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ABSTRACT

In the following pages a theoretical and experimental investi-
gation of the fracture of a precracked carbon fiber reinforced com-
posite is presented. The work deals mainly with a unidirectional
composite having the crack aligned parallel to the fibers. We put
forth some ideas on how to extend the failure criterionof the above
restricted case to a more general one of multidirectional composites.
The failure criterion proposed is based on an energy argument similar
to that proposed by Griffith for isotropic solids. For the purpose of
stress analysis the material under consideration is assumed to be
homogeneous and orthotropic. Lekhnitskii's complex variable method
of stress analysis of the two dimensional elasticity problems for

anisotropic bodies is used in the theoretical investigation.
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1. INTRODUCTION

The primary advantages which advanced composites have over
conventional engineering metals is that the strength to weight ratio is
significantly higher for the former than for the latter. In spite of
their extremely high cost this advantage still makes these materials
attractive for designs where high strength is required with a minimum
of weight, For this reason advanced composite materials find appli~
cations in aircraft and space structures. Along with these advantages
with regard to the strength come several secondaryadvantages, which
make the use of these materials desirable. One of these advantages
deals with the fact that material can be tailored to particular design
geometries in such a way that the strength capabilities are exploited
to the fullest. Thus, the use of advanced composites can incorporate
some optimization in structural design due to material lay-up during
manufacturing. It is possible to control the thermal expansion coeffi-
cient of the composite by judicious geometrical lay-up. In some cases
only the bending flexibility of the material may be decreased without
much effect in the bending strength.

On a macroscopic scale advanced composites are treatable as
more or less homogeneous anisotropic solids (1, 2, 3). However, on
a microscopic scale these materials are inhomogeneous. The fail-
ure of advanced composites, in the form of fracture, is intimately
connected with the growth of microscopic flaws which one finds invari-
ably embedded in the inhomogeneous structure of the material. The
growth of these microscopic flaws under the applied load is therefore

also governed by the small scale geometry of the composites and it is
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readily appreciated that the growth of such flaws through the inhomoge-~
neous structure of composites constitutes a formidable problem for
the analyst. It goes,therefore,without saying that the detailed treat-
ment of fracture of composites is a difficult problem at best, and one
is readily led to deal with the approximate characterization of the
failure properties.

The fiber reinforced composite consists of units of construction
called plys -- the ply is a layer of fibers, vacuum deposited wires of
boron or drawn glass wires or threads of graphite, impregnated with a
resin -- several of which are laid-up to obtain a sheet of requiredthick-
ness. The composite material containing plys with the fibers
oriented in the same direction is a unidirectional composite. If the
fibers of different plys are oriented at different directions with re-
spect to each other, then the composite is termed a multidirectional
composite (fig. 1-1). Before dealing with such more complex prob-
lems of failure in multidirectional composites, it is desirable that the
fracture behavior of single-ply or unidirectional composites be under-
stood. In the following we shall deal with the behavior of a unidirec-
tional graphite fiber-epoxy matrix composite. This material is an
eight-ply sheet about 60 thousandths of an inch thick. The material
contains 33. 4% resin by weight or 60% fiber by volume. The specific
gravity is 1. 584. The fibers were produced by Cort-Holes and impreg-
nated by Ferro withthe resin Hercules 3002. The sheet was 18" x 20"
and was made available through the courtesy of Dr. E. L. Harmon of

the Aircraft Division of the Northrop Corporation.
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2. PRELIMINARIES

We have already referred to the fact that a fiber-reinforced com-
posite, on a microscopic scale, is inhomogeneous. Continuum analyses
for an anisotropic body are available only for the homogenously aniso-
tropic solids. The use of such a theory therefore restricts us to con-
sider such geometries involving crack sizes which are large compared
to the structural inhomogeneities of the solids, such that we may at
least approximately deal with the solids on a macroscopically homoge-
neous scale. Such treatments are apparently generally accepted when
one deals with analyses of advanced composites (1,2,3).

Wu (3) has postulated an empirical failure criterion. He com-
pares stress distribution in isotropic and anisotropic bodies, and in
both cases, the same order of singularities exists. Let ¢ and 7 be the
normal and shear stresses and c the half crack length. Thenthe stress
intensity factors KI = (r\/é and KII :'r\/g_ can be defined. KIc and KHC
are, respectively, the critical stress intensity factors under normal
and shear loads, Then the equation (2.1) is assumed to be a failure
criterion on the basis of dimensional analysis, where m and n are

K.\ Koo \"

1 + 11

ch KIIc

= 1 (2.1)

empirical factors chosen to the best agreement with experimental
results. From the pure tension (7= 0) and pure shear (o = 0) tests
KIc and KIIc are evaluated. Further experiments for the case of
various combinations of tension and shear were used to determine

m and n, which were found to be about 1 and 2 respectively. Experi-

ments were conducted with Balsa Wood (3) as well as fiber-glass-epoxy
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(2) to check the proposed relation, (eq. 2.1). McKinney (4) performed
some experiments on the graphite-epoxy composite and fitted, by a least
square technique,equation (2. 1) to his data, and he found results identi-
cal with those obtained by Wu.

Stonesiefer and Sanford (1) have experimented on the double and
single notched specimen to determine the failure criterion. They ar-
gued that the energy release rate through crack propagation is indepen=~
dent of mode of loading and thus suggested that one parameter of
energy release rate in the opening mode is sufficient to characterize
the fracture under arbitrary loading conditions.

In the work of these past references, it was normally observed
that the crack propagates parallel to the fibers, This is not unreason-
able at all. The fibers used are of considerably high strength com-
pared to the strength of the matrix. The crack requires less release
of strain energy when it propagates through the matrix than when it
propagates across the fibers. Thus failure is much more likely to
occur through the matrix. In polylayered composites a crack will
tend to propagate in the direction ofthe fibers in eachply. Butthecrack
will not be able to travel too long a distance in any one layer before
the stresses at the propagating tip are alleviated due to the restraining
influence of the adjacent layers. Fracture of the multiple crack tip
will not be accomplished until the crack in the individual plys are
joined up through the interlaminar layers, It may thus be possible to
synthesize a conservative estimate of crack propagation in multi-
layered composites by considering what happens to the cracks in indivi-

duallayers and from the energy requirements that are necessary to join



up these crack extensions. This problem will be consideredinsection4.
We first consider the problem of a unidirectional composite
plate, ideally of infinite extent, in which is embedded a rectilinear
crack of specified size 2a (fig.2-1), parallel to the fibers and tension
is applied at infinity at some angle ® (fig.2-1), the tension at infinity
being uniform and of value P. Since our intention is to study this
problem experimentally for the determination of realistic material
parameters, it is necessary to deal with finite specimens. The fact
that the cost of the material is high induces us to deal with a minimum
size specimen. If we deal with relatively small sizes, it is necessary
that we know that the stress distribution in the small specimen is
sufficiently well approximated by the solution for an infinite plate.
Our first aim is therefore to calculate those sizes of the specimen
with a predetermined crack,which allow a reasonable approximation
to the infinite sheet. It was decided to determine the sizes of rec-
tangular specimens, such that the stresses on the boundaries are with-
in 5% of the uniform far field stresses for the infinite sheet. The dis-
placements on these boundaries were also calculated. The specimens
were made slightly larger to account for mounting the tension device

(See section 6).
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This report will be presented in the following sections: First, we
shall deal with the stress analyses and sizing of the specimen. Next,
the formulation of a failure criterion for unidirectional composites
will be presented with a brief sketch of the syntheses of a conserva-
tive estimate for multidirectional composites. We then deal with the
determination of the elastic properties in Section 5, and discuss the
experimental set-up in the next section. The last section will deal

with the experimental results and their analysis.



3. STRESS ANALYSIS

A. ReviewoftheStress Analysis of an Infinite Plate Containing a

Finite Rectilinear Crack.

We shall now present an outline for the stress analysis of an
infinite orthotropic plate containing a crack., We consider the case
where the body forces are absent and the stresses are only due to far
field tension. We shall consider this as one of generalized plane
stress,

As the equilibrium equations are independent of the constitutive

relation of the material, we have for the planar problem, x and y

being in the plane of the plate,

80-XX ao‘x
4 Y. =0
Jx ay
(3.1)
J g Jdo
BY, 4 Y. = B
BX oy

Similarly the analysis of strain leads to the reduction of the set of

compatibility equations, as in the isotropic case, to a single compati-

bility equation, namely,

With regard to the constitutive relation of an orthotropic planar body,
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we note that axes of orthotropy constitute a natural reference frame.

