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ABSTRACT 

Two existing gravity gradiometers are discussed and a single 

signal equation is developed for both instruments. Equations are 

derived for calculating the gradiometer signal from known spherical 

harmonic coefficients. The result is a signal equation in the same 

form as the harmonic expansion but with a" gradiometer" polynomial. 

Next, an integral curvefit procedure is developed for calculating the 

harmonic coefficients of the gravitational field from known gradiome­

ter data. The procedure only requires calculation of a theoretical 

observation matrix, thus the orbit determination part of the algorithm 

is the rate determining step. This increases in cost as the fourth 

power of the maximum harmonic degree considered. Calculations 

using parts of the algorithm are discussed and procedures for dealing 

with error sources are described. Finally, a brief description of a 

complete gradiometer data reduction program is presented. 
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NOTATION AND COORDINATE SYSTEMS 
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nm 
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I. INTRODUCTION 

Observation of the earth is one of the most relevant applications 

of satellite technology. In this era of skepticism about the space 

program, weather satellites, communications satellites, and military 

satellites are unique in that the information they gather has obvious 

and direct application to the re st of the world. Earth physics satellites 

are in a similar class. These are satellites that measure properties 

of the earth itself. Some of the properties of the earth that might be 

measured using satellites are the variations in the earth's gravitational 

field, the altitude of the earth's surface, and the ocean's tidal varia­

tions. While the relevance of this type of science, known as Geodesy, 

is not as obvious as that from weather satellites, the applications of 

Geodesy include areas in Geology, Oceanography and Cartography, as 

well as satellite orbit determination. 

This thesis deals with one of the fundamental quantities in 

Geodesy: local variations in the earth's gravitational field. Gravita­

tional perturbations are of interest for several reasons. The most 

obvious application of gravitational data is in the area of orbit deter­

mination. Improved representation of the gravitational field is 

fundamental to improving the accuracy to which satellite trajectories 

may be det.ermined. Another application is of military interest. A 

more detailed model of the earth's gravitational field would result in 

greater precision in the determination of relative positions on the 

earth's surface. This would have ai:t application in the aiming of 

Intercontinental Ballistic Missiles. 
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National Aeronautics and Space Administration is currently 

studying the applications of satellite technology in Geodesy. Th~ 

current program plan identifies the need for gravitational data in 

Oceanography and Geology.. Gravitational data coupled with satellite 

altimetry data would facilitate modeling ocean tides. Gravitational 

data would help to determine the altimeter satellite trajectory to the 

required accuracy and also would independently determine the geoid. 

The difference between geoid height and ocean surface height repre­

sents the dynamic head associated with tides, ocean currents, and 

storm surges. In Geology, measurement of gravitational perturbations 

is a way of obtaining information about the subsurface structure of the 

earth. A more detailed gravitational model coupled with existing data 

might lead to a causal model for the density distribution of the earth 

with possible applications in mining and earthquake modeling. For a 

more complete picture of what might be accomplished the reader could 

refer to the Williamstown report (l) or to the current National 

Aeronautics and Space Administration plan (2). 

This thesis discusses data · reduction from a prospective 

satellite experiment for determination of the earth's gravitational 

field - a gravity gradiometer experimento The gravity gradiometer 

measures a combination of second spatial derivatives of the gravita­

tional potential; i.e., the spatial change in acceleration. The 

gradiometer accomplishes this by utilizing proof masses to measure 

the small differences in acceleration between points in the satellite. 

This quantity is a field variable which can be measured in free-fall, 

thus the gradiometer is adaptable to a satellite experiment. 
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There are several reasons why a satellite experiment would be 

advantageous. The most important advantage of a satellite experiment 

is that it allows complete, uniform coverage of the earth in a relatively 

short time span. Ground based geological surveys have already 

covered most of the land areas of the earth. It is in coverage of the 

oceans» polar regionsp and inaccessible land masses that a satellite 

study offers an attractive contribution. Another advantage of a 

satellite experiment is that the local terrain need not be corrected for. 

In a satellite the nearest topography is several hundred kilometers 

away. This eliminates the need for terrain corrections. A further 

advantage of the same sort is that the ambiguity of needing a geoid to 

determine a geoid is reduced. From a satellite, the measurement is 

referenced to the local equipotential surface. At satellite altitudes 

this is a considerably smoother surface than at sea level. 

A more technical way of stating these last two advantages is to 

observe that satellite techniques insure convergence of the spherical 

harmonic expansion for the earth's gravitational field. Short wave 

lengths decay rapidly with altitude. Thus, one can treat the field as 

if it were convergent. On the surface the expansion is very slowly 

convergent. At satellite altitudes it converges rapidly at wave lengths 

of the order of the satellite altitude. This is a two sided thing: on one 

hand.Y one canvt obtain arbitrarily short wave lengths with satellite 

methods; on the other handj the gravitational field can be modeled to 

arbitrary accuracy at satellite altitudes., One of the main advantages 

of the g radiometer technique when compared to other satellite 
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techniques is that it extends the range of wave lengths attainable at , 

satellite altitudes. 

There are a number of other techniques that have been 

proposed for obtaining gravitational data~ Direct observation of long 

term satellite motions from the earth has been applied to calculate 

the gravitational field (3). The data reduction technique used involves 

expressing the orbital elements as Fourier series whose coefficients 

are expressed as linear functions of the spherical harmonic coef­

ficients. This is known as frequency decomposition. The accuracy 

of this technique is expected to improve dramatically in the next few 

years with the development of laser position determination. 

Doppler radar or laser measurement of the range between two 

satellites has been proposed as a possible experiment for deter­

mining the earth's gravitational field (4,S)o The range rate between an 

earth syncronous satellite and a low test satellite could be measuredo 

Alternately, two low test satellites might be used, one continuously 

ranging the other. A recent proposal for data reduction involves 

parameter fitting to an assumed mass distribution on the ground (5). 

A radar altimeter has been ·suggested for determination of the 

earthw s gravitational field. Altimetry data alone contains considerable 

information about the gravitational field in the ocean regions where the 

mean surface height closely follows the geoid. This information 

coupled with existing surface data could be used to improve existing 

representations of the gravitational field (6). 

Techniques for ground based gravitational measurements are 

in a much more refined state. The procedur·e generally used is 
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precise measurement of the period of a pendulum. This data is con­

verted to an acceleration and mapped as anomolies over the area 

surveyed.. Characteristically this is done for geological surveys in an 

attempt to find oil or mineral deposits. Unfortunately, accurate meas­

urements are difficult over water~ Use of gradiometers is currently 

being investigated as a technique applicable to ship or aircraft carried 

experim.ents (7) and a data reduction technique has been proposed for 

reducing horizontal gradients to geoid height (8). 

It is within this framework of existing proposals that yet 

another proposal, the gravity gradiometer satellite, should be con­

sidered as a potential satellite experiinent.. The gradiometer 

technique offers a number of advantages when compared to more 

conventional satellite techniques. First, the gradiometer measures 

a combination of spatial derivatives of acceleration. Differentiation 

accentuates high frequencies, thus the gradfometer tends to selectively 

measure the unknown high frequency components of the gravitational 

fieldo The other satellite techniques measure lower order deriva­

tiv.es of the field, thus their signals are composed of a larger 

proportion of low frequencies (9) .. 

Another advantage of the gradiometer technique is that it is 

relatively insensitive to drag. Atmospheric drag causes changes in a 

satellite's velocity and position which are an error source for other 

satellite techniques. However, to the extent that the drag acts 

uniformly on all parts of the satellite, there is no change in the spatial 

derivative of acceleration even if the drag varies with time. All the 

proof mas sea experience the same deceleration due to drag, thus the 
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difference in accele ration between points in the satellite is zero 

regardless of the time history of the measurement. 

A final advantage of the gradiometer technique when compared 

to other satellite techniques is that it makes a direct measurement. 

The most important c onsequence of this is that the time history of the 

measurement is insignificant. Ignoring imperfections in the instru­

ment the gradiometer will read the same irrespective of how it 

arrived at its current location. Thus a number of different satellites 

in different trajectories would not significantly improve the accuracy 

of the measurement except by increasing the amount of datao For this 

reason the gradiometer lends itself to data reduction techniques more 

often associated with surface measurements than satellite techniques. 

At the same time, the gradiometer preserves the satellite advantage 

of working with a convergent field. 

These advantages are achieved at a price, obviously.. The 

gradiometer technique is relatively new and data reduction procedures 

have not been completely developed for it.. Also, there are a number 

of potential dynamics problems associated with the instrument and its 

alignment.. The frequency resolution and accuracy of the instrument 

is not as satisfactory as can be achieved with ground based measure­

ments. Finally, there are a host of practical problems associated 

with carrying the instrument in a satellite. This thesis is directed at 

one of these problems: the data reduction problem. The. intent is to 

demonstrate that reduction of gradiometer data to the coefficients of 

the spherical harmonic expansion is both possible and practical. 
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In the material that follows, the general properties of gradio­

meters will be discussed. Next an integral formulation of the data 

reduction problem will be developed. This requires a new set of 

polynomials based on the derivatives of Legendre polynomials. These 

polynomials can be orthogonalized with respect to a set of weighting 

functions. A theoretical procedure will be developed for doing this, 

thus allowing calculation of the spherical harmonic coefficients with­

out calculation of an experimental observation matrix. 
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II. THE GRADIOMETER SIGNAL EQUATION 

In this section two existing gravity gradiometers will be dis­

cussed and a single signal equation will be developed for both 

in st rum ent so 

At least two manufacturers are engaged in developing gradio­

meters suitable for satellite Geodesy applicationso They are 

Bell Aerospace of Buffalo, New York, and Hughes Research of Malibu, 

California. The Bell Aerospace design calls for four directional 

accelerometers rigidly attached to the walls of a cylindrical, spin 

stabilized satellite. The sensitive axis of each accelerometer would 

be directed tangentially, i.e. the proof masses inside the accelero­

meters would be constrained radially. The signal from diagonally 

opposing accelerometers would be added and the pair of resulting 

signals would be subtracted~ The Bell Aerospace accelerometers 

have been flight qualified and used in several satellite programs in 

other configurations. 

The Hughes design calls for a pair of torsional spring-mass 

oscillators, composed of two arms in the shape of a cross, with 

torsional springs cross connecting the arms and connecting the arms 

to the walls of a spin stabilized satellite. Heavy proof masses would 

be located on the ends of the arms and the "difference" mode of the 

resulting spring mass oscillator would be tuned to resonate with the 

gradient signal. Operational laboratory apparatus has been tested in 

the case of the Hughes instrument. 
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II. 1 Gradiometers Constructed .from Accelerometers 

Taking the proposals one at a time, consider the Bell Aerospace 

instrument operating at a fixed point in a gravitational field which 

varies slowly with position. The situation is indicated in Figure II. 1. 

