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ABSTRACT
A numerical integration of the Navier-Stokes
equations is given for the steady, symmetric flow around
a circular cylinder. The problem is formulated in terms of
a streamfunction and the vorticity. The method used is the
semi-analytical one of series truncation, in which the
streamfunction and the vorticity are expanded in a finite
Fourier sine series with argument ﬁ), the polar angle.
Substitution of the truncated series into thé Navier-
Stokes equations yields a system of non linear, coupled,
ordinary differential equations for the Fourier coefficients
which is subjected to boundary conditions on the cylinder
and at infinity. In order to be able to do a numerical cal-
culation the free stream conditions at infinity are replaced
by the asymptotic Oseen conditions at a finite distance
from the cylinder. The resulting two point boundary value
problem for the system of differential equations is solved
numerically by a finite difference method. This method gives
rise to a non linear system of algebraic difference equa-
tions, Four different iteration methods are discussed to
solve this algebraic system. The most efficient iteration
method seems to be Newton's method, which needs only about
three iterations to converge to a solution of the differ-
ence equations. The approximation of the solution of the
finite difference equations to the exact solution of the

differential equations is improved by performing a Richard-
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son extrapolation.

It can be concluded that a very efficient scheme
has been obtained to solve the system of ordinary differ-
ential equations which follow from the application of the
method of series truncation. It has been found however
tnat the number of terms in tne Fourier series needed to
describe the flow adequately and correspondingly the
computation time increase considerably with the Reynolds
number. Nevertheless, it is believed that the method
developed here is much more efficient than previous ones.
Calculations have been done for R = 0.5, 2.0, 3.5 and 5.0
where R = Ua/v ( a is the radius of the cylinder). The
results compare reasonably well with previous numerical

calculations of Keller-Takami and Dennis-Chang.
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INTRODUCTION

In this report we discuss the numerical calcu-
lation of the symmetric, steady, laminar flow around
a circular cylinder for low Reynolds numbers.

The reason for studying this problem is to
understand better the flow behind bluff bodies. In par-
ticular the 1limit for the flow as R—we 1is a matter of
great interest. Because an exact solution of the Navier -
Stokes equations cannot be expected for this case and
because the experiments are restricted to very low
Reynolds numbers because of instability and turbulence,
this problem is usually approached by numerical methods.

Several other investigators, such as Keller and
Takami, Dennis and Chang, Underwood, have treated this
problem numerically. The solutions by these authors agree
well for parameters such as the drag coefficient in the
case of Reynolds numbers of about R= 1 - 30, where
R = Ua/~ , and a is the radius of the cylinder. Detailed
information about the rest of the flow field is not found
in their work.

Because the amount of computer time for doing
these calculations is rather large for the higher
Reynolds numbers, there is considerable incentive for
developing an efficient calculation scheme. Though there
has been much work on the numerical calculation of the

flow around the cylinder, the numerical problem is far
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from being solved. It is very difficult to find a numer-
ical scheme in which the iterations converge rapidly and
do not employ too much computer time for the higher
Reynolds numbers,

In this report several numerical schemes and
their efficiencies are discussed. A method has been
developed, which reduces the number of iterations to
find a numerical solution to about 5 - 7. All of these
schemes have the following fact in common. The partial
differential equations are transformed by means of a
Fourier series expansion to a system of ordinary differ-
ential equations,

The aim of the calculations in this report is to
obtain not only the global constants of the flow field
such as the drag coefficient but also detailed information

about the flow far from the cylinder.
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I. EQUATIONS OF MOTION.

There are two basically different methods for the
numerical solution of the flow around a cylinder.

The first method uses the time dependent Navier-
Stokes equations. The problem is treated as a marching
problem in time and the calculation proceeds as follows.
An inital flow is chosen at time t=0. From the equations
of motion the derivatives with respect to time are cal-
culated. The flow at time +t+At then can be calculated.
This process continues until a steady flow has been ob-
tained.

In the second method the equations of motion for
a steady state are solved. In this report the numerical
solution of the flow around a cylinder will be attempted
using this second method.

Consider the steady flow field around a circular
cylinder in a uniform, incompressible flow. This flow

field will satisfy the Navier-Stokes equations in two

dimensions
*
divg =0
* ¥* * »* 1’1
(grad q ) g = -1/9 grad p + v AQ
* ~* *
where q = (u , v )

These equations can be made dimensionless with the

undisturbed flow at infinity q:f (U, 0) and a characteris-
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tic body dimension. For this case the characteristic
length is chosen to be the radius of the cylinder, a.

The dimensionless equations are

div q = 0

(grad q) q = - grad p + 1/RA%

q=q /U | 1.2
p/ gU2

Ua/v

]

p
R

The flow is assumed to be symmetric so that the
numerical calculation only has to be done for a half

plane. The boundary conditions which must then be satis-

fied are

on the cylinder q=20
at infinity q— (1, 0) 1.3

on the symmetry line v = 0, du/dy = O

Introduce a streamfunction § and a vorticity §,

which are defined by

u= dy /2y, v=-9dyp/ox

1.4
g = - 0ou/oy + 9v/0x

Elimination of the pressure from equation 1.2 and
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substituting the streamfunction in the definition of the

vorticity yields the two following scalar equations for

¢ and jf

By=-5
A€-= Ra(g,q))/b(x, y)
where A =32/3x° +32/dy2

1.5

The boundary conditions in terms of the vorticity

and the streamfunction become

on the cylinder Y = 9¢/On =0
at infinity Y=Yy, g—-o 1.6
on the symmetry line Y = g =0

The half plane y >0 outside the circular cylin-
der is transformed into a region in the (oc,P )-plane by

the following conformal transformation
o+ i p = In(x + iy) 1.7

This transformation transforms the region y>0
outside the cylinder in the (x, y)-plane into a rect-
angular region 0% &€oo, 0 PK™ in the ( e, 3)-plane.
(See figure 1). The cylinder wall corresponds with &= 0,

The transformation of the equations (1.5) into
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the new coordinate system yields

Aq}: —H—ZS
08=R3IYK,9)/ d(e,P)
where H = e™%, A = 3°/0«?4: 32/0132

1.8

The boundary conditions become

y = an/aoL =0 oL=0
y = §=0 p=0,r 1.9

lP—-eO( Sinp, g—oo ol ~» OO0

The velocity components in the (o, 3)-plane are

given by

e = HOp/eR 1.10

up = -H oY/ on

These equations are derived in appendix III.

The equations (1.8) form a system of two second
order, coupled, non linear differential equations, which
must be solved to find the flow field around the cylinder.

It must be noted that no boundary condition for
the vorticity is given on the cylinder. An iteration
procedure, which solves the vorticity equation and the

streamfunction equation separately, needs such a boundary
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condition. On the other hand the solution of the stream-
function equation is overdetermined by too many boundary
conditions on the cylinder. Therefore an approximation

to the boundary condition for the vorticity in relation
to the boundary conditions for the streamfunction must be
found or else the iterations must employ both equations
simultaneously.

Because of the fact that the numerical solution
cannot proceed to «—oc , there must be imposed some
artificial boundary at a large but finite of,.. The
boundary conditions for the streamfunction and the
vorticity, which have to be applied on this boundary, are
discussed in chapter I1II.

Different methods have been applied for the
solution of this problem. The most important results will
be discussed below.

Keller and Takami (1) use a finite difference
approximation in both partial differential equations.
This finite difference problem ig then solved by an
iteration procedure., Dennis and Chang (2) use a finite
difference approximation in the non linear partial dif-
ferential equation for the vorticity. The linear equation
for the streamfunction is solved by the expansion of the
streamfunction in a Fourier sine series. The substitution
of this series, which is truncated after a certain number

of terms, into the equation yields ordinary differential
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equations for the Fourier coefficients. These ordinary
differential equations then are solved subject to boundary
conditions on the cylinder and at infinity. Underwood (3)
expands both the vorticity and the streamfunction in a
Fourier sine series., Truncation and substitution in the
differential equations yield a non linear system of
ordinary differential equations for the Fourier coef-
ficients of both series.

The method used in this report to calculate the
flow around a cylinder is in principle the same as the
method used by Underwood. However there is a great dif-
ference between the two approaches in the scheme used to
solve the system of ordinary differential equations.,

The advantage of expanding both the streamfunction
and the vorticity in a Fourier sine series ié the fact
that only ordinary differential equations have to be
solved. In general numerical schemes for the solution of
ordinary differential equations are more efficient than
schemes for partial differential equations. The method
we employ treats all the ordinary differential equations
in the same way and is thus equivalent to a simultaneous
solution of the equations for the vorticity and the
streamfunction. Therefore the difficulty in finding a
boundary condition for the vorticity on the cylinder,
which was mentioned above, does not arise here,

This method of solving the equations of motion



-
for the flow around a circular cylinder will be discussed

in more detail in the next chapter.
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II. METHODS

The streamfunction and the vorticity are both
expanded in a Fourier sine series. The boundary conditions

for [ = 0 and % are then automatically satisfied

o0

Y = Z fo (o) 8in n O
€ =§ g, (o) sin n P

Substitution of these series into equation (1.8)
and using the orthogonality of the sine functions yield
the following ordinary differential equations for f,, and
g

m,

i

fi'- n"f = -H°g, forn=1,2,.....

o
g' - n2g =Rr
m m m fn,
[e.24 . o0
r, = 2/176/"(2' gisin kP g'fpp cos pfp -

ggkk cos kﬁz'f,.'sin pP )sin nPdap
The 15, can be evaluated in the following form

. = 1/2 {2%( gl fu- £l &) +

Zk( Emax Tk = T 8k) } 2.3
using the definitions g', = -g! g! =0
fli = =f! f! =0

The boundary conditions for the equations 2.2 are
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£f.(0) = £1,(0) =0
£f, —-e%, f.—0 o — 00 2.3

moks
gmn — O X —s 0O

The boundary conditions at infinity will be re-
placed by boundary conditions at a finite distance o =0o,
from the cylinder. The form of these boundary conditions
is discussed in chapter III.

