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ABSTRACT

~The motion of a liquid in a flexible chtainer is
important for rocket structural dynamics. The purpose of this
paper is to study the dynamic response of the liquid, the sloshing
frequencies and the stability of the free surface of zthe liquid in an

elastic conté.iner,

The variational principle for the problem of an
incompressible, inviscid fluid in an elastic containdr is presented
by considering the pressure energy of the fluid, thqz\ surface energy,
and the Lagrangian of the elastic thin shell. The corresponding
linearized equations are studied in terms of eigenvalues and

eigenfunctions.

The effects of the gravitation, the surface tension,
the rigidity of the container, the free surface contact angle and its-
dynamic variation, on the natural frequencies and the stability

of the free surface are discussed.

It is found that the flexibility of the container always
lowers the natural frequencies and also induces a mean oscillatory
motion of the liquid that creates an oscillatory force on the container
in the vertical direction. The equilibrium contact angle and its
dynamic variation have an important effect on the limit of stability.



iii

The motion of a liguid in a circular cylindrical
container with a flat flexible bottom is worked out in detail analytically
by means of eigenfunctions., Some results are presented graphically,

A numerical scheme using finite elements method is developed for an
arbitrary container, Methods for improving the solution systematically

are indicated,
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I, INTRODUCTION

Dynamics of large liquid fuel rockets naturally involves
the motion of a liquid in a flexible container., The motion of the fluid
influences the pressure at the tank bottom, and hence influences suc-
cessively the pressure in the pump, the combustion, the thrust, and
the rocket acceleration. The important effect of fluid motion on the
rocket structural dynamics is evident, In some instances the longitu~
dinal oscillation can be so serious as to affect the safety of the vehicle.
For this reason the understanding of the behavior of the liquid and the
interaction beﬁveen the liquid and the flexible contai;ier under forced
motion is important to the design of the vehicle. :

There is a voluminous literature concerning the motion
of a liquid in a container. The problem was treated by Poisson (1828)
and Rayleigh (1876) for a stationary rigid tank; see Lamb (Ref. 1). Sub-
sequently many authors investigated various aspects of the motion of
the free surface (sloshing). Most of them restricted their works to a
rigid container, although some are concerned with flexible tanks,
Bauer (Ref, 2) considered a simple beam bending mode of a cylindrical
tank and treated the sloshing as a problem in forced oscillations, Miles
(Ref, 3) determined the frequencies and mode shapes of the coupled
system by an approximate method. The stability of the plane free
surface of a liquid in a cylindrical tank in a vertical periodic motion
was first investigated by Benjamin and Ursell (Ref. 4), who found that
the stability was governed by a Mathieu equation. Later, Tong and
Fung (Ref, 5) found that, in the case of a flexible container, the stabil-
ity was governed by the coupled Hill's equations. The dynamic re-
sponse of a liquid in an elastic container has seldom been treated,
Tong (Ref. 6) considered the transient motion of the liquid in a circular
cylindrical container with a flat flexible bottom. He found that an



oscillatory displacement of the liquid relative to the tank walls in the
axial direction was induced by the flexibility of the bottom and it was
this relative displacement that created an axial oscillating force that
acts on the system. This oscillating force vanishes in the case of a
rigid tank. The oscillating force can alter the motion of the system,
and,more seriously, can affect the stability of the whole vehicle,
However, the analysis presented in Ref. 6 is too idealized. It is the
purpose of the present study to extend the results of Ref, 6 to more
realistic situations, in the hope of ultimately applying it to a practical
design. :

We shall consider an elastic thin shell container of an
arbitrary shape. It contains an inviscid, incompressible fluid with a
free surface., The liquid motion in the container is assumed to be
irrotational, Surface tension of the free surface will be considered.
At the ground level, the effect of the surface tension on sloshing is
negligible, e‘specially in a large container; but when the gravity is
greatly reduced, the surface tension becomes impoi“tant. Near the
zero-gravity condition, the free surface is highly curved because of
the surface tension, For example, a liquid in a vehicle orbiting the
earth at approximately 100 nautical miles experiences a body force of
10”7 8y Where g is the nominal value of the gravitational acceler-
ation at the earth's surface. At such a reduced gravity we are usually

concerned with the motion and the location of the liquid in the container.

We shall first formulate the problem by the variational
method in Sections II and III. From the variational functional, the
properties of eigenvalues and eigenfunctions can be easily studied. By
the maximum-minimum properties (in Section IV), many general effects
of the elasticity, the gravitational force, the surface tension and the
contact angle between the walls and the free surface can be deduced,

A particularly simple example will be given in Section VI to illustrate
a method of obtaining the solution and the application of eigenfunction

expansion for solving the initial value problem. In the general case of



arbitrary tank, the analytic solution is hard to find. A numerical
scheme using the finite elements method for obtaining approximate
solution is proposed in Section VII. The convergence proof of this
numerical scheme for the static problem will appear in a future
report. In the case of the dynamic problems, it is subject to

further investigation.
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II. MATHEMATICAL FORMULATION

An inviscid incompressible fluid is in an elastic
container as shown in Fig, 1. The walls of the elastic container are
made of a thin shell, The fluid motion in the container is assumed to
be irrotational. Thus there exists a velocity potential, which satisfies
the Laplace equation,for the fluid motion, The ﬂuidﬁ exerts a pressure,
which is rela.t%;i to the velocity potential through Bernoulli's equation,
on the elastic walls. The normal velocity of the wé',ll is equal to that
of the fluid at the liquid-shell interface., No cavitation is allowed.

 Because of the geometrical complexij:y of the problem,
we shall try sé,_ixéngit by a variational method., We w111 propose a
functional and show that if we require the first va,rifé.tion to be identically
zero,then all the differential equations and boundary conditions required
to solve the problem exactly will be obtained. The functional is in the

following form:

{'\
J = S*O 1 dt | (2.1)

where

1-T41,+ 1,
Ib:—- —-S /%) dv (2. 2)

1=0 d5+0'5 ds“'ﬁgds (2.3)
2 Ss‘ VS S2-Su SL s,

I? = Lagrangian of the elastic shell © (2. 4)



L is the so-called pressure energy (Ref, 7) where p is the pressure
in the fluid. Actually L[1 corresponds to the Lagrangian of the fluid
(see Appendix A). V is the actual volume occupied by the fluid, I
is the surface energy., §, %S’ G‘éLare the surface tensions(assumed
to be constant). Sl’ S‘2 - S3, Saare the actual surfaces of liquid-vapor,
vapor-solid, solid-liquid interfaces respectively, I3 is the Lagrangian
for the shell, In the following, we shall give a detailed derivation of
the energy expression 13 before we show that the functional J in Eq.

(2.1) really satisfies our requirements.,

A, Potential Energy for Elastic Thin Shell

We shall consider geometrical noﬂiﬁearity only; the
strain-stress relation obeys a linear HookesLaw, The strain at the
middle surface, the ratio of the thickness to some characteristic
length of the shell (e.g., minimum radius of curvature) and the
rotations are all assumed to be small compared to one, The displace=-
ment field will be restricted to the case in which Kirchhoff's assump-
tion offers a good approximation, We will also assume that the
shearing stresses are zero on the inner and outer surfaces of the
shell. In addition, we assume that the products of the strains them-
selves, or strains and rotations, or strains and the thickness of the .
shell (nondimensionalized by the characteristic length); and the square
of In-plane rotations, or the cubic of the out-plane rotations, are all
small compared to strain itself. Under these assumptions, a rather

simple strain energy expression for the shell can be obtained.

We shall use a set of intrinsic curvilinear coordinates
%o( , A =1, 2, to describe points on the undeformed shell. The
general tensor notations will be used to describe the deformation of
the shell, Following Kirchhoff's assumptions, the displacement field

is assumed to be of the form



U= T 4w, +3 Y | (2.5)

where o rai}ges overl, 2, gc‘ are the base vectors ?n the middle
surface of tha undeformed shell, Ny is the unit outward normal, z
is the distan¢e measured along —No from the middle gurface, and u;

is a vector which depends on 9(,“,

‘:5_-\':- N — N" (2'6)

—

where N ( ';c“) is the unit outward normal after defoxj‘i'nation. Under

our assumptions, we find that

W= -3 (Mf\oz+ uv—bs’a\) ﬁ’d (2.7)
where bro( ig defined by the equation

o Ady
2& DN, = ﬁver (2. 8)

brew =
v Yk oo © N

and shall be called the curvature tensor, A single stroke denotes the
covariant differentiation with respect to the base vectors of the middle

surface, Then

22U

2% = (Ualp—bepur) '+ (wrlp + wbiple

 IC Y wi By N.) (2.9)

5= (et W B g



T

The Green's strain tensor, with the local base vectors approximated

by the base vectors of the middle surface, is

Bap=3 (835 + vl ~ B 320
(2.10)
= Cuy 3 Wlkwlg - 3 ur\‘,,@
where
Cug = 5 (vl = Ugly = 2 bagw) (2.11)

We recognize that e‘><§ are the so-~called infinitesimal strains at
the middle surface and uS‘L( are the out-plane rotations.

From potential energy theorem, we have the energy
integral

R,
=40 (, St eads -4 5_2; e 4

(2.12)

£, .
*‘gs (S%UT#? f/é/lds *S’YWJQ g ) S¥y, U ¥db

’%,

In this equation Si'j is the Kirchhoff stress, i and j range over 1, 2, 3,
and r;_ is the portion of the boundary curve of the shell where stress
is prescribed, Uj is the jth component of the displacement vector
that

U = Up-3sle
(2.13)
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A dot over u denotes the time derivative of u. )%‘ is the direction
cosine of a unit vector lying on the middle surface, normal (outward)
to the boundary curve T; o his the thickness of the shell, f is the
Jacobians

§=1-3ba ~ Fdar (B = | (2.14)
Let
33 ¢ NPT 23 | B4
P=(s fy)é:_alz \_% (2.15)
E/Z ®3 Elz o>
= g.a/z STidy = SM g ‘*?‘ (2.16)
Rro
,ﬁ«(&g g 5»((3 54
% 8 &) é'ég ‘3
. (M e [
= S S } dy (2.17)
"e‘/z 1_2
The strain energy per unit middle plane area is
G =4 % >
=2 o, S Eo((s§ d3
(2.18)

= LA (Sxp + L wlawlp) « i].g)



Then 'ﬂ' becomes

T T, T pods -3 Sh(Whards, @

where

M= Ssé dg , (2. 20)
_ - = o B ]
M, Sﬂ:(, Vdurdl—bgrvn UVl + Twm lohdk, (2.2

with a bar over a quantity indicating that quantity to be prescribed.-

Let the constitutive equation be

ST = e, (2.22)

where Cc{@)‘e are independent of Eygq and z. Thus, Eqgs. (2.17) and
(2. 20) become

~ @I
n“‘g:% c*® (em + 34 wix ur}@;g (2, 23)
~ 5 PR

B _ % Cues W\ 2, (2, 24)

W, = %&S C*eNT (eu@em* f—;bﬂu@w)@d'ﬁ»

+8 gs;C_; e"g(e.‘p § wlwlwhwlydS | @.29)



The first integral of Eq. (2. 25) 1s the linearized strain energy
expression under the thin shell approximation; the second integral is

the contribution of the geometric nonlinearity.

By varying u, , w arbitrarily and using divergent

theorem appropriately, for a smooth boundary curvaﬁygl one gets from

Eq. (2.19):

Sﬂc\ta u SS( PR U~ A F)) Sugds

{30480 (5 Pl 5 05

(2. 26)
; Srq‘('n"?’— RIS+ { ) nSal o
+ gr&(;‘dﬁw(%—— m® [ % urd,Q%

under the condition that Sup R Sw‘ and Sw‘i 0 at t and t o’ and on the
boundary where u B> o and %w‘"@ are prescmbed

If the first variation of S T dt is zero for arbitrary
§u§ R Sw over S + s and S(«T!m over T;. ,0 one will require the
differential equations

e \@ = §Hh u (2. 27)

- T’;tdﬂ pou ﬁdgb«@ -+ (ﬁ“@wlﬁ)i o™ —%AS‘P\ W . (2. 28)



]l

to be satisfied over S and boundary conditions

(VLV‘?’ _,_‘ r?\“‘?’)))(s :O or Suo(:o

2 Tt _ = P1

S l0m = Sx® (2. 29)
+{?‘i,°<+ %“?’\b—%“aw\(&.\wx:o or S\«Y:o

(@ — By Vv =0 or »= S, =0

on 8S with { to be the curve 89S, In the Iimiting case of the static

deflection of a flat plate, b =0, u® =0and ir=0, von Karman's

=
equation for large deformation of plate is recovered, There is a clear
detailed discussion about the assumptions involved in this case in
Fung's Foundations of Solid Mechanics, Chapter 16, (Ref, 8). He

derived the von Karman equation directly from three-dimensional

equation of equilibrium using undeformed state coordinates and linear

Hookean Law relating Kirchhoff stresses and strains.,

In the case of an igotropic shell with plane stress
approximation and the local metric tensor approximated by that of the
middle surface, one has (Ref, 9)

VOGP 2L

-y

where G is the shearing modulus, and ) is the Poisson ratio., In this
case the expression for the second integral in Eq. (2.25) can be

written as:



]2

o(ﬁ)\e‘
Ta=2 | § e 44ttty ds
X

=% 55{% N Ulg ulairlo -6 3™ bpislasly v (2.31)

-GV o
oo, ““'@ duf + iy, (qrd }ds
Note that
8‘\'“‘& W= wl«x §-°l or (8!‘&0\ w’)lz ad@\!ﬂa (ﬂ"@ .

A special result noted by Koiter is of interest. Con-
sider the case of a spherical shell of radius R with «J = 0 on the

boundary., Omne has
ot - o A
e =0 %

Then the second and third terms in Eq. (2. 3l), which involve cubic
terms in & only, become simply

_GOywY R N 2
2 C-MIR st—%r < UJ‘> ds

= M ggwiéd@wiu@;ds (2,32)

2L C-)R

G OG+WMHR
F (=R

{l

gsur" Or*wd g



l3=

If further \:7‘2&»0‘ = %W, then the above integral becomes

GOo-VR

>
m% gsw ds, (2. 32a)

Hence for such a spherical shell, we have Koiter's expression:

¢

N0
=3 g% Wl ]y + Gcwjfgg 534S« 0@, (2.33)

B, Variational Functional

Now one can proceed to prove that the functional J in

Eq. (2.1) satisfies all the requirements., From Section IIA, one has

1327\ “T\z - % g_s ?‘&' \}"zd % (2. 34)

=Ll Ta®ro . ~ o
'W,"zgsz[“ (Cup* 3i0lor|) + MR @wl&ddg (2. 35)

3+ e |, l)@ d L - (2.36)



Zl4-

as in Egs. (2.20), (2.21).

