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Abstract

This thesis presents the application of some advanced mathematical methods to image
synthesis. The mainstream of our work is to formulate and analyze some rendering
problems in terms of mathematical concepts, and develop some new mathematical ma-
chineries to pursue analytical solutions or nearly analytical approximations to them. An
enhanced Taylor expansion formula is derived for the perturbation of a general ray-traced
path and new theoretical results are presented for spatially-varying luminaires. On top of
them, new deterministic algorithms are presented for simulating direct lighting and other
scattering effects involving a wide range of non-diffuse surfaces and spatially-varying lu-
minaires. Our work greatly extends the repertoire of non-Lambertian effects that can be
handled in a deterministic fashion.

First, my previous work on “Perturbation Methods for Image Synthesis” is extended
here in several ways: 1) I propose a coherent framework using closed-form path Jaco-
bians and path Hessians to perturb a general ray-traced path involving both specular
reflections and refractions, and an algorithm similar to that used for interactive specular
reflections is employed to simulate lens effects. 2) The original path Jacobian formula
is simplified by means of matrix manipulations. 3) Path Jacobians and Hessians are ex-
tended to parametric surfaces which may not have an implicit definition. 4) Theoretical
comparisons and connections are made with related work including pencil tracing and ray
differentials. 5) Identify potential applications of perturbation methods of this nature in

rendering and computer vision.
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Next. a closed-form solution is derived for the irradiance at a point on a surface due
to an arbitrary polygonal Lambertian luminaire with linearly-varying radiant exitance.
The solution consists of elementary functions and a single well-behaved special function
known as the Clausen integral. The expression is derived from the Taylor expansion
and a recurrence formula derived for an extension of double-axis moments, and then
verified by Stokes’ theorem and Monte Carlo simulation. The study of linearly-varying
luminaires introduces much of the machinery needed to derive closed-form solutions for
the general case of luminaires with radiance distributions that vary polynomially in both
position and direction.

Finally, the concept of irradiance tensors is generalized to account for inhomogeneous
radiant exitance distributions from luminaires. These tensors are comprised of scalar el-
ements that consist of constrained rational polynomials integrated over regions of the
sphere, which arise frequently in simulating some rendering effects due to polynomially-
varying luminaires. Several recurrence relations are derived for generalized irradiance
tensors and their scalar elements, which reduce the surface integrals associated with
spatially-varying luminaires to one-dimensional boundary integrals, leading to closed-
form solutions in polyhedral environments. These formulas extend the range of illumina-
tion and non-Lambertian effects that can be computed deterministically, which includes
illumination from polynomially-varying luminaires, reflections from and transmissions
through glossy surfaces due to these emitters. Particularly, we have derived a general
tensor formula for the irradiance due to a luminaire whose radiant exitance varies ac-
cording to a monomial of any order, which subsumes Lambert’s formula and expresses

the solution for higher order monomials in terms of those for lower-order cases.
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Chapter 1

Introduction

A major problem in computer graphics is physically-based rendering, which is concerned
with creating physically accurate synthetic images of a given model by simulating the
light transport process inside the environment. The input of the rendering algorithm is
a description of a scene by way of its geometry and the optical characteristics of objects.
In physically-based rendering, one is interested in the light and complex interreflection
of light with the environment, known as global illumination, which is governed by the
rendering equation [62]. This Fredholm integral equation of the second kind determines
the radiance function contributing to the perceived image. While the global illumination
problem is easy to formulate mathematically, it is hard to simulate due to the computa-
tional cost.

The broad application of image synthesis in various fields, including mechanical en-
gineering, entertainment industry and illumination engineering, etc., places two contra-
dictory requirements on global illumination algorithms. On the one hand, the rendering
process should be as fast as possible. allowing users to explore the illuminated scene and
perceive that at least some degree of global illumination effects get updated interactively.
On the other hand an increasing number of applications demand a high degree of real-
ism, such as the movie business, lighting design, scientific visualization, etc. Ideally, the
images should truly exhibit global illumination effects, such as lighting, shadows. spec-

ular and glossy reflections and refractions, etc, which are a computationally expensive



procedures. Because these two goals conflict with each other, all rendering algorithms
have to make some tradeoff, in one way or another. Research on image synthesis seeks
to push the boundary between speed and realism.

This thesis addresses both aspects of image synthesis. We will stress the use of
advanced mathematical methods in formulating some rendering problems and developing
deterministic techniques. The well-founded mathematical results not only serve as an
initial step to the scientific and predictive approach to the problems, but also give rise

to better numerical approximations feasible in practice.

1.1 Global Illumination

The limitations of current global illumination algorithms stem from the computational
aspects of following physical laws of transport. In studying the computational aspects of
global illumination, it is often convenient to partition illumination into two components:
direct and indirect [8]. By direct illumination we mean the process of light emitted
from the luminaire (area light source), propagated through the scene, and subsequently
scattered at a second surface. By indirect illumination we mean light that undergoes
multiple scattering and interactions with the environment. We shall address these two

issues in the next sections.

1.1.1 Basic Techniques

Both direct and indirect illumination require us to faithfully represent the distribution of
light scattering from real surface materials, which is characterized in computer graphics
by various reflection models. Due to computational constrains, global illumination algo-
rithms frequently idealize the surface materials as Lambertian (ideal diffuse). ideal spec-
ular or refractive, or a combination of the two. The assumptions of these two extremes
lead respectively to two well-understood global illumination procedures: ray tracing and
radiosity.

The first example of ray tracing in computer graphics is due to Appel [6] and then

significantly extended by Whitted [119]. Ray tracing succeeds in producing brilliant



specular reflection and transparent effects as well as caustics and shadows. Two fun-
damental operations are involved in ray tracing: ray casting, which is used to follow
optical paths through a simulated environment, and shading, which is applied at the
points where rays intersect objects. Of the two operations, generating the optical paths
is by far the most expensive and typically the chief obstacle to interactive ray tracing.
Consequently, finding some means of quickly generating or reusing ray paths becomes a
critical challenge for interactive ray tracing.

The radiosity method, first applied to image synthesis by Goral et al. [47, 33], is a
global illumination model of choice for polygonal, diffuse environments. It accommodates
multiple diffuse interreflections using a finite element method and is well suited for subtle
color bleeding and penumbra effects. Furthermore, its view-independent solutions make
it ideal for architectural walk-through. In general, three components are involved in a
finite element approach [8]: 1) discretization [56, 53], 2) computing element interactions,
and 3) solving a linear system. Among them, computing element interactions is perhaps
the most costly component, involving the computation of a large number of multi-variable
integrals, called form factors, over irregular domains. These integrals may be evaluated
in closed form under certain configurations and piecewise diffuse environments [58, 97].
However, there are virtually no formulas available for analytical integration when non-
diffuse emission or reflection is involved, where Monte Carlo approximation [32, 120. 72,
111] is still the basic technique.

Both ray tracing and radiosity only partially simulate the indirect illumination process
occurring in a complex scene. Classical ray tracing simplifies this process by neglecting
all multiple scatterings except those from mirror-like surfaces, while radiosity does not
accommodate mirror surfaces. To account for more complex surface reflections such as
glossy surfaces [102], Monte Carlo methods have been applied in combination with ray
tracing and radiosity to simulate a variety of global illumination effects [62. 36, 35. 101,

112].



1.1.2 Direct Illumination and Light Source Description

Although indirect illumination is important to consider for realistically rendering a com-
plex environment. such as a room, direct illumination is a prerequisite for indirect illumi-
nation. For example, direct illumination plays an important role in computing element in-
teraction in finite element methods mentioned above. A challenging topic in direct illumi-
nation is to model the distribution of light emitted from luminaires [115, 8, 40, 38, 42, 39]
and simulate direct lighting and scattering effects due to various light emitters (maybe
partially occluded), including computing irradiance and its features, modeling surface
reflections, computing reflected radiance and subsurface scattering [52, 86, 60], and so
on. Handling these effects is also necessary for providing artisticly rich and subtle illu-
mination effects in lighting design [44, 43].

To correctly describe the physical characteristic of light sources, three attributes must

be modeled [115]:

Geometry: Light sources have well-defined, finite geometries that greatly affect the
emission distribution. Sources may vary dramatically in shape and size, ranging
from the sun and the skylight to a window pane and a pixel element. The physical
geometry of light sources can be easily depicted by any standard 3D modeling
technique. However, from emission geometry, we may categorize light sources as
three types: point sources (zero dimensional) [87. 82], linear or curve sources (one
dimensional) [82, 90, 88, 14. 15] and area sources (two dimensional) [83, 110, 80,
81]. Among them, point and polygonal light sources are the most common ones

encountered in graphics applications.

Spectral distribution: The emission. reflection and transmission characteristics of
light sources are wavelength-dependent functions. Similarly, our human percep-
tual response is also dependent on wavelength, sensitive to stimuli over the range
of the visible spectrum. To avoid aliasing artifacts due to calculation based on RGB
colorimetry. we sometimes consider the spectral distribution of the light source over

the visible wavelength range.

Radiant exitance function: Perhaps the most important characteristic of a luminaire



that must be included to accurately model its emission distribution is the radi-
ant exitance function. Although the rendering algorithms developed so far have
been primarily restricted to uniform luminaires, most luminaires do not emit light
equally in all directions or positions. These non-uniform luminaires may be spec-
ified by an exitance function ¢(x,u) defined at all points x and in all directions
u, which may either vary with respect to the position x or the direction u. Some
literature in illumination engineering characterizes these two types of variations
respectively as non-diffuse (or non-Lambertian) and inhomogeneous, as shown in
Figure l.la and Figure 1.1b. More intuitively, we refer to them as directionally-
varying and spatially-varying emitters, respectively. For directional point light
sources, this radiant exitance function simplifies to a luminous intensity distribu-
tion, which may be measured by a goniometer and represented by goniometric

diagrams [115, 42].

In the remainder of this thesis, we shall direct our attention to polygonal diffuse and
gray luminaires whose radiant exitance is directionally uniform and varies spatially with
respect to the position over the emitter plane. By diffuse (or Lambertian) we mean that
it 1s directionally uniform. The notion of “gray” removes the dependency on wavelength.
Spatially-varying luminaires constitute an important class of light sources with immediate
application in higher-order finite element methods for global illumination, both for direct
lighting [57] and final gathers from coarse global solutions [93. 103, 19]. Few tools
currently exist for handling this type of luminaire aside from Monte Carlo or numerical

quadrature [39].

1.2 Prior Art

1.2.1 Path Reuse in Ray Tracing

With the invention of ray tracing, many acceleration techniques were developed. A good
summary of these techniques may be found in Arvo and Kirk [10]. To date, most research
has focused on speeding up the process of ray casting. The rationale for considering

path reuse instead is that updating a path can be far less expensive than recomputing



(a) (b)

Figure 1.1: Two types of non-uniform luminaires: (a) Directionally-varying luminaires. (b)

Spatially-varying luminaires.

it. Moreover. this approach leads to new algorithms that exploit coherence both within
a single image and among similar images.

Many aspects of path reuse have been investigated for interactive rendering. Typi-
cally, a ray tree or equivalent data structure is used to retain all ray-object intersections
computed during the rendering of each pixel, then used in the generation of a nearby
image. Cook [34], and Séquin and Smyrl [99] handled material changes in this way by re-
traversing the retained ray trees with modified parameters. Murakami and Hirota [77],
and Jevans [61] handled changes in geometry by indexing each ray path with the list
of voxels it traverses; any change to the scene affects some subset of the voxels, which
in turn determines the potentially affected rays. Briere [23] employed a ray tree and
a color tree to preserve the path information and shading expressions separately, and
proposed a novel data structure to efficiently detect and recompute the exact portion of
the image that has changed after an arbitrary manipulation of a scene. Although these
techniques are very effective for geometric and material changes, they are ineffective for
viewpoint motion, where even a small eye movement may change the ray paths asso-
ciated with most pixels. To compensate for the viewpoint movement, Badt [13], and

Adelson and Hodges [2] reprojected the old intersections to the new view position by



applying 3D warping, which exploits perspective coherence. This 3D warp amounts to
an image space reprojection (2D warp) in stereoscopic ray tracing [3]. Unfortunately,
reprojection only works for the first level rays and is applicable only to diffuse scenes.
Chapman et al. [25, 26] computed “continuous intersection” information of rays with the
scene through time by using the trajectory of the viewpoint through the scene, but their
method is restricted to a polygonal scene model and predefined viewpoint paths.

Some researchers have attempted to exploit the path coherence in ray tracing ana-
lytically. Shinya et al [100] employed paraxial ray theory to linearly approximate the
propagation of paraxial rays by a system matrix, called pencil tracing. Igehy [59] com-
puted ray differentials, partial derivatives of a ray with respect to the position on the
image plane to estimate the footprint of a ray. These ray differentials give an idea of the
distance to neighboring rays, which proves to be very effective for anti-aliasing texture

by filtering locally over the footprint.

1.2.2 Form Factors

The computation of radiant energy transfers is an essential component of physically-
based rendering algorithms, both for local and global illumination. In particular, the
determination of radiant interchange among discrete surface elements arises frequently
in finite element methods for global illumination, and in simulating direct illumination
effects [9, 54, 107]. Consideration has been given to finite, diffuse and gray surfaces
with uniform radiation properties, where the form factor, alternatively known as the
angle factor, or configuration factor, is used to characterize such radiant transfer [46.
105]. It represents the fraction of energy that leaves element ¢ and arrives directly at
element j. In calculating these form factors, it has been standard practice to make
two basic assumptions about the participating surface: (1) The angular distribution of
the radiant flux leaving it is diffuse; (2) The magnitude of the radiant flux is uniform
over all parts of the surface. We refer to them as homogeneous Lambertian surfaces.
The essential simplification associated with these assumptions is that the form factor
is purely geometrical, independent of surface properties, leading to an assortment of

analytic solutions for some special geometric configurations [58], including Lambert’s



formula [18, 97] and the form factor between two polygons [97] well known in the graphics
community.

The irradiance at a point on a surface due to a polygonal luminaire of uniform
brightness can be computed from a formula attributed to Lambert. Suppose P is a
simple planar polygon in IR® with vertices vi,..., vp. If P is a diffuse light source with

constant radiant exitance M, then the irradiance at a point q due to P is given by
M n
liiJ = — 3; cosn;,
(q) I ; Bi Jis

where [3; is the angle subtended by the edge v;v;1| as seen from the receiver point q.
and n; is the angle between the plane containing v;, v;; 1, q and the surface normal at q.

The form factor between two arbitrary diffuse polygons can be computed exactly
using a formula due to Schréder and Hanrahan [97]. One complication that arises in
computing this polygon-to-polygon form factor is the appearance of a special function
studied by Powell in 1943, and subsequently named the dilogarithm [67]. Powell showed
that it is equivalent to the Airey radiation integrals that arise in both astrophysics and

quantum mechanics.

1.2.3 Directional and Spatial Luminaires

Methods for simulating the illumination due to diffuse area sources [84] and directional
point sources [115, 42] are well-known. To represent an arbitrary luminous intensity
distribution of a point light source, Dobashi et al. [42] decomposed it as combinations
of basis functions, which were chosen to be spherical harmonics [76]. By calculating in
advance the intensity impinging on each surface lit by the luminaires whose luminous
intensity distributions are the same as spherical harmonic functions, they proposed a
quick rendering method for interactive lighting design. By contrast, non-uniform area
sources are problematic for deterministic methods. Handling the rendering effects in-
volving this type of emitters still relies heavily on Monte Carlo method or numerical
quadrature [42, 40, 38, 39].

Arvo [8, 9] presented the first direct method to compute the irradiance at a point due



to a class of directional luminaires whose radiant exitance varies directionally according
to a Phong distribution, that is, as a cosine to a power [87], shown in Figure l.la. By
formulating this illumination problem as a double-axis moment, the irradiance due to
this type of polygonal directional emitters may be computed in closed form. In addition.
Arvo predicted that the irradiance integrals due to spatially-varying area light sources
generally cannot be evaluated in terms of elementary functions only and must depend
on at least a special function.

By applying Stokes’ theorem to surface integrals formulated in a spherical coordinate
system, DiLaura et al. derived a single contour integral expression and a double contour
integral expression for calculating the irradiance received at a point [40] and an area [38]
due to an arbitrary directional luminaire. Furthermore, they extended the similar pro-
cedure from non-diffuse homogeneous area sources to inhomogeneous sources, attaining
a similar boundary integral formula for the irradiance at a point due to spatially-varying
luminaires [39]. Their new formulations reduce the original two-dimensional area inte-
grals to one-dimensional integrals, whose evaluations, however, still resort to numerical
quadratures. With a similar technique but applied in a Cartesian coordinate system,
Holzschuch and Sillion [57] were only able to decompose the irradiance integral at a
point due to a linearly-varying emitter into boundary integral terms and a simpler sur-
face integral, which were then evaluated using numerical approximation. Besides these
analytical efforts, Troutman and Max [72, 111] used the hemicube algorithm [32] to
approximate generalized form factors involving surface elements with linear radiosity
variations as summations of vertex-to-vertex form factors, taking advantage of hardware

shading features to do the necessary interpolation.

1.3 Contributions

In this section the original contributions of this thesis, both theoretical and practical,

are sketched in an abbreviated, informal way.

Derivatives of Ray-Traced Paths Closed-form expressions are derived for the path

Jacobian (the first-order derivative) and path Hessian (the second-order derivative)
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that hold for a general ray-traced path mixing both specular reflections and refrac-
tions. The perturbation formula based on these expressions allows us to generate
a family of closely-related optical paths by expanding the given path into a high-
dimensional Taylor series, which may find many potential applications, such as
sterescopic ray tracing [3], image-based rendering of non-diffuse scenes [68], accel-
erating caustic generations, guiding importance sampling and improving existing

Monte Carlo methods [112], and so on.

Generalized Irradiance Tensors A natural generalization of irradiance tensors is
presented to account for the polynomial spatial variation of the emission distri-
bution. Several useful formulas are derived from generalized Stokes’ theorem for
these new tensors, which provides a powerful tool to compute different moments
of the radiance distribution function that are expressed as a family of rational

polynomials over the sphere.

Extended Lambert’s Formula The generalized irradiance tensors associated with
the irradiance due to a monomially-varying luminaire are shown to satisfy a re-
currence relation with respect to the order of the monomial function, which gives
rise to a natural extension of Lambert’s formula for uniform luminaires. The new
formula relates the solution to higher-order polynomials to those for lower-order
cases, and is verified independently by comparison with Monte Carlo and Finite

Element methods.

Closed-Form Solutions for Linearly- and Quadratically-Varying Luminaires
Closed-form expressions for linearly-varying and quadratically-varying luminaires
follow easily from the extended Lambert’s formula. An analytical algorithm based

on them is developed for simulating direct lighting effects due to such emitters.

A New Class of Closed-Form Expressions From recurrence formulas derived for
generalized irradiance tensors, we present several expressions for moments of the
radiance distribution from polynomially-varying luminaires. These expressions may
be evaluated in closed form for polyhedral environments, except for a single special

function that can be expressed in terms of the Clausen integral [67]. We also show
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that this special function is inevitable for such irradiance problems, consistent with

Arvo’s prediction [8] and the form factor formula between two polygons.

Rational Moments for Non-Lambertian Simulations Closed-form solutions are
presented for moments of the radiance from polygonal luminaires with polynomially-
varying radiant exitance, along with efficient algorithms for the evaluation of a

subclass of these rational moments corresponding to Phong distributions. These
expressions and procedures are demonstrated by simulating some non-Lambertian
phenomena involving polynomially-varying luminaires and non-diffuse surfaces,
such as view-dependent glossy reflections and glossy transmissions. Our algorithms

are validated by corresponding Monte Carlo simulations.

1.4 Thesis Overview

The remaining chapters of this dissertation are organized as follows:

Chapter 2 builds upon our previous work on perturbing a specular reflection path and
develops a coherent mathematical framework for a general ray-traced path mixing
both reflections and refractions. Moreover, we simplify the path Jacobian formula
using matrix operations and propose an idea to extend the results to other surface
representations, such as parametric surfaces. Finally, the concept of path Jacobian

is compared with other linear approximations.

Chapter 3 serves as the first step to the main topic of the thesis. A closed-form solution
for the irradiance at a point due to a linearly-varying luminaire is derived using
Taylor expansion and triple-azis moments, a natural generalization of double-axis
moments. Although the same result is derived in a much simpler way in Chapter 5.
the machinery used in this chapter is the initial motivation for the mathematical
tools presented in Chapter 4. Most importantly, a two-parameter special function
appears for the first time. This chapter shows its connection with the Clausen

integral and discusses various evaluation methods in practice.

Chapter 4 introduces the most powerful mathematical tools of this thesis. By char-
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acterizing the radiance distribution caused by a polynomially-varying luminaire,
we propose a natural generalization of irradiance tensors. The expressions derived
in this chapter for these new tensors and associated rational moments lead to a
number of new techniques for image synthesis involving spatially-varying lumi-
naires. Ifficient algorithms are also presented for evaluating a subclass of rational

polynomials integrated over the sphere.

Chapter 5 demonstrates the applications of generalized irradiance tensors in image syn-
thesis, which include computing the irradiance due to a polynomially-varying lumi-
naire, simulating non-Lambertian scattering effects involving spatial luminaires and
non-diffuse surfaces, combining directional variations as well as spatial variations.
Particularly for the irradiance problem, we have presented an extended Lambert’s
formula for any nth-order monomially-varying luminaire, which is independently
verified by comparing our analytical results with Monte Carlo estimates and Finite

Element solutions.
Chapter 6 summarizes the thesis work and indicates possible future research directions.

Appendix attaches some additional proofs and derivations for the formulas appearing

in this thesis.



Chapter 2

Perturbation of a Ray-Traced
Path

In previous work [27], we applied perturbation methods to the problem of computing
specular reflections in arbitrary implicitly-defined curved surfaces. Our path perturba-
tion technique is motivated by the observation that specular reflections in smooth sur-
faces vary continuously as a function of object position (see Figure 2.2a), except when
boundary or visibility conditions intervene. The key idea is to generate families of closely
related reflection paths by expanding a given path into a high-dimensional Taylor series.
The result is an analytical perturbation formula that holds for a general multiple-bounce
reflection path, which is based on closed-form expressions for linear and higher-order
approximations of the ray path, called path Jacobians and path Hessians, respectively.
This perturbation formula provides a mathematical foundation for exploiting path coher-
ence and reuse in ray tracing acceleration techniques and incremental rendering [28]. As
illustrated by the side-by-side comparison in Figure 2.1, our perturbation approach gains
a great speedup over conventional ray tracing in approximating specular reflections on
curved surfaces, with little sacrifice in accuracy. More importantly, by taking advantage
of coherent reflections from frame to frame, the perturbed reflections can be updated
interactively in less than one second while moving the diffuse object around.

The present work in this chapter enriches this path perturbation theory from the

13
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Perturbation Ray Tracing

(9.6s/0.7s) (67s/67s)

Figure 2.1: Side-by-side comparison of multiple-bounce refiection images generated by
the perturbation method (left) and ray tracing (right). The closeup images on the bottom
show that the result from path perturbation is almost indistinguishable from that generated
by ray tracing, but with a great speedup (9.6s vs. 67s). However, by exploiting path
coherence from frame to frame, the perturbed reflections can be updated in less than one

second (0.7s) while moving the lizard around.

following theoretical aspects:

1. Present a unified mathematical framework to derive closed-form expressions for
path Jacobians and path Hessians that hold for a general ray-traced path involving

both specular reflections and refractions.
2. Simplify the old path Jacobian formula by means of matrix operations.

3. Extend the path perturbation theory from implicit surfaces to other representations

such as parametric surfaces.

4. Compare our path Jacobian analysis with other linear approximations explored
thus far, which include system matriz from pencil tracing [100] and ray differen-

tials [59].

While there are direct applications of this extended work, such as the simulation of lens
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effects demonstrated in section 2.6, it is mainly of theoretical importance as it provides a
complete perturbation formula in the ray-tracing context and clarifies possible confusions
from different linear approximations. We shall elaborate these generalizations in the
remainder of this chapter. In the end, we will discuss some potential applications of this

mathematical tool.

2.1 Related Work

In essence, our approach of path perturbation aims at computing the first- and second-
order derivatives of the intersection points along a path. This differential point of view
has been pursued by many researchers. As a basic mathematical tool to characterize func-
tion differentiability, various kinds of derivatives have been studied in computer graphics
in order to accurately, quantitatively model features such as discontinuity, variations,
etc. Derivative information has played an important role in mesh construction, guiding
importance sampling, improving function interpolation and texture filtering.

In previous work, Heckbert [56] and Lischinski et al. [69] identified derivative disconti-
nuities in irradiance and used them to construct effective surface meshes. The irradiance
gradient has been used to get higher order approximations of irradiance functions. For
example, Ward et al. [L18] and Vedel [113, 114] estimated irradiance gradients by Monte
Carlo path tracing and used them to improve the interpolation accuracy. Salesin et
al. [94] and Bastos et al. [17] employed gradients to construct higher-order interpolants
for irradiance functions. Drettakis et al. [45] estimated gradients as well as isolux con-
tours from a collection of discrete samples and used them to guide subsequent sampling,
placing more samples where the curvature of the isolux contours was large. Arvo [7] ex-
tended the derivative to a vector function and derived the closed-form expression for the
irradiance Jacobian, defined as the derivative of the vector representation of irradiance
with respect to the receiver point. The expression holds for any number of polyhedral
blockers, and was used for direct computation of isolux contours, finding local irradi-
ance extrema and iso-meshing. A similar idea was also employed by him to generate the

iso-contour in volume rendering [11]. Holzschuch and Sillion [57] computed the radiosity
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gradient for constant and linear emitters to control the discretization error in a radiosity
calculation. Igehy [59] differentiated a ray-traced path with respect to the image plane

position to estimate the footprint of a ray for texture filtering.

2.2 Path Perturbation Theory

In this section, we shall first review the idea of applying perturbation method to a ray
path and then present a perturbation formula for a general ray-traced path involving
both specular reflections and refractions. Similar to the case of reflection paths, this
formula is also based on closed-form expressions for path Jacobians and path Hessians,
which are, however, derived from a more general formulation with the index of refraction
taken into consideration, using a procedure quite similar to that performed for a specular
reflection path. For the sake of self-containedness, we present the complete derivation
here, which may have some overlaps with the previous report [27], but in a more general

sense.

2.2.1 Path Coherence and Perturbation Formula

Reflections and refractions tend to have a great degree of coherence; in general, as two
objects p and p’ grow nearer to each other, so will their reflections or refractions x and
x', as shown respectively in Figure 2.2a and Figure 2.2b. Here coherence means local
smoothness of specular reflections or refractions. That is, given a known path from a fixed
point q to p via a smooth reflecting (or refracting) surface, it is likely that the bouncing
point x will vary continuously as a function of the position of p, that is, x = U(p),
where the smooth function ¥ : IR* — IR? is called the path function. The essence of
path perturbation is to approximate families of closely related ray-traced paths using a
high-dimensional Taylor expansion of ¥ around a given path. In this way, the reflection
or refraction from q to a new point p’ in the neighborhood of p can be obtained by
perturbing x analytically.

For a vector-valued function ¥ with three components ¥y, ¥y and W3, the second-
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(a) (b)

Figure 2.2: Reflection (left) and refraction (right) tend to have a great degree of coherence,
the corresponding reflection (or refraction) points x and x' will converge as p approaches

/

p.
order Taylor expansion can be expressed as:

Ap"H!'Ap
1 i
¥(p+Ap) =¥(p) +JAp+, | Ap*H?Ap | +O([Ap |, (2.1)
Ap"H3Ap

which is the perturbation formule to update a given path through p to a new path
reaching the neighboring point p + Ap. Here, the first-order derivative J is a 3 x 3
matrix defined by

P, U1p Uys

J = = | U1 Y22 Y23 | (2.2)
U3 W3z Vs

where U; ; = 0T; /3pj. The second-order derivative H is a third-order tensor, which

consists of three Hessian matrices H!, HZ, H? corresponding respectively to coordinates
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z, y and z, given by

() Ui Wiz Vi

P i\P :

B = 3—1;2 = | Wio1 Wioo Wi (2.3)
Vi1 Wize Wiss

for i = 1,2,3, where ¥, jp = 02\1'2-/3p10pk‘ We call J and H the path Jacobian and
the path Hessian, which provide the first- and second-order approximations to the path

function, respectively. We shall derive closed-form expressions for them next.

2.2.2 The Path Jacobian

In this section we shall first derive the expression for the path Jacobian for a single-
bounce path, and then extend the result to a multiple-bounce case. The term “bounce”
here means one interaction of a ray hitting a surface. Depending on the property of the
surface encountered, this event may be reflection from or refraction through the surface,

as demonstrated in Figure 2.3.

Preliminaries

The closed-form formula for the path Jacobian is derived from the Fermat principle [22],
Lagrange Multiplier Theorem [70], and the Implicit Function Theorem [71], which will be

briefly reviewed next.

Fermat’s Principle: In geometrical optics, the propagation of the light obeys Fer-
mat’s principle, also known as the principle of the shortest optical path. This
principle asserts that the optical length of an actual light ray between any two
points P; and P» is a local extremum among all paths between these points, within
a small neighborhood [22, pp. 128-129]. The optical length from one point P; on
a ray to another point P is defined as the geometric path length weighted by the

refractive index of the medium, 7 [22]:

Lnds, (2.4)
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where ~(s) is the parametric path from P; to P» and s is arc length. In a ray
tracing setting where regions of constant refractive index are separated by smooth
boundaries, rays will travel along piecewise straight paths, reflecting or refracting
at boundaries. The optical length function d between two arbitrary points p and g

is simply the sum of the segment lengths weighted by their corresponding refractive

indices. That is.

N

A(xp, - -y Xy41) = 3 || % = x| (2.5)
=0

where xg = p and xy;; = q. For a specular reflection path in a homogeneous

medium, equation (2.5) can be further simplified to

N
d(x0, -+ Xn41) = ) 1% — Xig1 ], (2.6)
i=0

where all the refractive indices are assumed to be 1 since they are constant. This is
exactly the assumption we used to derive the path Jacobian formula for a specular
reflection path. However, this assumption breaks down for a general ray-traced
path involving refractions into a different medium, where equation (2.5) has to be

used instead.

Lagrange Multiplier Theorem: The Fermat path problem represents a class of op-
timization problems with equality constraints, for which the Lagrange Multiplier

Theorem [5, p. 315] provides a first-order necessary condition for the local extrema.

Theorem 1 (Lagrange Multiplier Theorem) Let x* be a local extremal point
of f: IR" — IR, subject to h(x) = 0, where h : R" — IR™, m < n, and x" is a

regular point. Then, there exists A* € IR™ such that

V/(x*) + \*" Dh(x*) = 0", (2.7)
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where
Vhi(x*)
Dh(x*) =
N hm *)
is the Jacobian matrix of h = [hy,... hy,]" at x*.

We refer to the vector A* in the above theorem as the Lagrange multiplier vector.

Implicit Function Theorem: In general, it is impossible to extract a closed-form
solution for the non-linear system (2.7) obtained by means of Lagrange Multiplier
Theorem. Fortunately, the Implicit Function Theorem (IFT) [71, pp. 211-213]
provides a method for explicitly computing the derivative of such an implicitly-
defined function without finding the function itself; it is this tool that allows us to

derive a closed-form expression for the path Jacobian.

Theorem 2 (Implicit Function Theorem) Let A C IR" x IR™ be an open set
and let F': A — IR™ be a function of class C?. Suppose (xg,yo) € A such that

F(x0,y0) =0 and

ok ;4B
ayl (‘)ym
det : : # 0, (2.8)
OFy ... OFy
ayl 6.’1}7)1
where F' = (Fy,..., F,), and the Jacobian matrix is evaluated at the point (xg.yo).

Then there exists an open neighborhood x¢ € U C IR", a neighborhood yp € V C

IR™, and a unique function f : U — V such that

F(x, f(x)) =0 (2.9)

for all x € U. Furthermore, f € C?.

By differentiating both sides of equation (2.9) with respect to the independent

variable x € IR", we obtain the following well-known corollary:
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(a) (b)

Figure 2.3: A path from p to q via a bounce on a surface. The index of refraction is

labelled over each ray segment. (a) Specular reflection. (b) Refraction.

Corollary 1 The Jacobian matrix of the implicit function f in Theorem 2 is given

by
-1
on .., 6h 8F ., O8F aF, .. 8K
T Ozn ay Ym %} Tn
; o= : : . (2.10)
Ofm ... Ofm OFm ... OFm 8Fn .. OFm
o1 OF o OYm o1 Ozn

Note that the inverse on the right hand side of equation (2.10) is guaranteed to

exist since the determinant is necessarily nonzero.

Using these mathematical tools, we are ready to derive the formulas for the path

Jacobian.

Single-Bounce Path

Given a surface and two points p and q in space, the problem of finding a point x on the
surface where a ray is reflected or refracted from p to q has a long history in optics. For a
spherical mirror, this problem is known as Alhazen’s problem [78]. Even for simple convex
shapes, such as a sphere, it is difficult to find x analytically. For non-convex surfaces the

problem is even more difficult, as there may be many such reflecting (refraction) paths
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connecting two points. By computing the path Jacobian J = 9x/dp, we can attack
the problem of finding these intersection points in a completely different manner; by
approximating the reflection (or refraction) x’ of a point p’ using a known reflection (or

refraction) x of a nearby point p. For example,

x' = x+J(p' - p) (2.11)

approximates the new intersection x’' to first-order accuracy by perturbing the known
intersection x.

Consider a ray-traced path involving a single-surface interaction, where a ray cast
from p travels through a medium of refractive index 7;, scatters at a point x on a smooth
surface G implicitly defined by g(x) = 0, and then reaches a fixed point g located in
a medium with refractive index 75. The interacting surface may be a specular reflector
(Figure 2.3a), or a transparent refractive surface (Figure 2.3b). In the former case, we
have 1, = 9. It follows from Fermat’s principle that the optical path length assumes
a local extremum. In addition, the bouncing point x is required to lie on the surface
G. Therefore, we may recast the problem of computing x as a constrained optimization

problem, that is,

minimize or maximize d(p,x,q) subject to g(x) =0, (2.12)

where d(p. x, q) is the optical length of the path p—x—q, expressed from equation (2.5)

as

d(p,x,q) = m||lp—x||+n2l|la—x]. (2.13)

Applying the method of Lagrange multipliers, in the same fashion demonstrated by

Mitchell and Hanrahan [74], we obtain

Il
(=}

Vd(p,x,q) + AVg(x)
g(x) = 0,

(2.14)



23

where X is a Lagrange multiplier, and d(p,x,q) is given by equation (2.13). By fixing
one endpoint of the path, q, and allowing p to vary, we may rewrite equation (2.14) as

an implicit equation that relates p, x and A by

Fy g (P %, A) =0, (2.15)

where F, s - IR? x R* — IR*, and p is regarded as the independent variable. As
a convention, 7; and 7o in the subscript denote the refractive index of the medium
where the ray travels before and after hitting the surface G, respectively. We refer to
equation (2.15) as the Fermat equation. The explicit form of the Fermat equation can

be derived by expanding the V operator in equation (2.14), yielding

(pi — ;) (g — =) +>\39(x)

Flp.x. ) = = -
PxA) = =y T el T o

(2.16)
Fd(P: X, >‘) = g(x)‘,

where 1 = 1,2, 3.

