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ABSTRACT

The gross effect of boundary layer separation on the flow
field of stratified flow over a barrier was studied by means of the

integral method of Liees and Reeves.

The complete integral formulation of both inner and outer flow

field of stratified flow over a barrier was obtained.

Furthermore, an iteration scheme of computation is proposed
for the simple case of incompressible homogeneous flow over a

barrier with viscous -inviscid interaction included.

However, in viewing the increasing importance, a considerable

amount of work remains to be done on this problem.
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I. INTRODUCTION

The study of stratified flow over barriers has been limited to

linearization of Euler equation for a number of years. It was not
until 1953 Long (1) showed that, for the special case in which both the
dynamic pressure and the vertical density gradient far upstream of
the barrier are constant, the full equations of steady, two-dimensional
inviscid flow could be transformed to Helmholtz's equation, a linear
one. This equation together with appropriate boundary conditions,
i. e., zero normal velocity on barriers and no waves far upstream,
represents a well-posed linear boundary-value problem, which has
served as the basis of extensive analyses of flow over a barrier of
finite size.

Although theoretical investigation of stratified flow over
barriers is extensive,verylittle experimental work, with which the
theories may be compared, has been conducted. It was shown by
Davis (2) that the discrepancy between Long's theory and experiment,
which is often very great, is associated with the generation of intense
turbulence behind the barrier. It is obvious that Long's inviscid
model is invalid if and when boundary-layer separation occurs.

Objective for the present research is to carry out an analysis
of stratified flowover abarrierinthe two-dimensional half plane, with
emphasis on the change of flow field due to boundary layer separation.
Unlike usual problems of aeronautics, in those problems of atmo-
spheric and environmental fluid mechanics, e.g., stratified flow overa

barrier, one is mainly interested in the outer region of the flow field.
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Although inviscid theory gives a reasonably good approximation for
this region, viscosity plays a major role in determining the boundary
condition if and when boundary layer separation occurs, and inviscid
theory by itself becomes no longer applicable. This leads us to the

study of flow separation by simultaneous treatment of inviscid and

viscous flow field.

The difficulty inherent in the separated flow problem is that
the static pressure distribution cannot be specified a priori, but is
determined by the interaction between the outer inviscid flow and the
inner viscous layer near the surface. Hence, in order to develop a
complete theoretical model for the problem of stratified flow over
barriers with boundary layer separation, one needs to be able to
calculate both the boundary layer and inviscid flow field and then to
couple the two properly. In recent years, the versatility of moment
or integral method for treating laminar or turbulent viscous-inviscid
interactions at supersonic speeds has been amply demonstrated (Lees and
Reeves (3), Alber(4), Klineberg(5), Grange(5)). It is only natural to
ask whether or not the method developed for supersonic flow can be
extended and applied to the problem of low speed flow. Although the
elliptic nature of low speed flow problem makes the problem much
more difficult and requires that the interaction between the inviscid
flow and the viscous flow is global, while in supersonic two-dimensional
flow it may be approximated by local interaction.

For simplicity, only slender barrier problem is considered.

The flow in the inner viscous layer is assumed to be governed by the

boundary layer equations; i.e., the streamwise gradient is much
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smaller than the transverse gradient of the same quantity. An
important difference from the conventional boundary layer theory is
that even in the first approximation the pressure distribution is given
by the inviscid flow theory, not with zero boundary layer thickness,
but with the displacement effect of the boundary layer included.

The boundary layer flow is solved approximately by adopting
the integral method developed by Lees, Reeves and Klineberg (3,5).

The outer inviscid flow solution is expressed in terms of an
integral of flow due to distributed doublet with strength related to the

effective shape of barrier.
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II. DESCRIPTION OF THE STRATIFIED FLOW FIELD

The principal object of this study is to estimate the gross effect
of boundary layer separation on the stratified flow field. In order to
formulate a simple model for stratified flow over a barrier, it is most
necessary to make use of the available experimental results so as to
delineate, if possible, the most important features of a highly complex

flow pattern.

II.1. The Two-Dimensional Stratified Flow Field

Several important regions in the flow field of stratified flow
over a barrier have been clearly established by the investigation of
Long (1,6,7), Pao (8,9,10,11), Davis (2), and many others. By the
use of fine aluminum powders as tracers, several distinct features of
stable stratified flow field are observed experimentally with flow
visualization techniques, (2,7,8). With the experimental results of
the above authors, it is possible to discern certain distinct features

of the flow field of stratified fluid over a barrier.