The arbitrary variation of displacements over SJ_, SZ
and velocity potential ¢ in V, subject to given boundary conditions

SS}_=S(§L¢:O at SS;-R,- P
%\_J_\ =%C§ =0 at t‘#;,-e!, (2'37)
)_\__\S\_L‘?-: N’S& over Sz $

where u is the displacement of the shell and u, is the displacement
of the fluid or the vapor, will give:

£, 4,
8, Tdt =- gt@ Egviy dv
=C ( gV%fdv +§5‘+;§N-X<}{dg\dt ‘5-38’
Since
'&@: -801%‘% - 3_&') °f <+ % (‘7#5)2} (2.39)

where r is the position vector, and Po is the density of the fluid, one
gets

zw-ﬂ?é) +vq . 75h]



~15w

and

t

Bgi}‘dt:"&;l 5 ’%»H'g\_&{ 43 dt

& S|+Sg

T,
5. 0,132 - 4ldvaf, wopspas)at
=Sj | PN-suwdse
et (2. 40)

+5:S’ Lﬂs (vb-22) Nsbdsdt
._'S:yo gv v*$ sbdvdt
] T,
S g:gl:clt = S-te 81, dt )

where

51,= o ds +op, 8 a5 oy 8l ds

2'53

=- o BlN-Sugds A BLNSUAS
2”23

i, « ,
s;_sgsabdw;-sugds o 1osus dn

[

- (T G| 7S¢ 0 T msuan
3%, T 7



16~

where N is the unit outward normal of the surfaces. ; and n, are the
unit vectors lying in Sy and S3 respectively, and normal to the curve
BSl which is the curve where Sl and S2 intersect, n, is the unit vector
lying on S, normal to the boundary curve PQ, of the shell, Bot@ is

the curvature tensor for the deformed surfaces. n; can be decomposed

into two parts, namely

Y= a0 N+ B, 1y (2.41)

Then one obtains

812 = ";‘G— Ss‘ﬁoi E- %B{ds "O/VS SSZ‘BSE,N‘SQS AS

—%%B‘ig-&g;ds +0‘§ Awn Do N-Bu AL

o

]

(2.42)

+G’Vs SP ﬁz * S"ﬁ dg
T

-+ SZS{Q' cm@o - (G_ys" G_LS)} A SB& &X o

From the result of Section IIA, we know that

SS*‘L&: C'US: (SR8 - 7%)o) Suy dS7

t, *,

+ SS* {?‘9\\0’ 4+ %ﬁ‘g‘gm' ﬁd@ha@ - ('ﬁdg (LTI‘Q)D:BSWAS*
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N gr:(ﬁ*h gk L - (r; R I

4 gr*(wﬁw‘l@“q‘@\@'%&) Vi S éf, (2. 43)

g

#
where an asterisk refers to undeformed state,

The surface and line integralsin Eqgs. (2.40), (2.42) are
all integrated over the deformed state. The parts that are integrated
over Sz, 8Sl and rt‘r must be transformed to undeformed surface

before one carn compare with Eq, (2.43). Since

No= N = (wle v wWhe) g
(see Eqs. (2.6) and (2.7)) and
dS = (v« EX) 457,
where E " defined in Eq, (2.10), then one has
N-§udS =[Sw= (Wl + Whed) SuY(i+ ER) ds*

Substituting into Eqgs. (2.40) and (2.42), one gets
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. )
Six,dh— &c{ SS+S?° (v —%‘%3.&1 £ ds
- 5v 5.v'¢ 59 dV'SS"t’ N-§UedS (2. 44)

- SS* POEXy [ (wlerw bobuy s dt,
3

+ g
89, Ldt =i {-O“SS B N-5UcdS + Ty gr*%su@% a’
& 'y ' Loy

3 § L0 08, - (Tys - Tie) Na- Sy d

3 )Sl
~0’S win By | Bur - (wrl, Wrbu)%\f‘} dﬂ* (2.45)
osF
“B;Sg BL(i+ed )igw (lyr ueb) SW) d S
S‘lr Sd—

~Ozs§ B e 0 - Goloub 3] S de

When

1,
%'5 =§1(SI‘ +%II-§I3) dt =0 (2.46)
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for arbitrary variation of SE, Scb and S_l_l_f under condition of

Eq. (2.37), one will require the following differential equations to be

satisfied:
V=0 in v
(V&"%%‘)‘N:O on 5, Sy :
OPx+b=o0 on 5,
~ .v 0t ¢ \ ‘
no«e\p - P = [ULSB@(WEiy '§:+q~m9,‘%*%(§a*ﬂ
% (W'\p('-\- uyb‘;{) 8“"&
o S

= 05 B (14 E3) (wle + wrb )3

+ %
on 52 ""Sa

and

- M Py + T bgo + (AW wiphh - P&

== P - 0 B + T ooin, %* $ (39

on S:

(2. 47)

(2.48)

(2.49)

(2. 50)
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= -0y )Ef; on S: —SZ (2.51)

where d X /d /Q* is the ratio of the deformed length to undeformed
length of the curve 881, and

S(P) is so defined that

S(I") = 0 everywhere except on the curve [,

LI £ PeS. (2.52)

where { is the arc length of 1" in 8.

One also requires the following boundary conditions to be satisfied:

G‘vs\)x“' ﬂxﬁﬁ(s: ;1“\3))(5 or gu(b:o

2 T ~upyyy R4 -
ag[(”‘“ﬁ"w‘ D) -3,

" (2. 53)
+V<><Cw7\"?’w)$— %“@)@) =0 S o
W=
(<P 3= Uv‘v(ﬁ =0 or \)o‘gtﬁlm =0

on the boundary 882 of the shell with R representing the curve BSZ
and

T e ©, = U -0y or T.":'SYJE:O (2.54)
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on 85y, The first condition in the last equation is the constant angle
of contact between the liquid and the shell, The second case is the
so-called stuck condition. Thus by requiring the first variation of J
to be zero, one gets the differential Eqs. (2.47) - (2.51) and the
appropriate boundary conditions in Eqs, (2.53) and (2.54).
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IIL. LINEARIZATION OF THE SYSTEM

In this section, we shall simplify the formulation of
the last section by restricting ourselves to a system as shown in
Fig. 2, where S; is the free surface. in a static equilibrium con-

figuration, S4 and Sy are rigid gide wallsg, S4

S2 is the flexible elastic shell, and c':)S1 is the intersecting curve of

the liquid-vapor-solid interface. r is the position vector of a spatial

belng the wetted area,

point, The motion of the liguid and the deformation of the shell from
its initial staté are assumed to be infinitesimal, ‘i‘hus the system

of the governing equation can be linearized. Finally, we assume
that the surface tension between the liquid and the shell surface is so

small that it can be neglected,

Let u, be the initial deflection of the shell, If one
uses a set of intrinsic curvilinear coordinates x* (et =1, 2) to de~
scribe points on the initially deformed shell and writes 'T‘"6 and mi‘?
as the initial stress resultants and stress moments, one has from
Egs. {2.23) and (2. 24)

AP=TC+ R ¥ g aiwly e
w = '\m':‘e” « Mm@

Here W is used to denote initial normal deflection and w~ to denote
the perturbed normal deflection of the shell, m*P and n*P are the
perturbed stress moments and stress resultants respectively. We
shall make the assumption that wWily urlg are small and can be
neglected, Substituting %P and ®*B into Eqs. (2.48) to (2. 51)

and using the fact that
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T"@\@z o

- m:‘@\(’au* 70‘6 \:,@ = jFo

after linearization, one gets

6 -Ly.w.=0 o S, Sa
T(B-x)+% =0 on S,

,‘ (3.1)
YL"&[?, "_S’—Q\ 0= }ﬂ (win+ \krg‘;\)ﬁm on Sa

- Yﬂuﬂ\@u * 'n"‘%\;@u'*'r‘"@ur‘u@ - ?P\w' = "QP’ on 3,

where L KZ(( is the mean curvature of the free surface at static
equilibrium, Py is the pressure on S1 and SZ at the equilibrium state
and p'! is the disturbed pressure that

%'=-5, [%é—;— -gtrNR —9ews] on 5
(3.2)

=~j’{-i— by - U - -3 T’] on S,
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where 7Z 1s the perturbed free surface displacement normal to the
equilibrium free surface. LA is the vector form of the free surface,
S, and the middle surface S, of the shell, _gl(t) is the disturbed
gravitational acceleration and

5]
Tfﬁe ==£i C§@>‘ € re

(3. 3)
rre® o B o
V2 °

If the shell is simply supported or clamped to rigid walls, then the
boundary conditions for the shell are

p
W=w=0 and either VP-W\“(”)).(:O()r })\,3"@'—1 ©, (3.4)

i

For the free surface, we shall assume a general boundary condition

for Q on 851:

2 =
Sh W =0 .5

where 8/8n 1is the direction derivative along a vector n. Heren is

a unit vector lying on 5 and normal to the curve 881, the positive
direction of n is chosen to point toward the container, G/H is the
hysteresis coefficient, When G’H—-” ©?, we have the "stuck'' condition
72 =0 on 681., When G’H is equal to a certain walue(see Appendix B),
depending on the local condition of the container and the equilibrium

free surface on asl,we have a constant angle of contact.
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To simplify the equations further, the following additional
assumptions are made: (1) p, is relatively small, the products of P,
and the components of the displacement vector or the deformation

gradient can be neglected on Sy (2) the term

?o_a&) * \.é

in Eq. (3.2) can be approximated as

$e 39 No w-

on SZ“ Expressing the terms B:: - K::

(see AppendixiB), and using a . Rdﬁ and a .,

curvature tensor and baee vectors respectively for the free surface,

explicitely in terms of Yl

as the metric tensor,
one has the following governing equations for the linearized system:

_ The differential equations
v = o im V3.6
0 (0 g + k3 KE ) 4 4= 0 on S (3.7)
n“\%\@ -9 WY =0 on S,  (3.8)

¥ ¥ T shis Bz e S o9
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where

}P'=’?ol%% - 3,¢"N°’l —a‘(t).l‘;] on S

(3.10)
1“?[~é-‘&nhlw~j¢3f] on 52
The kinematic conditions
X S
N -V = — on ]
5 & ot
= _?_\E on >, (3.11)
ot
= O on 54
The boundary conditions
W(%,td= o on 23, (3.12)
either W“BVG--O or k=0 on 95, (3.13)
?
a?a + W= on S, (3.14)



in Eq,

where

27

It can be shown that under our linearization scheme
and the additional assumptions named above, the functional defined

(2.1) is reduced to the following form:
e
J={"1dt
+,
I = I\ + j Y - -3_3 - 3-4 9

3= %SS‘_U(Q“@MN Mg - KRS )2 g0n, T

'Z—?,,a‘(ﬂefo Q} ds + %LS@G;‘ 'QI&Q

34--5@ 7ds Ssg, ords -4{ bTav

(3.15)

(3.16)

(3.17)
(3.18)

(3.19)
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It is straightforward to show that the requirement for
the first variation of J in Eq. (3.15) to be zero, will provide us all
the equations (3.6) to (3.14)., The functional in the form of Eqs. (3.15)
to (3.19) will be used to obtain approximate solutions which will be
discussed in Section VII,

We shall call Jl the potentlal energy of the free
surface, and Iy and 33 the potential and the kinetic energy, respect-
ively, of the shell, In order to give the physical meaning of Jy» one
must write it in a slightly different form from Eq. (3.19):

= -g‘@(&i&# 0ds +§ Szwas‘) +§,24 %ds
+S§FA’ %g ds - -é gv 3067&)1& V. (3. 20)

If Egs. (3.6) and (3.11) hold, then we have

34:"%5 ( SS'S’QWdS +§Sa§’°4>wd534 é §?°(V4>)2<\v9

Since the first term in the right hand side makes no contribution in the
variation, it is clear that 3'4 corresponds to the kinetic energy of
the fluid,
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Iv, PROPERTIES OF EIGENVALUES AND
EIGENFUNC TIONS

In this section, we shall assume the gravitational force
g is constant, i.e. g_l(t) = 0, Thus the coefficients of the system
of equations are independent of time t, Then one can assume a

solution propgrtional to a time factor

eiwt

and eliminai:e the time derivatives in all equations. This enables one

to study the problem in terms of the eigenfunctions, |

“We assume ¢, ‘Pz and u to have the form
. y ot

1= Hex, el (4.1)

s
1l
1
~
[

=
-
0,
&y
4
~~
=
Z
4
C
&
-~

where }k =w2 and & , H, and U are functions of spatial coordinates
X only. Let us define

>
"‘i = No v ‘ (4. 2)
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on the surfaces that bound the liquid. If one substitutes Eq. (4.1) into
Egs. (3.6) to (3.14) with Eqs. (3.7) to (3.9) being differentiated once

with respect to time one gets

v*$ =0 in \
(0 Kl + XEEM +5 0 d
R NH=0 S
NC[g + ppRUS=0 on s,
_M“@\@,{ +N"‘%@ﬁT°‘@NLf@*W\)&N
=- (5 1 8+52.9.NW) on s,

where ng 0 Ma@ are so defined that

o ENLIC ciwt

W@ = (B e;m‘:

(4. 3)

(4.4)

(4.5)

(4. 6)

(4.7)



3] e

The kinematic conditions become

%%. = H on 3‘
= W on 51 (4. 8)
= O on Sq,

and the boundary condition in Eqgs., (3.12) to (3.14) becomes

W= o0 (4. 9)

and either W \ &= O or Md%)) =0 omn DSZ (4.10)

24

and _'3—'7‘- “+ G;‘ H =0 (4011)

on 851“ The functions @ » H, and U that satisfy Eqgs. (4. 3) to (4. 8)
and boundary conditions (4.9) to (4.11) form a set of eigenfunctions
and the parameter /.1 is an eigenvalue of the problem,
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A, Orthogonality Relation

If one takes Eq. (4.4) with

.= B(x, ma)

W= RO, pw)
(4.12)

=‘:)_; (ﬁ,)*m)

fim = ]

and the corresponding equation with n instead of m, multiplied by
H, and Hm respectively, subtracts and integrates over Sl’ with an

appropriate application of the divergence theorem, we obtain

0. §, (Pnu o - in @, WYdS = O

Qr

S & 3& M“& 'a&m)ds -0 (4.13)

ﬂaM

Similarly from Eqs. (4.5) and (4. 6) we have

28, 20m
S’“Pwﬂ»lg%» 0,ds +,?°55(/u B2 - a3 ds =0 (4141
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If we add Eq. (4.14) to Eq. (4.13), we get the new equation
) 3& 29,
y‘?\,()-‘m N“)S S M &S'ﬁ'j g\ (pm aN ’A §v¢ bN)AS =0

On noting the fact that

2%;

7@:0 (5:M,*n) on - Sq,
| 3%
S +g§? ~ 4G = gvi AORVE g&g =
and ‘: oV = S\ * S}. * 54 s

Eg. (4.15) may be written as

o (g $R UnchadS+( 5,98,:98, g0 0

Since}xm#})\n if m # n, we have the simple orthogonal relation

f’e‘gs Um-U,dS * % g\i V§M°V@ﬂd\/ =0

or, since Vlémzo and Vzin =0

. (4.15)

{4.16)

(4.17)

(4.18)
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S,

ad "
U U, P L o s
'BS%P«__M, AS+§+§8§“3M43 o (4.19)

There are two simple limiting cases. First, when Po tends to zero,

we have

SS SR Um -W,dS=0 (4. 20)

which is the case of free vibration of a shell. In the second case

Um = 0 on SZ’ 50 we have

amy

S\/ s Vﬁm'vénc‘!\/ =0 (4, 21)

which is the case of a rigid tank,

If necessary, by multiplying with a constant, we can

arrange that
u‘“ ) -4 : -
SSZW (Un) ds g\/ 5.(Vh.Ydv=1 . ez

Then the functions § s U__ and H__ form a normal orthogonal set
m’ —m m

in the sense of Eqs. (4.18) and (4. 22). Sometimes we can neglect

the in-plane inertia, i.e. we may approximate Eq. (4.5) as

“¢l = .
N\GO
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By so dolng, we shall get the orthogonality relation

28, 28,
SS he =t ds +§V &?éﬁm-v&“dv =SM (4. 23)

BRI

where émn is the Kronecker- 5 . Note that

2

% _ S
P o"

If M= a+iv £ 0is a complex number, then its

complex conjugate

f-ﬁ::a-ﬁ- (‘LV)

would also be an eigenvalue. Since &()_( 9;1 )y H{X, }'; ) and U( x ’P )
are the complex conjugates of @( 2(;,}1 Ys H(_”_('/LA ), and U( 5’}1\) respec-
tively, Eq. (4.18) gives

Ssz% M \Ids * g\/?° ‘vém\/:() (4, 24)

which is impossible if Vé and U are not identically zero. Hence
all eigenvalues /u(rz (,02) are real, l.e.(p is real or purely imaginary,

