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ABSTRACT

The problem of crack extension in brittle materials under
general loading conditions is investigated. Methods of solution of
the related two-dimensional elasto-static boundary value problem
are discussed, Using Kolosov-Muskhelishvili stress functions, an
approximate solution is obtained, The effect of the approximation
on the results is estimated by solving two related problems
exactly. Then using two postulates the critical loads and crack
extension direction are determined under loading conditions
unsymmetrical to the crack axis. Results are compared with those

obtained using a different set of postulates.
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INTRODUCTION

In his classical papers Griffith(l’ 2)

proposed to find the
fracture strength (i. e., load carrying capacity) of brittle solids

by using the following two postulates. He first postulated the
existence of flaws or cracks in materials and asséciated with their
growth the consumption of surface energy. Secondly, he suggested
that the fracture strength can be found by using an energy balance
criterion which since then came to be known as Griffith's energy
criterion.

A mathematical statement of this theory will be given later
on. For introductory purposes it suffices to state that if a pre-
existing crack is forced to extend due to the application of stress,
then at the instant of incipient crack extension the rate of potential
energy release should be equal to the rate of surface energy
increase (due to the increase in surface area). Griffith calculated
the fracture strength of the plate with a straight crack loaded
normal to it by uniform tensile stress at infinity. In his calculations
Griffith used Inglis'(3) solution for a plate with an elliptic
perforation, and considered the crack as the limit of an ellipse
when the minor axis tends to zero. Even though linear elastic
theory predicts unbounded stresses at the crack tips-~-which are
physically inadmissible--the energy contained in any finite domain
is bounded; his theory of fracture may be referred to as a global one
in the sense that he obtained the strain energy by integration over

the entire plate,
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Griffith's theory of energy balance so far has been applied
only to predict failure when the loading is symmetrical to the crack.
When the loading is general (i. e., both normal and shear stresses
are applied at infinity) the direction of crack extension is not along
the crack axis. It is of interest therefore to try the energy balance
concept to this loading condition.

For the cases when the loading is symmetrical to the crack

(4)

Irwin showed that Griffith's theory of global energy balance is
equivalent to a criterion based on the crack tip stress intensity
factor* or the local force tending to open the crack. He developed
this criterion by considering the energy released by the unloading
of the stress in the vicinity of the crack tip as the crack advances.
His criterion states that a condition for crack extension is that the
stress intensity factor reaches a critical value, the latter being a
characteristic material constant.

Barenblatt(s) developed a criterion which eliminates the
singular behavior of the stresses at a crack tip predicted by Inglis'
limit solution of the linear elastic theory. He introduced the notion
of cohesive forces between the two sides of the crack which are
confined to act in the region close to the crack tips and which is
small compared to crack length. When the applied loads increase
causing the crack faces to open, the cohesive forces also increase,

the increase being such that the stresses at the crack tip are always

finite, He then postulated that the cohesive forces cannot increase

*See equation ( 85) page 55.
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beyond a certain limit for any given material. Thus his criterion
states that the condition for crack extension is the attainment of the
above limit. He introduced a term called the cohesion modulus as a
measure of this limit on the cohesive forces, and considered the
cohesion modulus as a characteristic material constant.

Many structural materials like steel and aluminum do not
behave in a brittle fashion. In order to apply the fracture theory to
those materials, some attempts have been made to take into account
the effect of yielding of the material in the vicinity of the crack tips.
These attenpts are generally in the direction of modifying the brittle
fracture theory results to make them suitable for application to
ductile materials. [rwin(é) suggested the use of an effective half-
crack length which is defined as the sum of the half-crack length
and a length factor rY proportional to (K/o-ys)2 where K is
the stress intensity factor and :rYS is the tensile yield stress.
This length factor can be thought of as the value of the distance r

from the crack tip at which the singular part of the normal stress

o‘y as predicted by linear elastic theory attains the value o‘ys,

(7)

and hence provides some measure of the plastic zone. Koskinen

(

and Irwin i have shown that for the longitudinal (or anti-plane)
shear problem, the elasto-plastic analysis predicts a plastic zone
which is a circle, with its radius proportional to the square of

the ratio of the corresponding stress intensity factor to the yield

stress in shear.
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(9)

McClintock and Irwin indicate that incorporation of

this length factor ry correlates some of the experimental results
obtained for the fracture strength when the plastic zone is small
compared to the crack length and the thickness of the material.
Their argument of the reasons for the agreement is based on the
analogy of the two modes of fracture, the in-plane opening and out-
of-plane shearing. Since the analogy is not strictly wvalid, the
results can be thought of only as semi-empirical.

(10)

Irwin has given some qualitative discussion of the two

types of fracture observed when specimens containing cracks are
subjected to loads symmetrical to the crack axis. One can be
called the "tensile' fracture when the fracture surface is normal to
the plate surface and the other '"shear' fracture when it is oblique.
The tensile mode seems to occur when the plastic zone size is
small compared to the specimen thickness and conditions close to
plane strain prevail in the stress field near the crack tip.

This mode is also sometimes referred to as the '""brittle

«

or '"quasi-brittle' fracture, The shear fracture seems to occur
when the plastic zone is large compared to the thickness and hence is
sometimes referred to as '"'ductile fracture'’. In this case

conditions close to plane stress assumptions prevail in the stress
field near the crack tip. Irwin also indicates that the type of
fracture depends on the temperature which influences material
properties notably the yield stress and hence the size of the

plastic zone.
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A different line of investigations began from Dugdale’s(ll)
hypotheses. Based on experimental observations of the plastic

zone in steel sheets containing slits, he calculated the size of

the plastic-zone using the following postulates:

(a) Yielding occurs over some length s measured from the
crack tip, and the dimension of the plastic zone in the direction
normal to the crack axis is small compared to that along the crack
axis.

(b} The material may be considered to deform elastically
under the action of the external stress together with a uniform
tensile stress Tys (yield stress in tension) distributed over the
hypothetical crack segment s,

(c) The stress:at the tips of the hypothetical crack is
finite, when obtained through linear elasticity theory.

The results for the plastic zone~size s calculated on the
basis of the above postulate agreed quite well with the experimental
result reported by Dugdale.

Goodier and Field(lz) suggested the use of Dugdale's
hypothesis and postulated a condition for crack extension based on
a critical strain in the plastic layer. Rosenfield(13) et. al., have
obtained some approximate results using the postulates of
Dugdale, Goodier and Field which seem to agree reaonsably well with
the experimental values for the fracture stress and plastic zone,
reported by the authors for steel and aluminum plates.

In concluding the remarks about the fracture strength of

ductile materials, it is the writer's opinion that various features
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of the effect of plasticity have only been identified so far. Some
approximate and often empirical calculations have been made to
estimate the fracture strength, On the basis of work reported

in (10) three dimensionality of the stress field seems to play

an important role and it may clarify the variation of fracture
toughness with sheet thickness and different types of plastic zones

observed. The use of different yield conditions also need

clarification. Nevertheless it is clear from the brief review that

brittle fracture theory serves in many cases as a starting point for

a description of fracture in ductile solids.

We have so far restricted our discussion to symmetrical
loading conditions. Turning our attention to general loading
conditions, very little work has been done compared to that when
the loading is symmetrical, even though in practice most of the
loading conditions encountered are of the former type. In each of
the three seemingly different theories of brittle fracture discussed
earlier a material constant appears in addition to the usual elastic
constants; namely, the surface energy per unit area in Griffith's
theory, the critical stress intensity factor in Irwin's theory and
modulus of cohesion in Barenblatt's theory. Because these
theories have been applied only to the problem of special loading,
the question arises whether one will need additional material
constants to adequately describe the fracture behavior under

general loading conditions.
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Erdogan and Sih(14) considered a case in which a plate
containing a crack was subjected to general loading. They
proposed to determine the failure load and the direction of crack
extension using the following hypotheses. Referring to a right
cylindrical-polar coordinate system with the origin at the crack tip

(a) "The crack extension starts radially from the tip"

(b) '"The crack extension occurs in the plane

perpendicular to the direction of greatest tension''*

(c}) "The crack extension initiation under coinbined in-

plane loading'" occurs '"when (Zr)% o . = constant''¥*¥

8

Under these postulates these authors calculated the direction
of crack extension and the stress intensity factors prevailing at the
crack tip when the crack extended. They report experiments with
plexiglass plates to corroborate their theoretical results. The
experiments agreed well with the theoretical development for the
direction of crack extension.+ There was large scatter in the data
which determines the critical fracture load and agreement with the

theory was not convincing.

The stresses are unbounded at the crack tips. The expression
'""greatest tension' is interpreted as the greatest value of the quantity

a
(2r) 7 T

the distance from the crack tip.

s which is bounded. o, denotes the normal stress and is

6

sk

7, is the normal stress on the line determined by condition (b).

9

In contrast to the critical load data, the fracture angles reported
were averaged data,
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In a discussion of the results obtained by these authors,
McClintock(IS) pointed out that if one uses a slender ellipse as
the model for the flaw in the material instead of a line crack and
uses the same hypotheses postulated by Erdogan and Sih, one

(16)

obtains substantially different results. Cotterell in a discussion
of the proper model for the flaw in the material, concluded that to
predict the fracture stress for a crack, it is necessary to know the
stress intensity factor for a straight crack with a small branch at
the tip in the direction of the principal stress trajectory. In the
view of the writer, the limitation on the direction is too

restrictive.

(17)

Morosov and Fridman have tried to use an approximate
method to predict failure loads for plates with cracks subjected
to uniform tensile stress as shown in Figure la. They calculate
the fracture load by considering the equilibrium of the plate cut
from the crack tips in the direction normal to the applied stress.
The normal stress distribution on the cut is assumed as shown
in Figure Ib. Force equilibrium in the y-direction then determines
the stress intensity factor K in terms of the applied stress q.
The authors then calculate the fracture stress, using Barenblatt's
criterion, which puts an upper limit on K.

