THD =442 -1 (4.4.6)
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Using (4.1.67) the expressions for each individual harmonic becomes

1:/6
Bk(e) for k=135,...

'[ g (9)

= < (4.4.7)
0 for k=246,...

rel

L

where By is defined in (4.1.68). Using (4.1.57) it is again easy to show that 7}, is unity.
Similar as in the case of the optimal duty ratio the maximum value of the duty ratio

appears at 6 =30° and the minimum appears at 8 =0°. Thus, AD; is given by

AD; = DI(%j-DJ(o) (4.4.8)

Using (4.4.2) and (4.1.46) through (4.1.49), the following expression can be found:

_ [ PR, B
AD, = 3MVL2[‘/M o —VM 1} (4.4.9)

By assumption the relative ripple of i, is zero in this case. Thus,

Al;=0 (4.4.10)

Figure 4.10 shows the current waveforms and the corresponding harmonic components
for the constant diode current controlled case. As expected, the input current
waveforms are very similar to the ones of the optimal duty ratio case. The calculated
values for the 7HD and the power factor differ only slightly from the previous case. The
graphs for the THD versus the conversion ratio shown in Fig. 4.11a and Fig. 4.8a are
virtually identical.

It comes as no surprise that the duty ratio function, the conduction angle and the
modulation depth are very similar in the optimal case and in the constant diode current

case. This can be concluded by comparing Fig. 4.11c and 4.11d with Fig. 4.9.
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In this case the instantaneous power p is constant since 7; and by assumption V, is
constant. As derived in Appendix A.5 this requires the harmonics to appear in pairs of
equal magnitude. Figure 4.10d through 4.10f confirms this behavior.

The constant diode current control method approximates the optimal duty ratio
so closely that any attempt to realize the precisely optimal case can never be
justified. The analytical evaluation of the optimal case, however, is very useful
since it reveals that there is no justification to search for a control method that is
better than the constant diode current method. Firstly, because the difference
from the optimal case is so slim that an improvement is hardly possible. Secondly,
this control method also removes the twice the line frequency ripple at the output
of the converter. This is another beneficial effect that can be achieved by applying
this control method.

Results similar to the ones discussed here were presented in [9]. However, only
approximate expressions were used to characterize the currents, and it has not been
shown that the constant output control very closely approximates the optimal duty ratio.
Due to its simplicity and to its advantageous effect at the input and output of the
converter, the constant diode current control method appears to be the control method
of choice.

Several other schemes have been suggested, to improve the input current waveform
over the constant duty ratio case, one of which is presented in [10]. The objective is to
inject an easy to generate function into the duty ratio. The resulting function
approximates to the optimal duty ratio to some degree. The next section deals with

these methods in a more generic form than [10].

4.5  Arbitrarily Modulated Duty Ratio

An alternative method to improve the input current waveform is to approximate the
optimal duty ratio given in (4.3.11) with easier to generate functions. The optimal duty

ratio for M =1.5 is plotted in Fig. 4.12 over one-sixth of a line cycle, which is one full
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period for this signal. This curve might be approximated with a triangular signal of six
times the line frequency and an improved current shape can be expected. Potentially a
modulation of the duty ratio with a cosine of the same frequency could be more
effective.

To remain generic, suppose the duty ratio is given by the following formula:
D;=D;,(1+58- £(9)) (4.5.1)

where f{0) can be an arbitrary function for 0<8<30°. For all values outside this range,

A0) has to satisfy

f(e)=f(e+13‘-j 452)

/®)= f@— e) (4.5.3)

in order for the duty ratio to satisfy (4.1.58) and (4.1.59). Without loss of generality f{8)
can by scaled such that the maximum value minus the minimum value equals 1. With this

choice the modulation depth AD; as defined in (4.1.69) will simply be
AD; =Dy, -3 (4.5.4)

The objective now is to find the optimal value of & for a given function f such that the
THD of the resulting input current is minimized. D, can then be adjusted to obtain a
desired power level. From (2.4.2) it is evident that this is the same as minimizing the

following function.

Lrms (4.5.5)

Using (4.1.62) I, is given by

n/6
1,,,=2"Lp,? Jl [a+8- 7 @) os(6)a® (4.5.6)
R T

(4
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Figure 4.12: Optimal duty ratio over one-sixth of a line cycle with a conversion ratio
of M = 1.5.

whereas (4.1.65) in conjunction with (4.1.57) can be used to find 7,

V.M /6
I, =43 TfR D, [(1+3- 7(8)fas(6) a0 (4.5.7)
€ 0

Minimizing (4.5.5) is the same as minimizing F(8) where

/6
[a+8- f(®) o s(6)®
F(5)=—20 458
(6) /6 - ( )
o s7a0m
0
Equation (4.5.8) can be written as
P, + 48P, +65°P, + 48°P; + 8*P, 45.9)

6 o
F6) (Q, +280; +5°0,)

where
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n/6

P = [a,(®) s () (4.5.10)
0
%/6 _

0= [o04(6) ()0 (4.5.11)
0

P; and Q; are all constants which can be numerically evaluated for a given conversion

ratio M. The next step is to solve

are)_,

4.5.12
P ( )

Even though it is complex it is straightforward to show that solving (4.5.12) is

equivalent to solving
0=K,+8K; +8K,+8°K; +8°K, (4.5.13)
where the constant coefficients are given by

Ko =F0y— P,

K;=FQ;+2P0,-3P0,

K;=3(R0; - Fs0,) (4.5.14)
K3 =3P, -2R0, - P,0,

Ky =PF0,-P0,;

The solution for 8 must be in the range of 0 < |8| <1 (typically & approximately 0.1 and it

decreases as M increases). In general a polynomial as the one given in (4.5.13) might
have none or more than one real roots in the specified range. But from a physical point
of view it can be argued that for a function f0), which even only roughly approximates
the optimal duty ratio, there will be a solution & which minimizes the 7HD and if the D,
is over or under modulated the current shape becomes monotonically worse. This can be
verified for a particular function f{0) by plotting the corresponding polynomial (i.e., the
right-hand side of (4.5.13), as 6 runs from 0 to 1).
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Once & is known D; given in (4.5.1) can be substituted into (4.1.60). The expression

for the processed power then becomes

2
p-121 Dy, 4
Re
where the constant 45 1s defined as
'\/EM /6
45 = — I(l +8- £(0)f g (6)®
0

Equation (4.5.15) can be solved for D,,.

R.P
Dy, = ez
1217 ° A5

R,P
2V, % 4s

This can be substituted into (4.5.1)

D,(6)= (1+38- 1(6))

The rms value of the input currents given (4.5.6) can now be expressed as

e i
TE6V, As

where the constant 44 is defined as

hom \/{ﬁl £ /O 0, O)

(4.5.15)

(4.5.16)

(4.5.17)

(4.5.18)

(4.5.19)

(4.5.20)

Using (2.7.4), (2.7.5) and (4.1.64), the power factor and the 7HD can be found to be

PF=2f1-i

(4.5.21)
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2
THD = | -1 (4.5.22)
44;

To get an expression for each individual harmonic relative to the fundamental, (4.1.67)

can be used

[ /6
n—if [@+5- r@)BLO)®  for k=135,

rel

0 for k=246,...

where B is defined in (4.1.68). Using (4.1.57) it is again easy to show that /. is unity.
To find the modulation depth, (4.5.17) can be substituted into (4.5.4)

R,P
12V, 4s

AD; =19|- (4.5.29)

There are no formulas for the ripple in 7, derived in this thesis. There is no simple

description of Al for a general A6). Even with a known function f{0) there can be local
maxima and minima. The global maximum or minimum can be either one of these

depending on the conversion ratio M.

In this thesis, the following four functions for f{8) are considered:

f1(9)=%9 (4.5.25)
£>6)= —%COS(GQ) (4.5.26)
/5(6)=—cos(36) (4.5.27)

f40)= —%COS(K(I"” ). (c0)?) (4.5.28)
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where b was chosen to be 1.5. The best value for b depends on the conversion ratio.
For the range of M under consideration, » = 1.5 appears to be a reasonable choice. The
minus sign in the last three cases was chosen in order to make 8 a positive number.

Henceforth, the four approximation functions stated above will be called as follows:

e Equation (4.5.25): The linear modulation of the duty ratio.
e Equation (4.5.26): The cosine modulation of the duty ratio.
e Equation (4.5.27): The rectified cosine modulation of the duty ratio.

e Equation (4.5.28): The modified cosine modulation of the duty ratio.

The cosine modulation of the duty ratio is also called sixth harmonic injection. It was
introduced in [10] where a different approach was used to find the optimal modulation
depth than the one presented in this section.

The obtained duty ratio functions for all four cases optimized according to the above
discussion (i.e., using (4.5.13) and (4.5.18)) are shown in Fig. 4.13. The conversion
ratio in these examples is 1.5. The dotted line represents the optimal duty ratio as
discussed in Section 4.3.

The analytically obtained current waveforms and their harmonic components are
shown in Figs 4.14 through 4.17. All these modulation functions improve the current
waveform significantly. It is noteworthy that even the linear approximation of the
optimal duty ratio yields very good results.