As we mentioned before, it is generally impossible to solve these non-linear equations
for the intersection point x in a close form, even for trivial functions g(x) [78]. Mitchell
and Hanrahan [74] dealt with this problem by applying an iterative root-finding technique
known as the interval Newton method to solve for x. In contrast, the derivative of the
intersection point can be computed directly, without knowing the explicit functional
relationship between x and the end points q and p, by means of the Implicit Function
Theorem.

Since this given path provides a solution (p,%,A) to the Fermat equation (2.15), it

follows from the condition (2.8) in Theorem 2 that if!

det [8F,,l,g,,,2(p,x,/\)] = di [ame(p,x, A) OFy g (P%, ) £ 0

a(x, \) ox )Y

'The condition is violated when a ray is tangent to the surface. This degenerate case is considered as

direct transfer instead of reflection or refraction.
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at (P, %, \), there exists a function f : IR* — IR* such that
f(p) = (x,A) (2.17)
and

Fm,g,q?(P,f(p)) =0

for all p sufficiently close to p. That is, f solves the ray intersection problem in a
neighborhood of the known ray-traced path. More importantly, according to Corollary 1,

we can solve for f /0p in this neighborhood using equation (2.10), yielding

(2.18)

[af(p)] AT [(()F’m 24,712 (P- X, A) - 8FF]1 yg9,12 (p! xi A)
Ip luxs d(x, A) dised a(p) 1% 3

For clarity, we shall frequently indicate the matrix dimensions with subscripts, as we
have done above. Equation (2.17) shows that the path function ¥ : p — x is easily
obtained from f by discarding its last component . By introducing an operator sub :
Hom(IR3,IR*) — Hom(IR?,IR?), which drops the last row of a 4 x 3 matrix, the 3 x 3

path Jacobian J can be expressed as

" ) ~1
5 - ﬂ} _ sub | - O 004D Xih) OFy, g0, (P %, A) . (2.19)
C 3x3 a(x" /\) 4x4 ap 4x3 ’ .

which characterizes the variation in x with respect to p.
N-Bounce Path

Now Let us consider a general ray-traced path from a varying point p to a fixed point q via

with xg = p and xy,; = gq. All the interacting surfaces G; and their corresponding

implicit definitions g; are ordered accordingly, as shown in Figure 2.4, for a three-bounce
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Figure 2.4: A generic three-bounce ray-traced path from p to q which mizes refraction
and specular reflection. X1, X2 and X3 are three intersecting points with implicitly-defined
surfaces Gy, G1 and Ga. The indices of refraction of the medium where the path travels

are labeled in each segment.

path. We shall always consider the varying endpoint p = x as the starting point and
the fixed endpoint q = xy,; as the ending point of an N-bounce path. Note that we
view a ray through a transparent solid surface as two surface interactions, with the same
implicit function counted twice, as demonstrated in Figure 2.4 by g1(x) = g2(x). In
addition, we associate an index of refraction 7; (¢ = 1,...,N) with each ray segment
from x;_1 to x; to specify the medium in which it is immersed. By viewing the position
of each bouncing point x; as a function ¥; of the endpoint p, we may define the path
Jacobian J; at x; as the derivative of ¥; with respect to p; this Jacobian characterizes
how x; changes with respect to perturbations in p. Accordingly, the N reflection points

in the path can be updated to the first order using
X, = x; + J;Ap (2.20)

fort=1,2,..., N, where the N path Jacobians J;s can be computed recursively, rather
than calculating J;s all at once by applying Lagrange Multiplier Methods to the whole

path, which involves inverting an N x N matrix that increases quadratically [27, 29].
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By applying the chain rule to the definition of J;, it follows that we may express J;

as a product of 7 Jacobian matrices. That is,

3, = 9% _ Oxi Oxioi  Ox
" 0p 0%y 0% Op

(2.21)

fori =1,2,....N. Note that each factor on the right hand side of equation (2.21) is a

3 x 3 Jacobian matrix, which denotes the derivative of the position of the ith intersection

point with respect to its previous point x; ;. Let us define

I = (,)i’zl (2.22)
at each intersection point x; (i = 1,2,..., N). Then equation (2.21) can be written as
3= 33N
or, equivalently, by the recurrence relation
I = I sdei, (2.23)

where J; = J7. We refer to the Jacobian matrix defined in equation (2.22) as the bounce
Jacobian. Using equation (2.23), we have transformed the problem of computing N path
Jacobians J; to an equivalent problem of computing N bounce Jacobians J;. We now
describe how the bounce Jacobians can be computed.

Observe that for the last bounce (xy_;,Xy,q), where q is the fixed endpoint, the
problem reduces to a simple one-bounce path. As discussed in the previous section, we

have

F”N—L’g.v’"N (XN“l’xN’ )‘N) =0, (2.24)

where x| is considered as the independent variable. The Implicit Function Theorem
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implies that if

det aFnN_L,gN,nN (xN—I:xN:)‘N) :’é 0
’ I(xp, AN) ’

there exists a function fy : xy_; — (xy,An). The function fy can be decomposed
into two components: fy(x) = (fn1(x), fy2(x)) where fy; : IR? = IR? and fuo :

R?* — IR map Xy_; to x5 and Ay respectively. With the existence of fy, the last
bounce Jacobian J has been derived in equation (2.19). As a segment of an N-bounce
path, the ith bounce still observes Fermat’s principle. Applying Lagrange multipliers to

(xi—1,%;,Xj11), where i # N, we obtain a similar Fermat equation:
Fnl,L,g,,n, (Xi-1,Xi, Xi41, Ai) = 0, (2.25)

which differs from equation (2.15) by having two varying end points x;_; and x;.;. By
processing the N bounces from the ending point q to the starting point p, the functions
fis mapping x;_; to (x;,A;) ( = N,...,1) can be implicitly determined from the Implicit
Function Theorem in sequence. Thus when we reach the ith bounce, the function f;;, :
IR* — IR* mapping x; to (x;41, Ai+1) has been constructed implicitly from the (i + 1)-th
bounce. By decomposing fi; into a1+ Xi = Xig and fir1)2 @ Xi = Aip1, we can

express X; 41 in equation (2.25) in terms of f; 1)1, obtaining

Fm_l,g“q, (-1, X4, f(H—l)l (X,‘). )\1) =0, (2.26)

which can be treated as an implicit equation of three variables x;_;, x;, and A;, with

x;_1 as the independent variable. That is,
Hi(xi—1,%;,A) =0 (2.27)
where

Hi(xi-1,%i, M) = Fy, | g0 5 (Xim1, X4, fig1)1(Xi), Ai).
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Applying the Implicit Function Theorem to equation (2.27), the ith explicit function

fi 1 xi1 — (%, \;) exists under the condition that

det (6‘Hi(x.,-_1,x,-,)\i)) — it aFm_l,g“m(xi—laxiaf(i-}-l)l(xi)’Ai)
A(xi, \i) A(xi, i)

) £0.  (2.28)

Note that the existence of the function f; makes the bounce Jacobian J} in (2.22) well-
defined. In terms of f;, equation (2.26) can be reformulated as
P oomXiz1, fa(xiz1), fae(fir(xiz1)), fia(xi-1)) = 0. (2.29)

Differentiating both sides of equation (2.29) with respect to x;_;, we get

aFnz—lsgnnr + aanAlxgnna . afll + BF'I?;_l,g;,W, i af(l-l-l)l . afll
axi_l axi E)xi_l axi+1 Bxi ax@_ 1
oF, Ao
+ —eldh 2 = 0. 2.30
8/\1- dxi_l ( )

Rearranging the terms in equation (2.30) and substituting J; , computed previously for
Of (v

, we obtain
Ix;
Ofi1(xi—1)
. ; ; x|
aFTh—LuﬂnTh e ()FTII-laQLJh : J* + dFW:—hHum dFUi—lwgnnz
axi_] (()XH_l i (")xl- 6)\1 ,
Ofia(xi-1)
ox;_1

By inverting the matrix, we solve for df;/dx; 1:

P =1F 2
[ afl ] = dI;'Th—l itk J* + aFn17 19,7 BFn37] s9i5Th ()Fﬂm— 159457 (2 31)
aXz'Ll 4%3 8xi+1 b E)xi 8)\@' Bxi,l e

where the existence of the inverse is guaranteed by the condition in (2.28). Introducing

an operator aug : Hom(IR*, IR') — Hom(IR?,IR?), which expands a 4 x 3 matrix by
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appending a zero column, we may rewrite equation (2.31) as

. oF, oF, “'[oF
[aaft j| — aﬂz—-l,gz.ﬂh + aug 771—.1 394,57 . :<+l ?1—'1 391, . (232)
Xi-114x3 (%, Ai) OXit+1 Ox;i_1

Finally, taking the submatrix of the left hand side of equation (2.32), we have derived a

recurrence relation for the :th bounce Jacobian Jj:

3 = sub (- [4; +aug(B; - J;,,)] 7' 1), (2.33)
wheret =N —1,...,1 and
A _ -aFﬂl—l’glﬂh (xi_l’xi’xi+1’Ai)-
l 0(x1, M) Jaxa
B’i - aFni—l:gzv”i (Xi_l,Xi,Xi.{.]_, )\Z) (234)
I i1 Jax3
T_ - ”aFnzflsguTh (xi_l’xi’xi+1’)\i)—
1 L O%i—1 |y

Equation (2.33) suggests that the bounce Jacobians J! for an N-bounce path are com-
puted backward, from the fixed point q towards the perturbed point p. The starting
Jacobian J for the last intersection point x,, which is calculated first, can be viewed
as a special case of this recurrence relation where By =0 and Jy ., = 0.

In order to use these bounce Jacobians J} to perturb a given N-bounce path. a naive
approach is to compute each path Jacobian J; (i = 1,2, ..., N) from the Js with equa-
tion (2.21), and then update the corresponding bouncing point x; to first order accuracy
using equation (2.20). However, motivated by the observation that the term ultimately
required for linear perturbation in equation (2.20) is J;Ap, we may optimize the naive
algorithm by perturbing the N intersection points incrementally in a prescribed order.

Let Ax; = J;Ap (1 = 1,2,...,N), which denotes the perturbation of each intersection
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point in this linear approximation. Then the perturbation formula (2.20) becomes
x, = x4+ Ax;. (2.35)
Expressing Ax; in terms of J's using equation (2.23), we have
Axy = J7 « JiiAp = JIAX-
fori =1,2,..., N. Consequently, equation (2.35) can be expressed as
%, = %+ A% 1, (2.36)

wherei =1,2,.... N, Ax; = x, —x; and Axy = Ap. We can interpret equation (2.36) as
the first-order Taylor approximation of f;; around its previous point x;_;, which allows us
to perturb the intersection points in an N-bounce path incrementally, from the starting
point p until the ending point q.

Equations (2.19) and (2.33) suggest that the path Jacobian formulas for a general
ray-traced path have the same form as those derived for a specular reflection path [27],

which actually corresponds to the special case of 77 = 12 = 1.

2.2.3 The Path Hessian

Based on the expression for path Jacobians, path Hessians can be computed via tensor
differentiation. Furthermore, the Hessians for multiple bounces can also be computed
iteratively from the ending point q to the starting point p, in a similar fashion as the
Jacobians. Consequently, for an N-bounce path, a second-order perturbation formula

similar to equation (2.36) can be applied from the starting point p to the ending point

q as:
1 .
x; = + J] A% + §(AXF1)IH?AXF1, (2.37)

wherei =1,2,3,..., N, Ax;_| = x}_;—X;—1, and Axg = Ap. The Hessian H is defined

as the second-order derivative 82xi/82x1—_1, called bounce Hessian to be consistent with
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I

Starting with nearly the same formula (2.33), the derivation of the path Hessian
parallels that for a specular reflection path [27, 29], resulting in a similar expression for
a general ray-traced path. The only difference is that the definitions for A;, B;, T; are
replaced by equation (2.34), involving F, | . .. instead of I before [27]. The outline
of this process can be stated briefly as follows:

Letting T; = [4; + aug(B; - J},,)] and D; = —T; 'T}, we may rewrite equation (2.33)

as
T = -T'-D, (2.38)

where we have omitted the subscript ¢ for simplicity. Henceforth, we assume that all
the variables with no subscripts are associated with a particular bouncing point x;. In
order to compute H}, we need to compute the gradient of the matrix D, denoted by
VD [98, p.62]. The gradient VD is a third-order tensor and can be described with
several different formalisms. It can be viewed as: the scalar components (VD),,;, the
vector entries V(D;;), or the matrix layers V,,D, defined respectively as

0D;;

(VD)mij = m V(Du) =

(‘)Dij
Oxi i’

VmD = {&}

a(xi—l )m

where i = 1,2,3,4 and m,j = 1,2,3. By differentiating both sides of equation (2.38)

with respect to x;_; using Cartesian tensor notation, we obtain

VD = =TI (V.. T+ ¥V, ' D) (2.39)

for m = 1,2.3. The formulas for VI and VI are given by

aTjk
A(xi, A)

aT; ot
R I, N

ViTi) = Oxi_y | Oxipr T

D (2.40)
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(VA + VmB Iy + B-ViC),, (1=1,2,3)

(VD) = (2.41)
where
o 04 OAjr . * Ajr
V{Air) = ox;_1 * Oxip R A(xi, i) b
JIBk B 0B
B = iR I YL Y e e T
V (Bijk) axi_1 N Bgy T F - (xi, Ai)
V(Cu) = V(Iiw) I; (2.42)

for j.r = 1,2,3,4 and m, k,l = 1,2,3. It follows from equation (2.3) and J* = sub(D)
that the Hessian tensor can be formed from VD by
3}{]' 8J;k

in = o = gon = (V3 mik = (VD)myk (2.43)
m m

for j,k,m = 1,2,3. The dependence of the sth bounce Hessian on J;. J},; and VI,
implied by equation (2.42) suggests that the Jacobians and Hessians for an N-bounce

path can be computed together, from the fixed point propagated to the perturbed point.

2.3 Simplified Path Jacobian
In equation (2.19) of section 2.2.2, we have derived the formula for the path Jacobian as
J = sub(-I7'T), (2.44)

where

I OFy, g (P %, A) T — OFy, g (P X, A)

a(x, \) ’ - op Wada)
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and the operator sub is introduced to remove the effect of the lagrange multiplier A.
Observing the special structures of the Fermat equation (2.16) and the resulting two
matrices I' and T given in equation (2.45), we may simplify equation (2.44) in such
a way that the path Jacobian J can be computed directly, without inverting a 4 x 4
matrix in certain circumstances. Consequently, we can get rid of the operator sub. For
simplicity, in the remaining section we shall omit the subscripts and use symbols F' and

and F

Fi to denOte F Ti—1,91,Th*

71,972 respectively.

Let F'(p,x,\) = O represent the non-linear system formed by the first three equations
of F shown in equation (2.16), that is,
F(p.x,)) = Vd(p,x,q)+AVg(x)

-X q—Xx
=T s — 1T +
||p—x]|| llq — x|

Ah, (2.46)

where the vector h = Vg(x) = dg(x)/dx. We observe that

1. The matrix I' is symmetric, and can be expressed as a block matrix

ff}.xJ} hj3., (2.47)
hllx.'} 0
where the symmetry of the 3 x 3 matrix I = &I;X_i) follows from the fact that
x

it can be viewed as the Hessian matrix of a smooth function d(p, x. q) + Ag(x) with

respect to x.

2. The 4 x 3 matrix T has a form

T
i (2.48)

013

where T = OF(p,x, )
dp

It follows from linear algebra that the inverse I'! of matrix (2.47) must also be sym-
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metric, which may be expressed in a form of block matrix as

N3x3 Vixl (2 49)

5
Vixs d

where the scalar d, the vector v and the 3 x 3 symmetric submatrix N are to be de-
termined. On the other hand, as an inverse of I', the matrix (2.49) should satisfy the

following equation

P3xs hguy N3x3 Vixi [N +hv" I'v+dh I3z 0 (2.50)
= = 5 )
hi,; 0 Vi o d h'N h'v 0 1
where I denotes the 3 x 3 identity matrix. Solving the linear system (2.50) for N. we

obtain

TH-—1
N =1"1 I—h,'r_‘A—F (2.51)
h'T~'h

for non-singular I'. See Appendix A.1 for details. According to the definition of sub in

equation (2.44), the path Jacobian J we are interested in is composed of the first three

N3x3 V3x1 Tyxs
rows of ‘ : : &l | Thus, we may directly evaluate it as the product of
Vig d O1x3

two 3 x 3 matrices,
J = —-NxT. (2.52)

Equation (2.52) provides a more efficient way to evaluate J in practice since the matrix
to be inverted is 3 x 3 instead of the 4 x 4 matrix in equation (2.44).
For an N-bounce path, we can do the similar optimization on the recursive for-

mula (2.31), which can be expressed as

' OF . _ OF 0F)™'[ OF
J; sub(—[éx—i:‘-]iﬂ"“a_xi BAi] [axi—l])"

sub (r;‘ T) , (2.53)
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where

T =

oF; i JF; aFi} [ OF; jl
—  Jiy , = |—]. 2.54
o U e ) T [k e
Let ﬁ‘i(x,-_l,x,-,le) = Vd(x;—1,%i, Xi1+1) + AiVgi(x;) = 0 denote the non-linear system
formed from the first three rows of F; and h; = Vg,. Similarly, we may represent I'; and

T; in equation (2.54) as block matrices, as we did for I' and T in equations (2.47) and

(2.48). That is,

where

Ve aﬁ'i(xijlaxi-,xiﬂ) 3t + (')Fi(xiil-,xi:xi—i—l)’
o) SN ox;

A

. A (%1, Xs, X547

oxi_1

However, I'; may not be symmetric here. Accordingly, we have to denote its inverse as

(Ni)3x3 Vixl

To compute the upper 3 x 3 corner of this inverse matrix, we have to solve a larger linear

system, consisting of 8 equations from the conditions:

I, h N; v I3wz 0O

h;," 0 wh d 0 1
and

Ni v fi hz' 13 x3 0
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Using the similar technique shown in Appendix A.l, we attain an analogous formula for

J; to simplify equation (2.53), given by

J} = —N; x T3, (2.55)
where
. ‘TAfl
N = I I-h—?}?i# , (2.56)
hi‘l“; h;

Discussion: In the above simplification, we have assumed that the inverse of Tor[;in
equations (2.51) and (2.56) exists. Unfortunately, given that I is nonsingular (guaranteed
by the Implicit Function Theorem), we cannot determine whether I is singular or not,

which may be singular. Here is an example. Let

100
C=1]010
00 0

and h" = [111], then T is singular, but

(100 1]

' h 0101
FI o

W' 0 000 1

L 1 10|

is nonsingular.

2.4 Parametric Surfaces

It can be seen from equations (2.19) and (2.34) that the first-order partial derivatives
of F' are required to compute the path Jacobians. Since the four explicit equations
of the non-linear system F' shown in equation (2.16) are based on the gradient of the

implicit function, the local shape of the interacting surface is captured to the second order
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necessary to get the first-order approximation to the scattering effects. Consequently, our
path Jacobian theory could be adapted to handle more general surface representations, as
long as we can estimate the first- and second-order properties of the underlying surfaces,
such as parametric surfaces, triangular meshes [37], etc. Next we shall examine the
widely-used parametric representation.

Specifically, since the path Jacobian depends on the gradient and Hessian of the
implicit function representing a surface, in order to extend this first-order approximation
to parametric surfaces, we need to replace these two terms with their equivalent geometric
quantities available from the parametric representation of the same surface. Since we
are interested in analyzing the surface locally, we can always consider the corresponding
Monge representation [30] of the surface. That is, the surface can be described by the
graph of a function 2z = G(z,y). In particular, if we introduce a local coordinate system
(S, T.H) centered at a bouncing point x, where H is chosen to be the surface normal at
x, and S and T are two orthonormal vectors in the tangent plane at x, and H =S x T,
the equation of the surface can be written in a special Monge form from the Taylor

expansion:

1. g 1
2 = i(aci:2 + 2cay + by?) + ?(e;r:3 +3fxy + 3gzy® + hy®) + -+ (2.57)

Figure 2.5 shows a Monge patch expressed as the height field over the tangent plane
at one point. Therefore, locally the mirror surface can be implicitly described by an
equation z — G(z,y) = 0, denoted by g(z,y,z) = 0. You may notice that this implicit
function is defined with respect to the local reference frame at x. but it can be easily
expressed in a given global coordinate system (X,Y,Z) by a tranformation. It then
follows that the first-order derivative of ¢ in equation (2.57), i.e, Vg, is coincident with
the unit normal n at x. Consequently, the Hessian of g just corresponds to g—g, which
is the matrix associated with the shape operator S. In differential geometry, the shape
operator at a surface point p defines a linear map from a direction b tangent to the

surface to the negative derivative of the unit normal n along b at p. This operator

completely describes a differentially small area on a surface. Given a parametric surface



P(u,v)

Figure 2.5: Locally, a parametric surface can be written as the graph of the function: z = G(x,y).

P(u,v), the matrix of this linear map S may be computed as =117 [30, p.31], where

and

(Puuzn) (Pm)-, 1’1)
(Pyu,n)  (Pyy,m)

Il =

are the first fundamental form and the second fundamental form, respectively. These

formulae may be found in classical textbooks on differential geometry (e.g. [108, 41]).

2.5 Comparisons with Related Work

Similar algorithms that linearly approximate a perturbed ray path have been developed
for use in ray tracers to calculate a bundle of rays at the cost of tracing a single ray. In this
section we shall make some comparisons and connections between our path Jacobians and

two closely-related previous work, that is, pencil tracing [100] and ray differentials [59].
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2.5.1 Pencil Tracing

Paraxial ray theory [22] is an approximation technique originally designed for lens design,
and its application to ray tracing is known as pencil tracing. The paraxial approximation
theory provides a linear approximation for ray changes due to refraction, reflection, and
transfer (propagation in a homogeneous medium). In order to linearize each phenomenon,
pencil tracing makes a distinct set of simplifying assumptions on each optical event
(transfer, reflection and refraction). In pencil tracing, paraxial rays to an axial ray are
parameterized by point-vector pairs on a plane perpendicular to the axial ray. A linear
ray change from the axial ray can be represented by a 4 x 4 matrix called system maltriz,
and thus, the propagation of these paraxial rays is approximated linearly by a product
of system matrices.

The approach taken by ray differentials and our path Jacobians is to formulate the
propagation of a ray as a single ray function that combines a series of surface interactions
occurring during the process of ray tracing, and then compute the first-order Taylor
approximation to this function by means of analytical differentiation. As we can see,
instead of performing a linear approximation at each intersection as in pencil tracing,
linearization only happens once and is applied to the whole path for both approaches

based on Taylor expansion, thus leading to more accurate results.

2.5.2 Ray Differentials

Tracing ray differentials formulates a ray from the view point as a function parameterized
in terms of its image coordinates on the image plane. The ray propagation is represented
by a series of function compositions and the ray differential, which is the derivative of
the resulting composite function with respect to the image plane, is traced using the
chain rule. This derivative information may be used for estimating a texture filtering
kernel [59].

Tracing ray differentials is similar to our work in that we both compute a first-
order Taylor approximation to a ray path function and essentially obtain a Jacobian
matrix characterizing the perturbation of intersection points. Moreover, as described

in section 2.4, path Jacobians and ray differentials are based on the same geometric
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quantities of the scattering surface, that is, normal and shape operator. The most
significant point of departure is that the path functions involved in these two frameworks
are parameterized differently. Specifically, instead of limiting the path to be a ray cast
from a fixed eye point, we parameterize a path in terms of the positions of its end points,
and compute the path Jacobian as its first-order derivative with respect to the varying
end point. Our path function works for any ray segment with a fixed end. There are no
particular physical meanings about both endpoints, which allows us to perturb either end
of a ray traced path flexibly, leading to approximate analytical methods applicable in a
variety of contexts, such as moving the view point, locating the reflection/refraction point
of a varying scene point, etc. In addition, we also obtain a second order approximation for
a ray by computing path Hessians. On the one hand, different perturbation variables of
these two approaches lead to their different derivation strategies and application contexts.
However, on the other hand, it is very interesting that the ray differential and the path
Jacobian computed for the same path are closely related by an inverse relationship, which
will be described in detail next. As a shorthand, we shall use FP to denote our approach
of computing the path Jacobian from the Fermat Principle and the Implicit Function

Theorem, and use TRD for tracing ray differentials.

Up

vieMX‘Rigm

Surface Parameterization

0

A'(x»y,z)___a

Figure 2.6: An One-bounce Path and Local Coordinate Systems

Consider an one-bounce specular reflection path (q,x, p) shown in Figure 2.5.2. We

should mention that TRD and FP have two subtle differences:

e All the surfaces involved in TRD are parametric patches, while original FP assumes
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the reflecting surface G is implicitly defined by g(x) = 0.

e TRD is specially designed for a traditional ray-tracing scenario, where the ray is
cast from the eye point q, and p must lie on a diffuse surface to obtain a function
representation to apply differentiation. Therefore, in order to apply TRD to a path
with an end point p free in 3D, which is allowed in the FP framework, we need to
introduce a virtual plane passing through p and perpendicular to the ray direction

d.

For comparison purpose, we assume that G has both a parametric representation and an
implicit definition and restrict p on a surface and q as a fixed view point. Next we shall
show that TRD and FP yield two 2 x 2 Jacobian matrices (J;4 and Jy,, respectively),
which are inverse matrices with each other.

TRD framework casts a ray from q to an image plane point £. While tracing each step
of ray propagation, we express p as a composite function in terms of £ using Snell’s law
or direct transfer equation. By differentiating the resulting function with the chain rule,

. . - : . d ;
TRD essentially provides a mechanism to compute a Jacobian matrix 6—?, which captures
how the intersection point p on the path changes with respect to the perturbation in

the image plane point &. If we think of ¢ and p as points in IR?, %g is a 3 x 3 Jacobian

matrix. However, in the ray-tracing setting £ only moves on the image plane, while p on

a surface is associated with a 2D parameterization (u,v).2 Therefore, £ and p only have

two degrees of freedom. For clarity, we use the symbols £(z, y) and p(u, v) to represent &

and p viewed in IR?, respectively. Then TRD actually computes a 2 x 2 Jacobian matrix
dp
Jt d= —=-
r af

In the FP framework, we formulate an implicit system satisfied by q, x and p from the

Fermat Principle and Lagrange Multiplier method. By applying the Implicit Funct_ion
Theorem to this implicit system, we can directly compute a 3x3 Jacobian matrix J = 3::
which characterizes how the intersection point x changes with respect to the perturbation
in the other endpoint p. In terms of the path Jacobian J, we can easily compute a 2 x 2

.0 _ . . :
matrix —5, which is the inverse of J;.4 and states how the image coordinates change

ap

2For the application context of texture filtering [59], (u,v) are the texture coordinates.
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with respect to the movement of the surface point. This conversion can be carried out

by following two steps:

1. Since é is uniquely determined by intersecting the line connecting q and x with the

image plane, we can easily derive

aE o€
Rt S P ¢ 7 .
%, = [, @s

from our path Jacobian J with the chain rule.

J
£ depending on

2. The restriction of p moving on the surface allows us to compute
the surface parameterization chosen. Consequently, it follows from the chain rule

that

_[og]  _ fee ]
pr - [aﬁ):Lx? - |:ax:|2x3 ! af) 3"2‘ (2'59)

It then follows from Jyg = J fp_l that the ray differential J;.4 is inversely related to the
path Jacobian J, indirectly through equation (2.59).

This inverse connection can be stated more formally by defining several mappings
among ﬁ,é, pP. P. X, as shown in the diagram 2.7. Here f, p are 2D pixel coordinates and
surface parameterization. &, p represent the same points in IR®. The existence of f is
guaranteed from IFT (the Implicit Function Theorem). By means of function composi-
tion, we attain two mappings that correspond to forward ray tracing and backward ray

tracing respectively, that is:

I

Tforwa'rd = ’520’1011‘1 — P

- &

Lot

Teackward = lt°g°f°l2_l :

where the inverse [, and l,~! are guaranteed by assuming that [, and Iy are bijective

mappings. Accordingly, we may define two identity maps from T forpara and Thackward
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h

ray tracing

A
o f -1
l] l] \g&’ l2 lZ
\ 4 A4
pixel surface
coordinates parameterization

Figure 2.7: Mappings used for computing Jirq and Jg,. The label associated with each

mapping suggests the corresponding procedure represented.

as follows:

I, = Tforward © Thockward p—D (1)
o

L = Thuckward© Tforwa:rd 5 £

Differentiating both sides of (1) ((2)) above with respect to p (€), we have

anorward . aTbackward

A = L
ot op
aTbackward i anormard _
op ¢ ’

which have shown that

anorwa'rd _ [ aTbackward] -t
3 op '
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Here the matrices on both sides are related to the Jacobians from TRD and FP by

6Tforward — Jt ”

o€ "
OT backward =
Monckwerd 3y, = -9 3-15™

In fact, ray differentials and path Jacobians are computed by differentiating a given
path with respect to the perturbations at two opposite ends. Particularly, ray differentials
provide a first-order approximation to the family of rays due to perturbations of the
image plane point & and thus ray direction d, which are closer to the fixed eye point.
Alternatively, path Jacobians approximates a bundle of rays due to perturbations of
the other end that is away from the eye. These two mechanisms are not designed for
replacing one with the other. Instead, different motivations underlying them find them
appropriate applications. For example, ray differentials were computed to estimate the
footprint of texture mapping for anti-aliasing [59], while path Jacobians were combined
with the virtual object method for interactive specular reflection [27, 28]. In either of

these contexts, it is not natural to change one to the other.

2.6 Simulation of Lens Effects

To illustrate the power of our specular path perturbation formula, we designed an al-
gorithm of approximating highly accurate and dynamic specular reflections on curved
surfaces for scenes consisting of only diffuse and specular surfaces [28]. Using the for-
mulas (2.19), (2.33) and (2.36) that we have derived for a general ray-traced path in
section 2.2, we may extend the nearly same perturbation-based algorithm to scenes with
refractive surfaces. In this section we shall examine a practical application of the machin-
ery for perturbing a refraction path, that is, simulating the lens effect through a refractive
glass. As a recap, we shall briefly review the algorithm developed for interactive specular
reflections, and explain some adaptations we made to accommodate refraction. A more

detailed description of our previous algorithm can be found in the paper [28].
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Figure 2.8: The flowchart of the algorithm for simulating lens effects using perturbation.

2.6.1 Algorithm Description

The algorithm depicted here is quite similar to that for fast computation of specular
reflections, with some minor changes to adapt a refracting surface rather than a mirror
surface. As usual, each surface must be tessellated into polygons, and each refracting
surface must be equipped with a corresponding implicit equation and a ray intersection

procedure. The outline of the algorithm is shown in Figure 2.8. We now summarize the
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major steps.

Using standard ray tracing, a sparse set of rays with respect to a given vantage point
is traced through an environment consisting of only the static refractive surfaces found
in the original scene. The resulting ray paths are stored in a hierarchical data structure
(such as an octree) that enables fast searching later. Then, based on these pre-computed
refraction paths, the perturbation formulae are employed to interpolate new refraction
paths reaching each vertex of each diffuse object found in the original scene. That is to
say, the refraction of each object vertex in each refractor is approximated by perturbing
the nearest known sample path. For a solid refractor, two refraction events occur at its
boundary, thus the formula (2.33) for a multiple-bounce path is employed to compute
path Jacobians. Here, only the linear approximation is computed for efficiency. Of
course, quadratic approximation using path Hessians can be used for higher accuracy.

Using these perturbed refraction paths associated with object vertices, the algorithm
approximates refractions close to the eye at the object level, rather than forming them
pixel by pixel as in ray tracing. For each refracted object, its image in a curved refractor
is rendered by constructing the associated wvirtual object. We shall explain the formula
to compute virtual images for refractions in the next section. From the refraction point
interpolated for each object vertex, a virtual vertex is computed and then the virtual
object corresponding to each refraction is created by connecting the virtual vertices. The
virtual object thus constructed may be positioned between the refractor and the diffuse
object or behind the object, depending on the curvature of the refracting surface and
the ratio of refractive indices n = 1;/n2, where 1;,n2 denote the refractive index for
the refractor material and the air, respectively. Finally, the entire scene, consisting of
both real and virtual objects, is rendered in a single pass through a standard graphics
pipeline, where refractivity is simulated using alpha-blended transparency to “merge”
the refraction onto real objects. By preserving the optical path length of virtual objects,
hidden surface removal and relative visibility are correctly handled by z-buffering. This
virtual object method is similar to the approach described by Ofek and Rappoport [85],
where virtual objects with respect to reflections were computed.

One complication that arises with this approach is that the shading of diffuse virtual
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objects must be computed with respect to the original positions of the refractions, not
their virtual coordinates. This is because the orientation of the virtual objects with
respect to the light sources will in general be quite different from that of the actual
object. Consequently, the shading must be pre-computed, when the virtual vertices are
constructed, and not shaded by the graphics pipeline.

By exploiting path coherence from frame to frame, this perturbation approach shows

a great advantage over ray tracing while dynamically moving the diffuse object.

2.6.2 Virtual Image from Refraction

As we demonstrated in the example of interactive specular reflection, the reflection of an
object can be rendered by constructing its virtual image with respect to the reflective
surface. A similar idea can be applied to the refraction image. For reflection, the relation
between the original object and its virtual object is quite simple, a virtual vertex is placed
at a distance from the eye that is equal to the original optical path length from the eye
to the vertex. It becomes a little complicated for refraction, where the location of the
virtual image is dependent on the refractive angle.

Consider a situation that an observer B in a medium of index of refraction 7, looks
through a plane surface OX at an object point A situated at a distance Y below OX
in an adjacent medium of index 7;. Given a refraction path from A to B, hitting the
surface OX at 7, we would like to derive the location of the virtual image corresponding
to R. See Figure 2.9. A full analysis of this situation shows that the image seen by the
observer is actually astigmatic [16]. Imagine that the ray AR is the central ray along the
axis of a small cone of rays leaving the object A, the location of the virtual image of A
is found by determining the intersection of a pair of rays from the object that reach the
eye of an observer B. The virtual image formed by light leaving an object point with
vertical divergence will be located at a different position than the virtual image formed
by light leaving an object point with horizontal divergence. Pairs of rays with vertical
divergence refer to those included in the small cone that have the same incident angle
as AR, while pairs of rays with horizontal divergence refer to rays in the same plane of

incidence as AR and characterized by slightly different values of the incident angle 0,
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Figure 2.9: The coordinate geometry of virtual image due to refraction. The X azis
represents the interface between two medias with the index of refraction, m1 and 1.
A point object A is located at a distance Y from the interface, rays of light from A
travel through the medium and reach the observer at B, with a virtual image at A' with

coordinates (zp,yp)-

of AR. Here, we are constructing the virtual image corresponding to the latter pairs of
rays. Our derivation follows that proposed by Bartlett [16], but we are using a different
quantity to characterize the position of the virtual image.

We examine two rays leaving the object A and striking the interface at angles of
incidence 6; and A@;, passing into medium 2 with angle of refraction 65 and Af;, re-
spectively. Extending backward these two rays will converge at a site A’ identified as the
virtual image of A. The position of A’ can be uniquely specified by the length I’ = |A'R|.
Let | = |AR|, next we shall show that the ratio between !’ and ! satisfies an identity
depending on the refractive angle 63 and the refractive indices 71, 72.