The infinite system of non linear equations (2.2)
cannot be solved in closed form, to our knowledge. Thus
approximate solutions are sought and the first approxima-
tion made is to truncate all infinite sums by retaining
only harmonics of some finite order, N. The vorticity
and the streamfunction are then represented by a finite
Fourier series of N terms.

The resulting finite system of ordinary dif-
ferential equations is strongly coupled and non linear,
so that exact solutions are still not available. Ap-
proximate solutions are usually sought by means of itera-
tions and finite difference approximations. There are two
general ways to proceed: (A) Devise iterative schemes for
solving the differential equations and then approximate
the iterates by numerical (difference) methods; (B)Devise
numerical methods for approximating the differential
equations and then solve the resulting algebraic system

by iterations. The latter procedure is followed in all of
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our calculations and the numerical method used is Euler
centered finite differences using two net points (see
Appendix I). Four different iteration schemes will be
discussed for solving the difference equations. However
it is somewhat easier to describe the ideas in the itera-
tion schemes by adopting the procedure (A). We do this
here for ease of exposition.

The equations (2.2) for each harmonic can be

written in the form of a first order system .

B = AL + R, n=1,....N
-u“ = ﬂﬂ
Ve = g?
g* = " 204
fa
.g"\ J
[0 0 nf -Hf [0
0O 0 0 nt R
A, = R, = E
1 0 0 O 0
L 0 1 0 O] 0

The boundary conditions (2.3) are written in the
following way

oe]
[
rz
]
|
o O
H
]
H
R
1
(&

2.5

)

Fg

1
W
& T

s

Q

H

R

n

&

1



-13-

1 0 0 O]
BO =

0 0 1 O]

0 0 1 0]
B' =

0O 0 0 1

As has been discussed above all iteration
procedures will be explained using the differential
equation (2.4). As will be shown on the following pages
each iteration procedure will give rise to a differential
equation of the form (2.4). However in each case the
matrix A, and the R, will be defined differently. In
Appendix I the details are given of the solution of an
equation of the form (2.4) by finite differences sub-
jected to the boundary conditions (2.5) for a general
form of the matrix A, and the vector R,. This solution
then can be applied to all the iteration schemes discussed
in this chapter.

The first iteration procedure solves at each
iteration step the linear part of equation (2.2) with the
non linear terms calculated from the previous iteration
as a forcing term. This is the iteration scheme used by
R. Underwood (3). There however the iterates are each
evaluated by a Runge~Kutta numerical integration. The
procedure can be described in the form (2.4) in the fol-

lowing way: if ¥, is known, define E* as the solution of:
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F~:* = A’\E‘t + B“ n = 1,..."N 2.6
where A, and R. are defined in the

same way as in equation (2.4)

The r, is evaluated completely from the v* iterate

EI. The boundary conditions satisfied by F¥* are of the
form (2.5).

Then F.~' is defined as
F. =El +D{FX-E)
where 2.7

| Fx ]

0 Fk

The Pk and Vk are defined as acceleration param-
eters. These parameters are chosen in such a way to im-
prove tne convergence of the iteration scheme.

Physically, this iteration procedure balances at
eacn iteration step the viscous forces with the inertial
forces calculated from the previous iterate.

The convergence to a solution for this scheme has
been found to be reasonably fast only for small Reynolds
numbers ( R < 0.5 ). For example, it took 2% iterations
for R = 0.5 ~-with Fk = 0.5, Vk = 0,5 and starting from a
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calculated solution for R = 0.2-- to reduce the difference

between two consecutive iterations to the following value

For larger Reynolds numbers the number of itera-
tions needed to find a convergent solution increases very
rapidly. For R = 1 the number of iterations needed was
of the order of 100. In order td find a convergent be-
haviour at all the parameters, Fk and Vk had to be chosen
rather small: Fk, Vk-0.1-0.01. Therefore the conclusion
must be that this iteration procedure is not efficient
for Reynolds numbers R> 0.5. The reason for this must be
that at each iteration step the viscous terms are calcu-
lated from the equation, whereas the inertial terms are
obtained from the previous iteration. However for the
higher Reynolds numbers the inertial forces are important
in most of the flow field compared to the viscous forces.
So the iteration procedure can only be supposed to work
efficiently in the small boundary layer regions where
the viscous forces are important. In other words this
iteration procedure is basically wrong for the higher
Reynolds numbers, because it iterates on a value which is
almost everywhere negligible.

In the second iteration procedure we attempt to

solve the system by incorporating some of the non linear
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convective terms in the calculation. The iteration scheme
written in the form of equation (2.4) and satisfying

boundary conditions of the form (2.5) then becomes

F*= K.E* + R, n=1,....N 2.8
‘ 8 0 n? =g* ]
- nRg -nRf nRE -nRg+ 0
a 1 0 0 0
|0 1 0 0 ]
[0 ]
- R T,
=" 0
[ 0 ]

N
f=1/2{2x ( Gt ™, fan8y)
glk ( g\\'0kfk_ fm'bkgk )}

Kf2n
LY L

the newest available iterate of E, is used
to calculate I, .

So the calculation of the new iterate for F. uses
the non linear terms of r, with harmonic index n by
bringing these terms inside the matrix A,.. The v + 1
iterate of F, is calculated in the same way as is done in
equation (2.7).

As expected this iteration procedure seems to
work better for the higher Reynolds numbers. For example

for the calculation of the flow for R = 1.0, starting from
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a calculated flow for R = 0.5, about 23 iterations were
needed to reduce the difference between the drag coef-
ficients calculated from two consecutive iterates to the

following value

ca™' - ca¥|<o.2 1072 2.9

For these Reynolds numbers an optimal convergence
. behaviour was found when the acceleration parameters

Fk and Vk had the following values
Fk"’ 005, W{“1/(2R) 2010

The number of iterations needed to find a con-
vergent solution increased when the Reynolds number
was increased. For the calculation of the flow at Reynolds
number R = 2.5 at least about 80 iterations were needed
to find a convergent solution., But compared to the several
hundred iterations that would have been needed to find a
convergent solution using the first iteration scheme, the
new iteration procedure is a considerable improvement.,
llore precise results of the convergence behaviour of this
method at different Reynolds numbers will be given in
chapter 1IV.

The success of the new iteration procedure

indicates that the convergence behaviour of the method is
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closely related to the treatment of the non linear con-
vective terms, Therefore an iteration procedure, which
takes all of the non linear terms into account,may give
better results. We proceed to find a third iteration
scheme which has these properties.

Define the calculation of the new iterate in the

following way

F:“&l = E,,:"" 8?:
where —Su“ = Sf;-
g p 2.11
v, = 6g!
§F = | "
- §f,
Y-

Substitute this expression in equation (2.4).
Using the fact that &F, will be small we can find the
following linear equation for §F_

N
§E! = (A\+ R,.) §E.+ 2R, SF + 2.12
myn -

(-E7'+ A, EY + RY)

where the Jacobian R,. = 9R,/ 9FE. is

defined as
[0 .
N R §r,
2 RuwSF,, =
2 O
o
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N
Sr., = 1/2 {kz K[( $g! fu- 8L .8k ) +
QAT > I AR -] I

N-w
Y k[( Selafu- Sfl.ge ) +

kut

( &lu8f- fhube. )] ]

Essentially we linearised all non linear terms in
the equation so that this method can be compared with
Newton's method. Recalling the fact that in the calcula-
tion procedures all iteration schemes are done on the
algebraic system of difference equations this method then
exactly becomes Newton's method for non linear algebraic
systems.

For Newton's method for algebraic systems it can
be proved that when the first iterate is sufficiently
close to the root of the system this scheme has quadratic
convergence. One of the main properties of quadratic
convergence is the fact that, when sufficiently close to
a root, at each iteration step the number of significant
digits doubles. This implies that the convergence of this
method is very fast and it can be observed in the results
to insure that convergence is actually occurring.

In order to find the convergence behaviour con-
nected with Newton's method the equation (2.12) must be
solved simultaneously for all harmonics because these
equations are strongly coupled. The order of the matrices

involved is rather large. Therefore a direct solution of
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the Newton equation will not be attempted at first, but
some kind of inner iteration procedure will be used to
find the Newton corrections §E,.

The most obvious inner iteration procedure is to
solve tne equation for each harmonic separately, because
all the previous iteration schemes are set up for systems
of the form (2.4). This method essentially can be de-
scribed as a block Gauss-Seidel iteration of equation
(2.12), whnere the blocks are formed by the equation for
each harmonic.

This inner iteration procedure can be written in

the form of equation (2.4) in the following way

SF*= KX §F* + R_ n=1.....N 2.13
m = AM + R’“;"\
~ M-y ./ N
R, = RomSFr 4+ SRSB4
Mz “Ma el o

where the most recent calculated iterate

of F, is used to evaluate R.

