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ABSTRACT

The equations governing a three-layer beam in which the
middle layer is viscoelastic were derived by means of a variational
principle. These equations were solved subject to arbitrary time
dependent boundary conditions of both the simply-supported and can-
tilever type. In the simply-supported case, an eigenfunction
expansion was constructed after the governing equations had been
transformed through operation by a differential operator. In the
cantilever case, the solution was obtained by Fourier transform
with respect to time, and inversion by residue theory. An analysis
of the theoretical response of the cantilever beam to steady state
sinusoidal loading was carried out, and an experiment was conducted

for comparison,
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l. Introduction

The problem considered in this paper is the dynamic re-
sponse of a three-layer beam consisting of two identical elastic layers
and a viscoelastic middle layer, Composite structural members con-
taining viscoelastic layers are recognized as having desirable damping
properties for many applications. Considerable attention, therefore,
has béen focussed on the accumulation of quantitative information
concerning the response of such members to dynamic loads., Plass
(ref. 1) analyzed the response of a viscoelastic sandwich beam to
such elementary 'motions as pure bending and pure shear of the middle
layer, Schwarzl (ref. 2) pointed out some of the complications which
arise in the analysis of a two~layer viscoelastic beam in which the
loss tangents of the two layers are different. Kerwin (ref. 3) and
Ross, Ungar, and K’erwin (ref. 4) pointed out the superiority of the
mechanism of shear damping over extensional damping, Yu (ref. 5)
developed and analyzed a formulation of an infinite, symmetrical,
three-layer viscoelastic plate in which there were no restrictions
concerning the thickness ratio of the middle and outer layers. Di
Taranto (ref. 6) considered a three-layer beam of finite length in
which the cross section need not be symmetrical. The work of
Nicholas (ref. 7) provided a timely check on the trend of the layered
viscoelastic beam formulations to include the effects of shear defor-
mations while neglecting the effects of rotatory inertia, Kovac,
Anderson, and Scott (ref. 8) extended the analysis of viscoelastic

sandwich beams to include non-linear effects.
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All of these authors, with the exception of Plass (ref, 1)
and Kovac, Anderson, and Scott (ref. 8), who represented the material
behavior of the viscoelastic layer in terms of the most elementary
spring and damper models, used the complex modulus characteriza-
tion of the viscoelastic layer in order to analyze the steady state
response of the beam to sinusoidal loading. Typical of the solution
techniques employed by these authors is the application of what Bland
(vef. 9, p. 67) quotes as the correspondence principle for sinusoidal
oscillations. This method requires the corresponding elastic problem
to be solved as completely as possible without using explicit numerical
values for the elastic moduli., When the analysis of the corresponding
elastic problem has come to a halt, either through completing the
analysis or by encountering an operation too difficult to perform
analytically, the elastic moduli are replaced by the values of the
corresponding complex moduli for the value of the frequency of exci-
tation under consideration, In the case of the simply-supported three-
layer beam, this results in an analytic expression, in terms of an
infinite series, for the solution of the viscoelastic steady state
response problem. In more complicated cases, such as the canti-
lever, one can go no farther than to establish the characteristic
frequency equation, the expressions for the eigenfunctions, and the
orthogonality condition. Then the eigenvalues are found numerically;
from these the eigenfunctions are obtained; and, using the orthogonality
condition, the solution is constructed, This method suffers the limi-
tation that, for the more complicated boundary conditions, the eigen-

values and eigenfunctions are dependent upon the given value of the



-3
frequency of excitation. If one wishes to consider the response of the
beam to a different frequency, a new set of eigenvalues and eigen-
functions must first be found, It is, therefore, computationally time
consuming to undertake a study of the dependence of the response of
the beam on the frequency of excitation, through application of this
correspondence principle.

In order to find a more convenient form of the solution for
the purpose of conducting a frequency response study, it was decided
to avoid using the correspondence principle. It was possible, there-
fore, to consider not only steady state sinusoidal loading histories,
but arbitrary loading histories. The characteristic frequency equation
was obtained from the boundary-initial value problem governing the
three-layer beam by application of a differential operator in the case
of simply-supported boundary conditions, and by Fourier transform
in the case of the cantilever. The resulting distributions of eigen-
values were more complicated than those which would have resulted
from application of the correspondence principle, and no orthogonality
condition involving the eigenfunctions of the cantilever was found.

But the eigenvalues were independent of the loading history, and the
Fourier i:ransfoi'm procedure did not require an orthogonality condi-
tion for the construction of the solution. The resulting solutions,

in addition to their capability of permitting a wide variety of loading
conditions, were in a convenient form for the study of frequency

response,
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2. Constitutive Relations
For a linearly viscoelastic material, the relationship between
the stress history and the strain history can be expressed by a

hereditary integral of the form
ox, t) = v (x, t) *d E(t) (2.1)

where 0(x, t) is the stress history at position X, Y (X, t) is the strain
history, and E(t) is the relaxation modulus, a material property.
Equation (2. 1) can be thought of as describing a uniaxial stress state.
Throughout this paper it is assumed that prior to time t = 0, the

body under consideration is quiescent, i.e.,
o(x,t) =0, v(x,t)=0 (~c0<£t<0)

Furthermore, it is a property of the relaxation modulus that
E(t)=20 {(-oo< t< 0} ,

The operation on the right-hand side of (2. 1) is the Stieltjes convo-
lution, defined as follows (ref. 10):
€
@Eydy(t) = [ @(t-7)ap(7) (2.2)
- QD
where @(t) and Y(t) are functions defined for 0 < t < o0 and ~o0 < t < oo,
respectively. Many useful identities involving Stieltjes convolutions
are iisted in ref. 10,
The complex modulus of a viscoelastic material is defined as

the ratio of stress to strain in the case of sinusoidal motion, after

the steady state has been achieved. Thus,
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o(x)exp(iwt) = E(w)y(_}g)exp(iwt) (2. 3)

where E(w) is the complex modulus, o(x) and y(x) are complex, and
the frequency, w, is real. Taking o(x,t) = o(x)exp(ivt), and y(x,t) =

y(x)exp(iwt) in (2. 1), one gets
o(x)exp(invt) = y(x)exp(iwt)*dE(t)
¢
0(x)exp(iwt) =Y(Eg)exp(iwt){E(0)+fexp(-iw'r) E(v)dT}
0

In order for the above equation to describe the steady state, oo must
replace t as the upper limit of integration. Comparing this result
with (2. 3), one can write the complex modulus in terms of the re-

laxation modulus; thus,
[ m 2
E(w) = B(0) + [ exp(-iwT)E (t)dT (2. 4)
0

The right-hand side of (2. 4) appears in another calculation,
which extends the significance of the complex modulus, First, it
must be agreed that of the many definitions of Fourier transform
available, the following one must be used:

00
F Ao} =0le) = [ exp(-it)p(t)dt

- Q0
- (2.5)

i LN
p(t) = Vs f exp(ikt)p(K)dK
-Co

where it is understood that a hat (") over a symbol indicates the
Fourier transform of the function denoted by that symbol, with re-
spect to the independent variable (in this case, t) whose position in

the argument list is taken by the transform parameter, K. Thus
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‘A
(%, y, 2z, k) is the Fourier transform with respect to t of the function
W(x,y,2,t). Using (2.5), the Fourier transform of the right-hand

gide of (2. 1) is

7, {vix, tyraEe)}
a0 t
= [ exp(irt){ [ v(x,t-T)AE(")} b
- Q0 = Q0
o0 t

H

f exp(iKt){E(O)y(E, &) + gy(_}_g, t-T)E (T)d'r}dt
0 .

A GO (o8]
E(0)Y(x,k) + [ B(r) [exp(-ikt)y(x, t-7)dtdT
0 T

<

. 0o _. 00
B, k) + [ E(1) [ expl-ik(r+7)] yix, 7 )dr'dr
0 0

i

o0 A
={E(0) + [ exp(-inT)E ()} ¥(x,k)
, 0
Thus,
v, errame)} = BV, ) (2.6)

Equation (2. 6) suggests that the concept of complex modulus need
not be limited to real values of the frequency, w; although the inter-
pretation of complex modulus in connection with steady state response
of a viscoelastic body is so limited. This observation predicts a
usefulness of the complex modulus in cases other than steady state
vibrations, although the nature of this usefulness won't become
apparent until later (Chapters 4 and 5).

An elastic material is a special case of a viscoelastic ma-

terial in the sense that its relaxation modulus has the form

E(t)= E H(t) (2.7)
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where E is a constant, andH(t) is the unit step function

H(t) =0 -00< t<0

H{t) =1 0<st<o

Usging (2.7) in (2. 1) gives the stress-strain relation for an elastic

material as
o(x, t) = E y(x, t) .

Furthermore, since E(t) = 0 (0< t< o) for an elastic material, the

complex modulus as defined by (2. 4) is
E(w) =E(0)=E .

It was mentioned that (2. 1) governs a uniaxial stress state.
Gurtin and Sternberg (ref, 10 ) have proved that the constitutive rela-
tions for any isotropic viscoelastic material in a multiaxial stress

state can be written as follows:

Gij(—}i’ t) = zvij(éiy t)kdp(t)
(2. 8)
+ % 85V (3 £)*d [BK(t)-2p(t)]

where pu(t) is the relaxation modulus in shear, and K(t) is the bulk
relaxation rrmdruluso oij(_g;_, t) and Yij(zs’ t) are components of the
stress tensor, o(x,t), and the strain tensor, y(x, t), respectively.
As in the case of an isotropic elastic solid, the behavior of an iso-
tropic viscoelastic solid is completely determined by two material

properties,
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The relaxation modulus appearing in (2, 1) governs a uniaxial
stress state. It shall be called Young's relaxation modulus, E(t).
It can be expressed in terms of p(t) and K(t) through (2. 8), in which
o(x, t) is specified to be a uniaxial stress state. Solving (2. 8) for
the strain components, writing the relationship between the non-
vanishing stress component and the corresponding strain component,

and comparing with (2. 1) gives

[E®)]™ =g {3we)™ + Bm®1 (2.9)

Equation (2. 9) involves the Stieltjes inverse [cp(t)]—l of the function

o(t), defined as follows:
[o(6)]7" *do(t) = H(t) (2. 10)

Equation (2. 9) and the definition of complex modulus, (2.4) give a
similar relation between the Young's complex modulus, the shear
complex modulus, and the bulk complex modulus. Thus

1
E(w)

O} =

;~3 L 2
pw) K(w)

or (2.11)

B = K@)
3K(w) + p(w)

The Stieltjes convolution is an inconvenient operation to have
to deal with in solving a boundary-initial value problem, since t
cannot be eliminated from the problem merely by trying a solution

of the form f(x)exp(iwt). Thus it is of great interest to be able to
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express the relaxation modulus in such a way that the Stieltjes con-
volution can be eliminated from the problem. Such a representation

is the exponential series.