Think of an accelerometer as a proof mass sliding on a frictionless 

wire. The proof mass is centered electronically so that a signal is 

produced which is proportional to the force required to maintain the 

proof mass at the center of the wire. Thus the signal is proportional 

to. the acceleration relative to the accelerometer housing that the proof 

mass would experience if free to travel along the sensitive axis. The 

entire system rotates about the y axiso The acceleration due to this 

rotation is radial and the sensitive axes are tangential; thus no signal 

is produced by the satellite rotation. 

The situation due to the gravitational field is different, how­

ever. Since the field is slowly varying, one is justified in writing a 

Taylor's series expansion for the gravitational potential. This must 

be carried to at least second ordero By differentiating the Taylor's 

series expansion with respect to each of the coordinate axes one 

obtains the vector acceleration of the proof masses as a function of 

position (x, y, z)o Substituting expressions for sinusoidal m otion in 

the x, z-plane as a function of time, and dotting these expressions with 

a time variant unit vector in the direction of each accelerometer's 

sensitive axis (i.e., taking the vector component of acceleration in 

the direction of the sensitive axis), one obtains the four equations 

shown in II. I for the signal of each accelerometero 
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SUPPORT STRUCTURE 

SPJN 
AXIS 

ACCEIEROMETER A. 4. PIACES 
6z)-.it 

ACCEIERATION: 

(V + V flz + V Ax) 1- + (V + V flx + V /lz) ·~ x xz . xx . z xz· zz 

POSITioN: SENSITIVE AXIS: 
~ ~ t ~ 

r cos wt 
-r sin wt 
-r cos wt 
r sin wt 

-r sin wt 
-r cos wt 
r sin wt 
r cos wt 

#1 
#2 
#3 
#4 

-sin wt 
-cos .wt 
sin wt 
cos wt 

-cos wt 
sin wt 
cos wt 

-sin wt 

FIGURE II.l THE BELL AEROSPACE GRAVITY GRADIOMETER 
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s 1oc -sin wt V - cos wt V + r sin wt cos wt(V -V )- r(cos
2 

wt-sin2wt)V x z . zz xx xz 

s2oc-cos wtV +sin wtV- r sin wt cos wt(V -V )+ r(cos 2 wt-sin2 wt)V x z zz xx xz 

s
3 

oc sin wt V + cos wt V + r sin wt cos wt(V -V )- r(cos
2 wt- sin

2 
wt)V x z zz xx xz 

s4 oc cos wt V - sin wt V - r sin wt cos wt(V -V )+ r(cos
2 

wt-sin
2

wt)V x z zz xx xz 

(II. 1) 

The satellite response is just enough to cancel the first order 

derivatives in equation II. l except for satellite drag terms. This is 

the reason that the signals can not be combined to measure acceler-

ation. However, by adding the signals from diagonally opposing 

accelerometers and subtracting the resulting pair of signals, one 

obtains the signal equation for the Bell Aerospace gradiometer. 

Signal oc sin 2 wt ( V - V ) - 2 cos 2 wt V 
zz xx ' xz 

(II. 2) 

Satellite drag can be measured using the same four acceler-

ometers in this configuration. This is done by subtracting opposing 

pairs of signals and adding the resulting pair of signals. The 

resulting signal has an amplitude proportional to the in-plane drag 

and the phase can be used to solve for the direction of the drag. 
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II. 2 Mechanical Gradiometers 

Next consider the Hughes instrument operating at a fixed point 

in the same gravitational field. By balancing the moments of the 

gradiometer arms 1 one can show that the ideal equations of motion 

fo r the simple three degree of freedom system shown in figure II. 2 

are: 

I 0 + K ( 8 - 8 ) + K ( 8 - 8 ) = m r 
2 

{ ( V - V ) sin 2 8 - 2 V cos 2 8 
0 

} o o e o o s . zz xx o xz 

,, 
- 8 ) = -mr

2
{(V - V ) sin 28 -2V cos 28 l 

s zz xx e xz ef 
I 8 + K( 8 - 8 ) + K ( 8 

e e o o e 

" I (J + K (2 8 - fJ - 8 ) = Drag Torque 
s s o s o e 

(II. 3) 

Taking the sum and difference of the first two equations one 

can very nearly separate the difference equation from the other two. 

Define 8 = B - 8 and 2 Ot = e + 8 where (j is proportional to the o e o e 

strain measured by the Hughes instrument., 

,, 2 
IO+ (2K - K )6 = 2mr {CV - V ) sin 28t - 2V cos 28tl cos8 o zz xx . xz r 

zret' + 2K (8t - 8 ) = 2mr
2{(v - V ) cos 28t + 2V sin 2 (Jt } sin 8 

0 s zz xx xz 

II 

I 8 + 2K ( (J - 8t) = Drag Torque s s 0 s 
(II. 4) 

Since the difference between the arm deflections, 8, is very · 

small, the last two equations approach the solution: 8 s = .8t = wt. 

' Upon introduction of a damping term, I w 8/Q; after defining the g 
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quantity w = (2K - K )/I, the resonance frequency of the sensor; and g 0 

after observing that I = 2mr
2

; one obtains equation II. 5. 

8" + WQfY 9' + W 
2 8 ----£ ( V - V ) sin 2 wt ~ 2 V . g zz xx xz cos 2wt (II. 5) 

This is the classical harmonic oscillator with a periodic 

forcing function. Hughes proposes to increase the amplitude of 0 

by picking the stiffness of the torsional springs such that w = 2w. 
g 

Under this condition, the forcing function on the right is forcing the 

system at resonance, thus the steady state solution to equation II. 5 

is as shown belowe 

Q 
(J = - 2 

(2.w) 
j (V - V ) cos 2wt + 2V sin 2wt} 
l zz xx xz (II. 6) 

The output of the Hughes strain transducer is proportional to this 

quantity, thus the Hughes output equation is the same as the 

Bell Aerospace output equation except for a 90° phase shift. 

II. 3 Observations about the Signal Equation 

There are several points it is important to realize about the 

gradiometer signal. Firsti one should realize that the instrument 

measures a combination of second derivatives of the gravitational 

potential. It is hoped in this way to extend the range of frequencies 

that the instru.rnent can measure, and also it is possible to measure 

this quantity directly in free-fall. 

Second, the signal comes at twice spin frequency. This 

allows separation of the actual signal from a number of noise 

sources at either nutation frequency or once spin frequency. ' · From 
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the derivation it should be clear that the instrument must be rotated to 

produce a signal, thus a spin stabilized satellite is called for. 

Third, the equation is an approximation based on the Taylor's 

series expansion for the gravitational potential. This is a very good 

approximation. There are two length scales for the potential: the 

altitude of the satellite above the surface and the radial distance to the 

center of the earth. The dimensions of the gradiometer are small 

compared to either scale. 

Fourth, as a consequence of the derivation, the expression 

involves second derivatives with respect to a spacecraft defined local 

Cartesian coordinate system. This is unfortunate as an earth centered 

spherical coordinate system is more natural for gravitational work. 

Finally, it is important to realize that both amplitude and 

phase data are associated with the signal. The amplitude is given by 

equation II. 7: 

Amplitude oc ,./(V - V )2 + 4 V 
2 

" zz xx xz 
(II. 7) 

and the phase angle is within an additive constant of equation II. 8. 

Phase -1 = tan 
2V xz 

v - v zz xx 
(II. 8) 

Both Hughes and Bell Aerospace derive this equation in different ways. 

By way of comparison the reader could refer to the appropriate 

proposals by the two companies ( 10, 11). 
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II. 4 Error Sources in the Signal Equation 

The signal equation is not exact. A number of hardware effects 

must be considered before one is justified in talking about the signal in 

this waye Some of the larger errors that must be considered are: 1) 

long term drifts of the instrument proportionality constant, 2) errors 

in the orientation of the satellite spin vector~ 3) orbital responses to 

the higher degree terms in the gravitational field, 4) finite spin rate 

effects, and 5) the instrument signal to noise ratio. These error 

sources will be discussed in detail in a subsequent chapter (Chapter V) 

and will only be described herea Another class of at least equally 

important error sources arises from misalignments of the instrument. 

These are not within the scope of this thesis .. 

The signal equation, IL 2~ expresses a proportionality between 

the output signal and the gravitational fielde The accuracy of this 

relationship is limited by the accuracy to which the proportionality 

constant can be made to hold constant. A number of factors act to 

change the proportionality constant in orbit. The most important 

factor will probably be changes in temperature in the satellite. This 

problem is easily understood in the case of the Hughes instrument. The 

strain transducer Hughes uses to obtain a readout is functionally 

dependent on the temperature. 

The signal equation is dependent on the orientation of the 

satellite's spin vector (i.e., the orientation of the x, z-plane with 

respect to the earth). This orientation can not be maintained precisely. 

The satellite spin vector tends to rotate in inertial space at a charac­

teristic frequency known as nutation frequency, ' thus the true 
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orientation of the spin vector needs to be accounted for in the data 

reduction. If changes in orientation smaller than the smallest angular 

position that can be determined caused output signals larger than the 

instrument significance level, the data could not be corrected. This 

happens in the case of the angular position with respect to the in-plane 

rotation, thus the phase angle from equation II. 8 can not be measured 

as accurately as the amplitude can be measured. 

The satellite responds to the higher harmonics in the earth's 

gravitational field. One of the reasons for measuring gravity in the 

first place is to facilitate prediction of this response, i.e., orbit 

determination. Obviously this effect must be taken into account in the 

data reduction procedureo If the error in predicting the response of 

the satellite were large enough to cause signals of the order of the 

instrument sensitivity, a simultaneous solution for the satellite 

response and the gravitational field would be necessary to remove this 

effect. 

The cause of finite spin rate errors can be seen most clearly 

by considering the differential equation for the Hughes instrument 

expressing the way the signal is transmitted thru the proof masses 

(equation II. 5 copied below). 

fl 2w I 

8 +-fJ Q 
2 + 4 w (} = ( V - V ) sin 2 wt - 2 V cos 2 wt xx xx xz 

(II. 9) 

Since the satellite translates, V - V and 2V can be expressed zz xx xz 

as periodic functions of timeo Further, since the terms on the left are 

being forced at resonance, the response is highly dependent on the 
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frequency of the forcing on the right. The product of the spin rate 

term and any of the frequencies from the terms V - V and V 
zz xx xz 

is equal to a sum of sine waves at the sum and difference of the 

frequencies. If the satellite spin rate, w, is essentially infinite with 

respect to the highest frequency of interest there is no problemo For 

a finite spin frequency the attenuation can be rather large. 

The instrument signal to noise level is one of the limiting 

factors in the design of a gravity gradiometer. Essentially, this 

problem arises because of Brownian motion of the test masses. This 

random vibration creates a signal which can not be distinguished from 

the gradiometer signaL Electrical noise is also a factoro Hughes 

develops an equation for the signal to noise ratio which can be found in 

reference I 0. 