Then a new iterate for the Newton corrections is

calculated by

S§E7" = 8FF + D ( SF - SFX) 2.14

where D is defined as in equation (2.7)
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Wwhen a sufficiently good approximation to the
Newton corrections has been obtained, one stgp in the
outer iteration (Newton's iteration) can be completed to

find a new approximation to the solution

PV = FY + §F. n=1.....N 2.15
The quadratic convergence for this scheme has been
observed for R = 1,0, where about 10 iterations were needed
with Fk = 0.5 and Vk = 0.5 to obtain convergence for the
inner iteration. For R = 3 quadratic convergence could
not be found because of the poor convergence behaviour of
the inner iteration. So the convergence problem seems to
have been transferred to the inner iteration procedure.
The fact however that quadratic convergence has been
found for R = 1.0 seems to indicate that Newton's method
works. Therefore the only alternative is to solve the
total Newton equations (2.12) directly, without the use
of any inner iteration scheme.
This means that we must solve the equation (2.12)
simultaneously for all harmonics n = 1,.....N. In order
to do the numerical calculation it must be noted that the
equation (2.12) for all harmonics can be represented as

one linear differential equation of the following form

§F' = A §F + R 2.16
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A + Ry, ,l

TR

Runs A+ RNNJ

r__F'lv + A, F'y x RT'\

-

o

+ 3,

.g:*+ A, f: ]

Essentially this equation is of the form (2.4)
and therefore can be solved by approximately the same
methods which are discussed in Appendix I. At the end of
Appendix I the solution of equation (2.16) is discussed
in more detail.

This method, which has eliminated the inner
iteration procedure in the Newton iteration scheme, works
very well and shows the desirable quadratic convergence.
Detailed results will be given in chapter IV.

It must be noted that the boundary conditions at
the artificial boundary, as will be shown in chapter III,
will depend on the drag coefficient. Therefore these

boundary conditions are a functional of the solution.
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This problem can be solved by incorporating these bound-
ary conditions in the iteration scheme. First a drag
coefficient is specified in order to be able to calculate
the outer boundary conditions. Then the numerical solution
yields a new drag coefficient, which is used in the bound-
ary condition for the second calculation. This procedure
is continued until convergence is obtained. In general
this will not take more than 2-3 iterations. This follows
from the fact that a good approximation to the drag coef-
ficient can be used as the first iterate. Further, since
the equations of motion tend to become of the parabolic
type far from the body, a slight difference in the bound-
ary conditions far downstream will not have much in-
fluence on the solution. Details about this iteration
scheme are given in chapter IV,

As will be discussed in Appendix I, the truncation
error in replacing the differential equation by difference
equations is O(h2), where h is the stepsize in the radial
direction. An additional improvement of the accuracy can
be obtained by doing a Richardson extrapolation, also
discussed in Appendix I. By this method the érror can be
decreased to O(h4). This method requires the solution of
the system of differential equations on a net of half the
size of the original net. This solution must be found
using the same iteration procedure described in this

chapter. To start the iteration the solution on the
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original net can be used, so this procedure introduces
still another iteration. Results of using Richardson

extrapolation are discussed in chapter IV,
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IITI. ASYMPTOTIC BOUNDARY CONDITIONS.

As has been discussed in chapter I, it is not
possible to extend the numerical calculations to an
infinite distance from the cylinder. Therefore it is
necessary to limit the calculation to a finite region
around the cylinder by imposing some artificial boundary.
In this chapter the conditions which must be applied on
this boundary will be discussed.

One can argue that far from the cylinder the flow
is almost equal to the undisturbed parallel flow. However
the application of free stream conditions at the boundary
of the finite region 1is not a very good one, because of
the following reason. The cylinder will cause a loss of
momentum of the flow connected with the drag of the cylin-
der. Integration along a contour surrounding the cylinder
must yield the same momentum loss for all contours. If at
a certain distance from the cylinder the flow conditions
have been set equal to the free stream values, the
momentum loss found by integration along a contour in this
region will be zero. This discontinuity in the drag
coefficient clearly indicates that the free stream flow is
not the right boundary condition to use,

A concistent set of boundary conditions can Dbe
found by doing an asymptotic expansion on the equations of
motion far from the cylinder. This asymptotic solution is

known by the name of Oseen's solution and is given by
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Imai (4). Another derivation, which makes use of the
ideas of Dennis and Chang (2) is given in this chapter,
The equations of motion and the boundary con-

ditions in the (o, [»)-plane are given by (1.8) and (1.9)

Ay= -H° €

28=RI(€,p)/ d(et,P) where H = e
p=dyp/dx =0 =0 3.1
Y= =0 Pp=0,T

\P—-e“‘ sin P §-o o —» 00

We expand the streamfunction and the vorticity
in an asymptotic series about the free stream solution.
The first term in the series for the streamfunction will
clearly be the free stream. Substitution of both series
in the equation for the vorticity and retaining only first
order terms yield +the following linear equation for the

first term in the asymptotic series for the vorticity
1/R A = eXcosP 3§/dC - e“sinp dE/OP 3.2
Ve look for a solution in the following form
€ = F=0P g (a,p) 3.3

Then substitute this expression in equation (3.2)



i
0%¢/0x® + 2% /ap% - 1/4 RZ ®d=0 3.4
if F=1/2 R e®cos P

Transformation to a new variable 7( yields

X5 g /ox? + X6/0X - X2 + P /P -
where X = 1/2 R &% Fe

I
wm O

A solution of this equation can be found by
separation of variables. The separated equations and the
boundary conditions for [5= 0, imply that the proper
eigenfunction expansion of ¢ in the ]S-direction will be
a fourier sine series. Therefore we substitute the fol-

lowing series into equation (3.5)

QZOFM(X) sin nf 3.6

Mnl

-
i

The equation for the Fourier coefficients is then
found to be

X?'F,,‘"+ XFﬂ'-(n2+ XZ)F,,\:O 3.7

This equation is known as the modified Bessel
equation. Two linearly independent solutions are I ( X)
and K (X ). As X—oo I, grows exponentially whereas

K, decays exponentially. Therefore by the boundary



-28-
condition for the vorticity at infinity only the K,
can be used for the solution of (3.7). So the solution

for the vorticity becomes
-4
g = e7(°°SPmZ_'c,n K,(X) sinn P 3.8

The unknown coefficients c,, must follow from
boundary conditions on the cylinder.

Substitution of the asymptotic form of K, (X)
for X—oco 1into equation (3.8) yields the asymptotic so-
lution for the vorticity far from the cylinder

€-c(p) 1/xt e~ A(1-cosp) 3,9
where G( P) = (’IY/Z)I/’z }ofc,n sin n
K. (X)= (w/2X)% e X for X—oo

From this equation it follows that the vorticity
becomes exponentially small for }(—>oo except in a region
near ﬁ = 0. This region of vorticity can be described by
the following equation

X(1-cosP) = |3.,2 3.10

where [3,2 is some arbitrary small number whose
magnitude is chosen such that for X(1-cosfP) < [5,2
exp (-X (1-cos p)) = 0(1). As it is clear that P will ve
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small in this region, cosﬁ can be replaced by the first
two terms in its series expansion. Then equation (3.10)

describing the region of vorticity becomes
%
p=[(2/x) when X-— oo 3.11

In terms of the (x, y) coordinates equation (3.11)

becomes
y = cx 3.12

So the region of vorticity in the (x, y)-plane is
a parabolic region behind the cylinder.

Because inside the region of vorticity [ is
small, sin npP = nP is substituted into equation (3.9).
This can be done only when the ¢, in (3.9) go sufficient-
ly strongly to zero so that the terms for large n do not
contribute. Then the asymptotic form of the vorticity

becomes

% % -X
f = (wr/2) [b/X‘ K e ,52/2 3.13
[ad
where K = Z n c,
Mzl
With this expression for the vorticity it is pos-
sible to solve the equation (3.1) for the streamfunction.

A solution of this equation can be found by separation of
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variables., By the same reasons used for equations (3.5)
the proper eigenfunction expansion in the P -direction is
a Fourier sine series. Therefore substitute the following

series in the equation for the streamfunction (3.1)

(2
y =Zf.., sin n [ 3.14

Mut

The equation for the Fourier coefficient then

becomes

£ - nzf“

Tu o 3,15
-Z/erzxgsin np dp

where T,

Substituting expression (3.8) for the vorticity in

equation (3.15) the integral for r, can be evaluated

== e K(x) {15.0(%) - 1,,,.(X0)) 3.16

Pxi
where I, = 1/ [ e X COSP g npap

Substitution of the asymptotic form for K_(X)
(3.9) and the asymptotic form for I, yields

r, = - 4n/R2"Z° nec, = ~4n/R® K = -n C 3,17
where I (X)— 1/ 2% (1 - (4n-1)/8X )eX
as X— o0

The solution of equation (3.15) using the boundary
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conditions (3.1) and the asymptotic form for the T
(3.17) then becomes

f.=C/n+ §/n % 4 O(e'n“') for «(—=o00 3,18
where § = 1 n= 1

=0 n#1

So the solution for the streamfunction is
00

Yy = e*sinp + ) C/n sin nfp 3.19
]

This Fourier series can be summed to give the

following expression for the streamfunction
o
g=e"s8in + W2 C (1- P/¥) 3.20

The first term in this expression clearly repre-
sents the undisturbed parallel flow. '

It must be noted that the function (3.20) is har-
monic everywhere. Therefore the streamfunction (3.20)
must represent an irrotational flow. It has been found
however that there is a region of concentrated vorticity
near P = 0 for which the streamfunction of equation (3.20)
will not give the right solution. This problem can be
solved by doing a boundary layer type argument for the

region near P = o. The streamfunction (3.20) then con-
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stitutes an outer solution, which is a wvalid solution
everywhere except in the boundary layer region. We proceed
to find the solution inside the boundary layer or wake
region

Because the wake region is parabolic far in the
wake y<< x. So the scale in the y-direction is very small
compared to the scale in the x-direction. Therefore the

boundary layer equations can be used

du/dx + dv/dy =0 2.21
u du/9dx + v du/dy = U, 4aU,/dx + 1/R Dzu/?)y2

The pressure term in equation (3,21) can be cal-
culated from the solution (3.20). It is then found that
this pressure term is essentially of second order and
therefore can be neglected.