N

E(t) & E, +k}=:1EkexP(-t/Tk), £ =0 | (2.12)
A relaxatior’_x modulus of the form of (2. 12) results if one considers
the material properties to be representable as a network of springs
and dashpots. Bland (ref, 9) proposes as a basic hypothesis that
""The microscopic structure of a linear viscoelastic material is
mechanically equivalent to a network of linear viscous and elastic
elements.'' (p. 19) The implication of such a hypothesis is that not
only is (2. 12) a good way to approximate the relaxation modulus of
a viscoelastic material; it is the natural way, Whether or not one
agrees with Bland's hypothesis, it is a fact that in principle one can
represent any experimentally determined relaxation modulus, or
complex modulus, to any desired degree of accuracy, by choosing
N large enough in (2. 12). In Appendix A an experimentally deter-
mined complex modulus is represented as an exponential series
in which N = 8.

The Stieltjes convolution of a function f(t) with the relaxation

modulus E(t) as defined by (2.12) is

N
f(t)*AE[) = [EE + ElEk:! £(t)

%\I: Ey t ft g
-2, — exp (- =) xp (=2-)£(£)dE
k=1 'k T



=10-

The derivative of order M of the Stieltjes convolution is

M

L [EeraE@]= |E [ + 2 E ]

dt

M

—7 £(t)

dt

exp(- :};) [ exptt)at
0

The N terms,

A
exp(-—};){)exp (%)f(e,)de k=1,2,...,N

are the only non-differential terms occurring in f(t)*dE(t), or in any
of its derivatives, Hence there exists a differential operator, D, of
order N, which when operating on any Stieltjes convolution involving

E(t), results in differential terms exclusively. That operator is the

following:
[ [ a’ > a -
D[f(t) 1—r =7 £(6) TT — f(t
I= Tl N ! { Z1k=1 Tk] a1
k#j
N N N-Z
+ZZ Ty | SRz 0+ e (2.13)
j= E =1 dt
151 o) 2

.

—,—J—rk ——f(t LZ dt £(t) + £(t)

?‘e
[y

When D operates on the Stieltjes convolution £(t)*dE(t), the result is:
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N N
Df(t)*dE(L)] = E£(t) + |Eg kzl Tt kzl T By ggf(t)

§§ ﬁi ii N dZ
+iE T.T, + T.E. T flt)+ c00eo
| EEm IR g T ek at?
ket j *) (2. 14)
% N N N N dN-l
+ | E T, + Zl T.E T f(t)
P Tik=l K H T kH p=1 Ha!
ket j k#j 4+ 5,k
N N N
d
+ l l . |IE. + E | —= £(t)
j=1 | E Z=‘;1 KlqgN
Consider now, D operating on exp(iwt) and on exp(iwt)*dE(t).
N
D[ exp(iwt)] =[] i(1+iw'rk)] exp(int)
k=1
N
D[ exp(int)*dE(t)] = EE ki-il (1+iw~rk) (2.15)
N N
+kzliw'rkEk I_! (1+iw'ri )i exp(iwt)
= i=
1+k

The complex modulus corresponding to the relaxation modulus (2.12)

is (see (2.4)):

~ N N B
E(w) =Eg+ ) B~ ) Trmgs

k=1 = k
or N N N (2.16)

EL U (1+iom, ) + ), ot B i (1+iwT))
~ k- k=1 ﬁ;
Elw) = N £k
(1+iw'rk)
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Comparing (2.15) and (2. 16) one sees that D[exp(iwt)] /exp(iwt) is
the denominator of the complex modulus, and D[exp(iwt)*dE(t)] /

exp(iwt) is the numerator.,
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3, Derivation of Equations

The straightforward way to derive a set of equations govern-
ing a given boundary value problem, employing a given set of
simplifying approximations, is to consider infinitesimal elements
of the body, and sum the forces and moments acting on them, But
in cases in which the number of forces and displacements under
consideration is large, the geometry involved in this method gets
complicated; and one worries, when he is finished, that he may
have unintentionally left something out. Then thg matter of choosing
appropriate boundary conditions is at least as geémetrically confusing
as the deriving of the governing equations. This approach was used
by Di Taranto (ref. 6 ) in deriving the equations for the three-layer
beam.

Another way to derive the equations is to use an applicable
variational principle. Although less straightforward than the above,
in terms of fundamental laws of physics required, this method is
much more systematic mathematically, Thus, once the simplifying
approximations are incorporated into the variational principle, the
deriving of the governing equations, as well as the natural boundary
conditions, is a matter of routine mathematics.

For the purpose of deriving the equations governing the
motion of a three-layer beam in which the middle layer is viscoelas-
tic, an ''applicable variational principle'' is one which does not
neglect inertia terms, and which allows the material properties to
be viscoelastic, Gurtin, in ref. 11, presents variational principles

involving dynamics of an elastic body; and in ref.12, he presents
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variational principles involving a viscoelastic body subject to quasi-
static loading. The ideas presented in these two papers can be
combined to give a variational principle involving both dynamics
and viscoelastic material properties. This has been done in Ap-
pendix B.

The variational principle given in Appendix B defines the
functional @{S} (B. 9) in which the state, S, must be kinematically
admissible, as discussed in Appendix B. It was proved that if the
variation of @{S} vanishes, the resulting state is the solution of
the boundary‘-ir‘litial value problem under consideration. If, in addi-
tion to being kinematically admissible, further restrictions are
placed on S, then setting the variation of @{S} equal to zero
produces, rather than the exact solution, the best solution avail-
able considering the new restrictions., In order to use the varia-
tional principle to establish a useful approximate theory, S must
be expressed in terms of unknown functions such that the desired
approximations are taken into account. Then setting the variation
of @{S} equal to zero results in a set of integral-differential rela-
tionships among the unknown functions as well as the natural boundary
conditions and the initial conditions of the approximate theory.

The problem under consideration here concerns a beam sub-
jected to transverse loading., The beam is constructed of three
layers of homogeneous, isotropic material glued together so that
there is no slippage between layers (Fig. 1) The outside layers
are linearly elastic, whereas the middle layer is linearly viscoelas-

ticc. The width and depth of the beam are small in comparison with
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its length; hence the following assumptions are justified (see refs. 13,
14):
(1) The predominant stress component in the outer layers
is Gll(ﬁ’ t)e All others can be neglected.
(2) Without making any assumptions concerning the relative
bending stiffness of the middle layer with respect to the outer
layers, the stress components (711(359 t) and Glz(zc_, t) of the
middle layer must both be included in the analysis. If, as
will be assumed later, the bending stiffness of the middle
layer is small compared to that of the other layers, the
component 011(5y t) can be neglected (refs. 14, 15).
(3) The shear in the middle layer is uniformly distributed
across the thickness of that layer (ref, 13 ).
These assumptions lead to the following representation of the dis-

placement vector (see Fig. 2):

~ h, h,
(u(x, t) - == @(x, t)-(y- 5)v'(x, t) D
u1 (ZE: t) = < G(X, t)—YqD(X, t) @
~ hz hz :
LB(x, £) + = (3, £)-(y + 5V (x, £) © (3.1)

u, (%, t) = vix, t) O.@.03
u3(_}5, £) =0 9@’ @

Here, a(x, t) is the displacement component in the axial direction,
v(x, t) is the displacement component in the transverse direction,

and ¢(x, t) is the counter-clockwise rotation of point x on the reference
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axis, The reference axis is defined as those points of the beam
which, when the beam is at rest, lie on the x axis of the coordinate
system shown in Fig. 2. The numbers @, @, and @ refer to

the layer of the beam in which the corresponding éxpres sion is'validfe

Using the strain-displacement relations,
V. (%, t) =—1—[u (x,€) + u. .(x,t)]
1J ] 2 i,j—" j,i'—’

and (3.1), the components of the strain tensor are obtained. The
non-zZero components are:

~ b, b,

u! (X, t) - ? (P'(Xa t)"(Y - T)V”(x, t)
vy =98 8) - yo'(x, t)

~ h’? hz
Uix, b) + 5 9 (5, 8) = (y + 5 ', £)

(3.2)

'le(?_{_: t)= [VI (x, t)-o(x, t)]

o N= o

WO © 6

According to the assumptions (1) and (2), the normal stress
components 0‘22(§, t) and 033(_}5, t) are zero in all layers. Therefore,
the relationship between the normal stress component 011(_25, t) and
the strain component 'y“(_}_s’:, t) is the same as for a uniaxial stress
state, i.e., (2.1}, The relationship between 012(?_{_, t) and "12(?5’ £)
is obtained from (2. 8). Hence,

o1, E) = vy, (x, L*AE(L)

(3. 3)
01,(%, £) = vy ,(x, E)*du(t)
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where E(t) is Young's relaxation modulus, and p(t) is the shear
relaxation modulus for the appropriate layer. Equations (3.2) and

(3. 3) give the non-zero components of the stress tensor as

h h
(B, [305,8) - o2 (5, 8) - (y - 20", )] (D)

0, @ t) = <[G'(x, £)-yo'(x, t)] *dE,(t) ©)

o~ b2 b
633[11' G b)) 5 o' t) - (Y + 5= 0] (B

(3. 4)
{0 @

0y, (x,t) = ﬂ [v'(x, £)-0(x, £)] *dp(t) @

o €

where the subscript attached to a relaxation modulus refers to the
layer to which it applies, and a relaxation modulus with no time

argument is a constant (elastic material).
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In order to represent the vector field f(x, t) defined by (B. 6),

the following initial conditions must be specified:

~ ~ R A
u(x, 0) = u(x), u(x,0) =ux)
v(x,0) = y(x), V(x,0)=Vx) - (3.5)

o(x,0) = g(x),  ¢(x,0) = g(x)

There are no body forces. The components of the vector f(x,t) can
now be written as follows:

b h

Ao (tLBE) - = @) - (¥ - =) $'=)]
- b h, @
+ux) - 5~ @) ~ (v - ) ¥'(x)]}
~3 o~
£ lx.t) = ¢ py L uGx)-y¢ (x)] + [ ulx)-yo(x)] ®
- hz h2
p3ltlu) + = d(x) - (v +57) ¥'(x)]
h h ©)

L [360) + =2 plx) - (y +=2) ¥'(x)1

fp}_ {t ¥(x) + v(x)}

fz(z{_s t) : < Pz{t ‘Z(X) + Z(X)}

©)
Lp3{t S’(X) + X(X)} @
f3(x,8) = 0 @, @O
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where Pie Pys and p3 are the densities of layers 1, 2, and 3, respec-
tively.