Finally, the reader should be aware of the nature of the mis-

alignment problems mentioned earlier as being outside the scope of 

this thesis. These occur because of assumptions made in the deriva-

tion of the signal equation that can not be met preciselyo For example, 

it was stated in deriving the signal equation for the Bell Aerospace 

gradiometer that the sensitive axes of the accelerometers were 

oriented tangentially. This is not possible to arbitrary accuracy .. 

Similarly, the geometric center of the two instruments were both 

assumed to lie on the spin axis. Again this can not be done to arbitrary 

accuracy. 

Most of these error sources are intimately coupled to the 

satellite m otion, thus it requires an extensive study of satellite motions 
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to analyze them. In any event, the removal of these errors is expected 

to occur independently of the rest of the data reduction since the effects 

are not highly coupled. A series of analyses have been performed in 

the case of the Hughes instrwnent, each one con.eluding that the effects 

could either be controlled or removed from the data (12, 13 and 14). The 

instrument sensitivity at which each analysis shows the instrument can 

operate tends to cha nge between the different studies depending on what 

sensitivity the dynamicist was asked to verify would work. 



20 

III. THE SIGNAL IN SPHERICAL HARMONICS 

Equations will be developed for calculation of the gradiometer 

signal from known spherical harmonic coefficients. 

The spherical harmonic expansion for the earth's gravitational 

field is derived by recognizing that the gravitational field satisfies 

Laplace's equation in spherical coordinates. By applying separation of 

variables and requiring continuity at the coordinate boundaries and a 

zero potential at infinity, one arrives at equation III. 1 for the gravi-

tational field exterior to a sphere of radius R. 

n 
GM ~ (Rr)n V(r,X,cl>) = - L 
r L Pnm(sin cl>)[Cnm cosmX +Snmsin mX] 

n=o m=o 

(III. 1) 

The problem with using this representation of the earth's field to rep-

resent the output of a gravity gradiometer is that the expressions for 

the second derivatives with respect to a Cartesian coordinate system 

are extremely complicated. This is obvious when one considers the 

chain rule expansion for the second derivative of a function 6£ three 

variables. 

2 \ 2 2 
V = V r + V'\ A + V"" cJ> + V r + V'\ '\I\ + V,,,.,,,. cJ> 
xx r xx " xx '*' xx rr x "" x '*''*' x 

+ 2(V \r A + V ""r <I> + V'\"'-X cl>) 
r"' x·x r'*' x x "'*' x . x 

(III. 2) 
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III. 1 Derivatives with Respect to Local Satellite Coordinates 

By working at an arbitrary point in space and defining the local 

x-axis in the direction of ¢, the latitude; the local y-axis in the 

direction of ,\, the longitude; and the local z-axis in the opposite 

direction of r, the radius; all but two of the terms in equation III. 2 

are identically zero. Figure III. l defines this coordinate system. It 

is necessary to take first and second derivatives of the spherical 

coordinates with respect to the local coordinates. This requires the 

transformation between the two coordinate systems. The transforma­

tion between global coordinates and the local coordinate system is 

indicated in equation III. 3. 

X = cos A. sin<P x - sin X y +cos A cos <P(r z) 

Y - - sin X sin cl> x + cos I\ y + sin ~ cos cf>( r z) 

Z = cos cf> x + sin c;J>(r - z) (III. 3) 

Working with equation !IL 3 and the transformation between 

global and spherical coordinates, it can be shown that the derivatives 

of the local coordinates with respect to the spherical coordinates are 

as shown in Figure .III. L Substituting these expressions into the chain 

rule expansions for the second derivates of equation III. 1 with respect 

to the local coordinates one obtains equations III. 4 and III. 5., 
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n 
~ pxx (sin 4') re cos mA + S sin m,\l 
L... nm L nm nm ~ 

m=o 

n 
"' pYY (sin <P) [c cos mA + S sin m,\] 
~nm nm nm 

m=o 

n n 
(~) ~ Pzz (sin <t>) [c cos m.A+ S sin mA] 

r L.. nm nm nm 
m=o 

(R)n n 
- "' pxy (sin <P) [s cos mA- C sin mA] r L.. nm nm nm 

m=o 

n n 

(~) ~ pxz (sincp) [c cos mX + S sin m,\] 
r L... nm nm nm 

m=o 

(Rr)n Ln pYZ (sin<t>)[S cos mA - C sin mi\) 
nm nm nm m=o · 

(III. 4) 

where the polynomial expressions are as defined below: 



Pxx (sin cl>) = 
nm 

pYY (sin <J>) = 
nm 

Pzz (sin ct>) = nm 

Pxy (sin cl>) = nm 

pxz (sin ct>) = nm 

pYZ (sin <i>) = nm 
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d 
2 

P ( s in cl>) 
nm 

- (n + 1) P (sin <J>) nm 

~ + ( n + 1) p (sin <J>) - sin <J> nm 
( 

2 ) d P (sin <J>) 

cos2ct> nm cos<J> dct> 

( n + 1 )( n + 2} P ( sin cl>) nm 

m (sin 2"' p nm (sin <J>) + 1 d P (sin <J>)j nm 
cos"' d(/) 

cos q, 

d P (sin <J>) 
(n + 2) 

nm 
d<J> 

(III. 5) 

m 
(n + 2) 

Pnm (sin</>) 
cos"' 

The equations have been written in this way to emphasize that 

the form of the spherical harmonic expansion has been preserved. 

There is a term containing the units, 
3 . 

GM/ r ; a term expressing 

altitude variations, (R/r)n; a polynomial in latitude, P!!m(sin<P); and 

sinusoidal variations in longitude, cos mX and sin mA. . From a 

dimensional argument one can see that the altitude variations must 

take this form regardless of the orientation of the local coordinate 

system. Since the local x direction is perpendicular to _the unit 

vector in the direction of A and the local y direction is perpendic-

ular to the unit vector in the direction of cb, it is obvious that the 

equations can b e written in this form .. 



25 

III. 2 Evaluation of the Polynomials 

By applying the chain rule expansion, one can show that the 

polynomials from equation III. 5 may be written as shown in III. 6 

below" 

pxx (t) 
nm 

pYY (t) 
nm 

pXY (t) 
nm 

pxz (t) 
nm 

2 d2Pnm(t) 
= (1 - t ) 2 

dt 

d p (t) 
t nm 

dt 
(n + 1) P (t) 

nm 

2 ) d p (t)] 
m 2 + (n + 1) p (t) + t nm 

- t ) nm dt 

= m t p (t) + nm 
( 

d p (t)) 
(1 - t 2 ) nm dt 

d p (t) 
nm 
dt 

pYZ (t) = m(n + 2)(1 - t 2)-i P (t) 
nm nm 

(III. 6) 

The polynomials in equation III. 6 are always finite. This is 

not obvious from the form in which they are written, but it follows 

from substitution of Rodriques' formula for the associate Legendre 

polynomial, equation III. 7. 

p (t) 
nm = 

dn+m (t2 _ l)n 

dtn+m 
(III.. 7) 
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Equation III . 4 satisfies Laplace's equation. The sum 

pxx + pYY + pzz is zero since it is equal to the governing equation 
nm nm nm 

for the associated Legendre polynomialg equation III. 80 

d ( 2 d p (t)) ( 
dt ( 1 - t ) ~~ +. n(n + I) - m2 ) p (t) = 0 

( 1 - t2) nm 

(III. 8) 

From this much information it is possible to calculate the 

value of the second derivatives at any point using the recursion 

formulas for the associated Legendre polynomial and the equations 

just developed for the second derivatives. For example, using 

Rodriques' formula it can be shown that the first derivative of the 

associated Legendre polynomial with respect to t is given by 

equation III. 9. 

d p (t) 
nm 
dt = - n t P (t) .,_ (n + m) P 

1 
(t) nm n- ,m 

(III. 9) 

Substituting this expression into the governing equation one obtains a 

three-term recursion relation for the associated Legendre polynomial. 

(n - m + 1) P + 1 (t) = (Zn + 1) t P (t) - (n + m) P 
1 

(t) n , m n, m n- , m 

(III. I 0) 
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This allows simple calculation of Legendre polynomials and 

their fir st derivative. In order to start the procedure, one uses 

Rodriques' formula to obtain an expression for the terms of equal 

order and degree, i.e., m = n: 

(2m)! 

2m I m. 
(III. 11) . 

and the special cases PO, 0 (t) = 1 and P
11 0 (t) = t. Also from 

Rodriques 1 formula it is clear that P (t) = 0 for m greater than n. nm 

The reader should be warned that equation III. 10 is known as 

an unstable recursion relation since the coefficient multiplying the 

terms on the right is larger than unity. The argument here is that any 

error in P will be larger in P + 1 due to being multiplied by a nm n ,m 

number larger than one. If the reader is concerned about this, a 

variety of other recursion relations are available ( 15). 

III. 3 Relating the Second Derivatives to the Signal Equation 

At this point it becomes necessary to relate the signal equation 

(II. 2) to the expressions for the second derivatives (III. 4). This is 

not as straightforward as it might appear since the orientation of the 

coordinate system for the signal equation was fixed by the plane of the 

gradiometer while the coordinate system for the second derivatives 

was fixed by the location of the gradiometer. In general one of the 

two coordinate systems must be rotated to the other. 

The situation is further complicated by the requirement that 

the satellite be spin stabilized to provide the necessary rotation for 

the instrument. Spin stabilization fixes the spin vector in inertial 



28 

space not in earth centered space. For normal usage of the gradio­

meter in a satellite, there is no problem. If the orbit is polar to 

obtain complete coverage of the earth, and if the spin vector of the 

satellite is perpendicular to the plane of the orbit, the derivatives of 

Section IIL 2 can be substituted directly into the signal equation. If 

either of these conditions are not met, the derivatives of Section III. 2 

must be rotated to the coordinate system in which the gradiometer is 

operating., 

In general an Euler angle transformation is required to per­

form the necessary rotation. First the rotation to inertial space is 

required. This was already given as equation III. 3 repeated as a 

matrix equation below. 

(III. 12) 

Where [A 1 is: 

- sin <f> cos )\ - sin X. - cos</> cosX. cos x. - sinX. 0 - sine/> 0 - cos </> 

- sin<:fa sin A. cos x. - coscp sinX. = sinX. cos x. 0 0 1 0 

cos¢ 0 -sin¢ 0 0 I cos<f' 0 - sin</' · 

This may be viewed as a rotation of </> + 90° about the local y-axis 

followed by a rotation of -X. about the global z-axis. The transfor­

mation from global to local coordinates is the transpose of this. 