It should be mentioned that these are analytically obtained results. Two obstacles
must be overcome in order to realize these schemes. Firstly, the desired modulation
function must be generated and synchronized with the utility line. Secondly, the
appropriate modulation depth & for any given conversion ratio must be found. This is

potentially even more difficult.
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ratios: (a), (b) and (c) Calculated input current waveform and output
voltage ripple. (d), (e) and (f) Harmonic content of the input current in
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However, if in a particular application the conversion ratio is fixed, or only slightly
changing, then & can be fixed without sacrificing performance. These modulation
schemes have one advantage over the constant diode current control method.
International standards such as IEC1000-3-2 set limits for the maximum allowed value of
each individual harmonic. These limits decrease as the order of the harmonic increases,
but not by the same rate as the actual magnitudes of the current harmonics decrease.
This behavior is shown in Fig. 4.18 for a 380V,/800V4./8kW converter. The stars mark
the limits according to IEC1000-3-2. That means, the requirements for the lower order
harmonics are more difficult to meet. The most critical harmonics in this particular
topology are the 5" and the 7™,

If the converter is operated with constant duty ratio, the magnitude of the 5"
harmonic will be larger than the 7™ and will clearly exceed the limit as shown in Fig.
4.18a. Conversely, if the constant current control method is applied, the magnitudes of
the 5* and 7" harmonic are equal. In this case the 7™ harmonic exceeds the limit as
shown in Fig. 4.18b.

However, if the linearly modulated duty ratio is applied, then the modulation depth 6
can be varied from zero (i.e., constant duty ratio) to the optimal value of & which yields
almost identical magnitudes for the 5™ and 7™ harmonic (Figs. 4.14d through 4.14f). The
harmonic content changes gradually from the constant duty ratio case to approximately
the constant diode current controlled case (i.e., from Fig. 4.18a to Fig. 4.18c).
Somewhere in between there is a range of values for & that retains all the harmonics
below the limit; even though it does not minimize the harmonic distortion. This situation
is shown in Fig. 4.18d where the modulation depth was chosen to be 80% of the optimal
value.

Therefore, these modulation schemes provide a means to play with the values of
individual harmonics. If this is of importance in a practical example, then these methods

might be applied.
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Another means to improve the current shape has been presented in [9,11]. The
converter was operated at the boundary of DCM. The interval 7 in Fig. 4.3 is omitted.
This is achieved by turning on the active switch S as soon as all inductor currents (or the
diode current iz) reach the zero level. The consequence is a variable switching
frequency.

This control scheme is not investigated in this thesis. It has been reported in [9,11]
that this method does not provide a significant reduction of the 7THD, however, it shifts
the distortion to harmonics at higher frequencies. This reduces the filtering effort. At
low conversion ratios the total harmonic distortion appears to be even worse than with

the constant duty ratio.

4.6 Summary of the Results and Practical Realization

In this section the most important results of the preceding analysis are summarized
and the most significant formulas describing the performance of the converter are stated
again. Table 4.1 contains key expressions for all the analyzed cases in terms of the
processed power P, the line to neutral input voltage 7, and the conversion ratio M.

In order to evaluate the expressions in Table 4.1, the following equations are

necessary:
2
M=—20 4.6.1
Je v, WaH
2L
r-2L 462
=T (4.6.2)
oy (6)=—1 sin(0) (4.6.3)

M —[35in(B)

M? sin(e - 33’3) + M sin(26)

(M - V35in(6)) (M - cos(6))

o,(8)= (4.6.4)
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Table 4.1: Key expressions for the analyzed cases in terms of the power P, the line voltage V; and conversion ratio M.
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M? sin(e - f?) - %M sin(26)

053(6)= (4.6.5)
(M —/3sin (6)) (M —cos())
M +5in(20)sin| 6 - 2n
oq(8) = i ( 3) (4.6.6)
2 (]\/I B sm(e)) (M - cos(B))
o5 (6) = 0% (B) + 0,2 (6)+ 0132 (6) (4.6.7)

Bk(ﬁ)zal(e)sin(k6)+onz(e)sin(ke—%j+a3(e)sin(ke—4—73tk—j 468)

n/6
4= ‘/_M j'ad(e)ae (4.6.9)
/6
= }— ja () (4.6.10)
Mz n/6 2(9)
A3—\/ - j 5(9) (4.6.11)
3 /6 as(e)
4= ‘/an | o (e)de (4.6.12)
n/6
As = ‘/—M j(1+5fe))2ad(e)de (4.6.13)
/6
\/ [a+37 @) as(6)® (4.6.14)

sin(eo+%j—3sin(36°—%j+%sin2(26°)=0 AND 0<eo<% (4.6.15)



85

0=K, +8K; +8°K, +5°K; +8°K,

Ky 2P0 — P2,
K =F,0; + 2P0, -3PQ,
K, =3(P1Q2_P3Qo)
K3 =3P0;, -2P;0, - P,Q,
Ky =P;0;-P,0;

/6

= [o,(6) f'(6)®

/6

0;= [aa6) /@) 0

This is all that is needed to evaluate the expressions in Table 4.1.

(4.6.16)

(4.6.17)

(4.6.18)

(4.6.19)

Note that the

equations (4.6.13) and higher are exclusively used for the arbitrarily modulated duty

ratio case (i.e., for column four in Table 4.1). All formulas were expressed in the

simplest possible form that was found. Nevertheless, after some algebra, alternative

forms can be found for (4.6.7) through (4.6.12) and for Ii.; in the first three columns of

Table 4.1. These new formulas, which are stated in Appendix B, do not appear to be

simpler, but the calculation speed is drastically reduced if they are used in numerical

calculations instead of those stated above.

The current waveforms are given by

1_1(9) =1y

2 2210,0)

J—VL ] (9)

e

;,0)=D/

is (9) =D

222 a6)

e

(4.6.20)

(4.6.21)

(4.6.22)
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2\/_VL

i,0)=D, aq(0) (4.6.23)

for the interval 0<0<30°. The waveforms for the rest of the line cycle can be found
using the permutation of subscripts and time reversal as explained in Section 4.1.
There are very few design constraints associated with this converter. To assure a

proper operation, the following must be satisfied:

D, (0)< 1—52- (4.6.24)
This equation implies that M must be greater than unity since the ratio must have a
positive value. Assuming the power level P and the input voltage 7, are given and a
value for M has been chosen, the only possibility to influence D; is by altering R..
Equation (4.6.24) provides a tool to determine R, and thus the inductance L and the
switching frequency 7;. In order to reduce the current stress in all the elements of the
converter, the left-hand side of (4.6.24) should only be marginally smaller than the right-

hand side. For example,
1
Di\0)=091-— 4.6.25
1(0) ( M] (4.625)

Table 4.2 contains a comparison of the predicted values of the 7HD in % between the
previously discussed cases. As previously mentioned, the constant diode current method
approximates the optimal case very closely. This approach has the additional
advantageous property that the output voltage ripple is eliminated. Therefore, this
circuit can be used as a single-stage converter if a high output voltage is required. The
constant diode current control only requires a fast feedback loop to achieve the
reduction in the harmonic content and a good output regulation. The optimal duty ratio
(i.e., case 2) is only marginally better and is so complicated to generate that an
implementation in a real circuit is neither justified nor realistic. However, analysis is

useful because it serves as a reference against which other methods can be compared.
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Case | Duty ratio function M=12 M=15 M=20
1 Constant duty ratio 21.82 12.43 7.597
2 | Optimal duty ratio 13.94 9.456 6.228
3 Constant diode current controlled 14.00 9.476 6.234
4 | Linearly modulated duty ratio 14.43 9.580 6.266
5 Cosine modulated duty ratio 14.38 9.556 6.251
6 | Rectified cosine modulated duty ratio 13.95 9.473 6.247
7 | Modified cosine modulated duty ratio 13.98 9.471 6.244

Table 4.2: The Predicted THD for all cases and for 3 different conversion ratios.

The other approximations of the optimal duty ratio (i.e., cases 4 through 7) have the

following disadvantages:

1) The desired function must be artificially generated or derived from somewhere.

2) The optimal modulation depth depends on the conversion ratio and the load current.
For example, if the input voltage changes, the magnitude of the injected signal to the
duty ratio must be adjusted. This requires constant monitoring of the conversion
ratio and load current plus an additional circuitry, which provides the proper

modulation depth.

3) The diode current and hence the output voltage still suffer from some low frequency

ripple.

The most favorable solution, therefore, is case 3, i.e., the diode current control method.
The following graph compares the improvement of the 7THD versus the conversion ratio
M for the constant duty ratio case and the constant diode current control method. It is
evident that the most significant reduction of the THD occurs at low conversion ratios

where the distortion is large if a constant duty ratio is applied. In most cases a low
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conversion ratio is desired in order to reduce the voltage stress on the switches and in
the output capacitor. The primary reason for designing the converter with an increased
M is to achieve a lower harmonic distortion.

The proposed control method provides an alternative method to obtain the same goal
without adding voltage stress to the components. The horizontal distance between the
two curves in Fig. 4.19a is approximately 0.22; therefore, if the constant diode current
control method is applied, the conversion ratio can be reduced by a factor of 0.22 to
achieve the same 7HD as with a constant duty ratio. This approximation is quite
accurate over the whole range of interest (see Fig. 4.19b). The difference in M translates
to a variance in output voltage of 60V with a 110V input (rms-value phase to neutral)
and 120V with a 220V input. An additional advantage of this control scheme is the well-
regulated output voltage.