For an arbitrary /A,k one can find the set of functions
?é (% ,}.A ¥s H(z(_,).k )» and U(y ,}A ) that satisfies Eqgs. (4.3) to (4.8)
and all boundary conditions in Eqs. (4.9) to (4.1l) except one, say
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W@, p> =0 on 95, (4. 25)

then Eq. (4.25) becomes the frequency equation of our problem for

the determination of }A . If we have another similar set of functions

§ (2 ,}A/ ) H(2, ,,,') and U( Z,}A‘ ) then one can easily show that
( p—)d)Us‘gB\ U, U, pw)dS +§V§, v, 1 NP, )dv]

= {B%@"‘c».(,pwcg, = A, ) W ,/A'J] Vs d) (4. 26)

where

Qd (2, = NP(@(L}A) W (K,f«))gmde(’s,)\«) \ S

which is not identically zero for any eigenvalue }x except the case of the

trivial solution U = 0, If }Ao(# 0) is a double root of Eq. (4. 25),
then

WG, eV = 00

]
on 8S,, as Y->0. Hence if [l = J_ ;i)) and A= -1V, the
right hand side of Eq. (4.26) is O() ), but, if one excludes the
trivial solution § = constant and U= 0, the left hand side is

—~ LY
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Thus, one obtains a contradiction. Hence all the roots of frequency
equations are simple except the possibility of existing =zero roots,

which may correspond to one trivial solution and one nontrivial

solution,
B, Extremum Properties of Eigenvalues
a. Classical extremum properties

For further study of the properties of the eigenvalues,
we introduce the quadratic functional expressions @(t_{, H) and

W8, 1 detined as
%CQ,H) =DCQ3H)*§3§G¥\H}‘1Q§ (4‘.27)
wh DY, = DCHY + D)
D(H >=§S,vwmu TR LIRS o S, DS
Dt =] L egers + TPl W,
+ £ P Lgwlo 5.8, W dS

and M&,9‘>=§Ss>%(u§ds+§vg,,(vcmv .
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The associated forms

DCwh; W) =DCU,H; W) +] a6, h'de

(4. 30)
DCUH; UL =SSIU(Q“§H\pﬁl“-Vé¥§HH} P30, HH'TdS
B0 ’ , 3
+SSE%C % %e)&"'—r“(sw LK W l 3 t %Cxﬁ)@w L{(:swl'm
“PMowWwwW'] dS (4. 31)

ACEY;8,0d=) uUds+( 5 vd vBdy @3
| s, Vv

satisfy the relations

Plu-u, B0 =D, W) +2RW,H;L ) +DEWLHY
(4. 33)

AE6 U0 = N(E,0)+2 1 (8,0; 4,0 4@, 1)

where Q = Udﬁﬁ “~ W No

Zeb((a_, = Ua‘.‘(};'\'uﬁdm -2 N@N

>8 _
W‘H on gs

=W on S,

i

O on - Da . (4. 34)
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and @', U'O‘, W', and H' satisfy the similar relation. We require
the argument functions to be continuous in their corresponding closed
domains, where the functions are defined, We also require Vé to be
piecewise continuous in V. U and 8 ® /9N must have piecewise contin~
uous first derivativesin S, and S 1 respectively and d §/8N must have a

2
piecewise continuous second derivative in S

20

One obtains the eigenvalue Nm and the associated
eigenfunction sets @m’ I__J'_m, H__ of the differential equations (4. 3) to
(4. 6) from the minimum properties, similar to that of Ref, 10, p. 399,

under the conditions
PACRREN

VZ@:O in V

%_%. = H . in 5,
= W in Sz
=0 in Sy . (4. 35)

The admissible functions which minimize the expression § (U, Hlcanpidse
a set of eigenfunctions él’ g—l’Hl for the differential Egs. (4.3) to

(4.6) and satisfy the boundary conditions in Eqs. (4.8) to (4.11). The
minimum value of@ is the corresponding eigenvalue, If the harmonic
function @ satisfies not only the conditions in Eq. (4. 35) but also the

orthogonality condition

H(d,U;8,,u)=0 (4. 36)
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then the solution is again an eigenfunction set @2, U,, and H2 of

Eqs. (4.3) to (4.6) satisfying the same boundary conditions, The
minimum value %)(_112, H,) = }Lz is the associated eigenvalue. The
successive minimum problems, @ (U, H) = minimum subject to the
conditions in Eqs. (4. 8) to (4.11), (4.35) and to the auxiliary conditions

NC@aQ—) @ﬂ)gﬂ):O CV\: 1, 2.,""",?“") (4. 37)

define the eigenfunction sets Qm, U, and Hrn of Eqs. (4.3) to (4, 6)
with the boundary conditions in Eqgs. {4.8) to (4.11). The associated
eigenvalue ,Um equals the minimum value 8 (_gm, Hm)a Thus the
eigenfunction sets of the variational problem satisfy the orthogonality

relations

(B, U805, (4.38)

A' $(9m,Hm}Qan\:O for miwn
=}Am for "= n o (4.39)

If one assumes the minimum problem of the above type
to possess solutions with sufficient continuity requirements, it will be
easy to show that the solutions of the variational problem are also
eigenfunctions for our differential equations (see Ref, 10, Chapter VI).
Eq. {4.38) simply follows from the definition of Qm and Em’

Eq. {4.39) also follows immediately from Egs. (4.3) to (4. 6).
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However, we still have to show that they furnish all the eigenfunctions,
except the trivial one ( @ = constant and U = 0, H = 0 with its
associated eigenvalues to be zero), by showing that the system of
functions @1, @2 «os. Obtained from the variational problem is
semi-complete, i.e. any harmonic function in V can be approximated
by the linear combination of Q_ﬂ up to an additive constant. This

agsertion will be proved later.

b. The maximum-minimum property of eigenvalues

and its direct consequences

Omne can define the mth eigenvalue and its associate
eigenfunction without reference to the preceding eigenvalues and
eigenfunctions. Instead of stipulating )d{ @, U; @n’ U)=0

- —n

n=1, 2, ..., m -~ 1) one imposes the m - 1 modified conditions,

MCd, U598, v, =0 (n=t,z,—,ma) (4.40)

where V 4, v 25 oo v a - 12%e arbitrary piecewise continuous
functions on S2 and VY s ? s oeo '}Z/m -1
functions which are harmonic in V. Under the conditions imposed,
the functional 7({.(9‘_, H) with U and H satisfying Eqgs. (4.9) and (4.34)
has a greatest lower bound, which depends on @n and V o n=1, 2,
veo; M = 1) and will be denoted by dm( '}?ns Kn)° Then one has the

following theorem.

are m ~ 1 arbitrary chosen



-l 2

/)(,m is equal to the largest values assumed by
dm(@n’ Y—n) if "I'n and }_’n(n =1, 2, ... m - 1) range over all the
sets of the admisgible functions. The maximum-minimum is
attained when /\Pn = @n and }_fn =1—-1~n n=1, 2, oo , m =1) where

é n and u, are the first m - 1 eigenfunctions.

To prove the theorem, we first notice by definition
dm(ém,g”‘):}AM °

All we have tg show is that Mo is the maximum.  Let us choose a
set of functions @ » U, H to be the linear combination of the first m
eigenfunctions such that

wi
H = 2 a“ \’\h
w=y

where a_ are constants, For arbitrary m - 1 function set ’Q’ and V
n n —n
the m -~ 1 orthogonal relations in Eq. (4.40) will lead tom -~ 1
homogeneous conditions for m guantities Byp By eve p B and thus
those conditions can always be satisfied. From the equation (4. 38)

one has
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H(B,uy=3 d=| .

Since

$CQN’H"‘; Q;: H))= @)

for m # j, and

@(\Qn,Hn):/un !

one gets

®CQ,H Zav\"ﬁ'w\}ﬁm °

n=y

Thus the minimum d ('\1/ V. ) is certainly no greater than /Ame
The proof is complete,,

Two simple principles, exactly the same as that of
Ref, 10, p. 407, can be concluded from the maximum-minimum
property. (1) By strengthening the conditions in a minimum problem
we do not diminish the value of the minimum; conversely, by weakening
the conditions the minimum does not increase. (2) Given two min-
imum problems with the same class of admissible functions, for every
set of admissible functions, the functional to be minimized in the
first problem is greater than or equal to that in the second problem,
so the minimum for the first problem is greater than or equal to the

minimum of the second problem.

From the maximum-minimum property and the last
two principles some important conclusions can be drawn for our

physical problem. (1) Flexibility of the container lowers the
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eigenvalues, (2) If two problems have the same static equilibrium
free surface, the problem with the larger G"H everywhere on BSl

will have larger eigenvalues, Therefore the stuck condition for the
free surface gives the largest eigenvalues. The sloshing frequencies
are the square roots of the corresponding eigenvalues, one can
immediately see the dependence of sloshing frequencies on the
flexibility of the container and boundary condition of the free surface.

Cs Number of eigenvalues and infinite growth of

- the eligenvalues

The eigenvalues and their associated eigenfunctions are

infinite in number. If there are only m eigenvalues, from the m seis
of the associated eigenfunctions @n’ U, and Hn’ we can always
choose m points X 1 Xor eee X such that the m x m determinant

dsX | &, (25)| =0 ., (4.41)

Let é, Uand H be a set of functions satisfying Eq. (4. 35) and only

at the m points '&1, Z’Z’ coo ?ém

@Q‘\n\ = @m (20)

Q (9_(“) = Qm (.’.‘v\) (4.42)

B &)= W (20) (n=1,2,-m)
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but these functlons do not equal to ém, U, and Hm respectively

elsewhere, Let

) ™
@ = @ - V\Z\ aﬂ@“
(4.43)
U'=U'-3 a.u

where

Gn= W C8,U,8,,0,) (rsi,z, om), Be44)

Obviously @‘ and U are orthogonal to all the eigenfunction sets, i.e.

)A‘Cé”uiz §V\)Qw) =0 ()'3:%,2,»---\’71)9

We claim that @' and I__T_’ are not necessarily constants, for all &, U_
satisfying Eqs. (4.35) and (4.42). If @' and U are constants, by
evaluating @ ', at 7}_1, 2(_29 coos K and by Eqgs. (4.4l) to (4.43)

one can determine a, uniquely., When so determined, a, is independent
of the function itself, But by Eq. {4.44), the values of a, should
depend on @ and U, Thus, we have a contradiction and the constancy
assumption is untenable, We have now shown that there exists at

least one harmonic function, @‘ with M ( @ ', UY) # 0 and orthogonal

to all the eigenfunctiongs. Hence, we can construct another new
eigenfunction., This is contradictory to the original assumptipne Thus

the number of eigenvalues cannot be finite,
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In order to prove the infinite growth of the eigenvalues
of our problem, we shall consider another problem first. Let us

consider the extremum of the functional

YWY = SS 8«@ W\u Nlpdf’ (4.45)

2

for all W that have appropriate continuity property and satisfy the
auxiliary condition in Eq, (4.35) with U% = 0 and satisfy an optional
boundary condition

W=z0 on 2S5,

(4.46)

The minimums of the functional (S'"( W) will be the eigenvalues of the
equations

8P wlug "M (G SRWoon Sz

C§ =0 on 5q
Vzé:o in V

3@ —- on S (4.47)
EXNEE ¢
=W on 52

W=o or WLK»“:O on 352
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We have shown that the number of eigenvalues is
infinite; cqnsequently so 1s the number of eigenfunctions. Let @
Wn be the associated eigenfunction set of /un" . Because H(é U ) 1,

?ags W, ds = | (n=l,2, = )

2

is uniformiy bounded, If the eigenvalues are also bounded from above,
joe., if (I”( W) is uniformly bounded for all the eigenfunctions, then
we can select a subsequence Wn‘ from the set of eigenfunctions Wn
for which (Ref, 11)

\f\ M—-?oo

gs (W —-w,.if'cls =0 e

From the harmonicity property of @ and the boundary conditions

one has

LR SIETINCAT 2 da g

= 5. ¢ &~ 8. CWn-Wia) 35
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< | Ssa(&w'-é;\zds §52<w; -w.;fds]\/‘
— O as M, N —e oo
then, with the assumption Uy, = 0, as m, n-»oo ,
W(B-F, U= yﬂﬁs (Wi 3ds 5, 008, 8. 3] v
2
=0 | . | (4.48)
But on the other hand from the orthogonal relation in Eq. (4.38)

H(g,-8, Un-B,)=2 ,

This contradiction proves that the eigenvalue )An"

cannot be bounded from above,

By the case just proved, we can prove the infinite
growth of the eigenvalues of another problem with the functional

’Iéw>=§ a@E* \b\a@:‘%g"“*‘w\.‘w\@] ds (4.49)
S

2
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to be minimized under conditions in Eq. (4.35) with U, = 0 and
boundary conditions
W = o

W‘“:_o on DSZ

(the last condition is optional). Here A(>> 0) and B are constants,
First we shall show that ¥ '(W) is bounded from below, Let Wn’ én
be the eigenfunction sets assoclated with the functional 7Y "(yf) in
Ed. {4.45), then any continuous function W on SZ with its second
derivative to be square integrable, satisfying the ri,-gid boundary

condition on 352, can be expressed as

(s
W = E‘ A Wn , (4. 50)

where a are constants, the function @ agsoclated with this particular

W will be

@ = 2 &“@ . (4.51)
Then by Eq. (4.47), one has
ol
3“@ Wlu@ = 2 Gy 3 @(wvgiﬁ%

=-92W'- 5, B’ a
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where
! — 6o 1}
W= 3 Mn a, W,

=3 pmad,

wn=

Substituting into Eq. (4.49), by the orthogonality relation, J'(w)

becomes

=y

2. o pin (MaAeB) + A§5< ShW'+5,85,8 dS

=5 @ pn (s aeB)+A[ 81875 +f 5.54(v8)dv]

W=y

Because we have assumed that the square of the second derivative -
of W is integrable, then

o0 ~ b
Vz..‘\ an (/An)

will be a convergent series. So the integration just carried out is

valid.

Since /un" tents to positive infinite as n-»00, one may
choose an integer m such that for n » m, /un" and /(An" A 4+ B are both

positive., Then, one has

§ n 2 n "
TW) 2 Z ®aprn( pnATD) : (4.52)
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Therefore for all given A{>0) and B( >-o0), '(W) is bounded from

below,

For the proof of infinite growth of its eigenvalues,

we take

Gn = O for nzwm-|\

#0 for I = YN\

in Egs. {4.50) and (4.51). Then the so defined functions @ , and W/
will be orthogonal to the m - 1 function sets @n and W_. From
Eq. (4.52), one has

TN 2 6% pion (B4 B = A :

Then A__ will be less than or equal to the greatest lower bound
dm(@n, U_ ) (a=1 2 ..., m-1) (defined in IV-B-b). By the
maximum-minimum property, the mth eigenvalue, say /um’
assoclated with ’j'( W) will not be less than Am‘ But on the other
hand, A tends to positive infinity as m tends to infinity, so Mo,

will also tend to positive infinity,

For the proof of our problem we shall restrict

ourselves to the following case.
ot 2 2
55}@(0\, igH\,(H\%—K’ék‘ZH} ?,,‘_s;o-w }ds (4.53)

is bounded from below by a constant for all H(= 8 @/aN on Sl) under
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the conditions in Eq. (4.1l), and

«(5 nNo

: qe -A 80‘6%)\8) Axe %“Q’ 70 (4.54)

for all 7‘—0( # 0 and where A is a positive constant., Eq. (4.54) is
PN (e R {3\
always true if C is in the form of Eq. (2.30), i.e.

are the linea.i'ﬁ_'isotropic elastic constants.,

7

For the time being we shall assume

Oy z0

everywhere on 851, later we sghall remove this restriction., Let B
be such a constant that

(T“G— B 8"%) Kot K@ 70 V %% O, (4.55)
Then obviously

QL H+C z T'wW) (4,56)

where C is some finite constant, By the second maximum-minimum
principle of eigenvalues in IV-B~b, g) (G H) must be bounded from
below and the sequence of the associated eigenvalues will be

unbounded from above,



The assumption that

CYHZO

can be removed, since by the result in Ref, 10, p. 418,

\ 5 Ty 1 de [ < C\(ZD‘C.H))VZ + C,
725,

5 are finite constant. Therefore the term SWHHZdQ

where <y and ¢
will not affect the unboundness of % (U, H). 851

C. Completeness of Eigenfunctions

Let @n’ U,» H  be the eigenfunction sets and }An be
the eigenvalues associated with the quotient @ (U, H)/)A_(@,E) subject
to auxiliary conditions in Eq. (4.35), We shall prove that the system
of eigenfunctions is semi-complete in the following sense: For any
given functions @ and Uwhere é is harmonic in V and Uis defined
on S’2 with

on S

ALY
zle
fl
(o
\Z
[+4

and any given & (> 0), arbitrary small, we can find a finite linear

combination



such that
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)4( é“@N;Q ';\Z/.N} €€

The best approximation, i,e, the smallest 2{( @-@N ¢

obtained with

= Cn=($,U;8,,U,) ,

These will satisfy the semi-completeness relation

7&(@,9%\2 cx :

Any harmonic function & and veator function U with

He,u)=0

(4.57)

o (4.58)
U- -YN)’ is

(4.59)

(4. 60)

will imply that é is constant almost everywhere in V and Uis zero

onSz.