II.2. Lee Waves and Boundary-Layer Separation

One of the most interesting phenomenon on the flow field of
stratified flow overabarrieristhe formationof the lee waves, or
waves in the lee of the barriers, which are similar to atmospheric
waves in the lee of mountain ranges.

To see how these waves can arise in a stratified fluid, one
could consider the vorticity equation for an incompressible stratified

fluid:



w =2
DLW L Dox(vxw) = (w- V)4 + f IfxvP
Dt
Rate of change of Viscous Generation of Generation
vorticity following diffusion of vorticity by of vorticity
a moving fluid parcel vorticity stretching by stratifi-

cation
where v is the kinematic viscosity and is assumed to be a constant
for the present problem.

The term f—ZVJDXVP shows that the vorticity can be generated
through interaction of the density and pressure gradient; it is a new
mechanism for generating vorticity introduced by stratification.

As the fluid descends in the lee of the barrier, the last term in
the vorticity equation, f)-zvfx VP, produces a vorticity in a
counterclockwise sense. This rotation induces the descending fluid to
turn upward. On the way up, vorticity of opposite sense is generated
and turns the fluid down again. Thus, lee wave is generated behind the
barrier (see figure 1) if the flow is stably stratified.

Under the first crest of the lee wave, there exists an area
corresponding to a minimum of velocity, which is obvious (figure 1)
from the conservation of mass flux between streamlines in two-
dimensional flow, and therefore a region of maximum dynamic
pressure, The adverse pressure gradient produced near upstream of
this region, if intense enough, will cause the boundary layer separation.
The fluid in the boundary layer is then carried into separated-flow
region to form a large turbulent eddy. It is likely that this turbulent

eddy, due partly to boundary layer separation and partly to overturning
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instability, could dissipate so much energy, which would otherwise go
into wave motion, that the lee waves further downstream are greatly
weakened. This effect, whichhas evidently been shown by comparing the
theoretical prediction and experimental result performed by Davis,

has a profound effect on stratified flow field and is the main object of

the present study.

II.3. The Phenomenon of Blocking

The upstream blocking effect which slows down the flow in
front of the barrier is shown in Figure 2. This phenomenon of
stratified flow has been the subject of several recent papers. All the
experimental studies of Long (7), Debler (12) and Yih (13) indicate
that at very large Richardson numbers, stagnation zones occur up-
stream of the barriers. Trustrum (14) investigated the initial value
problem corresponding to Long's model and suggested that the final
state may involve waves upstream. Bretherton (15) solved the initial
value problem for the limit of infinite Richardson number and found
that at the upstream of the barrier, there exists a blocked region of
stagnant fluid which is separated from the main flow by a thin shear
layer., Kao (16) assumed that such blocked regions exist and calculated
flows over barriers using an ad hoc modification of Long's model.

The present study is mainly concerned with stratified flow over
slender barriers with boundary-layer separation. In order to have
boundary-layer separation occur in the flow over a slender barrier, the
flow field with relatively high characteristic velocity is considered. If

characteristic velocity is UO, characteristic barrier height is éb i
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Richardson number, 5[7’,‘5‘%‘63/& » should be small for the slender
barrier. Since upstream blocking effect is small if Richardson number
is not’ very large, it is likely that the blocking effect is negligible for
the case of a slenderbarrier. Davis' experiment shows that, for
Richardson number between 4. 0 to 5. 0, the effects of upstream block-
ing, if it occurs, are insignificant compared with the other differences
between theory and experiment, such as the boundary layer separatioxgz).
The computation of Kao's work mentioned above, which indicates that
depth of stagnant zone decreases as Richardson number decrease,

also seems to confirm this argument.

For the case of bluff body, since boundary layer separation
may take place even for flow with large Richardson number, the
blocking effect should be taken into account.

With above understanding about upstream blocking effect in
mind, and because a simple stratified flow model is sought in order
to bring out the essential features of the viscous-inviscid interaction,

the blocking effect is neglected for ''slender' barrier problem.