Depending on the particular application, it might be enough to use a fast voltage
feedback loop as suggested in [9] and shown in Fig. 4.20a to achieve the desired duty
ratio modulation. This requires a time invariant load. The necessary bandwidth of the
feedback loop must be much higher than six times the line frequency. An excellent load
step responses can be achieved with this solution. Experimental results, however,
indicate that the performance concerning the input currents is better if the diode current
is controlled directly and the output voltage is used in an outer loop as shown in Fig.
4.20b. With this second control method, the residual output voltage ripple is also
smaller.

Since the diode current is discontinuous, a simple high frequency current sense
transformer can be used to realize the current measurement. The bandwidth of the inner
loop must be much higher than six times the line frequency, whereas the outer loop

requires a bandwidth clearly below six times the line frequency.
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Figure 4.19: (a) Comparison of the predicted THD between the constant duty ratio

case and the diode current control method. (b) The graph for the
constant duty ratio case is shifted to the left by 0.22.
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4.7  Experimental Results

The validity of the analysis of this converter was tested on an experimental circuit
with the following element values: L,=L,=Ls=310uH, C,~40uF and a resistive load of
500Q2 (Fig. 4.1). Throughout the analysis the input voltage was assumed to be an ideal
three-phase system. However, the real utility line voltage contains some distortion in the
voltage waveform. In order to be able to compare the measurement with the prediction
the experimental circuit was connected to a power supply with nearly ideal voltage
waveforms. The input voltage was 80V phase to neutral and the output voltage was
280V, which corresponds to a conversion ratio of 1.43. The control method shown in
Fig. 4.20b was applied. In addition, an input filter was designed as shown in Fig. 4.21,
where L;=3.5mH, L,=1.2mH, C;=0.1uF, C=0.5uF and R~47Q).

The constant duty ratio case is considered first. The measured input current together
with the ac-component of the output voltage is shown in Fig. 4.22a whereas the
magnitudes of the current spectrum are depicted in Fig. 4.22b. The measurement is
slightly better than the prediction. This can be explained by the presence of the input

filter, which also takes part in reducing the harmonic content. This effect is not

Ll L
Vi o—FHI AN 1 o VI’
|
Ten Wy e
Lfl LR
V2 — I ' A1) ' o V2!
1 Lw ]| L
. | |
V3 o—FHI A1 —o V3!
Rd
e TV Tee

Figure 4.21: Three-phase input filter.
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accounted for in the analysis. The measured waveforms in Fig. 4.22 can be compared
with the prediction as shown in Fig. 4.4b and 4.4e. (Note that the conversion ratio is
slightly different.)

The same information for the controlled diode current case is shown in Fig. 4.23a and
Fig. 4.23b respectively. It is evident that the harmonic distortion dropped and the output
voltage ripple almost disappeared. It is shown that the harmonics appear in pairs of
equal magnitude as predicted. This waveforms compare very well with the prediction as
shown in Fig. 4.10b and 4.10c.

In the real world, however, the circuit will be connected to the non-ideal line voltage.
It is important to observe how the circuit behaves in this more realistic situation. The
input voltage was chosen to be 100V phase to neutral and the output was 350V, which
leads to the same conversion ratio as in the previous case. At the time the measurement
was taken, the harmonic distortion of the line voltage was measured to be 4.5%. The
resulting waveforms and spectrum are shown in Fig. 4.24a and Fig. 4.24b respectively,
whereas the same plots for the constant diode current control method are shown in Fig.
4.25.

It is evident that the line current waveform does not agree as well with the prediction
as in the previous case, even though the general shape appears still fairly close. The
measured 7HD for the constant duty ratio case is significantly worse than the prediction
(i.e., 20.4% versus 13.7%). (Note that the prediction is still based on ideal voltage
waveforms.) In the controlled case the measurement and prediction are much closer
together, i.e., 12.4% versus 10.2%. Consequently, if the constant diode current control
method is applied, the actual reduction of the THD is 8% and not only 3.5% as
suggested by the prediction.

The exact values depend on the nature of the distortion and its severity. A voltage
THD of 4.5%, however, is quite typical in a 110V system. The main reason for the
distortion is the “peak detector” type of power inputs as discussed in Chapter 3.1.2,

which causes the voltage waveform to appear trapezoidal rather than sinusoidal. As a
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Figure 4.22: Ideal input voltage source, constant duty ratio: (a) Measured input
current shape together with the ac-component of the output voltage and
(b) measured spectrum and THD of the input current.
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Figure 4.23: Ideal input voltage source, constant diode current controlled: (a)

Measured input current shape together with the ac-component of the
output voltage and (b) measured spectrum and THD of the input current.
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Figure 4.24: Working off the utility line with 4.5% voltage THD, constant duty ratio:
(a) Measured input current shape together with the ac-component of the
output voltage and (b) measured spectrum and THD of the input current.
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Figure 4.25: Working off the utility line with 4.5% voltage THD, constant diode
current controlled: (a) Measured input current shape together with the
ac-component of the output voltage and (b) measured spectrum and
THD of the input current.
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result of this uniform distortion mechanism the nature of the distortion can be expected

to remain the same. This allows generalizing the results stated in the previous paragraph.

4.8 Final Remarks

In this chapter the non-isolated single active switch three-phase power factor
corrector was investigated. In a first step the previously known constant duty ratio
operation was analyzed. The achieved results motivated the search for the optimal duty
ratio. Results were derived for a duty ratio modulation, which optimizes the input
current waveforms in the time domain in a least square sense. Unfortunately, this duty
ratio is not practical to realize, since it is described by a rather complicated expression.
It depends on each of the instantaneous input voltages and the conversion ratio.

Nevertheless, the current shape can be analytically evaluated for the optimal duty
ratio. By doing so, it can be observed that the current in the boost diode becomes
almost constant with the optimal duty ratio. This offers an interesting chance to achieve
a nearly optimal duty ratio by controlling this current so that it becomes entirely
constant. It has been shown that this control strategy provides results that are indeed
very close to the optimal case. In addition, it also provides simultaneously a well-
regulated output voltage. This is a very desirable feature. Applying a simple control
loop improves the input current distortion as well as the output voltage regulation.

On a final note, the way the analysis chronologically was performed was the
following: The constant duty ratio case was investigated first. Then the optimum duty
ratio was defined and analyzed. Since it turned out to be unpractical to realize, the next
best option was using an approximation. Based on the actual shape of the optimal duty
ratio the linear, the cosine and the cosine half wave approximations were analyzed.

In a real circuit these functions must be generated somehow. In the light of that the
cosine approximation appeared to be the most promising choice. Since the diode current
carried a nearly cosine shaped ripple, the idea occurred to derive the duty ratio

modulation from this current. In the process of exploring that option, it so happens that
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this does not work because as soon as the duty ratio was modulated using this ripple
current, it almost vanished. Yet, what at first appeared to be a dead end led to the
discovery of the simple diode current control method, which approximates the optimum
duty ratio very closely and additionally provides a full output regulation.

Some of the results reported in this chapter have meanwhile been published by other
sources is a similar way. To the best of the author’s knowledge, such a complete
analysis allowing an easy comparison between different cases and providing simple

expression for all quantities of interest for all these cases has not yet been published.
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Chapter S

Isolated Extension of the Three-Phase

Power Factor Corrector

The converter presented and analyzed in the preceding chapter has interesting
properties concerning the input current distortion and the output voltage regulation.
However, there are two major drawbacks: Firstly, the converter requires a high output
voltage, which must be larger than the peak line to line voltage. Secondly, this topology
does not provide galvanic isolation. In this chapter, two isolated extensions are
presented and analyzed. Any desired output voltage can now be achieved by designing
a transformer with the appropriate turns ratio.

The proposed converters are depicted in Fig. 5.1a and 5.1b respectively. Several
authors [4-6, 9] have mentioned these circuits before, providing only little analysis, or
none at all. In all the cases except in [9], the duty ratio was always assumed to be
constant. One goal of this chapter is to investigate if the overall performance of these
converters can be improved using similar control schemes as in the non-isolated case.
In [9] it has been claimed that by simply applying a fast feedback loop to the isolated
converter the same improvements are achieved as in the non-isolated case. It will be
shown that the situation in the isolated converter is more complex. The results from the
previous chapter do not generally apply in the isolated case.

The combination of power factor correction and isolation in one stage is most useful
if, in addition, the output voltage is well-regulated. If operated with constant duty ratio,
the circuits in Fig. 5.1 suffer from an output voltage ripple at six times the line
frequency. Therefore, in most cases, they do not qualify as single-stage solutions. In

this chapter the output ripple problem is analyzed, and a solution is presented.
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5.1 The Topologies

The converters under consideration are the Cuk-derived and the Sepic-derived
topologies shown in Fig. 5.1a and Fig. 5.1b respectively. The analysis is based on the

assumptions listed below:

1) The input side is equivalent to the non-isolated case. That means that the inductors

L;, L, and L; operate in DCIM.

2) The capacitors C;, C, and C, are sufficiently large to ensure that any line frequency
related voltage ripple can be neglected for the evaluation of the input current

waveform.

3) All the assumptions stated in Chapter 4.1 still apply.

With these assumptions the input current waveforms are equivalent to those found in
Chapter 4 given that the duty ratio function is the same. This can easily be explained as
follows: during the ON time of switch S, the three input inductors are shorted on their
right-hand side, exactly as in the non-isolated version. During the OFF time of § the
energy stored in the three inductors is released into a constant voltage source, exactly as
before. This means that the equivalent circuits for each subinterval remain the same.
As far as the input of the converter is concerned, nothing has changed.