Far down stream the flow will be almost equal to
the free stream. Therefore we can linearize equation (3.21)

in the following form

ou*/dx = 1/R Dzu"*/ay2 3,22

where u* = 1 = u
The boundary conditions become

u* = odux/dy = 0 for y — + 00 523
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Congservation of momentum implies

D= gUzlh/.u (1 =-u) ay 3,24

Linearization of this condition yields

Cd = jﬂu* dy 3.25

We can solve equation (3.22) by transformation
techniques. Define the Fourier transform and its corre-

sponding inverse transform

T () = 1/\/2w_”fei)‘y f (y) ay 3,26
£ (y) = 1//27 [ 2V F (2) ad

The application of this transformation to equation
(3.22) and condition (3.25) yields

a¥/dx = - N°/R ¥
H(0) = 1/V 2w cd

3.27

The solution of this equation for the Fourier

transform then becomes

2
3= ca/Vav e~ M/Rx 3,28
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By applying the inverse transformation we find

2
u* = ca/2va" VR/x e (Y R)/(4x) 3,29

The streamfunction for the inner solution then is

given by

Y
‘P*zy-—l{) =°fu* dy:
cd/2 erf ( y/2 V R/x ) . ) 3.30
where erf x = 2/\/’Ff e ® 4as

(-]

The unknown constant C in the outer streamfunction
(3.20) can be evaluated by applying the following matching
condition

y]]};“iw inner =gi£m ‘Pguter 3.31

<]

Application of this condition yields
C = - Cd/'ﬂ' 3032
A composite solution for the streamfunction,

which is valid everywhere, can be found by adding equation

(3.30) and (3.20) and substracting the common part

Y = e*sinPp -ca/2 (1 - P/T) +
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cd/2 erfe ( y/2vR/x ) o T

where erfc (x) = 1 - erf (x)

This solution for the streamfunction (3.23) and
for the vorticity (3.13) is identical to the solution
found by Imai (4) only for small values of [>. However
this can be expected because the derivation in this chap-
ter has been restricted to small values of [d. Imai's

solution is

e“sinP - Cd/2 (1 - P/™) + ca/2 erfec Q
- (ca R)/(2VW) q/e* &= 3.34
where Q =V R &“sin (/2

U8 €
t

It must be noted that in the calculation proce-
dures, Imai's solution has been used to evaluate the
asymptotic boundary conditions.

With the asymptotic solution known there must be
made an estimate of the distance from the cylinder at
which this solution can be applied.

In order to make some rough estimates we have to
know the most important characteristics of a flow behind
a bluff body such as the cylinder. Therefore we suppose
that the flow behind the cylinder satisfies the theo-
retical, asymptotic model of Sychyev (5) for the laminar,
symmetric and incompressible flow behind a bluff body in
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the 1imit R—o0 .

The Sychyev model has the following characteris-
tics. The wake bubble behind the bluff body has the form
of an ellipse with major axis O(R) and minor axis O(Ré).
Inside and outside this wake bubble the flow is non vis-
cous. These two flow regions are separated along the
boundary of the ellipse by a free shear layer. At the end
of the wake bubble the two free shear layers join to form
a wake which must diffuse in the free stream. The distance
after the wake bubble,in which the velocity has sufficient-
ly approached the free stream velocity such that asymp-
totic solutions can be applied, is taken to be the bound-
ary where the asymptotic condition can be applied.

FPirst consider the free shear layer near the end
of the wake bubble region. According to Sychyev (5) the
following estimates can be made for the coordinates and

the velocities in this region

x = O(R) y

0(1)
u = 0(1) v = o(R™") 3.35
p = O(R™ 1/2)
where x and y are the dimensionless
coordinates along and perpendicular to

the free shear layer.

Define the corresponding coordinates of 0(1)
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inside this region.

-1

¥ =xR Y=3
T =u Y=Rv
~ 1/2

5=1r"2p

3.36

Substitution into the equations of motion and re-

tension of only first order terms yield the following

equation and boundary conditions

DU/0F + 0¥/9F =0

% J8/d% + ¥ 0¥/ 0F = 9%/ dF2
4= 1 ¥ —

=0 ¥y— 0

By the introduction of a streamfunction the

3.37

continuity equation is satisfied. The streamfunction can

be found by assuming the solution to be of the following

form

p = D22y =@ V2y

3.38

Substitution into equation and boundary condition

(3.27) yields

£ 4 1/2 £ £ =0
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f' = 1 rl—ooo 3.39
f'—*o f\._..._x)
f(O) = 0 q =0

The last boundary condition implies that the
zero streamline is fixed at y = O. This problem can be
solved numerically and the results can be found in
R.C. Lock (6).

According to the model of Sychyev the wvelocity
distribution at the end of the wake bubble consists of
the two outside parts of the free shear layers joined
together. |

If we consider the outside part of the free shear
layer,the solution of (3.39) for >0, then it follows
that the velocity on the centerline at the end of the
wake bubble is given by

u = 0,5873 3.40

The momentum thickness, the displacement thick-

ness and the form factor are found by a simple numerical

integration
§+ = S (1-7) a7 = i”zsf (1-£') dn = 0.56 %1/2
0=/ 80-m af = 2/ £r(1-£7) ag = 0.44 %V/3

H= §%/9 = 1.25 ' 3.41
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Application of the principle of conservation of

momentum yields
cd =29 3,42

Using the results of Dennis and Chang (2) for the
wake bubble length, L, = 0.36 R, the drag coefficient cor-

responding to Sychyev's model can be found to be
Cd = 0.53 3,43

To give an estimate of the length after the wake
bubble, at which asymptotic conditions can be applied, we
use the results of Charwat and Schneider (7). From their
results can be found that the distance to reach asymptotic
conditions starting with a velocity profile with a center-
line velocity and a form factor given by (3.40) and (3.41)
is given by

Ax = (ca® R)/0.8 3,44

From this equation and the knowledge of the wake
bubble length,the distance behind the cylinder at which
asymptotic conditions are valid can be estimated. Ob-
viously this approximation will be very crude, because an

asymptotic solution for R—ew has been used, whereas the
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calculations are done for a comparatively small Reynolds

number,

In figure (2) the estimates for this distance
have been plotted. There are plotted two curves calculat-
ed with equation (3.44).

The first curve follows from substituting the
actual drag coefficient found by Dennis and Chang (2) in
(3.44). The calculation of the second curve uses the drag
coefficient consistent with Sychyev's model (3.43).

From the figure can be seen that there is a big
difference between the two curves. Therefore it must be
concluded that the position of the outer boundary will be
quite arbitrarily within thesé specified bounds.
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IV, NUMERICAL ERROR EVALUATION.

As has been described in chapter II, three dif-
ferent iteration schemes are involved in the there-dis-
cussed numerical solution of a flow around a cylinder: the
iterative solution of the algebraic equations, which fol-
low from the finite difference approximation to the ordi-
nary differential equations; the determination of the
boundary condition at the artificial boundary far from the
cylinder; Richardson's extrapolation. The erfor introduced
by each of these iteration procedures will be discussed in
this chapter.

First a comparison will be made between the dif-
ferent iteration schemes of chapter II for solving the
non linear algebraic equations. The number of iterations
which are needed to find a convergent solution of the
algebraic system, will be considered as a function of the
Reynolds numbers. This number therefore does not include
the iterations which must be done in order to find the
outer boundary conditions and to do Richardson's extra-
polation. A comparison with the iteration schemes used
by other authors is not possible because none of them
except Keller-Takami (8) give their number of iterations.
The iteration schemes in table 1 are numbered in the same
order as they are discussed in chapter II.

From this table it is clear that though method I

geems to be an improvement on the results of Keller-Takami,
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a rapid increase in the number of iterations can be ex-~
pected for the larger Reynolds numbers, For instance, the
calculation using method I at Reynolds number R = 3.5
was terminated after about 120 iterations without having
reached any indication that the iterations did converge.
In order to check for this case in what way a solution of
the flow field had been obtained, the drag coefficient was
calculated along circular contours of different radii
enclosing the cylinder (see Appendix II). This drag coef-
ficient, which theoretically must have a constant value for
all contours, fluctuated very violently especially far
from the cylinder. This shows that no solution of the
Navier-Stokes equations had been obtained. Also in method
I the relaxation parameters Fk and Vk had to be chosen
very small in order not to obtain a rapidly divergent
solution. Because of these properties method I proves not
to be very efficient for the higher Reynolds numbers.