Having rotated to global coordinates, the next step is to orient 

the satellite in the plane of its orbit. To do this the more general 

Euler angle transformation is required involving the angles: n, the 
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right ascension of the node; i, the orbit inclination; w, the argument 

of perigee; and v, the . true anomaly. This coordinate system ·is 

defined in Figure III.2. In general, to orient the y-axis (spin axis) 

perpendicular to the plane of the orbit, the x-axis in the direction of 

travel, and the z-axis downward in the radial direction, the transfer-

mation defined by equation III. 13 is required. 

l xsatellitel = [BJ l xglobal l (III. 13) 

Where [Bl is: 

- sin(w + v) 0 cos(w+v) I 0 0 cos n sin u 0 

0 1 0 0 sin i cos i -sin n cosn 0 

-cos(Ci>+v) 0 - sin(w +ii) 0 -cos i sin i 0 0 1 

Thus this transformation may be viewed as a rotation of n about the 

global z-axis, followed by a rotation of (90° - i) about the new x-axis, 

followed by a rotation of - ( (w + v) + 9 o0
) about the new y-axis. This is 

not a standard Euler angle transformation. Normally one rotates 

about the z-axis, then the x-axis, and then the z-axis again(l6). This 

series of rotations was used to allow the y-axis to be the spin axis 

instead of the z-axis. Thus the total rotation for the second deriva-

tives is given by equation III. 14 .. 

[v.~atellite J 
lJ = (III. 14) 
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Substituting 0 for w, </> for v, 90° for i, and ~ for n, one 

discovers the transformation is unityo Thus, if a circular polar orbit 

is used no transformation is required. This of course is what prompted 

the selection of the coordinate system shown in Figure III. I in the first 

place~ 

In the preceding transformations it was assumed that the spin 

vector would be perpendicular to the plane of the orbit. This is not an 

arbitrary choice. Another alignment would cause the large mean 

signal to be modulated with the period of the satellite rotation about 

the earth. This would create several problems. First, the character 

of the signal would change during different parts of the orbiL At 

worst the signal would change from small amplitude rather random 

variations to large amplitude sinusoidal oscillations. The data sub­

system would need to be able to handle both cases. Further, phase 

references would present difficulties. If the spin vector were in the 

plane of the orbit, the satellite would have to shift between an inertial 

and an earth centered phase reference to obtain orientation informa­

tion·. Finally, the signal would not be as nearly linear in terms of 

the harmonic coefficients in any other orientation. Thus there ar~ 

hardware limitations and data reduction advantages that dictate this 

choiceo 
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IV. AN INTEGRAL CURVEFIT TECHNIQUE 

In this section an integral procedure will be developed for 

curvefitting the spherical harmonic coefficients of the earth's 

gravitational field. The procedure under consideration essentially 

involves a free air reduction of the gradient signal onto the surface of 

a sphere.. This corrected data can be integrated using theoretically 

derived weighting functions to orthogonalize the data. In order to 

evaluate the necessary integrals, the signal equation polynomials from 

equation III. 5 will be expanded in Fourier series. T his raises the 

possibility of performing most of the calculations using a fast Fourier 

transform, thus reducing computer run time. 

In procee ding in this way, the data reduction procedure is more 

like surface data reduction techniques than satellite data reduction 

techniques. This is made possible because the gradiometer signal 

amplitude is only a function of position and does not involve initial 

conditions. The gradiometer satellite is the only gravimetry 

satellite proposed to date that has this characteristic. The prospects 

for actually making an integral procedure work are greatly enhanced 

by the effect of the satellite altitude. Since the satellite is flying well 

above the surface of the earth, the spherical harmonic expansion is 

highly convergent at wave lengths shorter than the satellite altitude. 

Further, global data will be available with the gradiometer satellite. 

Both of these advantages are not shared by existing surface techniques. 

On the other hand, by disregarding the satellite trajectory an 

error source is introduced which will be highly correlated with the 

coefficients being calculated. The error due to satellite response to 
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the higher harmonics is very much like the error in ground based 

data reduction introduced by not knowing the geoid height. At 

satellite altitudes this error is considerably reduced for the higher 

harmonics by the attenuation of the response with altitude. Since the 

gradiometer measures a higher derivative than the satellite displace-

ment responds to, it is reasonable that a data reduction procedure of 

this sort will converge at least as fast as surface data reduction 

procedures based on measuring acceleration. 

IV. 1 Linearization of the Signal Amplitude 

Since the phase angle of the gradiometer signal can not be 

measured to the accuracy that the amplitude can be measured, one is 

constrained to fit data knowing only the signal amplitudeo The equa-

tion for the signal amplitude is not linear (eq .. II. 7 repeated below). 

This difficulty can be overcome by 

Amplitude oc '1 (V - V )
2 + 4 V 

2 
zz xx xz (IV. I) 

recognizing that the signal from the mean earth (C ) very much 
0, 0 

dominates the signal. Expanding the signal amplitude equation 

according to the binomial theorem, one obtains equation IV. 2. 

2 v 2 zv4 

Amplitude ~ (V - V ) + xz 
zz xx V -V 

zz xx 

xz + 
(V - V )j. 

zz xx 

(IV. 2) 

By substituting into equation III. 4 for the derivatives, one can 

construct a table of estiinates · for the contributions of the different 

terms in the expansion above. Table IV. I shows these results and 



TABLE IV.1 COMPONENTS OF THE GRADIOMETER SIGNAL 

COMPONENT TERM EXPRESSION 

C) v 3 
co,o = 1 v 3 GM/r CO,O zz xx 

2 v 0 xz 

J2 = 0.001083 v - v GM (R)2 (57 15) zz xx r3 r 4 cos 2(J + 4 J2 

2 v :~ m2 12 sin 2(} J2 xz 

n ~3 
GM ((Rt (10-5) )2 • v - ~ r (n+l)(n+2) 7 (2n+l) zz r3 

see ref. 9 
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Figure IV. I is a plot of these results as a function of altitude. Using 

these results one can further simplify equation IV. 2. Taking a 

nominal altitude of 100 km one expects V - V to have a mean 
zz xx 

signal larger than 4000 EU ( l EU = 10- 9 / sec
2

). The ellipsoidal bulge 

will contribute less than 30 EU to V - V i and there will be a zz xx 

perturbation signal of about 2 EU RMS. On the other hand, there is 

no mean contribution to V so the ellipsoidal bulge dominates that 
XZ 

term with a signal of the order of 20 EU. Again, the perturbation 

signal to V will be relatively small, of the order of 1 to 2 EU RMS. xz 

Substituting these results into equation IV. 2, there are a 

number of possible linearizations depending on how accurately the 

signal is measured. 

Amplitude V - V + 0(0. 2 EU) zz xx- (IV. 3) 

Amplitude 
2(V I J 2)

2 

V - V + xz + 8(0. 0 I EU) (IV. 4) 
zz xx 3 GM/r3 

Amplitude v - v zz xx 

2(V IJ2)
2 

4V ·(V IJ2) 
xz . + xz XZ + EJ(0.0005 EU) 

3 GM/r
3 

3 GM/r
3 

(IV. 5) 

In the preceding equations the notation V IJ 2 is intended to imply xz 

the term from V contributed by the ellipsoidal bulge is to be used xz 

alone. The sign change from equation IV. 4 to equation IV~ 5 occurs 

because the contribution from the ellipsoidal bulge is assumed to be 

included in the term V • xz 
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Another linearization procedure is perhaps easier if one 

considers using the data from a gravity gradiometer to improve the 

values of an existing reference field. Under this condition one would 

be able to form an estimate of the amplitude from the reference field 

using the actual signal amplitude equation (IV. .. 1) o If one subtracted 

the value of V - V calculated from the reference field from the 
zz xx 

amplitude calculated from the reference field, the result would be the 

correction to the actual signal to linearize it so that equation IV. 3 

held. This has the advantage that the correction is expressed totally 

in terms of the reference field. Algebraically equation !Vo 6 illus-

trates this procedure~ 

(IV. 6) 

This procedure will have an error of about four times the error in 

predicting V in the reference field times the value of V 
xz xz 

contributed by the ellipsoidal bulge divided by the mean signal 

amplitude. In any event$ this procedure is more accurate than the 

one implied by equation IV. 4 as long as the reference field is at least 

as complicated as the reference ellipsoid. This linearization 

procedure was the one used in subsequent calculations. 

IV. 2 Derivation of Integral Curvefit Technique 

One starts to develop the integral curvefit equations by writing 

down the signal equation and identifying the signal as the actual 

measured signal. 
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V V = Signal zz xx 

GM
3

" R ~ G (<f>)(C cosmA+S mA)=Signal(r,Alt>) oo (~n n 
L.J r nm nm nm 

r n=o m=o 

G (cp) = pzz _ pxx 
nm nm nm (IV. 7) 

Multiplying on both sides by G .. (<I>) cos j,\, requiring r to be constant11 
lJ 

and integrating over a sphere of radiusp r, one obtains equation IV. 8. 

1 

f 
211" 2ir oo n oo 

GM3 f L ~~) L G (<l>\G .. (cp)(C cos mA +S sin m,\) r nm<1J nm nm 
r n=o m=o 

1 0 -zrr 

2ir 

Signal G .. (<;i>) cos jA co scp r 2 cL\ dcp 
lJ 

(IV. 8) 

Next one formally interchanges the order of integration and .summation. 

Since sines and cosines are orthogonal one can drop the summation 

over m~ replace m by j, and integrate with respect to ,\. 

C . J trr G {</>)G •. (</>) cos</> d</> 
nJ nm lJ 

. 1 -zrr 

(IV. 9) 

J -}IT! Zir 
= Signal G .. (sf>) cos j~ coscp r

2
dA dcp 

lJ 
1 

-'21'" 0 
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Realizing that the integral remaining on the left side is just a 

number, what is left is an equation relating the coefficients of the 

theoretical expansion to the actual signal. This is the C .. -th 
lJ 

equation. Replacing the cos jA by a sin jA and repeating the process, 

one can obtain a similar S .. -th equation. Conceptually, repeating the 
lJ 

process over all i and j one has an equation for each coefficient. 

and 

where: 

c .. 
JJ 

s .. 
JJ 

0 .. 
nJl 

s 
I.. 
lJ 

0 ... 
JJl 

0 ... 
JJl 

+ .... + s . 
nJ 

0 .. llJl 

0 .. 
IlJl 

+ ••• 

+ 0 • 0 

c 
=I.. 

lJ 

s = I.. lJ 

= rr r2 ~ (~)nf -}rr G .(</J) G .. (</') cos</J 
:J r nJ lJ r i 

dcp 

- 211" 

f-}rrf 2rr 
= 

1 

Signal (r~,\ ,'f>)Gij(</') cos jA 

-211" 0 . 

2 
cos</' r dA d</' 

2 
coscpr_ dA dcp 

(IV.IO) 

A word on notation is in order here. The use of three indices 

instead of four in the previous equation is confusing. The notation 

0 . . is intended to imply the coefficient relating the C . harmonic 
~1 ~ 

to the C.. harmonic is being worked with. The coefficients relating 
lJ 

the C harmonic to the C.. harmonic for m =/:. j are all zero. 
nm lJ 

They were eliminated when the cos IDA and cos jA terms were 
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found to be zero due to orthogonality in equation IV. 9. The resulting 

matrix of coefficients is indicated in Figure IV. 2 for a system 

truncated at n = 5. It will be shown in the next section that only 

coefficients of the same parity in n and i (i. eo, n even and i even 

or n odd and i odd) are non zerov This accounts for the arrangement 

of the variables. 