In particular, if the duty ratio is constant, the formulas found in Chapter 4.2 still
apply. Nevertheless, one word of caution is necessary. The conversion ratio M, which
is defined as the ratio of the output voltage to the peak value of the input voltage
measured from phase to phase, is now different. M is no longer restricted to values
greater than unity. Every M in the formulas in Chapter 4 must be substituted by a new

quantity M, which is defined as follows:

14
M=% (5.1.1)

Jer,
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Figure 5.1: Isolated extensions of the single active switch three-phase power factor
corrector: (a) Cuk-derived converter and (b) Sepic-derived converter.
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where Vs.gis the voltage across switch S in its off-state. The same restrictions apply for
M, as for M in Chapter 4.

The following question arises: Is there an equivalent control method as in the non-
isolated case; does a fast output voltage feedback loop simultaneously solve the output
ripple problem and improve the input current waveform? Since the converters in Fig.
5.1 possess additional reactive elements, a fast voltage feedback loop unfortunately
does not have the same effect on the input current distortion. For the same reason, a
fast control of the currents in L, in Fig. 5.1a or in D, in Fig. 5.1b does not solve the
problem either. In order to achieve an improvement of the input current waveform, the
output voltage ¥, or the diode current 7; was controlled in the non-isolated case (Fig.
4.20). The equivalent quantities must be identified in the isolated converters.

In the non-isolated converter, V, is the off-voltage of the active switch. The
equivalent voltage in the converters of Fig. 5.1 is Vs,s, as defined above. In the
converter of Fig. 5.1a Vs, is the sum of V,, and V., reflected to the primary of the
transformer. In the converter of Fig. 5.1b Vs is given by the sum of V; and V,
reflected to the primary of the transformer. Nevertheless, keeping these voltages
constant does not yield the desired result because the currents in the capacitors C; and
C: contain also the output inductor current during the OFF time of the active switch.
Thus, the current and voltage relation is not the same as in the non-isolated case.

However, a method exists which achieves the same effect on the input currents as in
the diode current controlled case (Chapter 4.4). The proposed method for the non-

isolated converter is to keep the diode current i; constant as shown in Fig. 4.20b. This

current is not directly available in the circuits of Fig. 5.1 because the diode D, has been

replaced with the capacitor C;. The current i_; in this branch is bi-directional whereas
iy is unidirectional due to the presence of D,. The part of 7., flowing into C; during
the OFF time of switch § is equivalent to 7; of the non-isolated version of the

converter. The fraction of the current discharging C; during the ON time was not

present before. Fig. 5.2 illustrates the relation between 7,and i;. This is not
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Figure 5.2: Identification of i, in the isolated versions of the converters.

necessarily a suggestion for the practical implementation of the measurement of 7.
There are more efficient ways to accomplish this task.

Controlling 7,in Fig. 5.2 so that it stays constant results in the same improvement of
the input current waveform as in the non-isolated converter. Unfortunately, unlike in

the non-isolated case, this control method does not suppress the output voltage ripple.

On the contrary, the ripple can be much worse. This effect is studied in the next two

sections.

5.2  The Cuk-Derived Topology
5.2.1 Steady State Analysis

The most relevant steady state equations of this converter shown in Fig. 5.1a are
derived first. As opposed to the input inductors, the output inductor L, operates in
continuous conduction mode. The voltage across D, during the ON time of the active
switch must be V5 reflected to the secondary of the transformer. (Vo4 is the voltage

across the main switch during its OFF time.) Volt-second balance applied to L, yields

VS
D,[ = —VOJ=(1—D1)VO (5.2.1)

n

Thus

2
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n
o = EVO (5.22)
Vsof can also be described by
Vit =Ve1 1V 2 (5.2.3)

The loop formed by L,, C,, C> and the secondary of 7, contains only capacitors and
inductors. The average voltage across an inductor must be zero. Thus, for steady state
considerations, the inductors can be considered as short circuits. Consequently, the

values for V.; and ¥V, must be equal.
Vea =V, (5.2.4)

Ve can be found by substituting (5.2.2) and (5.2.4) into (5.2.3)

1
VcI :nVO[E—lJ (525)
The output current is given by
P
I =— 3,2.6
o= (5.26)

These equations are sufficient to perform a first order design. The design algorithm is
briefly out lined assuming that the power level P, the input voltage V; and the output
voltage V, are given. Initially, a value for M; must be chosen based on the desired 7THD
of the input current. The relation between 7HD and M is discussed in detail in Chapter
4. (There, M was used instead of M,.) The resulting duty ratio D; can be found in
Table 4.1. The voltage Vo5 can be determined according to (5.1.1). Equation (5.2.2)
can now be used to find the required turns ratio n. The voltages V.; and V. are found
using (5.2.4) and (5.2.5). The input inductors must be designed in the same fashion as
in the non-isolated case. The values for C,, C,, C, and L, must be designed so that the
switching ripple voltage or current is sufficiently low. No formulas are stated at this

point, because their values also strongly influence the output voltage ripple at six times
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the line frequency. Knowing the relation between that ripple and the circuit element
values is very important in order to accomplish a good design. This subject is

investigated below.

5.2.2 Output Voltage Ripple

In order to understand and predict the behavior of the output of this converter, a
series of circuit transformations were performed. The original circuit without the input
filter is shown in Fig. 5.3a. As a first step, the transformer is eliminated. This is
achieved by reflecting the secondary side to the primary as shown in Fig. 5.3b. The
capacitor C; and the reflected capacitor C, can be represented by an equivalent

capacitor C.’, which is given by

(% = CICZ

DS 2 M (5.2.7)
n2C1 + C2

Figure 5.3c shows the non-inverting version of the same circuit, which is realized by
adding two extra switches. Apart from the polarity, the circuit is equivalent to the
previous one. The diode current iy, which was not directly accessible in the original
circuit, reappears. The nature of this current is very well known from the analysis of the
non-isolated version in Chapter 4. Therefore, the whole input part of the converter can
just be replaced by a current source that represents iz. In addition, circuit averaging is
applied as introduced in [12]. The switch pair S> and D; can be replaced by dependent
sources, carrying the average currents and voltages of the switches. This step is shown
in Fig. 5.4a.

At this point, a perturbation of the voltages, currents and the duty ratio is introduced.
All these quantities are now represented by a dc-part plus a small signal ac-part. The
dc-part is denoted by capital letters and the perturbation is denoted by lower case letters

with a hat (e.g.,, U +u). This step is shown in Fig. 5.4b. After neglecting all second
order terms (i.e., terms that include 31;0 and c?,f:e ), the dependent sources can be

separated as shown in Fig. 5.4c. Lower case letters now denote the sum of the dc and
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Figure 5.3: Circuit transformations on the Cuk-derived converter: (a) The original
circuit, (b) the secondary side of the transformer is reflected to the
primary and (c) modification to the non-inverting but otherwise equivalent

topology.



Id+id CD Ce' ﬁ:

id

Figure 5.4:

Ve

107

D1 Io/n l]:| l:lil D1 Ve

n Vo

= Co/n? n*Rl
R

Vetve

(@)

(Io-l-fo)/n

(prsarietio m @(malxvm) T Colz?

n* Lo

n(Vo+vo)

§n’R1

ve

e 3
Ce'==

nvo

— Co/n? § n* Rl

id<D D] d1 fts) % == ce/D1?

nvo

n? Lo

== Co/n? § n? Rl

(d)

The input part is replaced by equivalent current source: (a) The switch

pair S; and D, is replaced by dependent sources, (b) small signal
perturbation is applied, (c) divided into dc and small signal sources,

neglecting second order terms and (d) dc sources are replaced with ideal
transformer and dependent sources are moved to the left.
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ac signal (e.g., u=U +u). The two dependent sources, which depend on D;, can be
replaced by an ideal transformer. In addition, the other dependent sources are moved to
the primary side and all circuit elements are moved to the secondary side of this

transformer. This leads to the circuit shown in Fig. 5.4d, where

v,
e(s)= "D Ig (5.2.8)
£(s)= VO(B”?sCe'—nRLJ (5.2.9)
1

The circuit is now represented by the canonical model according to [13]. In order to
find the output voltage, the dependent voltage source d 1e(s) is of no consequence since

it is in series with current sources. It can be replaced by a short circuit. Furthermore, V.
is the same as V.5 which is given in (5.2.2). This can be used to further simplify the
circuit.

For the purposes of the present analysis, it is more useful to reflect the primary side
of the ideal transformer to the secondary. Furthermore, the whole circuit can be
reflected through a virtual n:1 transformer. This, plus a conversion of the current

sources to voltage sources, lead to the final circuit shown in Fig. 5.5, where

= ¥
) Ce Lo
vl=id-—-n—
sCe D1
=—= Co ?Rl
v2=&1-v°(1- i
D1 sCeRl

Figure 5.5: Equivalent small signal model: v, depends on the ripple of the diode
current iz and v, depends on the duty ratio modulation.
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2 2
C,=—5C,'=—s- CiCs (5.2.10)
D] DI n C] + C2
This circuit has the following two input sources:
A n
V;=iy- 5.2.11
2 4 SCeDI ( )
~ 1
v =2 1— 5.2.12
$THD, ( sCeR,) Ry

The first source, v;, depends on the ripple of diode current i;. Since this ripple was
analyzed in Chapter 4, it is well-known. The second source, v,, depends on the duty
ratio modulation. Also the modulation depth was analyzed for different control
schemes in Chapter 4.