According to the coordinate geometry in Figure 2.9, the refracted ray RB is a straight
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line, which can be represented as

y = mzx+b,
where
m = cotbs, (2.60)
b = —mX = —Xcotbs, (2.61)

and X is the distance from R to the origin O. Thus, the equation of the ray RD is

z—X
= : 2.62
Y tanﬂg ( b )

Distinguishing the ray RB and its deviated ray by the subscript e and f, we can compute

their intersection A’(z,y,) from equation (2.62) as

be — by
il B e
me — My
Tp — X .
= . 2.63
Yo tan 0 ( )

In the limiting case of small deviations from RA, i.e. small changes in m,b,0s, x} can

be written as

db db  /dm
b o— 40 - 2.64
. dm 0y | dbs (268}

It follows from equation (2.60) that

dm :
0, = —csc? 6, (2.65)
Note that X = Y tan0; from Figure 2.9, we have

tan 6
tan 0y

b= -Y
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By means of Snell’s law of refraction, that is,

nsinf; = n9s8infs,

we can express b in terms of the refractive angle 6,

e g 0080 (2.66)
\/n? — sin? 6,
where 1 = 11 /n2. Differentiating equation (2.66) with respect to 6, we attain
2 E
db _ Y (n® — 1)sinty ' (2.67)
df> (n? — sin? 6,)3
Combining equations (2.64), (2.65) and (2.67), we get
2 _ 1)ain3
Ty _ (n* — 1) sin”® Oy ' (2.68)
Y \ﬂnQ — sin® 6,)3
Equations (2.68) and (2.63) yield
2 e3
Ub 7° cos® Oy
= = - 3 2.69
L (2.69)

(7% — sin? 6,)3
It follows from the geometry shown in Figure 2.9 that

(o]

§ = cos B
Z = cosf,.
l
Therefore, we have the ratio
r [yo| cos b
I Y cosl,

n? cos® 0, \ n* — sin’ 6,

(12 — sin? 0)3 1 cos By
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Figure 2.10: Side-by-side comparison of the refraction images of the lizard through a glass
lens, generated by perturbation method (left) and ray tracing (right).
1 cos? 0y

2 92.70
?’]2 — sin2 02 ( )

Equation (2.70) suggests that the virtual point A’ can be found by extending backward
2
7 c08” fy

2

the ray RB by a distance —F 7
7 — sin” 6y

2.6.3 Results and Discussions

Based on the new path perturbation formula, in combination with the method for con-
structing virtual images from refractions discussed in the previous section, we have im-
plemented our perturbation algorithm shown in Figure 2.8 using Open Inventor on a
SGI Indigo2 to simulate the refractive effect through a lens. In our experimentation,
the scene is composed of a glass lens and a diffuse lizard-shaped polygon underneath,
and the lens is approximated by a squashed sphere of radius 1.5 (scaled by 0.3 in the
direction perpendicular to the paper). That is, an ellipsoid with an implicit definition

g(z,y,2) = 0, where

Figure 2.10 shows a side-by-side comparison of the refraction images of the lizard seen
through the glass lens, generated respectively by our perturbation method and ray tracing

(using the commercial software PovRay). The left image is generated by perturbing the
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Perturbed (error) Ray-traced

Figure 2.11: A sequence of images generated by perturbation method while moving the lizard to

the right. Error occurs when it is close to the lens boundary.

sample rays cast every 8th pixel along each horizontal and vertical scanline, and the
results are almost identical.

In Figure 2.11 we show a sequence of refraction images generated by our perturbation
method while we dynamically move the lizard to the right. Because refraction transfor-
mation is quite non-linear, the linear perturbation based on refractive path Jacobians
will cause error when the lizard is close to the lens boundary, as demonstrated in the
bottom row of Figure 2.11. The error is also caused by the way we used to construct
the virtual object. As seen from the ray-traced image in the bottom, the vertices of the
lizard leg tip may have multiple refractions on the lens, while other vertices only gener-
ate one refraction. However, when we construct the virtual object by connecting virtual
vertices corresponding to each object vertex, we actually have made an assumption that

all the object vertices should have the same number of refractions on the lens. Other-
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wise, the current algorithm doesn’t know how to correctly separate different refractions
corresponding to a single vertex, thus will fail by mixing one refraction with another.
That is the case here. To solve this problem, we have to break the diffuse object into
different parts, where vertices belonging to one part should generate a fixed number of
refractions on the lens. Then the challenge becomes: how could we determine in advance
the number of refractions that an object point will generate on a lens? Answering this
question requires a detailed analysis from optics, which is the future direction we would

like to pursue.

2.7 Potential Applications

Our path perturbation theory, as well as the work of tracing ray differentials and its
extension to path differentials by Suykens and Willems [109], provides mathematical
foundations for several perturbation methods in image synthesis. Perturbation methods
of this nature can find many other potential applications in image generation. Moreover,
they may also give some insights to practical solutions to some inverse modeling and
rendering problems known in the computer vision community. In this section we shall

point out such possibilities, which are future directions worthy of further investigation.

Accelerating Geometry-Based Rendering: An important application area of path
perturbation is incremental rendering to accelerate some existing geometry-based
rendering algorithms. As we mentioned in Section 1.2, perspective coherence be-
tween our left and right eye views has been exploited for stereoscopic rendering [3].
using the technique of image space reprojection through a 2D warping equation,
which, however, cannot handle diffuse environments. Due to the proximity of hu-
man eyes, strong path coherence exist between stereoscopic image pairs, thus our
path perturbation formula can be directly applied to calculate both images at the
cost of tracing from a single eye position. This optimization is very useful in the
context of responsive workbench [65]. The idea of path perturbation may also be
used to speed up the computation of caustics in the approach proposed by Mitchell

and Hanrahan [74]. Instead of computing the reflecting path for every pixel on the



54

floor using costly interval analysis and automatic differentiation. we could sparsely

sample it and interpolate the remaining paths using perturbation.

Image-Based Rendering: To circumvent the difficulties of traditional modeling and
intimidating computational cost suffered by geometry-based method, image-based
modeling and rendering generate model or new images from other images rather
than geometric primitives. However, normal image warping and view interpolation
will cause artifacts with the existence of specular or glossy surfaces. Currently,
image-based rendering of non-diffuse environments is still an open question. As
demonstrated by Gortler et. al [48], the accuracy of image-based approaches can
be greatly enhanced by incorporating approximate knowledge of the underlying
geometry. An obvious extension of this idea is to augment the geometric informa-
tion with first-order approximations of prominent optical effects, such as coherent
reflections. From the closed-form expression derived for the path Jacobian, we may
consider computing the image Jacobian, which approximates how pixels moves with
respect to the view change and can be obtained by projecting the path Jacobian
into the image plane. Consequently, by differentiating an image with respect to
the viewpoint, one can approximate a neighborhood of similar views to first-order
accuracy. The remaining hurdles include the computation of image Jacobians from
approximate geometry, gracefully handling image discontinuities, and exploring
accuracy /efficiency tradeoff, etc. This image differentiation approach could be ap-
plied to image warping where specular reflection/refraction effects are prominent,

as in the work of Lischinski and Rappoport [68].

Monte Carlo Methods: A new approach to solving the light transport problem,
called Metropolis Light Transport (MLT), was recently developed by Veach and
Guibas [112], inspired by the Metropolis sampling method in computational
physics [73]. The basic idea behind MLT is that a sequence of light-carrying paths
through the scene is computed, with each path generated by mutating the previous
path in some manner. Each mutation is accepted or rejected with some carefully

chosen probability, to ensure that the overall distribution of sampled paths in the



scene is proportional to their contribution to the image being generated.

Compared to previous unbiased Monte Carlo approaches to image synthesis, MLT
has two important advantages embodied in its mutation strategies: path reuse,
where paths are often constructed using some of the segments of the previous one;

and local exploration, by favoring mutations that make small changes to the current

found path that make large contributions to the final image. It is these key features
that make MLT stand out for its efficiency and robustness, amortizing the expense
of finding difficult paths over many samples. More importantly, MLT places rel-
atively few restrictions on the types of mutations that can be applied and thus
the mutation set is easily extended. It is often possible to handle difficult lighting
problems efficiently by designing a specialized mutation by exploiting various kinds
of coherence in the scene. In the original paper of MLT [112], the authors proposed
three perturbations to handle some lighting situations where a small fraction of
paths contribute much more than average, for example, due to caustics. They are
respectively lens perturbation, caustics perturbation, and multi-chain perturbation,
as shown in Figure 2.12. Due to specular scatterings, these random perturbations
may cause an excessive number of rejections before finding a valid path. Take the
two-chain perturbation shown in Figure 2.12c for an example. First, the lens edge
x3X4 is perturbed to generate a point x5, on the pool bottom. Then, the direc-
tion from the original point x5 toward the light source is perturbed, and a ray
is cast from x5 in this direction. Because of the specular refraction on the water
surface, very frequently, the new ray cast in the perturbed direction will miss a
point (or small area) light source x, and get rejected. The consequence is the slow
convergence rate and high variance due to repeated samples in the Markov chain.
Another drawback of these random perturbations is that the intersection points on
the new path must be obtained through ray casting, which may be costly. However,
these situations may be greatly optimized by using analytical path perturbations,
which are characterized by such properties as high acceptance probability, low cost,
and easy changes of the image locations, and so on. The framework of path Jaco-

bians, as well as ray differentials and path differentials, provide mathematical tools



56

(a)Lens Perturbation (b)Caustic Perturbation (c)Multi-chain Perturbation

Figure 2.12: Three perturbations proposed by Veach and Guibas: both lens perturbation
(left) and caustics perturbation (middle) make small changes to subpaths including the
lens edge, but from different ends. The former casts a ray at a new image location
to generate x4, good for subpaths of the form (L|D)DS*E, while the later perturbs the
direction of the ray segment away from the eye to get x5, and works for subpaths of
the form (D|L)S*DE. Multi-chain perturbation (right) handles other paths of the form
(D|L)DS*DS*DE by perturbing the path through more than one specular chain, such as

caustics seen through a specular surface. (Courtesy of Veach and Guibas [112])

to enhance existing perturbation strategies and design new low-variance mutation

strategies in the context of MLT.

In detail, MLT may benefit from our and others’ work on path perturbation in the

following aspects:

e Improve the efficiency of current mutations by regenerating the new path
analytically instead of casting rays. For example, to replace the lens subpath
x; -+ X of the form (L|D)DS*E3, lens perturbation perturbs the old image
location by moving it a random distance in a random direction and then traces
the subpath from the new image location through additional specular bounces
to be the same length as the original. Using our path Jacobians (if we require

that x441 is fixed) or ray differentials, the new subpath can be determined

3This is the regular notation for paths, where S, D, E, and L stand for specular, non-specular (diffuse

or glossy), lens and light vertices respectively.
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immediately to the first order accuracy, without tracing any further paths.
Similar speedup may be obtained for caustic and multi-chain perturbations

using path differentials for glossy surfaces.

e Design new perturbation strategies and machinery. Currently, caustic per-
turbations and multi-chain perturbations are carried out by choosing a new
direction at each non-specular vertex by perturbing the corresponding direc-
tion of the original subpath. Inspired by the motivation underlying our path
perturbation formula, we may easily extend these mutations to perturb the
positions of non-specular vertices as well, which allows us to better explore
the local space around an important path that is hard to find. The goal of
designing better and more efficient MLT mutation strategies also motivates us
to develop new mathematical models to exploit a wide range of coherence in
the path space. For example, to accommodate caustic and multi-chain pertur-
bation, we are required to formulate the other kind of coherent reflection, as
illustrated in Figure 2.13, where the family of similar paths are parameterized
by the deviation angle 8. If we could work out the differential relationship
between the location of the reflection/refraction points and 6, some mutations

may be performed very efficiently.

q

Figure 2.13: Another kind of specular path coherence, where both endpoints are fized and
the path gets changed while the ray direction from one end is slightly perturbed. The

corresponding reflection points x' and x will converge when the angle 0 is small.
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e Increase the acceptance probability. As we mentioned before, random pertur-
bation leads to frequently rejections in some cases (i.e.,missing the light or
the lens), while staying in the same state for many samples in a row causes
increased variance. Due to the constraint of a fixed endpoint required by our
path function formulation, we may be able to generate new perturbed paths
with more chances to be accepted in certain circumstances. For instance, in
the second step of the two-chain perturbation example shown in Figure 2.12c,
we may require that the light source xy is fixed and use path Jacobians com-
puted for the original path to locate the new refraction point x| on the water
surface. Compared to perturbing the direction from x5, this new mutation

definitely yields paths with higher acceptance chances.

Computer Vision: One of the main tasks in computer vision is computing the shape
of objects [21]. A number of cues, notably stereoscopic disparity, texture gradient,
motion parallax, contours and shading, have been shown to carry valuable informa-
tion on surface shape. However, the study of shading has been mostly restricted to
the Lambertian case, and specularities have been mostly ignored with the exception
of the analysis of specular highlight [55, 51]. The machinery of path perturbation
brings up a possibility of recovering information on the shape of a surface from the
specular component of its reflectance function, which is being explored recently by
Savarese and Perona [95]. They proposed an analysis of the relationship between
the image of a calibrated scene composed of patterned lines through a point, and
the geometry of a curved mirror surface on which the scene is reflected. Their
main result is that it is possible to reconstruct the position and shape of the mirror
surface up to the second order from the orientation and curvature of the images of
two intersecting lines. The key idea is to study the orientation and curvatures of
the "distorted” curves of the patterned lines on the image plane, which are then
used as constraints to solve for the surface parameters. During their analysis and

derivation, our theory of specular path perturbation plays an important role.



Chapter 3

Irradiance due to

Linearly-Varying Luminaires

The determination of radiant interchange between a finite surface and an infinitesimal
area is one of the most ubiquitous computings in radiative heat transfer. As mentioned
in Chapter 1, these transfers correspond to point-to-area form-factors [18] in diffuse
piecewise-constant environments. The present investigation is concerned with calculat-
ing the illumination of an infinitesimal area due to emittance from an inhomogeneous
Lambertian surface, which may be used to exactly compute element interactions in the
context of higher-order finite element methods [L11].

In this chapter we present a closed-form expression for the irradiance at a differential
surface element due to an arbitrary polygonal Lambertian luminaire in which the radiant
exitance is linearly varying with position over the surface of the luminaire. The solution
consists of elementary functions and a single well-behaved special function that can be
either approximated directly or computed exactly in terms of classical special functions
such as Clausen’s integral or the closely related dilogarithm. We first provide a general
boundary integral that applies to planar luminaires of arbitrary shape and linearly-
varying radiant exitance, and then derive the closed-form expression for the restricted
case of arbitrary polygons, which is the result most relevant for global illumination. Our

approach is to express the problem as an integral of a simple class of rational functions
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over regions of the sphere, and to convert the surface integral to a boundary integral using
a recurrence formula derived for a generalization of axial moments known as triple-azis
moments.

The closed-form expression presented in this chapter extends the class of available
closed-form expressions for computing direct radiative transfer from finite areas to dif-
ferential areas. One direct application of our result is the exact computation of transfers
from linear polygonal elements to differential areas in the context of a collocation-based
radiosity method [111, 72]. However, the theoretical contribution of this work is some-
what broader as it introduces much of the machinery needed to derive closed-form solu-
tions for the general case of luminaires with radiance distributions that vary polynomially
in both position and direction. As we shall demonstrate in chapter 5, all cases of poly-
nomial variation admit similar closed-form solutions, which rest on the same special
function that emerges in this linear case.

The remainder of this chapter is organized as follows. Section 3.1 formulates the
problem of computing the irradiance at a point due to a linearly-varying Lambertian
luminaire as integrating a simple class of rational functions over spherical regions. To
convert the resulting surface integral to a boundary integral representation, we extend
axtal moments reviewed in section 3.2 to accommodate this type of integral. Based on the
recurrence formula derived for this generalization, we derive a general boundary integral
formula for the irradiance integral using Taylor expansion and a variety of binomial
identities in section 3.3. Finally, by restricting this general formula that applies to planar
linearly-varying luminaires with arbitrary shapes to polygons, we obtain a closed-form
expression for the irradiance at a point due to a polygonal Lambertian luminaire with

linearly-varying radiant exitance in section 3.4.
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Figure 3.1: (a) Geometrical configuration for computing the irradiance from an area to a point.
(b) The irradiance at o due to a planar figure L with linearly varying radiant exitance is computed
by a boundary integral. The radiant exitance variation is uniquely determined by any three non-

collinear points p,, p,. and p; on the luminaire plane.

3.1 Luminaires with Linearly-Varying Radiant Exitance

The irradiance ® impinging on a surface at the point o due to a planar luminaire L is

given by

: s 01 cos 0
1/ (x)—co% o dx, (3.1)

B(L) = T r2

where x is a point on L. r is its distance from o, and ¢(x) denotes the radiant ezitance
of the luminaire at the point x; thus, ¢(x)/7 is the radiance of the surface at x. which is
constant in all directions. Here €, denotes the angle between x—o and the receiver normal
b, and @ denotes the angle between x — o and the luminaire normal. See Figure 3.1a.
Without loss of generality. we shall assume that o is the origin throughout the remainder
of the chapter. If we integrate over the spherical projection of L, denoted by A = [[(L),

we have

B(4) = % /A diac o B, i)

T

1
fA ) {b,u) dola), (3.2)
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where u is the unit vector on the sphere, and x is the point on L in the direction of u.
The measure o denotes area on the sphere.

The class of luminaires that we are considering here are those that are planar and with
linearly-varying radiant exitance, or equivalently, for which the function ¢ : R® > R is
linear. Thus, if p,, p, and py are three non-collinear points on L with radiant exitance
wy, we and ws, respectively, then ¢(x) can be expressed as a linear combination of wy,

weo and ws:
P(x) = [w1 we w3] X, (3.3)
where % is barycentric coordinate vector of x with respect to p;, p, and pjy; that is,

£ = [p1pyp3]l ' X,

where [p; p, ps) is the matrix with p,, py, p3 as its columns. Thus, equation (3.3)

becomes

¢(x) = [wy we w3] [p; Py P3] ' % (3.4)

Let w denote the unit vector orthogonal to the planar luminaire, and let A denote the
distance from the origin to the plane containing the luminaire, as shown in Figure 3.1b.

By expressing x in equation (3.4) in terms of the unit vector u,

h
= (w,u)u’ (3.5)
we have
_ (au)
P )

where the vector a is given by

.a:h{w1 - ngpl B ps]ﬂl. (3.6)
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Consequently, the irradiance formula (3.2) becomes the integral of a simple rational

function over A. Specifically,

A = = [4 i o, (3.7)

™ (w,u)

where w is the unit vector orthogonal to the planar luminaire, the constant vector a
given in equation (3.6) encodes the linear variation of radiant exitance, and b is the
receiver normal at the origin. Here, (-, ) denotes the standard inner product.

As for a receiver point q other than the origin o, the vector a can be computed by

translating the luminaire by —q, that is

it
a(q) = h[wl wy 103}[p]—q P2—4d P3—9q . (3.8)

However, this translation method is inefficient since it requires inverting a different matrix
at each receiver point. In fact, the vector argument a corresponding to an arbitrary

receiver point q can be updated immediately from that computed for the origin. Let

sl
a():[wl wg ws}[lﬁ P2 Pa] ]

it follows from equation (3.4) that the radiant exitance distribution function may be

expressed as

$(x) = (ag,x) (3.9)

for a point x € L, which is denoted by its coordinates with respect to the coordinate

system located at the origin o. By rewriting x = q + (x — q). we have
p(x) = (a9, q) + (2, x — q).

It then follows from equation (3.1) that the irridance at q due to the linearly-varying
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luminaire is given by

1 cos 0, cos 0
L) = [ a2
: 0, cos 6
= = U L dx+/(a0,x—q) A de . (3.10)
™ /L A L e

Now we integrate the two terms on the right hand side of equation (3.10) over the
projection A = [[(L) of L onto the hemisphere around q. Since x — q represents the
position vector on the luminaire that is in the same direction u with respect to q, the

identity (3.5) should hold for x — q and u. Consequently, equation (3.10) becomes

— fA th. ) deiln] & [4 <a0, (fv(,qli)u> ;-0 da(u)}

®(A,q)

(ag, u) (b, )
(w,u)

(a0,9) [ (bow) dou) + hia) [ da(u)] NCRTY

where h(q) represents the distance from q to the luminaire plane. By matching equa-
tion (3.11) with equation (3.7), we have shown that the vector a(q) in equation (3.8)

associated with an arbitrary receiver point q can be equivalently expressed as
a(q) = (ap,q) w+ h(q)ao, (3.12)

Compared to equation (3.8), the update formula (3.12) is more efficient since only one
matrix inverse is required for a given linearly-varying luminaire.

Equation (3.7) suggests that the irradiance at a point due to a linearly-varying lu-
minaire can be expressed as a simple class of rational functions integrated over regions
on the sphere. Common to all methods for computing surface integrals of this nature
is Stokes’ theorem [106], by which surface integrals can be converted into boundary in-
tegrals. Such reductions are generally advantageous, as boundary integrals are better
suited for computation [39] and frequently lead to closed-form solutions [9, 97]. We per-
form this reduction with an approach similar to that used by Arvo [9]; specifically, we
extend the concept of axial moments to accommodate the rational functions appearing in

the irradiance integral (3.7) and then derive a recurrence relation for this generalization,
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which is then used to reduce the surface integral (3.7) to a one-dimensional integral.
Furthermore, our recurrence formula for the generalization of axial moments is based on
the fundamental expression for irradiance tensors. Therefore, as a background, we need

to review the concepts of irradiance tensors and angular moments proposed by Arvo [9].

3.2 Background

3.2.1 Tensor Calculus and Differential Forms

To study irradiance tensors and angular moments, we shall be familiar with some ele-
mentary machinery from tensor calculus [64] and differential forms [96]. In this section
we summarize some relevant facts that will be needed in the remainder of this thesis.
Tensors are an important tool in studying higher dimensional quantities. Scalars,
vectors and matrices are just special tensors of order 0, 1 and 2. Tensors of higher order
can be constructed from lower-order tensors by using tensor product operator, denoted
by ®. The components of an n-tensor can be denoted by using either n subscripts or
a single multi-index explained later. For notational convenience, Einstein summation
convention is adopted to express tensor quantities, where summation is implicit over
every index occurring twice in a term, including repeated multi-index. For example,

given two vectors A, B € IR?, we have
3
ABy = ) ABy, (3.13)
i=1

This convention will not apply to sub-indices, however. By default, we shall assume this
convention throughout this thesis.

Two of the fundamental tensors employed in tensor calculus are

L. The Kronecker delta 6;; defined by

L g==73
5 = g (3.14)
0 otherwise
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2. The Levi-Civita symbol or permutation symbol &;;;, defined by

1 if (i,j,k) is an even permutation
gijk = § —1 if (ij,k) is an odd permutation - (3.15)

0 if (ij,k) is not a permutation

There exist several useful identities involving these two tensors, which will be employed

frequently in the proofs that follows. They are:

;65 = 3 (3.16)
Sijklije = 20y (3.17)
Epji€kmi = OpkOjm — Opmdjik (3.18)
0;AB; = (A,B) (3.19)
eijkAjBe = (A xB);, (3.20)

where x means cross product of two vectors.

Differential forms provide a powerful formalism for representing multi-dimensional
integrals over manifolds, it subsumes the classical differential operators in vector anal-
ysis, such as gradient, divergence, curl, etc. Higher-order forms can be formed from
lower-order forms using an exterior multiplication operator A, also called wedge prod-
uct. The classical notation dz;dz; for integration is replaced by dz; A dz;, which is

anti-commutative,
dr; Adzj; = —dzj Adz;. (3.21)
and
dz; Ndz; = 0. (3.22)

Differential forms are associated with a collection of algebraic rules known as ezterior

calculus that relies mainly on an exterior derivative operator d, which is a linear mapping
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that takes a p-form to a (p + 1)-form, independent of coordinate systems. It is related

to classical derivatives by

d(fdw) = df Adw, (3.23)
& = %dmi, (3.24)

where f is a function.
A r-form w is closed if dw = 0 and ezact if there exists a (r — 1)-form ~ such that
w = dy. Particularly, integration of an exact r-form can be reduced to an integral of

lower dimensions by generalized Stokes’ theorem [96, pp. 87-88].

Theorem 3 If M is an oriented r-manifold in IR* with boundary OM, and w is an

(r—=1) form, r =1,2,...,k, then

/ w = dw, (3.25)
aM M

where d on the right is exterior derivative operator.

The advantage of differential forms is that they allow us to unify several well-known
variants of Stokes’ theorem, such as Curl Theorem, Green Theorem, and Divergent
Theorem, into one elegant and compact identity in (3.25).

To illustrate the use of these identities and properties about tensors, A and d. we end

this section with the following example:

Y L drn; dr, A dr,,

_ l:(ssm(stl - 551‘5&1’1

2
Egst AT A drt]
-5 |

] dr, A\ dr,

= Py [ (3.26)

where we have used equation (3.18) and the anti-commutativity (3.21) of the wedge

product A. This transformation is generally employed to complete the 2-form dw, given
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by [106, p.131]

_ EgimTq dr, A dr,,
2r3

o = (3.27)

3.2.2 Irradiance Tensors

Let f(r,u) denote a radiance function defined at all points r € IR? and all directions
u € 82, the set of all unit vectors in IR®. For a fixed r, the function simplifies to a radiance
distribution f(u). The notion of irradiance tensors is motivated by several fundamental
radiometric quantities that are defined in terms of weighted integrals of this radiance
function. In particular, three such quantities lead naturally to it. They are (up to some

scalar constants) [92]:

radiation energy density:

[ 7w do(u), (3.25)
vector irradiance:
[, wftew dotuw). (3.29)
radiation pressure tensor:
fsg uu’ f(r, u) do(u), (3.30)

where f(r,u) reduces to f(u) at a given point r. We can extend them to higher orders
by characterizing them as lower-order instances of a multi-linear function, given by the

form

[ ue- @ ufw o). (3.31)

By restricting f(u) to be piecewise constant or piecewise polynomial over the sphere,

Arvo introduced a tensor form, defined at a spherical region A and for an integer n > 0
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Figure 3.2: The outward normal n = u x 1 is tangent to the sphere and orthogonal to the

boundary of the spherical projection. (Courtesy of James Arvo [8])

by

T"(A) = /4u®---®udcr(u), (3.32)

n factors

called irradiance tensors of nth order, which satisfies the recurrence relation

1 =1 B B o
fd) = == (Z 5j,kT7;\k2(A)—/Mu’; 'n; ds), (3.33)
k=1 ‘

where ds denotes integration with respect to arclength and n denotes the unit vector
normal to the boundary curve dA of a spherical region A, directed outward and tangent
to the sphere, as shown in Figure 3.2. §;; is the Kronecker delta given by equation (3.14)
andu} ' = (u®---®@u),.

To conveniently index the elements of T™, we have made up some special notations
about multi-index in equation (3.33). As a convention throughout this thesis, we shall

use the n-index I = {i;,49,...,i,}, where i € {1,2,3} for 1 < k < n. We define I, as

the kth sub-index, I'\k as the (n — 1)-index obtained by deleting the kth sub-index from
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I, Ij as the (n + 1)-index formed by appending j to I. That is,

Il

I\k (":1,"';ik-l,ik+iq"'-,in)

I.] = (ils'i2»"'='invj)

3.2.3 Angular Moments

Irradiance tensors are comprised of angular moments as their elements, which are
weighted integrals of radiance with respect to directions [89]. It is this scalar quantities
that are of primary interest in computer graphics. The angular moments of T" given
in equation (3.32) represent polynomials integrated over the sphere, which are useful in
simulating a variety of non-diffuse phenomena. Using the fundamental formula (3.33)
for irradiance tensors, we may directly derive new closed-form expressions for a subclass
of polynomials that corresponds to Phong distributions [87].

Given an arbitrary subset A C 8% and unit vectors r and s, Arvo defined two simple

case of moments as follows:

axial moment:
(A1) = /1 (r, u)" do(u). (3.34)
double-axis moment:
1A r,8) = L el fadh il (3.35)

where only the first axis is raised to the power n. Double-axis moments can be
used to formulate the irradiance due to directionally-varying luminaires, reflected

(or transmitted) radiance from glossy surfaces [9].

By means of tensor composition, we may express them respectively as

(A,r) = T (A)(r® ---®r)
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Ful(4,r,s) = T"HA)(r® - ®@r®s). (3.36)
It then follows from equation (3.33) that we obtain

(n+1)7*(4,r) = (n—l)?"‘z(A,r)—/BA(r,u)"_l(r,n)ds, (3.37)

(n+2)7™!(A,r,s)

n(r,s) 7" 1(A,r) —/6 (r,u)" (s,n) ds. (3.38)
A
Equation (3.37) leads further to

(n+ 17" (A,r) = 7¢ —/ [(r,u)n“l 4+ {r,u)* 4o (r, u)‘”’l] (r,n)ds, (3.39)

dA

where ¢ = 0 if n is even, and ¢ = —1 if n is odd. Moreover, 7~! = 0 and 7°(A) = o(A),
solid angle extended by A.

Up to this point, we have reviewed the results for angular moments derived by Arvo.
Next we shall demonstrate a simplification of equation (3.39), which follows from the

partial sum formula for a geometric series. That is

e (r,u)nH — - even n
1 . ¢ 1 — (r,u)? 1+ (r,u)
(r )"+ (ru)* T 44 ()T =
¥ = (I’, u>7t+l
1_—-(r u)2 odd n

Consequently, the axial moment in equation (3.39) may be expressed by

(r? n) I - (rtu)n+1 ;o
) (o(A) + /‘dA m ds) - [(’)A w (r,n) ds evenn
(n+ 1)7"(A,r) = (3.40)

1 . . n+1
_"/64 % (r,n) ds odd n
y —{(r,u

On the other hand, given a spherical region A C S? and an arbitrary unit vector w

such that —w & A, we have proved in Appendix A.2 that the solid angle o(A) can be
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expressed as a boundary integral

_/ W) g = o(a), (3.41)

aal+ (W, u)

where 1 + (w,u) is guaranteed to be nonzero over A by the condition of —w & A.
Equation (3.41) can be viewed as a generalization of Girard’s formula [20] for the area
of spherical triangles to arbitrary regions on the sphere, as will be demonstrated in
section 4.3.2. More importantly, equation (3.41) tells us that although the 2-form dw is
not ezact over the whole sphere S? [8, p.75][106], it is locally ezact over S? — p, that is,
the sphere minus one point. With dw as an exterior derivative of a l-form, o(A) thus
can be represented as a boundary integral over any spherical region A other than S2.

Using the identity (3.41), equation (3.40) finally simplifies to

(n+ 1)7"(A,r) = _[ M

oa 1 (r.u)? (r,n) ds (3.42)

for any unit vector r such that —r ¢ A. The formula (3.42) provides us a more compact
expression for axial moments 7 than equation (3.39) as it gets away with the solid angle
difference between even and odd n. In addition, it also suggests alternate approaches
to evaluate or approximate axial moments, for example, in terms of hypergeometric

functions [4], or using numerical quadratures.

3.3 A General Boundary Integral for Irradiance

In this section we shall derive a boundary integral representation for the irradiance
integral (3.7) due to a linearly-varying luminaire. The result is general in that it applies
to planar luminaires of arbitrary shapes. This reduction to a one-dimensional integral
is performed by using Taylor expansion and generalizing axial moments described in

section 3.2.3, and can be stated as three steps detailed in the following sections.
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3.3.1 Taylor Expansion

The formula (3.33) for irradiance tensors and equations (3.37) and (3.38) presented in
section 3.2 allow us to transform the integral of polynomial functions over a spherical
region to a boundary integral around its curve. In order to use these formulas to reduce
the rational function in the irradiance integral (3.7) to a one-dimensional integral, we
need to first change this rational function to a polynomial form, and the mathematical
tool is Taylor ezpansion.

We proceed by expanding the denominator 1/ (w, u) in equation (3.7) into an infinite
series according to Taylor’s theorem and the binomial theorem. Let y = (w,u), then the

series expansion of 1/y at yg can be computed as:

1 1
Y Yo + (¥ — yo)

- L[S (-]
(1-2)]

s
S ()]

|~ &

Yo fi=0

= Te—

Mg S|~

B(=DF /n 3 o
= Z ( k+)l ( )yk" (3.43)
n=0 k=0 Yo k
where we have used the fact that
(e o]
1+z)™' = Y (-2)", (lz| <1). (3.44)
n=0

In order to make the expansion (3.43) converge for all u over the spherical projection A,
it follows from equation (3.44) that we have to choose a scalar 19, or equivalently a unit

direction ug € S?, such that

(w,u) — (w,up)| < (w,ug) (3.45)

for any unit direction u € A. As we defined in section 3.1, w is the unit vector from the
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origin orthogonal to the planar luminaire. Let ¢ denote the angle between any unit vector
u € A =1II(L) and the perpendicular vector w, then ¢ falls in the range [0,7/2) as A is
on the illuminated hemisphere. By choosing ug = w, the convergence condition (3.45)
is satisfied as |cosp — 1| < 1. Consequently, the Taylor expansion of 1/ (w,u} around

ugp = w is simplified by yp = 1, yielding

(wfu) - i > (-1 (:) )

n=0k=0

As a result, the integrand (a,u) (b,u)/(w,u) can also be expanded into an infinite

series, obtaining

Ba) = -3 Y0 () [ e o) (o) (3.46)

n=0 k=0
Equation (3.46) represents the irradiance ®(A) as an infinite sum, comprised of terms of
the form

L (w, u)¥ (a, u) (b, u) duw, (3.47)

which motivates us to extend the idea of axial moments and double-axis moments de-
scribed in section 3.2.3 to allow for three axes, resulting in the concept of triple-azis

moments.

3.3.2 Triple-axis Moments
By analogy with the definitions (3.34) and (3.35), we define the triple-azis moment of a

region A C S? with respect to three axes r, s and t by

Fk(A,r,s,t) = / (r,u)’ (s, u) (t,u)" dw,
A
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for integers i, j, k. Specifically, to accommodate the terms (3.47) resulting from Taylor

expansion, we shall only consider a special case where 3 = k = 1; that is

(A s, t) = /A(r,u)" (s, u) (t,u) dw. (3.48)

The irradiance in (3.46) thus becomes an infinite sum of triple-axis moments, given by

_%ii ( ) F9L1(4, w,a,b), (3.49)

which may be expressed as a one-dimensional integral by deriving a boundary integral
=k,1,1
representation for the moment 7 (A,w,a,b).
By expressing the integrand as a tensor composition

(r,u)" (s, u) (t,u) = (u®---® u)?zﬂ;rz(r ®--- @r)7sity,

where the summation convention is implied for all repeated subscripts, including the
multi-index, we may represent the triple-axis moment 7 "5 defined in (3.48) in terms of

irradiance tensors given in equation (3.32), obtaining
A8, t) = T"2(A)r® - r®@s® t). (3.50)
From the recurrence relation (3.33), we get

+2(4) =
TH(4) =

i J 8A

Z T{nsi(A) + 6, THA) — / u?flnjds} . (3.51)
Substituting equation (3.51) into (3.50), we have
(n+3)F" M (A,r,5,t) = (n+3I)THAA - ©r)sit;

= [Z 8;1, T(rryi(A) + 85T (A) “LAU?flnde] (r®- @r)sit;

n
= > 8 titn Tii(A)(r e - @r)nsi +
k=1
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Using equation (3.36) to replace the first two terms on the right, we have derived a

=n,l1,1 >
recurrence formula for 77, given by

(n+ 37" (A,1,8,t) = n(r,t)F*bY(A4,r,s) + (s,t) 7(A,r) —

f(nmw&mumms (3.52)
OA

for any integer n > 0, where we define ;0'1’1(A,r,s,t) = 7bl(4A,s,t), 71 (A,r,8) =0
and 791 (A, r,s) = 7'(A,s).