At this point one is dealing with a matrix composed only of 

theoretical quantities on the left and a fairly complicated column 

vector of integrals of the real signal (mapped on a sphere) on the right. 

The system looks as follows: 

f o .. J {c . } L nJi nJ 
= {I~. } 

lJ 

ro .. J {s . } l nJl nJ = h~.} 
lJ 

(IV. 11) 

If the system is non-singular, it can be solved for the coefficients by 

inverting the observation matrix and multiplying on the right. Ex:peri-

mentally the author has shown the system is non singular, i.e., each 

non-zero partition has a finite determinant which can be made as large 

as desired by scaling. Further, the size of matrix that needs to be 

inverted is small~ Inverting by partitions» the largest matrix that 

needs to be inverted has a dimension of about n/2. Since the system 

converges, i.e., the integrals on the right become negligibly small, 

the infinite system of equations developed here can be truncated at 

wave lengths about equal to the altitude the satellite flies at. This is 

a solvable system of equations" 
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FIGURE IV.-2 FORM OF THE OBSERVATION MATRIX 

TRUNCATED AT DEGREE FIVE 
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IV. 3 Expansion of Polynomials in Fourier Series 

T he construction of the observation matrix requires expansion 

of the theoretical integrals from eq':lation IV. 10. This is readily 

. accomplished if one observe s that the polynomials have a simple 

expansion in terms of a Fourier series. Returning to equation III. 5 

one discovers that the polynomials may be represented as shown in 

equation IV. 120 

d
2

P (sin¢ ) 
G ( ¢) = P z z - Pxx = ( n + 1)(n+3) P (sin cp ) - nm 

nm nm mn nm d¢2 

(IV. 12) 

The associated Legendre polynomials have a Fourier series 
I 

which terminates with the term ncpc Further» if one converts to 

colatitude, (}, instead of latitude, <P, (where 8 = 'TT - ¢) the Fourier 

series expansions have the properties shown in .Table IV .. 2. 

The coefficients of the Fourier series expansion are readily 

calculated from the recursion relations discussed in Section III. 2 

by calculating a new recursion relation for the coefficients of the 

Fourier series expansion. This is done by substituting the Fourier 

series expansion into the recursion relation and equating amplitudes 

of frequencies.. The results of this operation are shown in Table IV. 2 

for the recursion relation indicated in equation III. 10. 

The procedure may be started by the use of the formula 

shown below. 



TABLE IV.2 FOURIER SERIES OF ASSOCIATED LEGENDRE POLYNOMIALS 

n m 

even even 

odd even 

even odd 

odd odd 

FOURIER SERIES EXPANSION 

even cosine series 

odd cosine series 

even sine series 

odd sine s eries 

where: a = n - ~ 
n - m 

b = n + m - l 
n - m 

co 
P (cos8) = nm 

2 nm 

RECURSION RELATION 

cj = a (cj + cj-2 ) - b cj 
nm n-1,m n-1,m n-2,m 

cj = a (cj + cj+2 ) - b cj 
run n-1,m n-1,m n-2,m 

sj = a (sj + sj+2 ) - b sj 
nm n-1,m .n-1,m n-2,m 

sj = a (sj + sj-2 ) - b sj 
nm n-1,m n-1,m n-2,m 

n 
cj cos j8 + sj sin j8 I + 

j=l nm nm 

+-" 
~ 



44 

p (8) = (2m)! 
mm 22m-l 1 m. [

i ( m)+l!2 
(-l)j ( m ) m/2 . 1 m . 

J= 2 - J 

cos 2j6] m even 

~
m-1 

= (2m)! T (-l)j 
22m- l I 

m. =o (m-1 m.) 
-z- -J 

sin(Zj+ 1) 6 ] m odd 

(IV. 13) 

This relation i s readily obtained from equation III. 11 and the elementary 

properties of sines and cosines~ 

Once the expansion for a given asso ciated Legendre polynomial 

has been calculated, it is extremely easy to calculate the expansion for 

the polynomial that occurs in ~he gradiometer signal equation. Returning 

to equation IV. 12 and converting to colatitude, one obtains equation 

IV o 14. 

G (8) nm 

G (8) nm 

= (n+l)(n+3) P (cos 0) -nm 

n 

2 
dP (cos8) nm 

doz. 

= (n+l)(n+3) c0 
/2 + L: [(n+l)(n+3)+/] 

nm . 
1 J= 

[cj cos j8 + sj sin j8] . 
nm nm 

·(IV. 14) 

This offers a practical method for the calculation of the expansion of 

the polynomials. It also makes it clear that the properties of the 

polynomials are much the same as the properties of the as_sociated 

· Legendre polynomials.. In particular, the Fourier series expansions 

of the gradiometer polynomials are in precisely the same form as the 



corresponding Fourier series expansions of the associated Legendre 

polynomials. Thus Table IV. 2 applies to the gradiometer polynomials 

as well as the Legendre polynomials except for the recursion relations. 

Having represented the gradiometer polynomials by Fourier 

series~ the integrals of section IV. 2 are trivial to integrate. Further, 

it is obvious that the integral of G .(8)G .. (8) sin 8 over the range zero 
. ~ ~ 

to pi is zero if the parity of n and i is different. Term by term the 

parity of the corresponding series is also different. Thus, the even 

and odd terms separate in the observation matrix as ·was illustrated in 

Figure IV. 2. 

IV. 4 Weighting Functions 

The process about to be advanced for calculating weighting 

functions is based on a matrix inversion, thus much of the utility of 

the weighting function approach is lost. Still the existence of these 

functions is of major theoretical significance in that the coefficients of 

the spherical harmonic expansion calculated through this procedure 

may be viewed as statistically independent due to the orthogonality of 

the system. Further, practical calculations are simplifiede 

The first step in calculating a system of weighting functions 

for the truncated series is to construct and invert the observa tion 

matrix for the system. Multiplying this inverse through on both sides 

of equation IV. 11, one obtains an equation that might be considered as 

the solution to the problem. However, if one observes that the matrix 

0- l is just a set of numbers, one can conceptually multiply out the 

matrix multiplication on a term by term basis. The result is a column 

-1 matrix of sums of integrals. The numbers from the 0 matrix can be 
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taken inside these integrals and the result for each row can be written 

under a single pair of integral signs. At this stage each term of the 

column matrix looks as shown in equation IV. 15: 

c 
I.. 
lJ Irr! 2rr 

= Signal ( r, A , 8 )( Oij f 
0 0 

-1 G .. ( 8) + ... + 0 . . G . ( 8) + •.• } 
lJ nJl nJ 

cos jA sinO r
2

dA d8 

(IV. 15) 

If one further considers the polynomials G (0) as being nm 

represented by their Fourier series, one discovers that the resulting 

polynomial, GW , is easily represented as a Fourier series 
nm 

composed of the sums of the Fourier series of G (Ll) multiplied nm v 

by the elements of the inverse of the observation matrix. Thus the 

polynomials GW can be formed independent of reducing the data by nm 

matrix rnultiplying the inverse of the observation matrix times the 

matrix of Fourier coefficients of the gradiometer polynomials. The 

system now looks as follows: 

where: cos mX sin8 r
2cL\. d8 

sin mA sin6 r 2 dA d(J 

m even 

(IV. 16) 
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By comparing this result with the result obtained by multi-

plying through by a system of weighting functions, one sees that the 

Fourier series GW are just expansions for the products of nm 

weighting functions times the gradiometer polynomials. Thus, the 

weighting function itself is easily found at any value of (} by dividing 

the value GW by the value of G at that point. As the system 
nm nm 

of equations becomes larger the number of terms in the expansion for 

GW becomes larger. In the limit as n goes to infinity the nm 

weighting functions stop being band limited functions o 

IV .. 5 Other Possibilities 

Practical evaluation of the integrals of equation IV. 16 would be 

facilitated by expanding the signal as a two dimensional Fourier series 

in A and 8. This procedure would save computer time if the highly 

efficient fast Fourier transform can be used. If this is done, the 

integrals of equation IV. 16 are trivial, having effectively been 

replaced by the correct fast Fourier transform. The author did not 

have the correct finite fast Fourier transforms (ranges 0 to ·7r and 0 

to 27r) available so this obvious simplification wasn't used. 

Minor modifications are possible to the basic algorithm 

advanced above. First, the cos cp or sin 0 term can be completely 

dropped. The resulting equations will expand the sin 8 term in a 

Fourier series as part of GW if the term is really doing anything. nm 

The equations are faster to integrate without it. 

Along the same line of reasoning, it is obvious that any 

arbitrary surface can be used to integrate over by substituting the 
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appropriate Fourier expansion for the area element. Thus the integral 

could be carried out on a reference sphere or a reference ellipsoid. 

It might even be possible to use a close approximation to a real 

satellite trajectory though this would vastly complicate the integration. 

Also one might use a P instead of a G when one nm nm 

multiplies the signal equation by the polynomials in equation IV. 8. 

Clearly this would work just as well and one might have large parts of 

the algorithm already programmed if this were done • . Effectively one 

would be expanding the gradiometer signal in a spherical harmonic 

series and converting the coefficients of this series to the coefficients 

for the potentiaL 

Finally, a question may arise as to the uniqueness or 

completeness of the polynomials, G . nm By uniqueness it is meant 

that the polynomials are not linear combinations of each othero By 

completeness it is meant that arbitrary functions can be expanded in a 

linear combination of G 's. The G polynomials must be unique nm nm 

since differentiation is unique and the polynomials$ P are unique. 
nm 

It is not at all clear that the G are complete. nm This makes no 

practical difference since the field can be represented by the spherical 

harmonic expansion and the derivatives are uniquely determined from 

the spherical harmonic expansiono Thus, the gradiometer signal 

from any field satisfying Laplace's equation can be expanded in this 

way. Since the inverse is linear and only has one solution, it is clear 

that the solution is the real gravitational field. In this sense the 

polynomials Gnm are complete. Unfortunately only truncated 

systems can be dealt with in this way. 
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V. RESULTS AND EVALUATION OF ERROR SOURCES 

In this section some results of calculations using the theory 

just described will be discussed and procedures for dealing with signal 

errors will be described. 

The theoretical calculations just discussed have been pro­

grammed on a Univac 1108 computer using FORTRAN V. The 

computer was prinlarily used as a nwnerical check on the algebra and 

as a discipline to find the easiest procedure; however in the final 

stages of development some calculations of general interest were made. 

V. 1 Data on a Sphere 

The reduction of linearized gradiometer· data mapped on a 

sphere to the spherical harmonic coefficients was checked for a 

reduced size case. Observation matrices were constructed through 

harmonic order and degree 360 This was done using the technique 

described in Section IV but without the sin() weighting functione 

The normalized matrix was inverted, rescaled, and multiplied through 

the Fourier series expansions for the gradiometer polynomials. The 

technique described in Section III. 2 was used to generate sample data 

over the entire globe in the center of 5° blocks at a constant altitude 

of 830 Km. A trapezoid rule integration procedure was used to 

evaluate the integrals of equation IV. 16 and coefficients were recovered 

in this way. Next the sinlulated data was truncated to 0. 01 EU 

accuracy and the procedure was repeated. 