The only cases of interest in this chapter are the constant duty ratio case and the
constant diode current control method. If the duty ratio is constant, then v; is zero. The
only contribution to the output voltage ripple is due to v;, and consequently, due to the
diode current ripple fd. Based on the graphs in Fig. 4.4a through Fig. 4.4c this ripple
can be assumed to be sinusoidal at six times the line frequency. In order to find the
output voltage ripple for the constant duty ratio case, the transfer function from i, FRLRA
must be found.

If the constant diode current control method is applied, then v, is zero because this
control method eliminates fd. As the duty ratio is no longer constant, the output voltage
ripple is caused by v; in this second case. It is again reasonable to assume that the duty
ratio is modulated with a sinusoidal function (Fig. 4.11c). The transfer function from
d ; to v, must be known in order to calculate the output voltage ripple. Using Fig. 5.5,

the two required transfer functions are found to be



If the following inequality holds (which is very likely),

then (5.2.13) and (5.2.14) can be approximated as follows:
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>

<
=

13

<>
>|°

Q..

1

110

n
8o,

1+sR)(C, +C,)+s*L,C, +s°RL,C.C,

V.
- Bo;(l i SRICe)

" 1+sR(C, +C,)+5*L,C, + °RL,C.C,

"
Yo
&

1z

LO Ce 2

BEsn e
" c+C)

n 1
:RI_E_. =
()rra())
1+— 1 1+——+—
ml Qmo O,
. 1-=
_£=_Vo. o,
d Dz( J[ i & []2]
1 1 —s— |
0 @, LS
B 1
: RI(Ce+Co)
1
0, =
LC,
C,?
Q 0)oRICx
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(5.2.16)
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C,= CeCo (5.2.22)
C,+C,

D, in the above formulas must be a constant. This is naturally given in the constant
duty ratio case. In the constant diode current controlled case, the average value of the
duty ratio function should be used. From the discussion in Chapter 4.4 it can be
concluded that the average value can be approximated by the value of D; at 15°. Thus,
in this case, D;(n/12) should be used.

The value of the transfer function at six times the line frequency is of particular
interest. Whether the circuit operates with constant duty ratio or with the constant diode
current control method, the circuit is exposed to an excitation at this frequency. In
order to find the peak to peak voltage ripple at the output of the converter, the
expressions for the peak to peak value of the diode current ripple Al; and the
modulation depth AD; can be used. These expressions were derived in Chapter 4 and

stated in Table 4.1. Since the current Al; is a normalized quantity, it must be

multiplied by its average value, which is given by

Ij=—o F E P (5.2.23)
Vg 7 v, JeMy,

This leads to

P P 2-43
d\[‘MIVL 4Jov 4, (M,-l)(2M1 \/g)

Iy = (5.2.24)

d;=AD; = i [MI———,/ —J (5.2.25)

The peak to peak value of the output voltage ripple is plotted in Fig. 5.6 for the constant

duty ratio case and for the controlled diode current case. In order to understand the
behavior of the circuit, it was assumed that i, and d ; sweep with constant magnitude

through the displayed frequency range. In the practical circuit only the value at 360Hz
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Figure 5.6: Cuk-derived converter: Transfer functions corresponding to the circuit in
Fig. 5.5 with different values for the capacitor C, and the inductor L,: (a)
Co and L, are small and (b) C, and L, are large.
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(i.e., six times the line frequency) is of interest. This frequency is marked with a dotted
vertical line.

The curves in Fig. 5.6a are based on a 200W converter with an input voltage 90Vrums
(line to neutral) and an output voltage 75Vpc. In addition, M, is assumed to be 1.5.
The component values are the following: L,=L,=L;=320uH, C,=C,=40uF, C,=10uF,
L,=2mH and n=1.25 and the switching frequency is assumed to be S0kHz (these are the
element values of the real circuit that was used to obtain the experimental data).

It is evident that the diode current controlled case is much more problematic than the
constant duty ratio case. The predicted ripple of the output voltage is about 10 times
higher than in the first case. (The exactly calculated values are 10.4V versus 1.06V.)
There is a temptation to decrease the bandwidth of the output filter to reduce the ripple.
Figure 5.6b illustrates that this does not necessarily alleviate the problem. The
capacitance of C, was increased from 10 to 90uF and the inductance L, from 2 to 3mH.
The effect was catastrophic. The complex pole pair closely approached 360 Hz and the
Q-factor was increased. It is interesting to note that the difference between the two
predicted ripple voltages is still approximately a factor of 10. This choice of values is
completely useless. It is evident that the equations (5.2.16) through (5.2.22) constitute
an important collection of formulas. They serve as a tool that allows avoiding

oscillatory designs.

5.2.3 Preventing the Output Voltage Ripple

However, even in a carefully designed converter, the output voltage ripple can not be
completely avoided. The problem is much more serious in the constant diode current
controlled case. If a well-regulated output voltage is required, the circuit can be
modified as shown in Fig. 5.7. The body diode of the additional active switch, S, is
shown because it is essential for the operation of the circuit. This class of circuits,
which were introduced in [14], is called capacitive idling converters.

This modified converter can be controlled with at least three different control

structures. The simplest one is shown in Fig. 5.8a. Switch §; is controlled by a
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constant duty ratio with resulting input current waveforms according to Chapter 4.2.
The other switch S is controlled by a fast output voltage feedback loop. The bandwidth
of this loop must be much higher than six times the line frequency. The advantages of
this control scheme are its simplicity and its good load regulation capability.

If an improved current waveform at the input is required, the equivalent to the
constant diode current control can be applied according to Fig. 5.8b. This structure is
somewhat more complicated. The reference current for the first control loop, /,.;, must
be generated by some means. One possibility is to implement a slow outer loop that
keeps V.; constant. The bandwidth of this outer loop must be lower than the line
frequency. As in the non-isolated case, the diodes D, and Dy are placed in the schematic
only to illustrate the meaning of iz. It is not a suggestion for a practical implementation.
It is more efficient and less expensive to sense the current polarity on the signal side of
the measurement than connect diodes in series with the power path.

If the control loop on the primary side is in place, the second switch can operate at

constant duty ratio as shown in Fig 5.8c. This can be explained as follows: The first
loop ensures that the diode current i, is constant. That means fd in Fig. 5.5 is zero and,
thus, v; is zero. Note that the duty ratio modulation of the second switch is relevant for

d ; in Fig. 5.5. Therefore, if the second switch is operated at constant duty ratio, d | 1s

A AR N
- T
L1 £D1 *D2£D3 +VI¢I:1 — - Vl‘l:z = Lx |
F MY L
S2
I N TI . |L
L2 ’
i |t R e ert |
E L3 n:1 D
R YOI
?Dt?DSfDG

Figure 5.7: An extra switch S, is introduced to the Cuk- derived isolated extension.

The anti parallel diode is shown here because it is essential for proper
operation.
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zero and so is v,. Since under these conditions both sources, i.e., v; and v, are nulled,
no output voltage ripple is expected. This result is obtained under somewhat idealized
conditions. In a real circuit the control loop at the input side is not ideal, which leads to
some ripple in 7, This ripple propagates to the output of the converter. Nevertheless,
this ripple is significantly reduced compared to the case when the constant i; control
method is implemented without adding S,. A drawback of this control scheme is the
reduced performance concerning the load regulation.

An interesting feature of this converter is that neither of the suggested control
schemes requires a loop across the galvanic isolation. It is important to note that during
the OFF time of S; the body diode of S; is conducting. During this interval switch Sz is
in the on-state by default. The only action S can perform is to turn off while S; is on.
Therefore, the two switches must be synchronized, which can be done by sensing the
secondary voltage of the transformer [14]. In addition, the active duty ratio of S: is
always smaller than the duty ratio of S;. The simplest realization is to turn on both
switches at the same time and to ensure that S, turns off before §;. More detailed

information about the design of capacitive idling converters can be found in [14].

5.2.4 Experimental Results

In order to confirm the above results experimentally, an isolated version of the Cuk-
derived converter was built. It converted a power of 200W from 90Vgryms (line to
neutral) to 75Vpc using an M, of 1.5. The component values were chosen to be
L=L=Ls=320uH, C,;=C,=40uF, C,=10uF, L,=2mH and »=1.25. The circuit was
connected to the utility line as the input source while the measurements were taken (not
to an ideal voltage source). The voltage THD was approximately 4.5%.

Figure 5.9 shows the input current waveform without the presence of the extra
switch. The waveforms correspond to the circuit as shown in Fig. 5.1a. For the first
measurement, the duty ratio was kept constant, which lead to the graph shown in Fig.
5.9a. The input current is very similar to the non-isolated case in Fig 4.24a. The output

voltage ripple is reasonably close to 1V peak to peak as predicted in Fig. 5.6a.
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1 A/DIV 2 V/DIV 2 ms/DIV
(a)

1 A/DIV 5 V/DIV 2 ms/DIV
(b)

Figure 5.9: Input current waveform and output voltage ripple without extra switch Ss:
(a) Constant duty ratio and (b) constant diode current controlled. (Notice
the different voltage scale.)
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If the constant diode current control method is applied, the input current appears to
have less distortion (Fig 5.9b). However, the output voltage ripple is beyond any
acceptable limit. The oscillation at the resonant frequency @, is worse than the one at
360Hz. Since the duty ratio modulation function is not exactly sinusoidal, as shown in
Fig. 4.11c¢, it can excite various frequencies at the output. In this particular design, o, is
close to three times 360Hz (i.e., close to the 3™ harmonic of the duty ratio function).