With respect to such a coordinate system, we write the constitutive

relation in the form,

B 7] [~ 1 v ar
_ Xz
€xx £ E B 0‘xx
XX XX
_ Vyx b 0 o
€ =1 - vy (3.3)
Yy E E
Yy Yy
L
2 exy ‘ 0 0 ‘O—XY
- L ny_J l_
v V
where, . A = XX (3. 4)
E E
XX Yy

We now choose a stress function X (x, y) (ref.2) defined by

differential relation,

(3.5)

%?<
¥

o
Yy

o
Xy

e

such that the stresses o , o and o satisfy the equilibrium equa-
XX Yy Xy

tions identically. Using the constitutive relation (3.4) to express the

strains €. in terms of the stresses o_ij’ and substituting the strain

thus obtained, 1into the compatibility equation (3.2), by virtue of

(3.5),leads to a fourth order partial differential equation in terms of

the stress function X,



Kexexx ZAXXXYY t B )S'YYY =0 b by

where the constants A and B are,

E Y
A B o = ¥ D = et
2G =¥ v

Let us define the operator DK by the expression,

9 9
b, = 2 ., & (3.7)
K 9 K %
x y

where P is the appropriately chosen complex constant (ref. 5,p.120).

It can be verified by substitution that the quadruple operational equation
D1D2D3D4X= 0 (3.8)
is equivalent to the partial differential equation (3. 7), provided the

constants A and B are identified as suitable combinations of the con-~

stants Hyc s K=1, 2, 3, 4. The solution to the equation (3. 8) is

(ref. 5, p.122),

Foo (% + by ) (3.9)

><
]
— M~

where FK(x + HK) are the functions of the argument x + Hyc Yo and the

solution of the differential equations
2= .1
DK FK (x + pKy) 0 (3.10)

If Zl = x+ Y and Z2 =x+p,y are used as complex variables,

since by are complex, the solution to (3.8) can be written



10

(ref. 2 pp. 122-123)

X = 2Re[F (Z)) + F,(Z,)] (31)
Now let us write
' O F (Zy)
_ — K'™K
b= Py B8] = ——— (3.12)
9 Zy

In the present case when x and y are the axes of orthotropy, we find

that by and b, are imaginary and it is convenient to write M= i 51 and

By = isZ where,

E /E 2 E
S - XXy b fxx Y - XX
1 _ Xy A Xy

2G

It
N
O]
»
b
I
5(
Sl
'
>
“/_\\\
=
»
»
1
w
g
~—
4]
I
(3]
kol
»

55 (3.13)
2G 2G E
xy Xy Yy
Then we can write the stresses Uij’ and the displacements u; as
(ref. 5, p. 137)
2 i 2 ]
T = 2R Ls T8 (Z)) 45,78 (2]
H
= .14
Ty 2Re [ 8 (2))+ &, (Z,)) (3.14)
] 1
Ty = -2Re [i s, & (Z))+i 5,9 (zz)j
1,
B, = W= 2Re [pl q?l(Zl) + Py 2,7 (Z5) ]
{(3.15)

1
u = v= 2R [ql 2 (Z)) + qp 2,7 (2,) ]
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where
s 2 2V
= . L i
Pr 7 E E
XX XX
s 2 2V
- . 2 D 2.
P2 = E E
Yy Yy
2 (3.16)
\)Xsl 1
4 = 1 Y +
E E
Yy YY
\)xsz2 i
qz = 1 Y +
E
Yy Yy

We have now determined the stress function X in terms of the
unknown functions <I>l(Zl) and ‘172(22). We have to determine these
functions in such a manner that the boundary conditions for our parti-
cular problem are satisfied.

We are interested in obtaining the stresses in the vicinity of a
crack embedded in an infinite sheet. As the crack is a limiting case
of an ellipse as the minor axis approaches zero, we wish to start by
considering an infinite plate perforated with an elliptic hole, the major
axis being Z2a and the minor axis 2b (fig.3-1), uniform tension P being
applied at infinity at an angle ® (fig. 3-1) with respect to the major
axis.

We superpose two problems to obtain the solution to the desired
problem. First we consider a plate under uniform tension without a
perforation. Secondly, we consider a plate with an elliptic hole, on

the periphery of which we prescribe the tractions which are opposite
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to those found on the hypothetical ellipse boundary of the non-perforated
plate in the first problem. When the two problems are superposed

{(added), we find that the stresses at infinity and on the boundary of the

ellipse are as required in the original problem. Let Uxxo’ Uyyo and

T - be stresses in the plate when the hole is absent and o 1, o L
xy e Yy

and Txyl be stresses for the second problem. The final solution then

will be the addition of the two stress states and is given by,

o 1
T = o + o
XX XX XX
- = g %4 g 1 (3.17)
Yy Yy Yy
- - o + 1
Xy Xy Xy

The solution to the first problem is trivial and is,

o _ 2
- (- = Pcos @
¢ ° = Psin%y (3.18)
Yy
o .
F = P sin ®cos O
xy

The solution of the second problem is somewhat complicated and
we will follow Liekhnitskii's development (ref. 5, p. 158); accordingly

we take <I>1(Zl) and ‘I’z(Z as

5)

2 (Z)) = Ajdn G +

(3.19)

i
>
o
o]
.
+

2,(2,) 20 5 T
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where,
Z+~/Zz-az-|4?'b2
1 1 1
€. = and Z. = x+ M.y
1 . 1 1
a-1plb
Z+«/Zz-a2'-p2b2
2 2 2
¢, = and Z, = x+ M,¥
2 . 2 2
a-1p2b

For the case of uniform tension at infinity (ref. 2, p. 158),

we have,
A1=A2=0
(3.20)
a =b =0 m > 2
m m
and
— P . ; .
a; = — sin @ {asin ®-1ibcos ®J
2
(3.20)

Bf% cos @ [asinCp-ibcost;l

Recalling that a and b are respectively the semimajor and semi-
minor axes of the ellipse, we pass to the solution for the stresses in
the vicinity of the crack by allowing b to approach zero. It follows

that the §>1 and §>2 reduce to,

2
Pa“sin o . . 1
®$(Z,) = ——=—~ (cos ® +1i s, sin @)
bk Zi(sl—sz) 2 Z1 + '\/Zl -aL2
(3.21)
Pazsin ) 1
¥ (Z,) = - ——————(cos ®+ 1 s, sin ¥
2 e 2i(s,-5,) 1 Z, + JZZZ—aZ

Recall again that @l and @2 give the solution to the second prob-

lem stated above for the infinite plate containing an elliptic perfora-
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4z 4
¢10n, Oon tne

(¢]

oTcér to

boundary of which certain tractions are prescribed. In

btain the expressions for the stresses and displacements in

the second problem we substitute QI(ZI) and QZ(ZZ) in equations

(3. 14) and (3.15) respectively, to obtain

2
2 . 2 (cos®p + 1 s, singp)
G . Pa sin o Re 1 2
= S, = S 2 l
1 2 (Z1 -a ¥ JZ
2 . .
is, (cosp+ i s sinp)
2 1
(22 - a%)? (Z, +Jz;‘. a%g
B aZ sinz i(cosyp + i S5 sineo)
OYY = L2 sng Re -
°1 7~ %2 (zlz- 2y (Z+ zlz-az)
i(cosp +1 55 sino)
2 222 (7, J g
(Z2 Z
P a2 sinz sl(coscp +1i s, sin®)
OXY = 22 S0 9%  Re -
517 %2 (zl2 a“)2 ( Jz

sz(coscp+ i 4 sin ©

(le-al.z)2 (ZZ+ ‘\/Zzz-az)g

(3.23a)
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2 . ip, (cosp+i 5o sin®)
" P a  sin® Re ; 1
517 %2 Z1+JZf—a2

i P, (cosp+ i S sinc) ;

2 2
Zer,\/Z2 - a

i ql(coscp + i Sy sinop)