This procedure was chosen to sinlulate what would be expected 

to happen using real satellite data. In reference 17 it is argued that the 

parameters governing a gradiometer satellite mission are the 
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satellite altitude and the gradiometer sensitivity. All the other mission 

design parameters can be computed from these two variables, i.e. 

digitization rate, block size, spin rate, etc. Even the satellite 

altitude is fixed to some extent. Given a minimum altitude, one should 

proceed to the next highest satellite resonance to obtain repeating 

ground tracks at the correct spacing. 

At the normal altitude a gradiometer would fly (200 to 300 km), 

data reduction based on this procedure would be rather expensive and 

the data for a simulation would have to be complete to about degree 

and order 120 (s ee Figure V. l)o Thus a full scale simulation could not 

be attempted.. The next best thing was done by arbitrarily moving the 

satellite higher. 830 km was selected because it was expected that a 

simulation with harmonic degree 36 would converge at a sensitivity of 

Oo 01 EU at that altitude and because it is a satellite resonance 

altitude with 99 complete, independent passes between repetitions of 

the ground tracks. 

The belief that the data from a gradiometer satellite at 830 km 

altitude will not contain significant amplitudes from harmonics higher 

than 36 is supported by the results of calculating the RMS amplitude 

contributions of the degree sums as described in reference 9 o In 

Figure V. 1 the RMS sum of all the harmonics above and including each 

degree is plotted using Kaula 1 s rule of thumb. The theoretical calcula­

tions, based on twice the radial second derivative, gave a · reasonable 

estimate for the RMS amplitude of the tabular data. 

Unfortunately the author did not take his analysis seriously 

enough and rounded the block size to 5° instead of the 3. 75° blocks 
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required by the approximation that the wave length equal to the 

altitude is completely attenuated. As a result, most of the errors 

observed occurred because of integrating the data over finite blocks. 

When the signal was also attenuated to 0. 0 I EU only small errors were 

introduced by comparison. These results are indicated in Table V. 1 

where selected degrees and orders of coefficients are compared at 

each step in the analysis. 

The results of this demonstration are embaras singly accurate. 

The errors observed are small when compared to those the author 

predicted in reference 17. This is not a complete simulation or an 

error analysis. The accuracy would not hold up at the level reported 

here in the presence of correlated errors. Random errors shouldn't 

make much difference since they will tend to average out. The 

author believes the analysis from reference 17 is still fundamentally 

sound but must be applied with considerable rigor to maximize 

the usefulness of the datao 

The relative size of the on and off diagon als of the observation 

matrix is of interest., This is because it indicates how errors in the 

data would be coupled if the observation matrix were to be constructed 

and inverted experimentally. Two of the leading partitions of the 

observation matrix are illustrated in Table V. 2. The diagonal has 

has been normalized to one for this table and a sine weighting function 

was not included. Clearly the coupling is relatively small. 

It should be observed that the satellite altitude makes no 

difference in the matrix when it is 1?-ormalized in this way. First the 

variable is redefined as the harmonic coefficient times (R/ r)n. Then 
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TABLE V.l COSINE COEFFICIENTS CALCULATED BY THE TECHNIQUE 

n m SIMULATION VALUE NO TRUNCATION WITH TRUNCATION 

3 0 0.2689 x lo-5 0.2689 . x 10-5 0.2691 x 10-5 

3 l 0.2104 _ x 10-5 0.2271 x 10-5 0.2273 x 10-5 

3 2 0.3048 x lo-6 0.3351 x 10-6 0.3338 x 10-6 

3 3 0.9206 x lo-7 0.9201 x 10-7 0.9147 x io-7 

4 0 0.2371 x 10-5 0.2365 x lo-5 0.2371 x lo-5 

4 1 -.5181 x 10-6 -.5549 x io-6 -.5564 x 10-6 

4 2 0.7770 x lo-7 0.1003 x lo-6 0.1003 x 10-6 

4 3 0.5732 x lo-7 0.6132 x 10-7 0.6155 x lo-7 

4 4 -.1713 x lo-8 -.1722 x lo-8 -.1816. x lo-8 

15 0 0.2106 x io-6 0.2133 x 10-6 0.2124 x 10-6 

15 1 0.1546 x lo-7 o.4661 x lo-7 o.4672 x 10-7 

15 2 -.1326 x lo-9 0.6014 x 10-9 0.6618 x 10-9 

15 3 -.3784 x 10-10 -.4518 x 10-10 -.4806 x 10-10 

15 · 4 0.1521 x 10-1.1 0.7070 x 10-12 0.6296 x io-12 

15 5 o.4963 x 10-12 0.5500 x 10-12 0.5547 x 10-12 

15 6 0.1239 x 10-13 0.9053 x 10-14 0.9322 x 10-14 

15 7 0.6315 x 10-15 0.6008 x 10-15 0.5739 x 10-l5 

15 8 -.1703 x 10-l5 -.1786 x 10-15 -.1777 x io-15 

15 9 0.7635 x 10-18 -01131 x io-17 -.9321 x io-18 

15 10 o.4273 x 10-18 o.4722 x 10-18 o.4672 x· 10-18 

15 11 0.2202 x 10-20 
- •. 6231 x 10-21 0.1239 x 10-20 

15 12 -.3366 x 10-20 -.3640 x 10-20 -.3819 x 10-20 

15 13 -.5896 x 10-21 -.6086 . x 10-21 -.6271 x io-21 

15 14 -.4068 x 10-22 -.4195 x 10-22 -.4503 x 10-22 

15 15 -.2415 x 10-22 -.2403 x io-22 -.2363 x io-22 

Simulation coefficients from reference 18. 
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TABLE V.l, CONTINUED 

n m SIMULATION VALUE NO TRUNCATION WITH TRUNCATION 

7 7 0.1071 x 10-11 0.1048 x 10-11 0.1068 x 10-11 

8 7 -.1487 x 10-12 -.1472 x 10-12 -.1421 x 10-12 

9 7 -.1638 x 10-12 -.1702 x 10-12 -.1710 x 10-12 

10 7 0.6173 x lo-13 0.6096 x 10-13 0.6191 x 10-13 

11 7 0.1383 x lo-13 0.1266 x 10-l3 0.1239 x 10-13 

12 7 -.2264 x lo-13 -.,2366 1 -13 -.2361 x 10-13 
x 0 

13 7 -.3528 x lo-14 -.3696 x 10-14 ~.3793 x .10-14 

14 7 0.1568 x · io-14 0.1235 x 10-14 0.1238 x 10-14 

15 7 0.6315 x lo-15 0.6008 x lo-15 0.5739 x 10-l5 

16 7 -.6194 x lo-16 -.1235 x 10-l5 -.1470 x 10-15 

17 7 o.8686 x lo-16 0.8237 x 10-16 0.8542 x 10-16 

18 7 0.3222 x lo-16 o.8421 x lo-17 o.4652 x 10-17 

19 7 -.6073 x lo-16 -.6665 x 10-16 -.6540 x 10-16 

20 .7 -.9734 x lo-16 -.7980 x 10-16 -.7171 x 10-16 

21 7 -.3029 x lo-17 -.1697 x 10-16 -.1369 x 10-16 

22 7 0.3589 x lo-16 0.2181 x 10-l7 0.2264 x lo-17 

23 7 -.2439 x lo-16 -.1596 x 10-16 -.1466 x 10-16 

24 7 -.5551 x lo-17 0.1122 x 10-16 0.1031 x 10-16 

25 7 0.8541 x lo-18 -.1011 x 10-16 -.9571 x 10-l7 

26 7 0.9660 x lo-17 0.8731 x 10-17 0.7996 x. lo-17 

27 7 -.4681 x lo-17 -.5934 x 10-l7 -.5708 x 10-17 

28 7 0.6399 x lo-17 0.5632 x 10-17 0.5154 x 10-l7 

29 7 -.4326 x lo-17 -.3446 · x lo-17 -.3351 1 -17 x 0 

30 7 0.2032 x lo-17 0.3461 x lo-17 0.3167 x 10-17 

31 7 -.2580 x lo-20 -.2022 x 10-17 -.1985 x 10-17 

32 7 0.1177 x lo-17 0.2108 x 10-l7 0.1930 x 10-17 

33 7 -.1715 x lo-17 -.1223 x 10-l7 -.1212 x 10-17 

34 7 0.1039 . x lo-17 0.1308 x lo-17 0.1199 . -17 x 10 

35 7 -.5570 x lo-18 -.9085 x 10-18 -.9098 x i o-18 

36 7 0.2491 x 10-18 0.9876 x 10-18 0.9066 x 10-18 
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TABLE V .2 LEADING PARTITIONS OF THE OBSERVATION MATRIX 

EVEN POLYNOMIALS OF ORDER 0: 

0 2 4 6 8 10 

0 l.000 0.349 0.223 0.169 0,.139 0.120 0.188 J 0 

2 0.349 1.000 o.444 0.310 0.246 0.208 o.052m: J2 
4 0.223 o.444 l.000 o.48o 0.345 0.278 0.026(~)6 J4 
6 0.169 0.310 o.48o 1.000 0.506 0.370 0.016@)8 J6 
8 0.139 0.246 Oe345 0.506 1.000 0.525 o.on@f oJB . 

10 0.120 0.208 0.278 0.370 0.525 1.000 0.008 (g_ J . 
r 10 

ODD POLYNOMIALS OF ORDER 0: 

l 3 . 5 7 9 11 
1 1.000 o.414 0.281 Oe220 0.185 0.161 0.089@)~ Jl 
3 o.414 1.000 o.464 0.329 0.264 0.225 0.035 (~)5 J3 
5 0.281 o.464 1.000 o.494 0.358 0.290 o.02o (ID

7 
J5 

7 0'1220 0.329 Oo494 1.000 0.516 0.380 0.013@)9 J7 
9 0.185 0.264 0.358 0.516 1.000 0.548 o.009(ID / 9 

11 0.161 06)225 0~290 0.380 0.548 1.000 0.007@) Jll 



each row and column is divided by the square root of its diagonal. 

This is one advantage of using a linearization procedure based on a 

reference field (IV. 6). A procedure based on equation IV. 5 would be 

slightly altitude-dependent even after normalizing the matrixo 

On the basis of the small amount of calculation that has been 

donej it appears the algorithm worksa Most of the questions that 

should arise have to do with the effects of error sources discussed in 

Section II. 4 and the cost of an analysis of this type. Thus, these 

quest ions will be examined next. 