These results strongly suggest that if the constant diode current control method is
applied, the capacitive idling converter must be used. The measurements taken with
this topology are presented in Fig. 5.10. Initially, the control concept of Fig. 5.8a was
applied. The switch S; operates with constant duty ratio whereas the second switch S; is
controlled by means of an output voltage feedback loop with a high bandwidth. The
result is shown in Fig. 5.10a. The presence of S, does not significantly affect the input
current waveform. It is comparable with the one of Fig. 5.9a. However, the output
voltage ripple has nearly vanished.

If a lower harmonic distortion of the input current is required, the constant diode
current control method can now be applied. The last measurement, depicted in Fig.
5.10b, belongs to the control structure in Fig. 5.8c. The current waveform is improved.
There is some noticeable output voltage ripple. This can be explained by the fact that
the current loop controlling S; is not ideal and i, itself has some residual ripple.
Nevertheless, the ripple is significantly reduced compared to the situation in Fig. 5.9b.
If a lower output ripple is required, the control method shown in Fig. 5.8b must be

applied which combines the low distortion input with the well-regulated output.

5.3  The Sepic-Derived Topology
5.3.1 Steady State Analysis

The Sepic-derived converter shown in Fig. 5.1b is the second proposed topology to
be used as an isolated extension of the single active switch three-phase power factor
corrector. Many aspects are similar to the situation in the Cuk-derived converter.

Therefore, this topology is treated without going into great detail. Subsequently, the
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most important large-signal equations of the converter are derived. In the Cuk-derived
converter, the component denoted with 77 is a real transformer that does not need to
have any energy storage capability. In the previous chapter, it was treated as an ideal
transformer. This is different in a Flyback converter, where the “transformer” is
actually an inductor carried out with two windings. Each of these windings carries the
full current during one part of the switching cycle. In the Sepic-derived converter in
Fig. 5.1b the transformer is a combination of the two previous cases. It should be
pointed out that this is true for any isolated Sepic converter. This combination of
transformer and inductor causes the primary side to have a continuous current whereas
the secondary is discontinuous.

Based on the discussion above, it is clear that there must be a finite inductance
associated with 7;. It will be called L,,, and its value refers to the secondary side. This
inductance operates in continuous conduction mode. Volt-second balance applied to 7

leads to
DYV, =(Q1-D;)nV, (53.1)

The voltage across the § during its OFF time can be expressed by

Vsoﬁ =V, +nV, (53.2)
Thus,
1
Wy nVO(E— 1} (5.3.3)
n
Vsoﬁ = D_]Vo (5.3.9)

The magnetizing current /,, (i.e., the current in the inductance L,;) must be the same as
the output current reflected to the primary side of the transformer since all other

branches connected to transformer contain capacitors.

I,=1I, (5.3.5)
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The output current is given by
R /3 (5.3.6)
Vo RI
This concludes the steady state analysis.

5.3.2 Output Voltage Ripple

Similarly to the previous topology, this converter suffers from an output voltage
ripple. In order to understand and predict this behavior, a small signal model for the
Sepic-derived converter is derived. The procedure to find it is similar to the previous
case where the derivation is outlined in greater detail. The only major obstacle in this
case is to find an equivalent topology containing pairs of switches which can be
replaced by controlled sources. A solution is presented in Fig. 5.11a. This circuit is
equivalent to the original circuit except that it is realized with a considerably larger
number of switches. The diode current i;, which was not directly available in the
original circuit, appeared in this schematic. Applying the same techniques to this circuit

as used in Chapter 5.2 leads to the canonical model shown in Fig. 5.11b, where

e,(s)= Djé "DI) (5.3.7)

ey(s)= Zg (1 - RIS(LI":% 1)] (5.3.8)

fi(s)= 1—1D1 [1+ SzL'"DfI"Z] (5.3.9)

fa(s)= Rlnleio D])(l - SR’CI’Z 1(21 D)), SZL'I")?"ZJ (5.3.10)

The equivalent capacitance C, and inductance L. are defined as
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Figure 5.11: Sepic-derived converter: (a) Equivalent topology suitable to perform

circuit averaging, (b) canonical model and (c) final model to calculate
output voltage ripple.
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n(l-D ) ’
C, =C,(———b——l—J (5.3.11)
1
L
L=—"7_
© (-Dyy

This circuit is somewhat more complex than the Cuk-derived topology. An additional

(5.3.12)

voltage source appears that depends on #;. Both voltage sources are in series with
current sources and have no impact on the output voltage. Eliminating these sources

leads to the small signal model shown in Fig. 5.11c. The two voltages sources v; and v;

are given by
v; =i ——(1+sL,C,D;) (5.3.13)
e’
vy =d - Vo [_SRC. +s°L,C,D, (5.3.14)
SRICeDI I—DI

With this, the two transfer functions from the diode current ripple to the output voltage

and from the duty ratio to the output voltage becomes

<>

R, Dl(1 +$*L,C,D; )

=2 = L (5.3.15)
i 1+sR(C,+C,)+5*L,C, +s°RL,C,C,

Yo (1 LA +s2LeceD,J

p "D, (@-D
Yo - i 21) . (5.3.16)
d; 1+sR/(C,+C,)+s°L,C,+s’RL,C,C,
It is likely that the following inequality holds as in the previous topology:
2
R? Sl (5.3.17)
(C.+C,)

If so, then the transfer functions in (5.3.15) and (5.3.16) can be approximated as

follows:
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2
~ (o)
L Py R ®z ; (5.3.18)
SO YN PR S
® r %p \9p
s (L]Z
Vo=V, Or o A0 (53.19)
- 3,
@ D [l+1J1+_1_.i+ s
0 Qp op ®p
where
1
T N 5.3.20
! RI(Ce+Co) ( )
1
©, = 5321
e (53.21)
2
Qp =0,R 2 (5.3.22)
1
_ 5323
? ‘JLeCeDI ( )
1-D, [L,D,
- e 5324
0, R c ( )
(5.3.25)

Q: is often much less than unity. Should this be true, the numerator of (5.3.19) can be

factorized simply and the equation can be approximated as
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L - (5.3.26)
d Dy s 1 s s
1+— 1+ —-—+|—
( mlJ Qp o ®p
where
1-D,
5.3.27
coz] RICe ( )
R
OURPR. S (5.3.28)
2 LeDI(l—DI)

The calculated peak to peak output voltage ripples for two different cases are shown in
Fig. 5.12a and 5.12b respectively. These graphs are based on a converter with
component values similar to the ones in Fig. 5.6 of the Cuk-derived converter. The
input voltage was chosen to be 90V (line to neutral), the output voltage 75Vpc and A
the conversion ratio 1.5. The voltage and current stress of the components of the
isolated Sepic converter are similar to the those of the isolated Cuk converter. The only
major difference is that the capacitor C, is missing in the Sepic converter. A simple
analysis reveals that the output capacitor C, of that converter carries the same ripple
current as C; and C, combined in the Cuk converter. Since the voltages across the C>
and C, are the same, their values must be combined and used to determine the
capacitance C, of the Sepic converter. This ensures an equivalent situation in both
converters. Therefore, in order to achieve a similar situation as in Fig. 5.6a, the
component values are chosen to be as follows: L,;=L,=L;=320uH, C,=40uF, C,=50uF,
L,=2mH and n=1.25.

Unlike in the Cuk converter case, this is not a good choice since the resonant
frequency as almost precisely at 360Hz. A significant ripple of 3.41V must be
expected. According to (5.3.18) the Q-factor of the numerator is infinity. Therefore, at

o =@, the transfer function is zero. This behavior can also be observed in Fig. 5.12.

An interesting possibility is to place the ®, exactly at six times the line frequency.
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Figure 5.12: Sepic-derived converter: Transfer functions corresponding to the circuit
in Fig. 5.11 with different values for the capacitors C; and C, and the
inductor L,: (a) The values are chosen based on the ones that resulted
in Fig. 5.6a and (b) optimized choice of values.
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Using (5.3.23), it can be concluded that the following equation must hold in order to

achieve the desired zero placement

1
= — (5.3.29)
N (V2773 9 oF
where f is the line frequency. Using (5.3.11) and (5.3.12), the same relation can be
rewritten as
D
et (5.3.30)
" (2nfyn)

Conversely, the resonant frequency ©, should be moved away from six times the line
frequency. This widens the range where the magnitude is low. This is important as all
components have tolerances, and a converter usually operates over a certain duty ratio
range. Moving o, to higher frequencies is achieved by choosing L,, or C, low. The

following inequality is very likely to be satisfied:
C,>C, (5.3.31)

If so, the following approximate relation holds:

2
L,C, ~( o, j (5.3.32)

where £, is the resonant frequency that corresponds to w,, i.e.,

fp==£ (5.3.33)

Lowering C, also tends to decrease O, a very desirable feature. However, it increases
the switching ripple at the output of the converter, which puts a lower limit on C,.
Decreasing L,, increases the rms-value of the currents in the switches and the
magnetizing current in the transformer. The price is higher power losses in these

elements. Eventually, L,, will go into discontinuous conduction mode and the whole
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analysis will not apply anymore. These are the main design restrictions placed on Cj,
Coand L,

Based on these considerations, new values were assigned to these components:
C;=80uF, C,=20uF and L,~0.5mH. This results in zero magnitude at 356Hz and the
complex pole pair shifted from 373Hz to 1.11kHz. The corresponding transfer
functions are shown in Fig. 5.12b. The 360Hz output voltage ripple is now expected to
be negligible (i.e., 11mV) and the switching ripple will be increased.