2

P -

v = + CAR I Re%
s, - S 2

1 2 Zl+ Z1 -a

i qz(costp + i 5 sin®)
2 2 S
Z2 + «/ZZ -a

(3. 23b)
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B. Considerations on the Singular Stress Distribution

We note that the stresses expressed in equation (3. 22) behave in
singular fashion as the point under consideration approaches the crack
tip. From a physical viewpoint such behavior is not admissible since
no material can withstand infinite stresses. We comment, not as an
excuse, but as a point of information that the singular stresses are
obtained also in an  isotropic solid. The mechanics of fracture in an
isotropic  solid has assumed the results of the classical theory of
linear elasticity, in spite of the presence of the singular stresses, to
predict the fracture behavior of homogeneous isotropic solids. The
saving grace in this connection is the fact that the energy contained
within the singular part of the stress is finite. This has led Griffith
to the formulation of the energy criterion for the fracture. The fact
that the energy contained in the singular region is finite, is also true
in anisotropic bodies. We shall at a later point proceed to formulate
the fracture criterion for an orthtropic plate with a crack, on the
same basis as that advanced by Griffith,

Presently we wish to interpret the unrealistic high stresses in
terms of a more realistic physical situation, near the crack tip in an
anistropic solid. Undoubtedly, microstructurally, the inhomogeneous
material becomes nonlinear when large stresses are encountered, For
this reason the material at the tip of the crack will no longer respond
in a linear fashion as assumed to be the case for the bulk material;
instead it will break down, being able to carry a lesser load. As a

result, the stress field in the body, in the vicinity of the tip will
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change so that these high but finite stresses will act over some domain
at the tip so as to satisfy the overall equilibrium. This kind of mate-
rial has been encountered in connection with plasticity in isotropic
bodies (ref. 6). In spite of the small scale nonlinear behavior of the
material it has been found in the case of the isotropic bodies that the
fracture behavior is reasonably well predicted by the linear elasticity.
With such practical experience in mind, we treat the singular behavior
in an orthotropic solid in an admittedly somewhat cavalier fashion,
overlooking the physical reality of nonlinear behavior of the material
at the tip of the crack. Therefore we clearly follow the examples in
the fracture of the isotropic solids and apply the linear elastic theory

in the fracture mechanics of an anisotropic body.
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G Strain Energy in a Plate due to the Crack

We are interested in the propagation of the crack under far field
loading. According to our hypothesis (see section 4), crack propaga-
tion takes place if the amount of the strain energy released during the
crack propagation is equal to or exceeds the surface energy required to
form the new crack surface. Let ug and % be the displacements of

the crack surface and let Tyyol and v be the tractions acting on

yO

the crack surface, UI be the work done by the normal tractions Cryyo

and U.. be the work done by the shear tractions & 1. U.and U
II Xyo I 11

are given by

a
UI g L Z Jr T Ly dx
2 LN yyo o
B (Sl'i'sz)'PZa_ sin ¢
B E
Yy
a (3.23)
ope L2 el %
o= Xyo0 o dx
2 -a
2.5 . 2 2
_o (SI+S2)6’ Prsin‘g cosp
A/EXXEYY
For the total work U, done by tractions Ti we have
i & gy v
g = L 2 1 Tidx
2 ta
. .
= 2 ZJ 2 o dx+28 Uo g dx (3.24)
2 -a %x¥a ~-a yye
= U, + U
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Hence we have from equations (3.23) and (3. 24),

1 (s 32)32 { PZ Sin%p PZ COSch sinzq)

U= - +
Y E v B
2 hYY \/EYY xX
(3.25)
2 o 0?2
- 1 (Sl+52)a '_ny + -I

- ) -
2 E JVE _~ VE

v ¥y Yy s —J'
We note parenthetically that for the isotropic case, SI=SZ=1 and

E =E =E, so that one obtains
XX Yy

5 i ((Tyy T T (3.26)

This same expressionis obtained for the isotropic plate with a

rectilinear crack, under same loading conditions as above (6).
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4, Theoretical Failure Criterion

A. Stability Criterion

Consider a plate of fiber composite material containing a crack,
loaded in tension of magnitude P as indicated earlier and depicted in
(fig. 2.1), the crack being oriented parallel to the fibers. Without
further defining the meaning of weak or strong, we refer to an earlier
statement, in which we had characterized the matrix as weak when
compared to the fibers. We point out however, that the fibers are
intrinsically stronger only in tension along their axis, whereas they
may come apart, ''relatively easily" if the tension were applied normal
to the draw direction. We make this statement because we do not want
to infer that the intrinsic weakness of composite materials transverse
to the fibers derives from the weakness of the matrix but it could
equally well derive from the weak transverse strength characteristics
of the fibers. It appears intuitively obvious to us that the crack requires
much less energy if it propagates parallel to the fibers than if it were
to grow so that it would rupture the fibers. But if the crack is almost
aligned with the direction of tension it may well be possible that the
tension required to propagate the crack parallel to the fibers may
exceed the tension required to propagate the crack transverse to them.
We expect that this would occur when o (fig. 2.1) is a few degrees.
Our present aim is to investigate the cases when the crack propagates
along the fibers. We leave for the later investigation the cases when
the crack transgresses the fibers.

Next we associate with the propagation of the crack parallel to the

fibers a definite surface energy requirement and we assume that for
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a unit of new fracture surface generated an amount of energy [ is
required, Simultaneously with this assumption we advance a corollary
supposition that neither the matrix material nor the fiber material
undergoes plastic deformation and that the material stays elastic and
brittle. This supposition primarily is a matter of convenience rather
than of a physical reality, But in view of the brittle properties of the
matrix material and the fiber material we expect this assumption to
be not of adverse consequences.

The assumption regarding the development of a stability criterion -
viz: that the crack moves parallel to the fibers - is contingent on the
further assumption that the matrix volume fraction is small. We
illustrate this point by considering what might happen if the matrix
volume fraction is large. In this case a crack, located parallel to the
fibers and subjected to the normal as well as the shear stresses, would
propagate at some angle to its original orientation (fig. 4. 1’,)3, until
it encounters the fibers. Near the fibers the stress field will be three
dimensional and the manner in which the crack grows will not be along
the fibers. Theoretical determination of the stress field is impossible.
Due to the irregularities in fibers the actual path will also be irregular.
However the surface area thus generated will not be planar, and the
assumption of the colinear crack propagation will not be justified. We
therefore assume implicitly that the fiber volume is large compared
to the matrix volume such that distance between the surfaces of adjucent
fibers is small, compared to the fiber diameter. This assumption is

justified when the fibers occupy 60% of the composite volume.
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In order to determine the stability of the crack in an orthotropic
plate we consider a virtual enlargement of the crack and examine the
effect of this virtual growth on the stored energy as a function of crack
extension. In order to do this we consider first the energy stored in
the plate, containing a crack of length 2a , and secondly consider the
energy in the plate containing a crack of length 2 (a + Aa). In view of
the resulting equation (3.25), the work done by the tractions

against the moving boundary of the crack of length 2a, is,

™ (s1 + sZ) a2 s © o 1 (4.1)
Ufa) = — — v___YY- + vé‘_l- '
2 EYY EYY XX

while the work done by the traction against the moving boundary of the

crack of length 2 (a + aa) is,

2 fo) o
+ +8
U (a) = T (s; +s,) (atsa)’lo vY . 7 xy (4. 2)
2 VE VE VE
vy vy XX

Now, we find the amount of strain energy available to do the work
against the surface energy, by finding the difference between the case
of crack length 2a and the case of crack length 2 (a+ Aa). Next form the
ratio of the difference of the strain energy to the crack enlargement

Aa, then pass to the limit as Aa approaches zero. The result is,

2 2
AU dU L . ©
LATH. = B o B " (sl SZ) : vy + xy (4. 3)
Aar-p-0 Aa da VE VE VE
Yy vy XX

In the process of enlarging the crack length by Aa on either side of
the crack tips, surface energy in the amount of 4T'Aa is required.