The traction boundary conditions are illustrated in Fig. 3.
The prescribed traction for the top surface of the beam is the dis-
tributed normal load p(x,t), which is uniformly distributed with re-
spect to the width of the beam, Thus, for the top surface, the

traction vector is

8 (x,£) =0, 5,(x,t) =p(x,t), s5(x,t) =0

(3. 7)
+.i}:l.§ b(
zZ > "Z2°%

forx1=x,x =h ,

2 1

where b is the width of the beam. On all other lateral surfaces of
the beam, the prescribed traction is zero; i.e., :s_(§, t) = 0. It has
not been stated yet whether tractions or displacements will be pre-
scribed on the ends of the beam. In order to be flexible later, it
will be assumed for now that tractions are prescribed. If it is de-
cided later that some component of displacement is to be prescribed
at one end, then that portion of the boundary switches from B, to
By, and the corresponding integral must be deleted from &{S} . Let
the prescribed tractions be _cg_(zc_, t), where x is the position vector
of a point on one of the end surfaces of the beam, in this case. Re-

ferring to (3.1), (3.2), (3.4), (3.6), (3.7), and (B.9), 8{S} can

now be written as
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(s} = 3 {_; {g(t)*dcll(ﬁ, E)*dy, | (x, t+2g(t)*day 5 (x, t)*dy, ,(x, £)} dx
+3 pr(zs){u1 (. ty*du (x, b)bu,(x, b)Fdu, (x, £} dx
- {£, (x, eyrdu, (x, t1HE, (x, t)*du,y (x, t)} dx (3.8)
R — p Sai pin

L
- [ gltyxdp(x, £)*dv(x, t)dx
0

- (e, (x, bkdu, (x, Erg(t)*ds, (x, t)Fduy(x, ¢)) dx
ENDS

In (3. 8) R is used to denote the two dimensions of the beam shown
in Fig. 2. Since none of the terms in (3. 8) have anything to do with
the width dimension, integration across the width results in the
factor b (the width) occurring in every term. Since this factor can
be divided out of {3}, it contributes nothing to the end result.
Therefore it was simply left out of (3. 8). Integration with respect
to y is straightforward due to the form of representation of the
terms in (3. 8). When this is done it is evident that the actual dis-
tribution of surface tractions over the ends of the beam affects
#{S} only in the form of certain integrals, clearly identifiable as
components of resultant forces and rﬁoments acting on particular
layers. These resultants are labelled according to the notation
shown in Fig. 3. |

Now, taking the variation of &{S} and setting it equal to

zero produces the following results:
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Governing equations:

(hyE,+h,E,) ' (x, t) +h25.”( %, £)*dE,(t)

h

2 2 2 ‘
- 5 (b E ~h Eo)e!' (x, t) - %(hlEl-h3E3)v"'(x, t)

h

bod 2 o
‘(P1h1+chz+P3h3)u(Xs t) + T( Plhl“P3h3?¢ (x,t)

2 2 .00
+%( plhl-p3h3)v'(x, t) =0
1 3 3 1 : 3 3 28 3¢
—5(h1E1+h3E3)v“"(x,t) - —3f( plhl + p3h3)v (x,t)

-hzv"(x, t)*dpz(t)+(p1h1+p2h2+p3h3){7° (x,t)

2 2.\~ 2
~z(h]Ey-h3E ) (x, t)+3(p  hy-p,

h2 2 h

2 L 2, 22, 2.
(R E thaEl)e' (%, £) - —(p;bytesh5)e (%, t)

4 1

+ hyo'(x, E)kdu,(t) = pix, t)

;g(hiE1+h§E3)v"'(x, £)- z?- (p b3 +p h2)¥ '(x, t)
b -
-i-hzv'(x, t)*dpz(t) -5 (hlEl-h3E3)u“(x, t)
hy .
+ 5= (pyhy-p3hy)ulx, £) + 5 (h) E;+h El)e'(x, t)
h3 hz

B2 (x, t)

(3.9)

_2 Vi 2 e
15 0 (%, LPRAE,(6) - 12 (3p by +p h,+3p 05 (x, )

"hzfp(xy t)*dp‘z(t) =0
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Natural boundary conditions:
(1) u(x,t)or
N, (x, BN, (x, BN 5 (x, £) = (h1E1+h3E3)ti'(x,t)
~ hZ
+hyU' (x, E)*AE,(t) - - (b E;~h Ey)e' (x, t)
A0EE, -0ZE v (%, 1)
(2) v(x,t)or
1.3 3 3 I
Qx, t) = - 2(h}E +hE,)v' ' (x, £) + %(p1h1+p3h3)v '(x, t)

2 2 o~
+h, v (x, £)*dp, (t) + -;‘;(hlEl-h3E yat'(x, t) (3.10)

3

=3
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Z)a‘ -

2
~2(pyhy-p3hy
h
2 2 2 -N-]
+ T(Plhl-p3h3)¢ {Xs t)"'hz‘P(X: t)*duz(t)

(2, t) = 2B E +h5E, o' (x, t)

173

(3) v'(x,t) or

h
2 1 3 3
Ml (%, t)+M3(x, £) + > [NI(X’ t)—N3(x, t)] = 3 (h1 E1+h3E3)v"(x, £)

h
1,2 2\~ 2,2 2
-3(h{E; ~h3E,)3'(x, t) + (k] E +h3E )¢’ (x, t)

(4) o(x,t) or

by B
MZ(X, t) -5 [NI(X, ii)-N:,’(X, t)} = T (hlE1+h3E3)¢'(X, t)
b, h, .

h
2 .2 2
+ o (W[ E +h3E )v' (%, t)
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One expression from each of the pairs of natural boundary conditions
(3. 10) must be specified at each end of the beam. The first member
of each pair is one of the four displacement boundary conditions which
may be specified; the second member is the alternative traction

boundary condition,

It was mentioned above that if the bending stiffness of the
middle layer is.small compared with the bending stiffnesses of the
outer layers, the stress component 011(_}_c_, t) in the middle layer can
be neglected. Equations (3.9) and (3. 10) can be adapted to this new
assumption by setting Ez(t) =0, Unless the beam is vibrating at
very high frequency, the major contribution to inertia will be from
the term ¥ (%, t) (transverse inertia), All other inertia terms rep-
resent either rotatory inertia or axial inertia. These other inertia
terms will be neglected. Finally, a great simplification of the gov-
erning equations, and boundary conditions, can be accomplished by

imposing symmetry on the top and bottom layers of the beam, i.e.,

The subscript '"o'" stands for "outer'. Sirnilarly, properties which
formerly had the subscript ¥2" will now have the subscript "M",
which stands for "middle." This step uncouples U(x, t) from v(x, t)

and ¢(x,t) in (3.9) and (3.10). For the loading and boundary conditions
to be considered in this paper, U(x,t) vanishes identically. There-
fore, it may as well be deleted from the entire analysis, including

(3.1), (3.2), and (3.4). Applying the above simplifications, (3.9)
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and (3. 10) reduce to:

Governing equations

2.3 [RRR] 1 2
—3—h0E v (X, t) + thh

Tie
o o Eoe (%, t)

~hy v (x, E)Fdpy (E)VRy 0! (x, E)dpy ()

Hhyppt2h P )V (%, £) = p(x, t)
1h WPE v''(x,t) + 1hZ h E o' (x, t)
"M o o ¢ 2 Mho o? ’

§ -
+hMV (>, t)*dpM(t)-hM(p(x, t)*dMM(t) =0
Natural boundary conditions:

(1) v(x,t)or

Q(x, 8) = - $b2E_v'"'(x, ) - $h b7

E o''(x,t)
thv'(x, t)*dpM(t)-tho(x, t)*dpM(t)
(2) vi(x,t) or

M, (=, EFMg(x, £)+ 3hy [N, (x, £)-N(x, ¢)]

2
E v''(x, t) + %thoEocp'(x, t)

2,3
=3 ho
(3) o(x,t) or

‘_%hM [Nl(x’ t)"'N3(x9 t)]

2 2
= ;;thOEOv“(x, t) + %thoE0¢' (x, £)

(3.11)

(3.12)
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4, Solution of Simply-Supported Three-Layer Beam
In this chapter, the problem of a simply-supported three-
layer beam, in which the shear relaxation modulus of the middle

layer is representable in the form of (2.12), is solved. Thus

N
_ t
pg(8) = Bg * Z e exp(- -T;), E=> 0 (4.1)
k=1

This problem has been chosen because it is’ solvable by a technique
that has some resemblance to the eigenfunction expansion technique
which would have been used had the beam been purely elastic. The
solution of this problem reveals the nature of the effect viscoelas-
ticity has on the beam; and sheds light on what to expect in solving
the cantilever beam problem, which is considered in Chapter 5,
The features of the simply-supported beam which make the proposed
solution technique successful, also warn of the difficulty to be en-
countered if one were to apply this technique to the cantilever beam.
The insight gained by studying this problem is of considerable value
in constructing the solution of the cantilever beam.