L

The last assertion is obvious, since

MC@,Q}:L 9h L-wds+{ 5,737 dy
N Y,

will imply V@ = 0 almost everywhere in V and y= 0 almost every-
whereon SZ' Therefore @ must be a constant in V,

The proof of the best mean approximation of @ and U
with respect to i is standard:

¥ aly)

LS

HCE -é‘a@“ , Y-

N N
)JC@-%% &ﬁ%(cu@g $,, U-

LN
3 (Cn +an-cnY,)

wzay e

' N o, N
= 74 (@)g> "“% Cn “z;‘ (Ch‘av\)z

N, . N

7/ 74»(@;&:1;) —‘“%’ Cw :ACQ"“='C§‘&“)_‘%'C“UH)

e (4, 61)
co

2
From here one can also conclude the convergence of Z c m\cl
n=l

A=)

N, 0= ; Cn ) (4. 62)
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We shall show not only the above inequality, but also the semi-
completeness relation (4. 60)., Let us assume the set of functions @,
U, H satisfy the conditions in Eqgs. (4.9) to (4.11) and (4. 35). Then
the function

N
=& -2 cud, (4. 63)

=

and its associg.ted functions

N
Y = Y “\Z‘ Cmgn

(4. 64)

N
QN:“H"Z thBn

n=)

satisfy the orthogonality relations

®(yNaQN;LJ“JHh3 =}XNN(\gN)yN; @n, yy) =0

and

N8,V &, Un) =0 (4. 65)

for n'—:l, Z, 00y Ne



=BT
By the minimum property of #N+1’ we have
DL 7 M GV (4. 66)
On the other hand §)(V,," ) is bounded. It can be shown that
D =Y i v ) -
h=i
Liet m be so large that
Mn>O for all N>m

then one has

2 m 2
Vgi MaCn 7 2, MnCn
and
Wi
DY, ) € DL H) -2 Paca (4.67)

for all N > m. That is,@ (Vo 'Y[ N) is bounded from above. By
Eq. (4.66), as N tends to infinity, we have

HCE V) —= o .
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Since

M(B,0)=Z X+ H(Ey, V)

wn=i

therefore we ’have
= 5
_):L ( @) Q) = 2 Cy o
n=|

Any set of functions ® , y, H, satisfying Eq. (4.35)
but failing to satisfy the conditions in Eqs. (4.9) to (4.1l) can be
approximated by another set of functions § ', U's H' that satisfies
Egs. (4.9) to (4.11) and (4. 35) such that

M(E-F',U-U) < -2

for the given arbitrary small positive € . Then one can approximate
&', U', H' by the linear combination
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with the property that
HCE -8, 0-v) € £

then
RCE-%, 0-V) =H($-8U-U")

Y2 N @-8, U-U; 850, U- W)+ M@0, UV, . 48)
By Schwartz's inequality,
M ? U" » 14 ) 2 ] '/
(2-2,0-U5 85,00 <[ § R CU-U s (BR10- 1,75 %
2 s,

+{§, S f@-&Wav S g o@- 5,3 ev] "

£

o}

&
- = . (4. 69
C )
Therefore one has

%C&“?N’Q‘YN) < € . G.e.d.
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This proves the semi-completeness theorem for any
harmonic function ® with 8@/8N = 0on Sy, i.e. @ can be approximat-
ed by the eigenfunctions up to an arbitrary additive constant. This is
because,from the variational method, we cannot obtain the trivial
eigenfunction set, @ = constant, U = 0 and H = 0 and its associated
eigenvalue (zero) of the differential equations. If this additional
eigenfunction is used, we can approximate the harmonic function §
in the sensé of Eq. (4.58).

This theorem just proved is also the completeness
theorem for any continuous function H on 5 and U on S, with the
property '

d J- = ) 4,70
55’\—\ 3+§52_ N,dS =0 (4. 70)

Since for such given H on S1 and U on 5, we can determine uniquely,
up to an additive constant, the harmonic function @ such that Eq.

(4.35) is satisfied. The series, with c =X (P, Uy §_, U )

[~2
Z <o o, (4. 71)

is equal to é almost everywhere up to an additive constant. Then

the series

S cuHn (4.72)

W=y



wble

and

>
2 <Y, (4,73)
Wy

respectively,

land S2

will be equal to H and y almost everywhere on S

For the application of the completeness theorem, we

shall point out that in order to obtain the expansion for H and U, one
does not have to determine the harmonic function @ first. Instead
one can use thg expansions of H and yto determine § in V, since

Ch-;)CI‘C@)Q} @n,ng

(4. 74)

= B0 s +( ©.98v8,dv

{ b Q'QHAS-A-SSQOQ-i_\}.,@nclsﬁsg,\%&hds :

2

We have another kind of expansion for any continuous
function, say f defined on S1 and S2 and Uy on SZ° In principle, one
can determine the unique harmonic @ in V such that

gaé =§ on 5&
Solb ?9%% = on S (4. 75)
3@ =0 on 54 .
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Liet us define a vector U on S2 such that

If one expandé é in terms of the eigenfunctions, then the series

Do
E; Cw §h
will satisfy the boundary condition
o0 :
g«;& = \'\2'-! 30 Cn &\A + CORESTANT "—'-'-? on S,
oo
5338 T en(.8, Dryramstans=f o 3,

One also has

o ol
UN-_—_‘;z:_' C“ uw on Sz e

(4.76)

(4. 77)

Actually in order to determine c s One does not have to know @ to

begin with, since
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an=NA(d,0;8,,0)= § ?%U ‘U.dS+ g %, vd-vd dv
=1 FRULUdS 5@& +9,8)2es ge@@ﬂ (4. 78)
= 34 Vs nds+ (. J;b@ rds +f Qaé“ :
Obviously the series only approximates f up to an additive constant.

D. Uniqueness of Solution

In the case that all eigenvalues obtained by the
variational functional are positive, we can show a simple uniqueness
theorem. If ¢, u, 7n is a solution set of our problem, then by
multiplying Eqg. (3.7) by 91/8t, Eq. (3. 8) by du,, /9t and Eq. (3.9)
by dw/9t and integrating over its corresponding surface and adding,
after some appropriate application of the divergence theorem, one

gets

LD+ y o ( u)d5+§ ¢, (vdVdV]=0.

That simply means

u,n) +§5?&(9.~)lc35 -*gv 2. (7§¥dv = c (4.79)
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where c is a constant for all time., If ¢, u, Y satisfy the zero
initial condition, i.e.

at time t = 0, ¢ must be zero for all time, By the minimum property

of eigenvalues, one has
@(ump/»c&, W ZM7O

when ¢ # constant and u, n £ 0, 7«L (b, u)is always greater than

zero,in this case, one has

VCu,n) 70

unless 'Pz =u = 0, then by Eq. (4.79), we have

Cu,Md =

or (ik-_—_Vé:qf-O
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for all time. Thus there can be only one solution that satisfies the
same initial conditions and boundary conditions.

E, Stability of Liquid Gas Interface and the Shell

We shall call a system unstable if there exists a
solution that satisfies Eqs. (4.3) to (4.6) and boundary conditions
(4.8) to (4.11) and tends to infinity as time increases indefinitely.
From the form of solution in Eq. (4.1) it is evident that whenever
there exists an () with a negative imaginary part, tﬁe corresponding
solution will have an exponential growth in time, Since @ = T ,r};. ,
if all the eigenvalues M are positive, the solution will be always
bounded. Since it has been shown that the eigenvalues /Lk are real,
the sign of the lowest eigenvalue, say /ul’ corresponding to a non-
trivial solution, can be used as the stability criteria. From Egs.
{4.27) and (4. 28), it can be shown that there exist parameters which
make }A 1 negative, and because the eigenvalue fAI is 2 continuous

function of the parameters,

My =0

can be used as the condition of neutral stability, By Eq. (4,27), it
can be shown that }Ll = 0 is a. hyper-surface which separates the
parameters corresponding to different sign of /Mie The condition
}Al = 0 is equivalent to the condition that there exists a non-trivial
solution of the following equations:
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(P Hlg+ X XGH)H8 g M H=0  on S,
M""’\F -0 on 5 (.80
Ml + b s T8 g =0 o0 S
where U and H satisfy Eqs. {4.9) to (4.11) and

O | (4. 81)

I

| Hds + § ueLds
s, s,

and no solution exists for Eqs. (4.3) to (4. 11) for negative /.A . Let
us call U and H admissible if they satisfy appropriate smoothness
conditions and satisfy Eqs. (4.9) to (4.11) and (4, 8l). Then the
neutral stability condition is also equivalent to the condition that

O (U, H) is positive semidefinite, i.e.

VY, W zo 4 (4. 82)

for all admissible U and H and the equality sign is actually attained

by at least a nontrivial admissible set of U and H. Evidently, from

the dependence of Eq., {4.80), or the functional in Eq. (4.82), and

the admissible conditions for functions U and H, the existence of such

a get of functions U and H is determined by the surfaces S;s S, and

the value of the parameters on these surfaces. We can conclude that the
neutral stability condition is independent of the size and shape of the
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tank as long as the surfaces 5 and SZ’ and the conditions on these

surfaces are the same. Also from the form of these equations, the

neutral stability conditions will be symmetric about the contact angle
— on®

90 = 90" on 881.

go is an important parameter that affects the stability
of the system. Letus write

"

dorNo = - 0 on 5,
: (4.83)
= go W‘g on 32

In the case that cos’§ 1is positive on 5 and S,, by Egs. (4. 27) and

(4. 82) we can see that for a given problem there exists an upper
bound B and a lower bound By, for g, between which the system is
stable. By the principles described in Section IV~ B-b, we can show
that B, is less than or equal to stability boundary Bu of 8o in the same
system but with the free surface 5 replaced by a rigid lid and By, is
greater than or equal to the stability boundary By, of g for the
corresponding rigid container, Because if we strengthen the
admissible condition by requiring

S Hds =0 and S U-N,dS=0 (4. 84)
5, A

instead of Eq. (4.82), obviously Bu is the least upper bound and By,
is greatest lower bound of 8o such that there exists at least a function
Hor U # 0 satisfying the strengthened admissible condition and
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DY, N =0 .

In the particular case if 5 is axially symmetric, we
shall show that

—

B =0 (4. 85)

i.e. the flexibility of the container has no effect on the lower boundary
of Boe Im order to show this, let us use the cylindrical coordinates

(rs @ ,z) with the axis of symmetry being coincidental with the

z=axig, and ‘use { , the deflection in the z-direction, instead of H,
Then, from Eq. (4.27), one has (see Appendix B)

D= D4 S

L

o5, Wt =T (8) ——0’5 Ve 4R (4. 86)
S, oS,

where

= 2
& _ Ev -'-xge 9o 2
D'ﬁ)_g; LMF:)% i <:+F:yz+ o 3 ]M""lg - (4.87)

S 0 is the project area of S, on the r- O -plane, and F is the initial

deflection of the free surface. The corresponding Euler Equation is

13 v&¢ i Zos _ Seds —
PO Tamm  Pops g o O

(4. 88)

with the boundary condition
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% _
g;—fz . (4. 89)

The stability boundary of the free surface ig determined
by the condition that D;*of Eq. (4.86) is positive semidefinite or the
existence of the solution 6f Eq. (4.88) satisfying Eqs. (4.84) and
(4.89). Since there is no axially symmetric solution of (4.88)
satisfying (4.84) and (4.89) if ¥ %0, t herefore, i;s z{'; 0, the
unstable solufion must be of the form

2 —~ e.;“e ’

But in this case, Eqs. (4.8l) and (4. 84) are equivalent.

Therefore BL and E must be the same,

L

From the form of Eq. (4.87), one more important

conclusion can be drawn immediately. If one lets

N = grl l‘ga ?o%o
Dy gggic‘*\":)% ’%'(\:f:;)z > }*N:H‘d%

then for all admissible § , one has

D=y 2 Dy
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everywhere on S Evidently the neutral stability boundary of g

0 e
will increase as Fr increases, i.e. for the highly curved initial
surface, the system becomes unstable at higher values of go° This
result is checked numerically in Ref, 12 in the case of a rigid

circular cylindrical container,
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V. APPLICATION OF EIGENFUNCTION EXPANSION TO

AN INITIAL VALUE PROBLEM

A given initial value problem is well defined when the
deflection and velocity of the free surface and the flexible surface of
the container are prescribed at time zero,

,Y(' “t=o

]
~3
~F
12
-t
P

j on {S' (5.1)

Ui, = W) 1
5 on S2 (5. 2)
a2\ 4
‘_B?t-‘-o— ®D
with
#* » (5. 3)
San d5+55 Now u¥d§ =0 .

2

We want to determine the motion of the liquid in the

container, the force and the moment induced by the motion of the
liquid.,
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We shall assume a solution of the following form

b= ¢"t v & (0 + bkt

W=y + @, + 0, ¢8,4) (5.4)

U= WERy = W&, t) = Ma(x,+)

]
where ¢ is a constant and

)i :{Z’ ?S:QZO Hoex) {aw (‘—wwn'ﬂz (5. 6)

= b, Saw w,t
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a_and b_ are constants, § » H and U_ are the eigenfunctions
n n n’ “n -n
-of Eqs. (4.3) to (4.11),

- These functions ¢, 7 and u satisfy Eqs. (4.1),
(4. 3), the kinematic conditions (4.5), the boundary conditions (4, 6)

and (4.7), and the initial deflection condition. However, a, and b

must be chosen appropriately so that the given initial velocity
condition and the Eqs. (4.2) to (4.4) are satisfied,

. By Eqs. (5.4) to (5,7), one has

Co
g ek e S
(5. 8)
2 o0 U S
3t =2, bow, Un(zy on 2
att= 0. By Eq. (4.74), if
b"w“: SS ?o rzwgi} §h ds
(5.9)

of, e u B ds+ §_shutu,ds

' &%
the equations %ft{'\t-s ="M B on S‘

U
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will be satisfied.