In all these treatments the fracture loads are obtained from
a simple knowledge of conditions prior to crack extension. It is of
interest to consider all the possible modes of fracture and select

the one using a suitable criterion. We will consider that the crack

can extend in an arbitrary direction and try to find the probable
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direction of crack extension and the failure load using an energy
balance concept similar to Griffith's criterion.

So it becomes necessary to calculate the change in strain
energy when the crack tip extends a small distance in an arbitrary
direction while the solid is subjected to general loading. The
specific problem considered in this work is two-dimensional.

The material contains a straight crack and is loaded in a plane by
uniform tensile stress at infinity and in a direction inclined to the
crack axis, The results are applicable to the plane strain

conditions and plane stress, the latter with the usual limitations
inherent in the generalized plane stress formulation. Both

problems will be called the plane problem for brevity. The

problem with two cracks originating from a common point will be
called the "branched crack problem'", the longer of the cracks the
"main crack'' and the smaller one the ""branch crack''* (see Figure 2 ).

This thesis is divided into three parts. In Part [ a
formulation of Griffith's energy criterion is given, the physical
problem is stated, the elasto-static problem is posed and the
difficulties involved in solving it are discussed. Then the problem
is modified to make it suitable for effective solution. The effects

of this modification on similar problems are also discussed.

pAndersson(IS) derived a solution for the two-dimensional problem
with cracks of different length originating from a common point, and
subjected to uniform loads at infinity. An error in the application of
boundary conditions invalidates his results.
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Part II contains the solution of the modified problem. The results,

discussion and conclusion are given in Part II1L
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PART 1
1. GRIFFITH'S ENERGY CRITERION
Consider alinearly elastic solid occupying a volume v,
subjected to tractions '\I)‘i (i=1,2,3) onits surface s, with vy
being the unit normal to the surface at the point (x1 5 XZ’X3)' Let
u,l(i = 1,2,3) be the displacement components in the three coordinate
directions. Define the potential energy V¥V and strain energy U

(19)

of the solid in the usual way as

v
v=_[Wdv - rTiu.lds
v 5
(1)
1 AY]
7»(=J'de=—2-§ Tiuids
v s

where W is the strain energy density of the solid. Let us consider
two solids one without a crack and the other with a crack, which

are otherwise identical. Both of them are subjected to same tractions
on the common boundary. Denote by subscript 'l' the energies
associated with the first solid and by '2' those associated with the

second.

There are several ways of presenting Griffith's energy

criterion. One way is to define V = v, - v as the change in

1,
potential energy and U = ’UZ = 'L(l, as the change in strain energy

of the solid due to the presence of the crack. The surface

energy of'the crack g is defined through the relation

d .
ESS = T, where S 1is the area of the crack surface and

T is the surface energy per unit area. T is assumed to be a
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material constant. The total potential energy of the solid containing

the crack is then defined as
P= V+e (2)

{(Although the definition P = v 2 + U, will be a more natural definition
of P, the definition (2) 1is more appropriate when one has to deal
with infinite solids--as we will later on--since in those cases VZ
becomes infinite whereas V is finite). Then Griffith's energy
criterion for a brittle material states that at the instant of incipient

crack extension, the total potential energy attains a stationary

value, 1. 6.,

QO

I2 = B (3a)

D,

Using equation (2) and the definitions of V,U and &, equation (3a)
can be rewritten in the following form which is convenient for later

use.

@
a

|

= T (3b)

o}
U

Consider as an example the infinite plate containing a crack
of length ¢ (Figure 3). Let it be loaded at infinity by a uniform
tensile stress q in a direction perpendicular to the crack. Let
the crack faces be stress free. Using Inglis'(3) solution for the
elasto-static state the strain energy change U can be calculated

by a method which will be described later on (pages 22-25) as
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. m wn+l 22
U-——:),—Z'— m q f (4)

where p is the shear modulus of the material and x takes the
value 3-47 for plane strain and (3-5)/(1+ 0) for generalized
plane stress, with ¢ being the Poisson's ratio of the material.
Assuming the crack extends by a length A/ as shown in Figure 3,

we get AS = 2A¢ and equation (3b) can be rewritten as

57— = 2T (3¢c)

Substituting the value of U from equation (4) in (3c) and rearranging
one gets the following equation to determine the critical value of the

applied stress q for a given crack length 7.

_ 32 B T
qCI‘ —\/—‘r_r— ntl -,f’— (5)

In deriving equation (5) we assumed the crack extends along its own

axis. This may be justified as the loading is symmetrical to the
crack axis. But when loading is general, the direction of crack
extension is not determined a priori. In those cases we will try
to find it by an extension of the energy criterion given in the fol-

lowing section.
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P TATEMENT OF THE PHYSICAL PROBLEM AND THE
POSTULATES:

Consider a solid with a crack of length # 1 and loaded at
infinity by uniform tensile stress q acting at an angle g to the
crack axis as shown in Figure 4. We need to find that load q at
which the crack will extend and the direction in which it will extend.

Since the problem remains invariant for a rotation of =«
radians about an axis normal to the plane of the plate and through
the midpoint of the crack, one would expect the crack to extend
from both tips as shown in Figure 5. For reasons of mathematical
simplicity in solving the associated boundary value problem in
elasto-statics, we will assume that the crack extension starts at
one tip first--rather than starting from both tips simultaneously--
which is physically probably more reasonable.

Suppose the elasto-static state for the branched crack,
loaded as shown in Figure 2 is known. Then let the change in
strain energy stored in the solid due to the presence of the
branched crack per unit thickness be U(u, x,q,kl, 11 12)*. .
Define the rate of change of U with respect to the branch crack
length 1, as

2U ™ w1 2 g

B—Z-Z: 5 m q F(ov,}\ly 1.1, 112‘)** (6a)

Arguments of the functions will be explicitly shown when the
functions appear for the first time, Thereafter only the arguments
which are necessary for further reasoning will be carried.

**That this form of representation for Ban is possible will be shown
‘2
on pages 22-26,
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where F 1is some function of the geometry of the branched crack

system and the loading angle q and let

F(a A t) = Lim  Flas k2 1), (6D)

Define the energy release rate G at the instant of incipient crack

extension as

+1
G(K,qu,asﬂ) = '%TZ' A

q® F¥(a, ks 1)) (7)

We now propose to determine the crack extension angle \* and the
critical value of the applied stress der at which the crack will

extend using the following two postulates:

1. The direction of crack extension is that for which the
energy release rate G attains a maximum.

2. The critical value of the applied stress is the one for
which the above maximum energy release rate reaches the value
2T as the applied stress q is increased slowly from zero.

In mathematical form, the direction of crack extension A*

is determined by

%S— = 0 (Maximum of G with respect to )\1) (8)

1

and the critical value of the applied stress q is determined by

Gl)\lz)\*'—' & (9)
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Substituting the expression for G in equation (9) and rearranging,
we obtain the following relation to determine the critical value of

the applied stress q.

32 8 2T
- ./ 32 10
Ger \/v (At1) F¥(g, N, 1) L)

Hence, once the change in strain energy of the solid due to the
presence of the branched crack is known, we can calculate the
direction of crack extension and the value of the loading stress
which will cause the crack to extend.

In order to calculate the change in strain energy, it
becomes necessary to solve a boundary value problem in elasto-
statics. The boundary value problem is posed in the next section

and methods of solution are discussed,
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3. THE BOUNDARY VALUE PROBLEM
The boundary value problem can be formulated using

the Airy stress function 3. For convenience the crack boundary

will be denoted by L and the region outside the crack boundary

by D. The stresses defined by (Figure 6)

1 93 1 82¢
oy = For ' —
T J8
o =_§i% (11)
0 ar
- .9 ,1 9%
Trg~ ar(r _B—é—)

satisfy the equilibrium equations. The compatibility equation then

reduces to

v s(r,8) = 0 in D (12)

4 . . . .
where v denotes the two-dimensional bi-harmonic operator, while

the boundary conditions are

o, = 0 9=0,O<r<{,1
on L (13)

T = 0 e:)\lrr, O<r<L2

At infinity we have the asymptotic behavior
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o = 31t coszar) + 0Ly
I

7o = $[1-cos2(a-8)] + O (=) asr-o (14)
b

T = 3 sin2(a-0) + 0(—17)
r

1]

(We say F(£) =O(£) as £~ 0 (or infinity) if and only if, F(§)<c l€ |
for sufficiently small (or large) values of [£], where c is a finite
constant).

One method of solution of the boundary value problem as
posed in equations (11) to (14) is as follows.

Consider the region D as a union of two sectors
SI(O< B < Xln‘) and SI I()\lrr<e< 2w). Then using Mellin transforms(zo)
the boundary value problem can be reduced to a problem of

determining four functions fi(t) satisfying four coupled integral

equations of the following form. (Details are given in Appendix I).