V. 2 Cost of Gradiometer Data Reduction 

The cost of a program of this type is of interest. Using the 

procedure described in Section IIL 2 the cost of calculating gradio­

meter readings at a point in space increases as the maximum 

harmonic degree considered squared since the cost of each harmonic 

coefficient is a constant and the number of harmonic coefficients 

increases as the square of the degree. At the same time, the number 

of points in space that must be considered in a simulation al.so 

increases as the square of the degree since there must be more data 

points than variables. This means the cost of simulating data 

increases as the fourth power of the maximum harmonic degree being 

considered~ The program used in this study took about seven 

minutes and would cost about $85 to perform these operations during 

prime computer time for 5° blocks. 

On the other hand, the cost of reducing gradiometer data on a 

sphere to harmonic coefficients using the procedure outlined is 
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composed of two parts: the cost of the theoretical calculations and 

the inverse, and the cost of expanding the integrals from equation 

IV. 16. The theoretical calculations and inverse only have to be done 

once and are a small expense in the over-all analysiso 

The result of the theoretical calculations is a table of Fourier 

coefficients for GW o This is used to calculate the integrals from nm 

equation IV. 16 involving the real data.. The program involves two 

steps for these calculationso First the data is integrated with respect 

to longitude at constant latitude. Then these results are integrated 

with respect to latitude to obtain coefficients. The time to perform the 

integration in each step increases as the maximum harmonic degree 

considered cubed. The program took about one minute and would cost 

about $18 to perform these operations during prime computer time for 

0 5 blockso 

The cost of a complete simulation or actual flight data re-

duction also includes a trajectory analysis. Most of the work for this 

analysis is common to the simulation part of the analysis performed 

and it will also increase in cost as the maximum harmonic degree 

considered to the fourth power. For the entire algorithm a full 

simulation through harmonic degree 120 (200 to 300 km altitude) would 

run approxirnately 60 hours. The trajectory analysis would increase 

the run time of the simulation part of the algorithm by a constant 

multiple (like 3} and is required for actual flight data reduction as well 

as a full scale simulation. 

To put this estimate in the proper perspective, the author 

believes a least squares data reduction technique would increase in 
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cost as the sixth power of the maximum harmonic degree considered 

and would take years of computer time at harmonic degree 120. 

Computer storage is not an especially serious problem for these 

calculations since the program can be set up to compute one harmonic 

order at a time in an efficient way. Fitting all the harmonic 

coefficients into core at one time for the simulation part of the 

algorithm seems to be the most serious problem one encounters. 

V. 3 Drifts in the Proportionality Constant 

The effect of a drift in the proportionality constant would be 

precisely the same as a proportional signal if only one complete data 

set were available. Several procedures can be used to lessen the 

influence of this type of error~ One should estimate the temperature 

correlation of the scale factoro The instrument manufacturer will 

supply an estimate of the effect of temperature on the scale factor and 

this should be used along with satellite engineering data about local 

temperatures to remove any predictable correlation with temperature. 

A more comprehensive procedure would be to consider the 

data in the vicinity of each of the satellite tracking stations. By 

assuming a Taylor series expansion for the gravitational field over 

the station and fitting the coefficients of this field using a least 

squares technique based on the relatively accurate position data in the 

vicinity of the tracking station and the gradiometer readings, it should 

be possible to estimate the scale factor for each pass over each 

tracing station from the residuals of the least squares fit. Since the 

satellite must pass over a station at least once every two orbits in 
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order to unload stored gradiometer readings, this procedure will 

insure that scale factor variations of the order of the gradiometer 

sensitivity occurring over a period of one or two orbits can be 

removed. Generally the satellite passes over a station more often 

than this so the problem will only be this severe in very remote 

regions. 

Finally1 once a field was calculated which would insure the 

requisite accuracy in the trajectory calculation, it should be possible 

to use the same local modeling technique to cross couple the data at the 

north pole and south pole. Since the requirements of the trajectory 

part of the algorithm are considerably less severe than the potential 

information available in the d a ta such a procedure should improve the 

datao In this way the data can be corrected for variations of less than 

a period of half an orbit ("less than" because the tracking station data 

is still available). If the trajectory residuals are larger than the 

instrument sensitivity there is probably no advantage in doing this. 

To conclude, the data must be corrected for drifts in the 

proportionality constant. However, it does not appear difficult to 

remove errors as large as the instrument sensitivity occurring in a 

period no shorter than half the period of rotation of the satellite about 

the earth. Further, the satellite mission can be optimized to help 

eliminate these errors through the selection of a terminator orbit. 

A terminator orbit will not go through day/night changes which would 

cause variations more rapid than this. 
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V. 4 Satellite Orientation Errors 

In the preceding section it was assumed that the satellite 

always pointed in such a way that the earth's radial and the earth's 

spin axis were in the plane of rotation of the gradiometero If this is 

not so, the signal equation will need to be modified since it incorpora­

ted this assumption. As long as the true orientation can be measured 

to sufficient accuracy and the errors are small, there will be no . 

problem in removing this influence from the datao 

Again, a reference field formulation is possible. If one 

assumes one can predict the second derivatives to an accuracy like 

I EU and if one has experimental deviations from the desired trajectory 

to about 0. I 
0

, a correction can be calculated by operating on the second 

derivative tensor with the Euler angle transformation composed of the 

angular errors and identifying the resulting change in signal as the 

correction. It is necessary to use a full reference field instead of just 

the mean signal and J 2 term since orientation errors in the region of 

the equator would not be correctly adjusted otherwise. 

In references 10and17 it is argued that the procedure will work 

if the orientation errors are smaller than O. l 0 o Since the nutation 

and precession angles must be controlled to accuracies like 0. I 0 for 

precession and 0. 001° for nutation (using a passive nutation damper) to 

overcome dynamics problems, the corrections required are extremely 

small. All three Euler angles will be available to better than O. I 0 

accuracies, thus there is no problem making this correction. 
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V. 5 Orbit Determination Errors 

Errors in the initial pass through the trajectory determination 

block are probably the most severe problem with the integral technique 

just advanced. Clearly if the estimated field data contains large errors 

due to inaccurate modeling of the gravitational field, the procedure 

will not converge. In other words, if one computes a correction to a 

spherical surface based on an inaccurate field, this will introduce 

errors. In order to assess this problem, the author has resorted to 

simulation. 

What was done was to make use of the gravitational field model 

referenced earlier to determine how large an error was created by 

moving data over a variable distance using a truncated version of the 

same fielde The parameters are the distance the data is moved, the 

harmonic degree at which the field is truncated, and the size of the 

erroro The data was moved radially as this was judged to be most 

severee Data points were calcu]..ated at the nominal altitude of 830 km 

and at increments above that using the full field and using truncated 

fields.. The nominal data at each incremental. altitude was adjusted to 

the 830 km altitude by using the difference in the truncated field 

estimates. The resulting errors are shown in Figure V. 2. The 

location selected for these calculations was over the Indian Ocean low 

where the total perturbation was nearly O. 4 EU at 830 km. The 

results indicated that adjustment of the data in this way is.not likely 

to cause problems. 

Another type of orbit determination error is possible. If the 

determination of the position originally is in error, this will result 
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in an error in moving the data of a p recisely equivalent amount. The 

mean signal dominates this error so it is all that needs to be consider­

ed. In reference 17 this ~rror has been discussed at some length so 

the discussion need not be repeated here. The general conclusion is 

that this type of error is not a problem at the altitudes the gradiometer 

will fly at if orbit determination could be initially to about 5 meters 

radially and the instrument sensitivity were O. 0 I EU. There is a 

more stringent requirement than is necessary since the iterative 

procedure outline will tend to eliminate these errors. 

V. 6 Spin Rate Effects 

Spin rate effects come in two forms: the finite spin rate errors 

already developed in Section II and the effect of an error in the 

satellite spin rate, i.e., if the magnitude of the satellite spin rate 

changed slightly so that it is not equal to the gradiometer resonance 

frequency.. Neither of these problems is especially pervasive unless 

the gradiom·eter operates on a resonance principle. Using the data 

reduction technique proposed, one is in excellent shape to calculate · 

the effect of spin rate errors of either type. One can simply substi­

tute the central force system time variation in place of the latitude 

and longitude to obtain approximate time histories of the measurement 

by harmonic coefficient broken down into frequencies. This informa­

tion can be passed through a transfer function like equation II. 5 and 

the magnitude of the error calculated. This can be done without ever 

substituting the values of the harmonic coefficients. 
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The result of this calculation would be a time history of the 

error which partially depended on experimental data (the time history 

of the spin rate). This could be applied as a correction at each 

successive pass of the iteration. It would be possible to correct the 

bandwidth errors directly by computing an attenuation factor for each 

coefficient in this way. If this were done, the effect could be incor­

porated in the basic algorithm. The effect of an error in spin rate 

could not be treated in this way since it is time variant and consequently 

could not be integrated over the reference sphere without introducing 

large errors. 

An alternative procedure would be to expand the signal in a 

Fourier series in time and pass this series through the transfer 

function from equation II. 5. The resulting series could then be used 

to calculate corrected data just as if it were real signal. This 

procedure is undesirable since it would take considerable amounts of 

computer time and would create errors if the data were not redigi­

tized at a large number more points than the original input data. 

On the other hand, the calculation would be independent of the 

spherical harmonic coefficients and thus would not change as the 

coefficients were improved by the routineo 

Finally, if the effect is small enough there is the possibility of 

develop ing an empirical formula (x Hz of spin rate error is equivalent 

to f(x) EU of signal). Such a procedure is not mathematically 

justified since spin rate errors affect different frequencies in different 

ways. A more plausible relationship would be of the form x Hz of 
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spin rate error is equivalent to f(x) EU change in signal from the 

previous data point. At least this puts the correction on the more 

rapidly varying part of the field where it belongs. 

V. 7 The Signal to Noise Ratio 

The signal to noise ratio can only be improved through sensor 

design and by taking more data. If several data sets were available, 

their average should .significantly improve the error calculated from 

the signal to noise ratio since this error source is truly random. 
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VI. AN ALGORITHM FOR GRAVITY GRADIOMETER DATA 

REDUCTION 

A brief description of a complete gravity gradiometer data 

reduction program will be pre s ented. 

The algorithm that is about to be advanced has not been entirely 

programmed. Thus it should be viewed as a proposal rather than a 

final product. The intent is to clarify the mechanics of a gravity 

gradiometer data reduction program including the neces s ary corrections 

that must be made in conjunction with the iterative calculation of 

coefficients. 

VI. l Input Data 

The inputs to a gravity gradiometer data reduction program 

would be as follows: trajectory data, spacecraft engineering data, 

science data, and the gradiometer data itself. The output of a gravity 

gradiometer data reduction program would be coefficients of the 

spherical harmonic expansion of the earth's gravitational field. The 

input data will be broken down in the following paragraphs . . 

Trajectory data will be available from the satellite tracking 

net observing the satelliteo It will include time of acquisition .and 

angular position at acquisition for each observation of the spacecraft 

by each tracking station. The trajectory data may also include range 

and angular position at regularly spaced time intervals throughout the 

period of observation of the spacecraft by the tracking station. 