II. 4. The Turbulent Rotor

The turbulent rotor is an isolated turbulent region which forms
in the trough of a lee wave but away from the barrier (see figure 3).
This phenomenon is relevant to the mountain wave turbulence and its
occurrence is associated with strong stratification, 61‘ more precisely,
with large Richardson numbers. These turbulent eddies have strong
interaction with mean flow field and remove so much energy that it

caused some discrepancy between theory and experiment (7).
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Since Richardson numbers associated with the slender barrier
of the present study are not very large, the occurrence of the turbu-

lent rotor is unlikely and hence its effect is rightly neglected.

I1. 5. Flow Field of Stratified Flow over a 'Slender' Barrier

All of the features noted above have been found in experiments
for stratified flow over a barrier. However, in the present study of
a slender barrier with boundary-layer separation, the phenomenon of
blocking and the turbulent rotor is negligible. Only the essential
feature of lee wave and boundary-layer separation are retained,
which is relevant to the case that Richardson number is small or to

the turbulence behind mountains with weakly stratified wind.
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III. FORMULATION OF INNER VISCOUS LAYER

Very close to the wall there appears to be a region where the
fluid motion is still predominantly viscous, and the velocity rises

steeply. This is called inner viscous layer, or boundary-layer.

III. 1. Formulation of Laminar Viscous Layer

In the analysis of inner viscous layer, a curvilinear orthogonal
system of co-ordinates is introduced in which s-axis is in the direction
of the wall, the n-axis being perpendicular to it as Figure 4. The
corresponding velocity components are denoted by u and v and the
radius of curvature of barrier at a point s is denoted by R (s), being
positive when the wall is convex outward and negative otherwise.

In this co-ordinate system the Navier~Stokes equations for

steady two-dimensional flows are:

_ﬁ__u.@_"_(._;_u' o , uv R aP _ﬁ_l_i‘.’_(_,_
R+n 2$ on R+ n Rtn f 3s (R+n)y o8
UL 1 u . 2R 9u __ R _dR ., En dRau
an* " R+n 2n  R+naf  (R+nf 2 R+n¥ds = " (R+nlds a5
— 9 ain 6, (3. 1)
R LN A A G 1 FU_2R_ U | 3V
R+n " a5 an R+n ~— Ff an an* (R+n) 25 ' R+4n an
—2
R v_ v R__dR RN dR aV
— - = £ U+ = -
(R+n)as? (R+n)2+(R+n)3JS +(R+nfds 35S 7 ¢o G
(3.2)
R u
2 ") 1 + —_U =0 (3. 3)

R+n 25 an 2 +n
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The inner viscous layer is assumed to be governed by the
boundary-layer equations; i.e., the streamwise gradient is much
smaller than the transverse gradient of the same quantity. In the
present study, only slender barrier is treated, so that it is natural to
assume that boundary-layer thickness is small compared with radius
of curvature of the barrier's wall. With the above assumptions in
mind and for the case when no large variations in curvature occur,

d R

i.e., —a—s—-f\-O (1), the complete Navier-Stokes equation could be

reduced to

X% U __ 1 dP U _
USe tVSH = f ds z)Qn’ q oGy (3. 4)
U UV

7S +an =0 (3.5)

lap w2 o
fan—f{ g B

where the second equation (3.2) becomes
Thus the pressure gradient in the perpendicular direction is now of
order one. The pressure difference between wall and outer edge of the
boundary-layer is now of order S . So that in the case of a curved
wall, the pressure P in the boundary-layer is assumed to be constant.
In (3.4) the %I;; term could then be related to outer inviscid flow field

by Bernoulli's equation,

The Bernoulli's equation for steady, non-diffusive inviscid

stratified flow could be obtained as follows

Governing Euler Equation

(%'V)%"'"}?‘VP +v(-39) (3. 6)
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By vector identity, (3. 6) implies

(%2) Fx(vx§)=- P+ v (-79) (3.7)
Scalar product of (3.7) and @ yields
"i}’-v(—a%f)=-?'(—,"fVP)+?i-V(~%)

= -§(vF-Pvy)+ §9(-39) (3.8)

-
For a non-diffusive fluid % vf =

L d

?{-PV('}T)’-'—‘%%‘V)” =0

Hence, (3. 8) becomes "
=+ 9 ., P - 3.9
q . v ¢ 5 + + gy)=0 ( )