4 rj
fi(t) = gi(t) + E ([‘ Kij(t’ T) fj(r) dr> y D<ct< T,
j=1 1\°
(15)
(1= Ly iy r1=r2=]/l;r3:r4:1,2)

The four functions fi(t) are related to the four displacement
discontinuities (two across each crack segment) in a way similar to

the one given below
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1 £(t) dt
u {r,0) - u (r,2r) = r - NSNS (4 of 1 (16)
r r v ST 1
NEt® - r

The integral equations (15) are obtained after several formal inter-
changes of integrations and differentiations. The kernels Kﬁ(t, r)
become singular like -17 as one approaches the origin along the line
t =1 in the (t, r) plane. The author was unable to confirm whether
this singular behavior is due to the formal way in which the integral
equations were derived or due to the singular nature of the boundary
value problem itself. For this reason it was decided to use an
alternate approach to solve the boundary value problem. This method
is discussed below,

The biharmonic function &(r, ) can be represented in terms

of two functions ¢ and ¥, which are functions of the complex

variable =z = reie, by(Zl)

#(r, 6) = Re [Z w(z) + x(z)] (17)

where 'Re' denotes the 'real part of' and a bar denotes the complex
conjugate, In this representation for ¢, the stresses and displace~
ments are defined in terms of the two functions o(z) and v(z), the

later being the derivative of y(z), as
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o+ Ty = 4 Re [o'(z)]

o'e+ iT.qg 7 2 Re [0 (2)] + Z-[Zo'"(z) + ¥'(2)] (18)
z

u +iug = —Z—L— e ® [no(z) - z0'(z) - Y(z)]

Hence the determination of the biharmonic function ¢ reduces

to finding two functions ¢(z) and ¥(z) which are holomorphic (single

valued analytic functions)in the region D outside the crack boundary.

The stress free boundary conditions (13) become

w(z) + zp'z) + ¥(z) = 0 on L (19)

and the conditions at infinity (14) reduce to

where

o(z) = Tz + o©(2)
(20)
as |z -~
v(z) = T 'z + Yo(z)
T = % and
. 20
I":-% e-ZlCL (20a)

and mo(z), \yo(z) are functions holomorphic in the region D

including the point at infinity.

Before proceeding to solve for the functions ¢(z) and V(z)

we will derive the expression for the strain energy change in the
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solid due to the presence of the branched crack in terms of these

functions.
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4. THE EXPRESSION FOR THE STRAIN ENERGY CHANGE
Let us calculate the strain energy Ur stored in that part of
the solid bounded by the circle of radius R (Figure 7)., Using

Clapeyron's tbeorem(zz), one obtains

(21)

fl
oof —

2w
Re r [(u‘r- iTre) (ur+ iue)]R de

o
r=R

In order to calculate UR let us expand o(z) and ¥(z) in power

series valid for |z l > /{,1 in the following way.

d d

_ 1 2
CD(Z) =Tz+ dO + -—z—- + ~ZT + sue
e, , (22)
z= ' ——
‘y(Z) T''z + eo + - + -;—z- + e @
Substituting these series in equations (18), using the relation
z = reIe and rearranging we get for r = R,
) 2ip -2i8 = 2ig\ 1
— - ' - -
L —1Tre = [ZI‘ T'e ] + (el 3d1e dle )?\
ro )
R
. -2if — 4 _-if
2 + = - - T -
H(ur 1ue) [(K ;)T‘ T' e ] R+ {n do eo}e f (23)
=216 s 2ig — 1 1
¥ (”‘dle hege ""1> R ° O(“Z‘)

’ )
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The coefficients dn' e (n=0,1,2,...) are, in general, complex,
except €, which is real due to the fact that the moment of the applied

boundary forces is zero and hence

2m
(T_,.T)T de =0
(F) (e ]raR

This real behavior of ey will be used in deriving equations
(25) and (26) on page 24 1in this section.

The terms in square brackets are the only ones which will
prevail if there is no crack in the solid, The terms in curly
brackets represent rigid body displacements. The rest of the
terms are generated by the presence of the crack, In order to
meaningfully compare the strain energy of the two solids, one with
the crack and one without, and r which stress boundary conditions are
prescribed at the outer boundary, one needs to satisfy the stress
boundary condition on the large circle of radius R to order ——12—- .
That is, the stress field must behave like 8

7 - it = (2T 28 4 o (——1-3-) (24)

R

The necessity of this behavior of stresses when the strain energy
change is calculated using (21) was first shown by Spencer(23). The
method used here follows that of Sih and Liebowitz(24). The
necessary modification of the stress field given in equation (23)

to make it conform with equation (24) can be derived from the following
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stress functions o and V

(25)

Adding these stress functions to ¢(z) and ¥(z) eliminates the

terms of order ——%—- for the stresses in the expression (23) on the
R
boundary of the circle. The following additional displacements are

caused due to this modification of the stress field

e . .
2p (0, + 1Gp) = \-m- Db+ wd P ape 219] 1 (26)

ol

Adding these terms to the displacement expressions (23), there

results
2pfu_+ iu ) =d(n-1)T+T' Bl R +)ud -gfe-ip
r B o

e ; .
+ (u+1);-71— + T, 210 ¢ d; e‘Zlei—fy (27)

1
+ O -i%>
R

Substituting the expressions (24) and (27) in (21) we get after

integration
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Ug = gﬁ{[z(n-l) r% 4 7T 3 R 4 (x+41) Re (-Tje,-T'd))

vo(d) - .

-2iq

Upon letting T = % and T'= -% e (see definition (20a)) and

rearranging one obtains

matl)g®

o m(nt+l)
UR- o R+ ——E—&‘l Tk

(29)

-2i0 1
Re;-Ze1 + 4d1e ; + O(ﬁ)

The term proportional to RZ represents the energy stored when
there is no crack present. Let us denote this part by U;. The
rest of the terms are due to the presence of the crack. Hence
taking the limit of {UR - Ug} as R -oo, we get the required
expression for the strain energy change in an infinite solid due

to the crack as

_ w{wAl) ] _2ia (30)
U= T;—QRG [Ze1+4dle ]

It will be shown later that =5 and d1 are representable in the

following form¥*

¥
This representation follows from the linearity of the functions w©(z)

and ¥(z) with respectto T"=q/4 and T'= - %6—21(1. However, it
will be explicitly derived later on pages 46-50.
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d1 =q [dy, +d;, cos 20 + d; 5 sin 20 ]

= 4 [e11 + e, cos 2o + e, sin 20 ]

where the terms with two subscripts are functions of the geometry

only. That is for example

Byy = By Byelgatpl
where 24 and 1, are the lengths of the two connected crack segments
and )\1 represents the angle between them (Figure2). Substituting the

expressions for e, and d1 in equation (30) and collecting like terms

one obtains

2
U= T-'(%'lezlL [Cl t c, cos 2o + Cq sin2q

(31)
tcy cos 4qa tcg sin4q ]

where ¢, are functions of )xl, 74 and L2 only, and they are
determined completely in terms of the coefficients of %- terms in
the expansions (22) of w(z) and v(z).

The coefficients cm(mz 1,2,...,5) are related to the

terms dlj’ elj (i=1,2,3) in the following way.
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c; = 4Re [dlz-id13-e11]

c, = 4 Re [Zdll- elZ]

Cy = 4 Re [-Zidl1 —e13] % —
Cy = 4 Re [d12+ id13]

cg = 4 Re [d13- idlZ] J

Before proceeding to solve for w(z) and V¥(z), in order to

calculate the coefficients d1 and €y, we will normalize the length

scales. The main crack length will be taken as unity and the non-

dimensionalized branch crack length will be denoted by ‘a' where

2

a = e— =

s
on 1, for ¢,=1
The boundary value problem for the functions ¢(z) and Y(z) is

considered next,
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5, THE PROBLEM OF SOLVING FOR THE STRESS FUNCTIONS
w(z) AND VY(z)

It is convenient to consider the problem of determining the
functions wo(z) and V¥(z) satisfying conditions (19) and (20) by
conformally mapping the region outside the crack boundary L. in
the physical plane (z-plane) into the region exterior to the unit
circle in the £ plane. This will be achieved by the use of the

25
following mapping function as given by Darwin( )-

A ia; M ia, "2
z = wl(§) = -E(g"e ) (E - e ) (32)

For purposes of later discussion, the derivative of the mapping

function is given below

)\1-1 )\2-1
5 iq ig ig ip
W)= Z (6 - Hoo-e D) (e DiE-e 9
. . 33
i ig, (33)
- m(g) (g - € )(1 - € )
iy ia,
E(E-e "ME-e )
The parameters A, 0055 BI’BZ’XI and )\Z are real and
)\1 + )\2 = 2¥ The branches of the functions in (32) are so chosen
that
z=AE+0(l) as |£] -~ (34)

-
See Ref. (18) and Appendix II for details.
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As the point § traverses the unit circle the point z moves alopg
the cra.ck boundary (Figu‘re 8). The points B'(£ = elel), DY E= elc l),
Cyt= el BZ) and O'(§= elaz) on the unit circle | &,I =1 go over the
points B,D,C and O, respectively in the physical plane on the crack
boundary.