Substituting Eq. (5.4) into Eqs, (4. 2) to (4.4), with
_g_(t) = constant and _gl(t) = 0, we have

&22) ~E‘ ahpv&@h - 5, 4?" =0 on i (5.10)
(>~ ok
N“@\(b =2 O Ma U, =o on S (5.10)

(5.12)

53 = Z O pn(3hW,+3,8,) - 580 on 5

N

where
6= 0§ 0l R0 T Y 4 5,900
=M lget N¥bog + ¥ | g 490000, W

where Nc@ s M 0‘@ are the stress resultants and stress moments
[see Eq. (3. 3)_] associated with the displacement field E*( x) .
If

O fhn = S’og S:f(‘i) HndS-%S,SSZ@) UnlodS (5.13)

2
* (SR Ut u,ads
by Egs. (4.78), (5.10) and (5.11), we have satisfied Egs. {4.2) to (4.4)
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up to an additive constant, This constant can be fixed by proper
choice of ¢~* e, g. by integrating Eq. (5.10) over Sl’ one gets

5o {?*:SS{?(’&) —fi:‘ QM)A\'\ &,@i )J O\S/Sg‘ds . (5.14)

Thus the initial value problem is cdmpletely solved
provided that we have predetermined the eigenfunctions. The force
and the moment acting on the container can be obtained by appropriate
integration of the pressure of the liquid over the wetted surfaces.

A particular example of a circular cylindrical container with rigid
side walls and a flat flexible bottom will be discussed in detail in the

next section,
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Vi, EXAMPLE: LIQUID MOTION IN A CIRCULAR
CYLINDRICAL CONTAINER WITH A FLEXIBLE
BOTTOM

_ We shall consider a particular case of a circular
cylindrical container of radius ry with rigid side waglls and a flat
flexible bottom containing a liquid with a free surface. The tank
walls are subjected to an axial acceleration along the z-axis which is
approxirnately‘ coincident with the axis of the contginer. A constant
pressure exists above the liquid surface and underneath the tank
bottom. The situation is pictured in Fig. 3. The problem is to
determine th§ motion of the liquid caused by a sudden change in the
acceleration of the container, As a further simpliﬁication we assume
the deviation of the initially curved free surface of the liquid from
the mean plane free surface is small, so that the boundary values
may be evaluated on the mean plane surface, which is perpendicular
to the z-axis., A similar assumption of infinitesimal deflection is
made for the rigid side walls and the flexible bottom.

As shown in Fig. 3, a cylindrical polar coordinate
system, which moves with the container translationally, is chosen
so that the positive z~direction is directed upward away from the
liquid. The zero of this axis being fixed on the mean free surface
where time is zero, In this coordinate system, Eqs. (3.6) to (3.14)

become

3 3 ;" .
[.L 2. v — 4 %2%.9@ -+ %{l@:o in \'% (6.1)
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and
20 _ o
23 ot
%%——-a:*oo%m»«e
2¢ _ owr
23 ~ ot
w = w*e)

-7 -

(zero capillary-hysteresis)

(clamped edge)

on

on

on

on

on

on

at

at

3

=0 (6. 2)

é:—e (6. 3)

where YI' and W are the deflections of the free surface and of the

flexible bottom, respectively,measured from its corresponding mean

plane surface .

D is the bending rigidity, Nr is the initial stress
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resultant, R is the depth of the liquid, P, is the pressure acting
underneath the bottom and )),‘ is the angle between the z-axis and

the axls of the container,

A, Dimensionless Equations

For convenience, we shall try to find the solution in
the following form:

d=d 1t

s

#
N =Ndne,t) +77Cre) (6.5)
W= WCne,t)+ whr, e)
where Y)* and yp* are the given initial deflection of the free surface
and the elagtic bottom respectively, and ‘?0 is a constant,
Taking the radius of the cylinder r, as the character-

istic length, a, as the characteristic acceleration, and 2 as the

characteristic frequency, we define the dimensionless variables

=X = 2 = 2
R Yo S Z’ Yo ] L.- —fb 9
T =_52"t 5 'IEQ‘-‘ /¢§ 9 Q: ¢ 3
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9
st

2
Bond number = BG" = Se0oTs
Q-
Membrane number = B = §o 0o Yo
Ny
S rod
Plate number = B‘P:' eo e with

Frequency parameter for surface tension = 2
2 _ S, st
Frequency parameter for the membrane = QM = =2° o=

Frequency parameter for the plate = _)’Z; =

P
A= SsTo

Masgs ratio

and the operator

. L 2pd 4 8 _
b = RaaR t B2 3§

Then the equations become

2
(A + 533_0 ® =o

4oay D -
2 A H (5'2>2=o— E><“("@H =C(R,0,0)+ P

T’

D=

a

D

vz

2 gon%ﬂ

£>

12 (v=-p2)

2

o~

Ny

i 2
\AASY

(6. 6)

(6.7)

(6. 8)

s (6.9)



L opopw - L pwey SN _28)  _ B,
B SEW - L AWATH 22 Begow

- . *
206G =-A %»fbvc—\cc)[% + VB 05-8]

‘ i 2 2 ot ¥ }
Q;S:—é’tyg 32m +A W, Mq[% +\%EMQ;-(7\*D}

> x5 N
+ P, 2%
with the boux;dary conditions

%%=o on £ =|
i;;ezz S?% s 2=0
W= 0 on =]
f%;%g = 0O on R =
«%‘% = O on R =]

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)



initial conditions

oW

W=H=O} ﬁ

= WR,0), -g_-_%-:ﬂ%zrgls) at T=0. (6.18)

Eqgs. (6. 8).to: (6.18) show that the problem depends on the parameters

'S?:‘I%G,SZ;\,Q;,BM)B*,K,L,&, Qopv" o

These dimengionless parameters are not all independent;

Bm=Bfr=B4’
2n - s T

However, we retain the symbols

2%, By, 2 B, L By,

for

because these three pairs of parameters are not likely to be all

important.

2 2
2. B, —s0 6352 —» O, if the tank bottom is rigid.
14250 s M

2

S -Bc’ — o0 if the surface tension has no effect,

fZ; S B‘P — o if the bottom behaves like a membrane,
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Finally, the pressure P in V, is

Pc 2,9,2;.@:-[%% + —%’%ﬁma + ] . (6.19)
M

B. Series Solution

In this subsection we shall discuss how to construct the
solution., To construct the solution in the form of an infinite series
we will encounter some basic difficulties aswere pointed out in Ref, 5,

Sec. 5. A solution of Eq. (6.1) may be posed as

.M -
@-‘-;‘Z (R, 2,7) etm? (6. 20)
20 ;
where
g . co .
=d @2l 4> 2R (0 collknz 1 aedbaz 6. 21
5 ! E» RECH! (C"“ kgL * don csabh Xyl (620

oo o .
=S T (KmaR) émam&%’_mi +d K an 2 . (6.22)
lgm Lt jmckmw) MKW\V\L e a;g:tw‘%\-'

With

JkDy=0 , T (kmn)=0 , (M=1,2,---2)
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both Eqs. {6.12) and (6.17) are satisfied,

give

where

Then Eqs. (6.13) and (6.14)

H=3 R,.C&,T) etm®

m=06

W=

2w, (e, et

va=0

w8

_e\. a LT) =+ 2 KnJo (kv\2> c-[ovx(-r)
= j. (.K\‘\\ an»?\kw

fim= 3

ne=y

kw“" jm (KVV\V\ RB

AranlT)

D (Evn) conrh Bumn L

Uj; = do(:c\ -+ E M kh (C‘On“ cop\

Wy = E -———-————-—-——J”‘(km“av uan (dymn = Comn)

ey

Wt T (kn)

I CEvand)

and Eqgs. (6.9) and (6.10) become

LB =52 (22, —Boeh,=
y )"D-M 2 ™M
T

= EW\CE.T\

wm (BT

= Bt

(6. 23)

(6. 24)

(6. 25)

(6. 26)

(6. 27)

(6. 28)

(6.29)

(6. 30)



where 2
=l 2 g - m -

(6. 31)

im(R,‘C )s gm(R, T ) are the mth coefficientsof the Fourier series
of the functions :§(R, 8,T), (R, B, T), respectively.

Since the assumed series satisfies condition (6.16)
we do not have to worry about the convergence of the series W
after one term-by-term differentiation, but it may become divergent
after four times term-by-term differentiations. To avoid this difficulty,

we multiply Eq. (6.30) by Rm+1, integrate from zercé to R, divide by
2m+Hl

R » integrate with respect to R again, and then multiply by rR™
to get
91’1 KS 2 a Wiy
L Wiy ~ Wpa + thw\ [ SZM > T2

= S2m( BMg"") i = VT WA R™d R}

- &
=K S c{:m-ﬂ { S gm(Q,’t) Rde.i + Am('t) R™ (6.32)

where A (T)is an arbitrary functlon of time from indefinite

integration, and it will be determined by boundary condition (6.15).

Instead of using Eq. (6.30) we substitute Eqs. (6. 21),
(6. 22), and (6. 25) to (6, 28) into (6.29) and (6.32), using the property
of Fourier Bessel series, one finds the governing equations for

d as follows:
Cmn’ “mn



2, C @) + B G dg) =0 (6. 33)
S Eale) + i (Tanh koL (B don = Sy (6034

2 F e . ,
‘)’ZM [ Con (T) ( (le:da kwl *)\KVD" doy\ (Mkh\. +)\\‘n)]

522
Tea[ 200 b 4 ) - B (con - da)

Jp
= = (L+ N 52 dy + T () (6. 35)
-ﬂzé’mn +[KMn(k:n"‘.B¢ﬁ'm)menL] dmn = ;m“(-r\ (6. 36)
Ofwm zfms Coymys=1,2,-00 ) (6.37)

where

2 2 e o8
N Kwn-m E‘Cm“ CeoThkimnl + M) = dean Crdhmanbe + Nema)] 25,

Kmn

4 2 .
+fin “Qm% + ’?2»:‘ -22 am)(cm«clm.,)};z; - Sm} (6. 38)
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mo} G lare the coefficients of the J_(k_ R)-Fourier-Bessel

series of the functions gm(R,‘C) ond

ng %%;H-H l S?gh{ﬁht )RTdR;]

respectiveiy.

From Eq. (6.15)

oo
do®= 3 Kn[Cont®) =don V] (6.39)
=\
(o <]
o= kmn‘_cmmff) —AM“CT\j o (694-'0)

vy

If the edge on 882 is not clamped, but simply supported,
the assumed series for W will be divergent after only one term-by =
term differentiation. Then we have to repeat the process that operates
on Eq. (6.30), to Eq. (6.32) again, thus introducing another arbitrary.
function of time. If one substitutes H, ® , and W into these new

equations, one obtains the relations between c d:mn and computes

mn’
Lm \Jm, 803‘m/8R etc,, from these new equations (not from term-=-
by-term differentiation of the series), one can then solve the problem,

The actual algebra is complicated, and will not be presented here,

In the case of a rigid tank, 52 M,Zs BM and QPZ, B
and § mp &Fe zero. We must have, from Egs. {6,35) to {6.40),
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Cmn = a?ﬂn (W\'BO,\.Z."--; Vl=‘;2a5,""")

(6.41)

do =0 0

Then Eqs. (6.34) and (6.36) are exactly the same equations obtained
by Benjamin and Ursell (Ref, 7). In this case all the modes are
uncoupled, On.dthe other hand, in a flexible container, all modes are
coupled, and the coupling of different modes could cause instability
of the system., If G(C) is a periodic function and if the system of
equations has been truncated to a finite set of equations, coupling
instability has been shown explicitly in Refs. 5 and 13,

If G(T) is a constant for 7 >0, Egs. (6.33) to (6,37)
can be solved analytically with the aid of the eigenfunctions discussed

in the previous sections. We shall consider this solution in the next

subsection,
C. Eigenvalues and Eigenfunctions
3. Eigenvalues

Let us consider the homogeneous solution of Eqs.
(6.33) to {6.37), with G a constant. Let

LW T
Cmﬂ-—'Cmne. "

(6.42)

dwm - Dmn etwmt



then

where

=88

o T P

@on(#’ ) Don = ()\"-Lw t/‘A° D°°

2 -
wa\‘-m

{6.43)

e X0 B C ) Do = -—i:i Brns () Dins

2

@Ynn()u) = - (P:n 2Vmin -/u iwm)

4 Km(;";” + t’“"‘

gmﬂ = (’,Uﬁ\ k-my\\_ =% 7\\4w\n

émg«r‘ kaml_ "")\tmv‘\

Jh = Wo, .

a)( -

/Pmn = Kmn (kin <+ Bg.&)tawvg\ Xwmn b //.)’2;

- )

(6.44)
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Substituting into Eqs. (6.39) and (6.40), one gets the
frequency equations

_ ! 2 (M= bon) Kon _ 6.45)
1) COp T My (

PO 2 2 i
'&W\s > _%mu Gl D) =0 (6. 46)

P Rh - B (13 o

We have shown in Section IV that all the eigenvalues M
must be real and simple, and that there exists an upper bound and a
lower bound of BO" (or BM) between which all the eigenvalues
are positive, ;I‘hese upper and lower bounds will be determined
explicitly below,

From Eq. (4.45), if

4 2
Koi . Ko BmG - ko) 6.47
23" nx 7 s T R

where kOl = 3,83, there can be no negative root of fo(}k) = 0, because
2

in this range of (By,G/S$2,,“) p__> 0and @on‘f*) >0 for < O,

A similar situation is true for fm(/u » m 2 1, if

4 2 N
Ko + *u > BmG. > - Xu (6.48)
T T - W >

where ky = 1,84,
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On the other hand, if

4 Z 4 >
kog + Kot BMG > 'k\\ + ku (6o 49)
2 " 2 7 TS 7 2% 52

one cannot see directly from (6.46) whether fm(/u.) has negative roots

or not, If one differentiates Eq. (6.46) with respect to ., one gets

3 M2
dfn bn b (1~ Fitn) Fn + (A kmnl Aamhkanl) (¢ 50

AP K L Brn (1) 17

One sees that’dfm/d)w are always less than zero. Therefore fm(/.i)
is a monotonically decreasing function except at some isolated points
where the function is discontinuous and has an infinite jump from
~00tooo . This implies that the function £, can havg one and only
one zero between each pair of consecutive singularities of £ ().
Since fm(f‘*) tends to 0~ (i.e. fm ie negative) as /u_tends to - oo ,
there is no root of Eq. (6.46) for

— o0 < A< first zero of the denominators of fm(fk),

In the case of (6.49) the first zero of the denomina-~-
tors of fl()u) is negative, call it -Rlx but the second one is positive,
call it Rzo Therefore the first and only the first root of fl(/u.) =0
must lie between -R,y and RZ" Let /A= Ry + S . As § > 0 and tends

to 0, we have



-glw>-——-a>oc

whereas at }L = 0, one has

3‘ (03 = 9{ tin
' W=y (K,’v’,—\)( kt?\{ -+ ki - BMCT
D2

S Rk

52 Iy, I\(J(%>z* a ) } (6. 51)

— _)’2; z+ 4’5,46(522 yz [ l(‘a\ ; -
Z{(J'Z;.) _523- 0] j| D 1‘(‘(%:{31_*&;)
“r

™

where a’is a positive constant so defined that

4- 2
Bng - &, & , (6.52)

Ry RE Rh

Evidently, from the properties of the modified Besgel functions,
2 1 2
LG a1 /T (15 @1%)
52 22
is always less than zero. If k (=1.84) € a £ k01(= 3.83), one has

J. @Y /3@ <o

80

fwry>o
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Therefore, the first root of fl(/.,(,) = 0 must be greater than zero,
From Eqs. (6.47) to (6,49)

4 2 3
Lo, a !ézﬁg. > - B (6. 53)
s " w2y T e 2

then the roots of Eqs. (6.45) and (6.46) are always real, and the

system is stable,

' From Eqgs. (6.45) and (6.46) one sees that the eigen-
values M are \’complicated functions of the parameters. In a special
case that the flexible bottom is a membrane, i.e. ﬂpz and Bp are
infinite, and BMG and BO_,G are both small compared to one, it
can be shown that the eigenvalues M depend on BG“G/BMG’ N and
L only.