The spacecraft engineering data will be transmitted by the 

spacecraft itself and recorded at the tracking stations. It will include 
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orientation information relative to the horizon and the sun, spin rate, 

and temperature data useful for estimating the gradiometer scale 

factor. Spacecraft engineering data may also include measurement 

of the in-plane (relative to the spin axis) drag components acting on 

the spacecraft., A variety of other data will be available of no 

particular interest to the data reduction system. 

The science data includes all the ground truth necessary to do 

gravity gradiometer data reduction. This includes an initial estimate 

of the coefficients of the spherica~ harmonic expansion of the earth's 

gravitational field, station locations for the satellite tracking net, and 

a variety of estimates of the amplitudes of perturbations acting on the 

satellite trajectory. These last considerations include the effects of 

the sun and moon (which contribute negligibly small gradients), 

estimates of the atmospheric drag acting on the spacecraft, the effects 

of wobbles in the earth's spin vector, relativistic effects, etcQ This 

data set is the one which the satellite experiment is intended to i.Inprove. 

The gravity gradiometer data will consist of amplitude measure­

ments at regularly spaced time intervals from a low circular polar 

orbit with the satellite spin vector maintained perpendicular to the 

plane of the orbit and the orbital altitude selected to give repeating 

ground tracks. A variety of errors will be present in the data as have 

already been de scribed. 

These four types of data will be processed to obtain an improved 

estimate of the coefficients of the spherical harmonic expansion of the 

earth's gravitational field. This involves three principle steps. First, 

the trajectory of the satellite needs to be estimated. Second, the 
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gradiometer data needs to be adjusted for non-ideal effects. And 

third, the data needs to be integrated over a sphere to obtain harmonic 

coefficients. Thus, the data reduction system will follow the flow 

diagram shown in Figure VI. 1. 

VI. 2 The Trajectory Calculation 

One is in unusually good shape for calculating a trajectory with 

the gradiometer. The gradiometer reading is a point function in 

space, thus the data itself is potentially useful in the trajectory 

calculation as a check on the initial conditions used. Most orbit 

determination calculations are done using · numerical integration of the 

equations of motion.. The gravitational accelerations are estimated and 

often the derivatives of the accelerations (gradients) are calculated. 

Thus all the necessary information to estimate the signal amplitude 

from a gravity gradiometer is available in a normal numerical 

integration orbit determination routine. 

With a routine of this type it should be relatively easy to 

compare the measured gradiometer signal amplitude to the signal 

computed by the routine. A procedure might be developed for 

minimizing the difference between the two estimates. Further, at 

least in the case of the Bell Aerospace gradiometer there would be 

measured drag data available along the flight path.. In this way it 

should be possible to improve on present day trajectory calculations, 

though it is not essential that any improvement at all be made. 

In any event, the trajectory routine would output a satellite 

ephemeris and also would output estimates for the second derivatives 
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at the location of the satellite computed from the reference field. 

S i.nee the gradiometer will be reporting an amplitude more often than 

a trajectory routine would be likely to be .set to step, a unit time step 

could be used equal to the time between gradiometer readingso 

VI. 3 Data Purification 

This step would involve the correction to a spherical surface 

and adjustment of the individual error sources. The operations in this 

step are basically filter processes that are either done once or up­

dated at each step in the iterationo The procedures one might use for 

removing these errors have been described in Section V so they will 

only be summarized here. The steps to be taken are as follows: 

Common filter processes: · (only done once) 

1. Correct spin rate errors using spacecraft 

engineering data and equation II. 5 with data 

supplied by the instrument manufacturer 

(Section Vo 6). 

2. Remove temperature correlated scale factor · 

variations using spacecraft engineering data 

and a temperature correction supplied by the 

instrument manufacturer (Section V. 3). 

3. Remove dynamic errors using spacecraft 

engineering data. 

Updating filter processes: (repeated at each iteration step) 

I. Remove orientatio.n errors using spacecraft 

engineering data and second derivatives 

estimated by the trajectory routine (Section V. 4). 
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Z. Remove scale factor drifts over the tracking 

stations using g radiometer data and tracking 

station data (Section V. 3). 

3. If the tracking station residuals are small 

enough to warrant such a procedure, use data 

from the trajectory routine and gradiometer 

data to remove scale factor drifts over the poles 

in conjunction with the step above (Section V. 2). 

At this stage the nonlinearity correction and the correction of 

the data to a spherical surface is left. The signal could be linearized 

by equation IV .. 6» but these operations can be combined using the 

equation shown below: 

I I measo I refo I ref. 
v - v = Ampl - (Ampl - v - v ) 

zz xx b. c. orbit orbit zz xx b. c. 

(VI. 1) 

Where b. Co stands for block center, ref. stands for the reference 

field from the trajectory routine, meas .. stands for measur~d gradio-

meter data~ and so on~ One simply computes which block is nearest 

to the measured point and checks to see if there is data estinlated at 

the block already. If so, one either averages or discards the meas-

ured data. extrapolated the furthest. Finally, one stores the extra-

polated data and proceeds to the next point. 

Moving the data in horizontal directions will seem erroneous 

to Geodicists. At the satellite altitude, if the block size has been 

selected small enough (roughly equal to the altitude of the satellite), 
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this is a legitimate approximation since the field has converged and 

all readingsin the same block are very nearly the same. On the 

surface this is impossible since the corresponding block size is too 

small for practical calculations. 

Before leaving the subject of correctionsg a word is in order 

on the size of correction being applied. Reference r7 defines a set of 

satellite design constraints which would eliminate orientation 

corrections entirely, though this appears to complicate the satellite 

design unnecessarily. Further, depending on the adequacy of the 

sensor, the temperature corrections may be very small or negligable. 

Scale factor drifts and mapping the data on a sphere are essential to 

deal with. Spin rate errors and bandwidth problems are primarily 

limited to the Hughes sensor. For the Hughes sensor they are 

extremely serious and must be a factor in the sensor design. 

VI. 4 Integral Curvefit Calculations 

The integral curvefit part of the calculation is probably the 

most rapid of the elements. One simply fits a two dimensiqnal fast 

Fourier transform of the spherical data and integrates equation 

!Vo 16 with predetermined functions GW • The result is a new set 
nm 

of coefficients which can be used in the trajectory calculations. 

Calculation of GW as a Fourier series is only done once. 
nm 

The procedure was outlined in detail in Section IV so it will only be 

summarized here. The steps to be taken are as follows: 
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I. Compute the Fourier expansion of the associated 

Legendre polynomials for the coefficients of order 

m (Table IV. 2) .. 

2o Compute gradiometer polynomial Fourier expansions 

of order m(IV. 14). 

3.. Normalize the gradiometer polynomials by the square 

root of the diagonal of the observation matrix (Figure 

V • 2)o 

4. Form the observation matrix (IV. 10). 

5. Invert the observation matrix and multiply times the 

matrix of Fourier coefficients of G (IV. 15). nm 

6. Scale the resulting GW array so that the 
nm 

coefficients are the variable being dealt with 

(Figure V.2). 

If a narrow bandwidth sensor is being used, step four must be 

modified to include the attenuation factor of the high frequency part 

of the harmonic that falls on the edge of the band. 
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VII. CONCLUSIONS 

Reduction of gravity gradiometer data to spherical harmonic 

coefficients is an exciting possibility . . Because of the unique "direct" 

nature of the measurement, gradiometer data is susceptible to the 

same types of data reduction techniques as ground based measurements, 

i.. e., integral and least squares curvefit techniques. Because of the 

possibility of carrying the gradiometer in a satellite, satellite gradio­

meter data is not susceptible to many of the usual problems of ground 

based measurement, i.e., poor convergence of the spherical harmonic 

expansion, the influence of the local terrain, and a lack of global data. 

Due to the relatively unworked state of gravity gradiometer 

data reduction~ this thesis has concentrated on the more basic aspects 

of the problem and in particular representation of the signal in terms 

of the spherical harmonic expansion. It has been shown that a set of 

"gradiometer polynomials" can be defined which allow representation 

of the signal in the same form as the spherical harmonic expansion. 

Two procedures have been advanced for calculating these polynomials; 

one based on Legendre polynomials and the other based on Fourier 

series. 

Following classical theory a procedure has been developed for 

orthogonalizing a truncated system of these polynomials with respect 

to a set of weighting functions, thus in principle solving the problem 

of gravity gradiometer data reduction. The practical details of the 

solution have been programmed. In programming the simulation part 

of the algorithm, gradiometer polynomials were calculated using the 

Legendre polynomial approach» while in programming the data 
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reduction procedure gradiometer polynomials were calculated using 

the Fourier series approacho The mathematical integrity of the 

solution has been demonstrated in th is way. 

This work was closely associated with a satellite feasibility 

study undertaken by the Jet Propulsion Laboratory (17). The author 

worked on the JPL study team and has used the same configuration 

for this study. The work of the two studies are intended to complement 

each other with the JPL study concentrating on hardware considera­

tions and this study concentrating on software problems. Overall 

the results of both studies are positive. From the work done to date 

it appears that a gravity gradiometer satellite can be constructed and 

a mission defined so that spherical harmonic coefficients can be 

calculated complete to the order of magnitude of the wave length 

associated with the satellite altitude. 

All this does not mean that a satellite is likely to fly in the 

immediate future or even that it should fly in the immediate future. 

A number of areas require further worko In the area of gradiometer 

data reduction the next logical step would be a complete · simulation 

including the effects of the error sources discussed in Section V and 

introduced in Section II. The most serious error source is probably 

introduced by the initial determination of the satellite trajectory. 

Because of time and cost limitations this error has not been simulated; 

however, the prospects seem excellent for overcoming this problem. 

Orbit responses are completely analogous to the problem of 

needing a geoid to calculate a geoid. The variations in the trajectory 

of the satellite can not be as great a problem at satellite altitudes as 
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the variations in the geoid height is at sea level. The satellite 

trajectory is smoother than the equipotential surface at the 

satellite's altitude, which in turn is smoother than the geoid. The 

correction will introduce smaller errors than the usual free air 

reduction done on surface data to adjust the data to the geoid. The 

reason surface acceleration data converges when moved to the geoid 

is because the acceleration measurement measures a higher deriva­

tive than is required to calculate the correction. Thus the measure­

ment is more susceptible to short wave lengths than the correction. 

A gradiometer measures yet a higher derivative than acceleration. 

Again the situation is more promising than a procedure which works. 

Because of the high cost of a full scale simulation the author 

does not believe it should be attempted next. A properly scaled 

simulation at a higher altitude could be made to give just as much 

information at a considerably lower cosL Other areas are more 

likely to rule out a gradiometer satellite mission than data reduction. 

In particulaJ; software needs to be demonstrated to achieve the over­

all objectives of the earth physics program of which a gradiometer 

satellite would be a small part. While the objectives of the program 

as set forward by the National Aeronautics and Space Administration 

(and briefly discussed in the introduction) are exciting, a more 

concrete demonstration of what can be achieved should be undertaken 

in the very near future. It is not at all clear what role gravity data 

would play in such a program. 
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