Note that the.derivative of ‘the mapping function has simple
zeros at points £= eliB and §= eIB which are images of the two

10 10,

crack tips and has branch points at £ = e and £ = e . The
branch points correspond to the angular corners of the branched
in

crack system. Note also that for the range of values of )\1

which we are interested, 0< >\1< 1, the mapping function is not

(21)

rational, (The functions ¢, ¥ are known for the cases )\l =1
and )\1 = 0, i.e., for the cases when the branched crack system
becomes a straight crack). Details of the dependence of the
parameters, A, Qys Qs Bl and 82 on the non~dimensional

branch crack length 'a' and the angle between them are given in

Appendix IL

Let us use the following notation

]

w; (6) o [w(€)]

(35)

v, (€) Y [w(€)]

Noting that
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dooy () \
do(z) . —dE—  _ @) (€)
dz dw T ow' (§)

dg

the stress free boundary condition (19) is transformed into

0,(6) + “‘fé’ SE + V(8 = 0 on |E] = 1 (36)
W

—~—

The conditions (20) at infinity become

a8
[
—
ure
—
1

T w(f) + o (§)

as |£] > o0 (37)

€
o
—
uvr
—~
1]

T'AE + v (§)

where coo(g) and wo(g) are functions holomorphic outside the unit
circle |§| = 1 including the point at infinity. In the right hand side
of the second of the equations (37) A is used instead of (§) for
convenience in later use. The regular part of y(§)~-that part whichis
bounded as |§ | - o -- can be absorbed into ‘Yo(é). Substituting

the expressions for 0, and ¥y from (37) into (36) and

rearranging one obtains

o (§) + —“"—% o () + Y _(B) = -2Tw(f) -T'AL on |£]=1 (38)
w(

Hence the boundary value problem originally posed in
equations (11) to (14) reduces to finding two functions mo(g) and

\yo(g) which are holomorphic (single valued analytic functions) in the
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region |£| >1 including the point at infinity and satisfying the
boundary condition (38) on the unit circle. For the mapping function

w, using equation (33) we get

1 i,
W W EE-e )(E-e ) (39)
T w 1B 18;

(E-e ) (E-e )

For rational mapping functions closed form solutions for
coo(g) and ‘Yo(é) could be obtained(ZI) since -—(___% can be expressed
[Q)
as a ratio of two polynomials in £ on l&! = 1%, Fourier expansion
of the boundary conditions (38) cannot be made as '(§) vanishes
1By 82
at points £ = e and € =¢e which are images of the crack
tips. Further simple poles for \YO(F,) at those points are admissible.
Unique local expansions for the functions ©(€) and ¥(§) around the
i, ia, ig; ig,
singular points £ = e , E= e , E= e and £ = e could not
be made as the homogeneous problem has non-trivial local expansions
26
around these points as was shown by Williams( )
Due to these difficulties the boundary value problem will be
modified by considering a different '""crack boundary'. The new crack

boundary corresponds to the circle of radius lél = 1+ ¢ in the

mapped plane, (Figure 9), where O<e<<l.

Andersson(lg) due to an error in selecting the branches of y and w'

. W
evaluated the expression

incorrectly. Hence his results are

1
invalid. s
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L.et us denote UE the strain energy change due to the
presence of the crack when the boundary conditions are applied on
the crack itself and by UM that when they are applied on the
modified boundary. Even though the magnitude of (UE - UM)
cannot be rigorously ascertained, it will be shown that for two

singular elastostatic problems related to our problem, it is

only of the order of e¢ These two examples are given in the

following section.
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6. EFFECT OF MODIFYING THE BOUNDARY ON THE STRAIN
ENERGY

In this section we will argue that the modification of the crack
boundary in the manner discussed in section 5 affects the strain
energy change only to order e.

Example 1. Straight Crack

Consider the special case of our general problem, namely
A, = 1. We have a straight crack of length (1 + a). The mapping

function in this case reduces to

2= w(®) = AL+ £) (40)

l+a

where A = 7

Since the mapping function is rational, the solution for wl(g) and

wl(g) satisfying equations (36) and (37) can be found in closed
(21)

form

wl(g) = AITE-(T+T"'"m") —é—]
: (41)
= 4 1 2T , = 4\ ¢
v . (E) = AIT'E+ T'm N LN ') é,;nl)____
1 i T 2 Y

where m = 1 corresponds to the case when the boundary conditions
are applied on the crack and with m =1+ ¢ we get the solution when

they are applied on the modified boundary corresponding to the

=

We have neglected a constant term on the R.H. S., which cor-
responds to a translation of origin, which does not affect the strain
energy change.
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circle |£€] =1+ ¢ inthe mapped plane. From (40) we obtain

as |z| - o (42)

be2o(d)

V4

Using (41), (42), (35), and (30) one obtains

2

m(n+l 1 2 1 2
. T (2-+a+ 7)- (2—+a+ —-2—)c0520 (43)

’

2 2
UM=1U£;21—)}:1— I:(-é—+a+—%—>.(l +e)+ e(l+ a)z]

1 a
-l:—2-+a+ -—2—-] COSZ(L

where Ugp denotes the exact strain energy change obtained for

[g]

+ 0(ed) (43a)

the original problem and UM that calculated by solving the

modified problem.

Comparing with equation {31) we see that the coefficients
ci()\l, a) are affected only to order ¢ and hence the total change in
strain energy is also affected to order ¢, only. Since we will be
comparing quantities of order 'a' as seen from equation (43) we
shall take ¢= a4 in our later calculation when solving the modified

boundary value problem.
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It might be pointed out here that when a= 0, UE = 0 while
Uy = O(e). This fact is of no serious consequence to us as we are
interested only in the values of the strain energy in the neighborhood

of its maximum with respect to )\1.

Now we proceed to the second example.

’

Example 2. Anti-Plane Strain Problem

Consider an infinitely long cylinder with its cross section D

independent of the axial coordinate x,. Let L denote the boundary

3°
of the cross-section D and n the normal to the boundary. Then by

anti-plane shear problem it is meant that the cylinder is loaded by

J

shear tractions oy only on the boundary which acts in the
direction parallel to the axis of the cylinder. Further it will be
assumed that the applied tractions are independent of the axial

coordinate X3. In such a case the in-plane displacements uy and u,

17 %22 and T34 and the shear

stress o, also vanish., The out-of-plane (or warping) displacement

vanish and the three normal stresses g

W o= ug is independent of the axial coordinate X3e
The stress-gtrain relations combined with the strain-~

displacement relations reduce to

e i

13 T F o 44
_ ow

“23 T "%,

and the equilibrium eguations become

2 L
v W(Xl,xz) =0 in D (45)
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while the boundary conditions reduce to

v, = Byn S0k, on L (46)

Let us consider the case when the region D is the one exterior to
the crack boundary L and the loading is at infinity by uniform
shear stresses To 28 shown in Figure 10. Then the boundary

value problem reduces to

vzw = 0 in D (47)
e, =™ =20 on L (48)
n3 on
Limit = cos
r-o ‘13~ T L )

(49)
Limit

o = T sin
- Q0 25 @ el

Sih(27) derived a solution only for the stress intensity factors

at the crack tips (points B and C in Figure 8) but not for those at
the angular corners (points O and D), by making use of the c.omplex
representation of w and mapping the region D into a half-plane.
He, furthermore,did not calculate the energy release rate., The
method of solution adopted in this work, using the mapping of D onto
the region exterior to the unit circle, facilitates the complete solution
of the original and modified problems analogms to those of the in-plane
problems. This method could also be used to obtain an exact

solution when the boundary consists of an arbitrary but finite

number of cracks of unequal lengths originating from a common point.
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We shall re-state the boundary value problem as posed in
equations (47) to (49) in order to make use of the complex
representation of w.

Let w_ be the harmonic conjugate of w and let

2

Condition (48) will be rewritten in terms of w_ as

where z = x1+ ix

ow
c

ds

= 0 on L

where s denotes the coordinate along L. Without loss of generality

this can be written as

and using the Cauchy-Riemann conditions there results

dh . 2% _; 29
dz - ox; ! Ox
"2

(52)

3 (o0,,-10,,)

BU13 23

Hence the boundary value problem as posed in equations (47) to (49)
reduces to finding a function h(z), holomorphic-single valued and
analytic-in the region D excluding the point at infinity. The

boundary condition (48), uéing (51) becomes
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h(z) -h(z) = 0 on L

(53)
while the conditions at infinify (49) reduce to
Limit dh _ o _-i«
|zl dz T T € {54
By use of the mapping function w(z) stated in equation (32), the
region D can be mapped into the region outside the unit circle
in the £-plane. Let hl(g) = h(w(g)). Then conditions (53) and (54)
lead to
h(g) -B(E) = 0 on [E]=1
(55)
Limit (215 . o -io
1€ ]~c0 \"w(E) m
3 3 1 -—
Noting that Irérlmjog (5} = = , the solution to (55) is obtained as
AT . ig
hy(g) = —=2 |e% g4 & 56
16 = — [ £+ S (56)

Having found the solution, the strain energy can be calculated using
a method(zg) similar to the one described for in-plane problems
(see pages 22-25).

ZTrAZ'r2 ’

o) -2ia
E__—-TL—_— Re[l-u)ze ] (57)

1 Z.ial i(a1+or2) Ziaz
where w, =3 [\ (A =De  +2\ Ne (0, -1) e
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The solution to the modified problem, namely the one in
‘which the stress free boundary condition is applied on a smooth
curve corresponding to l&,, = 1 + ¢ instead of on the crack itself,
can be obtained in a similar way by replacing the first of the

conditions in equation (55) by

hl(»;)-‘h;@:o on &l = 1+c¢ (58)

One obtains in this case

ATOO -ig 2 eid
T ——— + {l+¢€ 5
hy(8) = — [e £+ (1+e) T] (59)
and the strain energy change as
2w AZTZOO 2 -2it
UM = — Re [(l+¢) - w,e ] (60)

From equations (57) and (60) it follows that

2T AZTZ

Up = Uy = ——2 [2c+ "] = O(e) as e~o (61)

For purposes of later discussion the expansion of UE in terms of
the branch crack length 'a', obtained by substituting the expansions
for A and wy (given in Appendix II, equation (2.5) and (2.10))

in equation (57), is give‘n below.

2n T
© 3/2 4 o(a?) (62)

Ugp = [c1+c2a t cja
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where

?:'1 = E—i-%——g- = term corresponding to a single
crack of length unity
L1 I 1y
<, T T M 2 sin ¢
> (63

B = Pt A0 -1 - vy - % (0,-1) ] sin2 o
Cq = # = [Eaginy 172 142 sin2a

. =k
. 2 1 2
with P, = )\1 )\2 J

In both the examples considered the modification of the

boundary affects the strain energy change only to the order .