Method II, which includes some of the non linear
terms in the numerical solution, is a considerable im-
provement on method I. However the number of iterations
increases with the Reynolds number; especially for Rey-
nolds numbers R> 3 the number of iterations increased
very rapidly, whereas the optimal value of the parameter
Vk decreased very rapidly.

Method III works very well as far as Newton's part

of the iteration scheme is concerned. The problem now is
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the convergence of the inner iteration scheme. For the
higher Reynolds numbers the inner iteration did converge,
but far too slowly. Because of the fact that the inner
iteration was terminated after 20 iterations, the Newton
equations were not completely solved and therefore the
fast quadratic convergence was not always observed.

Therefore the only way to get Newton's method to
work was to solve the Newton equation directly and this
was done in method IV. This method works extremely well
at all Reynolds numbers and therefore is a great improve-
ment on all the other methods, because it reduces the num-
ber of iterations. A disadvantage however is the fact that
the order of the blocks in the matrix, which follows from
the finite difference approximation, increases linearly
with the number of terms in the Pourier series. As is
shown in Appendix I, the number of operations for this
method is proportional to the cubic power of the number
of Fourier terms. Therefore the computer time increases
very rapidly when more terms in the Fourier series are
taken into account. Nevertheless this method is superior
to all the other methods presented in this report, because
of the presence of quadratic convergence. The calculation
of the data for the four Reynolds numbers discussed in
this report is done using this method.

Next the errors in the numerical scheme will be

discussed. There are five different error sources present:
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the error in solving the nonlinear algebraic difference
equations iteratively; the truncation error in approximat-
ing the differential equation by finite difference equa-
tions; the error introduced by the fact that the boundary
conditions on the artificial boundary far from the cylin-
der are asymptotic conditions and depend on the drag coef-
ficient; the error due to the finite number of terms in
the Fourier series; the error following from round off
in the calculations.

The first error due to the iterative solution of
the algebraic non linear equations can be controlled very
well, because of the quadratic convergence pfoperties of
Newton's method for solving these equations. A solution
of the difference equations is said to have converged when
the following conditions are satisfied. The difference
between two drag coefficients calculated on the cylinder
for two consecutive iterations must be smaller than 10“5.
At the same time the condition must be satisfied that when
the solution is resubstituted into the difference equations
the maximum absolute value of the residual at all net
points and for all harmonics is less than 10—3o These con-
ditions are most of the time satisfied after 3-4 iterations
for all Reynolds numbers.

The truncation error in approximating the differ-
ential equations by finite difference equations can be

controlled by doing a Richardson extrapolation, described
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in Appendix I. This procedure reduces the truncation er-
ror to about 0(h4), where h is the radial stepsize. Taking
into account that in these calculations h~0.1, the trun-
cation error will be az10-4. The truncation error and the
iteration error therefore will be of about the same order
of magnitude, It is assumed that both these errors are so
small that the other sources contribute the largest error,
which cannot be estimated so easily.

The drag coefficient, which is used in the outer
boundary conditions, is a functional of the solution and
therefore the outer boundary conditions can only be cal-
culated iteratively., First an estimate for the drag coef-
ficient is used in evaluating the boundary conditions at
the outer boundary. Then two Newton iterations are done
to find a new estimate for this drag coefficient. This
procedure is repeated until the new calculated drag coef-
ficient differs only slightly in second decimal place
from the former drag coefficient. The application of New-
ton's method is then continued until a convergent solution
satisfying the conditions specified above is found. A
more elaborate outer iteration is not done because of the
negligible effect that a small change in the outer bound-
ary has on the solution near the cylinder. At the same
time, because the calculated drag coefficient as a func-
tion of the radial distance oscillates slightly, especial-

ly far from the cylinder, it is not clear which drag co-
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efficient must be used in evaluating the outer boundary
conditions. In most cases this outer iteration procedure
does not take longer than 2-3 steps consisting of two
Newton iterates.

The error involved in imposing asymptotic boundary
conditions at a finite boundary is very difficult to de-
termine. One of the main problems is that it is not known
how the solution tends to its asymptotic form. In chapter
III it has been tried to give some estimates of the dis~
tances at which asymptotic conditions can be applied. These
estimates however are very crude, because of the many
assumptions that had to be made in order to find them.
Apart from Oseen’s solution and the free stream conditions
which must be considered inferior as follows from the dis-
cussion in chapter III, no other alternatives for the out-
er boundary conditions are given by the other investiga-
tors, who have treated the numerical solution of the flow
around a cylinder. In most of the work the error, that is
introduced by applying the asymptotic boundary conditions
at a finite distance, is only considered by performing
geveral calculations with the outer boundary conditions
imposed on different distances from the cylinder. In this
report the calculations are performed using asymptotic
boundary conditions at only one fixed distance, which is

agsumed to be large enough for asymptotic conditions to

be valid. It is believed, however, that apart from possible
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inconsistencies in the boundary conditions themselves, a
consistent solution has been obtained, because of the fact
that the calculated drag coefficient is reasonably con-
stant throughout the whole flow field and matches the
drag coefficient used in evaluating Oseen's boundary con-
ditions.

The error made by the truncation of the Fourier
series after a fixed number of terms is very difficult
to treat, because there is no expression for the remain-
der term in the Fourier series.

Therefore an estimate of this error can only be
obtained by performing the solution for different num-
bers of terms in the Pourier series. It has been found
that five terms in the Fourier series are sufficient only
for very small Reynolds numbers. For the higher Reynolds
numbers substantial differences are found between the solu-
tion with five terms and the solution with 10 terms. This
is expressed in this report by the results presented for
R=2.0, R=3.5 and R = 5.0, This contradicts the con-
clusions made by Underwood (3). The results indicate that
with increasing Reynolds numbers the number of terms in
the Fourier series and therefore also the computer time
must increase., This is largely due to the fact that the
representation of the vorticity in a finite Fourier series

is very poor, because the vorticity is everywhere almost

zero except in a small region near the centerline behind
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the cylinder. It must be concluded therefore that the
main error source in these calculations probably will be
the truncation of the Fourier series,

The errors due to round off are related to the
computer that is used for the calculations. The results
in this report are calculated in single precision on the
IBM 370/150 of the California Institute of Technology.
This computer has a mantissa of 7 figures in single pre-
cision, so that at most 7 significant digits can be expect-
ed. However the round off error usually accumulates so
fast that only about 4 digits or less can be expected to
be significant depending on the number of operations
carried out. In the case of the Richardson extrapolation
for R = 5, quadratic convergence could not be found, most
probably because of round off errors. However the solution
did converge linearly and took about 8 iterations. A way
to decrease the round off errors is to apply the method of
iterative improvement on the solution of the linear sys-
tem, which 2ollows from the application of Newton's method.
This method of iterative improvement is described by
G. Forsythe and C.B. Moler (9). Recent results using this
method seem to indicate +that the effects of round off

errors can be considerably reduced this way.
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V. RESULTS AND ASSESSMENT.

In this report the flows for the following Rey-
nolds numbers have been calculated: R = 0.5, 2.0, 3,5 and
5.0. In each of these calculations the outer boundary was
set at of, =" and the stepsize h in the radial direction
was chosen to be h = 9% /30, In table 2 the number of iter-
ations are given for each Reynolds number to find a con-
vergent solution. These numbers include the iterations
that must be done to determine the outer boundary con-
dition,

The amount of computer time used in these cal-
culations is of the order of 10 seconds for one iteration
for the solution using a Fourier series of five terms.
Because the number of operations is proportional to the
cubic power of the number of Fourier terms, the computing
time for one iteration using a Fourier series of ten terms
took about 80 seconds. So it is clear that computer time
increases very rapidly with the number of Fourier terms.
It is difficult to compare these computer times with the
results of other authors, because we could not find any
statement in their work about the amount of computer time
they used. However it must be taken into account that the
computer time depends very much on the type of computer
used. In our case a comparatively slow computer was used.

Nevertheless we believe that the calculations

presented here are more efficient than those carried out
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by the other investigators for the same Reynolds numbers.
The main reason for this is the observation of quadratic
convergence in the solution of the difference equations.
This has considerably reduced the number of iterations
needed and also insures that a convergent solution was
actually occurring. From the physical point of view it is
clear that the drag coefficient must be a constant through-
out the whole flow field. Therefore a good check to insure
whether the numerical solution is actually a solution of
the Navier-Stokes equations consists of calculating the
drag coefficient along different contours enclosing the
cylinder (for details see Appendix II).

In the tables 3-6 the drag coefficient is tabulated
as a function of the radial distance from the cylinder.
Also a comparison is made with results of Keller-Takami
and Dennis-Chang. From these tables it follows that the
drag coefficient is very satisfactorily constant through-
out the whole flow field, especially for the solution cal-
culated with Richardson extrapolation. It is interesting
to note that a smaller number of terms in the Fourier
series decreases the drag coefficient. The solution,howev-

er, retains the property that the drag coefficient is
kept constant throughout the flow field. The meaning of
this effect is not quite clear,

In figure 3 the vorticity distribution on the cyl-

inder is plotted for various Reynolds numbers and compared
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to the results of Keller-Takami and Dennis-Chang. The com-
parison is reasonably good. The influence of the number of
Fourier terms is seen to be very strong, especially for

R = 5.0,

In figure 4 the pressure coefficient along the
cylinder surface is plotted for different Reynolds num-
bers together with some results of Keller-Takami and
Dennis-Chang. The comparison with their results is not
as good for this case. However it must be noted that there
exist also some differences between the results of both
authors. It also follows from this figure that the pressure
coefficient depends very much on the number of terms in
the Fourier series. From these results can be concluded
that it is very difficult to find accurate values for the
pressure coefficient,

In figure 5 the velocity on the centerline behind
the cylinder is shown together with some results of Keller-
Takami. The agreement is not very good, especially at a
larger distance from the cylinder.