In order to handle this problem most efficiently, it is useful

to write the governing equations in terms of the linear operators L

1
and Ly, where
L, [vix, t), o(x, )] =-§ thov”"(x, t) + %thé'Eogo”' (x,£)
“hy v, )Ry (E)FRy o (x, EPRd (6)
+(hy 0y F2Zh_p ¥ (5, t) (4.2)

2 it
Mho Eocp (x, t)

+th' (2, t)¥dp, (t)-hy o (x, EVFdp, (t)

2
Lo{v(x, t) o(x,8)] = 3hy b E v'''(x, t)+3h
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The governing equations, (3.11), can now be written as

L, v ), o(x,t)] =p(x,t)
(4. 3)

L, [vix, t), o(x,t)] =0

Noting the choices available from (3, 12), the boundary conditions

applicable to the simply-supported beam are

B, [ vix, £), o(x, £)] =v(0,¢t)

__2; 3 T i 2 T
BZ[V(X, t):‘?(xs t)] = 3 OEOV (09 t) + thhOEO(P (0’ i:)

2 2
B3[ v(x, t), o(x, £)] = %thoEov”(O, t)+%;thoqu7'(O, t)

(4. 4)
84[ v(x, t), p(x,£)] = v(L,¢t)
B[ v(x, t), o(x, t)] =2h°E v''(L, tJih hZE o'(L, t)

5 » Bl PR 370 o ’ 2o\ o e?
2 2
Byl vix, t), o(x, t)] =3hy b E v''(L, tH3hyh E o'(L, t)
Liet the boundary conditions be

Bj{v(x,t), ol(x,t)] = qj(t) (3=1,2,0..,6) (4. 5)

where qj(t) (3 =1,2,...,0) are prescribed functions of time. Let

the initial conditions be
vix, 0) = vix), ¥(x,0) = ¥(x) (4. 6)

where v (x) and ¥ (x) are prescribed functions of position. The com-
plete boundary-initial value problem under consideration in this
chapter is defined by (4. 3), (4.5), and (4. 6).

In general, the boundary conditions can be given any arbitrary,



A

time-dependent values. A method of handling beam problems with
time-dependent boundary conditions was first presented by Mindlin
and Goodman (ref. 16 ). This method was applied to the Timoshenko
beam by Herrmann (ref. 17), and to the elastic three-layer beam by
Yu (ref. 18), First, the problem is replaced by one with homogen-

eous boundary conditions, by means of the transformation

6
v(x, ) = wix, t) +‘_Zg By;(x)a; (1)

J= (4.7)

6 N
o(x, t) = Y, t) + ), g ,50<)a;(t)

o

j=1

The functions gvj(x) and g(pj(x) (j=1,2,...,6) are chosen such that
the boundary conditions (4. 4) applied to w(x, t) and Y(x, t) vanish,
There are infinitely many functions having this property. For con-
venience, these functions are usually taken to be polynomials, For

the simply-supported beam, the following functions are satisfactory:

— X -
g, =1-71 g,1(x) =0
2 2 3
L x bid x 3L X - X
g, ,(x) [2 3==+>=3] g ,(x)=- 2% -=]
va h3E L LZ 3 2 h hZE L LZ
12" Ma° 2
L b4 X X X X
g 3x)=———[25% -3 +25] g L(x) = L [2%-25]
T p e LT L L e nhE T L
oo M oo
B 4x) = T g %) =0
g g) = - o 5 5 g, 5x) = - —5— 5‘5;
V5 e ¢ ol 5 h, h“ E L
o O Mo "o
1.2 x X 4L, .’£
gvé(x) R S {'I_—, T3 g¢6(x) T T2 T .2
h, h™ E L h.h E L
Mo "o Mo o
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Using (4. 7) in (4. 3), (4.5), and (4. 6), the boundary-initial value

problem governing w(x, t) and (%, t) is

Lj[W(X, t), G(x,t)] = Pj(x, t) (j=1,2)

where (4.9)

6 6
P].(X’ t) = P(Xs t)-Ll[jzl gvj(x)qj(t)a jz:_‘,l ngJ(X)qJ(t)]

6 6
Pylx, t) = =L, [JZ:,l gvj(X)qj(t), 52-.;1 g(pj(::)qj(t)]

with boundary conditions

Bj[W(X,t), Yx,t)] =0 (3=1,2,...,6) (4.10)

and initial conditions
6
0) = = - . (0
wix, 0) = w(x) = y(x) j}zjl g,;()q;(0)
(4. 11)

6
W(x, 0) = W(x) = ¢(x) - ), g_.(x)d.(0)
=1 J J

While the functions gvj(x), g¢j(x) (=1,2,...,6) are not unique, this
need not cause a non-uniqueness in v{x, t) and ¢(x,t). The functions
w(x,t) and (x,vt) are determined, dependent on the choice of gv.(x),
g(Pj(x) (G3=1,2,...,6) through (4.9) and (4. 11), in such a way as to
compensate for the non-uniqueness.

Once the problem has been transformed into one with homo-
geneous boundary conditions, the next step in the Mindlin-Goodman

procedure would be to try to satisfy (4. 9), (4. 10), and (4.11) by
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means of an eigenfunction expansion, To do this, one would propose

that the homogeneous equations

]
(=]
—
Lk 2
it
o
°
[\,
~

I_.j [wix, t), $(x,t)]

BJ [W(X, t): ‘l) (X: t)]

1]
o
o
T
il
front
[\M]
°
°
o
S

have solutions of the form W(x)exp(iwt) and ¥(x)exp{inwt). However,
due to the presence of the Stieltjes convolution in the linear oper-
ators L1 and LZ’ functions of this form cannot satisfy the homogen-
eous equations. Thus, the first effect that viscoelasticity has on
the problem is to cast doubt upon the applicability of the eigenfunction
expansion technique. Once the problem has been solved, hindsight
shows that, indeed, the eigenfunction expansion technique could have
been applied to the simply-supported beam, although it could not
have been applied to a beam having other boundary conditions.
Since the problem of the simply-supported beam is being studied
for the purpose of gaining insight into the solving of the cantilever
beam problem, a technigue which more closely resembles Green's
function analysis, than eigenfunction expansion, will be used, al-
though the latter will play a role in the construction of the Green's
function.

The following reciprocal identity, relating two displacement

histories of the beam, can be verified through integration by parts:
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L

[ Ao, e)#n [wix, ), d(x,6)]-0(x, t) *L, [w(x, ), §(x, t)] } dx

0
L :

= [ {w(x, t) %L [u(x, t),0(x, £) ] -y(x, t)*L, [u(x, ), 0(x, t) ] fdx
b

+{w(x, t)*[; -i— thou‘ "ix, t)-—g—thiEoe' "(x, t)

+hy u'(x, £) ’idp,M( b)-hy 0(x, ) *duy (£)]

-u(x, £)%[ - %}f;Eow”'(x, t) - %théEOLIJ“(x, t)

+hMW' (X, t) *d}lM( t)’th) ( Z, t)*dMM(t)]

(4.12)

+w'(x, t) *[2h3E u"(x t)}+1 h h E 9'(x t) ]

2 : ;
hIE U (x, t)]

2.3 1
1 1
-u'(x, t)*[_3h E w''(x, t)"‘ahM

2 2
P (x, £)* [-;-thoEow "(x, t)+—§—thoEOe' (x,t)]
0(x, )*[4h. h°E w''(x,t)}+ih’ h E §'(x,t)]}
' "Moo ’ 2*M o o :
L
+(hy Py 2R o0, f [u(x, 0)W(x, £)+8 (x, 0)w(x, t)

-w(x, 0)d4(x,t)-Ww(x, O)u(x, t)] dx

This equation contains both Riemann convolutions and Stieltjes con-
volutions (ref, 10}, Let £(t) and g(t) be two functions of t, defined

for 0<t <ow. Then the Riemann convolution is
£(t)%g(t) ff(t- g(v)dT .

The Stieltjes convolution is

£
f(t)+dg(t) = [ £(t-T)ag(v)
~00
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In the case of the Stieltjes convolution, g(t) may be defined on the
interval - < t <oo, although only functions defined on the interval
0 <t <o are encountered in this paper.

Let u(x, t) and 0(x, t) satisfy

L, [uGx, t), 8(x,t)] =0 (G=1,2)
(4. 13)
Bj[u(x,t), o(x,t)] =0 3=1,2,...,6)
u(x, 0) = 0, i(x, 0) =’Li(x) (4. 14)
Then, since w(x,t) and y(x,t) satisfy (4. 9), (4.10), and (4.11),
(4. 12) becomes
L L
f 8 (x)wix, t)dx = [ [w (=) (x, £)+ Wix)ulx, t)] dx
0 0
(4, 15)
1 L
% - %
o s fo [u(x, £)*P, (x, t)-0(x, t)*Py(x, t)] dx

Once u(x, t) and 0(x, t) have been determined, the right-hand side of
(4.15) is known. Eventually 4 (x) will be replaced by a §-function,
so that (4. 15) will give w(x, t) directly.

It was mentioned earlier that the presence of Stieltjes con-
volutions in the operators L1 and LZ prevents (4. 13) from being
treated as an eigenvalue problem., However, due to the form of
“M(t)’ specified in (4. 1), the Stieltjes convolutions can be removed
from (4. 13) by operating with the differential operator D (2. 13).

Doing this, a new problem, containing only differential terms, re-

sults:
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D{LJ. [u(x, t), 6(x,t)]}=0 (G =1,2)
(4. 16)

1

et
[aY)
o~

D{B;[utx,t), 0,6} =0

This problem can be treated as an eigenvalue problem.

Note that if a pair of functions satisfies (4. 13), it must also
satisfy (4. 16). Therefore, the set of all solutions of (4. 16) must
contain, as a subset, the set of all solutions of (4. 13). Thus, a
solution of (4. 13) can be constructed as a summation of all the solu-
tions of (4.16), each term multiplied by the appropriate coefficient.
There is no guarantee that the evaluation of these coefficients will
be straightforward; it turns out to be straightforward for the simply=~
supported beam, and not so for a beam of any other boundary
condition,

Let
u(x, t) = U(x)exp(iwt)
(4.17)
0(x, t) = ®(x)exp(ivt)
Usiﬁg this in (4. 16), and dividing by

N
[TT (1+iw'rk)] exp(iwt) ,
k=1

the following set of ordinary differential equations and boundary

conditions for U(x) and ®(x) results,
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Zn3E UM (x) +3hy hE @' (x)-h

o w)U'"(x)

M
~ 2
+hM}LM(‘°)@'( x)"(hMPM"’ Zhopo)m Ux) =0

1 2 1. 2 ~
EthoEoU' "(x) + —Z—thOEO(@' ! (x)+hMpLM(w)U' {x)

(4.18)
=By b (@) ®(x) = 0

U(0) =0, U''(0)=0, ®'(0)=0
U(L) =0, U'(L)=0, @ (L) =0

This set of equations differs from the set of equations which would
have resulted if the functions (4. 17) had been used directly in (4, 13)
only in that the relaxation modulus is replaced by the complex
modulus, }IM(w).

N g N
Mo }J:]i (I-E'J.oaTka:1 10Ty Py (1+1°’71)

!