These examples will be taken as supportive evidence of the validity

of the approximation made for the general case. Solution of the

modified boundary value problem is discussed in the following part.
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PART 11
l.  SOLUTION OF THE MODIFIED BOUNDARY VALUE PROBLEM
We now normalize the radius of the circle in the §£-plane,
corresponding to the modified smooth boundary in the physical

plane, to unity by changing the mapping function as follows.

iy, X\ id, N
2= 0(b) = g (ke D) Nigke B %, (k=) (64)

In this repre.sentation, the branched crack will correspond to the
circle [ §' = k (Figure 11). For all our further discussion it will
always be taken that 0< ¢ << 1. We need to determine two
functions cpo(g) and ‘}fo(f;), holomorphic in the region [E,[ > 1
including the point at infinity and satisfying the following boundary

condition

5 + LB g vy e = 2rue - L2
(65)

on ‘&,[ = 1

There are essentially two methods of solution for the above type of

problem as given by Muskhelishvili(zu.
Method I
In this method, which uses the properties of Cauchy integrals,

the problem can be reduced to an integral equation for the boundary

values of the function co:)(g), of the following form
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1
! = S T
o) (n) = £(n) + = <f3 K(n, &) D(E) df (66)
where v is the unit circle in the £-plane and |n |= 1. This equation

can be reduced to a Fredholm integral equation of the second kind.
Once the boundary values of co:) are determined from equation (66),
@O(g) and wo(g) can be determined with the help of Cauchy integrals

and using equation (65).

Method I1

Let

o0
o (8) =D £ &7 6] > 1

m=0

o - (67)
¥ (£) :r;obmg R
PR S I _
J:'( —nZ%_O:ng 6] = 1

(68)

rigy - D2 g T g b" £] = 1

n=-=-Qo

Substituting for o Yo from equations (67) and (68) in (65) and

remembering that on |£] =1, T = -é— we get

)3 ?mém-(ni:w hnéf)(mil mfmé'm'l)

m=0

+§: b £ = f £
m=om B &n

n=-oo

(69)

Equating the coefficients of equal positive powers of £ on both sides

of the equation (69) one obtains
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o0

T - = = 0
fn E mhn+m+1 fm g, (n=1,2, ) (70)
m=1

We shall write down only the equation corresponding to the negative
power ‘é,-l as the terms bﬁ for n>1 do not contribute to the energy
integral, since we need only the coefficient of the —i— term in V¥(z)

as was shown in pages 2225 and also ’ =-é—+ OX| 1) as |z| = o00.
g £ kz _Z-Z

(s8]
b, -E mh_f =g_; (71)
m=1

The multiplication of the two series in equation (69) is justified
because both series are absolutely convergent. Once the coefficients
fn are determined from equations (70}, b1 can be calculated
from (71).

The writer first attempted to solve the integral equations
(66) but difficulties were encountered. The kernel K(n, £) is
complicated and the iteration methods seemed to lead nowhere as
even the first iterate could not be obtained analytically. As for

approximating the kernel K(n,§) by a P-G kernel(zg)

N
of the form .R(n,§)=z Fn(n) Gn(g), which is one way to solve the
n=o

integral equations approximately, appropriate functions Fn and
Gn could not be found other than the polynomials which lead to
equations of the form (70).

The numerical solution of the integral equation (66) was

attempted. In the method which the author tried, the integration on
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the right hand side was replaced by summation using quadrature
rules (four point and six point Simpson's rules were tried) using
discreet values of the kernel K and the function cgo‘(é). The
intervals at which these discreet values were used were non-
uniform, smallerin the region where the variation of the kernel
was great and larger where the variation was smooth. Using this
method the values of @O'(z) were calculated at discreet points on
the unit circle. Before using this method for the general case, the
author used the method for the special case for which the exact
solution is known; namely, the straight crack with its modified
boundary being an ellipse. The error in the energy expression due
to this approximate method was about 104, Then the author felt
this method was not suitable for numerical calculations, inainly
because the kernel is not well-behaved.
Due to the above difficulties encountered in solving the
integral equation (66), the author decided to use the second method.
In this method the equations (70) for the coefficients are
approximately solved by assuming fn = 0 for n>N. Then the
relations (70) reduce to the following finite set of equations in fn.

N
T -n;mhm_mlfm: g, (n=1,2, ...,N) (70a)

Liet us denote the solution of this system of equations for fn as
fI:; to distinguish it from the solution of the system (70). The

corresponding relation for b1 reduces to the following by

assuming fm: 0 for m>N in equation (71).
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N

N N

by = g * 2:1m h £ (71a)
m=

Using the following vector notation,

N _ N N N,T
7 = (fl,fz,...,fN)
(72)
N _ T
g = (gyrgpr --o0 By
- . N
and defining the square matrix H by
HY = [H,.]= [jh 1 (i,j=1,2,...,N) (73)
ij itj+l ’ T ’
equation (70a) can be written in the matrix form as given below
N g N e gN (70b)
Taking the conjugate we obtain,
Y o Y N = g (70¢)
Substituting for fN from (70b) in (70c) and using the notation
TN = IN - HN HN
(74)
rN = g + H gN
where IN is the NX N identity matrix there results,
N N - N (70d)

which needs to be solved for fN for given rN. Once the solution for



46 -

N

f is known bN

1
From the left hand side of the second of the equations (68)

can be calculated using the relation (71a).

we see that the terms 8, C2n be represented as

Em ~ ) Eml * T Em2 (m=0,+1,+2.....) (75)
where
1 -(m+1
Eml = _Zn_if—zu‘(é) e (m D ag (yv: 1el=1)
Y
76
A Lif = 1 o
_ k 1 m =
Emz ~
0 if m# 1

Using the notation

T

N :
g. = (gli’ gZi’ g3i, ceey E i) (i=1,2) (77)

N

and making use of the representation (75) for g;» one obtains

g = T ¢ gl (78)

Substituting for gN from (78) in the second of equations (74) we get

rN=Fr N

=gl |
+ T r, + T"r3 (79a)

1

where
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N N N

rl = gl + H gl

N _ N

r, = g, (79b)
N _ = N

Ty = Hy 83

Liet us denote by f(?; (i, =1,2,3) the solution of (70d) when rI\iI is

used on the right hand side. Then there results

N N N N

s 1 f
£ = I‘f(l) ¥ T f(z) + T f(3) (80)

Using the same notation for f(i\; as that of gN in equation (77},
and remembering the notation for fN as given in equation (72), one

obtains

+ T f (80a)

12 13

From equations (71la) and (80) we get

N

N _ N ,— _N N

by = g, + 2’1 mh_[Tf  +T'f , +T'f ] (71b)
mz=

Also from (75) and (76) there results,
g_l 2 T g—ll (758.)

Combining {(75a) and (71b) and using the notation
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m=1
a N
blZ = m hm frnZ
m=1l
N
_ N
bl3 - Z m hm f1fn3
m=1
we obtain
b = T b+ T b, + T' b (80Db)
1 STl 12 13
N N . .
Once the values of f 1 and b 1 which are the approximate values of

. 1 :
£y and bl’ the coefficients of T terms of coo(g)- ‘i’o(g) in the

expansions (67) are known then d1 and ey which are the coefficients
of > terms of o(z) and ¥(z) in the expansions (22) can be

calculated as follows.

From the definitions {35) and (37), we get

o(z) = o (§) = Twlé) + o ()

Y(z)

¥, (6) = %éé + ¥ (€)

Using the expansions for coo(é) and ‘}'o(ﬁ) from (67) one obtains

f
w(z) = Tz + fO + —é' 4 O<‘§z‘> as Ig[_.m
_T'A s By 1
y(z) = - £ + o +"?7 + O _EZ

Substituing the expressions for £ and -é- from equations (2.12) and

(2.13) in Appendix 11, page 82, there results



= A 1 1
w(z) = Tz + fo + fl T = 4 O<—2->

_I'A [k W Al 1
‘P(Z)‘T‘<KZ "k())l"Ak;-— + bo+b1"‘E‘"—Z'-+O—2-
Comparing these expressions with the expansions (22), one gets the fol-

lowing expressions for d1 and e in terms of f1 and bl'

(81la)
-T'A w5 + —Ak—-b

o
1

Substitution of the approximate values of fl and b1 from equations

(80a) and (80b) in the above expressions results in

= A =T
A= T ML+ T fp + T' 5]
= (81Db)
= =T
e, F[Fbu*F by, + T (b13-Aku)2):|
Use of the definitions (20a) for T° and T' yields
d; = g [d“ + dy, cos2a+d;, sin2a ]
(81c)
e q [e11 t e}, cos2q+ d; 5 sin2a ]

where
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f

2>

11 11

A
dy, = -3 (G, + £13)

A
dyy = =3pify, - f)5)

> (81d)

B g
€11 T Tk "1

| >

€12 = ~3g (Pt b3 - Ak wy)
g = ®imad fhes = bas # Ak wsl
13 2k 12 13 Wz J

Recalling the expression (31) for the strain energy change due to the
branched crack system and subtracting the energy change due to the
main crack (which corresponds to c1 = 0,5, c, = 0.5 with the rest
of the coefficients vanishing in equation (31)) we get the required
expression for the strain energy change when the branch crack

extends from a length of zero to a length of 'a', as

2
+1 -
U(\,a)= ﬂ(;«zp )9 [C1(A\pa) + Cy(\pa) cos20 + G (N, a) sin2a

(82)
+ C4()\1,a) cos 40 + CS()\I,a) sin4a ]
where
C = =
1 4 0.5
C2 = c, + 0.5 (82a)
C = c_ (m=3,4,5)



.
with cm(mzl,Z,...,S) related to the dij and eij (3=1,2,3) by

the expressions (31 a) derived earlier in page 27.
The method of obtaining the coefficients Ci’ and then
determining the failure load and branching angle from them are

discussed in the following section.
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2. METHOD OF OBTAINING THE CRACK BRANCHING ANGLE
AND THE CRITICAL L.OAD:

For discreet values of the crack branching angle )\ and the

branch crack length 'a', the matrix equations (70d) were solved

using Gaussian elimination with maximal pivoting 30)- To check
for possible numerical errors the solutions for fljl (h=1,2,...,N)
were substituted back in the left hand side in equations (70a) and the
results compared with the right hand side. They differed only in the

fawrth significant place and this was considered sufficiently accurate.