In the figures 6 and 7 the pressure coefficient
on the centerline is plotted. These figures also show
clearly the large influence of the number of Fourier terms.

In the figures 8-23 contour plots are given of the
gstreamfunction, the vorticity, the pressure and the ve-
locity. In order to make a pressure plot the pressure co-

efficient has to be calculated throughout the whole flow
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field. Details of this calculation are given in Appendix
III.

The pressure coefficient is calculated along a
contour connecting infinity with the point where the
pressure coefficient is to be calculated. The use of dif-
ferent contours then must lead to the same result. This
enables us to do another check on the accuracy of the
numerical solution. The pressure coefficient at the base
of the cylinder is calculated twice using different in-
tegration contours. The first contour starts at infinity
and proceeds along the centerline before the cylinder and
the cylinder surface to the base of the cylinder. The
second contour starts at infinity and proceeds along the
centerline behind the cylinder to the base of the cylinder.,
For the latter case the result must be corrected, because
the Oseen boundary conditions are applied at a finite
distance from the cylinder (see Appendix III).

For the Reynolds numbers R = 0.5 and 2.0 both
pressure coefficients on the base of the cylinder, which
were calculated using the different contours, were equal
within a few percent. For the higher Reynolds numbers
some difference between the two pressure coefficients was
found. This may be due to the finite Fourier series re-
presentation of the solution and to the application of
asymptotic conditions at a finite distance from the cyl-

inder,
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From the results presented in this report can be
concluded that a very accurate numerical solution of the
flow around a cylinder has been obtained for the Reynolds
numbers R = 0.5 and R = 2.0. The solutions for the higher
Reynolds numbers, especially for R = 5.0 cannot be con-
sidered to be of the same order of accuracy. The main
reason for this seems to be the influence of the finite
nunber of Fourier terms used to represent the solution. A
solution involving more Fourier terms, however, has not
been attempted because of the large amount of computer
time involved. A solution for higher Reynolds numbers us-
ing only ten terms in the Fourier series has not been con-
sidered because of the probably very doubtful results that
can be expected. This would be in contrast with the goal
of this report to find an efficient and accurate calcu-
lation scheme.

As far as the results presented in the literature
are concerned, in my opinion accurate solutions exist
only for R ' 10. The solution presented for the higher
Reynolds numbers is not of the same order of accuracy as
can be obtained for the solution of the small Reynolds
numbers. The calculation schemes for this problem must be
much more thoroughly developed before accurate results
for the higher Reynolds numbers can belexpected. In my
opinion the misunderstanding concerning the accuracy

arises largely from the many authors, a few excepted, who
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do not discuss all error sources properly and call a nu-
merical solution too easily "exact".

where the method presented in this report is con-
cerned, all effort must be directed towards improving the
representation of the solution by the finite Fourier series.
Not until then can an accurate solution for higher Rey-

nolds numbers be expected.
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APPENDIX I.

Consider the solution of the following first order

system of differential equations

F' =

§ g
]

AF +8 I.1
u] 0 0 n® -H 0]
v A t, ¢, t, t,+ 1 s - r
1 0 0 O - 1o
g o1 0 O 0

It must be noted that the matrix A and the vec-

tor S are known.,

This

subjected to

os)
©
[R5

t
kg

system must be solved on the interval Ogoc«m

the following boundary conditions

-

[0
= < =0
0 |
(Rf]
= ol = oL,
| Rg 1.2

Divide the interval [0, ] in J steps of magni-

tude h, Then

a finite difference approximation to the
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equation (I.1) on this grid is given by

(P =F.)/ he=RApn CEp+ F)/2 4 S0 1.3
j=1)o‘.¢oJ

The subscript j-% means that the matrix A and the
vector S are evaluated at the argument between the grid
points jJ and j-1.

Rewriting equation (I.3) we find

-L; Fooo+ Ry F, = h §}.-Ze I.4

R, =1- h/2 Aj-%

Lé,: I + h/2 Ay-k

Together with the boundary conditions (I.2) the

equation (I.4) can be written in block matrix form of the

order 4J%4J

[ B° A 0]
-L, R, F hSy - -
\\ - = - TF=2S I.5
~L, Ry ng,)
_ B'||R] 5

The matrix in equation (I.5) can be written in

block tridiagonal form
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(A, Co

31

BJ AJJ

where the blocks B, ,A;,C. are of the order 4%4

This special form makes a very efficient LU-decom-

position of the matrix T possible

A, C [ X, 1 7Y,
B B, \
\ G, \ 19
B, A _ B, X]{ |
T=1L7U I.7

X, = Ao, X, ¥Y,= C,
B"_ Yi.-' + Xi. = A.a., Xi YL = Ci. 1 < i \< J""1
BI YI"' + X3 = A]

A necessary condition for this factorization to
exist and to be unique is the fact that X; must be non
singular,

The solution of equation (I.5) can now be given

in two steps

L 2 = .5 forward substitution 1.8
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U f = Z backward substitution

So the problem has been reduced to finding a
LU-decomposition for the matrix T. Because all the blocks
in T are sparse, some simplification can be expected in
calculating the LU-decomposition. As a matter of fact it
must be clear that the first two rows of each C; and the
last two rows of each B, must contain only zero elements.
Then it is not difficult to show that X; must be of the
following form

Xj _ k;‘ 13 m,- ni
=1 0 n*h/? h/2 H (j+3)
D (§48)  ~1-Dt, (344)  —Bt, (3+5)  -ER-De, (34 b
RAAEAE: st (J+z) -3t (J+5 T 5v4ld+3
Qs i< I-1
| x; ¥y ozp Wy I.9
k 1 m n
X-J - R J 3 3
O 0 1 0
0o 0 0 1

So at each step of the LU-decomposition only the
eight quantities in the first two rows of X; must be cal-
culated, instead of sixteen quantities for an ordinary

4*%4 matrix.




form
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Assume that the inverse of X; has the following

L Qn (3). 20 () Qia(d) Qua()]
Qo (1) Qe () Qea(d) Qea(3)
Qo (1) Qa(d) am(3) as(d)
| Qo (3) Qe (3) Qe(d) Qe (d)]

I.10

Then the recursion relatioms for the x;, y;, 2,

1 Yo = 0 2o = O Ve = O

0 l; = © m, = 1 n, =0

-a + {Q,(J-1) + a Q4(J-1)1 +

1Q,,(J=1) + 2 Q,(3-1) 1} t,(§-3) h/2

{Q3=1) + a Q=11 {1 = n/2 t,(3-3)}

1 = r—‘z_rh 1 Qu(3=1) + a Q,(j=-1)} - I.11
h/2 £5(3=3) | Q(3-1) + a Q. (3-1)}

h/2 H(j-5) { Qu(i=1) + a Q4(j-1)} -

(28 4 n/2 t,(3-9)}HQ3=1) + a Qu(3-1)]
[Quld=1) + a Qu(3-1)1 -

n/2 t,(j-3) 1Q,(3-1) + a q,(3-1)}

-2 +{ Qu(i=1) + a Qu(3-1)} {1 - n/2 t,(3-5)}
BB 0 (3-1) + a Qyi-1)] -

B/2 t5(3-3) { Qul3=1) + a Q. (3-1)}

1+ h/2 H(J-3) { Q,(3-1) + 2 Q,(3-1)} -
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(58 4 0/2 4,(3-9)}f ul3-1) + 2 Q(3-1)3
where a = h/2 1g<ji<gJ

It must be noted that a very efficient calculation
is possible if the LU-decomposition and the forward sub-
stitution are performed simultaneously.

The recursion formulas for the forward substitu-

tion are

€= 0,(3) (abu+8e) + Qud) (anu+8u) +
Qu(J) h ry% .

i = Qald) (28 +80) + Qu(3) ( apj 465 ) +
Q,(J) h Tus

Ei=q,(3) (au+6.) + Qi) ( ap., +9.) +
Q. J) h Ty

8 = Q(3) (2B +8:) + Q) (ap.+Gi) «
QlJ) h %

where a = h/2 0<j< J=1 1.12

A reduction in storage can be obtained because
for the backward substitution only the Y, must be known.
These blocks can be calculated from the last two columns
of Xf1. So only these columns have to be stored.