5.3.3 Simulated Results

In order to verify this behavior, the circuit as shown in Fig. 5.1b was simulated using
PSpice. The resulting output voltages over one line cycle are presented in Fig. 5.13. In
the original design with C,=40uF, C,=50uF and L,=2mH, the 360Hz ripple is
reasonably close to the predicted 3.4V from peak to peak. The simulated value is about
3V. By adjusting the component values to C;=80uF, C,~20uF and L,=0.5mH, a drastic
reduction of the 360 Hz ripple is achieved. As predicted, the switching ripple has

significantly increased.

5.3.4 Preventing the Output Voltage Ripple

Until now, only the constant duty ratio case was considered. The analysis reveals
that the output voltage ripple is not reduced if the constant 7; control method is applied.
Hence, if this control method is applied, an extra switch can be added to the circuit
similar as in the Cuk-derived topology. Two versions of the capacitive idling
converters are considered. The extra switch S, can be placed at the primary side of the
transformer since the Sepic-derived converter in Fig. 5.1b has no capacitor connected to
the secondary side. This version is shown in Fig. 5.14a. This solution has the
disadvantage that the control loop must cross the galvanic isolation. A solution to this
problem can be obtained by separating the transformer and inductor function into two
different elements. This circuit is shown in Fig. 5.14b. The disadvantage is the higher

number of components.
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Figure 5.13: Simulation of the output voltage ripple of the Sepic-derived converter:
(a) Initial choice of circuit values corresponding to Fig. 5.12a and (b)
optimized design according to Fig. 5.12b.
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secondary if the inductor L, is realized as a separate component.
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For the Cuk-derived topology, three different control methods were presented in Fig.
5.8. The same three concepts can be applied to the Sepic derived converter with the

same restriction to the duty ratio of §>. These methods are:

1) S; Constant duty ratio
S2 Controlled with fast output voltage feedback loop

2) §; Controlled such that i; of Fig. 5.2 is constant
S> Controlled with fast output voltage feedback loop

3) S; Controlled such that 7y of Fig. 5.2 is constant
S> Constant duty ratio

Switch §> must be synchronized with §; and its duty ratio must always be less than that

of §; for the same reason as discussed in conjunction with the Cuk-derived converter.
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Chapter 6

A Single Active Switch Single-Phase Power Factor
Corrector with High Quality Input and Output

In this chapter, a single-phase power factor corrector topology is investigated. This
converter qualifies as an automatic current shaper. The current shaping function is a
natural property of this circuit. Therefore, no extra control loop is necessary to achieve
a low harmonic distortion. An output feedback loop with a high bandwidth is essential
to obtain a good input current waveform. As a result, a well-regulated output voltage is

provided at no extra cost.

6.1 The Topology

The circuit investigated in this chapter is shown in Fig. 6.1. It was introduced in [15]
as Bifred (Boost Integrated with Flyback Rectifier/Energy storage/Dc-dc converter).
Similarly, as in the Sepic-derived isolated extension of the three-phase converter in
Chapter 5.3, the element denoted as L; is a combination of transformer and inductor. It
must have a finite and properly designed magnetizing inductance. When the converter
was first introduced, it was assumed that the inductor L, worked in discontinuous
conduction mode (DCM), whereas, L, operated in continuous conduction mode (CCM).
In this configuration, the voltage V; is strongly load dependent. For the converter to
operate properly, there is a minimum value required for this voltage. The fact that V;

varies over a wide range results in extremely high voltage stress in the switches.
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In addition, the duty ratio was assumed to be constant over one line cycle. The
resulting input current exhibits the well-known bell shape of the automatic power factor
corrector based on the DCM boost converter operated with constant duty ratio [16].
This can be explained by the fact that the input of this converter is equivalent to a boost
converter with an output voltage equal to the sum of ¥, and V, reflected to the
transformer primary. A THD of about 20% is a typical value for this waveform. The
constant duty ratio operation is commonly achieved with a low bandwidth feedback
loop. Thus, an output voltage ripple of twice the line frequency must be expected.

In this chapter, a new mode of operation is investigated. Both inductors are

operating in DCM, and the duty ratio is no longer constant over one switching cycle. It

L1  Di Cl Do
.
1] ”
_ + V1~
1l F
I -
L Rectifier - .
Vac | 1 Bridgs s w12 C2 == Vo § RI
- _
- +
(a)
L1  Di cl Do
1L
BRI ﬂ
. +Vvi—
: F n:1l
I . . L +
L Rectifier - _
Vac = Bridge s_]: 12 ’% C2 == Vo ?R]
= _
- #
(b)

Figure 6.1:  The Bifred Converter: (a) Non-isolated version and (b) including
galvanic isolation.
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is controlled by means of a fast feedback loop with a bandwidth much higher than twice
the line frequency. This new mode leads to an improved overall behavior of the circuit.
By implementing a high bandwidth control loop, two goals are achieved
simultaneously: namely, a very low harmonic content in the input current and a
well-regulated output voltage with no line frequency related ripple. All this is
achieved without excessively high voltage stress on the switches since the voltage V; is

no longer load dependent.

6.2 Large-Signal Analysis

In order to make the large-signal analysis of the converter more transparent, the non-
isolated converter shown in Fig. 6.1a is considered. The final results can easily be
modified to fit the isolated converter with a turns ratio n, shown in Fig. 6.1b. All line
frequency dependent quantities are expressed in terms of the normalized frequency 0

(i.e,, o > 6). The analysis is based on the assumptions listed below.

1) The input voltage is considered to be an ideal sine wave, thus v,.(8) =V, sin(6).

2) The capacitors C; and C, are sufficiently large to ensure that the low frequency

ripple (twice the line frequency) of ¥; and V, can be neglected.
3) Both inductors, L, and L,, operate in DCM.
4) The current in L, reaches zero prior to the current in L;.

5) For the analysis of the waveforms during one switching cycle, the input voltage vq.
is considered to be constant (i.e., the switching frequency is assumed to be much

higher than the line frequency).

6) The input filter eliminates the switching ripple of the input current, but it does not

affect line frequency related variations.

7) The converter is loss-less.
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As far as the converter is concerned, both half waves of the line period are
equivalent. It is therefore sufficient to investigate only the positive half wave. Based
on that and assumption 6, the ac source, the input filter, and the rectifier bridge can be
replaced by an equivalent rectified ac source in order to perform the analysis. This

modified circuit is shown in Fig. 6.2. The input voltage v, is represented by
vy =V, sin(8) (6.2.1)
The following definitions will be used throughout the analysis:

Yo (62.2)

M=-2
Vg

M;="1""0 (6.2.3)

My,=—2 (6.2.4)
M;=—+~ (6.2.5)

M,=-2 (6.2.6)

@ vg = Vg sin(wt) s_fa

Figure 6.2: The equivalent circuit on which the analysis is based.
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Every switching cycle can be divided into four subintervals. Each subinterval lasts

for D.T,, where the subscript i runs from 1 through 4 and 7 is the length of the

switching cycle. The equivalent circuits of each of these subintervals are shown in Fig.
6.3. The currents i;, i> and i; have the time dependent waveforms as sketched in Fig.
6.4.

The first subinterval is defined by the on-time of switch §. The currents #; and i; in
the two inductors are increasing starting from zero. For the rest of the switching cycle,
switch S is turned off. Both inductor currents now must flow through the diode D, to
the output and decrease in magnitude. The end of the second subinterval is reached
when current i; becomes zero. It remains zero for the rest of the period as diode D;
prevents it from becoming negative. At the end of the third subinterval, i, also reaches
zero and it remains zero together with #; during the fourth subinterval forced by the
diode D,

Both inductor currents i; and 7, reach their peak values at the end of the first interval.
These values can be found using the equivalent circuit in Fig. 6.3a. At any point during

the line half-cycle they are represented by

. _. DT,
IIP Vg L] s (627)
i =V D/, (6.2.8)
L,
The peak value of the diode current iz is the sum of the i;, and iz,.
; DiI  , DiT;
ig =V +V, (6.2.9)
p g L] L2

The values for D, and D; must be found and expressed in terms of D; and the
voltages v,, V; and V,. At this point, it is assumed that V; is known. Later, it will be
shown how to choose the inductors to obtain the desired V; for a given v, and V,. Using
this approach the analysis is much simpler than by starting with the input voltage, the

load and all the circuit elements as known parameters. In addition, from a design point
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of view, this approach is more useful as the salient features of the converter directly
depend on the ratios V; to ¥, and V; to V,. It is, therefore, desirable to choose V; at the
beginning. The alternative is to choose all the circuit elements, work through
transcendental equations to find ¥;, and then decide whether or not that value is
acceptable.