B Y]
P

IROE (4. 19)

.
(itiwT, )
k=1 k

That this should happen follows from (2. 15) and (2.16). In light of
the fact that the complex modulus was introduced, in Chapter 2, as

a material property which is useful in describing steady state re-
sponse, the fact that it occurs in (4. 18), associated with a non-steady
boundary-initial value problem, constitutes an extension of its
applicability. While in the steady state problem its argument, w,

took on only real values, no such limitation is imposed upon the

complex modulus in (4, 18), In fact, that the frequency, w, should
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take on complex values is the sort of phenomenon viscoelasticity
is expected to contribute, Note from (4. 17) that the imaginary part
of a complex frequency results in an exponential decay factor.
From (2. 6) it follows that if (4. 13) were operated on by the
Fourier transform (2.5), rather than by the differential operator D,
the same set of equations and boundary conditions, (4.18), would
result, This is a significant observation which will prove to be of
value in the next chapter. It was pointed out earlier that in con-
structing a solution of (4. 13) as a summation of solutions of (4. 16),
one faces the task of finding the appropriate coefficients. In the
case of the simply-supported beam, this does not present much of
a problem; but in the case of the cantilever beam, to be considered
in the next chapter, it does. If in the cantilever case, one uses the
Fourier transform in (4.16), rather than D, the coefficients are

determined in the inversion process.

Let
h 0 E o (@)
=M M 2 _o =M
h“‘ h 9 P - p s c —p » G(O))—- E (4.20)
O O O (o]

The differential equations of (4, 18) can be uncoupled, resulting in

a sixth order ordinary differential equation.
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6 4
d 2G(w) 2. d
U(x) - (4+6h+3h") — U(x)
ax® hh’ dx?

o]

2 2 2
2
- & (2inp) £ o Uy + 229 (24mp) £ Ux) = 0
ho c dx c
. . (4.21)
d 2G(w) 2, d
—-—-—6-®(x) -— (4+6h+3h7) — @(x)
dx th dx4
2 2 2
6 w  d 12G(w) w
- (2+hp) —s ®(x) ¥ ———= (2thp)— ®(x) =0
n? % dx? nh* " e
(o) [o) .
These equations are satisfied by
3
U(x) = Z [a sin) . x+‘bjcos7x X
jgl : (4, 22)

®(x) =
J

n D

[a!sink x+b!cos) .x]
T s B R

where ajs b., a}g bjj (j =1,2,3) are arbitrary constants, and ihj(j =
1,2,3) are the six roots of the polynomial

2

2 2.4 6 2
28+ Z800) (grentann® - L5 (24hp) L0
hho 'h0 c

(4, 23)

2
12G
. -—-%‘Bl (2+hp) £y = 0
hh c

Although (4. 22) satisfies (4.21), it does not necessarily satisfy (4. 18).
Substituting (4. 22) into (4. 18), it follows that the arbitrary constants

of (4. 22) must be related as follows:

2 2G(w) 2% - 2G(w)
AL - —S— j 2
b Ab., bl "o A i=1,2,3
T B ZE@ M BT pE @ty BT e
3Tl i pl

[o] o]
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Therefore, the differential equations of (4. 18) are satisfied by

3
U = .8inA.x+b. A,
(x) jZ::‘:‘Il[a‘)sm e Jcos Jx]

L2 2G(w) (4. 24)
3 0 pe
o .
= .l b. X-a, .
®(x) jZ’l hx,z T20) KJ[ Jsmij aJcos)\Jx]
h,

Applying the boundary conditions of (4. 18) to (4. 24), one gets

1 2 3
i sin)tlL sin)tZL sin}L3L ] 2y 0
ACsind, L A%sind,L  AZsind,L =10 4. 25)
1 8inAy >8ina, 38ind, a, = (4.
1 . i . 1 .
- sm)\lL —Zsm)kzL ——751n)\3L as 0
A Ay s ..

The determinant must vanish in order for a non-trivial solution to
exist, Therefore,
22 a2 g aZ alad
<—-2~ - ——z' + '-Z - ——z + ——2-—~2—>Sinlesink2Lsink3L =0 (4. 26)
Ay 3

1 M3 Ay A2

The eigenvalue parameter of (4, 18) is w, The parameters

7L1, 7‘“2’ and k3 are dependent upon w through (4. 23), Since the charac-
teristic equation, (4.26), is written in terms of )\.1, X5, and 713, the
finding of the eigenvalues requires solving (4. 23) and (4. 26) simul-
taneously.,

By inspection, (4. 26) is satisfied if one of the three

parameters 711, )Lz, or 3\3, say Xk’ has a value such that
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sin)\kL =0 .

Since )tl, 7&2, and >L3 are defined as the three independent roots of
(4.23), there is no designation as to which root goes with which
symbol, hl’iAZ’ or 7&3.. Thus, the roots can be renamed so that the

above equation applies to }Ll. This equation is satisfied when

_nrn _
A.l - L H n = 19 2, 2 e 2 O
A frequency, w, for which R -%75 can be found by setting A = -I—J-W in
(4. 23), and using (4. 19).
n67r6 _ 6(2+hp) n? 7r
5 > l I (1+1w'r
L h ¢
o
, L |2(4venisn®) a*rt L2(2thg) |,
Eo|  nn? L*  nnl £z e
(4.27)

N N
g TT (1+iw’rk) + Z inkp‘k l ] (1+iw'r£) =0
k=i k:l g =1
L1+k

For each fixed value of n, this is a polynomial of order N+2 for the
frequency, w, and therefore, N+2 eigenvalues exist for each value
of n, All the eigenvalues of (4. 18) can be found from (4.27). Let
them be named SO m=1,2,,..,N+2), (n =1,2,....).

For any given eigenvalue, w the corresponding parameters

Minm (0 = 1,2,3) are found using (4.23). Let the root%’—r be called
Alnm' Using these values of Xjnm (j =1,2,3)in (4, 25) gives a, = a3=0.

Note, therefore, that Xan and A?mm do not appear in the eigen-



functions. Liet a, = 1., Then, using (4. 24), the eigenfunctions cor-

responding to the eigenvalue w . are

_ s hmx
Unm(x) = sin —5—
n2.2 2Ge ) (4. 28)
2 2
® (x) an = ho cos &A™
nm“ ' T T L 2 2 2G(w__) L
B2 72r n Zn
L hO

Using (4.17) and (4. 28), the solutions of (4. 16) are

. nwx .
unm(g,t) = sin —5— exp(:twnmt)

J2.2  2G(e )

_ nm
nw LZ hg nrx
Gnm(x, t) = - T 55 Gt ) cos Texp(lwnmt) (4. 29)
R T nm
2 2
L h
o)

(m=1329°°°9N+2)9 (n=1’29¢°=°)
Then, the solution of (4. 13) can be expressed as a combination of

the functions of (4. 29),

(4. 30)

where the coefficients dn’ ¢ m 2%e not yet determined. Applying the
linear operators L1 and LZ to (4. 30), and using (4. 1) and (4. 23),

one gets
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Ll[u( X, t)s o(x, t)] =

b (14h) oi)NiZ Ii n4'rr4 Jip DT dncnmpkexp(-t/'rk)
™M L4 L nZ 2 2G(w m)
n=lm=lk=l (1+iw__ 7 )| h 22—+ 2
nm k 2 2
L h
o
(4, 31)
Lz[u(xst)s G(X,t)] =
h. (1+h) fl\gzg n3g3 cos DTE dncnmukeXp(—t/Tk)
M L3 L nZWZ ZG(mnm)
n=lm=lk=] (1+iwrk)[h — t——
L h_

The right-hand side of (4. 31) must vanish for t 20, and for 0<x< L.
The coefficients, d ,c ., must be picked such that this happens.
Because the x dependence in (4. 31) is independent of the index m,

this can be done by choosing the constants, Com? such that

N+2 o
27 Glo_7 " °
m=l (1tiw 7) [h g + 2 >
L h
° (4. 32)

kk=1,2,...,N}), (m=1,2,...)

For a given value of n, these are N equations which must be satisfied
by the N+2 constants, o Thus there is still the flexibility to im-
pose two more conditions on the constants. Looking ahead to the
initial conditions which must eventually be satisfied, a convenient

choice for those two remaining conditions is



w40=

N+2 N+2
Z Som = 0, Z o € 7 1 n=1,2,...) (4. 33)
m=} m=l

Using (4. 32) and (4. 33) to define the constants, Com’ (4. 30) satisfies
(4. 13) for any choice of the constants dn. Note that the finding of the
constants Cnrﬁ reduces to solving (4. 32) and (4. 33) due to the fact
that the eigenfunctions (4. 28) corresponding to an eigenvalue W
have an x dependence which is independent of the ':index m. This does
not happen for any boundary conditions other than simply supported.
The initial values of u(x, t), using (4.29), (4.30), and (4. 33)

are

. [o:0]
u(x,0) =0, u(x,0)= ), d_ si_n-r-iB
n=1

These can be matched to the initial conditions of (4. 14) by expanding

4 (x) in a Fourier sine series. This gives

d ~3fL\1( ) sin 27 dax
n—LO R

Using (4. 29) and (4. 30)
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®x 5, n 1, § N+2
u(x, t) = Z T sm-—I_‘?—]-X—f u(€) gin 372 g¢ Z c___expliw__ t)
n=l 0
00 1,
6lx,t) = - ), 2 AT cog BTE [Ty (£)ain BTE qg
n=1
nZ g% ZG(wnm)
+2 'Y
o .
. l\i Com Z 2 Z2Glo ] exp(lwnmt) (4. 34)
=1 n 7 nim
" h=—p—t —
L ho

Note from (4. 1) that for an elastic mater:@al, N =0, There-
fore, if the middle layer were elastic (4.27) would produce, for each
n, two real frequencies, one the negative of the other. For a visco-
elastic middle layer { N2 1), consider the substitution y = iw in
(4. 27), Then, for each n, (4.27) becomes a polynomial of order
N+2, in p, in which all the coefficients are real and positive. The
roots, therefore, are ecither real or complex, occurring in complex
conjugate pairs. Since w = -iy, the roots of (4.27} are either pure
imaginary or complex, occurring in pairs in which one is the nega-
tive complex conjugate of the other. These roots occur in (4. 34)
as exp(iwt). Thus, pure imaginary frequencies represent pure
exponential decay, while complex frequencies, w = w1+iw25 represent
sinusoidal motion of frequency Wy with an exponentially decaying
amplitude. Let the symbol a represent the complex conjugate of a.