P

which implies
2 I

where H(})is a function of the stream function LP and could be

evaluated from the far-upstream condition. Thus (3.9) becomes

L) + £ ;o P (3. 10)
Z +r+9y-2 +f-w+9'4°

where Y, (('(/) is the height of streamline )V = constant in the far

upstream.
Consistent with Long's model, the far-upstream conditions forthe

present study are:
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d

. 158 .11

= —_ = =
fo— B 17, Up=F 57 (3. 12)

static pressure [2 =~ could be calculated by d Be = -—f ?

d 9o w
dPw _ _
or m —-— (PO ﬁyo ) ?
yz
Po=-flt,+5 3+ F . (3. 13)
Substituting (3. 12), (3.13) into (3. 10), we obtain
2 2(""212?3 + P
F(urv)+ S ygy - 2 2 : (3. 14)
fo B, f,—8 Y
at the edge of boundary layer
y :Yb+scosga = b
Furthermore Byom (;1%9;-6 << Py and Ve << U
Therefore (3.14) becomes
12 P
>l +p—+ 79, (3. 15)
- P
= 2 + 2 402>
2f P ( )
Differentiating (3. 15) with respect to s , one obtains
d Ue | 4P dd
bgs tras tiig=0 (3. 16)



-13-

Substituting (3. 16) into (3. 4), one obtains

u Ju dUe 2°u d Y ;
f(b(%g U—a )=foueds + M nz+fo?ds —f?‘ 98
d Yb
Since T3 = sin 98 , the above equation becomes

p(us +vs)= fued”‘~’+u9”+(f: ~P)gaing, (.17

P=f—-BY, =f+0(s")

consistent with boundary-layer theory (or approximation) f = IDo

inside boundary layer, (3.17) becomes

2
24 au _ gy dUe CACS (3.18)
u%"’”m"“‘ds +))°an.‘
U 2% - (3.5)
25 2n

Thus the governing equations of the inner viscous layer are
due
ds

is given correctly by an inviscid theory with the displacement effect

given in (3. 18) (3.5), provided the pressure distribution term (J

of the boundary-~-layer included.
In order to bring out the essential features of the complex
interaction phenomenon, integral form of governing conservation

equations are used, namely, momentum integral equation and
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mechanical energy equation, in the inner viscous layer.

Using the continuity equation (3.5), the momentum equation

(3.18) is integrated across the boundary layer to obtain the integral

momentum equation

d8" o o*dH §* dUs _ %P
H s+sd$+(2H+|)u€ds G 5

;

) *
P (3%), A

0] ! 5"

(3.19)

o

=

|

$
s (5 u _u
where $§ L(l uc)cln , 6 (l Us )Jn

&~

3

Multiplying momentum equation (3. 18) by u and integrating

across the boundary layer, we obtain the integral mechanical energy

equation

= — (3.20)

v ¥
From the continuity equation (—-J-) = lé;+<d-‘—§-, through which
inv,
the boundary layer and the inviscid flow field were coupled. The

details of the coupling will be discussed in the next section.
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The integral approach devised by Liees and Reeves (3) has
demonstrated that the over-all character of the viscous inviscid
interaction can be sufficiently described provided that the velocity
profiles, from which integral quantities are derived, has the correct
qualitative behavior. The recent work of Alber (4), Lees and Alber
(17) further confirm this statement. In the present study, the inte-
gral properties for laminar separating and reattaching flow were
generated by Stewartson's (18) '"lower branch' solution of Falkner-

Skan equations.

.{',"+-F-F"+B(l—-F'2)= 0

with the boundary conditions

f)=for=o ; F=)=| =F W
€

For a given value of the form factor H, there exists each a
corresponding value of the non-dimensional integral quantities J, R

and P, These quantities are then curve fitted as a function of H to

facilitate differentiation and numerical integration. The functions are

the following (see figure 5).
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Since P, R, J are known functions of H , (3.19) (3.20) give
two equations for three unknowns, and one more equation which is
given by the inviscid theory and coupled with the viscous region
through continuity equation will be discussed later, thus complete the

formulation.

III. 2. Formulation of Turbulent Boundary Layer

When the density stratified flow passes a slender barrier with
blunt nose, the clockwise free stream vorticity generated by the
density stratification tends to destabilize the boundary-layer at the
forward portion of the barrier and lee wave (see Figure 6). Hence
the boundary-layer is likely to be fully turbulent for most part of the
flow, and the laminar case treated in IIl. 1. can be considered only
as an introductory section to the formulation of turbulent boundary-
layer.