3
{

b. Eigenfunctions

From Eqs. (6,2l) and (6.22), the eigenfunctions are

. Wrag € Wme T,
=% (r.2) e {

(6. 54)
Wwas Aran Wi T

2 2
where W _ -~ is the sth root of the function £ lw ") =0(m=0,12., -),
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The functions f are
ms

kgo = AOSI 2+ _E_._V__(l - PZO- jo(khk) =L UJozs
: SZ; LD:; h=y 30 (K\n) (50‘“ (wg-sj

)Pon cobkaZ A’W“Q‘k“z
o Al m»\g.,,_ﬂ (6.55)

EN 2
wmun W
Lms= Ams Z =L flion R Do
W=y j (KMV\) CKW\V\'W\I) EMV\C 5)

z )
x(}?""“ OGL&KM-\E 4 rendn Emn 2 (6. 56)
03:.‘5 AMKMHL wtng K\Mh\-:
(s,n = 1, 2 ,..) where
2
= Wos (LA 2
s = + -t Kn
A : {L » VE’ 1 @oh(‘-o:s)]

-l
I("’w- Y (wChkal - Mk..t_wh»-.)ae]} (6.57)

= 2

Ams = “_/agozo me Wwmn ]

k=, (05

%
[ o LoV (ot wum.‘m(&m ) aem]\g
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Al's are so chosen that \fms is normalized in the sense of Eq. (4.22)

i. e,

b‘gms Bgnr b(gnr _
55 2N ds § ms S O =5 b, (6.58)

where Smn is the Kronecker-g °
By Eqs. (6.23) and (6. 24), one has

. W Wi T
_ Lmb
= R €™ ) oo
. l - U W T
O J VTS
N = W\ms(ﬁ) GLM S ms T (6. 60)
- L& mms-c
where
‘ 2
Dorym Al e T IER) ke VTD W (6. 61)
LT Si E‘ Jolkn)  codi,L P"V‘ (053D
5, 4R)= Acsii . %Z JolknR) ¢, _ h,v. ) ki ALY Wis (6.62)
w=j 3‘0 () (5ovx CUOOS\
3 2
D dR)= Bng, T JmComnR) b Whns (6. 63)

"2 T (B ) ine — W Brrin(@rne) e Kuml
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Tm(kmaR)  Koan hm. Om
Wi = . (6.64)
5( R) Ams‘z-‘ 3_ (\CW,“\ km“—m ( ) ﬁmn C"Dmsv

Simﬂar to the eigenvalues, when 52 and BP are
infinite and when By G and Bg- G are small compa.red to one, all the
eigenfunctions depend on A, |l andB G‘G/BMC’ only.

D. Initial Value Problem

In this section, a linear combination of the eigenfunctions
given above will be determined to satisfy the inhomogeneous Eqgs. (6, 9)
and (6.10) with the initial conditions,

\N-:.H:O at T=o (6. 65)
2K

%%:S'E:H“CRJG) on S, , T=o (6. 66)
_ oW
_-g_T::-w**csz,e) on S, , T=0 .

Liet

T
b, + @z-rg é,}(z,ejz)r_y;-\:)d-{ (6.67)



T

T

H:.HV+H2+ Sfﬁcﬁa&f:ﬁT)‘ﬂ (6. 68)
T

W= W e+ wg pe T T AT (6.69)

where

e

i ] HKms Wing & Wy T

. S =2 8, Rae™ l Ems Wrms i WniT 5 (6.70)
S .

o4 o1

3 Sm«s(T} Wing A Wy lr-T

2

J’Hl ~Z Jo(ms Ava WmsT
zH S =) &S(K)eime € pas (1 = 59 WMsTY z (6. 71)

ms
H3 . 1Sw-s P ("" (23] wmst\'--]')

Wi J g Aian WirasT

B
W, :v?.s Wne (R) e’ ‘léms(l—- L WimgT)  }(6.72)

W, ST (1= o Wensle-T)



-97-

where fm o ’e’-ms’ W, g 2re eigenfunctions given in Eqgs. (6.6l) to

(6.63) and where oL g0 €’ gms(-r ) are to be determined.

Evidently H and W satisfy zero initial conditions, If

oszS Yoy H* (R,9) f,,,g(z,O)e*msds
T g,

_____L A% _ 38»\(.
+SS L Weo[f, @n-rg

gmd (6.73)
. €7 ds, |
by the results proved in Section V, the conditions

'aclé

H¥R,9) (--—-: —Ht_‘) on S, (6. 74)

=R, 5) (=-2W = 300

ST on S, (6. 75)

are satisfied at T = 0,

Substituting é , Hand W into Eqs. (6.9)
and (6.10), one gets

T

29, 28
L. 2 A, - s?) =o~%HZ+gA [qu- A2, - 522 H, J(& 8,21, T)dY

2 . T 2 mb
==-7 émswmsfms(g)o)e "S %Sw‘sﬁ) Wamns fms(Q’O) € dT (6.76)
% -3

- e = -
= C(R.B;T)~ T, = (r,8; o)""S % SR,5;T) d’[ + P,
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o2 _ 1 2 _ Bua ~

2
P dT 2=

T
45 L Rew.-L A _Bub _5@; .
R e W) GLES P

L 2 Dlgm ¥ e
W;% Cmg Wing (\gms + K}—Ni)EE_LﬁLM (6.77)

>8ms imb
2 N )2=_Le 47

T
- go'és S.'msc‘-) wv:-s (gmg"’ A

T

gceaeyt)*@o :KCR)B) 0) +S %S(Q;SJT)&T‘“”@D °

il

If one lets

- } > a\gw\g _;Zme
Ems= w:\igs§(2,a,o) E'E""Izue ds

e

- § $ (=,8,0) ?;S?E
52 ’32 2.1;0

~imB T (6.78)
eds}

- _ A _25-_ 28ms -am®
Sms(_r)-- w'%‘sifs, >T (R,9,T) "a"""‘a ‘2_:_\‘6 ds

- . 22 (Ram) ‘\?fg"\a:f““""aﬂ

then by the results proved in Section V, Eqgs. (6.76) and (6, 77) are
satisfied up to a constant, This constant can always be fixed by a

(6.79)

proper choice of ’Q{o o Thusg by integrating Eq. (6.76) over Sy

one gets (note that S (85 /07) ds; =0 )
S

1
Be§ ok ©
V== 6 A, =531 4 28800 6. 80
°ogm S Sy 2% ( !
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which corresponds to a constant pressure field., The problem is

thus solved,

Let us consider a specific example, Let the liquid
in the tank be initially in equilibrium with a constant axial acceler-
ation G( 0-). At time zero, the axial acceleration is changed to G,
To make the example as simple as possible, we shall consider only the
case where the bottom behaves like a membrane, i.e. Q 2——>oo o
Thus we have an initial value problem with

W = H_BN__&\-\

>T = a_t:_-:,o at T=0

and

G(0.) for T <0

1L

G
= G for T>?0 -

If G(0-) # 0, we shall choose, for convenience, the characteristic
acceleration a, to be G(0-), thus the initial deflection of the free

surface and bottom are

o esk® 31 (BR)- 214@)] e A T (JB R

v T8 LB IBe I1 (1B

(6. 81)
wy ¥ v To (JBuR) JBR
= =(N L-?QM _ 2citBon], _ JByTo(dBn 3 (BuR) . .
e b 3.(I5, ) J* 3,(Ey 2P
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Consequently, % and § defined in Eqs. (6.9) and (6.10) become

7" 2 est®,

—__E)cr B A
SE Oy T T

EPH

(6.82)

= jb_."i w ™ 2C0t80
E 52%4 (C\'—\)[—E *(X+L)]__j_2_§__~;

From Eqs. (6.78) and (6. 82), trigonometric orthogonality implies
€Ems=0  for imyz2 and all s .
Because of zero initial velocity, one has
HKpg = O for all m,s .

Because there is no lateral or rotational oscillation, so that $

and § are independent of time, one has
SMS(T) =0 for all m, s ,

and
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=%

{
S _ Bgoﬁ\ {
2=§AE S;; o2 RdR W d

2=-1 os

cot Do
(ko % B2 condl xnll

80 =
Al Aos = == Il as Wog Kn
522 wos 3 < hs\ @os(‘*’ea I

- (- 4"‘:)("*" RS2 /e - 2‘“8"/5")5"‘}2'(6.83)
“as 2(k3 = Bund '

If one defines 'vééls =1 (él, 5 " 6__19 s), where i = J:i , one gets

for the antisymmnetric case,

2 —
é.s=-2m Soﬂ(C ;2‘ -3 —E‘i)? Y ambdB | R dR

B o m
=~ —_— - VY, A
2T = (-0 Y% A s“z__-(km -1) Bin(wi%) [(Hh-q. By) AN

SEM 3-| ( SEH) »hi !
TJ.( JEM) (= wl;) ki — Bopq ] (6. 84)

for s=1, 2... . Thus one obtains the final solution for the free

surface and the bottom deflection:
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OO
He 3 €ochroRYC) = coo 05T
S=i
w —
+ M9 gZ €,s Pris(R) (1- o @i47) (6. 85)
=)

W = § .eosb‘)—;s(Q‘) Ci-co 00‘,;[)

5=y

o
4+ PO 2 & WhsR) (1 - e wisT) (6. 86)
B s=)

for C>0.

The frequency equations and the transient deflection of
surfaces are quite complex, Some numerical results are presented
in Figs. 4 to 10, and will be discussed in Section VI-F.

E. Force and Moment

The force and moment exerted on the tank by the fluid,
for T 20, can be easily obtained by appropriate integration of the

pressure over the wetted surfaces.

= et B
= b aé B N aa
~_§° &, [a-c ‘z=—1_% &“‘_QM&(W*'E -L)+"P¢,]a6 RdR.  (6.87)

cstB,
52F

B H
+ 0 =W@—5‘§§L “WFQ
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where,

1

o0
Fo = 2 Com Pom Won & Wit : (6.88)

we\

FZ’ is anoscillatory force which is positive if pointed along the
negative z-axis, FZ' tends to zero as BM tends to zero, because
€ om Qomz remains finite, and it can be shown that Aom as defined
in Eq. (6.57) tends to zero as B\ 0. Hence in the case of a rigid
tank, the oscillatory force Fz‘ in the z-direction is identically zero,
The fluid in the tank acts as a rigid body, as far as the inertial

force In the z~direction is concerned, When B ig not zero, the

M
flexibility of the bottom acting like a spring, allows the fluid to

have an oscillating displacement relative to the tank, and an

oscillatory force is created that acts on the tank.,

The force in the y-direction and the moment about

the x-axis can be obtained by

: 2R -]
Fy=- § Pl Aawb dz 40 (6. 89)
‘ .

o 2
“S szl 2 a0 dbdZ e (6. 90)
L R=1
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F, Numerical Example

We have studied numerically the case of a circular
cylindrical container with rigid side walls and a flat flexible bottom
containing an inviscid incompressible fluid (Fig. 3). The numerical
results on sloshing frequencies, oscillatory force and transient
deflection of the free surface for various parameters will be dis-

cussed in this section.

- All of the results obtained in Sections VI-D and VI-E
are in the form of infinite series; in actual computation we have to
truncate the series. Since the series converges rapidly, we only

take twelve terms of the series in our computation.

The sloshing frequencies are computed from Egs.

(6.45) and (6.46), for A=0,04, L.=0.4, BgG = 0.0l and various

By;G. One recalls that from Eqs. (6.6) and (6.7), A (= ph/p r )
is the mass ratio, L { = L/« ) is the ra‘txo of the depth of the 11qu1d
to the radius of the tank BG'( Pod /G’ } is called the Bond
number, BM( = Pode !N ) is called the membrane number, and G
ig the ratio of the grav1tat10na.l acceleration to the chosen character-
istic acceleration a o Asg far as the sloshing frequencies are con~
cerned, the problem is independent of the choice of C In Fig. 4,
the first symmetric and the first asymmetric (m =1, see Eq. (6.46))
sloshing frequency are plotted versus BMG. In this plot the frequen-
cies are normalized by the first symmetric and the first asymmetric
sloshing frequency, respectively, in the corresponding rigid container.
MG considered, the flexibility of the bottom has a

larger effect on the symmetric frequencies than on the asymmetric

In the range of B

frequencies. One also sees from Fig. 4 that the frequencies decrease
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as BMG increases. Physically it says that the sloshing frequencies
decrease as the bottom of the tank becomes more flexible, At firgt
the rate of decreasing is very small until ByG reaches a certain
value; then the symmetric frequency drops sharply, This kind of
transition phenomenon also occurs for the frequencies of higher
modes, as can be seen from Fig. 5. But the transition points occur
at smaller Aval:,fues of BMG for higher modes, In Fig, 5, the frequency
spectra of the symmetric modes for the same parameters as Fig. 4
are plotted. For a given BMG, there are some frequencies whose
values are not close to any of the rigid tank sloshing frequencies,
Modes corresponding to these frequencies have large mean deflections
on the free surface. On the other hand, for thogse modes whose
frequencies are close to a sloshing frequency of a rigid tank, the
mean free surface deflections are approximately zero, A typical
example is plotted in Fig, 6 for A= 0,04, L= 0.4, ByG = 0,01 and
BMG = 0,0003, Those modes whose frequencies are close to the
rigid tank modes also have approximately the same free surface
deflection. As we have pointed out in Sections VI - e'C, when BWG
and BMG are both small compared to one, the eigenvalues and the
elgenfunctions depend approximately only on BMG/BG-G’ N and | .
Therefore the curves in Figs., 4 to 6 should be a good approximation

for the same BMG/B G, as long as B

o

G‘G is small compared to one.
The values of the frequencies;, which deviate consider-
ably from all the sloshing frequencies of the corresponding rigid tank,
depend on the parameters of the problem. In the case that BG“‘G £<l,
we find that these frequencies are approximately linearly proportional
to the square root of the ratic BWG/BMG (Fig. 7). If B is fixed,
it means these frequencies are approximately linearly proportional
to the inverse of the square root of ByfG. In Fig. 7, the first six

symmetric frequencies of Fig, 5 are replotted versus (BMGS‘/ZQ
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We use solid lines to denote the frequencies corresponding to modes
with large mean free surface deflections. One sees that the solid
lines are practically straight lines. The first line has value
approximately equal to 0. 324 of the first symmetric vibration fre~
quency of the membrane., The second one is approximately 0.403

of the second symmetric frequency of the membrane.

The magnitude of the force acting on the tank in the

z-direction by the mth symmetric mode can be shown to be

Aom Wom T

where A is defined in Eq. (6.57) and 1s actually the mean (spatial)
free surface displacement. Therefore, for a given motion of the
liguid in the tank, one may expect those modes with large mean
amplitude to make a large contribution to the total oscillatory force
on the tank. In the case that the motion of liquid is;'caused by a
sudden change of gravitational force, one sees that this expectation
is true, For this kind of induced liquid motion, the force contributed
by the mth symmetric mode, from Eq. (6.88), is

2
€om Plown Wom T .