This surface energy is equal to the available strain energy release
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(4. 3) at the point of instability. We thus obtain,

aTasn = S8 pa (4. 4)
da
o dU .
Substituting — from (4. 3) into (4. 4) we get,
da
o2 ol
w(s,+s,)a o o
AT = — & & ( Y g o F ) (4. 5)
JE JE E
Yy Yy v XX

The stress intensity factors KI and K[I are defined as,

Fuw & e 5 (4. 6)
R Jan
In our case this leads to,
_ o _ o
KI = (ryy va and KII = o—xy Aa (4. 7a)
Let us further define the material constants @ and B as,

4TE aT VE_E_
o= —YY B = Yy (4. 7b)

Tr(sl+52) T (sl+sz)

By virtue of (4.7a), (4.7b), equation (4.5) then reads,
2 2

K K
<_L\. + (Jl) = (4.8)
o/ B

We now assert that the relation (4. 8) should be satisfied at the
point of incipient crack propagation, with propagation parallel to the

fibers, under arbitrary loading conditions except when ¢ (fig. 3.1)

is small.
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B. Comparison With Wu's Criterion

As mentioned in (Section 2) Sanford and Stonsiefer's work is in
close accord with the present development. However Wu's empirical
criterion is significantly different and deserves some further comments.
As pointed out in (Section 2), Wu assumes, on the basis of dimen-
sional analysis, that the failure relation is given by equation (2. 1),
repeated here for convenience,

m n
KI KII
— + —i = 1 (2. 1)

L B

where, ch’ KIIc’ m and n are to be determined experimentally. Wu
determined ch and KIIC’ respectively by tension normal to the crack
and by pure shear in which the crack is parallel to the shear direction;
m and n were then deduced from further experiments under combined
loading. The values for m and n were found to be 1.03 and 1. 88
respectively, for the experiments on balsa wood. Wu then argued on
physical grounds that the power n=1.88 and m=1l, 03 should be n=2
and m=1 and such values should be obtainable with better experiments.
We note, however, that the value of m as predicted experimentally

by Wu is unity while in the present theory it takes the value two. We
are now faced with the problem of explaining the difference.

The argument given by Wu in order to accept the value of n=2 is,
that the sign of the shear should be of no consequence in the failure
criterion. This is correct; and one is thus lead to the fact that n
should be even; since the experimentally determined value is 1. 8, the

nearest even number is 2.
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Next Wu argues that the value of m=1, 03 should be unity. The

reasoning used by Wu as to the choice of m=1 is fallacious. It is based
on the implicitly assumed existence of a negative stress intensity
factor KI where the crack faces are pressed together; this has no
singular solution, and thus a value of Kl does not exist if the crack
faces are in uniform contact under pressure.

Let us consider the methods Wu used to determine KIC and KIIC'
The tension experiments for KIC are adequate. In the case of pure
shear experiment this is not necessarily so. In the ideal situation under
pure shear testing the crack surfaces will be just in contact without
any pressure. However, if the surfaces are not smooth as in the
idealized case, but are either slightly serrated or rough because of
the inhomogeneities of the material or possibly because of the way
the crack was introduced, then there will be apparent friction between
the crack surfaces which opposes the enlargement of the crack., Thus
the value determined for KIIC will be too large. We now plot both the
fracture criterion given by equation (4. 8) and Wu's result on the same
plot, shown in (fig. 4.2.). We notice the the discrepancy arises pri-
marily for the small value of KI’ on which is superimposed Wu's
data, in (fig. 4.2), one would observe that all the experimental points
follow equally well the equation (4. 8) or equation (2. 1), except for
the points for which KI:O' However we have already noted that these
values for KIIC (KIC =0) may be high because of the potential inaccuracy
of the generation of the smooth fracture surface free of friction. It

appears to us, therefore, that the apparently large discrepancy in

failure criterion, proposed here and that by Wu,that one exponent



26
differs by the factor of two may be an artifact of a limited set of ex-
perimental points.

C. Extension of the Energy Criterion of Failure to Multidirectional

Fiber Composites

It will be recalled that the current study of crack propagation in
the unidirectional composite is a precursor to the study of more com-
plex fracture behaviour in multiple layered advanced composite. We
find that the detailed consideration of this complex problem is beyond
the scope of the present investigation. Let it suffice to put forth some
general ideas on how an investigation of this problem should proceed
and what might constitute a possibly fruitful avenue, to obtain estimates
of fracture bounds in multidirectional composites.

Let us introduce a crack in a composite with multiple oriented
fiber layers. The crack will not be aligned with all the fibers but only
possibly in a few layers or even only in a single one. As we shall see
during the later development the crack will tend to propagate parallel
to the fibers. This means that in a multidirectional composite the
crack tip attempts to propagateinthe direction ofthe fibers inthe different
layers. This we expecttoholdtrueifthetensionisnotaligned very close
with the fiber orientation in one or several layers. In view of the sup-
position a question arises: How far does the crack propagate in the in-
dividual layers when the load near the failure point is incremented by
small amount? Assuming forthe momentthatalllayers are disconnected,
one might argue that the amount of crack propagation in the individual

plys for a given time increment is a function of the orientation of the
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tension load with respect to the fibers in the individual plys. No esti-
mates exist, as yet, of how much more crack propagation occurs in one
ply than in any other one. In predicting, as a first approximation, an
upper or a lower bound on the crack propagation in multidirectional
composite one might assume equality in all layers. Next we have to
contend with the fact that the plys are not disconnected from each
other but are connected to each other through the epoxy which is

also to be broken in the fracture procecss, if crack propagation is to
occur in individual layer. We envision therefore, that when crack
propagation occurs by a small but equal amount in the direction of the
fibers in individual plys, a sector-shaped interlaminar region has to
be broken in order to allow the crack to propagate in the individual
laminates. For example, consider two laminates the orientation of
fibers of which is § with respect to each other. Let the crack tip be

located at some point A, the crack having orientations a, and a,

1
with respect to the two laminae (fig. 4.3). As the crack propagates

a distance Aa in either one, the sector of area (Aa)2 sinf# has to be
broken in a shear deformation mode. The amount of energy required
for forming a unit of new surface in shear fracture is Ij; . The energy
required for the shear fracture is then of the order FO (Aa)2 sinf. By
comparison the amount of energy required for the fracture propagation
in individual plys is of the order of Aar while the energy required to
cause the interlaminav failure is of the order (Aa)2 Iy - The question

now arises whether the gross failure can be associated with an infinites~

imal propagation of the crack in which case the dominant term govern-

ing fracture may be that required to begin the propagation in the
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individual lamina without consideration of the interlaminar failure
provided T and Fo are of the same order of magnitude. However we
may also take a second viewpoint by arguing that the crack propagation
in individual laminae is only possible after some local delamination.
For example, we may consider that individual laminae permit a small
but finite amount of crack extension and that the adjacent layers exert
elastic constraint on the further crack propagation, then the crack propa-
gation in each lamina can occur without the gross failure. In that event
it is possible that the gross failure of the original crack does not occur
until the individual crack extensions of order Aa in each ply have become
so large that the dominant failure energy is derived from the inter-
laminar shear fracture. Then (Aa)ZFO Sinf# may indeed be the controlling
factor. The only way in which this can be estimated, it appears to
us, is by conducting a series of experiments on specimens with carefully
controlled cracks with carefully manufactured multidirectional composites.