The coefficient bl\i, is then calculated using equation (71a). Having

calculated flf and bl\i, the coefficients d1 and el are obtained

using equation (8la). The terms C.1 appearing in the expression (82)

for the strain energy change are calculated using equations (80a),

(80b), (81d), (82a) and (31a). For each value of 'a' the value of

N was doubled until the values of the coefficients Ci ()‘I’a) from two

successive calculations differed by less than 2 per cent. The range

of values of 'a' for which the numerical results are obtained is

from 0.1 to 0.005. The corresponding range of N is from 20

to 100. The values of )\1 are increased from 0.5to 1.0 in steps

of 0.05 (nine degrees). Once having calculated the coefficients

C_L(Xl,a) for discreet values of ')\'1 and 'a', the direction of crack

extension and the critical value of the applied stress for given

direction of loading are obtained according to the following procedure.
For each given value of the loading angle we need to calculate

the energy release rate G(a,kl)"—' Hroft 81 and find the maximum of

a-—o 0Ja
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G with respect to )\1. Let A*{(a) be the value of )\l at which G
attains the maximum. Then \*(qa) defines the crack branching
angle and the energy release rate G(a,\*) determines the
critical value of the applied stress qcr(a) through equation (9),
page 15,

Since 'a' is small compared to unity and by definition

U :
U } =0 the author replaced —3—-:1—- by g— in the initial calculations.
a=0 ‘

Then for each value of 'a' and 'q' the maximum of g

with respect
to >\l was found using a parabolic fit for the three values of -E%.

near the maximum. Let us denote by a(a, a) the maximum value of
g- and by 3\/*(@ ,a) the value of )\1 at which the maximum is attained.
Using a(a,a) as the energy release rate G in equation (9) the
critical loading stress Efcr(a,a) was calculated. Then in the limit

a=0, q (o0 ,a) and X*(a,a) should tend to the values qC (0) and
Ir

cr(
N*¥{a) respectively. When the value of 'a' was decreased from 0.1,
the values of chr and \* converged in the range for which

%> 0.67. In the range A\* < 0.67, the author was not able to obtain
the limit values this way, as the successive values were still
differing by about 34 for a;r and about 2° for the crack
branching angle, when a = 0.005. The main reason for the slow
convergence in this range ()\1<O. 67) may be due to the presence of
the terms of order aﬂj/2 in the expansion for U for small values
of 'a', similar to those in equation (62) for the anti-plane shear
problem solved in pages 35-40. In the expression (62) for U,

3/2

the coefficient of the a term vanishes when >\|= 1 and is of the
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same order as that of the 'a' term when )\1:0. 5. Because of this term,
replacing g—% by —[a-I- could cause an error of the order of 64 when
a= 0,005, Since the author could not reduce the value of 'a' below

0.005 due to space limitations on the computer, he decided to obtain

the limit values as follows.
oU (Xl,a)

In order to calculate limit 5T we need to know

aC.(\,,2) a=0
limit 55 (i=1,2,..,5). These limits are obtained by making
a-0

the following fit for the values of ci(x, a), calculated for discreet

but small values of 'a'.,

2

C,(\pa) =C, (\)a+ C,0\) 372 Ci3()\1)a2 (83)

The above fit is based on the knowledge of the behavior of the
corresponding coefficients (equation (62)) for the anti-plane
shear problem. The fit was made for the values of C.l()\l, a)
calculated for every three consecutive values of 'a', and the results
so obtained for cil( )\1), which govern the limits, differed less than
24. Recalling the expression (82) for U, and since

Glo ,)\1) = lim %%, we get the following expression for the energy

a-0
release rate at the instant of incipient crack extension

Glas Xy = I =[G () + Gy (V) cos 20 + Gy () sin2a
(84)

+ C41(7\1)COS 4q + CSI()\I) sin 4q ]
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Having calculated the energy release rate, the crack
branching angle \*(a) was determined by finding the value of )\1
for which G attains the maximum for given «, using a three
point parabolic fit for the three values of G near the maximum.
A four point least square fit was also used and the results differed
less than one per cent. Using the maximum value of G in the equation
(9), the critical value of the applied stress qcr(q) was calculated.
At this point it becomes necessary to define the stress
intensity factors in order to compare the results with those obtained
by Erdogan and Sih( 1%} using a different set of postulates.
Referring to Figure 12, the stress field in the vicinity of the crack
tip can be represented in the following form when the loading is

symmetrical to the crack

K
Ty & b fin(e) + O(1) as =0 (85)

ij J2nr

and when it is asymmetrical

K
oee 8 ——t T 40 4O B 2D (86)
ij ij

2rr

(i= 1, 2; j=1,2)

KI is called the stress intensity factor for the opening mode and KII

that for the sliding mode. fin(G) and f:j (8) are functions independent
of loading and geometry of the solid and are given in equations (78) and

(80), page 216 of reference (28), K. and KII are functions of loading and

I
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geometry only, Once the values of d., are known, the values of the
stress intensity factors KI and KII at the instant of incipient crack
extension are calculated using the following relations connecting
q to the stress intensity factors derived by Sih, Paris and

Erdogan(31).

£ . 2
K. = (%)% qt7 sin o
(87)

K (sz-)* qL% sin g cos g

II
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3. ANALYTICAL ERROR ESTIMATES
Some attempts made to estimate the error due to the truncation
of the system (70) are described below. Let us rewrite the system of

equations (70) in the following form

) N
f1'1 - le mhn+m+lfm = gn
m=

(e 0]
* (rnz— Nr; hn+ mt1 fm) (88)

= gn+ (6 gn) (n=1,...,N)

where égn represents the summed terms on the right hand side.
Suppose the values of fm for m>N are known. Then the exact
values of fn for n=1,...,N can be calculated by solving the
finite system (88). The effect of truncation in system (70) is
equivalent to neglecting 6 g, in the system (88), The error made
due to this approximation can be estimated as follows,

Liet us use the following notation,
X=(f1,ﬁfz) '\/.3—f3’ ® e e s 0 g /\/_N-fN’ fl,ﬁfz, LU SR )

) ‘\/-N—fN)T

e - . f— - T
Y=(g: Zg,----, Ngsg,,,\/Zg,...., Ng)
1 2 n® °1 2 N

i.e., x and y are column vectors with 2N elements as shown.

Define the 2N x 2N matrix ¢ as follows
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©)

A O

where A is an N x N symmetric matrix with elements
Age® N Bry oy

Alsolet B = [I-C where I isthe 2N x 2N identity matrix and
let z=y+ 8.

In the above representation /n fn and ./n En are chosen
as independent variables in order to make the matrix A symmetric
and hence the matrices C and B Hermitian. This choice simplified
the error analysis as properties of Hermitian matrices are better
known( 3 ). In this representation equations (88) and their

conjugates can be written in the following form

Bx = =z (89)

The coefficients hn can be calculated only by numerical

integration approximately. In the numerical calculations they are

nt+l g

replaced by k where h_ can be calculated exactly. An
y # Yy

Rl Hn) is given in equation (3. 4),

estimate of the magnitude of (hn-—k
Appendix ITII. Let us denote the error in the matrix B, due to

this approximation by §B. Then the exact values of x satisfy (89)

while the calculated values (x + § x) satisfy

(B+ 8§B)(x+ 86x) = z+ 6z (90)
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where 6§z -5y,

Assume B to be non-singular and

1

PeBI 1B N <1

where 2!l denotes the Euclidean norm

né zp
Izl

-1
BB

l—NB_hlnéBH

o x I
nx

(30)

(91)

Then we get(30)

8B

Ao DI 92)
B {

On the basis of the behavior of the displacements near the

corners and crack tips as shown by Williams

that for n> N

d
I 05
n

£, 1<

where d is a constant independent of e.

that
1
‘hn‘ < {Ml()\l)w a e log ("6") +
1 ntl
MZ()\I) ————Z—}k
(n-2)
where
M, (\,) = —2— p (1-},)
PN Ty T
2 sin )\111'
Mgy ) = =
and k: 1

(26)

, it will be assumed

(93)

It is shown in Appendix III

(94)
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Using (93) and (94), and the definition of 6gn (equation (88)) we get

MIJ; ¢ log (—é—)

(0 o]
fﬁgnlf‘iz : 0.5
m

m =N+1

MZ m+n+l
k

mO_' 5(m+n--1)

< d M, (rac) 02 1og ( %—)

M
+ 2 kN+n

NO' 3 (N+n-1)

Noting that bz = NG bg s it follows that

M
o2l < d[Ml<%ae)°'5 log (1) (N+1) + 1@7%]“'6)1\1

Since the problem is linear (see equation (88)) the coefficients g,

can be normalized such that, ”z” = 1. Hence one obtains
M
I 5z | w 0.5 1 2 N
—”—z-n—' L d Ml(-z'a e) log (-E) (N+1) + W (1-¢)
(95)
From the magnitude estimates of hn given in Appendix I1I, and
Greshgorin's theorem(30), it follows that
Il <am,+ M,y (96)
6Bl < M, (97)
and IBll <1+2M,+ M (98)

2 3
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My 2 - 1
where M3= T_.T) N ,\/a 610g(—€—-).