Comprised of the axial moment 7 and double-axis moment 7 as its components in
equation (3.52), we may obtain an expression for triple-axis moments in terms of bound-
ary integrals, by expanding these components using equations (3.38), (3.37) and (3.42).

=n-1,1

From equation (3.38), we may replace 7 in equation (3.52) by

LA, r,s) =

n-l+—1 ((” —1)(r,s) 7" *(A,r) _/

A

(r,u)""'(s,n) ds) .

resulting in

n(n—1)
/f')A [n i— 3 (r,u)" (s,u) (t,n) +

;Tl,lvl(A,r,s'.t) -

(r,t) (r,s) 7" %(4,r) + - ! (s,t) 7"(A,r) —

+3

(r,u)" ! (r,t) (s,n)] ds. (3.53)
Then by applying the recurrence formula (3.37) for 7, we attain

=n,1,1 _ n—1 5 I x Fn—1 r) —
U A r,8t) = (——(”+3)(n+1)( (,t)(,s)+(s,t))) 2(4,1)

/3,4 [ ()" (s,u) (t,m) +

n+3

- (" r,t) 5, m) + (8, ) {r, n>)] o

U5 (n+3)(n + 1)

(3.54)
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n,l,l(

It then follows from equation (3.42) that 7 A,r,s,t) can be expressed as a boundary

integral, that is

A, s, ) = o _l+_ = (/64 [(r, u)" (s, u) (t,n) + (r,u)""! ik (s,r;):—l(s,t) (r, n) +
1—(r,u)"! /n(rt)(r,s) + (s,t)
o e <‘“’“>)] d's) -

= _n—lk3 (/{;A { (r,u)" (s,u) (t,n) +

()" (58 (s.m) — {r,8) (r,m)) +

1—{r,u)"™ /n(r.t)(r,s) + (s, t)
1 — (r,u)? ( i+ 1 tr. n))

ds) , (3.55)

where —r € A.
Although we have assumed n > 2 in the step shown in equation (3.54), equation (3.55)

still holds for all n > 0, which can be easily verified by examining the following two base

cases:

n = 0: 7 reduces to a double-axis moment, thus

75—0‘1’1(A,r.,s,t) - '4:'1’1(A,S,t)
- L vom - [ Buwltn)
= jEte - [ BEEE,
1

= = (B Gt )y
= st ((s., ) (t,n) + l+(r,u)) ds.  (3.56)

n = 1: It follows from equation (3.52) that

P (A rs t) = i((r,t)f(A.,sH(s-,t)f(fhr)+/{,M {r.u) (s, u) (t.n) “’“)
= = il sde ) &
4 /o4

(r,t) (s,n) -; (s, t) (r, n)} ds. (3.57)

Both results (3.56) and (3.57) are consistent with those from equation (3.55).

Incorporating equations (3.55) and (3.49), we are able to reduce the surface integral
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®(A) given in (3.49) to an infinite summation of boundary integrals, which may then be
further simplified down to finite terms. However, this step is quite tedious, resting upon

assorted binomial summation identities summarized in the next section.

3.3.3 Assorted Summation Identities

In the simplification that follows we employ a number of useful power series and algebraic

transformations listed below to absorb the infinite sums.

Ly g
n+3)n+2)n+1)  2\n+l n+2 n+3 '
)
= 2 1 1
= - 358
Z::(nﬂ n+2+n+3) 2 559
oo = n+1
% = —Inz (3.60)
n=0
oC _ e yn+2
Z% = z—1-Inz (3.61)
n=0
X (1 — )73 U8 _
3 -z _ _@-3@-1 T (3.62)
= "N+ 2

Here we assume 0 < 2 < 2 to guarantee the convergence of the Taylor series of Inz.
In order to get rid of the binomial summation in (3.49), we shall also require some
identities regarding binomial coefficients, which are described here without proof. The

detailed derivations are attached in Appendix A.3.

n k(M zk B 1—(1 - z)n+! -
];)( 4 (k)k+l - (n+ 1)z (3.63)
n a0 zk 1 2 _(1—1‘)"‘”
kg(_l) (k)’“” B ?((n+l)(n+2)(n+3) ntd

2(1 - :I?)"+2 (1 _ l.)n+l (3 64)

n+2  n+l -

STNTAAYE TS
kg)( H (k)k+1 T on+1 (3.65)
n L[ 1 B 5 |
E‘O(_l) (k)k” T (n+3)(n+2)(n+1) (3.66)
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By applying the infinite summation over the index n to these binomial identities and
simplifying the results using identities (3.58) to (3.62), we can easily derive the following

double summation identities involving binomial coefficients as follows:

2 l—2 X 1 1 — {1 —zpyid

Br (A - £t

n=0k=0 3 + n=0 n+ n+
ml—z)”‘“

=Z n+1

= —lnz (3.67)
o L\ zF 1 & 2 x (1 — )"t
_1k(n) i - B (1 —a]i¥a
72”2)( ) K/ k+3 " nZ::O(n+3)(n+2)(n+l) nZ=:0 n+3 t
§2(1_$)71+2_§:(1_I)n+1
=0 n+2 — n+1
1l @=3)-1) L
= = (2+ 2 +Inz 2(l—x)—2hu.+ln.z,)
l € )
= Ba (3.68)
Sy (M) ey = 2 2
n=0 k=0 k/ k+3 = (n+ 1(n+2)(n+3)
= 1 2 1
- Z( _ " )
—\n+l n+2 n+3
1
= = 2 60
2 (3.69)
o8 : n l—1k+1 o0 n n 1 o oI () n .l,"
()R - B ()i ()
nz:m;) ks k+3 nz::Uk:E::O L/ E+3 ngﬁig) E k43
= U (3.70)

3.3.4 Simplifying Infinite Sum to Finite Terms

The simplification of the infinite sum shown in (3.49) is performed by applying assorted
binomial identities discussed in the previous section. In this section we illustrate each

step in detail.
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With w as a unit vector orthogonal to the planar luminaires L, we have —w ¢ A =

II(L). It then follows from equation (3.55) that

1

;k’l’l(A,W., a,b) = _.m (LA [ (w,u)k (a., u) (b, l’l) +

k

m (W, u>k_l (W, b) ((as Il) - (W,&) (W, l’l)) +

1 — (w,u)*"! 7k (w,b) (w,a) + (a,b) '
1 - (w,u)? ( k+1 (w=n))] ds) {3.711)

Let us define

W k
T, = /d ) %;“; (a, ) (b,n) ds,
[ G (o b (e — (wa) (wn)) ds,
(w,n) 1— (w,u)"!

N /aA 1— (w,u)’ (k+3)(k+1)

(k (w,b) (w,a) + (a,b)) ds.
Equation (3.71) then reduces to
Pl wab) = —(T1+ T+ 1),
Consequently, the irradiance ® becomes
va) = - S0 (1) @+, (3.72)

Using those double summation identities (3.67) to (3.70) derived in section 3.3.3, we may
reduce the three resulting infinite summation terms on the right of equation (3.72) to

finite terms.

(1) Term One It follows from equation (3.68) that




- é/m ((f: 1)) $h, W) i (3.73)
(2) Term Two
oc n B . -
St ()
B oo n B k E . . .
- ,;;;,( 1) (k>[3-4( ,b) ((a,n) — (w,a) (w,n)) x

k=1 ;.
krnE+D W &

- ioo n 1AL (ng)((an)—(wa)<wn))x
3 1 -
(k+3_m) (wou)* 1 ds
_ an n k(M (w,b)((a,n)f(w,aﬂw’n))x
= 322D (A)[H )

1 3w, )t 1 — (w, )
— : - ds. (3.74
( LT E%E T Bl b PhIA)

In addition, it follows from Stokes’ theorem that

/6 ¥y0) ds = (w,v)/ {w,n) ds (3.75)

A (w,u)? a4 (w,u)’

for any arbitrary vector v and unit vector w in S%. See Appendix A.4 for its proof.

Letting v = a in equation (3.75), we have

/ (aa n) — (W, a) (W, n)
dA

Consequently, combined with identities (3.67) and (3.68) that equation (3.74) sim-
plifies to
n

iZ(—nk(”) Ty
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L n (w,b) ({a,n) — (w,a) (w,n))
= 5220 (), x

(w.u)’

3 (w,u)kH . 1 — (w,u)kH i
k+3 k+1

2 (wsu)z
3w, a1 — dw ) .
Zﬂkzo k( )( k+3 1 k41 )d‘“
1  (w,b)({a,n) — (w,a)(w,n)) /3 .
= T ) (5—111(w,u)) ds
_ @ /a () (w,n)—(a,n})lz:i‘:’l;) da. (3.76)

(3) Term Three By applying the transformation

1 B 1( 1 )
(k+3)k+1)  2\k+1 k+3/)’

we have
T
zz AWk
- / ii [(1—(wu)k+])x
‘H‘]' W, 211 0 k=0
k (w,b) (w,a) (a,b)
((k+3)(k+1) * @) -
1 (w,n) _ o oY il o=k (1) L (w 1)
= 2Joal—(w,u)? [(3<Web)( .a) (:b))nzz:“:o( 1) (k)“k+3 4
0 n 7 1—(w,u)k+1
(a0) = (w.) () - 521 () —k;—l—] ds
_ {w,b)(w,a) — (a,b) In (w, u)
_ : faA (o) g (3.77)

where the last step follows from identities (3.67) and (3.70)
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Incorporating equations (3.73)., (3.76) and (3.77), equation (3.72) finally reduces to finite

terms, given by

i (a,u) i w.a) _ (a . In (w, u)
a(4) = 2W[M((m) (bum) + [, b) () o) o) 2
) () = o)) ) (3.78)
(w,u)

Noticing that another identity

fa . [(a,n) - E‘MP)] ds = /d . {(a,w) (w,n) — (a,n) lz‘“"’)‘;) ds  (3.79)

(W, u) w,u

holds for an arbitrary vector a and a unit vector w (See Appendix A.5 for details), we

may further simplify equation (3.78) as follows:

In (w, u)

1 — (w, u)2

°4) = 5 [ (ﬁ,‘;ﬁ (b.m) + [(w,b) (w,a) ~ (a,b)] (w.n)

PR [(a, n) —

1
B /(;‘.1 ((b w) (a,n) + [(bs n) — (b, w) (w, n)]

Cor

Moreover, using the fact that

(b,w){w,n) —(b,n) = b'ww'n-b'n

and

(a,w)(b,w) — (a,b) = b'ww'a—b"a

= b"(ww' -1I)a,
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equation (3.80) becomes

1
2

/(-9‘4 ((b, w) (a,n) + b" (I — ww") ((:”Ell:))n —n(w,u) (w,n) aD ds, (3.81)

where the scalar-valued function 7 is dependent on w and u and given by

In (w, u)

n(w,u) = m,

(3.82)

which is well-defined since (w,u) > 0 for the illuminated hemisphere and n = 0 at the
singular point (w,u) = 1.

To see the connection between equation (3.81) and Lambert’s formula for uniform
luminaires, we are intended to express the irradiance formula in (3.81) in a tensor form.

By using equation (3.19), we rewrite the integrand in equation (3.81) as

(b,w)(a,n) +b" (I-ww") { 81 n—7 {(w,n) a]

(w,u)
< a;u;
== oikainkb]wj g2 bj (5jm - ijm) (W ll) n,, — 17 Wrhga,
= |5 5 Ot _ b, 3.83
= |0uW; + (Ojm — W;Wpn) W — 0imWg 17 | | a;b;ny. (3.83)

We shall define a 3-tensor M depending on unit vectors w and u by

Oin W )
Mijk(w' u) = 6ikwj o+ ((\]?C:lus - 5imwk TI) (5jm - ijm) (3.84)

with 7 given in equation (3.82). It then follows from equations (3.81) and (3.83) that the
irradiance at the origin due to a Lambertian luminaire L with linearly-varying radiant

exitance is given by the boundary integral

1
B(A) = _g/(’#‘1\/11],6(‘;.,,u)aibjn,c ds, (3.85)
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where A C S? is the spherical projection of L and it denotes a region on the sphere
with a rectifiable boundary dA; that is, a boundary for which an outward normal n is
defined almost everywhere. See Figure 3.2. Here, ds denotes integration with respect to
arclength.

Another advantage of expressing the irradiance ®(A) as a tensor form shown in
(3.85) is that we can directly derive various vector-valued irradiances from it, such as

vector irradiance defined in (3.29), which actually corresponds to

1 [ u{a,u)
L[ sle

mJa (w,u)
independent of the receiver normal b. However, we are more interested in another
irradiance vector that removes the parameter a from ®(A). That is

®(4) = 1/1M dafu], (3.86)

T (w,u)
which may be computed from equation (3.85) by

1 ;
@(A) = —% 84M,"jk(w,u)b]‘ n; ds. (387)

We denote this vector-valued irradiance by ®(A). It is related to the scalar-valued

irradiance by
®(A,w,a,b) = (a,P(A.w.b)). (3.88)

By separating the vector a encoding the linear variation of the luminaire from the compu-
tation of the irradiance, the vector quantity ®(A) is very useful in certain circumstances.
For example, suppose that we want to compute the irradiance at a receiver point due
to a luminaire with more than one linear variation superimposed over the plane. Since
different variations only differ in the vector argument a, computing this vector form of
irradiance allows us to amortize the computation cost among these variations for high

efficiency.
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3.3.5 Verifying the Boundary Integral (3.85)

It is generally quite difficult to express a surface integral into integrals over the bound-
aries!, which is equivalent to solving a form differential equation [8, p.72]. Interestingly,
once the solution is found with whatever methods, we can, however, easily verify its
correctness from Stokes’ theorem. In this section we shall provide such a direct proof
of our general boundary integral (3.85) for the irradiance due to a linearly-varying lu-
minaire derived in the previous section. The proof strategy is quite general and applies
to a class of identities that relates boundary integrals to surface integrals, which will be
encountered frequently in the next chapter.

Combining equations (3.7) and (3.85), we phrase the identity to be proved as the

following theorem.

Theorem 4 Let A be the spherical projection of a planar luminaire L onto the hemi-

sphere at the origin, u € 8% and the vectors a,b, w as defined before. Then we have

,u) (b, 1
[A (a,(u)( ) ’E/EMM”“a"b" n, ds, (3.89)

w,u)
where the tensor M is given in equation (3.84).

Proof: The proof is done by applying theorem 3 on the right hand side and changing

it into a surface integral, which can be stated in the following steps:

Step 1: Let r be the position vector of the luminaire point and r = || r||. Using the fact
that
r x dr r
nds = —, u = -, (3.90)
§2 r

as shown in Figure 3.2, we may rewrite the integrand on the right hand of (3.89) in terms

of the position vector r and its derivatives:

d
j;4Mijkaibjnkd3 sz;k ekplr =

1 7 s i ‘ Z 3
This conversion may not exist when the 2-form corresponding to the surface integral is not exact.
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— / B[ dr,., (391)
OA

where have introduced a vector B, given by

5 s skp,Mijkaibjrp
I = r2 D

It follows from equation (3.84) that we may write M as

5jk‘ ‘-ijk

(w.u)

Mije = ouw; + w;— (03 W — Wi W Wy ) 7). (3.92)

Step 2: To convert the boundary integral in equation (3.91) into a surface integral using
Stokes’ theorem (3.25), we must compute the partial derivative of B; with respect to r,,.

that is,

Bum = Ekﬂaibfa%n [%} (3.93)
Notice that
0 [52] _ Spmr? —2nry
oty 1r? i
af,)m [M,ji] = (85 —wjwy) dim (“(':.)r;zriwrn = N (8 W g — Wiw, Wy,

where 7, denotes the partial derivatives of  with respect to r,,, which can be computed

as follows:

(r*w,,/ (w,r) — 1, + 2r,, In (w, u)) (7’2 — (w, r)z) —(2r,,, — 2{w,r)w,;,) 7% In (w, u)

(r2 — (w, r)z)2
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rwy, (12 = (wor)* +2 (w,r) In(w,w)) / (w.r) = v (2 = (w2)" + 2(w,1) In (w )

(r2 — (w, r)z)2

r2 — (w,r)?> 4+ 2(w,r)* In (w, u) (r2wm B )
(r2 - (w,r)Q)2 (w,r) "

(3.94)

It follows from the chain rule and equation (3.93) that

8,mr? — 2r,r SimEp (W, T) — ;T W
=% pm ptm m*p 3 i*p"m
Bim = egpab; {MijkT + (O — W;wWi) gy
Tp
= N (0 Wi — W W ;W)
= ggua;b; [A1 + Az + A3, (3.95)

where A;. Ay, A3 are given by

5me2 —2r,r

Ay = My o
=
Simly (W, T) — 1,1, W,,
Ay = (85 — wyw) —"— 7
r? (w,r)
Tp
Az = —;aﬂm((sijwk—wiijk)-

and M., 7, are given by equations (3.92) and (3.94), respectively. Thus, by applying

theorem 3, we have

[ B, drl = / Bl,'m drm A drl
dA A

(3.96)

Eqst drg N dr
= /;Eqm,ekp,aibj [Al =+ AQ + Ag} [—gi{“‘“s—t}

2

where the transformation (3.26) is applied.

Step 3: Applying the tensor identity (3.18) to the three terms in equation (3.96), we get

d 12 —92rr
EomiChpi®bi AL = (0pum — 8p0m) waibjMijk
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Eqmlekp!aibj A3
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aibjMi]’k
ré

2r,
T—f (aib;ry Mji)

(36qkr2 - 26qkr2 — 5qk""2 + 2rqu)

o,

rd ((a! I') (b, W) + (b’ l‘) — (W: b) (W, r)

(w,u)

(a,u)

=1 ((as b) (W,l‘) - (a= W) (b, W) (I’W)))

2r, {(a, u) (b, u)

3 (W, ll) == ) ((37 b) <W., 11) — (a, W) <b, w) (w: u)) ,

r

‘qu‘spm — 5pq‘5km

[(bk - Wi (b w))(amrp (W: I‘) — WpTp (a1 I‘))]

r? (w,r)°®
[ {mb) ) o)
r3 | (w,u) (w,u) '
_Eqmlgkpl

r2 T (rpwk (a, b) —I,Wg (a, W) (b w))

(7-2 —(w,t)? + 2 (w,r)%In (w, u)) ({(a,b) — (a,w) (b, w)) .
_ 2

r2 (1‘2 - (w,r)2)

2

r’w,,
[(5qk5pm - 6pq5km) W (W—I‘) - rm):|

) (r2 —(w,r)? + 2 (w, )2 In (w, u)) ({(a,b) — (a, w) (b, w)) .

12 (1"2 - (w.r)2)2

"
[rq (w,r) — rq(——-—}

w,r)

(l — (w, u)2 = (w,u)2 In (w, u)) ((a,b) — (a,w) (b, w)) r,
p)

2 — (w,r) (w,r)

1 — (w,u)? + 2 (w,u)’In (w,u)

rd (1 — (w, u)2) (w,u)

r, [(a, b) = (aa W) (baw)]

% Kﬁ + 27 (w,u)) ({(a,b) — (a, w) <b’w))J
% {((3:?3) ~(a ::3(111)) w) N
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2n ((a7 b) (W, ll) - (a’ W) (ba w) (W, u))] .
It follows that
2r [(a, u) (b, U)] _

Eqmlfkqlaibj [Al + As + A3] = -T—:;l W)

Consequently, equation (3.96) simplifies to
[ B[ dr, = 2/
aA A

Step 4: Expressing the surface integral in equation (3.97) in terms of solid angle using

(3.97)

(a,(t;)r (:> u)] Ty [eqst drg A drt] .

r3 2

the definition (3.27), we get
[ b,
A (wu)
From equations (3.91) and (3.97), we have proved equation (3.89). OO

In deriving the general boundary integral (3.85) in section 3.3.4, we have exchanged the
order of infinite summation and integration without proof. The direct proof presented
here serves as an indirect verification of the feasibility of these operations.

As another verification, we shall demonstrate that the formula (3.85) for linearly-
varying luminaires subsumes Lambert’s formula for uniform luminaires. As a special case
of linearly-varying luminaires, we can specify a luminaire with constant radiant exitance
¢ everywhere by three non-collinear points p,(z1.y1,21), P2(T2, Y2, 22) and py(z3.y3, 23)
on the luminaire and their associated radiant exitance values w; = ws = w3 = ¢. Then

equation (3.6) gives us

=1
ry T2 I3
a — ch [1 I l} Y1 Y2 Y3
Z1 22 23
ch
= ~ (Ah A2a AS)a (398)

A
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where A1, Ay, Az and A denote determinants, given by

ry T2 I3

A=y v ys

21 Z2 23
and
1 1 1 1. 1L I 1 1 |
Ar=|y yo ys| Doa=—|2z z 23| D3=|121 30 3 |- (3.99)
21 %22 Z3 21 22 23 Yy Y2 Y3

Here, we have used Cramer’s rule, that is, considering

=1
ry T2 T3

ML |y oy ys

21 22 23

as the solution to a linear system Az = b. Let V denote the volume of the tetrahedron

defined by p;, p» and p3 and the origin o, then
1 :
¥ = 3 Sh, (3.100)

where S is the area of Ap,p,p3, and h is the perpendicular distance from o to the
luminaire plane determined by p, py, p3. On the other hand, by considering Ap,p;0 as
the bottom of this tetrahedron, we can also express V as [20]

Vo= S (b2 xp) = GO (3.101)

| =

It follows from equations (3.100) and (3.101) that A = 2Sh. From equation (3.98), we

have

a= %(al,az,ag). (3.102)
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By expressing the vector (A, Az, A3) in terms of coordinates of p;, py, p3 using equa-

tion (3.99), we observe that?

(A1,D2,83) = (P2—P1) X (P3 — P1)-

Since the cross product (py — py) X (p3 — P1) represents a vector that is perpendicular
to two contiguous edges of Ap,p,p; and has a magnitude equivalent to twice the area

of the triangle, we have
(Al, AQ, A'g) = 28 w.

Consequently, equation (3.102) gives us

As a result, equation (3.85) combined with equation (3.84) yields

B(A) = —;—; [ (bom) ds (3.103)

which is Lambert’s well-known formula for the irradiance at a point due to a uniform

luminaire with radiant exitance ¢, where b is the normal at the receiver point.

3.4 Closed-form Solution for Polygonal Luminaires

The general boundary integral in equation (3.85) reduces the area integral (3.7) cor-
responding to the irradiance due to linearly-varying luminaires to a one-dimensional
integral. Thus far, no restrictions have been placed on the shape of the integration
region A C S%. This section describes how this boundary integral formula leads to a

closed-form solution for polygonal luminaires.

“Depending on the orientation of P, P, and py, the order of the cross product may be reversed.
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Figure 3.3: The vectors used to parameterize an arc ¢; (u;u;y,) defined by a polygon edge r;r; ;.

3.4.1 Spherical Polygon

Given a polygonal luminaire P, the resulting projection A on the sphere is a spherical
polygon, whose edges are great arcs, that is, segments of great circles.

When A is a spherical polygon, the boundary integral (3.85) can be evaluated along
each edge ¢ of A, resulting in a summation of line integrals, which are greatly simpli-
fied in two ways. First and most importantly, the outward normal n remains constant
along ¢, which allows us to move the factors involving n outside the integrals. Another
simplification emerges from a certain parameterization for the edge, as we shall show
below.

Let ¢; denote a great arc connecting two points u; and u;4; on a unit sphere, which are
spherical projections of an edge r;r; | of the polygonal luminaire P. Then the outward
normal n is in the direction of u; x w;4, perpendicular to the plane formed by u; and

u;+1. We may parameterize this great arc (; as

u(f) =scos + tsind, (3.104)

where s and t are two orthonormal vectors in the plane containing the edge and the
origin o, with s directed toward the first vertex of the edge, and @ is the rotation angle of

u from s. See Figure 3.3. This parameterization allows us to compute the line integral
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of the form
f((v, u) ds (3.105)
by an integral of angle 6, where v is an arbitrary vector. Let
a = (v,s), b= (v,t),
we define
c = Va?+ b, (3.106)

and an angle ¢ € [—m, «| such that

(cos ¢, sing) = (% 9). (3.107)

It follows from the trigonometric identity
cos(0y + 03) = cosb cosfy — sin b sin by
that we may evaluate the type of line integral shown in (3.105) by

C]
[(v, u) ds = / [acos @ + bsind] do
¢ 0

¢ fn ? cos(0 — ) db, (3.108)

where © is the angle subtended by the arc (;. Note that these variables a. b, ¢, ¢ depend
on the given vector v. For a unit vector v, we have 0 < ¢ < 1. As a convention, later on

we shall use a subscript to denote this dependency, such as, ¢y, ¢, and so on.

3.4.2 Restriction to Polygons

We now specialize the result given in the previous section to spherical polygons, which

results from projecting simple planar polygons onto the sphere. The resulting formula
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will allow us to compute the exact irradiance due to a polygonal luminaire with linearly-
varying radiant exitance.
For a polygonal luminaire P with s edges, we evaluate the boundary integrals in

equation (3.85) along each great arc (; defined by a polygon edge, obtaining

1

C2m
m

@(P) = [,/(‘ Mijk a; b] ds nk(m), (3109)

s
=1

where the normal n that depends on the edge (,, has been moved outside the inte-
gral due to the property of a great arc. Consequently, for each m, the line integral in

equation (3.109) simplifies to

/Mijk a; b‘] n; ds
¢

[ 5k u; _
= /(' ‘5lkalnkawJ + ((;iu; — aimwk ’!}) ainkbj (()JTH = ijm)] dﬁ

(a,u)

= L:(a, n) (b, w) + (mnm —n (w,n) am) by (5= ijm)] ds

(a,u)
(w,u)

= (a.n)(b,w)© +b" (I - ww") [B” (a)n — B* (w.n) a] , (3.110)

= /C :(a, n)(b,w)+b"(I - ww") ( n—n (w,n) a)} ds

where the boundary integrals are defined by

i = (a,u) .
B>'(a) = f((w,u ds (3.111)
B* = w. u) ds. 3112
/<n( ,u) ds ( )

By parameterizing ¢ as we described in section 3.4.1, it follows from equation (3.108)

that we can evaluate the line integrals in equations (3.111) and (3.112) as follows:

= © cos(0 — ¢a)
W c_a[ cos( a
cw Jo  cos(0 — pw) %

_ ca /e_d’w cos(0 + pw — da)
T G e cos

do




96

_ ca [97%w cosfcos(Ppw — pa) —sinlsin(dpw — ¢a) do
= af—cbw cos

(O i
_ cp_:,/ [cos(qbw ¢a) — sin(pw — ¢a)2;29] do

0-¢
= 8 [cos dw — ¢Pa)© + sin(dw — Pa) [lncos 6} w}

Cwr —Ow
g cos(O — dw)
= e [(‘OS bw — ¢a)® + sin(pw — ¢a) In COS }
(3.113)
and
B /9 In (ew cos(0 — pw)) do
01— (cwcos(d — pw))>
_ /ecpw In(ewcosf) do
© Josw 1 - (ewcos)?
— A(Cw, (‘) = ¢w) = A(CW7 _¢W)r (3114)

where © is the angle subtended by the edge ¢, and the variables ¢’s and ¢’s are defined
by equation (3.106) and equation (3.107), respectively. The two-parameter function A

appearing in equation (3.114) is given by

"B In(acos0)
Ao, B) = —_— 3:115
() /0 1 — (acosf)? %, Ll15)

where 0 < < 1,—7/2 < 3 < 7/2. As we will show in the next two chapters, this same
integral arises in computing the irradiance from all polynomially-varying Lambertian
luminaires, and is therefore of practical importance beyond the linear problem we are
addressing here. We shall discuss this integral more fully in the next section.
Combining Equations (3.109), (3.110), (3.113) and (3.114), we arrive at a “closed-

form” solution for the irradiance at a point due to a polygonal luminaire P with s edges,
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given by

s

d(P) = — 2_: [(a, ) (b,w)©O +b" (I — ww' )(Bl‘l(a)n—fz(w,n)a)],

;3
2

(3.116)
where El’l, B* and n vary over each edge (,,. One complication that arises in our
solution is the appearance of a special function that has no finite representation in terms
of elementary functions.

To compute the irradiance vector ®(P) described on Page 85, we are required to

evaluate a vector-valued boundary integral that corresponds to B"! in equation (3.111),

defined by

B = [ s,
¢(w,u)

denoted by B!, Similar to equation (3.113), we use the parameterization given in

equation (3.104) and evaluate B! as follows:

o e o
Bl L scosf + tsind 40
cw Jo cos(0 — dw)

1 99w scos(f + dw) + tsin(f + dw)

ey do
Cw @W (‘()30
1 [97% (scos dw + tsindw) cos O — (ssin pw — tcos py) sind ”
cw J - cos 0/
1 [9dw 0
= — [(s COS by + tsin ) — (S8inpyw — t oS Py ) B ] do
cw J-¢y cosf

e O~dw
= (S oS Py + t Sin gy ) O + (S 8in Py — t COS ) {ln cos 9]
Cw _¢w

= o (s cos pw + tsin oy )O + (ssin gy — t cos Py ) In e

1 cos(© — ¢w)]
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Figure 3.4: The special function A, 3) defined in equation (3.115), over the range 0 < a < 1,

and 0 < 3 < w/2. When o = 0, A(w, §) tends to —oo.

Thus, it follows from equation (3.88) and equation (3.116), we have

3.4.3 The Special Function A

To our knowledge, the two-parameter function A(«, 3) defined in (3.115) has no finite rep-

resentation in terms of elementary exponential and logarithmic functions, and therefore

qualifies as a higher transcendental function, also known as a special function. Figure 3.4

For certain values of the pa-

shows A(e, 8) over its required domain, (0,1] x [0, 7/2].

simplifies immediately to a known definite integral with

)

(o

L

rameters such as «

exact solution. For example,

cot )

(

cosf) d

(

(3.118)
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However, to evaluate A(a,3) in general, we reduce it to a well-known special function

that can be evaluated to high accuracy, such as the dilogarithm Lis(z), given by [91, 67]

Tigla) = —/Ozlrudt . i% (3.119)

t n=1

for complex argument z with |z| < 1; or a somewhat simpler function Clausen integral

Cly(z) with real arguments, defined as [1, 12, 67]

.0 1 fe L o sinnz
2s1n§‘ do = —5/0 In (4sm -2-) do = Z —.  (3.120)

n?

x
Cl(z) = —/0 In

n=1

These two special functions are closely related, as Cly(#) is simply the imaginary part of
Lig(eig) (67, pp.91], which can be seen from their corresponding series definitions (3.119)
and (3.120).

Next we shall derive a formula to express A(w, 3) in terms of the Clausen integrals.
This reduction can be stated in three steps.

First, by the change of variable
tanf = 1 — a?tant, (3.121)

we relate A(w, ) to an intermediate two-parameter function Y (p, ) introduced by Arvo,

defined by [8, pp.112],
H g -
T(u,v) = / ln(l + v sec? 6) do. (3.122)
0

The functional relationship is

- 1 B tan 3 V1—a?
Aa, B) = —Eﬁ'r(tan I(W) - ) (3.123)

The detail of this step is provided in Appendix A.6. The change of variable shown
in equation (3.121) that leads to equation (3.123) may seem not intuitive at all, and
the readers may wonder how we came up with this formula. In fact, the connection

between equation (3.121) and equation (3.123) was reversed in our actual derivation.
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That is, equation (3.121) is obtained from relationship (3.123) using reverse engineering.
We first proved (3.123) independently by formulating A(c, 3) as the irradiance due to
special quadratically-varying luminaires, which is known to have an expression in terms
of T(u, ). We shall describe this derivation in chapter 5.

Then, we express Y{u,v) in terms of Clausen integrals. The key to finding the exact
connection between T and the Clausen integral is an identity involving the Clausen
integral derived by Newman [79, pp.88] in the 19th century. We have shown a similar
proof in Appendix A.7. Following a similar procedure employed by Arvo [8], we have

derived an expression for Y (u, ) in terms of three Clausen integrals, given by

T(4,v) = —5[2C1a(20) — Clo(ds — 20) — Cha(20) + 201 — ) Inv],  (3.124)

where

G = (V_\/m_l)za

_ il sin(2u) )
n o= ta (77+cos(2,u))' (3.125)

Equation (3.124) is in a much simpler form than the original formula from Arvo [8,
p.197]. The complete derivation can be found in Appendix A.7.
Finally, incorporating equations (3.123) and (3.124), we have shown that A(c, 5) can

be expressed in terms of three Clausen integrals. Specifically,

Ao,p) = 2a-pinys 2012(2“%‘_0;; (p = 20) = ChiZn) (5 196)

where 0 < @ < 1,0 < 8 < 7/2 and
1—+v1—a? 2
e = ||,

(o

n{e, ) = tan™? (—&E%)

v + cos(2u)
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Figure 3.5: The Clausen integral Clo(6) over the domain [0, 2r].

The case of @ = 1 has been handled by equation (3.118) and the values of A when
B € [-7/2,0] can be easily computed by using the fact that

Ala,—p) = —A(e, B). (3.127)

It is not surprising that a special function like A(«, 3) appears in the problem we are
addressing; integrals of a similar nature have been discovered and studied in connection
with radiative transfer for half a century [91]. It is interesting to note that the dilog-
arithms and related functions like the Clausen integral also appear in computing the
form factor between two arbitrary polygons, as shown by Schroder and Hanrahan [97].
In addition, Powell [91] showed that dilogarithms are equivalent to the Airey radiation
integrals that arise in both astrophysics and quantum mechanics.

By using equation (3.126), A(c, 8) can be evaluated directly. The representation of
A(a, 8) in terms of Clausen integrals has some advantages, since Cla(0) is well studied
and has some nice properties, such as being cyclic with respect to 27. A plot of this
function over the domain [0, 2] is shown in Figure 3.5. The Clausen integral can be
easily approximated to high accuracy. Kolbig [63] presents an approximation of Cly(6)
by series of even Chebyshev polynomials [104], which are defined separately for the
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intervals [0,7/2] and [7/2,w]. That is,

1 = 20
Cla(6) = 6~ 61n[6]+ 56° Y an T (—) (o <6< g) , (3.128)

n=0

and

CL®) = (=63 by Ton (%4) ( gagw), (3.129)
n=0

where the Chebyshev polynomial T,,(z) is defined for z € [—1,1] as
Tp(z) =cos(nf), =z = cosé.