To find the load at which the failure in each ply starts we are faced
with the task of determining the load shared by each ply. Let us con-
sider a thin plate so that we can assume that strains in each ply are
only functions of the in-plane dimensions x and y, the z axis being
axis perpendicular to the plate; the strains are same in each ply as

well. Let the constitutive equation for the nth layer be,

2 n a n n n C
( Txx ] l’ 11 %12 213 1 = xx
JO’ n | a1 e ax X [ €
} Txx = t’ 21 22 23 L T yy ( (4.9)
lcr n a, a, .’ a . J l €



where the anij are functions of E

between the coordinate system and axis of the ply orthotropy.
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, E

v and angle 6"
Xy

Let

t" be the thickness of the nth layer. Multiplying 4.9 by t” and adding

over all n's and dividing by the thickness of plate t = % £ "

Thus the constitutive relation is,

Yy

Xy

where,

EO’ n,.n

n_xy 't
t

-

one obtains,
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Here bar over the quantity denotes the average (elsewhere the bar

denotes complex conjugate),
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This constitutive law could then be used to determine the
average stresses and strains for the cracked plate by Lekhnitskii's
method. This information would then enable us to calculate the
stresses in the individual plys. Knowing the approximate state of the
stress in each ply we could proceed to calculate the failure of each
layer. You will recall that we discussed the requirements on the
fracture energy with regard to layer and interlaminar fracture. It
would now seem only necessary to examine experimentally which of
these two energy requirements is appropriate to develop a lower

bound for the fracture of a multilayered composite plate containing a

through crack.
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5. EXPERIMENTAL INVESTIGATION - I

Determination of Elastic Constants

We are now interested in performing experiments which substanti-
ate or reject the postulated failure criterion given by equation (4. 8).
In an indirect way we shall then examine through experimentation
a) whether the assumption that the crack propagation occurs along
the fiber direction is indeed valid and b) whether the energy exchange
process asthe crack advances is as predicted by equétion(4.8 ). In order
to evaluate this latter equation and to perform the correlation with the

experiments it is first necessary to evaluate the elastic constants

E ,E ,G and ¢, as well as the fracture energy T. In
this section we consider the determinationof EE. , E , G and
XX Yy Xy
v,
xy

The methods by which we choose to determine these material
parameters were three-fold: the moduli Exx and EYY were deter -
mined by a) static bending of a cantiliver beam, b) vibration of a
cantilever beam, c¢) uniaxial tension test, x being along the fiber
direction and y being perpendicular to this. The constant GXY was
determined with the aid of a torsion pendulum. In as much as there
was no easy way to determine the parameter ny’ the sensitivity of
the stress distribution to the variation of this parameter was exam-
ined. We see from equation (3. 14) that the way the Poisson's ratio
enters the stress distribution is through the definitions, in
equation (3-13), of the constants Sy and s,. Upon analysing the
dependence of these constants on Poisson's ratio \)xy and using the
value, as we shall determine later,of Exx approximately 10,we find

2G
e
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that the variation of the constants s; and s is approximately 1% or

2
less as the parameter ny take the values from 0.2 to 0. 4. In view

of this relative insensivity of the stress distribution to this parameter
we feel that it was not necessary to perform an elaborate experimental
analysis of this quantity which is difficult to measure; instead we believe
it was adequate for the present purposes that this quantity be estimated
from existing analysis suchas the rule of mixture given by equation (5.1),

(Ref. 8 ).

Txy = Vs Yo T Ve Ve

(5. 1)

In choosing a value for V¢ we must be aware of the fact that the
fibers by themselves are not isotropic. We therefore choose Ve as
the lateral Poisson contraction of fiber which is subjected to the

axial load.

A, Cantilever Beam Test

The determination of the moduli by the beam bending method is
very sensitive to errors in the beam thickness. Indeed, since
the thickness appears as the third power in the relation between

deflection and the elastic moduli as seen from the following equation,

E = K PL (5.2)
0
bt
where, E, is elastic modulus; P, is the load; L, length of the canti-
lever t, the thickness of the beam; b, the width of the beam; §, is
the deflection at the end of the cantilever and K being a numerical
constant which takes values of 0, 344 and 1. 25 for the load at the

quarter and mid span, respectively. In order to determine this
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TABLE 5-1

BEAM BENDING DETERMINATION OF Ex.x

Loading Point Load Deflection Exx in PSI
gms. lbs. cms, ins,

Quarter Span 17.26 0.038 0.48 0.189 1375 % 106
27.26 0,00608 0.77 0.303 13,70 x 106
37.26 0,082 1.05 0.413 13,88 x 106
47.26 0.104 1.35 0.532 13,40 x 106
57.26 0.129 1.63 0.642 13.70 xlO6

Half Span 17.26 0.038 1.73 0. 681 13.9 x 106
27.26 0,608 2.73 1.075 14.0 x 106
37.26 0.082 3. T2 1,465 13.9 % 106
Length of Cantilever = L = 16"
Width of Cantilever = b = 0.239 £ 0,03"

Thickness = t

(0.044 + 0,001")

Elastic Modulus

13.74 £0.02) x 106 psi



Loading Point

Quarter Span

Mid Span
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TABLE 5-2

BEAM BENDING DETERMINATION OF Eyy

Load Deflection Eyy in p. s.i.
gms, 1bs. cms. ins,

17.26 0.038 0.38  0.1495 1.435 x 10°
27.26 0.0608 0.59  0.232 1.45 x 10°
27.26 0.052 0.84  0.323 1.44 x 10°
17.26 0,038 1.34  0.527 1.45 x 10°
27.26 0.0608 2.27  0.893 1.43 x 10°
37.26 0.082 3.07 1.29 1,42 x 10°

Length of Cantilever
Width of Cantilever =
Thickness of Cantilever=

Elastic Modulus =

lOH
0.483 £0,006"
0.499'+0,001"

(1.435 0. 02)106 psi
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thickness reliably and also remove a layer of matrix material deposited
on the exterior faces of the beam cut from the manufactured plate, the
beam specimens of nominal thickness (0, 0564 + 0. 003) inches and
{0.0613 + 0.003) inches were ground to the thickness (0. 04391 + 0. 001)
inches and (0. 04988 + 0. 001) inches.

The static beam bending test was performed as follows: The beam
was clamped between two steel blocks to a heavy and rigid stand.
The cantilever was then subjected to the load at the quarter span and
mid span as measured from the support. The deflection at the free
end of the beam was then measured with a travelling telescope. This
permitted the resolution of the deflection to 0. 0]l c¢cm and since the total
deflection measured was of the order of at least 0. 5 cm, accuracy was
approximately 2%. In tables 5.1 and 5.2 we give the results of load vs
deflection relation for this test.

On the basis of the deformation encountered in the beam it was
found that the strains in the beam were less than 0.1%. One would
therefore conclude that the linear theory of beam bending is satisfac-
tory in the deicrmination of the moduli by this method. The equation
(5. 2) gives the relation from which Exx and EYY were calculated and
their average values were found to be,

E 13,74 X 10° psi

XX

It

1t

B 1.435 X 106 psi

vy

B. Cantilever Vibration Test

In order to check the results of the cantilever beam test, we
performed a cantilever vibration test. The cantilever beam was excited

by means of a speaker, the frequency of which was controlled by an



Span

12“

101!
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TABLE 5-3

VIBRATION DETERMINATION OF Exx

Mode of

vibration

Cycles/sec.

96. 6
274.0
538.1

888.8

21.9
144. 4
396 .9
778.8

1284. 8

E
Lo

13.
13.
14.

13.

13.
14.
14.
14.

14.

Cross-Section of Beam as in Table 5-1

in p.s.1i.

60 x 10
94 x 10
0 x10

94 x 10

30x 10
72 x 10
18 x IO6
18 x 106

18 x10

Density of Maserial = 5,37 = 1072 1b/in®

* Denotes elimination in the average

E
XX

(14.02 £ 0.05) x 106 psi



Span

10”

8“

TABLE 5-4
VIBRATION DETERMINATION OF E .y
Mode of Cycles/sec. E_inp.s.i.
vibration
2 50. 8 *1.510 x
3 139.8 1.465 x
4 274.6 1.465 x
5 454. 4 1.465 x
2 78.6 1.465 x
3 218.3 *1.799 x
4 427. 4 1.452 x
5 708. 4 1.452 x
Cross-Section of Beam as in Table 5-2
Density of Material = 5.37 x 1072 1b/in3

37

* Denotes Elimination in the average

E
yy

= (1.46 £0, 05)106 psi
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oscillator. The first five modes of vibration were determined by
increasing the frequency of the speaker continuously from zero. The
displacements measured were of the order 0of0.01'. A capacitance
pick-up, which responded sufficiently well to the graphite~epoxy
cofnp05ite, was used to determine the amplitude and the resonance
frequencies by examining the amplitude for the first five modes. The
experiment were performed for the two lengths, 12" and 10" when E
was to be determined and for the two lengths, 10" and 8' when E
was concerned. The specimens used in these measurements were the
same as used in the static cantilever test. The data for the vibration
tests are given in table 5.3 and 5. 4. The average values for E . and
EYY as determined by this test are,

F, = 14.021:106 psi

XX

E = 1.460 x 106 psi
Yy

C. Uniaxial Tension Test

In order to determine the reliability of the above two tests, a third
experiment was performed, in which the same specimens as used
before were extended in the Instron tester under uniaxial tension. The
strain was measured by a clip-on extensometer (Model TTC Instron
Number 949) which was calibrated to an accuracy of 0. 5%. The tables
5.5 and 5. 6 give data of these tests, The values for Exx and Eyy
obtained in three different tests mentioned above have been summa-
rized in table 5. 9. A systematic discrepancy is apparent from this
table. But rather than explain this discrepancy at this point we continue
first the description of the tests for the determination of the remaining

properties and then return to this question for further discussion.