The recursion relation for the backward substi-

tution then becomes.
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wy =8 - [lead) - 072+, Ged) @) wy, -

1= n/2 t,(3+3)] Qu(3) viu + |

B2 Q,,(3) + 1/2 t503+2) Q] £ +

[-n/2 H(3+3) Qi(3) + [BR 4 /2 t,(3+9)] @.(D)] &y
vi = 0= [[Quf3) = 1/2 %, (3+3) 1)} wger -

{1 - n/2 t,(3+2)] Q(3) viu +

B0 Q,03) + /2 t (3+3) Q)] £50 +

[-0/2 H(3+3) Q(5) + [H2 + 1/2 £4(3+3)] (3] £
£y = €= [[0u3) = /2 %, (3+2) Qu3)] ugr -

[t = n/2 £, (3+2)] Qu(3) vy + I.13

(252 0(3) + B/2 45 (343) QuD)} £jur 4

{-h/2 5(3+3) Q1) + [S2 + 1/2 5, (5+5)] @, (3)] g
g, = 0~ [[Qd) = 1/2  (3+4) QD] ujn -

U= 0/2 % (349} Q) vy +

B0 Q(3) + b/2 1, (343) QD] £ +

(/2 HGi+p) Quld) + [25% + n/2 ,05+3)] ()] &,

O<igd=-1

Next we consider the accuracy of the solution of
the finite difference scheme. The existence, uniqueness and
stability of the solution of the finite difference equa-
tions, which are an approximation to the differential
equation (I.1), can be proved when the matrix T is non
singular and the inverse of T is bounded. (See Keller (10)).
For this case we suppose that the matrix T is sufficiently
well behaved inside the region of integration.



62
An estimate of the truncation error of the finite
difference scheme then can be made as follows.
Define the difference between the exact solution
of equation (I.1): F* and the solution of the difference

equations (I.3): F; as

Ey =F - T O<jgd I.14

Application of the finite difference equations
(I.3) on the E, yields

=

( S'Es-l )/h‘AS-’/z( 13'3‘*' E )/2 =
(BX - F*. )/h = Acu( FX + F%, )/2 +

F';Va- A ?*'y‘/o. 1<isd I.15

A Taylor expansion of F* around the point oY
yields

F%- CFF - FE /b = -1/24 02 £ + o(nh)

> I.16

Fag- (Pt + P )/2 = +1/8 0% Fop + o(n?)
Substitution into (I.15) yields

TE=-1/24 b° F*x + 1/8 02 F%* 4+ o(n*)
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§ o 3 o
E. [ 3 °
h F h Fy I.17
h E, h T,
[ Ey ] | 2 -
So the truncation error NEN is O(h2) whenever

the matrix T is not too ill conditioned.

The accuracy as far as the truncation error is
concerned can be improved considerably by doing a Richard-
son extrapolation. The following assumption then must be
made. There exists a function e(« ) independent of the
grid size h such that the error (I.14) can be written as
(see Keller (10))

E, =h% e( =) + 0o(h?) I1.18

Then in practice Richardson extrapolation is done
the following way. First solve the finite difference equa-
tions to obtain the solution on the original grid: F,.
Next do the same calculation on a smaller grid (for in-
stance half the original grid size) to obtain: F2; . Then
equation (I.18) implies

n2 e(«;) + 0(h4)

e
*
|

=

]

I.19
= h%/4 e(x;) + 0(n%)

&)
%k
!

!
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Elimination yields

X - {4 Fo(=) = Fy (=) }/3 = o) 1.20

So in two steps a very good approximation to the
solution of the differential equation has been obtained.

It must be noted that the error terms are also
dependent on the higher derivatives of F* ., For this case
it follows that these derivatives are strongly dependent
on the harmonic variable n. Therefore for a large n (a
series with many terms) an accurate solution can only be
expected when the product nh is small,

Finally some remarks will be made on the solution
of the total Newton iteration given by the equation (2.16).
It is clear that this equation is written in the form of
equation (I.1). The order of the matrix A however, will
be 4N*4N, where N is the number of harmonics in the
Fourier series.

The solution of this equation can be found by the
same methods described for equation (I.1) in the beginning
of this appendix. The differential equation must be written
in finite difference form. The resulting matrix equation
(I.5) with blocks of the order 4N*4N then can be solved
by making the matrix block tridiagonal,

The solution of this block tridiagonal system is
almost identical to the solution described before. The
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only differnce lies in the fact that the order of the
blocks X; will be considerably larger then 4. So it is
no longer possible to calculate the inverse of X; man-
ually. Therefore the equations involving the X, must be
solved by Gaussian elimination., Taking this fact into
account the solution proceeds further completely identically.

Because the order of the blocks may become very
large an estimate will be made of the number of operations
involved.

At each radial net point a LU-decomposition of
the matrix X, must be made. Using the operational count for
Gaussgian elimination, the number of operations for this
part of the program becomes: ~ 1/3 (4N)3J. Further in
order to find the matrix Y, on the J-1 net points a matrix
multiplication must be done. This accounts for (4N)3(J-1)
operations. So the total number of operations will be

approximately proportional to
ops. ~ 256/3 N°J I.21

It is clear that for increasing N the number of

operations will increase very rapidly.
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APPIENDIX II

The drag coefficient is given by the generalized
Blasius formula (Imai (4))

Cd = -Realf 21 § (2¢/32)? az + |
14 €3 dy +z/nfa§/aaaaz} Hed
The streamfunction and the vorticity in this
formula are real functions of the two complex variables
z and Z . The integrals are line integrals along a closed
contour enclosing the cylinder.
Transform equation (I.1) to polar coordinates

using the following formulas
z=re® 3.0 e'19
f/dz = If/dr Jr/dz + d£/0D 39/ z =
1/2 (d£/dr - 1 1/r 9£/J9 ) e~iP
VfpZ = 0£/dr Or/OF + If/D9 I9fJZ=
1/2 (9£/dr + 1 1/r °0£/09) 919

II.2

Then the drag coefficient evaluated by integrating
along a circular contour of radius r becomes using the

fact that ¢ and g are even functions of ‘5

w
cd = 1/r°f [f(atp/ax)z - (3?/315)2} cos [>
20p/dx Jy /OB sinplap -



B
0e

2z ) £p/op sinp ap + II.3

2/R r’f(c)f/ad— - &) sinpap

where r = e* , pP=9

The streamfunction, the vorticity and their deriva-
tives with respect to x are expanded in a Fourier sine

series

=§f,n sin n> 9y/Jdx =§ u, sin nf
S? : II.4

g, sin nf 3§/¢>°¢=va sin n o

Substitution of these series into equation (II.3)
yields the following sum for the drag coefficient
o0
cd = /2 {1/r) [upyup= (0+1)D T, Lpus -
P=i
Up,, P fp + up (p+1) fp+0] -

I‘p=|[gp+. p fp - gp (p+1) fP” l + 2/R r [v‘ - g']}

LI %

The evaluation of this sum at each o -coordinate
then yields the drag coefficient calculated along a cir-
cular contour through this coordinate point and enclosing

the cylinder.
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APPENDIX III

The Navier-Stokes equations in dimensionless form

are given by
divg=20

ITT.1
(grad q ) q = - grad p + 1/R div def g

After the use of some vector identities these

equations become

divg=0 ITI.2
grad q.q/2 + (curl q ) * ¢ = -grad p + 1/R curl curl q
Because only a two dimensional flow is considered,
the vorticity will only have a component in the z-direction.
The continuity equation can be integrated by introducing

a gtreamfunction. Therefore we define

€k =curl q
-~ II1.3
grad ¢ * k

)
]

where g is the unit vector in the z-direction.

The streamfunction will be uniquely determined if
the condition is imposed that gradcy must be perpendicular
to k. Using these definitions the equation (III.2) can be

written as
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1/2 grad ( grad ¢ . grad«y) + §’grad<y = ITI.4

- grad p - 1/R curl ( g k )

From this equation the pressure can be calculated
as a function of the streamfunction and vorticity.

To be able to perform the integration we must
write equation (III.4) in its component form in the (o, D)
coordinates. Therefore we consider the coordinate transfor-

mation given by (1.7)

x = e cos P
y=e“sinf III.5
z = 3

The scale factors of this transformation are

given by
o= [97 /9| = e%
o = 102/9B] = e 111.6
3= 02/92] =1

where r = x1+y j+ 2k

P~ ~ —~

Then the components of the grad and curl in this

coordinate system are

grady = ( 1/h, D&p/c)oc, 1/h29cy/3[5, 1/h;3<,)/az ) =
( e™O¢/ox , e "Op/OB, 0)



s e
h'g“— hz €p haf«’,z
curl g k = HT%:E, ‘a/au.'aﬁaﬁ>'a/9z =
0 0 e I11.7
( e™0€/oP,-e""0f/dx , 0 )

Substituting these results into equations (III.4)
equations for the partial derivatives of the pressure can

be found

9p/Oxt = =1/R IG/IP - Eopfox -
1/2 3/ { (29p/0 )24+ (D¢p/d )2} &72%
op/oPp = 1/R0E/Ix - EIp/Op - | III.8
1/22/9p{(d9/ae )2+ Dy /op)?] o2

Integration of the first equation along a line
]5: const. and integration of the second equation along

a line &« = const. yields

12 e f(ap/aw)? + (29/9P)2)

Cp () =1 - R
2/ (/R 25/0P+ Q29/9x) axt 1114 o
cp (P) = Cp (B) + e 2% (29/9x)? + (29/op)?}
+ 2::f ( 1/R 08 /o -~ €0y/OR) af
where Cp = ( p¥ - p*(c0))/ 1/2 gU?