D is found using volt-second balance on L;, whereas volt-second balance on L; is

used to determine D;. The volt-second balance for L; and L, leads to
ngI = (V] +V2 = Vg)D2 (6210)

and

respectively. These two equations, together with (6.2.1), (6.2.3) and (6.2.4), can be
used to find

_ sin(6)
D, =D, ™, —sin) (6.2.12)
B 1 sin(B)
D3_DJ(M2 M, —sin(0) lj (62.13)

Expressions for the currents averaged over one switching cycle can now be found by
averaging the triangular waveforms in Fig. 6.4. Equations (6.2.7) and (6.2.12) are used
to solve for the input current #,. (6.2.8), (6.2.12) and (6.2.13) are used to find i,

whereas i, can be calculated by using (6.2.9), (6.2.12) and (6.2.13). The results are as

follows:

;_DJZTS M sin(0)
7 2L, "#M,-sin(6)

(6.2.14)

- DT, ¥

6.2.15
T, M, (62.15)
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. 2T (V, in?
i e, S0 ® ¥ 1 (6.2.16)
2 L] M] —sm(e) Lz M4

In the next step, the requirements to ensure discontinuous conduction mode are
derived. There are two conditions to meet. Firstly, both inductor currents must reach
zero before the end of the switching cycle at any input voltage (i.e., for every phase
angle 6). Secondly, by assumption, L; must first become discontinuous, then L,. These

two conditions can be stated as follows:
D;+D,+D;s<1 (6.2.17)
D; >0 (6.2.18)
The equations can be simplified using (6.2.12) and (6.2.13). The results are
D; <M, (6.2.19)
1< M, (6.2.20)

These are necessary and sufficient conditions to guarantee the proper mode of
operation. The inequality (6.2.19) ensures that for any phase angle 6 the current i, falls
back to the zero level before or at the end of each switching cycle. The inequality
(6.2.20) ensures that the current i; becomes zero before or together with 7.

In most cases, a well-regulated output voltage is required. ¥, is not allowed to have
a low frequency ripple. In this topology, avoiding this ripple is equivalent to not

allowing a low frequency ripple in the averaged diode current 7;. This can be realized

by controlling the duty ratio so that i, is constant. If this control method is applied, the

diode current is the same as the output current, i.e.,
=1, (6.2.21)

Using (6.2.16), the required duty ratio D,(0) that keeps i; constant can be obtained.
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21, 1
I, Vg _sin’@) ¥ 1
L] M]"Sin(e) L2 M4

D,(®)= (6.2.22)

Dj,;3 represents the fraction of the switching cycle where at least one inductor current is

non-zero and is defined by
D;3(6) = D, (8)+ D,(8)+ Ds(8) (6.2.23)

This can be simplified using (6.2.12) and (6.2.13).

D;,;(0)= 13\1/1(?) (6.2.24)

From (6.2.22) it can be concluded that the maximum value occurs at 6 =0, and

therefore, D;23ma becomes

201,
D = 2 6.2.25
125maz \/TsVJM J(1-M;) ( )

To ensure that the inductors are operated in DCM over the entire line period, D;23max
must be chosen to be smaller than unity. In order to obtain the best possible efficiency

it should be close to one. Equation (6.2.25) can be solved for the required L.

L= %VJMZO'Mz)DJZﬁmax (6.2.26)
The next step is to find an expression for L; using charge balance on C;. Qc; represents
the charge, which is released from C; during the first subinterval of the switching cycle
(i.e., during the on-time of the active switch), whereas Q¢ stands for the charge stored
in C; during the second subinterval. No currents are flowing in C; during the third and
the fourth subinterval (Fig. 6.3). Before Oc; and Oc; can be equated, they must be
averaged over a half of a line period (or a multiple thereof). Due to the waveform

symmetry, the integral can run only from 0 to /2. (Jc; can be expressed as
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27:/2
Qc1=; j p—5—

0

D,(®)7,

S (6.2.27)

The substitution of (6.2.7) and (6.2.12) into the above equation leads to

V T2 /2 . s (e)
= D 9 6.2.28
The expression for Q¢ is found to be
n/2
e D,O); g (6.2.29)
Ty 2
Using (6.2.8) this can be expressed as
v T2 /2
Oc;=-L= [D}@)® (6.2.30)
0

In steady state Oc; and Oc, must be equal. Thus, (6.2.28) and (6.2.30) can be equated

and solved for L;

/2

2 sin?()
I Dy (9) ; —sin(0)

L= (6.2.31)

M n/2
’ D/ @) a0

This equation contains D;(0) on the right-hand side. After substituting it by (6.2.22)

and performing some algebra, (6.2.31) becomes

n/2 H
IM3 M,—sm(e) M4
2(g
L= Z S‘“dé) (6.2.32)

o L, M, sin*(8)

+1
LI M3 MI'—Sln(O)
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This is a transcendental equation for ;. It can only be solved numerically. One
possibility is to apply the following iterative process: the result for L; of the current
iteration step is used in the right-hand side of the next iteration. This process must be
repeated until L; no longer changes its value. As initial value, L; can be set equal to L.
This is not the fastest algorithm, but it probably is the easiest one to program.

Equation (6.2.32) is used to find the necessary L; that yields a desired V;. Once a
converter is designed for its nominal point of operation, L; and L; are fixed. In this
case, it is interesting to know to what extent V; depends on input or output voltage

variations or on load changes. For this purpose, (6.2.32) can be rearranged as follows:

n/2
dao

ILJ Vi+V,~V,sin(8) v,
ol 6 T 3 A
L, V" sin (6) v,

I 7.
o L, V; Vg2 sinz(e) "
Ly V2 Vy+V;—V,sin(B)

Vi=<5 (6.2.33)

This equation can be solved in a similar way as (6.2.32), starting with the nominal value
for V;. However, in this case the algorithm converges very slowly. A much faster
method is as follows: the right-hand side of (6.2.33) is considered to be a function f{V;).

Using this, the iteration can be carried out as stated below.

_ f(VI,- )+f(f(V1i ))

o» (6.2.34)
The expression for the duty ratio (6.2.22) can be substituted into (6.2.14) to get a final

expression for the input current.

&.éz_-sin(e)
=g . M3 LI
] o l_sm(e)_i_MZ_.gzsinz(e)
M ML

(6.2.35)

M;
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The harmonic distortion of this current and the resulting power factor can now be
analyzed according to the definitions stated in Chapter 2. The results are reported in the
next section. It should be pointed out that the current is in phase with the voltage since
i;(8)=4,(180-6). Thus, the displacement factor is unity and (2.7.6) can be used to

evaluate the power factor.

6.3  Results of the Large-Signal Analysis

The main topic of this chapter is to provide an overview of the improvement in the
quality of the input current waveform of this converter under the special conditions
proposed (both inductor currents discontinuous and in the presence of the constant
output voltage control). The waveforms and their distortions are analyzed under
various conditions. The results are compared with the same topology operated with
constant duty ratio. This reference topology is designed so that the voltage stress in the
switches is the same in both, the controlled duty ratio and in the constant duty ratio
converter. The Bifred and the Boost converter in DCM generate the same input current
waveform if both are operated with constant duty ratio and if both are designed to work
with the same switch voltage stress. The output of the Boost converter must be
equivalent to V;+V, in the Bifred. Therefore, the improvement of the current waveform
due to the constant diode current control can be compared with the Bifred or DCM

Boost converter.

6.3.1 Comparison with the Constant Duty Ratio Case

In the DCM Boost and Boost-like power factor correctors, increasing the switch
voltage stress reduces the distortion of the input current [16] at the cost of a lower
efficiency. In addition, components with higher voltage rating tend to be more
expensive. A compromise must be found between a low switch voltage stress and a low

harmonic distortion. The switch voltage stress Vs in the Bifred converter is given by

Vo=V +V,=(M;+ M), (6.3.1)
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Commonly, the input and output voltage of a converter are given quantities, and thus, M
is given. However, the value of M; can be chosen by design, where the restriction
(6.2.20) must be satisfied (M; must be larger or equal to unity) in order to ensure proper
operation.

Fig. 6.5a and 6.5b shows the calculated harmonic distortion of the input current of
this converter for different values of M;. For the constant duty ratio DCM Boost or
Bifred converter it can be clearly seen in Fig. 6.5b that increasing the switch voltage
stress (or M; respectively) gradually reduces the 7THD. If the constant output control
is applied, an interesting observation can be made. At the conversion ratio M =
0.45, a very low THD can be achieved even with the lowest possible value of M;.
(For M;= 1 the exact value of the optimal conversion ratio is M = 0.4435.) In Figs. 6.5¢
and 6.5d the same information is presented in terms of the power factor. AtAM =0.45 it
is nearly unity for any value of M;. (Note the different scale on the vertical axis of
these graphs.) A comparison of both cases for M; =1 is displayed in Fig. 6.6a for the
THD and in Fig 6.6b for the power factor.

It is evident that with the proposed control method there is no need for a high
M; (i.e., a high switch voltage stress). The current distortion can be drastically
reduced if the conversion ratio is appropriately chosen. As stated above, the
conversion ratio can not usually be freely chosen. However, from Fig. 6.6 it can be
concluded that even if the converter operates with an M other than 0.45, a significant
improvement is achieved over a wide range of M. Furthermore, in many cases an
isolation transformer is required. For an arbitrary output voltage the turns ratio in L;
can be chosen in order that the reflected voltage at the primary has the optimal value.

The input current obtained with M; = 1 at the optimal conversion ratio is shown in
Fig. 6.6¢ together with the value of the power factor and the 7HD. For comparison the
current waveform of the constant duty ratio case is shown as a dashed line. The
harmonic distortion is reduced by more than a factor of 10. Fig. 6.6d shows the
frequency spectrum of these currents. The values of the harmonics are normalized with
respect to the fundamental. Due to the symmetry of the current shape, there are, ideally,

no even harmonics.
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