Load

lbs.

434

445

444

435
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TABLE 5-5

TENSILE DETERMINATION OF Exx

Extensometer

Reading
inches

0.004
0. 004
0.004

0.004

Gauge of Extensometer = 1.096 inch
Width of Specimen = 0,252 inch

Thickness of Specimen = 0.044 inch

Exx = (15.77+0.02) 106 psi

E in psi
XX P

15.75 x 106

15.79 x 106

15.78 x 106

15. 76 x 106
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TABLE 5-6

TENSILE DETERMINATION OF EYY

Load Extensometer Reading Exx in psi

(1bs) inches

134 0. 0045 1.36 x 106

153 0.0040 1.38 x 106

173 0.0035 1.37 x 106

173 0. 0035 1.37 x 106
Gauge of Extensometer 1. 085 inch
Width of the Specimen 0. 496 inch
Thickness of the Specimen 0. 0498 inch

E (1.37£0.02)1 06 psi

yy
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Average values of Exx and EYY obtained in the uniaxial tension tests

are,

E 15,77 = 16° gsi

XX

E = 1.37 x 106 psi
Yy

D. The Torsion Pendulum Test

Finally we need to determine the inplane shear modulus of the
material. In order to do this we note that if we manufacture a strip
of material with the fibers running along the strip, the twist-~torque
relationship of such a strip depends on the required shear’ modulus.
Furthermore, if we wuse such a strip in a torsional pendulum, then
we can determine the required shear modulus by measuring the period
of such pendulum. Thus we can use the beam manufactured for the
determination of Exx in the beam bending test for this experiment.
(Fig.5.1 ) shows the details of the experimental arrangement. By
choosing the moment of inertia of the disc sufficiently large, so that
the period could be determined with the aid of a stop-watch, several
repeated measurements were made in which time for 10, 15, 20, 25,
oscillations were measured. Then the shear modulus was calculated

from the relation,

2
G 47 )1 (5. 3)

k (2a)> (2b) T

where

T = Period b = Breadth of speci-

L = Length of the pendulum men

I = Moment of Inertia of Disc & = phackhess of tae

. . specimen
k = Constant depending on the ratio

a/b
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TABLE 5-7
DETERMINATION OF GXY
of Oscillations- Time Measured Period
in Secs. in Secs.

15 13.2 0. 88
25 22,5 0.90
10 9.0 0.90
15 13.3 0.89
15 13.2 0.88
15 13. 4 0.895
15 13.4 (., 895
20 17 9 0 895
15 13.2 0.88
20 17.8 0.89
Average Period = 0.89 secs.
Length of the Pendulum = 15 5/8 inches

Cross-~-section as in Table = 4,1

G = (0.675 £0.007) 106 psi
Xy
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by using the average value of the period. Table 5.7 gives details of

data. The value of ny thus calculated was,

G = 0.675 106 psi
Xy

E. Estimation of Vv
Xy

We estimate the value of \)XY by the rule of mixture as mentioned
in the beginning of this section. The volume fraction of graphite was
determined by first finding the weight fraction of the constituents. By
burning away the epoxy material in an oven and weighing the residue
weight and the weight of preburnt sample the graphite weight fraction
was determined. The weightfractionwas 65.9% fiber and 34.1% epoxy. From
the densities of these constituents this corresponds to the volume frac-
tions of 59.2% fiber and 40. 8% epoxy. See Table 5. 8.

The representative values for the ’ny for the fibers, the x axis
being along the axis of the fibers, and 7 for the matrix was taken
from (8) to be 0.2 and 0. 35 respectively. The equation (5.1) then
gives YXY for the composite as 0.29.

F, Choice of the Material Properties

In view of the diversity of the experimental results as indicated
in table 5.10 we now have to determine which of these values is appro-
priate and least prone to experimental error for incorporation in our
further analysis. First we observe that both the cantilever vibration
test and the static cantilever test generate material properties which
are in close agreement, i.e., on the average within 3%. However,
both the vibration test and static cantilever test show a disparity of

approximately 10% with the results of the tension test.
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TABLE 5-8
DETERMINATI ON CONSTITUENT FRACTIONS
Weight of Specimen Weight of The Specimen % of Fiber
Before Burning After Burning Epoxy by weight
in gms., in gms.
1.345 0.893 66. 4
1.512 | 1.010 66. 7
1.098 0.715 65.2
1.235 0. 805 64. 9
1.423 0, 945 65.3

Percentage of Fiber by Weight = 65.90



Material
Property

E
XX

(Along
Fibers)

E
yy

(Across
Fibers)

Xy

%
By

Weight
Fraction
of Fiber

45

TABLE 5-9

Experimental Procedure

a) Static Cantilever Test
b) Cantilever Vibration Test

c) Uniaxial Tension

a) Static Cantilever Test
b) Cantilever Vibration Test

¢) Uniaxial Tension

Torsion Pendulum

Approximate Estimation

Burning off the Epoxy

COMPARISON BETWEEN VARIOUS TEST RESULTS

Numerical Value

13.74 x 106 psi
6
14,02 x 10" psi

15,77 x 106 psi

1.435 x 106 psi
1,46 % 10° pad

1.37 x lO6 psi

0. 675 x 10° psi

0.29

65. 9%
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Let us first consider the error in the measurementof the thickness of
thebeam. The thickness measurement was correct to 2%. This gives
rise to an error of approximately 6% in the value of the modulus, while
in the uniaxial test it is 2%. Thus the uniaxial test is better than the
bending test in this respect. Next we note that in the bending test both

the tension and the compressive properties are involved. If the tensile
and compressive properties should be different, one would then expect
that the resulting average modulus will not necessarily be in close
agreement with the tension modulus as determined in the uniaxial
tension test. Third, if the composite material were to have flaws
aligned parallel to the fibers the shear rigidity would be impaired and
thus one would observe the beam to be less rigid than a perfectly
unflawed specimen. This was observed in the case of the beam axis
along the fibers, i.e., measurement of Exx' But it is not true when
the fibers were aligned across the beam axis., Possible un;bonds
parallel to the fibers are really responsible for the inconsistent
behaviour, which is difficult to ascertain without further careful experi-
mentation. In view of the fact that we wish to use these material prop-
erties in the crack propagation experiment, where the stresses are
primarily tensile and more or less wuniformly so through the sheet
thickness it was decided that the Instron tensile test results be used
rather than the cantilever test results.

The torsion pendulum results for the value of ny were accepted
without further investigation primarily because the alternative test
of performing inplane shear test is very difficult and too time consum-

ing for a study of this scope.
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6. EXPERIMENTAL INVESTIGATION - II

Experiment on the Failure Criterion of the Unidirectional

Graphite Fiber Reinforced Epoxy

A. Specimen Design

We have already stated that prior to the preparation of the test
specimens, calculations for the stress field were carried out to deter-
mine the size of the specimens. The reason for doing this was twofold.
First, the material is expensive and for this reason the supply of the
material was very limited. It was therefore necessary to make opti-
mum use of the material available to us by making the specimens as
small as possible. With this constraint on the specimen design, it was
necessary that the size of the specimen was such that the stress dis-
tribution encountered in the laboratory experiment did not deviate
more than a specified minimum from that which one would have in an
infinite sheet, as our analysis assumed.