(32)

Also from the following theorem
v el < 1, (99)

then

(1-0) "M « ———
” Is Il

it follows that

187" < L (100)
1- [2M, + M, ]

Using the expressions (97), (98), and (100) in (92) one obtains that

Sz
Héxll (1+2M2+M3) " + M3
“x" % ) : (101)
- (M2+M3)

Noting that ’sin)\lﬂ' f < (I—RI), using the inequality (95) for
6|
Il

there results,

and substituting the expressions for Ml’ M2. and M3 in (101},

) 3
[d {1+ (I-A)[4+4-2 N%/a ¢ log (-‘E—)]}-
0.5 i 2 N
7.9 log (=) (N+1) + —— }(1-
oy (7.9 (ae)™*” log () (N+1) + 5 J(1-e)™ |
|
I x|l . 4.ZN2A/E €10g(1;):|(1-)\1) (102)
i 1-(1-3)) {4+ 8.2 N“ VT elog(‘lg)} )
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In order to satisfy condition (99) the range of A, has to be
restricted to >\1> 0.75., For this range it is possible to select N
and ¢ for given '\ 1' and 'a' to give the desired accuracy in the
value of the coefficients fn. However, since the error bounds
are in general not the least upper-bounds, the value of N required
will be in general large. In the numerical calculations made, the
value of N was doubled until two successive values of the co~

efficients C. in the energy expression (82) differed by less than 29,



-63-

4. "MAXIMUM NORMAL STRESS!" THEORY AND THE "ENERGY"
THEORY

For purposes of comparison the results derived by Erdogan

and Sih(1 4 are given below. Referring to Figure 133, the stress o

6
in the vicinity of the crack tip can be expanded as follows. (i)
Ty = L0 + O(1l) as r-0
A 2
(103)

’ . ; . 2 ; ’

where f{8)= Tzr- sin %— [mnzg sin %— + %— sin g cos g sin B
Erdogan and Sih postulate to find the direction of crack

extension ee using a '""maximum normal stress' criterion; namely,

8;(86) =0, at 8 = ee (maximum of f) (104)

and the critical value of the stress q wusing the postulate that

fe,) = "KI (105)

where R‘ is the critical value of the stress intensity factor for the

1
opening mode when the applied loads are symmetrical to the crack.
This theory will here be referred to as the "maximum normal stress"
theory. In this formulation one needs to know only the solution
of the elasto-static boundary value problem with a straight
crack.

The change in strain energy can be rewritten in the

following form. Referring to Figure (13a) denote by superscript "I"

the stresses and displacements of problem "I'" where we have a
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straight crack and by "II'" that of problem "II'" (Figure 13b) in
which there is also a branch crack. Then an application of Betti's
(19)

reciprocity theorem gives the expression for the strain energy

change as

Us,a) =3 [ [op(ulg) + 1oo(ulD) ]| ar (106)
(o]

8= 9%

where (ulé) and (uIE) denote the difference in the displacement values

across the crack, and for the energy release rate G(8) we get

Limit 09U (6,a)

G(8)=a_’0 da

(107)

Then according to the energy criterion given in pages (14-16) of
this work, the direction of crack extension is determined by the
maximum of G and the critical value of the applied load by this
maximum energy release rate attaining a critical value.

In the following part the results obtained in this work are

presented and the conclusions are given.
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PART 111
RESULTS AND CONCLUSIONS
Before presenting the results let us summarize the
assumptions made.
1. Linearly elastic two-dimensional theory assumed.
2. Existence and uniqueness of the branched crack
problem is assumed.
3. Strain energy change in the solid with branched crack
is assumed to be nearly equal to that obtained using a
modified crack boundary.
Due to assumption (1), the application of the results are to be
restricted to brittle materials only. For materials with plastic flow
at the tips or for materials with other forms of energy dissipation,
all the relevant energies should be included in the calculations of the
total potential energy in equation (2). As regards the application of
the results to the plane stress case namely a plate with a crack
which is a more easily realized model in experiments than plane
strain conditions, the effect of three-dimensionality of the stress
field when the branch crack is small compared to the thickness of
the plate may affect the results. Quantitative estimates of error
due to the three-dimensionality of the stress field are not yet
published even for the straight crack.
Proof of existence and uniqueness for singular problems are
very difficult. Only for relatively very few cases such proofs are
(33)

known. For instance Magnaradze gives a proof of uniqueness

and existence for the function ®(z) for regions with boundaries
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having a finite number of points at which the tangent turns less than =
radians as one moves with the boundary. In our case at the crack tips
the tangents do turn by m radians and hence we are unable to use
those proofs.

Regarding the third assumption even though it cannot be
rigorously proved that the change in strain energy due to the
modification is small, we have shown that the energies differ to the
order of ¢ for two elasto-static singular problems for which the
exact solutions can be obtained. Since ¢ is taken to equal to a4
and we are comparing quantities of order 'a' to determine the crack
branching angle and the critical load, the author feels that this

approximation will not affect the end results seriously.

RESULTS

The results obtained in this work are presented in the form of
three figures., The crack branching angle for various values of the
loading angle are plotted in Figure 14. For comparison purposes
those obtained by Erdogan and Sih(l4) using the "maximum normal
stress theory'' are also plotted. That portion of the results using
the extrapolation {it as discussed earlier are shown in dashed lines.
From the results it is clear that both the theories predict very close
results {(maximum difference was about 40).

The values of stress intensity factors prevailing at the crack
tips are plotted in Figure 15. They are normalized so that KI = 1
when g = /2. In this figure also those results obtained in

reference (14) using the maximum normal stress theory are plotted for
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comparison purposes. As before the results predicted by the two
theories differ only about two per cent. It might be pointed out here
that the experimental results reported in reference (14) using plexi-
glass plates were generally in the area above the curves and only at
both ends (i.e., near the points KI = 0 and KII = 0) of the curves
some experimental points were near the theoretical results.

In Figure (16) we have plotted the critical value of the loading
stress 9., versus g, the angle of loading. The values of ey
are normalized to unity for q =mw/2,

The following explanation may give an indication as to the
reasons for the closeness of the results predicted by the two theories.

The stresses in the vicinity of the crack tips can be expanded

as follows. Referring to Figure (13a) for notation

(1) fl(e,G)
Ty (r,8) = ——— 4+ O(l) as 1r-0
2wt
(108)
£,(8,0)
T(l) (r, ) = 2 + O(1) as r-0

= A 2wy

In the maximum normal stress theory the branching angle ee is
determined by the maximum of fl( 8,0) for given value of a. At
this value of 6, fz(ee, o) = 0. Also f1 and fZ can be expanded

in Taylor's series as follows in the vicinity of 6 = Ge
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£(8,0) = £,,(0_,a) + £;,(0_,0) (8-8,) +O(6-8)°
(109)
(6,00= 0+ £,(8_,a)(8-8,)+0(8-0)°

If one now assumes (ulé) and (uiI) have the same order of magnitude
in the neighborhood of 6=8 o’ then we see from the equation (106) that
the dominant term for the strain energy change comes from the flO
term and hence the strain energy rate may also attain the maximum

in the neighborhood of ee' This is probably the reason why the two

theories predict results which differ by only a few per cent.

CONCLUSION

The usefulness of any theory is “?ased on its ability to predict
results which can be confirmed by experiments. Unfortunately the
author was not yet able to get experimental results. We
were able to realize only the difficulties involved in
performing the experiments at this stage. Since both the '"normal"
stress'' theory and the results obtained in this thesis using the
energy postulates predict close results, the author feels that it is
necessary to obtain experimental results before proceeding to
modify the theories.

If experimental confirmation of the theoretical results has
been established, the stress intensity factor curve can be used as a
failure envelope similar to yield surfaces. If one can determine the
stress intensity factors at the crack tips when the loading is general,

either analytically or experimentally, for example as indicated by
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Irwin(4), and if the point falls below the curve in Figure 15, then
one can expect that the crack will not extend. With use of suitable
safety factors, the curve can be used to predict safe loads for given
crack sizes or for given loading conditions to estimate maximum
allowable crack lengths.

As indicated in the introduction, practically no work has
been done to predict fracture strength when the loading is general.
The work contained in this thesis provides an estimate in such a
case. The solution method in this work can also be extended for
the cases when there is an arbitrary stress distribution prescribed
on the crack faces and for any given uniform stress distribution at
infinity.

Further work along the lines of investigation by McClintock

(9)

and Irwin for the symmetrical loading will be necessary to
incorporate the effect of yielding on the value of the fracture load,
when the loading is general. A three-dimensional solution of the
straight crack problem, which is not yet available in the literature,
will be helpful in understanding the effect of the three-dimensionality
of the stress field on the fracture behavior. It may also help to
explain the appearance of different fracture surfaces, which

seem to depend on the thickness of the specimen and the length of

the crack as mentioned in the introduction.
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APPENDIX I

AN ATTEMPT AT USING THE MELLIN TRANSFORM METHOD FOR
SOLVING THE BOUNDARY VALUE PROBLEM

Consider the boundary value problem of a plate with a
branched crack subjected to uniform tension at infinity. The
solution to this problem can be obtained by superposition of the
solutions of the following two problems,

1. A plate without any crack subjected to the uniform
tension at infinity.

2. A plate with the branched crack with given constant
normal and shear stresses on the crack faces and vanishing stresses
at infinity.