Using (4. 19), (4. 20},
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Using this, (4. 32), and (4. 33), it can be shown, using determinants,
that if w - is a pure imaginary frequency, then Com 18 real. Also,

if wnp and wnq are a pair of negative complex conjugate frequencies

Wﬁq=-wnp)’ then Cnp and cnq are complex conjugates (Cnp = qu)'

Therefore, although the right-hand side of (4. 34) involves complex

functions, they add up in such a way that u(x, t) and 8(x, t) are real,

Now that u(x, t) and 68(x, t} are known, through (4. 34), (4. 32),
(4. 33), and (4.27), they can be used to determine w(x, t), by use of
(4.15). The easiest way to do this is to let §(x) = 6(x-£). Use this
in (4. 34) to get u(x, §, t) and 8(x, &, t); then interchange £ and x.

2 n7x n7g N2
u(g,x, t) = T, f sin T, sin 5 Z cnmexp(iwnmt)
n=] m=l

(€, x,t) = - % Oim sin Z2E cos nm §
’ L L L
=1 (4, 35)
nZWZ ZG(wnm)
N+2 12 T2
« ), ¢ ° explic_ )
am 2 2  2CG(w__) Pnm
m=] h + ni
1.2 n?
(8]

Since x and £ were interchanged, integration in (4. 15) is with respect

to £ rather than x. Therefore,

L
wix, t) = j(; L w(EJ (8, x, t) + F(E)u(E, x, t)] dE

(4. 36)
L :

l+2h 5 f[u(gsxyﬁ:)*Pl(g’t)-@(g,x,t)*pz(g,t)] dé
o'c O

MP M

4

h



w3

or
Q0
wix,t) = ), sin = ) A (t) (4. 37)
n=1 m=l
where
A () =2 tlf.§+. g.nwég
nm( ) =7, ct eXp(lwnm ) A W (€) wnnr\g( )] sin

. I,
1 . nrf
+ exp(iw__ t)* [ (€, t)sin —= (4. 38)
hMpM+2hOPO | nm Jg L
22  2G(w._)
n 7 - nm
2 hé
nr L o nr§
L Tz zge ) Falé bicos ]dg}
BT nm
2 2
L h
o

At this point, v(x,t) can be obtained from (4. 7), (4. 37), and
(4. 38). Usually this is all one wants, since it is the transverse dis-
placement that is most easily measured experimentally. However,
in order to claim that the boundary-initial value problem of (4. 3),
(4. 5), and (4. 6) has been solved, ¢(x, t) must also be known., An
expression for Y(x, t) in terms of w(x, t), PI(X’ t), Pz(x, £), all of

which are known, can be obtained irom (4. 9).

hhonz d5
(3, £)*dpy (E)*dpy () = - TZ(17E) 5.5 wi(x, t)
3
+2h §E0(1+h)-i—w(x E)*dp ()
. a hhipoEo(Z-i-hp)
hhoEo d hoEo d2
- T{h_ Pl W (O rmemy @ P16 8 - zimem) 2 Pa=r )
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Using (4. 37), (4.38), (4.23), (4.32), (4.33), and the equations for

expanding a function as a Fourier sine series, or a Fourier cosine

series, this can be reduced to

n2.2  2Glog)

i o nﬂxN+2 L2 hf‘)
Yix,t) =), 5 cos Y~ 7Glo Pam(®)
n=1 m*-l h nw + nimn
3 5
[o]

L B

0
cos (4. 39)
hh E L n=1 L h n27Tz . 2 N
[o I o) 5 + 5 p,E+E “k
L hoEO k=1

L
4 OZO nax sz(g’t)C"sELédg

From (4, 7), (4.37), and (4.39) v(x, t) and ¢(x, t) can be obtained,

N+2

vi{ix,t) = Z g, x)q (£) + z sin ngx Anm(t)
j=1 n=l m=1
2 2 2G(w.__)
n T _ nm
6 o 2 1l h?
o(x,t) = ), g i()a(t)- ), Feos B T Aam(t)
j=1 n=1 m=] BT, nm
L2 h?
L nat ° (4. 40)
4 00 - j;) PZ(E,t)cos d§
e R S CcOSs
hh3E L n=1 L n27r2 2
o o I h + Bt
Z 2 E P
L h'E L Tzl
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5. Solution of Cantilever Three-Layer Beam

In the preceding chapter, the problem of a simply-supported
three-layer beam was solved. A major feature of the solution tech-
nique was the removing of the Stieltjes convqlution by operating on
(4. 13) with the differential operator D, and then forming the solution
of (4.13) as a combination of all the solutions of the transformed
problem. While it was pointed out that if this technique were to be
applied to the cantilever, great difficulty would be encountered in
trying to find the correct combination of solutions of the transformed
problem, it was also pointed out that if the Fourier transform had
been applied to (4. 13), rather than D, the same set of equations
would have resulted. From this it can be inferred that these two
methods of removing the Stieltjes convolution, D and the Fourier
transform, are equivalent. But, while the former method includes
no systematic method of choosing the correct combination of solutions
of the transformed problem to satisfy the original boundary-initial
value problem, the Fourier transform does. Therefore, the Fourier
transform (2. 5) will be used in this chapter.

The boundary-initial value problem to be considered in this
chapter is again governed by (4. 3), (4.5), and (4. 6), except that the
boundary operators, Bj [vix,t), (x,t)] (=1,2,...,6), must be
chosen such that they describe a cantilever beam., Noting the choices
available in (3. 12), a cantilever with its fixed end at x = 0 and its
free end at x = Li is described by the following choice of boundary

operators.
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B, [vix,t), o(x,t)] =v(0,¢)

B,ylvix, t), 0(x,t)] =v'(0,¢t)

Bylv(x, t), o(x,t)] =¢(0,t)

h

3
o

Wl

B4[V(X, t), ‘P(X, t)} fo)

+ hy v (L, E)*dpsy (6) - By (L, £)dp ()

E_v'''(L,t) - 7h, h°E_g"(L, t)

(5. 1)

2.3 1 2

Bglvix, t), obx,t)] =3h E v''(L,t) + 5 hy h E ¢'(L, t)

B, [v(x,t), o(x,t)] =—h h°E v''(L,t) + +h%h B ¢'(L,t)
6 » L)y L, 2 Moo 2 LT T Moo ? ’

Again the transformation (4. 7) is used, with gvj(x), g¢

j(X)(j=l, 2,000 ,6)

chosen such that the boundary conditions for w(x, t) and ¢ (x, t) are

homogeneous. A suitable set of functions follows:
gy x) =1 g(pl(x) =0
2 3 4
L x x b4 b4
g (x)=—~—[4—-6 + 4 - j g (x)=0
va 4 L L2 L3 La @2
(x) =0 (x) =1-3 % +
By3iX) = Bp3' X =12 T,
L3 i xz x3 :ss:4
B ux) = - 65 -825+3— g (x)=0
vé 16n°g L 1% L3 T oA Tet
oo
2 7 3 4
3L x x x 6L
g r(x)=- 4 - 4 — -——-} g (x)=
V3 an’e L p2 o3 ot > nlE
o o Moo
2 2 3 4
3L 8L
B = —— [4 5 - 454 “‘4} Bp6!X) =3
ZhM oEo L L thoE

3X_ _ X
L2 L3
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Then w(x, t) and { (x, t) are again governed by the boundary-initial
value problem of (4, 9), (4.10), and (4.11). Let u(x,t) and 6(x, t) be
governed by the following boundary-initial value problem, in which

A1 and AZ are arbitrary constants,

LJ [U(X, t)s 9(x, t)] = AJB(X-XO)GUI) (J = 1) 2)
Bj[u(xs‘t)’ G(X, t)] =0 (J = 1: 29°¢"6) (5' 3)
u(x,0) =0, d(x,0)=0

Then the reciprocal identity (4. 12) reduces to

L
Agwix L t) - A(x ,t) = % [u(x, )*P, (x, t) - 8(x, t)*P,(x, t)] dx

L (5. 4)

+(hy 20 p,) fO [ wix)d (x, t) (=), t)] dx.

The reason (5, 3) was chosen as the governing boundary-initial value

problem, rather than (4.13) and (4. 14), is that both w(xo, t) and

Y (xo, t) can be found directly (by choosing Al’ AZ tobe 1,0and 0, -1,

respectively) rather than only w(xo, t), as was the case in Chapter 4.
Taking the Fourier transform, (2.5), with respect to t, of

(5. 3), the following set of ordinary differential equations and bound-

ary conditions results.



48

2,3 il l
s hE A" (x, k) + 5 hyh

o™

Ay : ~ Ay
EOB”(X, K)-hMpM(!C) u''(x,K)

+ By g (K) 81,60 ) - (hypy, + 2B p )R U(x, k) =4, 6(x-xo)

In hiE S, i) +inéh E B8 (x,k)+h

~ A
5 Bavio o 2 Moo Mg (e (e,

—hM:LM(K) s(x,K) = A2 G(X-XO)
(5. 5)
A A A
u(0,k) =0, uw'(0,K) =0, 8(0,K)=0

- h3
[o]

A 1 2 A ~ AI
Eo u''"(L,k) - 5 thhoEo 0'"(L,K) + hMp.M(K) u'(L,K)

wl oo

A
-h K)O(L,K) =0

MM
A A
AL, k) = 0, O'(L,K) =0

If the differential equations of (5. 5) were homogeneous, they would be
the same as (4.21), incorporating the notation of (4. 20). Therefore,

the complementary functions corresponding to (5, 5) must be the

same as (4. 24).