To calculate the pressure coefficient at each

coordinate (¢x,[5) we use the following procedure. Use the
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first formula of (IIL9) along the line [>=" +to find
Cp (¢, » =1), Then use the second formula along the
line o is constant. The combination of both formulas then

yields

Cp (ot,P) = 1 = e™2% [ (d¢/0a)? + (Dp/OP)

1/R 98/OPp daot + III. 1o
( 1/R 98 /0x - Cog/oP) ap

§&\n§\33'

Because of the fact that the numerical calcula-
tions are terminated at a finite distance o from the
cylinder the integration in the o- direction along the
line [® = cannot be extended to infinity and must also
be terminated at o, . Therefore the following correction
must be added to the pressure coefficient calculated from

equation (III.10)
o0
2/v JOE/OP ax along P=T III.11
d"ﬂ

In order to calculate this correction we assume
that for o 2>o(, the asymptotic solution determined in
chapter III is valid. Substituting equation (3.34) for the
vorticity into the integral (III.11) it is found that the
correction term is equal to zero, which is no coincidence
because the Oseen solution is constructed this way. This

is true only if we do the integration along the line F’:Tf.
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The calculation of the correction term along the line

[>= 0 for instance yields the following result

o0
2/R S 2&/oPp dx = - ca VR/W e=*m/2 III.12
Olom
for F’: 0

Therefore it is clear that in order to find the
pressure coefficient in the whole flow the integration in
the o( -direction is done along the line p =M , because
for that case the pressure coefficient will not depend on
the asymptotic conditions or on the distance at which they
are applied.

The streamfunction and the vorticity and their
derivatives with respect to &« are expanded in a Fourier
sine series (see (II.4)).

Substitution of these series into equation (III.10)

yields the following expression for the pressure coefficient

Cp=1- e_z""{( ium sin n[5)2+ ( ifﬂn cos nf‘b)z}
+2/RY (-1 S (=) dec
+ 2/R ivm{(-ﬂn - cos np}/n
- Zzz n gkfm1/2[ {(_1)k+n_ cos (k+n)[5}/(k+n)
[ (-1)27%- cos (n-x)p} /(k-n)]

ITI.13

+
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Table 1: Number of iterations for the
different iteration schemes
of chapter II

R rKeller - I 1T III
Takami inner outern

0.5 25

1.0 1000 100 25 4 10
1.5 40

2.0 700 70

2.5 80

3.0 150 6 20
L 6 20
5.0 500




Table 2:
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Number of iterations.

0.5 2.0 3.5
6 4 7
3 3 3

5 4
3 3

5.0

Rich. : Richardson's extrapolation

N : Number of Fourier terms
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Table 3: Dragcoefficient C4d for R = 0.5
Keller-Takami Cd = 10,227
Dennis-Chang Cd = -
T Cd Cd
N=5, - N=5, Rich.

1.000 10.262 10.313
1.110 10.261 10.313
1.23% 10.260 10313
1.369 10.259 10.3%13
1.520 10. 258 10.313
1.688 10.257 10.313
1.874 10255 10.313
2.081 10.254 10.313
2.311 10,25% 10.313
2.566 10.252 10.313
2.850 10,251 10.313
3.164 10.250 10.313
3.514 10.248 10.3%13
5.901 10.247 10.513
4.332 10.246 10,313
4,810 10.245 10.313
5.342 10.244 10.313
52951 10.24% 10.313
©.586 10.243% 10.313
1.313 10.242 10.313
8.121 10.242 10.313
G017 10.z242 10.3%313
10.012 10.242 10,513
11.117 10.242 10,313
12, 345 10.242 10.313
13.708 10.242 10,313
15,221 10.242 10.313
16.901 10.241 10.313
1£.768 10,242 10.313
20,839 10.244 10.313
23.140 10.255 10.313

Rich.: Richardson's extrapolation
N : Number of Fourier terms
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Table 4: Dragcoefficient C4d for R = 2.0
Keller-Takami Cd = 4.438
Dennis-Chang Cd = -
r Cd Cd cd cd
N=5, - N=5, Rich, N=10, - N=10, Rich

1.000 4.303 4.327 4,554 4.581
1.110 4,302 4,327 4.552 4.581
1.233 4,301 4,327 4.551 4.531
1569 4,299 4.327 4.550 4.581
1.520 4,298 4.327 4.548 4.581
1.688 4.2917 4.3217 4.547 4.581
1.874 4.296 4.327 4.546 4.581
2,081 4.295 4.327 4.545 4.581
2y 311 4.294 4.327 4.544 4.581
2,580 4294 4.327 4,544 4,581
2.850 4.294 4.327 4.544 4.581
3.164 4,295 4,327 4.544 4,581
3.514 4,295 4.327 4.545 4.581
3.901 4.296 4,327 4.546 4.581
4,232 4,297 4.327 4,546 4.581
4.810 4.298 4,327 4.547 4.581
5342 4.299 4,327 4.547 4.581
5.931 4,298 4.327 4.546 4.5%1
6.586 4,297 4.327 4.545 4.581
7.3513 4.295 4.327 4,543 4,581
30121 4.292 4.327 . 4.542 4.581
9, 01F 4.288 4.%27 4.5%9 4,581
10.012 4.285 4.327 4.53%6 4.581
11.117 4.281 4.%27 4.5%3 4,581
12.%45 4.277 4.327 4.529 4,581
13.708 4.2°73 4,327 4.525 4.581
15.221 4.271 4.3%27 4,522 4,581
16.901 4,268 4,328 4.516 4,582
18.768 4.287 4.32% 4.525 4.578
20.839 4.257 4.335 4.475 4.59%
23.140 4.311 4.326 4.616 4,580

Rich.:Richardson's extrapolation
N : Number of Fourier terms




Table 5:

1.000
1.110
1.233
1.369
1.520
1.688
1.874
2.081
2.311
2856
2.850
3.164
3.514
3.901
4.332
4.810
5.342
5.931
6.586
1.313
8.121
9.017
10.012
11.117
12.345
1%.708
15.221
16.901
18,768
20.839
23.140

Rich.
N :

Dragcoefficient Cd
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Keller-Takami
Dennis-~Chang

Cd

N=5, -

2.903
2 901
2899
2,897
2.896
2.894
2.894
2.894
2.895
2.896
2.897
2 . 859
2.900
2.901
2.901
2.900
2.4398
2,885
2.:892
2.889
2.886
2.382
2.879
2.870
2.875
2.867
2.881
2.847
2.914
2.864
2.832

cd

N=5, Rich.

2.919
.919
.919
919
.919
.919
<919
<919
.919
.919
.919
.919
.919
.919
Eil)
.919
.919
<919
.919
.919
. 919
.919
.919

NN NN MNONNDNDMNDNDNN

Number of Fourier terms

3.394
3.391
5.387
3.385
5.383
3.381
3.380
2x 580
3.381
3.382
5.383
3.334
3.385
3.385
3.384
3.383
3.381
5.379
3.376
3.374
3.370
3.367
3.363
bF¥ v =
3.355
3.346
34355
3.%24
3.389
3.245
3.502

: Richardson's extrapolation
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e ® ® e ® ® ° 4 e * a4 ¢« o o o ¢ s o
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Tk o el e, e iy el A e el syl e e i sl e ey b el
[e ¥-SCNICASEGVEGVAGVAUAC AU RGRU RG) RUNRG AU RGN RSN AGY RGNSV RGN R

VS
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B -0 W0




Table 6:

1.000
1.110
1.233%
1.369
1.520
1.688
1.874
2.081
2.311
2.566
2.850
3.164
3.514
%4901
4,332
4,810
5.342
5.98%
6.536
7.313
8.121
9,017
10.012
11.117
12.345
13.708
15.221
16.901
18.768
20.8%9
23.140

N=5,

R

N :

ich.

2.
2.
2
2.
2
2y
2.
2s
£y
2«
g
2
2
2.
2.
23
2
Zs
2y
2.
2.
2
2.
Hea
2u
2 4
.
2
2.
2 x
2.
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Dragcoefficient Cd

Keller-Takami
Dennis-Chang

Ccd

221
217
215
213
211
211
211
212
213
215
217
219
220
218
217
214
212
209
206
203
201
198
197
189
200
171
223
140
247
220
042

: Richardson's extrapolation
Number of Fourier terms

Cd
N=5, Rich.

2+231
2.231
2.231
2251
2.231
g 231
2.251
2.231
2.231
2.231
2.231
2.231
2.231
24231
2.231
2.231
2.231
2.2%1
2.231
2.257
2.2%1
2.231
2.231
AR 1
2.228
2edd ]
2« 220
2.248
2.216
2.257
2.252

Cd
Cd

for R =

2.77
2 .83

i

Cd
10, -

2.882
2877
2.872
2.868
2.865
2.864
2.864
2.865
2.867
2.869
2.870
2.871
2.870
2.869
2.867
2.864
2.862
2.855
2.856
2.853
2.848
2.844
2.540
2.831
2.834
2.811
2350
2.776
<. 908
2.671
3.023

5.0

cd
N=10, Rich.

2.895
2.395
2.895
2. 895
2.895
2.895
2895
2.895
2.395
2,895
2+ 895
2.895
2895
2. 295
2.895
2.895
2.895
2,899
2895
2899
%« 8595
2 . B95
2« 895
2897
2.894
2.900
2.887
2912
2.870
24955
2.885
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Figure 1

Domain of integration
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R=20
30 Figure3 Keller- Takami
Dennis-Chang
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Vorticity distribution
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Figu're A

Pressure coefficient
on the cylinder surface

Keller - Takami

Dennis - Chang'

R=2.0
R=5.0
R=5.0

. R=3.5
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