In Tables I -~ IX, we have listed the first ten & __A O 2 and
om omm om

wom/ Po1 for various parameters for the case that the gravitational
force is suddenly changed to 10-4 of its original value at time T=0 .
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We have also computed the transient free surface shape
after the sudden change of the gravitational force from Eq. (6.85).
In Figs. 8 to 10, the transient deflections of the free surface versus
B, ,G are plotted for B G = 0.0land0. 05, Il =0,4, A=0.04., The
contact angle 90 between the free surface and the rigid wall is
assumed to be 75°. The angle ))x between the axis of the tank and
the z-axis is 7.5°. The pressure above the free surface and beneath
the tank bottom is assumed to be the same, The gravitational
acceleration ratio G is changed to 10"4 of its original value at T=0.
The original value of the gravitational acceleration is assumed to be
non zero and is chosen as the characteristic acceleration. The first
symmetric sloshing frequency of the corresponding rigid tank is
chosen to be the characteristic frequency. In all the cases, the
free surface shapes are more or less the same. A central dome
appears at the center of the tank. Its height depend; on the value
of B g and By, The larger B is, the higher is the dome. If the
direction of the body force does not coincide with the axis of the tank,
as the case we have considered, the dome will gra;:dually shift to one
side and the free surface deflection at the other side will grow rapidly.
The elastic effect contributes mainly to a mean oscillatory displace-
ment of the free surface. The amplitude and frequency of this mean
oscillatory motion depends on the stiffness of the bottom. As we
have pointed out before, it is this mean oscillatory displacement of
the liquid that creates a force acting on the tank. This force is zero
in the case of a rigid tank.
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VII, NUMERICAL SCHEME FOR OBTAINING AN
APPROXIMATE SOLUTION

In the general case an analytic solution cannot be
easily obtained, In order to obtain quantitative results for application
to the design of a vehicle, we have to resort to numerical computation,
Here we shal 1 develop a numerical scheme that will enable us to obtain

an approximate solution which can be improved systematically.

For simplicity the scheme is described for an axially
symmetric container, At static equilibrium, the free surface is also
axially symmetric and the axis of symmetry coincide;_s with that of the
container. The matrix displacement method is to be used. The basic
idea is to represent the conditions in the region V + 8V by a finite
number of generalized displacements. To be more explicit, let
Cis €y 000 C be the generalized coordinates for the free surface,

Qs Ay ooe 9y those for the shell surface and bo’ bys by eee bn ‘those
for fluid, We seek to represent the functional in Eqs, (3.163 to
(3, 20) in the following form:

;

J=2cXs -As (7.1)
T

=2 % KB -pg (7. 2)

.T °
L=z $M9 (7.3)

Te=-E Ae - B A LBk (Beg e hig) (7.4)
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where %, ,IS’ M and B are square symmetric matrices. The

matrix f"l isng x nys é'z is Ny X Ny, .é3 and ’1}4 arel x no, and 5@;
éSare 1x nj. ?S and 15 are called the stiffness matrices for the

free surface and shell respectivelye, M and B are the mass matrices
for the shell and the fluid respectively. c,q and b are column ‘
vectors for the generalized coordinates C;o ;i and bi respectively.
("
and ( ) denotes the time derivative of the quantity inside the
parenthesis. We shall discuss later how to obtain these matrices,

denotes the transpose of the matrix inside the parenthesis

The first variation of J of Eq, (3.15) is

't'. L
ssf_-g% ($3. <57, - §7, - $7.) 4t

‘t, . .
"St,,[ SRS+ PRI -A8% -4 MIF ~LTATL-A L

. T

+h A8 «+SE (A M) v+ BSh

+(AsC + As 33 b, + bAs3S +b, Aa 3%-8 4t

o

1SELBR + AL A AT A e 0.9



-110~

for ng =0, Sq att =t and tl. ’L ig the identity matrix,
If

3] =o

is to be satisfied for arbitrary Sb ’ éc, Sq and SbT for
£ o Vad ~ r~
t, <t 41:1 » we have

‘ o T .
¢ X +bA+AsT b, =AL

3
%
~

B,\Q""E‘,vé +

e o

1>

o2
il
o

Or using the fact that X » M and K are symmetric, we have
~ a4 [and

T - T
Xe+ Ab+AsIb =41 (7.6)
> T - T
Mg ~Bg+ Ab+AIb=AL (7.7)
;‘2=~§-‘C/jaﬁ. + A2 9 (7.8)
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Eliminating b from the equations above, we get
AR

As ¢ +Asg =0 (7.9)
T - . " ,
ZC ala] % (Ag +A24) + Esl b'or.é:l (7.10)
(M+A B ANG T o T T |
M+AB AN+ Ky ~ABC+AIb=AT | (L

The natural frequency or dynamic response of the system can be
obtained by solving Eqgs. (7.9) to (7.11).

The center of interest lies in the formation of those
matrices just mentioned, In the following the finite element method
will be used. The region of interest is idealized into a series of finite
elements, and the motion in each of these elements is approximated.
Axial symmetry ls assumed, and only the nth harmonic needs to be
considered. Let us idealize the free surface and the shell into a
series of curved frusta joined at nodal circles, which lie in the
original surface. The region occupied by the fluid will be idealized
into a series of rings whose cross~sections are acute or right
triangles, FEach of these frusta or rings will be called an element.
The behavior of these elements is characterized by the displacement
variables or the generalized coordinates. The cylindrical coordinates
(rs 8, z) are used in the analysis. The z~axis coincides with the
axis of symmetry of the container., The idealization of the system
is {llustrated in Fig., 11, Let Z be the axial displacement of a point
on the free surface, u, v and & be the displacement of the shell
in the meridional, tangential and normal directions, @
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be the rotations, in a plane containing the axis of the shell, of the
meridian in the shell passing through the corresponding points,
Specializing for the nth harmonic, we write at node p on the free

surface,

wn

| %P(e) =Cp  er (7.12)
A

whereas on the shell,

X\&‘p(e) ) Fap-s coo b

or | (7.13a)

l“’%“’“ = 1%4

A B
\)'P(O) = %%_2 or (7.13b)
CoONG
and in the region V,
ewHOINY
%m = Smb, +by ox (7.14)

A~ ©
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where

S(h):: \ for n=Q
(7.15)
for nN%x o0 .

H
G

In what follovfrs only sin n © will be taken in Eq, (7.13b) and cos n @
in other equations, because this suffices for the cci_mputa.tion of the

desired matrices, We shall determine first the matrices for each

element, The matrices for the complete system are obtained by

superposition of the matrices of the individual elements.

A, Determination of Stiffness Matrix for the Free Surface

The existing form of Jl

analytic investigation, but not convenient for numerical computation.

in Eg, {3.16) is good for

If we express ’Q in terms of g , the axial displacement, we get

5., % .53 &

_¢
3, _285‘ (<% | TOsRD | o (eR

1ds

R

ol & d ! (S EBtas 7.16

+ S 5(\+F3)((m t 5 T ) vde SS,““F}% ( )
]

where z = F ig the equation for the static equilibrium free surface
and is assumed to be known (Ref. 14). The second integral in
Eq. (7.16) contributes only to boundary conditions of % on BSI

and can be dropped in our present consideration,
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Thus the potential energy for each element is

CY' Q; §L§ 7.17
g l("‘F ) + Y-Z(H_F'rz) + 0-‘ (\_‘_-F )y]ds ( 2 )

where S is the area of the element being considered, The displace-
ment field of the p + 1t th

element, the one between I;ode p and node
p+1, is

= [Cg,-\ $ay + Cp T ] coamb (7.18)

where s is ‘i:he; arc length measured along the meridian from the

node p. The functions fi(s) satisfy the following conditions:

0 = §,te) = |

(7.19)
‘S‘,(/Q'a)-: ‘Fz(o) =0

where s is the arc length along the meridian from node p to node

p +1. The first approximation to the stiffness matrix is to assume
that f; are polynomials, such as

'gaz ‘_%

-]

= &
'g'z_,o. ¢

(]

(7. 20)
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A substitution of Eq. (7.18) into (7.17) yields

I TP R

%\__ _2_ S? ﬁ? E,? (7.21)
where
c
g? = g ?—'}
1 C\o}
X = (7‘-@)3
gt df .

=<¢S[da da m%%ﬁ-“—& A nb +52§ iﬂw‘ne]ds) (7.22)
S 0+ EY C+RY O s |

i, j = L, 2). Clearly Kij =2'ji’ and

d - _! d
dA (4 FAYa dr

and dS= vdrdd (1+gy2, (7.23)

The element of the free surface, which touches the
boundary 8S; must be considered special, If 85, is on a flexible
surface of the container as shown in Fig. 1, the boundary condition
will involve coupling with the motion of the shell on 8S;. If 881 is
on the rigid portion of the container as shown in Fig. 2, the boundary
condition for % (see Eq. (3.14) and Appendix B) is
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9% _ .
E-Y: __X“g on ‘as‘ (7. 24)
Thus Eq, (7.21) must be written as

A T ¥ 2
B =% Sn Ko en= ST Qe Sy Tl

I
N

T
Sh‘ 76,,‘ ’van e (7. 25)

~

The element for the matrix ')Cn is the same as Eq. (7, 22) except
ar Iy .

that a term

-‘{(u-»go«)) T

is added to 7<22.

If the stuck condition prevails so that ‘ﬂ= 0o, S 0,

then the matrix Zn should have only one element xu o 1

1

For the element that intersects the axis of the container,

&

we must have the deflection at’axis to be zero if n £ 0. Thus we

bave

£.00) = ¢ {,LA) coOnd (7. 26)

and the matrix 251 has only one element, i.e. 7('22 o
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The integration required in Eq. (7.22) can be carried

2 can be

out numerically, But if the element is sufficiently small, F.
approximated by a constant, then the integration for each element
can be carried out analytically, Even if the element is not very
small, one can separate the integration into several parts and

approximate Frz by an appropriate constant in each part.

We renumber the indices of the elements of the

matrix X _as follows:
~Pp

+
X
j a'?"‘ o P P\, P 1 :
- . T 27
% v l ( )
* %
Xp, - X, p g
Then the column vector ¢ and stiffness matrix 7% for the axal
P o
symmetric deformation
%
Cn /‘ a°° xo‘ O i - -
%

C2 Ko X+ 0, K O - en

. v .

; ) 0 Ky “;z’an 23 O ~re--

c = : N X = ) o "~ N .
~ ‘ J ~ \ N . ~ R .
] -~ ~

i §

i ' \ \

\ i ~ ~

. u ~ ~

] AN LN

C [y ) WY 4 .

" k ' X“n“"‘ -X:“ns

(7.28)
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where k*ij = 7(*jie For the asymmetric case, the form of %
is the same as that in Eq. (7.28) except that we remove the first

row and first column from that matrix,

We recall ny is the number of nodal circles on the
free surface., From (7.28) and (7.1), we can see that there are
Y?l +1 degrées of freedom for the free surface except for the case
of the stuck condition, The matrix Ag can be simply obtained from

the assumed displacement functions and the third integral of Eq. (7.16).

B. Determination of Matrices for the Shell

The procedure of obtaining the matrices required in
Eqg. (7.2)is similar to that of free surface and has been discussed
in Refs, 15 and 16, Therefore we shall only sketch the basic steps
here. For sizﬁplicity, we shall consider only the case that the initial
stress is axially symmetric and each element of the shell is isotropic

and linearly elastic.

Let us first use physical components of strain and
stress resultant and write Ed. (3.17) in matrix form

IT ] =
V.= %glé‘ C+w' T w -5eg-Nw-253mnwlds (729
5 r~ - - -

where S is the area of the pth element, and
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Ngs €sq
n e
8% e 3w
2 Ngg €9 , S o4 T T,
q = = = I= 1
My Kgg ) 2w ~
1 20 T2| Tzz S
Moo &)
2 WMgg Xse

(7. 30)

where Tij is the initial stress resultant (physical component ) (" and
e are called the stress resultant and strain vectors respectively and

are related by the equation (see Appendix C or Ref, 15)
0 = £ e . (7. 31)

Then defining anh appropriate approximate displacement field for each

element related to the generalized coordinates (see Appendix C) we
obtain

€ = VS?EP DSJ:Q%’%? W:E‘??&? (7.32)

qp is the column vector of the generalized coordinates in pth element,
(8%
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Substituting Eqgs. (7.30) to (7. 32) into (7. 29), one gets

, o
3‘.\ = 5 E? /‘5\9 EP ‘/a»‘f 11’ (7.33)
where
T & e 07T U8 g, ETEL T4
o=\ L Wp Sy 0pT Uy RN B €, s

(7. 34)

Qyp = gs % 3 N Ep dS

,lfp is the stiffness matrix for the pth element.

;ﬁ In order to obtain the mass matrix, we write the kinetic

energy of the shell as
) ,._ig OB (32 + s w?) dS (1.35)
3 2 '3

for one element. A substitution of the assumed displacements into
Eq. (7.35) for the corresponding element ylelds (See Appendix C)

.7
B3 Ty Ty b (1-3¢

o

where rnp is the mass matrix for the pth element.
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By appropriate superposition of all individual matrices m_, k and ap

~P AP
one obtains fhe masgs matrix M , the stiffness matrix K and matrix
A_ for the whole surface,
~2 ;
C. Determination of Matrices for the Fluid

As before, we shall consider each individual element,
Now all the elements are acute or right triangles on the r-z plane.
Let us consider the element m with vertices (ri, zi), rj, Zj) and
(rk, zk) and with area A (Fig. 12), The generalized coordinates
associated with these vertices are bi’ b;j and bk’ which are the
values of ¢ aét the corresponding vertices, Then, inside the triangle,

one has

d=3wb, +] 93y b, + §,0n3) by + %3 b, | comb

(7.37)
The simplest interpolation functions g_(r, ) are
9= 2 107 -7 (3e-3) - (=) (3;-3)]

2= &, L0 I03-3) = (G- (330 (7. 38)

35=2>Lm (0¥ =30 - G- (Y]
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Then the kinetic energy for this particular element m is

PAY
34_:8 XA (@Y rdrdzdd

W

©

= ]2[ (1 3o gA {kzi:)z‘+ (%%)2* %]Fd(‘d%

T

=4 B b

where

Em = ( @ﬁa%\)

= (%C\-»Sw)g 1?%?3_2}_@ 3;3% %%‘5 + 7’2__2__%_3?13 ]V‘drdb). (7.40)

A ov

By appropriate superposition of each of the individual

mass matrices E o We get the mass matrix for the fluid,

From the assumed displacement fleld in Sections
VII - A and VII - B, and ¢ in Eq. (7.37), we can easily write down

B(b 2 - bT g EJ N bo %9

X oew s 2 ¥ (7.41)

o
~
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for the free surface, and

20 W T
b—f:-()-q:‘}yzz )2 %1 ‘(S +bo 954 ig(“\ (7.42)

a4

for the shell, Then fﬁi and éj of Eq. (7.4) is given by

- = o {
A SS‘ i@y d S

(7.43)
Av= Y, oy ds
=
where 1 =1,5, and j = 2,4 .,
In practice, we only use those interpolation functions
of ¢ that involve the vertices on the boundary 8V to compute %1, g 5
of Eqs. (7.41) and (7.42), We also make those vertices coincide

with the nodes of the free surface or the shell; e,g., the vertices

(ri, zi) and (rj, zj) lying on the shell surface and coinciding with
nodes p and p +1 of the shell, Then ’

%% W ='—{S(m \;,, +( by dioyy 5)- 3,053 + b,93053)) =

3l %4@4 fyor~ Tap Faw0 *%49*3‘:7 W~ Japea *‘?3(/4\3 S MY

for the portion of the surface between node p and node p +1. In

this case, the Integration required in Eq, (7.43) is also relatively
simple,
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VIII, DISCUSSION AND CONCLUSIONS