Due to the property of smooth spreading out the error, the truncated Chebyshev ex-
pansion is very nearly the same polynomial as the minimaz polynomial, the optimal
polynomial approximation that minimizes the maximum deviation from the function to
be approximated. Therefore, Chebyshev approximation is widely used in approximating
mathematical functions [31]. With 20-digit Chebyshev coeflicients given in Table 3.4.3,
the Chebyshev series in formulas (3.128) and (3.129) converges very fast. Truncation
error is negligible due to rapidly decreasing coefficients a,, or b,. For an accuracy of 20
digits, we only need to evaluate the Chebyshev series in equation (3.128) (or (3.129))
with 10 terms (or 16 terms). A procedure for evaluating a sum S = S, ¢, Ton(z) of
even Chebyshev polynomials is given in the pseudocode ChebySum , which is based on
the recurrence relation attributed to Clenshaw [31]. It should be pointed out that this
method of summation has no worse round-off characteristics than ordinary polynomial

evaluation and use the same number of multiplications [104, p.35].
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ChebySum( real c[ ], real z, integer N )

h+ 2z —1

a4+ 2h

t1+0

ta 0

forn—~ N,N—-1,...,0do
to « c[n] +axty —to
lo 11
t1 + 1o

endfor

return tg — h x to

Another approximation formula, due to Grosjean [50], consists of elementary real

functions only and is given by

1 1
Cly(#) =~ —6flnsin 59 + ——0(7% — 6%)(120 — Tx% + 36°) + (2 In2— g) sin 6

2880
89 . 2 449\ | 4259 1 ;
— (@ — ln2) Sln29 + (5 In2 — ﬁ) sm39 = (m o §1H2) Sll’l40
2 10397
“In2 - ——si . <0< 2
+(5 n 37500) sinbf, 0<0< (3.130)

Experimentation shows that equation (3.130) can approximate Cls(z) to a relative error
less than 0.003%, which may be enough for graphics applications. This procedure is
shown in the pseudo-code ApproxClausen in Figure 3.6. If most time is spent in eval-
uating trigonometric functions in equation (3.130), optimization can be performed such
that only one call to sine and cosine function is necessary. The idea is to compute the
sine and cosine of a multiple angle using iterated rotations rather than direct call to

trigonometric functions. For example,

cos(n +1)0 cosf —sin@ cos(nd)
sin(n + 1)0 sinf cosd sin(nf)
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n an bn
2.795283197357566135E — 02 | 6.3909708885726534131FE — 01

1 | 1.7630887438981157F — 04 —5.498056930185171564F — 02

2 | 1.26627414611565FE — 06 —9.6126194595060643FE — 04

3 | 1.171718181344F — 08 —3.206468682255048FE — 05

4 | 1.2300641288F — 10 —1.32946169542555E — 06

5 | 1.39527290F — 12 —6.209360182440F — 08

6 | 1.669078E — 14 —3.12960065639EF — 09

7 | 2.0761F — 16 —1.6635195382E — 10

8 | 2.66FE — 18 —9.19652725FE — 12

9 | 3E-20 —5.2400377E — 13

10 —3.058038F — 14

11 —1.81969F — 15

12 —1.1004F — 16

13 —6.75E — 18

14 —4.2F - 19

15 —-3.0E - 20

Table 3.1: Chebyshev coefficients for Cly(6).

Or alternatively, we may compute the Clausen integral using a hypergeometric rep-

resentation [4, p.102], given by
(10 0 LLL g
Clz(0) = Im(Lig(e")) = Im | e¥3Fh ; € '
2 2

where Im(z) is the imaginary part of the complex number z.

However, as a more efficient alternative, one can tabulate the function A(a, 3) on a
regular grid, and retrieve values by direct indexing and bilinear interpolation. Unfortu-

nately, it can be seen from the definition (3.115) that

i]i:%A(aa ﬁ) = —0o0,
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ApproxClausen( real z )

c1 +—  3.472222222F — 04
¢+ 9.869604401F + 00
c3+  5.091276919F + 01
cg +—  1.362943611F — 01
cs + — 2.165319440F — 03
ce +—  1.639639947F — 04
c7 <= —2.471701169E — 05
cg <  5.538890645E — 06
ifr==20
return 0.0
endif
ifz>n
return -ApproxClausen (27 — )
endif
return
c1 %2 % (cg — z2) * (c3 + 32?)
+cy * sin(z) + ¢ * sin(2z)
+cg * sin(3z) + e7 * sin(4x)
+cg * sin(5z)
—z % In(sin(z/2))

end

Figure 3.6: Pseudo-code for Grosjean’s approzimation of Clausen’s integral for x € [0, 2x].
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Figure 3.7: The special function A'(c, ) defined in equation (3.132), over the range [0,1] x
[0,7/2].

(also see Figure 3.4), which makes it impossible to evaluate A over its entire domain
using bilinear interpolation. To remedy this, noticing from Figure 3.4 that A(c, B) varies
smoothly in most places except the neighborhood of @ = 0, we may separate a small strip
[0, cte] % [0,7/2] from the domain, and evaluate A(a,3) using formula (3.126) inside the
strip and use bilinear interpolation over the rest of the domain. In our experimentation,
o is chosen as 0.01. After creating a table on a regular 300 x 300 grid over the domain
[0.01,1] x [0,7/2], we estimate the error by evaluating A over 3000 x 3000 regular grid
points. It is shown that such a hybrid approach achieves a maximum relative error
0.2%, which is accurate enough for graphics applications. For simplicity, we only need to
tabulate the value of A with the parameter 8 over the range [0, 7/2], since 8 € [—7/2,0]
can be easily converted to the required domain by equation (3.127).

Another approach is to split A, 3) (@ # 1) into two parts by replacing In(a cos )

in the numerator by In(a) + In(cos §). This results in

AMa,f) = (lna)/(-)ﬂim:,,(“_}ﬁ____ d9+[0ﬁMd0

acos 6)? 1 — (acos6)?

= Ao, 8) + Ao, ), (3.131)
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where we define

, _ (? In(cos®)
N (o, B) = /0 eea? (3.132)

and A can be evaluated exactly as [49, p.185)

Ma, B) = \/1% T (\/t%_i?) (3.133)

A plot of the new function A'(a,8) for 0 < @ < 1l and 0 € 8 < 7/2 is shown in
Figure 3.7. Since A’ is smooth and bounded, it can be easily computed using numerical
quadrature, or in terms of Clausen integrals from equations (3.126), (3.131) and (3.133).

Furthermore, by tabulating A’'(c, 8) we can approximate A over its entire domain via

interpolation.
To aid in other possible interpolation using B-splines, we provide convenient expres-

sions for the four boundary curves of A’(a,8). Except the boundary A'(0, ), given
by

N0, 8) = L ’ 1n(cos ) do, (3.134)

all the other three boundaries can be expressed in closed-form. That is

AN(1,8) = A(L,8) = —B— cotBln(cos ), (3.135)
A(a,0) = 0,
A’(a,%) = —2‘/—-—%111 (1+Vi=a?), (3.136)

where equation (3.136) is derived in Appendix A.8. The boundary defined in (3.134) is
called Lobacheuvsky’s integral [49, pp. 941], denoted by L(z), which can be expressed in

terms of the Clausen integral as

L(z) = —;—Clz(ﬂ' —2z) —zIn2, (3.137)
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See Appendix A.7. Lobachevsky’s integral is a well-known special function which cannot
be evaluated in finite terms [67]. Since this special function A’ contains Lobachevsky’s
integral [49] as a special case of @ = 0, we thus claim in the beginning of this section

that A(c, §) can not be evaluated in terms of a finite number of elementary functions.



Chapter 4

Generalized Irradiance Tensors

In this chapter we generalize the concept of irradiance tensors to accommodate the emis-
sion features manifested by planar luminaires with polynomially-varying radiant exitance.
These tensors, called generalized irradiance tensors, are natural generalizations of the ra-
diation pressure tensor of a radiation field due to a polynomially-varying luminaire. The
elements of these tensors are moments of the radiance distribution function f(u) that
corresponds to a polynomial radiant exitance function, which are expressed as a class of
constrained rational polynomial functions integrated over regions of the sphere, called
rational (angular) moments. A variety of non-Lambertian rendering effects involving
spatially-varying luminaires can be formulated as combinations of these moments, as we
shall demonstrate in the next chapter.

Generalized irradiance tensors provide us a powerful vehicle to concisely represent a
wide range of rational polynomials over the sphere. Based on several useful recurrence
formulas identified for these tensors, we obtain a number of new expressions for their indi-
vidual moments that are relevant to applications in computer graphics. Particularly, we
derive closed-form expressions for a limited subclass of rational moments corresponding
to Phong distributions [87] in polyhedral environments, and present complete algorithms
for their efficient evaluation.

We organize the remainder of this chapter as follows. Section 4.1 characterizes that

the radiance distribution at the origin due to a polynomially-varying luminaire is ex-

109
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Figure 4.1: A polynomial radiant exitance function over the luminaire plane corresponds to a

rational polynomial function over the sphere.

pressed as a class of constrained rational polynomial over the sphere, which motivates
our generalization of irradiance tensors in section 4.2. These generalized irradiance ten-
sors satisfy several useful recurrence relations developed in section 4.2. In section 4.3 we
use these tensor formulas to derive expressions for rational angular moments, and discuss
the exact evaluation of these expressions. In section 4.4 we derive simplified closed-form
expressions for a subclass of rational moments corresponding to Phong distributions, and
present algorithms for their efficient evaluation over polygonal domains, which will be

applied to image synthesis in the next chapter.

4.1 Radiance from Polynomially-Varying Luminaires

As we mentioned in section 3.1, a spatially-varying planar luminaire is specified by a
radiant exitance function ¢ : IR®> — IR, mapping a point x on the luminaire to its
radiant exitance value. The goal of this section is to characterize the radiance distribution
function f(u) at the origin due to a polynomially-varying luminaire, which turns out to
be a rational polynomial function over the sphere.

To see how rational polynomials arise in this context, consider the radiation field

at the origin caused by a polygonal luminaire L C IR? not containing the origin o.
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Suppose that the radiant exitance of L varies according to a polynomial ¢(x) at each
point x = (z1,Z2,23) € L, where 1,9, 23 are the coordinates of x with respect to an
orthogonal coordinate system (e;,es,e3) at the origin. As usual, we define w as the unit
vector orthogonal to the luminaire plane and h as the distance from the origin to the
plane, as shown in Figure 4.1.

Since any nth order polynomial can be expressed as linear combinations of monomials

of order n or less, it is only necessary to consider these monomials, given by
p(x) = afafzy = (x,e1)” (x,e2)" (x,e3)", (4.1)

where p + ¢ + r = n for a nth order monomial. By using the identity (3.5) between the
position vector x and its unit direction u, we may express the radiance distribution f(u)

at the origin emitted from the Lambertian planar luminaire L in terms of ¢, yielding

fw) = 2o (=), (42)

Tor (w,u)

where the radiant exitance keeps constant in all directions. Consequently, a Lambertian
luminaire whose radiant exitance varies according to a nth order monomial given in
equation (4.1) generates a radiation field at the origin distributed directionally by

R" {e1,u)? {es,u)? (e3,u)"

flw) = = : (4.3)

(w, u)"

which is a rational polynomial over the sphere. However, the form of (4.1) is constrained,
as only powers of (w,u) appear in the denominator, which simplifies our formalism
discussed next. More precisely, equation (4.3) is a characteristic function of A, the

spherical projection of L at the origin. For u € A, f(u) = 0.

4.2 Generalizing Irradiance Tensors

The radiance distribution function from polynomially-varying luminaires can be accom-
modated by a simple generalization of irradiance tensors, which provides us a means of

formulating illuminating and scattering effects involving this type of emitters.
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4.2.1 Definition

In section 3.2.2, we have shown that the notion of irradiance tensors is motivated by
extending three related physical quantities, i.e, the radiation energy density, the vector
irradiance and the radiation pressure tensor, to higher orders. One assumption was
made in defining T™ by equation (3.32), that is, f(u) is piecewise constant or piecewise
polynomial over the sphere, which no longer holds for polynomially-varying luminaires,
as shown in equation (4.3). However, this type of variation can be easily accommodated
by a simple generalization of irradiance tensors of the form (3.32).

By restricting f(u) in equation (3.31) to be a class of constrained rational polynomials

given in equation (4.3), we define

T4, w) = /—u®"'®“

) do(u) (4.4)

for integers n, g > 0, where A C S? and we restrict w as a unit vector such that (w,u) > 0
for any u € A, and ® denotes a tensor product. In the context of simulating polynomially-
varying luminaires, A is the spherical projection of a luminaire L at the origin, and w
is the perpendicular vector to the luminaire plane. With a tensor product of n factors
in the numerator, the integrand of such a tensor contains all rational polynomials of the
form z%y’ 2%/ (w,u)? where (z,y,2) = u € S? and i + j + k = n. We call the integrals
in (4.4) generalized irradiance tensors and denote them by T™9(A,w), distinct from
irradiance tensors T"(A). As a convention, the numerator order n and the denominator
order g for the integrand of a generalized irradiance tensor is indicated in the superscript
of the notation T"Y, separated by a semicolon. Obviously, when ¢ = 0, T™Y reduces to
the irradiance tensor of nth order. Therefore, generalized irradiance tensors T™Y play a

more powerful role than T", allowing us to perform some additional computations.

4.2.2 Recurrence Relations

Generalized irradiance tensors of all orders are defined by a surface integral given in (4.4),
which may be reduced to one-dimensional integrals by means of several recurrence for-

mulas presented in this section. This reformulation generally simplifies the analytical
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evaluation of original integrals and may lead to closed-form solutions for certain geome-
tries. This has been a common strategy to compute integrals of this nature, such as form
factors [97, 105], vector irradiance [75], and so on.

Using the notation for the multi-indices introduced in section 3.2.2, we now state
and prove several fundamental formulas about T™? in the following theorems. The basic
mathematical tool used in the foregoing analysis is generalized Stokes’ theorem, that is,

Theorem 3 in section 3.2.1.

Theorem 5 Let n > 0 and ¢ > 2 be integers, then the tensor T™(A, w) satisfies the

recurrence relation

; 1 - : . u? (w,n
THA,w) = — | w, T (n—q+3 T”’q*z—/ L el (TAE
I ) q— 1 kgl Iy Nk ( q ) I 5 (W, u>q_.1 ' ( )
where I is an n-index, ds denotes integration with respect to arclength, and n is the

outward normal to the curve OA.
Proof: The proof is performed by considering an equivalent formula

g 1T — zn:wl el (n—q+3) w2 — __/ Ml_ ds (4.6)
= ! A (w,u)?™!

Equation (4.6) reformulates equation (4.5) as an identity that equates a boundary integral

on the right with an expression involving surface integrals on the left, which can be proved

using the same strategy as that employed in the proof of Theorem 4. We only show the

difference here.

Corresponding to equations (3.91) and (3.96), we have
[ u} (w,n) Qs = / rd-1 [i] [skplwkrp drl]
o4 {w,um)?! 8A | (w,r)? | L r2

= [ B?le drl
8A

- /5 ;- [M]’ (4.7)
A qm 3 2
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where we have introduced (n + 1)-tensor B, given by

B rpr’}
= £, W :
I el | T g

and its derivative By, ,,, is computed from the chain rule by

_ o 1 rpry 1 o r,r}
Bfl,m = ErplWk (3rm [(w,r)Q1] [Tn—q+3:| & [(w,r)q_l] or,, [T'n—cﬁ-s} » (4.8)

where

6{ 1 ]_ (q— 1w,

arm (W,I‘)q_l (W,I‘)q
v T
I N D ik ¢ R P
or,, rn—q+3 - p—q+3 q rR—q+5’

Applying identity (3.18) to the two terms in equation (4.8), we get

a 1 £,
EqmiErplW 5 Pi ﬂ.g
8rm (w! r) q rh—q

_ g—1
B _W {‘Sflk‘spm - 5pq5km} Wkarpr’}

= (g~ l)i (rq) —{g—1) ort

(w,r)?rn—q r3 (w, r)q_l pn—g+3’

and

1 9 rpry
Eqmi€kpl Wk | 3
(w,r)?7" | Oy Lrmmat
n n n
_ anpm - wmapq 6Pmr1 + rprI,m _ (n — 3) Ty Tply
- (W, r>(,1v—1 rn—q+3 pn—q+5

n
B B W I _ 7 __ WmTim (r—(’)
= (q 1) (w, r)q_l T S (7’?; g+ 3) <W, r>q~2 rn—q+2 (W, r)(I“l rn—gq 3
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where we have used the fact that
n n
= -1
I'mIl, = Tm > 6m1kr?\k =Y rfkr?’\k = nrf. (4.9)
k=1 k=1

Consequently, in terms of solid angle defined in equation (3.27), equation (4.7) simplifies

to

n
Ty

(w, r)q—2 rn—q+2

-1, [(q U St (=g +3) do (4.10)

Tpn—q (w,r)q_l rn—q

According to the definition (4.4), we express equation (4.10) in terms of generalized

irradiance tensors, obtaining
41, 2 = 2 1
n = s _ ng (. nyg— n—1;q—
LA By dr = —(¢—1)T7 (n—q+3)T, +kE_IWI]“TI\k , (4.11)

where r?,m is expanded, as we did in equation (4.9). Finally, equation (4.6) follows easily

from equations (4.7) and (4.11). OO

Theorem 5 reduces the generalized irradiance tensor T™7 of higher denominator or-
der g to tensors of lower ¢, finally resulting in a formula in terms of Pl (i.e, irradiance
tensors T™) and T™' (m < n) only. Irradiance tensors have been addressed in sec-
tion 3.2.2 and can be computed by equation (3.32), while a recurrence relation for T™!
can be derived from another useful formula about T™¥ given below, which was originally

identified by Arvo [8, p.112].

Theorem 6 Letn > 1 and g > 0 be integers. If ¢ # n + 1, then the tensor T™(A, w)

satisfies the recurrence relation

n—1_
ur ny

g ds) ; (4.12)

. 1 iy . .
Tn,_q - 5. Tn—i,q _ W‘Tn—l,q+1 _ /
Ij n—gq+1 (kZ:l G+ I\k qw;ly o4 (W,u)

where I is a (n — 1)-index, ds and n are the same as those in Theorem 5.

Proof: The proof parallel that of Theorem 5. See Appendix A.9. OO
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From Theorem 5 and Theorem 6, we are able to derive a formula for T™!. For integer

n > 0, we may apply equation (4.12) to express T™! as

1 n—1 u™ 1]1
LY n—2;1 n—1;2 I J
= - 851, T2t — wy T —f L gs).

{w, u)

Replacing T"~ 12 above by equation (4.5), that is,

n—1
n 1;2 21 n—1;0 u; {(w,n)
= ST ey [ 8

ds,

w,u)
we get

= n—1
Z(ﬂ W;,w;) ?/k21+LAuI

(w; (w,n) —n;) s

n,l n— 1 1
le = W]TI H

{w, u)

Noticing that

Sk — W

j iwe = (05

j "W‘Wz‘) Osks

J
n;, —w;(w,n) = (§; —w;w;)n,
we arrive at the following theorem:

Theorem 7 The tensor T™! (n > 0) satisfies the recurrence relation

n—1

s 1 . u, n
n;l _ mn—1l_ (s n=21 _ L
T); (A,w) = w,;T7 "+ n (0jm — WjWp,) L§:1 5mIkT[\}c /é’A tor ) ds} :(4.13)

where I is an (n — 1)-indez.

Proof: See Appendix A.10. OO

To complete the recurrence shown in (4.13), we end this section with a theorem that

expresses the base case T%! in terms of a boundary integral.
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Theorem 8 The base case T (A, w) is given by

M(w, n) ds = n(w,u) (w,n) ds, (4.14)
Al — {w,u) HA

TO (A, w) = fa

where 1 is given in equation (3.82).

Proof: See Appendix A.11. OO

It is not surprising that the function 7n(w,u) defined on page 84 arises here, as equa-
tion (4.14) was derived using a similar expansion approach employed in chapter 3. Ac-

cording to the definition (4.4), T%! is given by a surface integral, that is

Ul(4,w) = ;Ju
TN Aw) = [ o dotu).

Expanding the integrand as a Taylor series, as we did in section 3.3.1, we can derive

equation (4.14) as follows:

™iw) = [ £§(~1>‘°(:)<w,u>‘“ do(u)
g g§<~1)‘“(:) () dou
- gé(—m(:)f’“m,w)
_ ‘gé(_”k(:) kil aAlf—(Tv::l):;:l (w,n) ds

where we have used the formula (3.42) for the axial moment 7* and the double summation
identity (3.67).

Considering the connection between i and the special function A arising in computing
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the irradiance due to a linearly-varying luminaire, Theorem 8 suggests that the special
function A may essentially come from T%!, Furthermore, on observing that T%! is the
base case of generalized irradiance tensors T™?, which are closely related to the irradiance
problem due to polynomially-varying luminaires, we may speculate that the irradiance
due to all polynomially-varying Lambertian luminaires probably depend on the same
special function, which will be verified in the next chapter.

To sum up, for all non-negative integers n and g, we may obtain a contour integral
representation for generalized irradiance tensors T™7 by recursively applying the three
formulas stated respectively in theorem 5, theorem 7 and theorem 8, as well as the

recurrence formula for irradiance tensors given in equation (3.32).

4.3 Rational Angular Moments

In simulating some illuminating and scattering effects involving polynomially-varying lu-
minaires, we are required to compute moments of the radiance distribution function f(u)
from such emitters. With f(u) given in (4.3), these moments are expressed as rational
polynomials integrated over the sphere. To study them, we generalize the concept of
axial moments in section 3.2.3 to accommodate a rational component coming from the
spatial variation of the emitters. Given an arbitrary subset A C S2, a unit vector w € 852
and n vectors vy, -+, v, which may not be normalized!, we define a form of constrained

rational polynomials by

THUA, Vi, VW) = LW“‘ZL;"I'S;’"’“) do(u) (4.15)

for integers n, g > 0. We call them rational angular moments, denoted by 7™9(A, vy, - -,
v,; w). The axes (vi1,...,Vy) serve as two purposes: some of them encode the emission
distribution of a monomially-varying luminaire, which in combination with w character-
ize the radiance distribution f(u) from this emitter; while other axes define a polynomial
weighting function for f(u). Similar to T™9, we also indicate the numerator and denom-

inator orders of its rational polynomial integrand of ™9 with the superscript n;q. For

!The vectors are required to be normalized only when equation (3.39) about the axial moment is used.
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consistency, in the argument list, we separate the numerator parameters (vi,...,vp)
and the denominator parameter w also by a semicolon. In this section we shall find that
these rational polynomials associated with 7™ can be integrated exactly over polygonal

domains with the aid of generalized irradiance tensors T™9.

4.3.1 Contour Integral Representations

From equations (4.5), (4.13), (3.32) and (4.14), we may obtain corresponding expres-
sions for rational moments, which reduce the area integrals of 7™7 to a contour integral
representation. This is the key idea underlying our tensor formalism and also of great
practical importance since the number of elements of T™7 increases exponentially with
n. Although it is these individual scalar moments that are required essentially for image
synthesis, the tensor formulation T™9 provides us a powerful tool to represent a family
of rational polynomials parameterized by weighting axes vi,...,v, by means of tensor
composition. It is more advantageous in that the recurrence formula derived for a single

tensor T™Y may lead to a family of expressions for individual rational moments.

We begin by expressing the integrand of equation (4.15) as a composition of tensors:

(vl-’lZi\;,-l.l&lrmu) - (wl,l’i)q (Vi@ ®vn)p,

where the summation convention is implied for the n-index I. It follows from the defini-

tion (4.4) that
7™ = TP (v vy (4.16)

which associates a rational angular moment with a generalized irradiance tensor of the
same order. Consequently, recurrence expressions for 79 follow directly from expanding
T™? in equation (4.16). To express these new formulas, we introduce a short-hand
notation for the parameters of 7™9. Let J = (1,2,---,n) be a n-index. We shall define

JNk=(l,---,k—1,k+1,---,n) and use v; for the axis set {v{,-++,v,}. Using these
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notations, we get

n
A = 3 ) 7 A ) = (g 24 v
k=1
_f (vl,u)"'(r?,u) (w,n) ds|, (4.17)
8A (w,u)?
n;l n—1 V'nT (I — WWT) = n—2;1
T (A, vsw) = (W) T (A, v g) + E— D Vit T AV (k) W)
k=1
__[ <vl3u)”'(vn—1’u> nds] ’ (418)
8A (w,u)
1 ”Z:j 5
Tn(AavJ) = |: (Vnavk> " (A:VJ\{n,k:})
n+1 =
_/ (Vl: 'l,l) o (Vn—l:u> (v'm n) ds] 3 (419)
8A

which correspond to recurrence relations (4.5), (4.13) and (3.32), respectively. Similarly,
Equation (4.17) holds for ¢ > 2. In accordance with the base cases of T™Y, we have
771(A) =0, 79(A) = o(A) and 7% (4; w) = T%!(4, w), given by (4.14).

With the contour integral representation now derived for ™%, we may proceed to

evaluate the resulting boundary integral terms for certain geometries.

4.3.2 Exact Evaluation

Repeated applications of equations (4.17), (4.18), (4.19) and (4.14) reduce the integrals
7™4 to a sequence of boundary integrals and/or solid angle ¢(A). In this section, we shall
specialize the integration domain A as a spherical polygon and describe how to compute
each component exactly (depending on a single special function A(a, 3), or essentially,

Cly(z)), which becomes feasible due to those properties of spherical polygons mentioned

in section 3.4.1.

Solid Angle

The solid angle o(A) subtended by a polygon A on a unit sphere is equivalent to the

area of A, which can be computed directly using two methods given below.
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Figure 4.2: (a) The solid angle of a spherical triangle is easily obtained from Girard’s formula.

(b) One approach for computing the solid angle of non-convex polygons is to break it into triangles.

(Courtesy of James Arvo [9]).

The first approach was proposed by Arvo [9]. Girard’s formula for spherical trian-
gles [20, pp.278] states that

oc(AABC) = a+ B+~ —m, (4.20)

where «, 3,y are the three internal angles of AABC, as shown in Figure 4.2a. The inter-
nal angles are the dihedral angles between the planes containing the edges. To compute
the solid angle subtended by an arbitrary spherical polygon A shown in Figure 4.2b, we
may break it into k triangles, all sharing an arbitrary vertex Q € §2. The solid angle is
then the sum of the triangle areas signed according to orientation.

However, the identity (3.41) described on Page 72 provides us an alternative to gen-
eralize the formula (4.20) to an arbitrary spherical polygon A. To apply equation (3.41),
we pick a vector w € S? such that —w ¢ A. Considering A as the spherical projection
of a polygon P € IR? at the origin, we may choose w as the unit vector orthogonal to

the plane, and thus —w ¢ A. Using the property of constant n over the edge, we may
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compute o(A) from (3.41) by

_ (w,n) _ : 1 .
et = _[(3A1+(w,u) s E(W’n>/g1+(w,u)d

for a k-sided polygon. With the edge parameterization introduced in section 3.4.1, each

line integral above can be evaluated within constant time as follows [49, p.180]:

I R
¢ 1+ (w,u)  Jo 14 cweos(0 — pw)

O—-¢
o L
—¢w 1 towcosd

,

pmcganor ) |

. l1-c tan(f/2

) {ViT%vtaﬂ 1(Ji\/TT)}¢W 3 (0SCW<].)
\ [tan (g)}(i;:;w 3 (cw =1)

where cw, ¢w are defined by (3.106) and (3.107), and 0 < ¢y < 1 for a unit vector w,
and O is the arc length of ¢.

Base Moment 7% (A4;w)

Given by a boundary integral in equation (4.14), we evaluate the base moment 7% along

each edge, yielding

Ol (Aw) = 3 (w,n) f( n(w,u)ds = 3 (w,n) B*(¢), (4.21)

i i
where B*, depending on (, is given in (3.112) on Page 95. Section 3.4.2 has discussed
the evaluation of B* in detail, the solution is closed form except for one special function
A that can be expressed in terms of Clausen integrals. The pseudo-code for computing
this base moment for a polygon P is given by BaseMoment. If we assume that it takes
constant time to compute the special function A using any one of the approaches (such

as direct method, bilinear interpolation, hybrid method ) discussed in section 3.4.3, then
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the time complexity for evaluating 7%! is O(k) for a k-sided polygon A.

BaseMoment (Polygon P, vector w )

real S+ 0; Accumulate the sum

for each edge AB in P do
vector s ¢+ unit[ A J;
vector t + unit[ (I —ss™)B];
real a + (w,s);
real b + (w,t);
real ¢ + \/{174—_()2;
real ¢ + sign[b] * cos™!(a/c);
real © « cos™! ({(unit[ A ], unit[B]));
vector n < unit[A x BJ;
real B* + A(c,® — ¢) — A(c, —¢);
S + S+ (w,n) * B%;

endfor

Boundary Integrals of Rational Polynomials

After moving the factors involving n outside the boundary integrals involved in equa-
tions (4.17), (4.18) and (4.19), we are required to compute a type of line integral, defined
by

B™(v1,...,vm) = [C (Vl’“()v'v' 'u<)‘[m’“) ds (4.22)

for integers m,! and an arc ¢, where w is considered as constant (for a planar luminaire)
and 0 <m < n, 0 <[ <gq for a given moment 777 to be evaluated.

For smaller m and I, we can easily derive a direct formula to evaluate B™! from our
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edge parameterization. Without further notice, the varibles ¢ and ¢ in the remainder

of this thesis are always defined on an arc ¢ by (3.106) and (3.107), and © denotes the

arc length of (. We shall use B for the expression to compute B. Let a,b,c be unit

vectors, here are some examples of these formulas that are relevant to our work in the

next chapter.
B'(a) = Ca/ cos(f — ¢g) db
0
= ¢y (sin(@ == ¢a) + Siﬂ(¢a)) s

B ©
(a,b) = cacb/O cos(0 — ¢q) cos(6 — ¢y,) df

- 3“7:—'3 [29 cos(da — ¢p,) — sin(ga + ¢, — 20)

= Ca:b [2@ cos(pa — ¢p,) — sin(pa + ¢y, — 20)+
sin(pa + #p)]
for { =0 and
B a) = & |cos(gw — da)® +sinlgw — da)In
Cw

cos(® — dw)

_Ea’l(a be) = cacpCe /‘9 cos(8 — ¢a) cos(0 — ¢y, ) cos(@ — ¢¢)
) 0

cos(@ — ow)

Cw

CaCch

= D 2 [alﬁ? + asIncos(f — ¢y ) + sin(t + 26)

dewr

Cy Cb Ce
dew

cos(© — ¢dw)
cos(pw)

[al@ + ag In

for [ = 1, where a1,a9,t are given by

t = ¢w—¢a—¢p—dc
3pw — da — dp — ¢c
ta = ¢w+da—¢p—dc
t3 = ¢w—Patdp—dc

t

(4.23)

(4.24)

} . (4.25)

+ sin(t + 20) — sint} (4.26)
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ts = dw—Pa—¢p+ e
ap = —costy + costy + costs + cosily

ag = —sinty; +sinty + sints + sinty.

Equation (4.25) has appeared in the closed-form solution for the irradiance due to a
linearly-varying polygonal luminaire shown in (3.116).

Next we investigate the exact evaluation of Bm’l(vl, .++, V) for more general values
of m and [. For notational convenience, let ¢; = cy,, ¢; = ¢y, for 1 <i < m and ¢ = cy,

¢ = dw. We define

a; = cos(¢; — @),

ﬂ’i = Sin(¢i - ¢)5
ri = aifB;i
for1=1,2,...,m. Then by a change of variable, we have
Fn,l oy 1 "['Cm fe COS(H_(IS].)I.“COS(H_ Qbm) de
¢ 0 cost(0 — ¢)
[ cos(6
oioer [op o080+ 90
- A f l do
€ b cos' g
m .
oyt (88 Z_I;[1 (v cos @ + (; sin 6)
= ] / Y do
g —¢ cos' @
croem B B [O-9 [ )
- B m{fl B f_ ) {Hl T 4t 9)] cos™ 0 dg.  (427)
T
Let
m m X
Pn(@) = [[@+7) = Ypilrs,. .. rm) (a28)
denote a mth-order polynomial of z that has —ry, —rg, -+, —r,, as its m roots, where the

coefficients p,, = 1 and p; (: = 0,1,...,m — 1) are uniquely determined by r1,..., 7.
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Then equation (4.27) becomes

i r O—¢
B o BT ?1 Bm [ Ppn(tan 0) cos™ ! 6 df
c ¢

C1+*C Y 2 9—¢ 3 —{—1
L S | sintfeos™ " pdp.  (429)
=

Therefore, the analytical evaluation of the boundary integral in equation (4.29) is based

on integrals of the form
y
G(r,s,z,y) = f sin"8 cos®@ db, (4.30)
x

where the integers r > 0 and s may be negative. From equation (4.29), we obtain

™

_ +Cm ﬁ1 Pm ZPZ PloeeosTm) G, m —1 —4,—4,0 —$).  (4.31)

The integrals defined in equation (4.30) can be evaluated exactly using the recurrence

relations given below (see Appendix A.12)

1
Glrssasy) = — [sin“’1 ycos® ty —sin"t zcos®ta + (s — 1)G(r,s — 2, y)]

1
G(r,s,z,y) = ) [sin*“Jrl zcos* o —sin"H ycosttly 4 (r+ s+ 2)G(r,s + 2,2, y)]
Glszay) = = [sinr_1 zcos* o —sin" tycos* Ty + (r — 1)G(r — 2,5, xu)] ,

(4.32)

where the first two formulas apply for s > 0 and s < 0 respectively and the base cases

are comprised of

3 tan (7/4 + y/2)
G(0,-Lz,y) = In (m) ’

G(l,-l,z,y) = ln(cosx),

cosy
G(anyxsy) = y—-uz
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G(1,0,z,y) = cosz — cosy.

Consequently, the line integral B™! defined in (4.22) can be evaluated exactly by equa-
tion (4.31).

We now analyze the complexity for evaluating B™* using equation (4.31), which
is comprised of two parts: (1) time used to expand P, in (4.28) to obtain the coefli-
cients p; for i = 1,2,...,m; (2) time to compute G(r,s, z,y) for given integers r and
s. To obtain all the m coefficients pg,py, -+, pm—1 for the polynomial P,,(z) defined in
(4.28), we expand the product [[[*;(z + r;) incrementally, as shown in the pseudo-code

PolynomialCoeffs below. In the internal loop, we multiply the current (k — 1)th order

PolynomialCoeffs( real r[ ], integer m)

real p[ ] coefficient array
Initialize the current polynomial as 1
p[0) 1
Incrementally multiply the current (k — 1)th order polynomial by = + ry,
for k + 1,2,...,m do

plk] « plk — 1]

fori+ k—-1,k-2,...,1do

pli] & pli] * r[k] + pli — 1]

endfor

p[0] ¢ p[0] * (k]
endfor

return p

polynomial by a factor (z + ), and update the current coefficients using the following

recurrence relation:

k-1 k=1 k-l .
(Z Di wz) (z+r) = Z piztl 4 Z piTk &
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k=1
= pork+ Y ik + pi-1) 7" + pr-1 2",

§=1

taking about Q(k + 1) for each k. Thus the whole loop takes
m
S (k+1) = O(m?).
k=1

Discussion: We may convert n polynomial roots to coefficients in O(nlogn) time (for
an nth degree polynomial), by using a fact that two nth degree polynomials in coefficient
form can be multiplied in O(nlogn) time using the FFT and its inverse. Thus we can
multiply n linear terms (z+7;) (k = 1,2,...,n) via divide-and-conquer as follows: divide
the terms into two groups and multiply them recursively, then multiply the two resulting
polynomials in % log 3 time. It then follows from the recurrence relation

T(n) = 2T(n/2) + %logg

that the overall complexity is O(nlogn). However, this algorithm is not practical for
two reasons: 1)the constant will be large, thus O(n?) algorithm will probably win until
n is very large. 2)all the FFTs and inverse FFTs will cause too much numerical errors.

On the other hand, by means of those recurrence relations given above, we can
evaluate the function G(r,s,z,y) for a given r and s within [(r + |s])/2 + 1] steps.
Therefore, with all the p;’s determined, the summation in equation (4.31) will take
approximately

i+ m—1—1
T=§%—2 .
=

which can be analyzed by distinguishing the following three cases:
1. m > [: that is, m — [ > 0, we have
m—I{

)

=0 i=m—I+1



129

_ (m—z)(m—t+1)+;l(j+m—l)

2 2
B (m—l)(m+1)+l(l+1)
- 2 2
_ mi+0+m—Im
- P
.’ m(mz-&—l).

Bt l—m
A= izo(%‘FT)
_ m(m+1) (—-m)m+1)
2 2
_ llm+1)
B 2

Therefore, equation (4.31) for a given [ and m takes approximately [max(m,l)(m +
1)/2] to evaluate exactly. Considering the cost of O(m?) for determining p;’s, the time

complexity for computing a line integral B™! is O(max(m?,1 * m)).