3
A
u_(x, K) =z [a.sink.x + b, cosh,x ]
c P P77
\2_ 2G(K) (5. 6)
3 3 p?
B (x,K) = % —0 \ [b,sink \ox]
(= =1 ZoaR) MilbjsinkE-a coshx
j=l h}\.+—$——
J h(2)

The coefficients aLj,'bj(j?:l9 2, 3) are functions of the transform
parameter K, andi}\j(j =1,2,3) are the six roots of (4.23). The

particular solutions of (5. 5) can be found by variation of parameters.
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A ) 6H(x-xo) i

u (x,K) =

o\ 3 2 122 2o 2 22y L
hhoE (hl-kz)(kz-l3)(l3-h1) j=lk=

0

1 2, 2G . 2 2G(K
o {Al _7:; [h)xj + Z(K)] mn)tj(x-xo)-Az [AJ - h(z )] coslj(x&xo)}

h
o
6H(x-x_) 3 3 3
A _ 2
8_(x,k) = g D) €.y A (5. 7)
P 3 2 2. 2 22 2. L Lio L Cike Mk

. 2 2G(K) 4 .3, 2G(k)
{-A1 [hj - —-—-—-———hz ] cosxj(x—xo)=A2[3h )’tj + 2 Aj
o o

2 k% 1
- —= (2+hp) = <] sink (x-x_)
”2 CZ Aj 3 o

ejkﬁ are the components of the permutation tensor, and H(x-xo) is
the unit step function, having the value 0for x <xo, and 1 for
x 2 X0 The solutions of the differential equations of (5. 5) are the

sums of the complementary functions and the particular solutions.

A N A
U(X,K } = uc(x9 K’) + uP(X,K“)

(5. 8)
A A A
O(x, k) = ec(xs"') + ep(x9K)
The six coefficients of (5. 6), aj, bj (j =1,2,3), are deter-

mined by applying the boundary conditions of (5.5) to (5.8). This
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results in a system of six linear, algebraic equations

where a is a six element vector made up of the six coefficients, 8

is a six element vector, and Bis a 6 x 6 matrix (see Appendix C).

These coefficients can be evaluated using the theory of determinants.
Using the Fourier transform inversion formula (2, 5), the

solutions of (5. 3) can be written as follows.

o0

u(x, t) = -21-; f exp(ikt) 'ﬁ(x,ic)dlc

(5. 10)
, | .
8(x, t) = ﬁf exp(iKt) B(x,K )dK

If the shear relaxation modulus of the middle layer is represented
as in (4. 1), Q(x,f{) and é(xg K) will contain no branch points. Then it
can be shown that the path of integration of (5,10} can be replaced
by Cr’ the closed contour of Fig. 4, in the limit as r becomes infi-
nitely large. Therefore u(x, t) and 8(x, t) can be evaluated by sum-
ming the residues of the integrands of (5. 10) over the upper half of
the complex frequency plane. Residues occur at points at which the
integrands are singular. Consideration of (5.6) and (5. 7) indicates
that singularities arise due to two phenomena.

First, simple poles occur at the roots of the determinant,
A(K), of the matrix A of (5.9). (See (C. 3) of Appendix C.) These
enter (5.10) through the coefficients of the complementary functions
(5. 6). Singularities of this type would be present even if the shear

relaxation modulus of the middle layer were a real, positive constant
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(elastic three layer beam) rather than a monotonically decreasing
function of time., In the elastic case the roots of the determinant
would comprise an infinite set of positive-negative pairs of real
numbers, whereas in the viscoelastic case these roots form an
infinite set of pairs of complex numbers in which one is the nega-
tive complex conjugate of the other. ILet those members of this
infinite set which lie on the right side of the imaginary axié be
labelled W (n=1,2,...), where the subscripts are assigned in

order of increasing distance from the origin. Then
W, =W nh=1,2,...)

where the bar () indicates complex conjugate, are all the members
of the first set of singularities of the integrands of (5.10), and can

be found from the condition
A(wn) =0,

The second set of singularities owes its existence to the
presence of exponentially decaying terms in the shear relaxation
modulus of the middle layer; it would not occcur for an elastic beam,
This set focuses 01;1 the N points i%— (k=1,2,...,N)}), where Ty is
the time constant of the kth exponentially decaying term. At each
of these points the complex shear modulus (4.19) has a simple pole,
which results in an essential singularity in g(x, K) and /6\(}{, k). KEach
of these essential singularities is an accumulation point of an

infinite sequence of simple poles, which lie on the imaginary axis
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below the essential singularity. Let these simple poles be labelled

ian m=1,2,...,N;n=1,2,...) where the first subscript identi-

fies the sequence to which the simple pole belongs, and the second

subscript identifies a particular member of the sequence, both

indices being ordered according to increasing distance from the

origin, Note that if the time constants are ordered such that

Tl > Tke then the mth sequence of simple poles has the accumu-

lation point i;———l—-—— « These simple poles, as before, are points
N+l-m

at which the determinant of /3 vanishes. Furthermore, by calcu-

lating )\l’ 7\2, )\3 at the points ian and w for any m and n, it

can be seen that the spatial functions associated with these two

points are similar in shape, at least as far as having the same

number of nodal points. Thus, each vibration mode of the beam

is affected by contributions arising from N+2 eigenvalues; namely,

w o =@, iy o m=1,2,...,N) .

Recall that in solving the simply-supported beam there were N+2
eigenvalues, related by (4. 27), associated with each eigenfunction.
Although in the present case one must settle for similar functions,
rather than the same function, associated with a set of N+2 eigen-
values, the analogy between the two cases is apparent. Using the
solution of the simply-supported beam' as a guideline, it appears
that the natural way to include the effects of the essential singulari-
ties in u(x, t) and @(x, t), is to consider separately the contribution

of each simple pole of the sequence associated with each essential
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singularity, and to allocate the contribution due to the pole ivmn to
the vibration mode characterized by the natural frequency w . This
approach, although it increases the number of poles which must be
found, allows the residue of every singularity in the upper half plane
to be calculated by means of a single mathematical algorithm, since
each singularity now has the property that it is a root of the deter-
minant A (K).

Before constructing the solutions u(x, t) and 0(x, t), some
observations on the solving of the algebraic system (5.9) may be
useful. For the purpose of deciding at which points residues are
to be calculated, it was assumed (5. 9) was solved strictly according
to the rules of determinant theory. An equivalent, but easier way
1° 239 ‘a3. Then

substitute these values back into (5.9), and choose any three of the

to solve (5.9) is to solve first for the coefficients a

four non-identically satisfied equations as a linear system involving
bl’ bZ’ b3., This system need not be solved completely, since only
those terms which contain A(K) in the denominator contribute residues
at the points wo o mws v (m=1,2,...,N; n=1,2,...). Having
solved (5.9), and having calculated the residues, (5.10) can be ex-

pressed as follows, where the functions employed are defined in

{C.4), (C.5), (C.6), and (C.8) of Appendix C.
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fo.0) AW ,0 )-A F(x ,w)
ulx, £) = ), {2/{{1 1 OEZ'((DZT o’ n U(x,wn)exp(iwnt):‘
O n

N AW ,iy )-A ¥(x ,iv__ )
. .1 o’ “mn 2 o’ “mn . _
Bl )
(5.11)
o AWz ,0 )-A ‘II(X w )
0k, t) = ), %2/%[ Lo 2;( n 2@ (x,wn)exp(iwnt)}
n=1

4

AW v )-A0(x iy )
i [ EA.(WZ o @, iy Jexp(-v )}}
m=] o mn

Using the above in the reciprocal identity (5. 4), w(x,t) and { (x, t)
can be expressed as follows, where T(t, k) is given by (C. 7) of
Appendix C,

Qo
w(x, ) = ), §2/€[W(x, w )T(t, )]

n=1

+Z [W(x, ip )T(t,ivm)]g
m=1
(5.12)

oo
Lp(x t) Z EZR[‘I’(X W, )T(t w )]

n=1

5 % (¥, iy )T(E, ivmn)]§

m=1

The solution of the original boundary-initial value problem, i.e.,

(4. 3), (4.5), (4.6), is obtained by v}ay of the transformation (4. 7).
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6 A
v(x, t) =_Zl B, 4(x)ay(t) + %ZR[W(x,wn)T(t,'wn)]
J:

S8

1

[Wix, iv_ )T(E, ivmn)]}

m=]
6 ol
@(x,t) =j§1 g,;(%) 4(t) +nZ=1 gZ/\)[\I'(x, w JT(t, w )]

N .
+HZI=]l [ @G, iv_ )T(E, ivmn)]%

(5.13)
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6. Calculations and Comparison with Experiment

A three-layer beam, for the purpose of checking the solution
developed in Chapter 5, was constructed using two layers of alumi-
num and one layer of 50/50 Solithane 113. Of the boundary conditions
which apply to the cantilever three-layer beam (5.1), the two most
difficult to satisfy were B, and B,, the slope of the beam at the fixed
end, If these were both prescribed as zero, an effective way of
satisfying these conditions experimentally would be to support the
beam at midspan and load it symmetrically. Then because of sym-
metry, B2 and B, would vanish at midspan. Thus midspan was
considered to be the fixed end of a cantilever beam consisting of only
half of the actual three-layer beam. Boundary conditions B4, B5,
and B6 of (5. 1) were satisfied by prescribing them to be zero, and
leaving the ends of the beam free. This left boundary condition Bl’
the initial conditions v (x) and ¥ (%), and the transverse load p(x, t) as
the only remaining means of exciting the beam. In view of the
requirement that the beam be loaded symmetrically, B1 appeared to
be the most practical of the choices available. Therefore p(x, t),
v(x), and v(x) were all prescribed as zero, while Bl[v(x, t), o(x, t],
the transverse displacement of the fixed end, was prescribed as ql(t).
Hence the experimental setup was described mathematically by the
following boundary-initial value problem, in which Lj (j=1,2) are

defined by (4. 2) and Bj (G=1,2,0..,6) are defined by (5. 1).
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Lj[v(x, t), p(x,t)] =0 (j=1,2)
B, [v(x, t), o(x, )] = q; (t)
(6.1)
Bj[v<x,t),¢(x,t)‘] =0 (3=2,3500.,6)

v(x, 0) = 0, ¥(x,0) =0

Using these values of the boundary conditions, transverse loading,
and initial conditions, along with (5.2), (4.9), and (4.11), the time

dependence function (C, 7) of Appendix C reduces to

h, ppst2h Po
. MPM "o k
T(t, k) =i 3 —
E A (K) Zl kzl lzl ﬂz
Ei -cos),L sim) L i ]
- A_C.(K)simn_ L| (6.2)
A cos)t L k?C(K)coszL ol m m m

- {exp(iut)*d, (&) + [iKa, (0)+d; (0)] exp(it)}

where Cm(i{) (m =1,2,3) and C(k) are defined by (C. 6).

| The overall length of the three~layer beam was 36 inches.
Therefore L, the length of one of the cantilever sections, was 18
inches, The width of the beam was 1 inch. The outer layers were
aluminum of thickness ho = 0, 064 inches. Themodulus of elasticity
E0 and the specific weight of the outer layers were assumed to be

107

PSI and 0, 098 1b/in39 respectively, The middle layer was 50/50
Solithane 113, of thickness hM = 0,032 inches. The specific weight
of Solithane was taken as 0. 036 1b/in3. The shear modulus of 50/50

Solithane 113 is discussed in Appendix A. The temperature for which

the calculations are applicable is 25° C, The governing equations
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(6. 1) call for the densities of the middle and outer layers, Py Por
in units of 1b - secz/iné. To get these values, the specific weights
were divided by 386, 4.