We have formulated the problem of the liquid motion in
an elastic container by the variational method., The orthogonality
relation, the completeness of eigenfunctions and the uniqueness of
the solution in the case of constant axial acceleration have been
proved. From the variational functional and by the maximum-
minimum properties of eigenvalues, we conclude that (1) the eigen-
values are simple and real valued. (2) Flexibility of the container
lowers the eigenvalues. (3) The stuck condition of the free surface
raises the eigenvalues. (4) The neutral stability condition is an
even function of the angle Y= 90 - 900, where 90 is the equilibrium
contact angle of the free surface. (5) In the case as shown in Fig. 2,
the neutral stability conditions are independent of the size and shape
of the rigid portion of the container as long as the flexible surfaces
remain the same., (6) For the gravitational force .there exists an
upper bound and a lower bound, which are functions of other param-
eters , between which the system is stable, The upper bound is less
than or equal to that of the same system when the free surface is
replaced by a rigid lid., The lower bound is greater than or equal to
that of a similar container with a rigid wall. In the case that the
static-equilibrium free surface is axially symmetric and the hysteresis
constant y in Eq. (4.89) is not zero, the lower bound is equal to the
stability boundary of the liquid in the rigid container, (7) For the
highly curved static equilibrium free surface, the lower boundary of
the neutral stability condition for g o 18 higher,
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The flexibility of the container will induce a mean
(spatial) oscillatory motion of the liquid in the axial direction of the
tank, which in turn creates an oscillatory force acting on the system
in that direction. This has been shown explicitly in an example
in Section VI. This oscillatory force is dominated by a few particular
frequencies. The lowest of these frequencies is usually much higher
than the first sloshing frequency and much lower than the first free
vibration frequency of the bottom membrane, and is linearly propor-
tional to the free vibration frequency of the membrane if the product
of the membrane number By and the product of Bon,fd number B
with the gravitational acceleration G is small, i.e. ByG << 1, and
By G << 1. The magnitude of the oscillatory force depends on the
rigidity of the bottom and the initial disturbance. The numerical
example in Section VI also indicates that when the acceleration is
suddenly decreased, a dome appears in the center of the free surface.
If the acceleration does not coincide with the axis of the container,
the central dome will gradually shift to one side and the deflection
of the free surface at the other side will also grow rapidly. The rate
of growth of the central dome depends on the Bond number and the

membrane number,

In the case of a forced periodic motion of the container,
the stability of the system is governed by the coupled Hill's equations.
The instability may be caused by the coupling of different modes,

which does not exist in the case of a rigid container,

The example given in Section VI has such a particu-
larly simple geometry that an analytical solution can be obtained. In
the general cases, recourse to some approximate method is necessary
in order to obtain a reasonably satisfactory solution. The Rayleigh-
Ritz method can be used, but for a complex system it is hard to con-
struct approximate functions. Therefore, a new numerical scheme is

developed in Section VII, in which the finite elements method is used.
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The accuracy can be improved by refining the elements, or by
introducing a larger number of generalized coordinates, or by
using a higher degree of polynomials for the interpolation functions.
The convergence proof of such a numerical scheme for a static
problem will appear in a future report, In the case of a dynamic

problem, it is subject to further investigation.
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APPENDIX A

THE RELATION BETWEEN THE PRESSURE
ENERGY AND THE LAGRANGIAN OF THE FLUID

We shall show that the pressure energy is actually
the Lagrangian of the fluid, The pressure energy is

L = *ipo[g%-g.£+-lz(v¢)2] dv

Let

T = 3 Sv o(79)? av

\4 =-3:/po§_.£dv

where T and V are the kinetic energy and potential energy respectively
of the fluid, Let

- 9¢
U = S; PO "8"{:-' dV °

Then
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& § Po‘i’d‘"g p, ¢ N v dS ,

v ov

c
i

]

& § potav -f watar

v

since v¢ is the velocity of the fluid and

Now we have

_—_— a

We notice that the last term in the eguation above has no contribution

to the variational equation.
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APPENDIX B

THE EQUATION AND BOUNDARY CONDITIONS FOR
THE FREE SURFACE

We shall derive Eq. (3.7) and work out the explicit
condition for constant angle of contact of the free surface when the
wall is stationary. Let us use 2up » Keag and a, as the metric
tensor, curvature tensor and base vectors respectively for the free
surface and a;@ R KL@ and a', for the stationary wall surface,

If the equilibrium free surface is o then the disturbed free surface

can be represented by
r=1zx +qN (B-1)

where 7 is an infinitesimal quantity of the first order. Then

Troe = B ™M Ko(@, ;a_‘:@ + MNyeL _l_\Io

- b A B
-llmfs" 2w~ [(Kocw-);g, + rg(% R 'ﬂ] a,. (B-2)
oL
Ij- = ?0 - n/e‘l .a'_

and the curvature tensor for the disturbed free surface is

_ _ p
B‘x?— _1:,“@:1_\{ = K“% +n°‘% -»KN*K@ 7 . | (B-3)
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Liet

Axp™ Lia® L, (B-4)

then we have the mean curvature

Ba = A%P Bog

det o &
et (a Q) deﬁa

Ane By
det (A,p) A B

_ (B=-5)
= {L +2 K% n)(ad@ -2 e“%eee Kag n)Bx@

where éo@is the permutation tensor. Substituting into Eq. (3.1),
one gets Eq. (3.7).

If one uses X% (X =1, 2) as the real variables for
the stationary wall and

x (%)

as the surface of the wall, and y‘l, y'z as the real variables for the

free surface, then
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2 (%) =z (v%) (B-6)

-0 "0

represents the intersecting curve BSl of the free surface 5 and the

stationary wall at static equilibrium state. Then

ol oy ol o4
U xg + Ax7) =z (y> + Ay™) t Non (B=-7)

will represent the intersecting curve of the disturbed free surface
and the wall,

In the case of the stuck condition for the free surface,

one has

n =0 at 881 (B-8)

and Ax™ = Ay® =0, In the case of constant contact angle between
the free surface and the stationary wall, one has, from Eqgs. {B-6)
and (B-7), by using Taylor's expansion,

a.‘(x ax® = Eon + a_ Ay® +higher order (B-9)

(note that (agolax“) = aly, and '83'0/8y°‘ = By Je

Let T be the unit tangent of the curve 8819 One can always have

(T-a,) ay™ =0 (B-10)
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Let N, be the unit outward normal of the wall, then
) = = cos @ o (B=11)

where Oo is the angle of contact at 881.

The normal of the disturbed free surface at
v o= vyl o+ Ay™ s
P, oL — ot o %8
Ny, + 4y7) = Nolyy + ay)-aFm,, 2ac

= N (Yc",‘ ) - [ Sl e * K"é AYBj as , (B-12)

Because of the angle of contact, at the new intersecting curve between
the disturbed free surface and the stationary wall,

= oy ot ny = . -
§w(xo + AxT) - N {y‘o + Ay®) cos QO {B-13)
must hold, or

Baly e * K"é ay®) a. _I_\_Iw-i-x‘; axPat.n =0 . (B-14)
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By Egs. (B=9) and (B-10), one obtains

(E“ix) Aym =0
(N. a,) ay™ = cos 0011

—by

(B-15)
(T-a') ax = 0

Since the coefficients determinant of Ax™ and Ay*® in Egq. (B-15)

never vanish, Ax" and Ay® can be solved uniquely in terms of
T say

Ax

it
(¢}
3

2
i
fo )
2
=
-]

Ay

n\ﬁ @u NGl + gfn =0 (B-16)

where ' is a function of metric tensor and curvature tensor of the

free surface and the stationary wall at 881 and the contact angle,
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The functional form of (y! is, in general, quite complex, therefore

we shall not write out its general form., However, for a special

choice of orthogonal coordinates

=T=g:l‘ on 381

and % a
—_ —2

N, =
lay xa,l

é’]_g XE‘.2!
Ng = ——
’2’1‘ XEZ"

where §0 and N - are the unit normals pointing away from the fluid
of the free surface and the stationary wall respectively, One has, from

qu (B"‘IS)

2 _
N o2, Ay" = cos 0 9 (B-17)
2
1 =
=o' E'.z AxS = q °

Substituting into Eq. (B=-14), one obtains

azz'fl,z a, N o+ (K; cos 0_ + K’: Jn = 0 on 8s; . (B-18)
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Let us define another vector as

n, =T x N at 8S ‘ (B-19)

Since _;I:Io, n, and _I:Iua. at 881 lie on the same plane, one has

Z
f

Ns= - _1_\_Io cos QO + n; sin 00 o (B-20)

Substituting into Eq. {B-16), one gets

n\(& a,ony *g'n =0 on 25, (B-21)

where o' = '/sin 0, and g' is defined in Eq, (B-16). If one
uses the special coordinate just mentioned, the Eqg. (B-2l) becomes

1 B

+g™m =0 at 9s (B-22)
% o 2 1
(azz‘) ay
where
"= (K‘2 + K- cos O )/ sin © (B-23)
N\ 2 2 o o °

In Section VII, for practical convenience, §, the
disturbed deflection of the free surfacein z-directiongis used
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instead of the normal deflection H . Therefore one has io

transform

D (H)+ g T O H AR (B-24)
95

of Egs. (4.27) and (4. 28), in terms of §. We ghall consider only

the case that the static equilibrium free surface z = F(r) is axdally
symmetric, Cylindrical polar coordinates with the z-axis coinciding
with the axis of symmetry are used. Let

dar
then
E = fH
2 _ Frr _ d (Fr
2= T3 = (7
[ 2
Ky = Ky = 0 (B-25)
1 Fr
Ky = oo
rf
J22_ 1
P
1
T2
r
_ &=
Hy = 5%
_ 8H
H = 35
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where £ = (14 Frz)y% Substituting into (B-24) one gets

Dy (H) + S@ 07 H%d
!

=wf Lt +a®2um,)% <(0)? + (0?1?42 g, N B2 ds

51

+ gqﬁ’HHz al
881;
€. £.2 pg 2 2
- 1 ,°r d 1,2 0 g%
“Wg {;2(\?—4”5'&‘175) +rzfz + ;,0 P %2‘
5 X
! 2
; b5,

After some algebraic manipulation and using the fact that

P.E
%—;<¥>+}’§§-~ %f’F:O (B-27)

(the static equilibrium equation), Eq. (B-24) becomes

2
D, (H) + g 0 0L H af
)
grz ggZ PoBs .2 G'H 14,1 2
=0} (—— + — +—==£%) rdrdo +05' [T+—za-;(—f-)1§dl.(B-28)
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From the form of (B=28), one must have

23
or

Yé on 98, (B-29)
as the bouﬁda.ry condition of £ at 851, where

a ,1 '

y = -0y - 3 (F) ] (B-30)

In the case of constant angle of contact and circular
cylindrical container, we have

K‘z = 0
and
0;_1 = 0” = cot® -a——(T) = F._‘.l.ggff
then
[FrFrr () FrFrr“FrFrr = 0
¥ B B 1"] 3 =

f
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APPENDIX C

MATRICES FOR AN ELEMENT OF THE SHELL

We shall use (0, s8) as the coordinates for each element
of the shell where s is the arc length measured aloyg the meridian,
Let us assume}_ first the displacement for each element, There are
three kinds of elements:

(1) The element that intersects the axis of the container.
There are two cases:

Axial symmetric deflections

u = fis)g
v, = () g, (C-1)
wy = i'o(s) 4 + f3(s) a3 +f4(8) q4 o

Asymmetric deflections

w = {[fl(s) +af(s)] q + bf(s) q, g cos nd
vy = i{fz(s) - bf(s)} dy = af(s) ql'i ginn0 (C-2)

w; =14 (s) q, +f4(8) d5 +1,(s) qég cog nd
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where %(s) satisfy the conditions

£, (0) = 0 £, (8g) =1 i=1 2)
dfo
fo(o) =1 -a-é-— = 0 if n=0
= 0 = 1 if nfgo
dfO
foleg) = g5~ (55) = O
df,
f3lsg) = g5~ (5} = 1
df df, dfy
f4(8,) = £,(0) = —= (0) = = {0) = T, (sg) =f,4(85) = O
£{0) = £(0) = 1
Hs,) = fls,) = O e (C-3)

The terms af(s), bf(s) in Eq. (C-2) aze introduced to allow rigid
body motion. In the case of polynomill approximation,

fls) = f(s) = 1= 2o
SO
fi(s) = = =1 2)
) c
£.08) = 1= -:5-—2 sz+3——3 5> ifn=0
g 8
(2] (2
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2 3
- 5 - 28 + 2 ifn=1
Q 8
o
_ 3s 28
£308)= —p -
8 s
o C
2 S3
f0= - ‘g‘; + = . (C-4)

The value of a and b in Eq. {C~2) is to be optimized by
the principle of minimum potential energy, i.e.

o
32 0 and i 92 = 0 )
b

§, 1s defined in Eq. (7.31)

(2) The elements bounded by node p and node p +1
(p22). The displacement field is

ay = Loy, 5 file) + q4p+1f5(s)] cos n0

p
(s)} sinno (C-5)

A4

p Iq4p-z P R VIR

wp = Iqtip-l f3(s) + q4p f4(s) + q4p+3 57(3) * q4p+4 fﬂ(s)-}

« cos nb

where fi gatisfles the conditions
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£(0) = £, ,0s) =1

f1(sg) = £,400) = £4(0) = £,(s) = £5(0) = f4(s
dfi dfi

T (0 = g () =0

af df

]
f

T 0 = g () =1

df7 d:f8
-CTS-_‘ (So) = -a.g (0) = 0 )

For the p@lyno}nial approximation,

£ o= 1- B @ =1, 2)
i C ?
= B __
80
f0s) =1 - 2 sz+—2¥—§-s3
8 8
[o] 2]
2 3
_ 28 8
fals) = 8 v o+ —,

{L =5, 6)

2&=LA$
)

o)

oy,
e
H

3.5)

(C-6)



~143-

f2(8) = f.(s - 8)
fgls) =-f,(s, - s) . (C=T7)

(3) The element which touches the boundary. In our
particular case, it is the last element of the shell, By Egs. (3.12)
and (3.13), one has

u = q f.{s) cosn @
nz—l 4112-7 1

Vnz—l = q4n2—6 fz(s) gsinn 0 {(C-8)

an-l = [q4n2_5 :f3(s) + q4n2-4 f4(s) + q‘h12 fs(s)j cos n @

where fi(s) are the same as &4, (C-?);In the clamped condition, one

must setq, = 0.
2

If one writes

= B . G-
p T ~pdp (G-9)
and
awp
"
! = = U -10
ow
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from the displacement fleld defined in Eqs. (C-1), (C-2), (C-5) and
(C-8), one can easily obtain EP and EP for each element.

The straln~displacement relations for the thin shell

are

e =§.§.+W
ss 98 —R—z

= 18y o dr W
€90 T ¥ B0 r ds R1

_l(lau*ibrv_%&dr)
€os = Z 'F 70 r 08 r ds
k= 2%
gs 82

g
o o 1 (82W+ dw dr |
o0 © T2 ‘T2 Tos ds
r 00
2

Kk _li(aw _ldrBw)
O0s = 2 ¥ ‘'Us90 * ds 96

where Rys RZ are the principle radii of curvature with RZ in the
plane containing the mevridian, Then

e
ss”z
= egp | = W g (C-12)
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By Eq. (C~ll) and the assumed displacement field, X‘VP can easily
be obtained.

The strain-stress resultant relations of Eq, (7.33)

are
( Eh - Eh N
Q= = 0 0 0 0
~ 1-y 1 -2
hE hE
e 0 0 0 0
1 -y 1~ W
0 0 14y 0 0 ~
Eh°> Eh°>
0 0 0 —~ > 0
12 - %) 12¢ -y%)
En> En>
0 0 0 5 > 0
12 - y7) 12(1 - )
3
) 0 0 0 ) -——-—F-‘—l-‘-,
L i2(1 +y)
(C-13)

The matrix mass Ep defined in Eq. (7.36) is

m = (my) = (w(1+$(n))f 58 r‘ig- ds> . (C-14)
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If 2 and b of Eq. (C~2) are not zero, the expression of mij should
be modified accordingly, We recall that

S(n)

i
ot
e
B
H
o
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10,
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Free Surface S,

Elastic Shell S,

Wetted Portion Of The
Shell 33 ,

FIG. I GEOMETRIC NOTATIONS

\_Elastic Bottom Ss

FIG.2 NOTATIONS USED IN SECTION 3
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