4.4 Moments Corresponding to Phong Distributions

In the previous section we have defined a general form of rational angular moments
in (4.15), which places no restrictions on the parameters vi,...,v,. However, while
simulating non-Lambertian rendering effects for environments with Phong-like emission

and reflectance distributions [87], we often encounter a special class of rational moments,
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where the axes in vy,..., Vv, are repeated multiple times. For example,
A, e w); 77 O (AW s o b WY 6 (4.33)
N, s’ W
n n

To explicitly specify the number of distinct axes appearing in the numerator of such

moments, we introduce a special notation 7 for moments with the following form

. : v, WP (vo,u)P? ...
FPUPL (A vy, Ve, ... W) = f (v, - do(u), 4.34
( ¥ Ly ¥ ) ) i (W, u)q ( ), ( )
where the factors involving vy, vg,... are raised respectively to the orders pi,pa, ...,

integers arranged before the semicolon in the superscript, while the factor {w,u) in the
denominator is raised to order g, the single number following the semicolon. Accordingly,
the arguments of 7P1P2»¢ consist of the same number of v axes as that of integers
appearing before the superscript semicolon. As we can see, this special moment is related

to the general rational moment 779 by

PP A vy v,y wW) = Tp1+pz+~-;q(A’1,1’ 15 5y Wi Vag o oagWim 2 4 5 P

]

p1 P2

Consequently, using this new notation, the examples shown in (4.33) can be characterized
as 7% (A, v; w) and #1151 (A, v, b, a; w), respectively. In this section, we shall show that
the occurrence of repeated axes in 7 simplifies the recurrence formulas derived for 7717
in section 4.3, leading to more efficient evaluation algorithms. Specifically, we focus on
the case of ¢ = 1,that is, 7P2:P2i1, But similar ideas can be extended to the recurrence

relations for ¢ > 2. The result, however, may become a little complicated.

4.4.1 Simplified Recurrence Formulas

For simplicity, we shall only consider the case where only the first numerator axis is
raised to the power n, and all the others are of order 1, i.e. the case where p; = n and
p; =1 for ¢ > 1. We first consider Phong-like moments about one axis, and then extend

it to multiple axes.
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Given an arbitrary region A C 82 and a vector v, we define the moment about v by

n
P4, vw) = [ v w? 4.35
i, vw) = [ TR dow), (435)
Letting vi = vo = -+ = v, = v in equation (4.18), we get a simplified recurrence

formula for this one-axis moment, given by

T(T _ T
P4 viw) = (wv)l(4,y) + )

(0 — DF B A, viw) v — fa ) n% ds] . (4.36)
where 7%1(A4, v;w) = 7014, v;w) = T% (4, w) and 77 51(4,v;w) = 0, and we have
used the fact that ¥~ 10( A, v;w) = 77"1(A), the (n — 1)th order axial moment about
v described in section 3.2.3. Equation (4.36) is useful as a component of more general
moments about multiple axes.

It is straightforward to generalize 771 (A, v; w) to allow for Phong-like moments with
respect to multiple axes. Given axis vectors vy, va, v3, moments about two axes and

three axes are defined respectively by

?n’l;l(A.‘Vl,VQ;W) = ]f; %‘f)_dg(u), (437)
R e e LN

Similarly, by specializing equation (4.18) with copies of v{ and representing the resulting

terms using the notation 7, we may derive the following recurrence relations for 7!

and 7111 expressed as
Ty _ 2
'Fn’l;l(A,Vl,VQ;W) = (ijz)q—;n(A, vl) + 12(1—“,“,)
n+1
n
[n B A, v w) vy —/ nM ds] . (4.39)
aa  (w,u)
; B T(] — T
FOLE (A, v, v, vas W) = (w,v3) 7™ (A4, v1,va) + hE _(______ww )

n+ 2
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[n?”_l’l‘l(A, Vi, Vo W) vy + 7L A, vi; W) vo—

[ LT (4.40)
8A (w,u)

where we replace 7™1%(A, v, vo; w) by the double-axis moment 7' (A4, v1,v2), which
can be expressed in terms of axial moments using equation (3.38) shown in section 3.2.3,

yielding

(n 4 2)7WLEYA v, v, va; w) = n(w,vs) (vi,va) f”_l(A,vl) =
(w,v3) /6,4 (vi,u)" {(vo,n) ds + v3" (I — ww") x

[”fn_l’i;l(Aa Vi, va; W) vi + T (A, v w) va—

/3A n—(vl" u)” {vz, w) ds] (4.41)

{(w,u)
4.4.2 Exact Evaluation

Simplified recurrence formulas (4.36), (4.39) and (4.41) reduces the surface integrals
gl bl and #LLL shown in (4.35), (4.37) and (4.38) to boundary integrals of ra-
tional polynomials expressed as steerable lobes, sums of axial moments and in some case
7%1(A; w)(= T%!). This section demonstrated that each of these components can be
integrated exactly over a polygonal domain. In section 4.3.2, we have shown that the
base moment 7%! (A; w) can be evaluated exactly using one single special function known
as the Clausen integral. We shall concentrate on the other two components next.

As for the axial moment 7, equation (3.39) reduces it to a sum of integrals, that is,

At Hd,v) = #71 —/

[(v, w7 ol s o ey, u)p] (v,n) ds, (4.42)
8A

where p = 0 when n is even, and p = 1 when n is odd, and 77}(4) = 0 and 7°(4) =
o(A), which has been covered in section 4.3.2. With the parameterization described in

section 3.4.1, the analytical evaluation of each term in (4.42) over each edge is based on
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a function defined by

¥
F(n,z,y) E/ cos™ 6 d6, (4.43)

x

which satisfies the following recurrence relation
F(n,z,y) = L [cos”_1 ysiny — cos" ' zsinz + (n — 1)F(n — 2, z, 'y)] ; (4.44)
n
with

F(l,z,y) = siny—sinz,

F(0,z,y) = y—u=.

By means of the recurrence given in (4.44), the complete integral in (4.42) can be eval-
uated exactly within O(nk) time for a k-sided polygon by computing the functions
F(n,z,y) incrementally.

Finally, we are required to compute two types of line integrals resulting from applying

formulas (4.36), (4.39) and (4.41). They are

Bifed] = fc(zf;t))" ds, (4.45)
B vi,va) = /C Wcﬂs, (4.46)

which are actually special cases of B™! defined in Page 123, where the integrands are
rational polynomials that are expressed as steerable lobes, with the cosine angle with

respect to one axis raised to some power. Let us define

Fl(n: a,b,x,y)

de, (4.47)

j”J (acos@ + bsing)"
x cos @

Fy(n,a1,01,a2,b2,2,7)

v in 6)" i
[ (a1 cos + by sinb)"(az cos 6 + by sind) (4.48)
T

cos 0

It then follows from the binomial theorem that F; and F5 can be evaluated in terms of
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the function G(r, s, z,y) defined in (4.30), that is

n
Fi(n,a,b,z,y) = Z (n ) a" kG (k,n — k- 1,1,Y), (4.49)
k=0 N Kk
LI
F2(na ai, bl,GQ,bg,:L',y) = Z ( k ) a?_kb]f [a2G(k7n == k,x,y)+
k=0
bGlk+1,n—k—1,2,9). (4.50)

Accordingly, we may evaluate B™ and B™! in equations (4.45) and (4.46) exactly as

follows, where we use c;, ¢;, o, 3; as described on Page 125:

- _ cos™(0 — ¢1)
Biw) = _/ cos( 9 ®) 4
_ A [ teos™O— (91~ 9) 4
¢ f cos @

do

B /9 ¢ (o1 cos O + By sinf)"
- cosf

= —Fl(n a1, B, —$,0 — ¢), (4.51)

and

' (S n
2l _ fe cos(f — ¢1)™ cos(0 — d2)
B (vi,ve) = c /(; cos(0 — @) o
_ da ot o= = A enlo = (=9
e 1 cosf
e f9¢ (a1 cos O + B sin 0)" (g cos @ + Posinb) "
- c Joo cosf
n
= %FZ(naalaﬁlaa%ﬁ?a—‘;bi@ _¢) (452)

As shown in section 4.3.2, we may evaluate G(r, s,z,y) within |(r + |s|)/2 + 1] steps,
thus the computation of B" or B™! using equation (4.51) or equation (4.52) takes O(n?)
time.

Consequently, let T(n) denote the complexity for computing 7! directly use the



135

recursive relation (4.36). Then, for a k-sided polygon A, we have
T(n) = T(n—2)+ O(nk) + O(n%k),

which leads to a complexity of O(n®k). It can be similarly reasoned that the complexity

of evaluating ¥™%! and 711! using equations (4.39) and (4.41) is also cubic.

4.4.3 Efficient Evaluation of #%1(A,v;w)

The cubic complexity for computing 7! may however be reduced to O(n%k) by reorga-
nizing the terms obtained from the recursive relation (4.36) in an optimal way and using
dynamic programming.

Let d = vT(I — ww®)v = 1 — {(w, v)?, then we can rewrite equation (4.36) as

n—1
ni (A, v;w) = d(n — D)5 4 n{w,v) 7 (I — ww) / n—(v’ e ds,
A (W, 11)
which leads to
ni A, v;w) = TP + (w, v) T3 (v) — vI (I — ww™) T3 (v), (4.53)

where Tq, T» and T3 depend on the order n, which was indicated in the superscript.

Defining k = [n/2], the three terms in equation (4.53) are given by

B ()Y G e s
To(v) = nT”_l(A,v)+d(ni;) (n—2)7"%(4,v) +

crd et (D) (D) et Ay, @5)
0 = g o (52 o

et (055) (320 () o] e 6o
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where

0 Even(n

-1 Odd(n)
Tt is more advantageous in practice to expand the recurrence relation (4.36) into a big
boundary integral, as equation (4.53) allows us to save a great deal of redundant compu-
tation by making use of the incremental structures manifested by 73" and T§', as described

next.

Observing the common coefficients

n—1 (n—1)n-3)
"n=-2" (n-2)(n-4)" """

occurring in equations (4.54), (4.55) and (4.56), the first optimization is to cache the

series values before evaluating T1,T5, T3, as shown in the pseudo-code below.

CachedFraction ( integer n )

integer k + if even(n) n/2 else (n — 1)/2;
integer g + if even(n) 0 else —1;
real a[k — ql;
al0] « 1
fori+1,2,...,k—g—1do

afi] +—aft — 1% (n— (20 — 1))/ (n — 2i);
endfor

return a

Using equation (4.42), we may express T3 for a k-sided polygon A as

—1 -1 3
TP(v) = [1 +d (: — 2) 4o g b ('E———é) (3_1_2)] -1
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_/6A (v,n) ((v,u)”—2+ [1+d(::;)] (v, a)
Flra (2D e (220 (220) ) s
- [rra(z) v ve s (224) - (23]

k
> [{v,n) Si(n —2,d,cy, —¢v, © — ¢y)], (4.58)

=1

where n, ©, ¢ and ¢ all depend on the edge ¢ . Here S1(n — 2,d,¢,z,y) is a sum of the

integrals F' of different exponents, given by

"2F(n - 2,5,y) + [1 +d (” = ;)} (- 4,2,y) +
n—1 kl( 1) (p+3ﬂ
: 2, 4,
Hrea () o r et (25) - (B) | oFGm), @s9)
where the integer p satisfies
0 Eve
g ven(n) (4.60)
1 Odd(n)

Equation (4.59) and thus the term 7% can be computed incrementally in linear time using
the identity (4.44), the algorithm for computing 75" with equations (4.58) and (4.59) is
presented in the pseudo-code AxialMomentSum shown below, where the parameter a is

the cached fractional coefficients from CachedFraction(n).
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AxialMomentSum(Polygon P, vector w,v, integer n, real d,a[])

real S + BoundaryIntegral(P,v,d,n,a);
if odd(n) then
integer ¢ + if even(n) then 0 else —1;
integer k « if even(n) n/2 else (n —1)/2;
real b « 1;
real dp < d; Power of d
fori+ 1,2,...,k—qg—1do
b < b+ dp * alil;

dp + dp* d;
endfor
S « S + SolidAngle(P);
endif
return S

The procedure AxialMomentSum is built upon three procedures: CoslntegralSum
(computing S;), Edgelntegral (computing S; over an edge) and BoundaryIntegral (sum-
ming S over the boundary of P), which are presented in pseudo-code as follows, where

the operator unit normalizes a given vector.
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CosIntegralSum( integer n, real d, ¢, z,y,a[ ])

integer p «+ if even(n) then 0 else 1;
Store fractional coefficients of each cosine integral into the array b
integer k « if even(n) n/2 else (n — 1)/2; Number of terms
blk —1] « 1;
dp < d; Power of d
fori+— k—-2,k-3,...,0do
b[i] < bi + 1] +dp*alk — 1 —4];
dp + dp * d;
endfor
Accumulate the final sum
real F + if even(n) then y — z else siny —sinz; Cosine integral
real § « 0;
real cp < if even(n) 1 else ¢; Power of ¢
integer j < 0; Pointer to b
while p <n-2do
S + b[j] * cp * F;
F  [cos?T ysiny — cosP ! zsinz + (p + 1) F] /(p + 2);
P cx¢
pep+2
F& g+
endwhile

return S
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Edgelntegral(vector A,B, v, real d,a[], integer n )

vector s < unit[ A ];

vector t + unit[(I —ss™)B];

real a « (v,s);

real b+ (v,t);

real ¢ + \m;

real © + cos™! ({(unit[ A ], unit[B]));
real ¢ + sign[b] * cos™!(a/c);

vector n < unit[A x B];

return (v,n) * CosIntegralSum(n, d,c, —¢$, © — ¢, a);

BoundaryIntegral(Polygon P, vector v, real d,a[ ], integer n )

real § + 0;
each edge AB in P do

S + S + Edgelntegral(A, B, v,d, n,a);
endfor

return S

The last term given in equation (4.56) requires us to compute a weighted sum of
integrals B, with & ranging from g + 1 to n — 1. It follows from equation (4.51) that

this is equivalent to ealuating sums of integrals F, with increasing orders. That is,

I (v) n-l

i n [B”—l(v) +d(n—2) B 3(v) 4ot

=

e (G23) () () o

n—1

k
= Lo [C%‘lFl(n— 1,0,8,—$,0 — ¢) +d (n— 2) & “Fi(n—3,0,8,-$,0 - §)+

e () (220 () s nan s o] n
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for a k-sided polygon, where

a = cos(¢v — ),
B = sin(¢y —¢).

From equation (4.49) and the recurrence relations about G shown in (4.32), we observe
that exact evaluation of these F; terms (of different exponents) in equation (4.61) will
share a lot of lower-order values of G(r,s,z,y). To avoid redundant computations, we
may precompute and cache n? values of G(r,s,z,y) for an edge, i.e. z = —¢ and
y=0—¢, where 0 <r <n-1and -1 € s <n —2. This common technique known
as dynamic programming reduces the cubic complexity for the exact evaluation of T3
down to quadratic. The creation of the table for G is shown in the pseudo-code below,
where optimizations can be done by computing powers of sine and cosine with repeated
multiplication. Note that the first column of the resulting table (G[r][0]) represent the
values of G(r, —1,z,y) for r € [0,n — 1].
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CachedSinCosIntegral( integer n, real z,y)

real G[n][n]; n xn table
G[o][0] « In (E(H/HUR) G(0,-1,3,)
if n > 1 then
Base cases
G[0][1] ¢+ y — =; G(0,0,z,y)
G[U[0] « In (22);  G(1,-L,3,y)

cosy

G[1][1] + cosz —cosy; G(1,0,z,y)
Fill the first two columns
forr+ 2,3,...,n—1do
GI[r][0] « [sin" !z —sin" "ty + (r — 1)G[r — 2][0]] /(r — 1);
G[r][1] + [sin" tzcosz —sin" T ycosy + (r — 1)G[r — 2][1]] /r;
endfor
Fill the remaining terms along each row
forr+«0,1,...,n—1;5+2,3,...,n—1do
Gr][s] « [sin"tycos® Ly —sin" Tz cos® Tz + (s — 1)G[r][s — 2]] /(r + s);
endfor
endif

return G

With this table G computed for each edge, the term T3 can be computed according
to equation (4.61), which is embodied in the following procedures: Fone that evaluates
the function Fj(n,a,b, z,y) using equation (4.49); FoneSum that computes the weighted
sums of Fi(¢,a,b,z,y) in equation (4.61); EdgeFoneSum that evaluates FoneSum over

an edge; Rational BndIntegralSum that finally computes the term 77.
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Fone(integer n, real a,b,z,y,G[][ ])

real S + 0;
for k+ 0,1,...,ndo

S « S + BinomialCoeff(n, k) * a™ % x b* « G[K][n — k;
endfor

return S

FoneSum (integer n, real c,d,a,b,z,y,G[][ ], double a[])

integer g « if even(n) 0 else —1;
integer k « if even(n) n/2 else (n —1)/2;
real cp «+ if even(n) c else 1; Power of ¢
real dp + 1; Power of d
real § + 0;
integer j = 0; Pointer to the cache a
integer 1 + if even(n) 1 else 0;
while 1 <n-—1do
S+ S+alk—q—1—j] *Fone(i,a,b,z,y, G)/dp;
if i <n—1then dp « dp*p;
Ja=g+1
endfor

return S = dp
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EdgeFoneSum (vector A,B,w,v, real d,a[], integer n)

vector s + unit[ A J;

vector t + unit[ (I —ssT)B];

real a + (w,s);

real b « (w,t);

real ¢ + Va2 + b?;

real ¢ + sign[b] * cos~!(a/c);

real o' « (v,s);

real b’ + (v,t);

real ¢ « Va’? + b'2;

real ¢/ + sign[¥ ] * cos™(a'/c);

real a + cos(¢' — ¢);

real 8 « sin(¢' — ¢);

real © + cos™! ((unit[ A ], unit[B));

vector n < unit[A x B ;

real xx G + CachedSinCoslIntegral(n, —¢,©® — ¢); Cache G(r,s,z,y) for each edge
return n * FoneSum(n, ', d, e, 8, —¢,0 — ¢, G, a)/c

RationalBndIntegralSum( Polygon P, vector w,v, integer n, real d,a[ ] )

vector S + 0;
each edge AB in P do

S + S + EdgeFoneSum(A, B, w,v,d,n, a);
endfor

return S

Consequently, 7%!(A,v; w) may be evaluated analytically using AxialMomentSum
and RationalBndIntegralSum as well as BaseMoment shown on Page 122, taking O(n?k)
time for a k-sided polygon A. Further savings can be performed by sharing the com-
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putations about edge parameterization appearing in BaseMoment, Edgelntegral and

EdgeFoneSum.

OneAxisPhongMoment (Polygon P, vector w,v, integer n)

if n =0 then
return BaseMoment (P, w);
else
real xa < CachedFraction(n);
integer k «+ if even(n) n/2 else (n —1)/2;
integer g + if even(n) 0 else —1;
real d « 1 — (w,v)%
real s; ¢ if ¢= —1 0 else d*~9 % (g + 1) * a[k — ¢ — 1] * BaseMoment (P, w) /n;
real s; + AxialMomentSum(P, w,v,n,d,a);
vector s + RationalBndIntegralSum(P, w,v,n,d,a);
vector t + (I — ww")s;
real s3 < (v,t);
return s; + ({w,v) * so — s3) /n;

endif

4.4.4 Efficient Evaluation of 7™%11( A, vy, va, va; W)

It follows from equations (4.39) and (4.40) that we can evaluate 71! and 711! using

routines described in the previous section for 771

, as well as procedures to compute
7™ or ™! and an extra boundary integral (B™ for #™5! and B™! for #»LL1), The
nth order axial moment and double-axis moment can be evaluated within O(n) time
for an edge using equation (4.42) and equation (3.38) [8, pp.94-97]. Consequently, the
complexity for computing these two moments analytically is still quadratic. However,
observing that the extra boundary integral terms aside from 7%! in equations (4.39)

and (4.41) are closely related to 75 and T3 from the expanded formula of %! given

in (4.53), we may combine these remaining terms into Tp and T3 in such a way that
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we are able to take advantage of the recurrence relation (4.44) for F(n,z,y) and share
the cached table for G(r,s,z,y) while evaluating them. In this section we shall take
FmLLL(A vy, vo, v3; W) as an example and present an efficient approach for its evaluation,
which embodies such optimizations and dramatically reduces the constant associated
with the quadratic complexity. The moment 7™V (A, vy, vo, v3; w) about three axes
V1,Va, Vs is very important in simulating some scattering effects to be discussed in the
next chapter.
Expanding 7141 (A, vi, vo; w) and 7% (A4, v1; w) in (4.41) with equation (4.39) and

equation (4.36), we obtain

(n + 2)7HEHA, vi, v, vy w)

= B (A, v w) + T A, v) +T3/ (vi,w)" (vo,m) ds
8A

+f (ryn )<V1’ o +f %‘%ﬂ}—ds, (4.62)

where the coeflicients are given by

rr = —(n—1)vs" [(I —ww') (vlva + v2v1T) I- WWT)} vy
re = n{w,v3){vi,ve) —v3T (I—ww")[n{w,va) v+ {W,vi)va]
rsg = = (Ws V3>

T
ry = v’ {(I —ww') (lergT + VQZl ) (I = ww'”)]

ry, = —v3 (I—wwh).

Using equation (4.53), we replace 7" %1(A, vi;w) in equation (4.62) by

—— [T;*—Q +{w, v} TP 2 (vy) — v (I — wa)Tg-2(v1)] )
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Letting

e = r1/(n—2)
rr = rg{w,v1)

rg = rgvy(I—wwh),

Then, by regrouping terms of similar structures, we arrive at a formula for 7.1l that

is similar to equation (4.53), expressed as
FLIL (A vy, ve, va;w) = RT + R} + RS, (4.63)

where R?, R} and R} are terms depending on the order n. Let k = |n/2] — 1, d and q

are defined as before. It follows from equation (4.62) that they are given by

R? = TGTF'_2

— k—q n__?)) (ﬂ) ;1 4.64

rd e (2=3) - (L55) e+ 1y, (4.64)

R = T3/ (vi,u)" {va,n) ds + ry7"HA, v1) + T8 2 (vy), (4.65)
A

n n—1
o / _— M}ldH[ ) S
3 6A< 5 ) (w,u) GA( 4 ) <W, l_l)
— (rs, T 72(v1)) - (4.66)

Given A as a k-sided polygon, we may evaluate R} with equations (4.42) and (4.58) as

follows:

k
Rg = rgfpil - Z Sﬂ(n: d: €1, "¢1: o~ ¢1: 3,725 T?’): (467)

=1

where the coefficient rq = r9/n for n < 2 and

-3 gy f—3 +3
9 = %"’TT |:1+d(:_4)++dk 4 1(’“—:“1)‘(%)}
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The summation S5 connects all the terms involving the function F, weighted properly

by 73,79, 77, which is given by

T3 (Vg,l’l) C?F('n': _¢11 €~ ¢1) - % (Vlan) [c?_QF(n - 2a _¢’11 e - ¢1) g
+C;11)F(p,—¢1,® _¢1)]

- T7 <V11n> Sl(n_4adacl"—¢1:@—¢l)7 (468)

which can be efficiently evaluated by modifying the routine CosIntegralSum for Si(n —
4,d,c1,—¢1,0 — ¢1) to account for extra terms in equation (4.68). Moreover, it follows

from equation (4.61) that

k
B =L ( (rs,m) B! (v1,v3) + (rg,n) B (v1)—

=1

n—3

(DG

Similarly, we may evaluate equation (4.69) efficiently by allowing the routine FoneSum

(es,m) |[B"0w) + ¢ (E20) B S(wn) 4ot

that computes the sum of BFs with g+1 < k <n-—3 to also return the values of
B"’l(vl,\rg) and B"!(v), in order to share the cached table for G(r, s, z,y). For this
purpose, it follows from equation (4.50) that we are required to cache values of G(r, s, z, y)
for0<r<n+1and —1 < s <n— 1. Notice that we should compute a larger table of

G than those needed for 772 to be able to exactly evaluate the two extra terms.

4.4.5 Approximations

The bottleneck to exactly evaluating 7%!(A,v;w) and 7bUN(A, vy, ve,v3; w) using

equations (4.53) and (4.63) respectively is to compute the third term, namely, T or R,
<V= u)n (Vla u)n
(w,u) " fw,u)
of a spherical polygon. Due to the cost of computing the n x n ((n + 2) x (n + 2) for

which integrates a summation of

of increasing orders over a boundary

FoLLL) table for G(r,s,z,y), the time complexity for T or R} is O(kn?), where k is



149

the number of polygon edges.

Another means to speedup the computation is to settle for an approximation for
the bottleneck part T3 or R3. Numerical quadrature is one option. This is particularly
effective as T3 (or R3) has the highest computational cost, yet is typically very small in
magnitute compared to 71 and 7% (or Ry, R2). In terms of accuracy, this approach is
preferable to approximating the original integral using two-dimensional quadrature, as
one-dimensional quadrature rules are more robust and more amenable to higher-order
methods. By computing the powers of (v, u) in equation (4.56) incrementally through
repeated multiplication for each sampled u, the complete integral (4.56) can be evaluated
within O(l * n) time for each edge, where [ is the number of samples. Similarly, we may

express equation (4.66) as a big boundary integral, that is,
S
Ry = f M ds
P

where

S(u) = r5{vy,u)" {(vo,u) +ry{vy, u.)"*1 —rg [ i)™ 4

d(z:i) (vi,u)" 0 4 gFmed (Z:i) (Z:g) (Zig) <V17u>q+1}

for k = |n/2], the same strategy can then be applied. We have used this numerical

approximation for the applications demonstrated in chapter 5.

Looking for better approximation strategies for T3 is still a future direction we shall
pursue. We speculate that research on hypergeometric functions may lead to some effi-
cient algorithms for our problem. To see how the hypergeometric representation arises,
let us refomulate the integrand in equation (4.56). By moving the constant n outside

the integral, we are left with the following summation:

n—1

Sn(v,w,u) = [(v, w ( ) (v,u)" 2 +

n—2

ot () (28 (150 o]

(w,u)
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where ¢ is defined in (4.57) and k = |n/2]. For odd and even n, we have respectively

_ 1 2% 2k ) 2k—1) k ( (2k)1 ) 0]
(4.70)
_ 1 sk (% - 1) Beh i ((2k - 1)!!) ]
See = T [(v,u) +d(Gmg) WP+ (S ) nw)
(4.71)
which may be expressed as hypergeometric functions, that is,
2k -k, 1
v, u s d
Sok41 = <(w 1)1) o L Tl (4.72)
b} _k + 5 V, u
2k—1 —k+11 d
v,u I
So %7) 2 F1 2 f s (4.73)
W, u) k1 (v

Moreover, we may combine equations (4.72) and (4.73) into a single hypergeometric

representation for S,,, expressed as

(4.74)

Consequently, the evaluation of T3 is equivalent to integrating a hypergeometric function:

1

<v) u)n—l _n% 1 ! d
bt L I .
¢ (w,u) _% +1 {(v,u)
which suggests that studies in the area of hypergeometric functions may shed some
light on discovering efficient evaluation strategies for these costly terms in the rational

moments.



Chapter 5

Applications of Generalized

Irradiance Tensors

Deterministic rendering algorithms are often quite limited in the optical effects they sim-
ulate; for the most part they are limited to diffuse and pure specular effects. A common
assumption is that of a uniform luminaire with constant radiant exitance in all directions
and positions, for which a wide assortment of closed-form expressions exist for computing
the radiative exchange [58, 18, 97] and some Phong-like scattering effects [9]. Unfortu-
nately, these formulas rarely apply to non-uniform luminaires, especially inhomogeneous
or spatially-varying luminaires. To a large extent, this limitation stems from the difficulty
of computing the surface integrals associated with spatially-varying luminaires. Unlike
uniform luminaires, they generally cannot be expressed as a polynomial integrated over
regions of the sphere. In chapter 3 we have derived a closed-form solution for the ir-
radiance due to a polygonal linearly-varying luminaire using tedious Taylor expansion,
which becomes impossible to be extended to higher order polynomials. Although Di-
Laura et al. [39] have addressed the problem of computing the irradiance at a point
from polynomially-varying luminaires, their results hardly lead to closed-form solutions.
Moreover, as far as we know, no further efforts have been made towards simulating other
lighting effects involving spatially-varying luminaires and non-diffuse surfaces.

Generalized irradiance tensors and their associated rational moments introduced in

151
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the previous chapter are well suited to quantify emission and scattering features due to
polynomially-varying luminaires, especially for polygonal environments with Phong-like
reflection or transmission distributions, which makes them quite useful in the simulation
of some rendering effects involving this type of emitters. The formulas and evalua-
tion methods derived for these tensors and moments in chapter 4 provide us new direct
methods for computing some illuminating and scattering effects involving polynomially-
varying luminaires and a wide range of surfaces from diffuse to highly specular. Ap-
plications include the computation of irradiance due to polynomially-varying luminaires
or directional luminaires with Phong-like distribution, view-dependent glossy reflections
and transmissions from such emitters. Our results greatly extend the repertoire of non-
Lambertian phenomena that can be handled deterministically. In this chapter we shall
present these applications of generalized irradiance tensors in image synthesis, and verify

our results with the Monte Carlo and Finite element methods.

5.1 Irradiance due to Polynomially-Varying Luminaires

The irradiance at a point due to a polynomially-varying luminaire L is defined as a

weighted integral of the radiance function f(u) caused by the emitter. That is,

o(A) = ]A £(u) (b, ) do(u), (5.1)

where A is the spherical projection of L at the origin, and b is the normal there. By
default, we shall assume that the receiver point is located at the origin. As we discussed in
section 4.1, the radiance field due to any polynomially-varying luminaire can be expressed
as combinations of equation (4.3), the radiance distribution due to a monomially-varying
luminaire. Consequently, the problem of computing the irradiance at the origin due to

polynomially-varying luminaires is simplified to computing an integral of the form

., (A) = %; f (e, u)? (ez,(:)qll(;37u)r (b, u) do(u), (5.2)
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where w is the unit vector perpendicular to the luminaire and h is the distance from
the origin to the plane, and (e, e2,e3) is an orthonormal coordinate system at the ori-
gin. When p + ¢ + r = n, equation (5.2) corresponds to the irradiance at the origin
due to a luminaire whose radiant exitance varies according to a nth order monomial
function ¢(x) = z¥ 2% 2%. Comparing equation (5.2) with the definition (4.15), we re-
alize that the concept of rational angular moments is closely related to the irradiance
due to polynomially-varying luminaires. Therefore, the expressions derived for rational
moments and generalized irradiance tensors associated with them may be used to derive
new expressions for the irradiance due to polynomially-varying luminaires, extending the
result in chapter 3 to higher order polynomials.

In this section we first examine linearly-varying luminaires again and re-derive the
closed-form solution found in chapter 3 using the machinery of generalized irradiance ten-
sors. Then, by studying quadratically-varying luminaires, we relate the special function
A to the irradiance due to an emitter with a special quadratically-varying radiant exi-
tance. The solutions for linear and quadratic cases exhibit a general structure subsuming
Lambert’s formula, which motivates us to generalize them to higher-order polynomials

with a recurrence formula that relates the solution to those for lower-order polynomials.

5.1.1 Linearly-Varying Luminaires

Generalized irradiance tensors provide us a more elegant machinery to re-derive the
closed-form solution for the irradiance due to a linearly-varying luminaire identified in
chapter 3. As we have seen, the original approach based on Taylor expansion and a
formula derived for triple-azis moments is quite complicated and hard to follow.

As analyzed in section 3.1, the irradiance at the origin due to a planar diffuse emitter
with linearly-varying radiant exitance determined by three non-collinear points can be
formulated by equation (3.7). Corresponding to the definitions (4.15) and (4.4), we may

express the irradiance integral in (3.7) with our tensor notation as follows:

$,(A) = %TQ;l(A,a,b;w) = %Tf;l(A,w)aibj, (5.3)
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Applying the recursive formula (4.13), we have

1 itk
2’1 B i 0’1_ 1M
Tii = WiTi+ 5 Gjm — WyWn) [5“’”T faA (w,u) ds] ’

which reduces to a boundary integral by using equations (3.32) and (4.14), that is

: 1 In {w,u) wn,,
T?jl = 3 - I:"‘an'i S (5jm - ijm) (5im (w,n) 1— (w, u)2 - (w, u))} ds
1 5]0 u;
= =5 [} [ = G =) (Simwin = 2 s, 64)

where 7 is given by equation (3.82). Combining equations (5.3) and (5.4), we arrive at

exactly the same general boundary integral for the irradiance at the origin, given by

1
®(A,w,a,b) = —%/M Mg’jkaibjnk ds, (5.5)

where the 3-tensor M3 is defined in (3.84). Here and in the remainder of this chapter
we will indicate the order of polynomial by subscript of ® and the order of tensor M
by superscript. Using the same technique demonstrated in section 3.4, we obtain a
closed-form solution given in (3.116) for a polygonal linearly-varying luminaire.

The pseudo-code for computing the irradiance at the origin o due to a linearly-
varying luminaire P is shown in Linearlrradiance. Here, p;,py, P3 are any three non-
collinear points on P with radiant exitance w, wo and ws, respectively. We assume
that the polygon vertices of P are ordered counterclockwise viewed from the receiver
point o, which guarantees that n computed above is outward pointing and the irradiance
computed is positive. For vertices that are oriented clockwise, the resulting irradiance
will be negative. Preserving the sign is useful for integrating over polygons with holes.
Note that the ordering of the points p;, p, and p; are immaterial, as the w vector
is always adjusted to point toward the polygon. B"' and B* in Linearlrradiance are

evaluated using equations (3.113) and (3.114), respectively. The special function A(«, )
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LinearIrradiance( Polygon P, vector p;, p,, P3, real wiy, wa, ws)

vector w « unit[(ps, — p;) % (P2 — P3)]
if (w,p; +p2 +p3) <0
W— — W
endif
vector b + surface normal at the origin o
vector a ¢ (p;,w) [wy wa ws] [P Py P53
real s + 0
for each edge AB in P do
vector s « unit[ A ]
vector t < unit[ (I —ss™)B]
real a; + (w,s); ay+ (a,s)
real by < (w,t); b2« (a,t)
real c; « /a? +b2; ¢ + /a3 + b3
real ¢, ¢ sign[b; ] * cos™!(a1/c1)
real ¢y « sign[by] * cos™!(az/co)
real © + cos™! ((unit[ A ], unit[B]))
vector n < unit[A x B]
vector v+ (I—ww")b
real sg + {a,n}* (b,w)* 0
real s; + Fl’l(cl,cQ, 0, ¢1,¢2) * {(v,n)
real sy « B*(c1,0,¢;) * {w,n) * (v, a)
S s+ 8¢+ 81— 82
endfor
return —s /27

end
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Analytic (1.7m) Monte Carlo (2.6m) Monte Carlo (42m)
Figure 5.1:  Images of a polygonal environment generated using the analytic solution and Monte
Carlo. The numbers beneath each image indicate the computation time. (Left) The analytic
solution is applied by clipping the luminaire against all blockers with respect to each point on
the receiving surface and computing the contributions from the remaining polygons. (Middle)
Monte Carlo solution using four stratified samples per pixel, which requires a comparable amount
of time. (Right) Monte Carlo solution using 100 stratified samples per pizel, which produces an

1mage comparable to the analytic solution.

involved in B* can be computed directly from equation (3.126), where the evaluation of
the Clausen integral has been shown in pseudo-code on Page 105.