Most of the difficulty encountered in applying the solution of
Chapter 5 to a specific case was encountered while trying to find the
eigenvalues w5 iy m=1,2,,.s,N;0n =1,2,... ) The eigenvalues

mirn

are roots of the equation
A(k) =0 (6. 3)

where A(K) is given by (C. 3) of Appendix C. The technique employed
to locate roots of (6. 3) is an iterative one, based on Newton's method,
in which the derivative of A(k) is evaluated approximately by consid-

ering the difference in A(Kk) at two neighboring values of k. The

resulting recursion formula is

; _YGa175.28 5. 0)
3 J"Z A(KJ_I)'A(KJ_Z)

(6. 4)

where Kj is the jth estimate of the eigenvalue to be found. This
recursion formula (6, 4) is similar to the one obtained in the method
of false position (ref. 19).

This technique for finding eigenvalues requires the ability to
calculvate the value of A(K) at some known value of K, This was done
by solving (4. 23) using the exact formula for the roots of a cubic

equation., This produced the values of Al’ hz, h3 which were used
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in (C. 3) to get A(k). These calculations were executed on an IBM
370/155 computer, which has the limitation of not being able to
accept a number larger than 7,237 x 1075, Since numbers much
larger than this were often encountered in the calculations, a system
was devised whereby the magnitudes of many of the variables in the
program were maintained between 1 and e50 by means of multiplying
or dividing by e an appropriate number of times. (I_nteger arrays
were defined for the purpose of keeping track of the number of times
a variable had been multiplied or divided by e50, and several sub-
routines had to be written to supervise such operations as addition
and finding the sine of a number with a large imaginary part.
Another requirement of the root finding scheme (6. 4) is an
initial estimate of the root to be found. In fact (6. 4) requires two
estimates. However, the second can be obtained from the first by
choosing any point in the vicinity of the initial estimate, provided
it is not so close that it satisfies the convergence criterion, The
initial estimate of the complex eigenvalue w was calculated, on the
basis of the two previous complex eigenvalues, to be an_l -0 5
In the case of w55 the initial estimate was Zwla A satisfactory initial
estimate of the first complex eigenvalue, Wy, Was found by consid-
ering a cantilever three-layer beam in which the shear modulus of
the middle layer is infinitely large. The equations governing this
problem were derived using the variational principle of Appendix B.
The resulting boundary-initial value problem has the same form as

that governing an elastic Bernoulli-Euler (ref., 20 ) cantilever beam,

for which the first few natural frequencies are well known (ref, 21).
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Thus the initial estimate of w, was

1
57 2
‘lc L 1.875
. ¥ 6(2+hp) i

In each of these cases the result of the iterative scheme (6. 4) was

accepted only if its value was relatively close to the initial estimate.
This was to prevent the possibility of the iterative scheme converging
to the wrong ei:genvalue. In those cases for which the result was
rejected, a new initial estimate was chosen.

Because of the close spacing of those eigenvalues which occur
on the imaginary axis of the complex frequency plane, extremely
. accurate initial estimates were required. For this reason no auto-
mated system of generating initial estimates, such as that used for
the complex eigenvalues, was found to be successful for the imaginary
eigenvalues. Instead it was necessary to plot or list values of A(w)
(C. 3) along intervals of the imaginary axis, and to choose initial
estimates according to changes in sign. If one of these initial esti-
mates failed to produce the correct eigenvalue, a better initial
estimate was obtained by plotting a smaller interval of the imaginary
axis. This procedure eventually resulted in the set of eigenvalues
wn,i Von (m=1,2,...,8n=1,2,...,12) appearing in Table 1.
Note that the sequence A for each fixed value of m, tends toward
a point of accumulation as described in Chapter 5. The values of the
accumulation points are 3.935 x 10m+2 m=1,2,...,8).

Once the eigenvalues and the corresponding values of )Ll, 7\2,

RS were known, the evaluation of the eigenfunctions (C. 5) and the time
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dependence functions (6, 2) was a matter of performing straightfor-
ward calculations, complicated slightly by the use of the eSO method
mentioned above. One unexpected difficulty did arise, however.
For many of the pure imaginary eigenvalues, 7\2 and )\3 had real
parts which were equal in magnitude to their imaginary parts for as
many as eight significant figures. The calculation procedure called
for subtraction of these nearly equal values. In order for the results
of this subtraction to contain a reasonable number of significant
figures, the entire computer program up to the point of this sub-
traction had to be written in double precision, But since the eigen-
values had been found by an iterative technique, accurate to within
some error bound specified by the programmer, the accuracy of
the result of the subtraction still had to be examined,

The subtraction associated with the imaginary eigenvalue
for whichm =8, n =1 was studied in detail, This is the case for

which the real and imaginary parts of AZ’ )t3 are most nearly equal.

In this case

Ny =R H AR, Ay =t -

3

A = 2.295566966021898 x 10°

A= 2,295566960423937 x 10°

These values resulted from direct calculation based on the hypothesis
that the corresponding eigenvalue was the number produced by the

iterative technique, Z. Let the true eigenvalue be z. Then
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z=Z(1 +¢)

where € is an unknown real number such that |¢| is less than the
specified error bound of the iterative technique, The controversial

subtraction occurred in the form
2 2 2 2
(217 + [Ng(2)]° = 2[v)7 - ()]

where the notation )\j(Z) (j =2, 3) was used to emphasize the fact that

N 7\3 were calculated based on the value Z for the associated eigen-

29
value. Analysis showed that, for m = 8, n =1, the true value of this

subtraction, based on the true eigenvalue z, would be
2 2
[hy(21% + Dhg(z)]
2 2 2
=£[>\Z(Z)] + {x3(Z)] §[1+4300 e + O jei )]

Since the error bound of the iterative technique was specified to be
107 69 the subtraction for this case was accurate to within 1 %.
The time dependence of the only non-vanishing boundary con-

dition (6. 1), the transverse displacement of the beam at the fixed

end, was chosen to be

q (6 = (1 - e~ %) sin ot (6. 5)

where a = 1010 and w is real. This function was chosen for two

reasons, First, q(0) = 0 and ¢(0) = 0. Thus there is no contradic-
tion with the initial conditions, which state that the transverse

displacement and the transverse velocity both vanish initially for
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all points of the beam, including the fixed end. Second, because of
the large value of a, ql(t) becomes indistinguishable from sinwt,
at least as far as the computer can tell, for all but extremely small

values of t. Using (6. 5) the time dependence function (6. 2) becomes

h..p.,+2h p
. MM o' o k
T(t, K) =1 T €. -5
E k) 321 kZ‘-l 121 f
[1-coshjL sin)ti.; 3 ]
A C_(K)sinx_ L
A;cosA L hjZC(K)coskjL mz] mom m
wz( ik sinwttwcoswt) WK 2 .
. 5> - > exp(ikt) (6. 6)
w =K w -K
2 2 2 . 2
= wkt exp(iKt) - (o —az)(o:hi{) g 2aw exp(-at)sinwt
w F(a+iK) w +{at+iK)

2
=11+ T—————-—” Ewex (-at)coswt}
E w F(atik) P

F‘rom this, the steady state time dependence may be obtained by
neglecting every term which contains an exponential function.

The amplitude of the steady state transverse displacement at
the free end of the beam was calculated from (5. 13) for excitation
frequencies up to 400 cycles per second, Since the amplitude of the
disPIéLcement at the fixed end is 1, the results of this calculation
can be presented in non-dimensional form as the ratio of the ampli-
tude of the displacement at the free end to the amplitude of the

displacement at the fixed end. This ratio has been plotted against
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excitation frequency in Fig., 5. Five relative maxima of amplitude
ratio response occur in the frequency interval of Fig. 5. These
correspond, from left to right, respectively, to dominant influence
in the response of the beam by the eigenfunction associated with

W, n=1,2,...,5), the first five complex eigenvalues, The feature
to be noticed in this figure is that for low excitation frequencies,
the relative maxima in amplitude ratio response are large and
sharply defined. But as the excitation frequency increases, the
relative maxima become smaller and less sharply defined. The
phenomenon of reduction in size and sharpness of a maximum in
response has been attributed to increased damping in such well-
known systems as the mass, spring, viscous damper (ref, 22). The .
amouﬁt of damping which belongs to any given eigenfunction of the
viscoelastic three-layer beam problem depends on the imaginary
part of the corresponding eigenvalue Kk, through the terms exp(ixt)
appearing in (6: 6). It is also the imaginary part of g, since w is

real, which prevents the term

S

Wil
which also appears in (6, 6), from becoming singular. It is primarily
this latter term which accounts for the relative maxima in response,
the size and sharpness of each maximum decreasing as the imaginary
part of K increases. Note that the values of the imaginary parts of
w n=1,2,...,5) listed in Table 1 increase while the maxima in

n

response shown in Fig. 5 become smaller and broader. Thus, also
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in the viscoelastic three-layer beam problem, increased damping
reduces the size and sharpness of the relative maxima.

An experiment was performed in order to test the predictions
of Fig. 5. The beam described at the beginning of this chapter was
fastened to a shaker driven by a variable frequency oscillator
through an amplifier (see Fig. 6). A counter was used to deter-
mine, with gfeater accuracy than the oscillator ciials, the frequency
of the input signal. The displacement of a point on the beam was
measured using a reluctance pickup. Two voltage readings from
the pickup were required in order to determine the displacement
of the beam. A D.C. voltmeter was used to record the mean value
of the pickup signal. This measurement was used to determine the
distance from thé pickup to the averége position of the point on the
beam. An oscilloscope was used to measure the variation of the
pickup signal with respect to its mean value. This measurement

‘was used to determine the amplitude of vibration at the point on the
beam.

Measurements of this type were made at the fixed end of the
cantilever beam; i, e., the point at which the double cantilever beam
is fastened to the shaker, and at the four 