The size and the shape of the specimen were chosen ultimately
by the following procedure. The stresses in an infinitely large sheet
were calculated and the rectangular boundaries surroundingthe crack were
chosen such that the maximum deviation of normal stresses on that
boundary did not vary by more than 5% from the stresses at infinity.
The boundaries thus chosen were used to cut the specimen from the
supplied sheet. Evidently this size will depend on the size of the
crack in the sheet. The minimum size of the crack is determined by
the irregularities of the microstructure of the material as well as

the thickness of the sheet. It was felt that the crack of half-inch length was
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sufficient to overshadow the microstructural irregularities as well as
the effect due to the finite thickness of the sheet. This characteristic
length was used in determining the absolute size of the specimen to
meet the above requirement of allowable 5% deviation in the stresses.
The variations in the displacements were also examined and were
found to vary no more than 3% from the average value.

We chose to manufacture the specimens, in which the crack
was oriented parallel to the fibers with the following orientation ©

° 50° and 30°.

between the fiber axis and the tension axis; ® = 900, 70
The specimen sizes corresponding to these orientations is given in
table 6.1. It is also to be noted that the dimension of the specimens
along the tension was increased by 1 inch on either side, to provide
room for the tabs to fix to the whiffle-tree, a load distribution device
which is discussed later.

The ultimate goal of this experiment is to apply loads to bound-
aries of the specimen and then to determine, from the initial crack
size and from the load at which catastrophic failure occurs, whether
the failure criterion given by equation (4. 8) is satisfied. In the
pursuit of this experimental goal three problems arose.

a) It was necessary to consistently introducea crack of required
length in the specimens without premature failure of the specimens.

b) Determination of the crack length introduced.

c) Application of the uniform boundary loads.

The solutions to these problems will be discussed in this order.
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TABLE 6-1
SPECIMEN SIZES

Specimen ® Width Length No. of
Degrees inches inches Specimens
A 90 6 8 2
B 70 5 6 2
C 50 3 5 3
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a) Crack Introduction:

The introduction of crack of controlled length into the fiber
reinforced material was first practiced on a glass-fiber reinforced
composite which could be produced cheaply in our laboratory. Then
it was tried on the scrap material which remained after the specimens
had been cut out from the sheet. First a T% inch diameter hole was
drilled through the center of the required crack position, i.e., the
center of the specimen. Then the specimen was clamped in a vice,

the fibers running at right angles to the vice jaws. It was important
to note that the vice was new and had ground grips. The center of the
3%- inch from the edges of the vice grips; this distance

was determined by trial and error. A specially ground steel chisel

hole was placed

was placed on the edge of the hole nearest the vice. Upon gently tapping
the chisel with a hammer a crack propagated towards the vice grip and
because of the elastic vice constraint came to stop approximately é-
inch below the surface of the vice grips. With the experimentation on
the scrap material cracks of about %- inch length could be introduced
with good consistency. We were not sure, however, whether the crack
introduced by this method deviated enough from %—inch, which unknown
variation might later show up as experimental scatter in the analyzed

data.

b. Measurement of the crack length

The examination of the surface of the totally broken specimen
revealed that there was no difference between the preformed crack
and the surface of the further growth of the crack. In order to de-

liniate the length of the initial crack it was necessary to introduce
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some kind of surface marking which determined the crack front prior
to the testing of the specimen. This was accomplished by introducing
a dye into the crack which stained the crack surfaces. Following the
final testing of the specimen, one was then able to distinguish the
surface of the preformed crack from the surface generated during the
final test. The dye introduced in the crack consisted of a solution of
eosin in methyl alcohol. Eosin is a fluorescent agent which is visible
under ultraviolet light. The solution had an advantage over other
liquids in that it had low viscosity and its surface tension was sufficient
to draw the solution into the crack tip region. It was recognized that
the introduction of methyl alcohol into the crack tip region may have
deleterious effects on the further performance of the specimen. In
order to check whether methyl-alcohol had obvious undesirable side
effects on the composite material, pure methyl-alcohol was introduced
onto the surface and no apparent interaction between the epoxy and the
methyl-alcohol was observed. In addition the marking of the crack
surface took place at least a week before the test, thus allowing enough
time for the methyl-alcohol to evaporate. The removal of alcohol
could not guarantee, of course, that any possible damage done by the
alcohol was not permanent and therefore remained even after the
alcohol was gone. By measuring the length of the eosin stained

region of the broken specimen in an ultraviolet light the crack length
was determined. If this is done on both sides of the crack surface,

one obtains a rough estimate of the error in the measurement. This

error was found to be about = 0.03 inch.
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c. Further Specimen Preparation and Whiffle Tree

As we have described earlier, we have gone to some care in
designing the proper size and shape of the specimen to insure that
the stress state is reasonably well approximated by that in an infinite
plate. For the isotropic specimen it is customary to clamp the edges
of the properly sized specimen and to pull the clamped edges apart,
in order to apply approximately uniform tension to the crack perforated
sheet. It is a characteristic of the orthotropic plates that, when they
are stretched along one of the principle material axes, the deformations
are symmetric; however, if the loads are applied such that the tension
is at some angle with respect to the fiber direction, both the shear and
extension take place. If we therefore persist in applying the loading
condition, through clamped edges to an orthotropic material, then the
clamped boundary condition will not be able to produce approximate
uniform tension. In order to circumvent this undesirable constraint,
at least partially, we proceeded with the following method of loading.

Along the boundary, where loads were to be applied, we glued
short metal tabs with an epoxy adhesive (ECCOBOND 55 + CATALYST
9). In addition, after the adhesive had set we enlarged the holes
through the bond area and inserted bolts which were tightened with
nuts to strengthen the joints, which increased the capacity of the joints
by 10-15%. As shown in (fig. 6.1) the other end of the glued tabs
were perforated by reamed holes of %3— inch diameter, so that a series
of tabs protruded from the two loading edges of the plate con;caining

reamed holes. These reamed holes were used for the alignment of the

tabs during glueing as described later and to attach the specimen to the
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testing machine. Although the tabs were glued directly to the speci-
men and provided some constraintagainstthe rotationofthe edges, it is
believed that the situation is not as serious as if a continuous metal
strip had been joined to the specimen. We must also comment on the
fact that it is the average spacing between the tabs - say the average
spacing of the holes through which bolts were inserted - which primar-
ily determines the nonuniformity of the stress field near the edges of
the plate. Fig. 6.2 shows the distance at which the knife edge load
of value P decays to P/m radial stress in isotropic material and
in the orthotropic material under investigation. In a later case the
curves in the case of load perpendicular to the fiber as well as for the
case of load along the fiber is shown. The decay of stress is inversely
proportional to radial distance in all these cases, while the numerical
factor is different. When fibers are perpendicular to the load, the
decay is faster in orthotropic material, decay being slower in the
orthotropic material when the load is along the fiber. In our experi-
ment we were very far from the case of load parallel to the fibers
and hence expect the decay comparable to the isotropic case. Without
further analysis we believe the transfer of force through the whiffle
tree gives reasonably approximate uniform stress distribution at the
edge of the specimen.

Let us add one further comment regarding the edge condition
on the specimen. According to the calculations referred to earlier,
the size of the specimen depended on the orientation of the fibers with
respecttothetensionaxis. Furthermore,the tabs to be glued and bolted

to the plate specimen needed to be of a minimum width in order to cope
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with the forces to be transmitted to the plate, a limited number of

tabs could be attached to the narrower specimens. This minimum
number of tabs employedfor any of the specimens was four. The con-
straint on the maximum number of the tabs used was dictated by the
maximum space available between the Instron head attachments. The
length of the whiffle tree (see fig. 6.3) increases as the number of the
tabs is increased. Thus for a maximum of eight tabs, the requirement
of both the testing machine size and the size of each tab as dictated by
the strength requirement, were conveniently met.