Figures 5.1 and 5.2 show two simple scenes, each illuminated by an area light source
with two linearly-varying superimposed colors. This effect is simulated by integrating
two linearly-varying scalar values over the luminaire and weighting the corresponding
colors by them. Both scenes were rendered using the new technique and by Monte
Carlo for comparison. In implementing our analytical method, several optimizations
were employed: 1) computing the vector a at each receiver point incrementally using
equation (3.12) rather than inverting a matrix at each point, 2) computing an irradiance
vector of the form given in equation (3.117) to save the computation cost for two color
variations and 3) bilinear interpolation for A evaluation. Stratified sampling was used
for the Monte Carlo solutions. All the images have a resolution of 300 x 300, and were
generated on a SGI Indigo2 working at 175 Mhz R10000. The numbers beneath each

picture indicate the computation time in minutes.
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Analytic (3.2m) Monte Carlo (4.2m) Monte Carlo (80m)

Triangulation (68 patches) Semi-Analytic (12.5m)

Figure 5.2: Non-convex polygonal luminaires with linearly-varying colors can be efficiently han-
dled with our proposed algorithm. (Top Row) Comparison similar to that shown in Figure 5.1.
(Bottorn Row) Image generated by subdividing the luminaire into small regions that are treated
as constant. Although each pizel of the resulting image is within 2% of the exact solution, this
approach is slower than the analytic solution. Moreover, the accuracy depends on an appropriate

level of subdivision.

Figure 5.1 depicts a box blocker in front of a luminaire. Polygonal occlusions are
handled by clipping the luminaire against all blockers and computing the contribution
from each visible portion using our closed-form solution. Our noise-free result clearly
matches the Monte Carlo image generated by using 100 stratified samples per pixel, yet
is over 20 times faster. Moreover, our method results in much higher quality than the
simple Monte Carlo solution, using nearly the same amount of time.

For the leaf-like polygonal luminaire in Figure 5.2, our proposed algorithm shows
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a significant advantage over Monte Carlo in that it can handle non-convex polygons
directly, and produce a noise-free image in far less time, as shown in the top row. The
Monte Carlo images are rendered by stratified sampling of the bounding rectangle of the
leaf-shaped polygon. On the bottom, we show results of rendering the same scene using a
semi-analytical method for further comparison. This approach subdivides the luminaire
into small pieces, and computes the contribution from each piece using Lambert’s formula
by assuming that they are uniform. Although each pixel of the resulting image by
breaking the leaf into 68 triangles shown in the left is within 2% of the exact solution
from our new method, this finite element approach is much slower than the analytic
solution. Moreover, the accuracy depends on an appropriate level of subdivision, which
is hard to choose.

These experiments provide numerical evidence of the correctness of our formu-
las (3.116) and (3.117), and also demonstrate its application to computing direct illumi-
nation. The approach is also applicable to indirect illumination, however, as it provides

a means of computing form-factors involving non-constant surface elements [72].

5.1.2 Quadratically-Varying Luminaires

As a first step to extend equation (5.5) to higher order polynomials, we study luminaires
with guadratically-varying radiant exitance in this section.

Before we consider a general quadratic radiant exitance distribution, we divert our
attention to a special quadratically-varying luminaire whose irradiance problem essen-
tially leads to the special function A arising in the closed-form solution in the linear case.
While expressing A in terms of Clausen integrals in chapter 3, a key step is to relate
A(a, B) to another special function Y(u,v) by equation (3.123), which was derived there
by a change of variable that is not intuitive at all. The alternative derivation presented
here is to make some connections between the function A and the irradiance due to a two-
parameter family of triangular luminaires with quadratically-varying radiant exitance.
This is actually how we found relation (3.123) in the first place.

Figure 5.3 shows a triangular luminaire in the z = 1 plane with two parameters: the

angle p and the edge length v. Suppose that the radiant exitance distribution of this
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Figure 5.3: The irradiance at the origin due to a triangular luminaire whose radiant ezitance
varies according to the quadratic function ¢(x) = x® + 4% + 2% can be represented in terms of

either Y(u,v) or A, B).
luminaire is given by
¢(x) = 22 +47 + 2 = (x,%) (5.6)

for the point x = (z,y,2) on the luminaire plane. Thus the radiant exitance varies
quadratically with position, but is independent of direction. It then follows from (4.2)
that the radiance distribution f(u) at the origin due to this luminaire can be expressed

as
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where the distance h = 1 for this particular configuration, and the perpendicular vector
w is coincident with the z axis, which is also the normal b at the origin. Let P denote
the spherical projection of this right triangle at the origin o. Combining equation (5.1)

and equation (5.7), the irradiance at the origin due to this luminaire is given by

O(p,v) = /I;Zu—}-——-i(w,u) do(u)

w,u)

1
= o

= TH{P;w). (5.8)

We denote the irradiance by ®{(u,v) to indicate its dependency on the geometry of the
lumnaire. Using equation (4.21), we may evaluate equation (5.8) along three edges of

the triangle by
3
D(p,v) = D (w,n;) B*(G). (5.9)
i=1

where (1, (5, (3 are the great arcs corresponding to the three edges AB, BC and CA, re-
spectively, and n;, n,y, ng are their outgoing normals, and B* is given in equation (3.112).

Let A, B, C denote the position vectors for the three triangle vertices, then

n;, = unit[A x B]
n, = unit[B x C]

n; = unit[Cx A].

Notice that w is perpendicular to both n; and nj, we have (w,n;) = (w,n3) = 0.

Consequently, equation (5.9) simplifies to

O (u,v) = {w,n) B*((), (5.10)

where n and ( refer to the edge BC. If we apply the parameterization described in

section 3.4.1 to BC, then the two orthonormal vectors s, t are respectively unit[ C] and
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y axis. It thus follows from equations (3.106) and (3.107) that

(w,s) = cosp, (w,t) =0,

cw = cosp, o¢w =0,

where ¢ is the angle between w and s, as shown in Figure 5.3. Let @« = cosy and § = @,

arc length of {, we may evaluate B*(() using equation (3.114) by

B* = Alew,© — ¢w) — Alew, —dw)
Ao, B),

which allows us to express equation (5.10) as
®(p,v) = (w,n)A(a, ). (5.11)

In this special configuration, n is perpendicular to the triangle OBC, and thus or-
thogonal to the y axis. Consequently, n lies on the X Z plane and points in the outwards

direction, as demonstrated in Figure 5.3. Then

(w,n) = cos (E—l—@) = —sing = —v1— a2

2

From equation (5.11), we may express the irradiance in terms of A by
O(u,v) = —vV1—a?Ala,p). (5.12)

On the other hand, expressing the 2-form dw by

do — cosGdA _ (w,u)

=35 A

where r is the distance from the origin to the point x in the differential area dA of the

luminaire, and u is the unit vector from o to x, the irradiance in equation (5.8) may also
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be computed by an integral over the area of the triangle. That is,

B, u) = ffA%dA

1

By changing variables to polar coordinates, the integral in (5.13) reduces to T(u, ) after

simplification. We have

Il

o (p,v)

1 I
= 5 [ ma+s)
2 Jo

0

1 [rp rvsech 2
= dpdf
2]0 fo i+ P

vsecd

do

1
= 5/ In(1 + v? sec? §) d@
0

= Y.

(5.14)

Incorporating equation (5.12) and equation (5.14), we may relate these two special func-

tions by

T (V)

Ale, B) = —m

(5.15)

for & # 1, where (u,v) and (,3) are dependent on each other. As seen from the

geometric configuration in Figure 5.3, we have

1
a = Cosp = —/———
7 Vvi+o?
vtan p
tan = —.
g V142

Solving for p and v, we get

pla,f) = tan™' (%)
V1 —a?
e = ———.

(5.16)

(5.17)
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When the parameter (c,/3) ranges over the required domain, (0,1) x [0,7/2], it is
easy to check from equation (5.17) that the corresponding parameter (u,v) varies over
[0,7/2) % [0, 00), defining a family of triangular luminaires shown in Figure 5.3. Finally,
the relation (3.123) on Page 99 follows directly from equation (5.15) and equation (5.17).
An important consequence of equation (5.12) is that any method for computing the
irradiance from quadratically-varying polygonal luminaires must also be capable of eval-
uating A over its entire domain. In other words, A becomes an inescapable component
of such irradiance computations, thus it is not surprising that it appears in the problem
we have addressed in chapter 3.

Next we shall turn our analysis to a planar luminaire with an arbitrary quadratic
radiant exitance distribution function ¢(x). As mentioned at the beginning of section 5.1,
we are only required to compute the irradiance due to a quadratic monomial distribution

¢(x) = ziz;, given by

Dy(A) = K/A (ei, u) ey, w) (b w) o) (5.18)

Z (w, u)?

for4,j = 1,2, 3, where h, w and ey, €3, e3 are defined as before. Let a = he; and ¢ = hej,

equation (5.18) is equivalent to

By(A) = % [A fa, “’(:”:;2("’“) der (). (5.19)

Similarly, we can represent the integral in equation (5.19) in terms of generalized irradi-

ance tensors or rational moments as

i Y
Dy(A) = ;T3’2(A,a,b,c;w) == T}y a:bjci. (5.20)

In order to obtain a boundary integral formula for ®;, we proceed by replacing T%? with

equation (4.5), attaining

ufjk (w,n)

3.2

- ds.  (5.21)

2.1 2,1 2,1 3
wiTjk +ij'Ek +WkT” _4T1,jk ¥ LA

{w, u)

Using equation (5.4) and the 3-tensor M?3, we may express the tensor T?%! above as a
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boundary integral by
2:1 1
T = -5 faA M2, n, ds. (5.22)

Moreover, it follows from equation (3.32) that

1
= —5 /(;A ((5ki6jl -+ 6kj67;l + 2 é‘kl uiuj) n; dS. (523)

Substituting equation (5.22) and equation (5.23) into equation (5.21), we get

32 _ 1 4
Tox = =3 o M;jpi(w, 1) ny ds, (5.24)

where the 4-tensor M* depending on w and u is defined in terms of the lower-order

tensor M3 by

4 _ wu;ug
Mijki = WiMf;fm + WJM;SM + wkM?jl + 2 Wi ———<:iju) — (Ski(sjl ] 6k:j6il -2 6;;:1 u,,uj(525)
3

Combining equation (5.20) and equation (5.24), we are able to reduce the irradiance

integral in (5.19) to a one-dimensional integral, given by

®y(4,w,a,¢,b) = —— [ M, ajbjein ds. (5.26)

Equation (5.26) and equation (5.25) suggest that the solution for the irradiance due to
a quadratically-varying luminaire is based on that for linearly-varying luminaires. Let
®,(A,w,a,b) denote the irradiance given in equation (5.5), we may express ®3(A) in

equation (5.26) by

®3(A,w,a,b,c) = (w,a)®(A4,w,b,c)+ (w,b)D1(A, w,a,c)+ (w,c)P(A,w,a,b)
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1 [2 fa i ((W, R AL ECT N (b,u)) ds

2 (w,u)

es e j(; (bym) ds — (bc) fa (a,m) ds] , (5.27)

Furthermore, by specializing equation (5.27) to a polygonal luminaire and using assorted
exact formulas for B™! that was listed on Page 124, we may derive a closed-form solution
for the irradiance at the origin due to a luminaire whose radiant exitance varies according

to a quadratic monomial function. Let us define
H(G,v1,v2) = (v1,m) (va, W) © + vo" (1= ww") (0B (v1) = (w,n) v, B¥) , (5.28)

where © and n depends on ¢. It follows from equation (3.116) that H represents the
contribution from each edge to the irradiance due to a linearly-varying luminaire. Thus
we have
1 k
&1(P,w,a,b) = —%Zﬂ(ﬁi,a,b)

=1

for a k-sided polygon P. Consequently, we can evaluate equation (5.27) for P by

k
QQ(P,w,a,b,c) = _% { (W, a) H(C'Eabac) T (Wab) H(Ciaaa C) + (W:C> H(Cisaab)
gl

+2(w,n) B (a,b,c) — 2(c,n) B*(a, b)
~lfa) {bm) + (b,c) @ m© . (5.29)

51 and B® are given respectively by

In equation (5.28) and equation (5.29), BY. BB
equations (4.25), (3.114), (4.26) and (4.24).
Finally, we end this section with a discussion about the more general case of a re-
ceiver point q other than the origin. Consider a luminaire whose radiant exitance varies
according to a quadratic monomial function ¢(x), which is defined in terms of the posi-

tion vector x = (1, T2, z3) of a luminaire point p with respect to the coordinate system

(e1,e9,e3) at the origin. We shall demonstrate that the irradiance at q due to this lu-
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minaire is completely determined by the formulas derived for ®¢, ®;, ®o at the origin,
where ® denotes Lambert’s formula for uniform luminaires. The idea is to express ¢(x)
as a function ¢ in terms of the coordinates of x — q, the position vector of the same point
p with respect to the coordinate system (e, ez, e3) translated to q. It turns out that (}3
becomes a combination of monomials of orders 0, 1 and 2, and thus our previous formu-
las can be applied as if the receiver point is at the origin. In detail, given a quadratic

monomial function ¢(x) = (e;,x) (e;,x), we may derive $ as follows:

px—q) = ¢(x—q+q)
= (x—q+qe)(x—q+aq,e;)
= [(x—q,e)+(q )] [{(x —q,&;) + (q, )]
= (x—q,&){x—q,e) +(q,e)(x—q,e) +

(q,e5) (x —q,e;) + (q,e;) (q,€5) . (5.30)

Therefore, the radiant exitance function of the luminaire may be expressed in terms of

the position vector r with respect to the receiver point by

o(r) = (r,e) (r,e;) + (q, &) (r,e;) + {q,e;) (r,e;) + {(a, &) (a,e5),

which leads to a radiance distribution f(u) at q given by

—~~
—~—

(ei,u

ej;u) + (qaej) (

_1_ (hQ(q) (e'iu U) (ej1u>

™ Y + h(q) |{q;e:) ( + {a,e;) (q, ej)) (5.31)

w,u) w,u)

where we have used the identity r = h(q)u/ (w,u), with h(q) as the distance from q to
the luminaire plane. Consequently, the irradiance at q can be computed by integrating
f(u) over the spherical projection A of the luminaire onto the hemisphere about q,

yielding

®2(Aaq) = h2(q)¢)2(A:ei7 ejab) i (q.: ei) (qa ej) q)O(Aa b) +

h(q) [(qa e‘i) (DI(A: W, €5, b) + (qs ej) (Dl(A: w, €4, b)] ’ (532)
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where ®1, ®, are given by formulas (5.5) and (5.26) respectively, and ®¢(A,b) denotes
the irradiance due to a uniform luminaire with a spherical projection A at the origin

(with normal b), given by Lambert’s formula as

Bo(A,b) = %//;(b,u) do (1) = —% [ (bn) d. (5.33)

It can be seen from equation (5.32) that the irradiance ®o(A,q) at an arbitrary receiver

point q is comprised of contributions from radiant exitance variations of orders 0, 1 and

2.

5.1.3 Higher Order Polynomials

In this section we shall generalize the closed-form solutions for the irradiance due to
linearly-varying and quadratically-varying luminaires derived in previous sections to
higher order polynomials. For simplicity, we only consider the luminaire with a radi-
ant exitance distribution given by a nth-order (n = 1,2,...) monomial of z, 2,23,
directional cosines of the luminaire point x with respect to an orthogonal coordinate
system (e1, ez, e3) at the origin, as these monomials serve as basis functions of the space
P, consisting of all the polynomials of at most degree n.

As discussed before, the irradiance at the origin due to such an emitter is equivalent

to computing the integral given in equation (5.2). Let

r = hey,
s = hes,
t = h83,

then the required integral has the following form

fI)n(A,W,V,b) e 1[4 (r’u)p (Snu>q (t1u>r <b7u> da(u), (5.34)

™ (w, u)"

where b, w are defined as before, and we define V as the sequence of n vectors, comprised
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of p occurrence of r followed by ¢ occurrence of s and r occurrence of t, that is

V= (r,--,r, 8,8 t--,t) (5.35)
L B

for p 4+ ¢ + r = n. Obviously, equation (5.34) subsumes the irradiance integrals (5.33),
(3.7) and (5.19) as its special cases. That is, V = 0 for uniform luminaires, V = a for
the linear case, and V = (a, c) for the second order monomial. Using this formulation,
we now state and prove the central theorem of this section.

Formulas (5.33), (5.5) and (5.26) exhibit a general structure that is easy to be ex-
tended to higher order cases. Recall that

1
Bp(4,b) = —o- fa by ds,
i
®i(A,w,a,b) = %5 i M7 (w, u) a;b;mny ds,
1
@2(A,w,a,c,b) = —E;LAMﬁjk(w,u)aiclbjnkds.

Following the common pattern shown above, we speculate that ®,(A, V,b, w) may be

expressed in a similar way by introducing a (n + 2)-tensor M"™*2, yielding

1
D0(4,w,V,b) = —— fa | M2 (w,u) Vibjnds, (5.36)

where I is a n-index (i1,...,4,). With V given in equation (5.35), the notation Vj

denotes

Vi = (r);, "'(r)ip (s)i,,H it (S)ip+q (t)¢p+q+1 e (), - (5.37)

To prove this speculation and also derive the expression for the unknown tensor

M”12 in equation (5.36), we express ®, given in equation (5.34) in terms of generalized
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irradiance tensors, attaining
1 y 1 .
Bn(A,w,V,b) = =r"M(A V, byw) = T3 " (4,w) Vb, (5.38)
T s

where V7 is interpreted by equation (5.37). Equation (5.38) suggests that the irradiance
due to an emitter with its radiant exitance varying according to a nth-order monomial is
associated with a special generalized irradiance tensor, T%"1", where the orders of the
numerator and the denominator differ by one. Actually, it follows from equations (5.33),
(5.3) and (5.20) that this claim holds for the special cases of uniform, linearly-varying and
quadratically emitters, which correspond to n = 0, 1,2, respectively. As a consequence,
Equation (5.36) can be easily derived by proving a recurrence relation about this special

tensor T"T1%, which is phrased as a theorem.

Theorem 9 Given an integer n > 0, the generalized irradiance tensor TV is given

by a boundary integral

1

n+1lmn e
T}, (4,w) = 3 Jou

M?jff(w, u) ny, ds, (5.39)

where I is a n-index, and the (n + 2)-tensor M depending on unit vectors w and u

satisfies a recurrence relation

n

1
2 +1 +1
My, 7 |2 (M = 831, Mg ) + (0 = 1) w; M
=1,
’}ﬂ'l u®
i ~ B | 5 5.40
k w, u)ﬂ—l Jk (W, u>n—2 ( )

which is completed by the base cases:

G o= S _ g, 5.41)

¥

M2, = b (5.42)
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Proof: The proof is performed by induction on n. First, from equation (3.33) we have

’ 1 1
Pl = = -d=—~[ 8.1y, ds.
j 2 aAnJ S ) - Jknk S

Thus equation (5.39) holds for n = 0. The validity of equation (5.39) for n = 1 has been

verified in equation (5.4) of section 5.1.1. Now we proceed with induction. Suppose that

k+1L;k 1 k+2
Toy " = =5 J,, MIj e ds (5.43)

is true for all 2 < k < n, where L is a k-index. When n > 2, we may apply the recursive

formula (4.5), obtaining

n+1
n+ln nin—1 nn—1 n-{-l'n -2 Ur; (w,n)
Ty = o1 {ZWIT iy TWTr 4T faA (w,u)" " ds| (5.44)

According to Theorem 6, we may replace T"""~2 ahove by
n+1ln—2 & n—1n—2 nn—1 u?nj
4TI] ! == Zl ITI\% (n—?) WjTI’ —]{;Awd&

Thus equation (5.44) becomes

+1; — 1 njn—1 n—1;n—2
T = [Z wi Ty, + (0= 1w, TP Zaﬂ Tha
1
o uy
+ 5 (5‘7;‘3 <w u)n_Q — Wi (w u)n_l n; ds. (545)

Expanding the tensors T™"~! and T"~1"=2 in equation (5.45) with the induction hy-

pothesis (5.44), and then extracting a common factor ny, we obtain

1 n
+1; +1 RV M
TT}J S 2 Joan—1 [Z W, ?I\i)jk + (n —1) w;Mp, Z 6]1',;M(1\2)k

i=1

n+l n

1j L7
40w, — — — 20, ————— | n; ds. 5.46
k(“: u)n—l ]k(“‘: u>n—2 ¢ ( )
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Comparing equation (5.46) with equations (5.39) and (5.40), we have proved equa-
tion (5.39) for all n > 2 under the assumption of (5.43). It then follows from math-

ematical induction that Theorem 9 applies for all n > 0. OO

Consequently, equation (5.36) follows directly from equation (5.39) and equation (5.38).
The recurrence formula (5.40) about the tensor M relates the irradiance solution
for higher-order polynomials to those for lower-order cases, as demonstrated in equa-
tion (5.27). In addition, since equation (5.36) reduces to Lambert’s formula when n = 0,
it provides a natural generalization of Lambert’s formula for homogeneous emitters to
non-homogeneous emitters with polynomially-varying radiant exitance.

Similarly, when A is restricted to be a spherical polygon with m edges, the irradiance

®,, given in equation (5.36) can be evaluated by summing the contribution from each

edge, resulting in

@n(A,W,V,b) = _i [i (fc M?ﬁf Vij d's) nk(g)] § (547)

27 =

It follows from equation (5.40) that the exact evaluation of each line integral in equa-
tion (5.47) finally relies on the analytical computations of base moment 7%!(A;w) and
boundary integrals B™!, which have been discussed in section 4.3.2.

While it is not practical to evaluate @, analytically for higher order polynomial due
to its complexity, the new boundary integral representation given in equation (5.36) is
primarily of theoretical interest as it proves that there exist closed-form solutions for such
irradiance problems. Moreover, this new formulation may also suggests better numerical

approximations.

5.1.4 Numerical Verification

Currently, few tools exist for computing the irradiance from inhomogeneous emitters
aside from two commonly used numerical means: Monte Carlo ray tracing and finite ele-
ment method. ITn Monte Carlo simulation, rays emitted from the origin to random jitterly-

sampled points on the emitter are used to approximate the irradiance integral (3.1); while
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Figure 5.4: A floor is illuminated by a square emitter with a linear radiant exitance distribution

specified by three points p,, P, and pg and their associate radiant exitance values shown beside.
h is the distance between the floor and the light source. (a) distribution ¢(x) = y + 3z. (b)

distribution ¢(x) = L(z — y + z).

finite element approach subdivides the emitter into several small patches (considered as
homogeneous) and then compute the contribution of each patch using Lambert’s formula.
For the purpose of verifying the present analysis, we compare our analytical solutions
with these two numerical approximations.

The study is carried out for a simple configuration: a floor is directly illuminated by
a square emitter of size 1 x 1, which is located at a distance of h = 1 above the floor,
as shown in Figure 5.4. The radiant exitance varies spatially over parts of the emitter
surface. An orthogonal coordinate system (x,y,z) is defined at the center of the floor.
We are computing the irradiance values along the red horizontal center line, where the
y coordinates range from —1 to 1, and z, z coordinates remain zero.

Our attention is first directed to the linear case. Two linear distributions of radiant
exitance are specified by positioning three non-collinear points p;, py, P3 as marked in
Figure 5.4a and Figure 5.4b and assigning the numbers nearby as their corresponding
radiant exitance values. According to equation (3.4), the settings in Figure 5.4a and
Figure 5.4b define the distribution of radiant exitance over the emitter as ¢(x) = y + %z
and ¢(x) = %(:c — y + z) respectively, where (z,y,2) = x. These two distributions
approximately correspond to linear variations along horizontal and diagonal directions.

Each of figures 5.5 through 5.8 shows the variation of the irradiance along the center
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Figure 5.5: Comparing our closed-form solutions with monte carlo simulations by varying the

number of stratified samples. (a) ¢(x) =y + 2. (b) p(x) = 5(z —y + 2).

line, where the abscissa of y coordinate ranges from —1 to 1 and the irradiance value @
scaled by 7 appears as the ordinate variable. Figure 5.5 has compared our exact solutions
computed from equation (3.116) with Monte Carlo simulations from various numbers of
stratified samples, that is, 25, 49 and 100. Figure 5.6 shows comparisons made with
finite element results. There are plots for different levels of subdivision that correspond
to 2, 8 and 50 triangle patches obtained from regular grids. Both comparisons show
good agreement between our analytical results and numerical approximations when the
number of samples or patches increases.

To test the formula (5.36) derived for a general nth order monomial radiant exitance
distribution, we chose a quadratic function given by ¢(x) = y?, that is, V = (y,y) in
equation (5.36), and we performed the similar comparisons in Figure 5.7, where the close-
form solution is computed using equation (5.29). As a final demonstration, we also show
the numerical comparisons for a special quadratic radiant exitance distribution given in
equation (5.6) in Figure 5.8. Since the light source and the floor are parallel, the normal
to the floor b and the vector w orthogonal to the light source are coincident, thus our
exact results can be computed from equations (5.8) and (3.114), in terms of Clausen
integrals. All these plots show that our closed-form solutions match very well with both

Monte Carlo simulations and finite element approximations in the limit.
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Figure 5.6: Comparing our closed-form solutions with finite element approzimations by varying

subdivision levels. (a) ¢(x) =y + 2. (b) p(x) = 3(z —y + 2).
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Figure 5.7: Quadratic radiant exitance distribution ¢(x) = y2. (a) Comparison between our
closed-form solutions with finite element approzimation. (b) Comparison between our closed-

form solutions with Monte Carlo simulations.

5.2 Non-Lambertian Scattering Simulations

For ideal diffuse surfaces, irradiance is sufficient to compute the reflected radiance. How-
ever, the situation is quite different for non-diffuse surfaces, where the reflected or trans-
mitted radiance also depends on the scattering features of the surfaces, which are in gen-
eral specified by BRDF (Bidirectional Reflectance Distribution Function) for a reflecting
surface, or BTDF (Bidirectional Transmission Distribution Function) for a transpar-

ent surface. For environments with reflection or transmission distributions defined in
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Figure 5.8: Quadratic radiant exitance distribution ¢(x) = 22 +y*+22. (a) Comparison between

our closed-form solutions with finite element approzimation. (b) Comparison between our closed-

form solutions with Monte Carlo simulations.

terms of Phong exponents, the mathematical tools derived for generalized irradiance
tensors T™Y and associated rational moments 7% may be applied to simulations of
non-Lambertian scattering effects involving spatially-varying luminaires and non-diffuse
surfaces. The similar approach employing irradiance tensors T" has been used to simu-
late non-Lambertian scattering effects involving only uniform luminaires [9], while T™
as a generalization of T™ allows us to extend such simulations to involve spatially-varying

luminaires as well. See Figure 5.9.

Figure 5.9: Analytical glossy reflection of an E-shaped luminaire whose radiant exitance is uni-

form (left) and linearly-varying (right) with respect to position.
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Figure 5.10: Given a glossy surface with a simple BRDF defined in terms of a Phong exponent
around the mirror reflection v, the reflected radiance along the view direction u' at o due to a

monomially-varying luminaire can be formulated as a rational moment 7.

5.2.1 Phong-Like Glossy Reflection and Transmission

The problem of computing view-dependent glossy reflection involving a monomially-
varying luminaire and a non-diffuse surface with Phong-like BRDF can be formulated in
terms of those special rational moments 7 defined in equation (4.34) of section 4.4.

Let o be a point on a reflective surface and b be the normal at o, see Figure 5.10. If
A = TI(P) denotes the spherical projection of the luminaire P at o, the reflected radiance

at o in the direction u’ due to P is given by

fl) = [A p(u = u') £ (u) (b, u) do(u), (5.48)

where p is the BRDF of the reflecting surface, and f(u) is the radiance distribution at o
due to the luminaire P. Suppose that the radiant exitance of the emitter P varies with
respect to position according to a monomial function, then f(u) can be characterized by
a constrained rational polynomial given in equation (4.3). Now consider a simple BRDF

defined in terms of a Phong exponent, that is, a cosine raised to a power m [87],

plu—u') = —¢ [u'T (I—-2bb") u]m = c{v,u)™, (5.49)
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where v = —(I — 2bb™)u’ and the Householder matrix I — 2bb™ performs a reflection
about the tangent plane at o. This BRDF defines a cosine lobe about an axis v in the
direction of mirror reflection of o, as shown in Figure 5.10. Using equation (5.49) and
equation (4.3), it follows from equation (5.48) that the reflected radiance in the direction
u’ at o on this reflective surface due to a monomially-varying luminaire P of nth order
may be expressed as a type of rational angular moment introduced in section 4.4. That

is,

f(lll) _ [4 (V, u>m (ela u)p (62, u)q (637 u)?" (b’ 11) da(u)

(w,u)"

= FMPGLLR(A v e, e, e3,b; W) (5.50)

up to some scalar, where w is the unit vector from o that is orthogonal to P. See

Figure 5.10.

5.2.2 Glossy Scattering from Linearly-Varying Luminaires

When the radiant exitance of the luminaire P involved in the previous section varies
linearly with position, the moment given in equation (5.50) is simplified by n = 1 and
the fact that only one of p, g, r is nonzero and 1, resulting in a kind of moment described
in section 4.4. Therefore, the algorithms described there for their efficient evaluation may
be applied to directly simulate view-dependent reflections from or transmissions through
glossy surfaces due to a linearly-varying luminaire.

Specifically, letting a given in equation (3.6) denote the vector encoding the radi-
ant exitance variation across a linearly-varying luminaire P, then the reflected radiance
expressed in (5.48) reduces to 7™LLN(A, v, a, by w) (= F™b(A4, v, b, a;w)), or equiva-

lently

f(u') = /A w.w) do(u). (5.51)

The procedures described in section 4.4.4 can thus be directly used to simulate the glossy

reflection effect involving linearly-varying emitters and a reflective surface with Phong-



Figure 5.11: Glossy reflection of a stained glass window with linearly-varying colors, where the

Phone ezponents are 15, 50 and 300 from left to right.

like reflection distribution. The technique is demonstrated in Figure 5.11 using a variety
of exponents to simulate surfaces with varying finishes. From left to right, the floor
becomes from relatively rough to near specular. In order to efficiently handle two color
variations superimposed on the patches of the fish-shaped luminaire shown in Figure 5.11,
we separate the vector a depending on the color variation from equation (4.40) and

n,1,1;1

rewrite 7 as an inner product of a and a vector-valued function t(A4, v, b, w), that

is
ULl (A, v, a,b;w) = (a,t(4,v,b,w)), (5.52)

where the vector-valued t can be derived from (4.40), given by

- T .
t(4,v,b,w) = wi™'(4,v,b)+ I% {n%"*l’l;l(A,v,b;w)v + 75 (A, v;w) b
n
n
_/ Lnw)” (b,u) ds]’ (5.53)
2A (w,u)

which may be evaluated efficiently using the similar technique described in section 4.4.4.
The procedures exactly parallel to those presented in section 4.4.4. Similar optimization
of amortizing the computation cost among several variations was also used in simulating
the direct illumination from linearly-varying luminaires in section 5.1.1, where we used

(3.117) to compute an irradiance vector ®(P, w,b) instead of a scalar irradiance value.
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In Figure 5.12, our analytical glossy reflection is compared with a Monte Carlo so-
lution based on 64 samples per pixel, where the samples are stratified and distributed

according to a cosine (a form of importance sampling) lobe about v. The analytical

Figure 5.12: A simple test scene of a glossy surface of order 200, the closeup images of the
reflection on the floor were computed analytically (middle) and by Monte Carlo using 64 samples

per pizel (Tight).

solution matches very well with Monte Carlo estimate with the advantage of eliminating
statistical noise. Moreover, its running time (2 min) in SGI Onyx2 is also slightly faster
than Monte Carlo method (2.6 min) for this example.

Nearly the same strategy can be used to compute glossy transmission through a
glossy surface from linearly-varying luminaires. By choosing v in equation (5.53) as the
reversed view direction —u’, which is now located on the other side of the transparent
material, p(u — u') defined in equation (5.49) can be interpreted as a phong-like BTDF.
Consequently, the transmitted radiance in the direction u’ at a surface point due to
a polygonal luminaire P is represented by the same integral shown in equation (5.51).
Figure 5.13 shows three images depicting a frosted glass fish tank, with different finishes
corresponding to different Phong exponents. This effect due to Lambertian luminaires

was demonstrated by Wallace et al. [116] and Arvo [9].

5.2.3 More Complex BRDF

In this section we shall discuss the simulation of scattering effects from non-diffuse sur-

faces with more complex BRDFs. The mathematical formulation using tensors and mo-
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Figure 5.13: Glossy transmission through a frosted glass fish tank, where the tropical fish and
sea weeds are superimposed with linearly-varying colors. From left to right, the Phong exponents

are 9, 15, and 65, respectively.

ments discussed in section 5.2.1 still applies, as long as the BRDF may be approximated
by polynomials. Examples include BRDFs obtained from superposing cosine lobes along
different axes and of different orders, and Lafortune’s Model [66], etc.

Lafortune’s model is a generalization of the cosine lobe model shown in equa-

tion (5.49), which is defined by

p(u — ) ¢ [u"Mu']"

c[u"Q"DQu", (5.54)

where M is a symmetric 3x3 matrix and M = Q" DQ is a singular value decomposition of
M. The vectors of () specify a new coordinate system on the surface, which is aligned with
the surface and principal directions of anisotropy. Then, by expressing the coordinates

of u and u’' in this new coordinate system, we get the general form of p(u — u'), given

by
plu—u') = [Cruguy, + Cyuyuy, + Couul]™,

which provides a non-linear approximation to p with respect to the coefficients Cy, Cy,
C,, determined from measured data using nonlinear optimization techniques. Anisotropic

reflection and specular reflection near grazing can be simulated by allowing ¢ and n in the
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definition (5.54) of p to vary with the incident direction u. It follows from equation (5.54)

that we may still express such a nonlinear BRDF as a cosine raised to a power, that is

plu—u') = cf{v,u)”,

where v = Mu'. Consequently, we may use the same procedures in the previous sections
to simulate some scattering effects involving surfaces with such a BRDF and spatially-
varying luminaires.

In fact, a more interesting topic may be to model more complex and realistic BRDF's
using the class of constrained rational polynomials that can be represented by our gen-
eralized irradiance tensors. With such a BRDF, the reflected radiance from non-diffuse
surfaces due to a Lambertian luminaire can still be formulated in terms of rational mo-
ments, which may be amenable to closed-form solutions. In approximating these BRDF's,

it would be interesting that they manifest some of the reflection properties listed below:

1. Non-Lambertian diffuse reflection: the diffuse component fades out near grazing

angles.
2. Increased specular reflection near grazing
3. Off-specular reflection
4. Anisotropic reflection.

In the meanwhile, the modeled function should observe the inherent properties of BRDF,

that is
e energy preserving
& reciprocity

The ideal case is that the functions can fit into our rational moment definitions and are
amenable to closed-form solutions. However, a big challenge arising here is that we only

allow one factor to appear in the denominator of approximating rational polynomials.
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5.3 Directional Luminaires

The idea of using generalized irradiance tensors and rational moments for non-
Lambertian simulations of spatially-varying luminaires may be similarly applied to the
general case of non-uniform luminaires with emission distributions that vary polynomi-
ally in positions as well as in directions.