The solution to the first problem can be written down easily,
A solution method for the second problem will now be outlined.
Using the formulation in terms of Airy stress function and polar

coordinates, (see Figure 6),

Field Equations:

v4®(r,e) = 0 in the region D (L. 1)

Boundary Conditions:
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2
0 %
o = = k - \\
8 8r2 1 on 6=0
T - 9 ,1 9%, _ O<r<t
r0=- 37 (7 3g) = k2 1
824) k (1.2)
ve - I k3
Br on e: )\1‘“1
_ __Q_ 1 0%, _
Teg = "B 'TF BEI T kg | U€E<SLy
g
where ki (i= 1,2,3,4) are constants.
For field conditions:
' _ 1
U'e: Tr: Tre— O(:Z-) as r - (13)

The problem can be re-formulated by considering the region R as

the union of two sectors SI and SII where

SI {0 <r < oo, 0<o9 <)\1n‘}

SII

1]

{0 <r < oo, )\ln'<e<2w]
Let

“9le=0 = &

Trole=0 = Ep(P)

“olo=rp > 8307

Trolg=xm B4l

foo)
-E;—.l(s) = J gi(r) rs-'1 dr = Mellin Transform of gi(r)
o)
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The variable s is complex and its real part is so chosen that the
transforms exist. Then the stresses and displacements in the
sectors SI and SII can be found in terms of contour integrals of
the functions -;g-i(s) (see Ref. 20). We have the following

conditions for the determination of the four functions g;(s).

o = o = 'k \
91‘9: 0 911‘9: 2m :
0<r<(,1

T =T = k

™0 0= 0 rerrlg:zn .

b

o = g = k

9 611 3 6= N7, O<r<it,

= T = k
reI re):I 4 D,
u = u A
1]r=0 11l g = 20
1 <r<o
u = u
O lo=0 9H|G=Zw

u = u
Ty 11

g = xlﬂ,{,2< r< 0o

Yo11

[en}
—
"

J

These conditions lead to four sets of coupled dual integral equations

of the following form

. 4)

>‘ (1. 5)
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c+i oo W
1 — -8
_Z,T_T_i gt(s) Tr ds = kt 0« I'<I't
c-ioo
c+ioo4 & (1.6)
l - -8 - 0
m[(Zth(s,)\) gj(s)>r ds e
c-iooJ”1
(r1=r2= 13 Ty = Ty = I,Z) D

The equation (1. 6) can be reduced to four coupled integral equations

of the following form, for four unknown functions fi

'
4
f.(t) = g.(t) + ;K..(t,-r) f.(T)sdT (1.7)
t i J;/ K J O<t<ri
o

where fi(t) are related to the displacement discontinuity along the

crack faces in the following way (for example the radial disp. u)

g

£(t) dt
u_ (r,2w) -u_ (r, 0) =) ——— (0<r<11)
I 1 " A

The method of reduction is similar to the one given by
Srivastav(34)- The reduction to the integral equations (1.7) from
(1.6) is very formal (during this reduction several interchanges of
integrations and integration and differentiation are involved) and

also the kernels Kii become singular like Lt when one approaches

the origin in the (t, 7) plane along the diagonal t = 7,
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APPENDIX 11

THE MAPPING FUNCTION

Consider the mapping function

i, M\ icx,z )\2

z=w(t) = AlE-e ) T(g-e % (2. 1)

where A, ays Oy )\1 and )\2 are real constants. This function maps
the region outside the unit circle in the £-plane into the region out-
side the two radial lines OB and OC in the z-plane (Figure 8).

Let OB be along the x-axis and the OC make an angle )\117 with
the x-axis. Let the.line OB be of .1ength 1,1 and OC of 12 and
let the points &1 = e1 g and gz = e182 correspond to the points B
and C, respectively. Then the parameters A, CERNCPY Bl’ 82, and )\2

are determined in terms of £, 1’ !'2’ and )\1 by the following

relations (see Reference ]8)

)\1 + )\2 = & (2. 2)
)\1(11 -+ )\ZQZ = 2 W
B, = 01 BI"GZ
>\1 cot——T—- + )\Zcot ——— 0
B>~ O By~ 0
)\1 cot—z-z—-l- + )\Z cot 22 : = 0
- (2.3)
A N
Gl' B]. 1 02‘ Bl 2
4A sin ———r sin > =L1
X X
G.l" 82 1 02' Bz 2
4A | sin — sin —5—— = {2 J
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Also

iBl iBz
w'(g) = g(g_ = (.U(g) (gl;f )(gl';lez 2 (2.4)

When L, <<41,, equations (2.3) can be solved in series form for A,
Ay Ay Bl and B> in terms of the small parameters a = {,2/(, 1

These expressions are given as

1
A== [L+p A\, a+0@9)]
1
o, = -)\sza"?—' - )\Zp3a3/2 +0 (az)
i
ap= TN pat + 002 40 (Y % (2. 5)
B=Zv+(>\->\)'a3/2+o 2
1 17 72" (2]
N _
_ _ % 3/2
Bp=m+ (A =X)pa® + (A} -1, pyp) 2 /
+O(a2) J
where
Z _ 1 1
P - N A
1 2
; 2.6
- Ll ()\Z + )\2 6 N\ } | )
P, 6 z =& dghg
3
?_pl
Py T T MAz J
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Far field expansions:

From (2.1) it can be shown that

U‘l

w
z= AE (l+—-g-— + —é—) +O(—Tgl—-3-)as |§|—-oo

where
10 ior
1 2
wy = - ()\Ie + )\2 )
2ia ila, + a-)
_ 1 1 1 2
wy = 3 Xl()xl-l) e + 2)\1)\2 e

2ia,
A1) e

Also from equation (2.7), we get

1

z

1

g:zz-wl-AmZ +O(—zlz—) as |z| -

Furthermore, it can be shown using (2. 5) and (2. 8), that

w2=l+ic a3/2 i O‘{(az) as a-0

where

p3)\ \

e= 2Lt 1) - ()’
2
-anE (n, -1) ]

For the modified mapping function
; A . A
A iy 1 o, 2
wg)= ¢ (E-ke 7) (6 -ke )

(2.7)

(2. 8)

(2.9)

(2.11)



80

one obtains

k W 1 ‘
== - kuo; - Ak — + Of(—) as [z|-o (2.12)

V4

and

F= ds + O(—5) as |z2]-w (2.13)
Z



~-81-~
APPENDIX III

ESTIMATE OF THE MAGNITUDE OF THE COEFFICIENTS hn
From equation (68) we have,

io. iaz

1
- () £ (E-k ) (E-k ) =Eit 1 )
b= [ OwE iesl eie2 £ af
L (-ke ) (E-ke ©)
vi |El=1)
—1(1 N -ict 5 N
_ “ é_g(é—-ke ) 1(%—-ke 2) Zg g—(n+1) ag
T 2w i, Ny=1 i, A, -1 ip i
VoFeke D ke 9% (toke Digke 9

(3.1)

The integrand is analytic in region k< || <—11<- . Letting §= E and

deforming the contour of the integration to ln I = 1, one obtains
- ia, io,
o@Dy Lop To nlnce dm-e G
n n 2w - W, 5 18 2 185
¥ (n-k"e ") (n-k"e )

ial )\1—1 igﬂz)\z-l

-e -Q "n+1
e e v AU R
2 Y1 M 2 %22
(m-k"e 7) (n-k'e )
(3. 2)
T ia iGZ
~ - - -(n+1
where h = _2}__ J‘ o n(n e. ) (n-e ) n (nt1) dn (3.3)
n Tl u)o 2 151 2 182
Y (n-k"e )n-k e )
iQ X ig, A
2.2
and wg = 2 (n-e Ly e 9
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The coefficients gn can be calculated exactly whereas hn
could be obtained only approximately by numerical integration.

It
can be shown from equation (3. 2) that

|h (1) -h | <
n n s

2-p(i-h) (/a~ elog (=)} + O (eJ3) (3.4

where P, is a function of )\1 given in equation (2. 6), Appendix II.
From equation (3. 3) we get

-1 -
— ia ia i iR

2 2 1 2 2
Yo . (ne ) (n-e 7). (1_L‘L_) (l-k =
& n n

~ n
e )y -3 H o

1

w

By Fourier expansion of the function

5: iaz
5) -e -e
= (n )Y(]Tl ) o Inlzl
(o}
and expanding the rest of the terms in series it can be shown that
hn = Fl S1 + F2 S2 (n>2) (3.5)
where
848, )
-Zi)\lﬂ‘ . . —i——'—z—--
F, = .l_:.e______ elaz. 1Q1 L
1~ 2mi € B. - B L
2 sin 1 =
2
>_ (3. 6)
5x Bt B
TetMT i0 ig =
_Ji-e 2y 1] e . :
Fy = {———m e e —_—
2 27i B,-B
2 sin 1 2
2 J
@ ( ; -miOLZ -mia1
_ m-n) e +e
S, =Dk
m=n
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and

-miuz -mic,l

fo ) i(m-ntl)B
_ 2(m-n) e -e 2
SZ = E k = e
m=n

L]

i(m-ntl) 81
m({m -1) ;

Consider the series
s - i -mia2+ -mior.1 ei(m--n+l)82 i i(m-n+l)81
3 = e e e
m=n
Its partial sums

N -mia -mia i(m-nt+l1)B i(m-nt+1)
N T Z(e 2 e 1>(e % e )
n

m=

are bounded by

£ = 1 + 1 4 l- n 1 y
. Rpmap L Bpmogy Byt 9y By -0y
sin———— Bl Rt | R R sin ———
(3.7)
. . (35)
Hence using Abel's lemma y» we get
f
}sll < (3.8)
n -1
Also one obtains from (3. 6) that
- 4
lsz‘ = 2
m=n m{m ~1)
2
< > (3.9)
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From (3. 6) it can be shown that

sin le
lFl‘ 2 5o pZA/ a t+ Of(a)

sin )\11r (2= 18}
!FZI = 2T

Using the expression for aqyr0p0 By and B> from Appendix I1I, in

equation (3, 7} one obtains

2 1
[ e
¥y

€] < + _xl“] + O(1) as a-0 (3.11)
2

Va
5

From equation (3. 5) and equations (3.6) to (3.11) it follows that

~ Zsin A, m

1
h <
| n‘ - ™ (n-Z)z

(n>2) (3.12)

From (3.4) and (3.12) we get that

™

2sin N,
8 1 1 1 nt+l
|h |<[ pfl=N) v/a e log(—) + k
SR VAR 24 h € (n-2)°

(3.13)
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