It will be recognized that the glueing of the tabs to the specimen
was critical in order to avoid imparting a torque to the tabs during
testing which would then shear off the epoxy joints. It was necessary
to align the holes which connect the whiffle tree ends and the holes
through which the bolts were inserted through the specimen. This
was achieved by machining an aluminum plate through which the hole
pattern was drilled with a spacing accurate to the nearest 5/1000 inch.
The tab holes were reamed. 1/8 inch diameter dowel pins were placed
through the holes, and thus the tab joints could be held in the required
pattern while curing. The alignment of the tabs as produced by the
manner described was approximately * 2 degrees. The surfaces of
the tabs and the specimen were cleaned with methyl-alcohol prior to
the application of the adhesive. The epoxy was allowed to cure for
eight hours at room temperature before the pins were removed. The
tabs were glued on one side at a time and after eight hours of curing
the tabs were affixed to the other side. Before testing at least three

days elapsed to allow the epoxy to cure thoroughly.
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d. Specimen Testing

Although the unidirectionally reinforced graphite-epoxy com-
posite is strong under tensile loads in the direction of the fibers
bending strength is relatively low. This fact requires caution in
handling. In spite of the care exercised, two of the ten available
specimens broke in the specimen preparation process. The specimens
were therefore hung from the upper portion of the whiffle tree, after
which the other whiffle tree was attached. Also, care was taken that
the force be applied in the plane of the specimen since otherwise
bending could occur which could be responsible for unpredictable data
irregularities.

We used the minimum possible strain rate available in the
Instron, corresponding to the 0.02 inch/min. cross head speed.
Experiments were conducted at room temperature which was between
68-70°F.

We make note of a small and probably inconsequential accident.
Since for the photographic purposes the whiffle tree was not very dis-
tinct, it was deemed desirable to spray it with black paint. On the
first occasion it is entirely possible that some of the paint may have
fallen on the specimen. Whether this has occurred or not was difficult
to assert due to the fact that the specimen was black by itself. We
believe that although the solvent methyl-alcohol was contained in the
paint, we do not think this solvent had any appreciable effect on the

specimen; probably most of the alcohol evaporated in the process of
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spraying and an insignificant amount of alcohol penetrated into the
specimen. In the remaining cases more care was taken not to allow

any spray to contaminate the specimen.
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7. ANALYSIS OF EXPERIMENT

A, The Calculation of T

We consider first the determination of the fracture energy . We
recall that it is our aim to determine that combination of the applied
boundary stresses cry;)r and O'X;)’, for which fracture begins to propa-
gate. The criterion as proposed in equation (4.8) involves five
material properties, four of which are determined by the elastic
properties viz: Exx’ Eyy’ GXY and ny’ The fifth is the efxergy
required to generate new surface, which we call here the fracture
energy. If equation 4.7 applies to the fracture initiation of a strongly
orthotropic solid, then the experimental data such as obtained on the
pre-cracked plate and which we have just described, should yield the
value of the fracture energy I'. In table 7.1 we record values of T
determined from the tests on individual specimens along with the
applied stresses UX(;, and Uy; and other pertinent parameters
required to evaluate equation 4. 7. In the case of two specimens,
special remarks need to be made. In two specimens denoted by C2
and D in table 7.1 the initial crack length was not of the assigned
length inspite of the careful way of introducing the crack as described
in section 6. Inthe specimen C2 the crack length was too large. The
crack length was almost 1 inch long, which was too large for the finite
sheet dimension shown in table 6.1. Anticipating the discussion in the
next part of this section the failure occurred at a lower stress than
would be expected for the infinite sheet., This behavior is reasonable
since a larger crack in a finite sheet should produce a larger stress

""singularity' than in the infinite sheet. The second specimen for
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which no datum point was obtained, was one with the fiber orientation
almost parallel to the direction of the tension. The load obtained 1in
this test was very high. Failure in the specimen occurred at one of
the end tabs rather than through the crack. After the specimen was
broken artificially it was found that the crack was smaller than 1/2
inch. Since the specimen was designed such that the failure should
occur by crack extension, with the tabs holding up under this loading,
it turned out that too small a crack made the sheet sufficiently strong
so that the failure occurred at one of the tabs, instead of through the
crack., Nevertheless we determined the stresses required for crack
extension in this specimen, on the basis of maximum fracture energy
obtained in the more successful tests. These stresses turned out to
be higher than the one, which were produced in the test leading to
tab failure. The average fracture energy obtained, disregarding
these two points was 2. 74 (-20% or +25%) 1b/ inch.

B. The Failure Interaction Curve

Substitution of the value for the fracture energy into equation 4.8

leads to,
K\ Y
va \ = 1 (7. l)
945 1745
K KII
If we let X = —— and Y = ——— this equation can be written in the
945 1745
form,
x% ¢ Y% = 1 (7. 3)

which represents a quadrant of a circle. This quadrant is shown in
figure 7.1 along with the points determined in the tests of the individual

specimens. Werecallthat, becauseoftoolargeacrackinthe specimen G,
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and too small a crack inthe specimen D the failure points for these
cases are inaccurate. The failure of C2 should have occurred at a
higher load if the crack length was smaller, while the failure stress

of specimen D was below that value which would have been obtained if
failure had occurred through the crack. The arrows show the direc-
tion the points should have moved in the case of successful experiments.

C. Error Analysis

We separate the errors in the experimentintotwo categories, viz:
those whose magnitude can be estimated and those for which such an
estimation cannot be performed.

Estimable Errors

The errors which can be estimated are as follows:

Elastic properties could be determined as indicated in section
to within + 2%. The error in the energy calculation due to this is of
same order,

The thickness was measured within + 3%. However it should be
noted that the specimen was manufactured against a cloth surface and
the surface was somewhat rough and probably rich in polymer. The
error due to the measurement of thickness can be taken into account;
however the absolute value of the fracture energy can vary by a
greater amount, since the actual thickness of fiber reinforced part of
material is somewhat less than that which was measured, because of
the rough polymer-rich surface layer.

We estimate that the crack length was measured accurately to + 5%.

The measurement of the angle between the direction of tension and

the orientation of the crack was accurate to within + 2%.
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Now let us consider the effect of the above errors on the evaluation
of equation 4. 7 which we use to determine the fracture energy T.
Making first order perturbations on the pertinent quantities we obtain

for the error in I’ the following equation.

w ek o el o (7.3)
)

AT _ | AE At Aa 4A9
r E t a
Evaluation of equation 7. 3 with the material parameters listed in
section -5 results in a maximum relative error in the fracture energy
of + 25%. The relative error in the two material parameters scaling
the ordinate and the absissa in figure 7. 1; turns out to be + 13%. The
error band consistent with these errors is also shown in figure 7. 1.

Unestimable Errors

There are several errors which need to be mentioned, but over
which we have very little control. As we mentioned earlier the stress
distribution near the edge is not actually uniform, but is perturbed with
respect to an approximate point load application. Irregularities in the
stress field due to the boundary load application will of course depend
on the orientation between tension axis and the crack and tlie fiber
orientation and therefore this error will vary from test to test.

We recall that we mentioned in section 6 that we were careful in
aligning the plane of the sheet specimen with the tension axis of the
Instron. Although we were careful, small amounts of misalignment
may have happened. But we do not consider this to be significant.

There is a possibility that the eosin solution did not penetrate
completely to the corners of the crack. Repeated tests with scrap

material, makes us believe that the error due to this uncertainty is
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less than the error in the measurement of the stained crack length
by itself.

As we have already mentioned the eosin solution may have affected
the material at the crack tip; nevertheless, because of the length of
time elapsed between introduction of the eosin solution and the test
performance, the alcohol should not be present. The only effect the
eosin solution may have had is to cause some permanent damage in
the crack tip region.

From the description on the material characterization procedure
we recall that the composite material under investigation seems to
have different properties under tension and compression. In particu-
lar we recall the difference between the results of the beam bending
test and uniaxial tension test. This fact may have consequences in the
stress distribution of the cracked plate; but, short of a numerical
analysis taking this into account, we cannot estimate the magnitude

of the error incurred by this material behavior.

D. Final Remarks

We are painfully aware of the fact that the number of successful
tests are small, This, it will be recalled, is the result of the limited
amount of the expensive material available to us; the second factor
was premature failure of some specimens. The following
deductions may be made from the previous analysis and
ensuing tests.

We found no contradiction to the fact that the cracks propagate
parallel to the fibers. For the range of angles between the orientation

of the tension axis and the orientation of the crack examined, the
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energy criterion of failure is in fair agreement with the test results.
Together with the experiments of Wu, including our criticism of his
data interpretation, it appears that the energy criterion of failure for

advanced composites is a viable proposition.
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FIG. I.I THREE-PLY MULTIDIRECTIONAL FIBER-
COMPOSITE PLYS AT 90 DEGREES
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