Let P be a polygonal luminaire whose emission distribution is spatially uniform but
varies directionally according to a Phong distribution, i.e. as a cosine to a power [, where
the direction of maximum radiance w may be normal to the planar luminaire, falling off
rapidly in other directions, as shown in Figure 1.1a. The irradiance at the origin o with

the normal b can be computed by

= Wul u olu
o = [P<,><b,>d()
= #P,w,b)

= 7P w,v), (5.55)

where the corresponding rational moment is reduced to a double-axis moment, as was
already demonstrated by Arvo [9].

Furthermore, if the radiant exitance of P also varies in position according to a nth
order monomial function, then the radiance distribution at o due to this luminaire be-

comes

{e1, u)” {ez, u)? (g, u)" (b, u)
(w, u)"

f(u) = (W, u>l Z

Consequently, the reflected radiance at o on a glossy surface with a simple BRDF defined
in equation (5.49) due to P is still given by a moment that follows from equation (5.48). In

particular, depending on the relation between the monomial order n and Phong exponent



183

[ regarding the directional variation, we have

FrPAnLn=l(A v e) e, e3,b;w) n>1
fw) = { #mPanlio(4 v e;, e, e3,b) —

,Fm,P,Q,T,!—n,l;O(A,V, e, ez, e3,w,b) n <l

(5.56)



Chapter 6

Conclusion and Future Work

6.1 Summary

Chapter 2 presented an analytical perturbation formula for perturbing a general ray-
traced path involving both specular reflections and refractions. The formula is based on
closed-form expressions for path Jacobians and path Hessians. In addition, as a contin-
uation of our previous work [27], we simplified the original formula for path Jacobians,
generalized the path perturbation theory to parametric surfaces, and made some in-
sightful comparisons with two similar ideas. In addition, the virtual object algorithm is
extended to refraction for lens simulation. Some potential application areas of our path
perturbation framework were discussed in the end.

Chapter 3 presented a closed-form solution for the irradiance at a point due to a
linearly-varying luminaire. The expression was derived using Taylor expansion and a
generalization of double-axis moments and then verified by Stokes’ theorem. Although
the whole procedure is quite tedious and out-of-dated, the work serves as a motivation
to the theory developed in the chapter 4.

Chapter 4 presented new mathematical tools for computing direct illumination and
scattering involving polynomially-varying luminaires. The building block of this chapter
is a generalization of irradiance tensors called generalized irradiance tensors, which were

shown to satisfy several recurrence relations. These tensors depict the emission features
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of polynomially-varying luminaires and are well suited to represent a class of constrained
rational polynomials integrated over the sphere, called rational angular moments. Partic-
ularly, we derived a number of closed-form expressions for integrating a subclass of these
rational polynomials that correspond to Phong distributions and presented complete al-
gorithms for their efficient evaluation. These special moments have direct applications
in image synthesis, and the algorithms were verified by comparison with Monte Carlo
simulation and Finite element method in chapter 5.

Chapter 5 demonstrated several applications of new expressions derived for general-
ized irradiance tensors and rational moments. First of all, we presented some theoretical
results about the irradiance at a point due to a polynomially-varying luminaire. With
a new formulation using the concept of generalized irradiance tensors, we not only re-
derived the same closed-form solution for the irradiance due to a linearly-varying lumi-
naire in a more elegant way than that described in chapter 3, but also found a general
recursive formula for the irradiance at a point due to a luminaire whose radiant exitance
varies with respect to the position according to a monomially function of any order.
The recurrence relation relates the solutions for higher-order polynomials to those for
lower-order cases, subsuming Lambert’s formula as its base case. Furthermore, we have
reasoned that there exist a closed-form solution for the irradiance at a point due to a
Lambertian polygonal luminaire with polynomially-varying radiant exitance, depending
on a single well-behaved special function known as the Clausen integral. We then illus-
trated other applications of generalized irradiance tensors, including glossy reflections
and transmissions on non-diffuse surfaces due to spatially-varying luminaires as well as

directionally-varying luminaires.

6.2 Future Work

The algorithm for simulating lens effects presented in chapter 2 should be enhanced
with a better mechanism to identify and split multiple refraction images of a single
scene point. This problem also exists in the application of interactive specular reflection,

but becomes more severe in the case of refraction. Interval analysis may provide us a
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general technique to find all the reflection or refraction points corresponding to an object
point. Also, path perturbation theory may find various potential applications, such as
stereoscopic ray tracing, image-based rendering of non-diffuse environments, caustics
acceleration, variance reduction in Metropolis light transport, as well as shape recovery
in computer vision. The details have been presented in section 2.7.

There are a number of extensions to the work presented in chapter 4. The most im-
portant one is to make those new expressions more practical. According to section 4.3.2,
all the rational moments admit closed-form expressions, except for a single special func-
tion known as the Clausen integral. However, it is still necessary to look for practical
algorithms to efficiently evaluate a general rational moment, or at least those special
moments corresponding to Phong distributions with a denominator order greater than
one.

Motivated by the problem of computing the irradiance due to a polynomially-varying
luminaire, we extracted a form of irradiance tensor given in (4.4) to accommodate a class
of constrained rational polynomials over the sphere arising in the irradiance problem.
Another important extension is to look into other possible tensor formulations to account
for more general rational polynomial functions, or even other forms of basis functions
over the sphere, which may lead to other non-Lambertian simulations.

The analysis of the irradiance problem in chapter 5 may be extended in several
ways. Given the expression for area-to-point form factor, we may integrate over an area
to compute area-to-area form factor involving a spatially-varying polygon; we should
also explore the occluded irradiance from spatially-varying emitters. Taking this a bit
further, we may consider computing indirect illumination scattered from one or multiple
reflectors. Since the irradiance across a Lambertian reflector can be represented as a
polyhedral spline [107], then the problem of computing the irradiance on a diffuse surface
scattered from this reflector reduces to the computation of direct illumination from a
luminaire with spline-like spatial variations. Unfortunately, since polyhedral splines are
not polynomials, our machinery cannot be directly applied. We may even include some
kinds of BRDF at intermediate surfaces. All these studies will boil down to expressing

them in terms of more general rational polynomials, where the denominators may become
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more complex at some point (i.e. more than one factor). This remains to be seen.
Aside from these directions, we may extend it from the perspective of differentiation.
As learned from path perturbation, we have seen that derivatives always show important
information of the function we are studying. With the irradiance formula derived for the
irradiance due to inhomogeneous emitters, we may consider differentiating it with respect
to the receiver point or other parameters, as the work of irradiance Jacobian done by
Arvo [7], or that of irradiance gradient by Ward and Heckbert [117]. Consequently, we
may approach the problem of computing direct illumination due to an inhomogeneous
emitter from a different view, that is, formulating it as an ODE instead of an integration
problem. Moreover, the irradiance derivatives may be of use in such applications as

interpolation, mesh construction, and so on.



Appendix A

Additional Proofs

A.1 Solving the Linear System (2.50)

In this appendix, we show how to compute N satisfying equation (2.50) in section 2.3.

Obviously, equation (2.50) is equivalent to the following linear system:

IN+hv™ = 1 (1)
[v+dn = 0 (2
h'N -0 @3
h'v = 1 (4
Multiplying both sides of (1) by I', we have
INT + bl =1
Using the fact that I is symmetric, we get
END 4+ n(fv)" =1 (A1)

Replacing I'v = —dh from (2), equation (A.1) can be written as
I'NT — dhh™ =T

188
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If I is non-singular, we can solve for N, attaining
N =11 (1+ dab™-1), (A.2)

where d above can be computed from (2) and (4). In detail, multiplying I"! and then
h" on both sides of (2), we get

h™v + dh™I1h = 0.

Using (4), we can solve d as

o
h'T~'h’
Plugging into equation (A.2), we get
" hh'T-!
N=T"1I-— (A.3)
h"T'h

Tt can be easily verified that the expression (A.3) for N satisfies (3).
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A.2 Proof of Identity (3.41)

In this appendix we supply the proof of the identity (3.41).

Proof: The proof is done by using Stokes’ Theorem, which can be stated in three steps:

Step 1: By using the fact (3.90), we may rewrite the boundary integral on the left of

equation (3.41) in terms of the position vector r and its derivatives, obtaining
/ (w,n) d f (w,r x dr)
N s P S
oA 1+ {w,u) oA (r+{w,r))r

_ / €jpiW;Ty I
o4 (r+(w,r))r

/ B, dr,, (A.4)
A

where

EjpleI‘p
(r+{(w,r))r

B] =
Step 2: To convert the resulting boundary integral into a surface integral to compare
with the right hand side of equation (3.41), we need to compute the partial derivatives

of B,. By using the fact that

0 ( 1 ) et r’w,, + (w,r)r,
Oy \(r+(w,t))r/ (r+ (w,r))2r3

the partial derivative By, can be computed as

Bim = eiyW; 5pm _ 2rr,r, + v"zrpwrn +(w,r)r,r,
’ P+ {wy ) T (r + (w,r))?r3
€ W 5pm (T + (W’ I‘)) = 2Tr1’rm — rQrme - (W, I‘) r,r,
JplWi (7_+ (W, r>)2 7"3

We then apply Stokes’ theorem to equation (A.4), yielding

{(w,n) [
———ds = By dreo A d
/;A T+ (w,u) g s .
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Epe drg A dr
Y NPT R
A 2

where the last step follows from the transformation (3.26).

Step 3: Using the definition (3.27), we may express the surface integral (A.5) in terms

of solid angle. First, we simplify e;,,;B; , as follows:

Spm (1 + (w, 1)) r2 — 2rr r,, — r’r,w,, — (wW,r)r,T
£ B = € i W pm ) ptm pYm ] prm
kmiPlim kmi&jpl J( (7‘+(w,r))2 P
8, 0ir — 0,105
_ TpmY%k — YpkSym 2 _ D _
= - r))2 g w; (épm (r +{w,r))r* = 2rr,r, — r’r,w, — (w,r) rprm)
1

= W [3Wk ('f' +(w, r)) r2 — 2r3wk — 2 <W, I‘) W, — r2 (W, 1) Wy

—w, (7 + (w,r)) 7% + 2r (w,r) £, + 2 (w, w) r, + (w,r)? rk]

= — "™ [27" (w,r) + 72+ (w, r)2]

Consequently, equation (A.5) becomes

hf {wm) o _ _/M
a4 1+ (w,u) o A 2r3
= fdw
A
a(A),

which proves our identity (3.41). OO
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A.3 Proof of Binomial Identities (3.63) to (3.66)

In this appendix we prove the four binomial identities (3.63), (3.64), (3.65) and (3.66)
shown in section 3.3.3, which all involve binomial coefficients ( " ) Our approach is to
use generating function. g

First, we prove identities (3.63) and (3.65), where each summation term has a de-
nominator of (k + 1).

Proof: Integrating both sides of

e n\ zktl (l—m)"H‘l
>0t () e - S

Thus, we get equation (3.63), that is

n n\ zF _1—(1—:1:)”+1
Z(%l)k( )k+1" (n+ Dz

k=0 k

By letting « = 1 above, we get another identity (3.65). 0O

A similar strategy applies to identities (3.64) and (3.66) whose summation terms have a
denominator of (k + 3).

Proof: Integrating both sides of

kzi%(_i)k (:) 2kt = (1 — )"
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with respect to the variable z, we get

k+3

Zn:(—l)"c (n) ;:+ 5 = [(1 — z)"z?dz + c(n)
. f(l—sc)”(l—a:—l)zdm+c(n)

/ [(1 —z)"2 201 — )™ + (1 - x)”] dz + c(n)

3 (1 _ .’L‘)n+3 2(1 _ :12)”+2 (1 _ :L‘)"+1

- n+3 n+2  n+l i
where ¢(n) is a function only dependent on n. Letting z = 0, we get
) = 12 2 1 2
" n+3 n+2 n+l (+DH+2)(n+3)
Thus, we have
i(_l)k (n) z* B i 9 (1 _$)n+3 N 2(1 _w)n+2 B (1 _x)n-l-l
-, g/ k+3 2\ (n+1D(n+2)(n+3) n+3 n+2 n+1 ’

which is identity (3.64). By letting z = 1, we can get another identity (3.66). OO
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A.4 Proof of Identity (3.75)

In this appendix we prove the identity (3.75) used in simplifying 7% in section 3.3.4.
Proof: Since both sides of equation (3.75) are boundary integrals, we prove this iden-
tity by converting them into surface integrals and comparing the resulting integrands.

Specifically, by applying Stokes’ theorem, we can change the left hand side as follows:

{(v,r x dr)

(v,n) _
/aA g ds = /M--———Mr)z (Eq.(3.90))

Eqpi ity dr,

B /aA {(w,r)?
/Agjp[vj (% [ﬁ}) dr,, A dr, (Stokes'theorem)

1)
= szplvj |:( LU P 2erg:| drm A drl

w, r)2 (w,r)

opm 2wmrp] [skst dr, A dr,

= Lskmlgjplvj]:<w’r>2 = 5 } (Eq.(3.26))

)
- f (Spmjk — SpkOjm) Vs { e zwmrp] Fm dr, A dr,
A

(w,r)*  (w,r)’ 2

_ / [ 3vii  2{w,r) v, % _'_21‘k (w,v):l [Ek:st dr, A drt]
A

w,r)? (wr)® (wr)? T (w,r)’ 2

_ (w,v)f 2r, . [skst dr, A drt} ’
A (w,r) 2

where we have labeled the crucial steps with the transformations used. Since equa-
tion (A.6) holds for all vectors w and v. Letting v = w in (A.6) and using (w,w) =1

for unit vector w, we get

s <::’::>>2 o=, <‘: mx [% i dr”] : (A7)

Multiplying equation (A.7) by (w,v) and comparing the result with the right hand side

of equation (A.6), we have proved the identity (3.75). OO

] (Eq.(3.18))
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A.5 Proof of Identity (3.79)

In this appendix we supply the proof for another identity (3.79) used in section 3.3.4.

We first state and prove a useful lemma.

Lemma 1 Suppose that u is the unit vector in the same direction as the position vector

r of a point with respect to the origin and r = ||r||. Let
In (w, u)
= —1_L A8

then the partial derivative of &, with respect to the mth coordinate r,,, denoted by &, m,

s given by

1 —nln(w,u)

n+1 ’)"2 T™Wm — <W: u) L) (AQ)

§ﬂ,m (W, u)

for any integer n > 0.

Proof: The proof is done by induction. When n = 0, £, = In (w, u), we have

dln{w,u)  wp, _Tm
or,,  (w,r)  r2
1

= w2 [rwm — (w,u) rm} :

Thus, equation (A.9) is true for n = 0. Suppose that equation (A.9) holds for k£ —1, that

is,

1—(k—1)In(w,u)

(w,u)* r?

§rm1m = {rwm —{(w,u) rm] . (A.10)

Then the partial derivative of £, can be computed as:

1

B = % [

$k—1m (—1—> + Skmla—f; [(L]

w,u w,T)

1-(k—-1)In{w,
- Ew, u>3°+1(rz = [’"Wm*“”“) ‘"m] -

In{w,u} r,{(w,u)—rw,
E—1° 2

(w,u) (w,u)” r2
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1 —kln{w, u)
= m Tw, — {(wy,u)r,|,

which has shown that equation (A.9) also holds for n = k if it is true for n =k — 1. By

induction, we can claim that equation (A.9) is true for all integer n > 0. OO

Now we are ready to prove the identity (3.79), where we will use lemma 1.
Proof: To prove an identity about two boundary integrals, we convert them into their

corresponding surface integrals, as we did in Appendix A.4. Respectively,

Step 1: (The left hand side)

First, we break it into two parts:

/E;A [(a, n) — (&, u) (w,n) n)] ds = /aA {a,n) ds — /M @,u) (w,n) ds

(w, u) (w, u)
= g =iy, (A.11)

where

_ _ {(a,u) (w,n)
Ay —[aA(a,n) ds, Ag—faA—ds.

(w, u)

Next, we apply Stokes’ theorem to the two terms A; and As, and express the resulting
surface integrals in terms of dw using equation (3.27). For this purpose, the trans-
formation (3.26) is used to complete the 2-form corresponding to dw, and the tensor

identity (3.18) is used for simplification. This step is demonstrated below:
_ Ip
Al = LEkpgak |:7’_2:| dr,

_ 0 [rp] [Egst drs A dry
= [y (3] 55

0 2r.r Eggt drg A dr
_ pm prm qst s t
= /A [248pm — amdpq] [r—2 R ] [ 2 ]

— //;[-2<a’u>] {_%] [EM} (A.12)

2
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(A.13)

t = [ o[22 3] o
= [ e ({22 B [ deuh &5

= an Wy (a,r)\ r (a,r) 5__77_1_ _ 2rpry,
= /A[ qépm wm g l:( W I‘) (w,r)2 ) T’; + (W,I‘) ( :2 :4 )} X

|i5q3t drs A drtj|

2
_ <aa W) _ (a1 u) _ _r_ Egst drs A drt
B /A [(w,u) (w,u)? 2(a,u)] { rﬂ { : 2 ]
- /A [g:‘v"z - (i:’:)é ~24a, u)] dw. (A.14)
Combining equations (A.11) and (A.13), (A.14), we have
(a,u _
/@A (a,n)—g] / [(W o ] B (A.15)

Step 2: (The right hand side)

In terms of &, defined in (A.8), we rewrite the integral on the right as

[ elawwn-@nld = @w [ o d-[ &an d
(a, W) B1 s Bz, (AIG)

where

By = faAgz(w,n) s By = [BAfg(a,n) s,
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Notice that B; is just a special case of By with a = w, we only need to derive the surface

integral formula for By . It follows from lemma 1 that

1 —2In{w,u)

rTw,, — (W, 1) E
et [ CRL AL

52,m =

Therefore, parallel to the steps used in equations (A.13) and (A.14), we have
BZ — f 52 (aa n) ds
8A

= Ekpldk |S2 5| O]
e r2

1—2Iln{w,u) Iy
— £ Eppia st LW 2 E w,u}) —<
[4 gml=kpl<k { (W, 11)37“2 ( m m( d )) r2

In (w,u) (5pm 2rprm)] [%st drg A drt}

(wow)? \r? 2

= L[aé —a..d ][ﬂw’_u)w Fis o 'pI'm 4 ln(w,u)a ]X

(wou)®rd T (wou)iet (wou)ie2 P

[Eqst drs A drt:|

2
B 1—2In{w,u) W) — {a,u) [ [ 14] [£gst drs A dr,
- fA[ W (w,u>2H rg] [ T }
B 1 —2In(w, u) e (a, u) "
- /A [m(w,u)s (a, w) (w,u):z} dw. (A.17)

Letting a = w above, we get

B 1 —2In{w,u) 1
Bl—fA[ e <w7u>] dw. (A.18)

It then follows from equations (A.16) and (A.18), (A.17) that

_ (a,u) (a,w)
/c;A 52 [(aaw) (W, n) - (aa n)] ds = [4 [( 2 . ):| dw. (A'lg)

w,u)®  (w,u

Comparing equation (A.15) and equation (A.19), we get the identity (3.79).
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A.6 Proving Equation (3.123) by Change of Variable

In this appendix we prove the relationship between A(a, 3) and Y(y, ) that is expressed
in equation (3.123) using change of variables.

Proof: Let
tan® = +/1— a?tant,

we can easily derive from trigonometric identities that

t = tan™! (M)
V1 — a2

cos?t

2 -
cos“ 8 = =

sin?t
cos? @
dé = V1—-a2 dt
cos? t
V1 —a?

1 — a2sin®t

l— o

It then follows that

a? cos? t

1—a2sin’t’

o’ cosh =

Consequently, we have

B In{ccos )
Ao ] = ,[0 1 —a?cos? @ a0

1 [# In(c? cos? )

- 2[0 1—a2cos?f

- an 5
I/tan 1(%) ln( a? cos?t )[1—@25111215] [1\/1—012 ] it
0

2 1—a2sin®t 1—a? — a?sin’t

2

%>}n( o? cos? t )dt

1 —a?sin®t

1 tan‘l(
2v1 — a? /0
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1 tan
—2\/1 — o2 ./0
1 r.an‘l(
2v1 — a2 /0

1
_—_‘r t —1(
2Vl — o2 (an V1—a?
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*1(7?%) In (1 — a? sin? t) g

a?cos?t

tan
Vé L= 2
1""‘2) In (1 + f sec? t) dt
(8]

tan 8 ), m)

«
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A.7 Reduction of Y(u,r) to Clausen Integrals

In this appendix, we show a complete derivation for representing Y (u,v) given in (3.122)
in terms of the Clausen integral. First, we state and prove two lemmas regarding two

intermediate functions used in this reduction.

Lemma 2 Lobachevsky’s function L(z) defined by equation (8.137) satisfies [79, page
88]

L{z) = %Clg(ﬂ' —2z)—zlIn2. (A.20)

Proof: It follows from the series representation of Clausen integral given in equa-

tion (3.120) that Cly(m) = 0. Using the integral definition (3.120), we have

T—2% 0
Clg(mr —22) = —/ In (QSin 5) de
0

m—2x )
= —Cly(r) —f In (23111 5) do
™

-2 2]
= 2$1n2—-/ In (sin) de
- 2

x
= 2zln2+ 2/ In(cost) dt
0

= 2xln2+2L(x),

where we have used a change of variable § = 7 — 2t. Solve for L(z), we get equa-

tion (A.20). OO

Lemma 3 The two-parameter function F(o,x) defined as

Flo,z) = / In(1 + sincrcos6) d (A.21)
0
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satisfies an identity given by
Plosz) = =z la (sim2 %) —nln (ta,n2 %) — Clp(2z) + Clp(2z — 27) + Cla(2n), (A.22)

where

sinx

tann = (A.23)

tan § +cosz’

Proof: The identity (A.22) was first identified by Newman [79, pp. 89] back in 1892.
Our derivation shown here closely follows Newman’s, where trigonometric identities play

an important role. Let m = tan § and

sinf

tany = ——,
v m+cos@’

(A.24)

Solving for m, we get

= PO (A.25)
sin vy

It follows that

. 2tan-‘2’i 2m
sina = a = S
1+tan22 ~ 14m

in{@ — in@
mtcosg = 20— oo sinfeosy
siny sin-y

1+m? = sec? %,

where we have used the following identities regarding trigonometry functions:

. - o o Ztan% Ztan%
sina = 2sin—cos— = =
2 2 sec? § 1+ tan? 5

sin(6 —y) = sinfcosy — cosBsin~y.
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Thus, we can express 1 + sina cos @ as a product by

1+ 2mcos @ + m?
14+ m?2

1+sinacosd =

sin? 8 + (cos @ + m)?
1+ m?2

sin®
sin? y sec? &
sin?@

o2 2
= = cos” —.
sin? y 2

According to the definition (3.120), we get

Fla,z) = /Om (ln(sin2 8) — In(sin?y) + In (C082 %)) do

/O'm (ln (4 sin® 9) —In (4 sin? 7) e (CQSZ %)) 0

= gln (c032 %) — Cly(2z) — fz In (4 sin? fy) da. (A.26)
0

Considering v(0) as a C* function of 8 implicitly defined by equation (A.24) and rewriting
df as

40 = dy(0) +d(6 — 7(6)), (a.27)
we can express the last integral in equation (A.26) in terms of Clausen integrals as follows:
| ntsi?y) do = ["ilasin? 1(6)] d(6) + | 1nl4sin? y(0)] d(© - 7(0))

0 0 0

= f " [ 4sin? ] de + / “In[4sin?7(6) ] d(0 — 4(0)
0 0

4sin?(6 — v(0))

m2

= —Cly(2y(x)) + 2[; ln[ } d(e —~(9))

= —Cla(2y(z)) + fo T In [4sin2t] dt — [z — y(z)] Inm?

= —Cla(27(x)) — Cla(2z — 2v(z)) —
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(z —y(z))In (tan2 %) . (A.28)

where we have used equation (A.25) and (0) = 0 in changing variables. Let n = y(x)
and thus

1 sinz
any = ——m———,
n tan § + cosw

Combining equations (A.26) and (A.28) yields

Fla,z) zln (0082 %) +(z—n)ln (tan2 %) — Cly(2x) + Cly(2n) + Cla(2z — 2n)

= iy (sin2 %) —nln (tan2 %) — Cla(2z) + Cly(29) + Cla(2z — 2n),

which establishes equation (A.22). OO

Discussion: In lemma 3, the function 5, which depends on & and z, is only implicitly
defined by equation (A.23). To uniquely determine 7 from tan 7, we need two restrictions

on 1) = y(z) that were enforced by our proof shown above. That is,
e v(z) must be a C! function in z to make equation (A.27) hold.
e (0) =0.

Specifically, when 0 < @ < n/2 and 0 < 2 < 7, we have

0<m = tanggl.

Then,

2( sin@ )__ mecos@ +1
00 \m+cosf/  (m-+cosf)? =

for all 0 < 6@ < 7 and @ # 0y = cos™*(—m), that is, the denominator m + cosf # 0.

Therefore, tan+y is non-negative when 0 € [0,6y) and is non-positive when 8 € (6y, 7. It
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follows from the two conditions of -y that -y should be in [0, 7] instead of [—7/2,7/2], the

range of the function tan—!. Therefore, we obtain an explicit formula for n below:

tan~1 ( s ) tann > 0
tan(a/2) + cosx
n = (A.29)
7+ tan~! ( el ) tann < 0
tan(a/2) +cosx

Now we are ready to prove the identity (3.124).

Proof: We first represent T (u,v) in terms of the two intermediate functions L(x) and

F(a,z). That is,
( cos2 9)

(u + cos? 9 do — 2/ In (cos 6) d6

T(p,v) =

Il
\\

1 2 6+ 2 1
- _[ In u df — 2 L(y)
2 Jo 2
_ & 2“1n(1+ﬂ) a0+ pin (221 Zo
~ 24 27 + 1 A2 #
1 P | 2?41
= 5F(sm 2V2+l,2u)+,u,ln( 5 )—2L(M).

Then, by replacing F and L above by identities (A.22) and (A.20), we get

. 90 1
T(u,v) = plo (51112 —2—) —inln (tan ~2~) +pln (41/ —|—2)

—% [012(4#) — Cla(4e — 2n) — Cla(2n) + 2Clp(m — 2#)]

1
- - [012(4[.1,) — Cly(4u — 2q) — Cla(2n) + 2Cla(x — 2p)

—2u In ((41}2 + 2) sin? %) +nln (tan2 %)] ; (A.30)
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where

1 1
w2+ 1
sin(2u)

t R A.32
s tan § + cos(2u) ( )

(A.31)

a = sin

Obviously, we have 0 < a < /2 from its definition (A.31). Moreover, it follows from

equation (3.123) that the parameter u corresponding to a given A(w, ) is given by

tan 3 )

p(e, ) = tan™! (ﬁ

Therefore, 0 < p < 7/2 and thus 5 given in (A.32) can be determined using equa-
tion (A.29).
Using the following identity for Clausen integrals [67, pp. 94]

%012(29) — Ch(6) — Clo(r — ), (A.33)
equation (A.30) simplifies to
T(uv) = =3 [2C1(2) - Cla(du — 21) — Cha2n)
—2u In ((41}2 + 2) sin? %) +7ln (tan2 g)] (A.34)

Furthermore, it follows from equation (A.31) that

. 1
sha = Ay
cos w2 +1
a = ———
w2417
which reduces tan(a/2) to
a 1 —cosa
tan—- = —
2 sina

= (v—Vvi2+1)°
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Let v = (v — V2 +1)2, then

o sin(2u) )

= tan ' —>"7

1 an (’Y‘I-COS(Q,u)

2 2
a0 _ tla/?) _ 9
2 secZ(a/2) 142

where tan~! for 7 should be interpreted by equation (A.29), i.e. n € [0,x]. Notice that

R e
T ViZ+1+v

the above formula for sin® & can be further simplified as

aa Y 7
g - , A35
YT T T w2 (4.35)

It then follows from equation (A.34) that

T(4,v) = 5 (2012 (2u) — Ola(tys — 20) — Cla(2n) +2(n ) Inn] . (A36)

oo

Alternatively, the application of various trigonometric identities provides us another

two simpler derivations for equation (A.35), that is

a 1 a .
22 = “tan—sinag = 7

I, s _r
BIE g = g g 219

2. It follows from the identity cosa = 1 — 2sin? § that

.90 _ l—cosa _ 7y
e T T2 T wrg2
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A.8 Proof of Equation (3.136)

In this appendix we derive the exact expression (3.136) for a boundary curve of A/, given

by

Incos@

/2
Na,7/2) =f0 1_

(acos®)2

We first prove the following identity [8, pp. 113]

1(Z,6) = 7hn (5+\/1+52), (A.37)

where Y is given in equation (3.122).

Proof: Equation (A.37) follows from the identity

/2 b
/ In (a? cos? 0 + b”sin ) do = wln(a; ) (A.38)
0

due to Carlson [24]. That is
T /2 ”
T(2.6) = f In(1 + Bsec? ) df

0
w/2

_ / In(1 + 82 + B2 tan® 6) do
0
/2 /2

= f In((1 + B?) cos® @ + (7 sin 0) df — / In(cos? 6) d6
0 0

mln (@) —7ln (%)

= ﬁln(ﬁ+ m)
oo

Using the identity (A.37) and equation (3.123), we have

T 1 T(E \/1—a2)
2W1l-a2 2" «
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T | (1+\/1—a2)

- n
2v1 — a? o

™ m 2
T R S I

where we used the fact that

On the other hand, it follows from equation (3.131) that

Merg) = May3)+A(3)

T T
—_— Ma, =).
o noa+ (a,2)

Combining equations (A.39) and (A.40), we get equation (3.136).

(A.39)

(A.40)
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A.9 Proof of Theorem 6

In this appendix we supply the proof of theorem 6, the steps are identical to those for

theorem 5.

Proof: Corresponding to equation (4.7), we have

w?In; Eqst ATy A dry
/EJA (I’ ); ds = ./BABM dr; = /AiqmlBIjl,m{—qs 9 }: (A.41)

where the (n + 1)-order tensor B is given by

-1
By = & ——ﬁpr
st — [(w, )4 rn— q+1]'

and its derivative Bypj; , is computed from the chain rule by

8 1 rp 1 8 [rpep!
Brjtm = € (Brm [(W.I‘)q] [r“ {Iﬂ} i [(w.r)q] or,, [rﬂ {I'H = &jp (41t 4).

Here A; and Ay are given by

r.r’t 1
Al o= Wi P I
(w, >q+1 pn—q+1’
1
P 1 6pmrf +r r?m iy le)rmr L 1
2 = L :
(W,I‘)q rn—gq+1 q pn—g+3
After simplification, we have
Eomi€ipAl = — < [0450pm — GpgBjm] WenTprs "
gmi&jpl<il <w,r)q+1 Fn—gt1 L a3vpm pg¥jm] Wmtplr
w,rh L r )
_ qwWiEy (_q) _ 48yrT
e T \71) ™ Ty
n—1 n—1
NP 84i0pm — OpgOim (5pmrI + 0, i +1) R
qmi€jpli2 = (w, 1) gt 1 =y Fn—q+3

BALE 1 F?Jl T
7 + (n—g+1) don—q e (‘%) &
(w r) (wyr)frn—¢  (w,r)?rn—q T
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Consequently, by expanding r’};l using equation (4.9) and representing the result in

terms of dw using equation (3.27), equation (A.41) simplifies to

o ot -1 n—2
f By dry = [ o (n—gq+1) B 2kt LR
5 Ijl { ” (W, r)q+1 pi—q—2 (W, I‘)q ra—q (W, r)Q pn—q—2
. 1 n—1
= —qw, T} W — (n— g+ YTHI + 3 8, TTH. (A.42)
k=1

Whenn #g—1, Tq};q can be solved from equation (A.42), yielding equation (4.12). OO
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A.10 Proof of Theorem 7

The steps are almost identical to those shown in proving Theorem 5 and Appendix A.9.

Proof: Corresponding to equations (4.7), we have

uI n, f / [tht dry A drt} A43
j’;A (v ) By dry = A‘EqslBIml,s S | (A.43)

where the (n + 1)-order tensor B is given by

n—1
E,nplrl rp

Brm = )

and its derivative By, , is computed from the chain rule by

- 9 1 rpry 1 9 [rp
Bl’ml,s = Empl (B_I’s {(W,r)] [ -n =+ |:(W, I')] 6_rs T = Empl {Al + Ag] s

Here, A1, Ao are given by

n—1 n—1 n—1 n—1
A — W Iply Ay = 5p31‘1 Al prrs " % 8%
= ——F L — e .
(w,r)?rn (w,r)rn {(w,r)rnt2

After simplification, we get

rn—l
EqlemPlAl = (W Ir>2 0 [5qm <W= I‘) A rq]
?
1 n—1 e 1
- A 1 5qu'I _ r rIm n qrm T
gslempl 12 (w,r) rh rn )

Consequently, in terms of dw defined in equation (3.27) and using equation (4.9), equa-

tion (A.43) simplifies to

I EZ:% 6m[;cr?_k2 r, !
B 5 s . \ L . (A.44
LA I'mi dr,{ L [(W, r) rn—3 (W, r) rn—3 +n (W I‘) pn—1 dw ( )

Multiplying both sides of equation (A.44) by (3, —w;w,,)/n and expressing the resulting

terms in terms of T™' or T™, we have proved equation (4.13). OO
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A.11 Proof of Theorem 8
In this appendix we provide the proof of Theorem 8 using generalized Stokes’ theorem.

Proof: In accordance with equation (4.7), we get the following equations:

0 v 1 Egst Ars A dr
»/(';A ﬁ (W, 1’1) ds = LA Bl dr, = LEQMEBl,m |:'73t+t] , (A45)
b
where the vector B is given by
In{w,u r r
2 = 5kpszﬂT—§,

By = eppwy———3
PR —(w,u)? 72
and its derivative B, ,, is computed from the chain rule by

a (r r
Bim = €kpiWp [ﬂ—ar (;:%) +ﬂm;§] :
m

Here, we have

0 (r,\ 5pmr2 -
e () =
( on ) r2 — (w,r)? + 2 {w,r)% In (w, u) [rzwm ]
m\=35—) ~ D) T -
or,, (rg — {w, r)2) {w,r)

After simplification, we attain

g [r r
EleEkplwkn—ar (T—é’) = —q[zﬂ(W,u)]a
m
Tp

Eqmlglcplwknmr_g = -
Consequently, equation (4.14) follows directly from indentifying the 2-form dw appearing

on the right hand side of equation (A.45). OO
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A.12 Proof of Equation (4.32)

In this appendix we prove the recurrence formulas shown in (4.32) for G(r, s, z,y), using

integration by parts.

Y
G(r,s,z,y) = [sin O cos® 6do

1 Yy
ol f cot* 1 9 dsin" T @
r+s8Jg
1 r+1 s—1 LA T s—2
= sin" " @ cos 9| (s—1) [ sin"6cos’ “0d0
r+3s o
1
ol [sm yeos® 1y —sin™ M zecos® Lz 4 (s — 1)G(r,s — 2,m,y)]‘

Similarly, we can prove the other two recurrences as follows:

y
G(r,s,z,y) = /sinré‘coss()dﬁ
T

1 v
= - /sm””gf)dcots“@

s+1
1
= - [3111T+190038+19| r+s+2)[ sin Hcoss+26’d9]
+1 @
= [ Lz cos* L 2 — sin™ y cos® y+(r+s+2)G(r,s+2xy)].

y
G(r,s,z,y) = fsinrf)cossedﬁ
T

1 Y 1

= — / tan""! @dcos"T* @

r+slg

y

B {sinr_1 feos* o | - (r— 1)] sin” 2 @ cos® 0019]

r4+s & x

1
= [sin’”_1 zeos® Tz —sin" Lycos* Ty + (r — 1)G(r — 2,8, , y)] .

r+s
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