For the laminar layer, if the radius of curvature of the surface
is much larger than the boundary layer thickness, the curvature effect,
arising from the kinematics of curved flow and the curvature of mean
flow streamlines, is less important for the calculation of boundary
viscous layer. Van Dyke {19)has shown that the effects of the addition-
al curvature of the mean flow streamlines are of the second order
smallness.

Although the curvature effect could be well neglected for the
calculation of laminar boundary-layer, it is believed that the turbulent

flows are very sensitive to the curvature of the mean flow streamlines.
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The wall curvature influences the turbulent flow in a manner
which unfortunately is not yet known. For the present study, it seems
likely that we could neglect the curvature effect not just for simplicity,
but also for the following reasons.

The first reason is related to the slender body approximation.
For the thin barriers, the curvature should be vanishingly small all
the way along barriers except near the blunt leading edge. So it
seems that the curvature influence, if it exists, should still be small
for the major portion of the barriers.

Recent experimental investigation of So and Mellor (20) on
turbulent boundary-layers along a curved surface indicates that on the
convex surfaces the intensities of turbulence are decreased and the
ability of the flow to support adverse pressure gradient is reduced,
while the concave curvature tends to promote mixing in the turbulent
boundary layer. On the other hand, at the forward portion of the
barrier or lee wave, the clockwise free stream vorticity generated by
density stratification tends to create the point of inflection in the
horizontal velocity profile. This will either promote transition or
turbulent mixing in the boundary layer. At the lee of the barrier or
lee wave, the counter-clockwise free stream vorticity generated by
stratification tends to wash out the point of inflection in the horizonal
velocity profile and will either delay the transition or reduce turbulent
mixing in the boundary layer. It will also increase the ability of the

flow for supporting adverse pressure gradient.
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Thus, the second reason to neglect the curvature effect in the
turbulent boundary layer of the present study is that the curvature
effect produced by the additional curvature of the mean flow stream-
line tends to compensate the effect of free stream vorticity generated
by density stratification of outer inviscid flow.

With the above discussion in mind, it seems possible to neglect
both free stream vorticity effect and curvature effect in order to get a
gross feature of the flow field, at least for the study of slender body.

Next question which naturally arises is in regard to the effect
of density inhomogeneity on the turbulent bounday-layer. Does the
approximation, F_-l-_ f:, , which hé,s been shown for the case of laminar
boundary layer, still hold true for the general case of turbulent
boundary layer?

In order to answer this question, let us point out that the
vorticity generated by stratification is of the order of the Brunt-Vaisala
frequency, i.e., ( A j ;o g) . On the other hand, the frequency of
the largest turbulent eddies is of the order of Uo/e[, , the frequency
of smaller eddies is even higher. In the present study of a slender
A ( | df

barrier, Richardson number, 2 d% ?) , is small compared to
[+] (-]

one, which implies that -e-:— >( ' 'J% 3) . The measure of
] °
time scale in stratified flow is reciprocal of Brunt-Vaisala frequency,
which means to any forcing of fluid with a frequency greater than
Brunt-Vaisald frequency the fluid acts as a homogenous fluid.
Because frequency of turbulent motion is greater than that

of stratification, the fluid could still be considered as homogenous

fluid. Inside the turbulent boundary-layer, following a similar



w8

argument as the laminar case, f could be approximately equal to
B consistent with boundary-layer approximation.

With the above discussion in mind, except for the length scale
introduced into the problem through the viscous dissipation integral
f; T -5% dy the turbulent case is not very much different from the
laminar case discussed before. One could then obtain integral mo-
mentum equation and mechanical energy equation for turbulent boundary
-layer, following some integral technique adopted in the previous
sections.

Integral momentum equation

" *dH " du _ &
Ho=+ % 0% + H+ 1) Ts =2

(3.21)
Integral mechanical energy equation
* 4U
de* . xdJ . ek p
C .——_-_.g_g-w-c?_‘i(_dy (3.22)
D~ P U, . 24
*
The continuity equation is again simply (—VJ-)'HV — 'ﬂ; & %

through which inner and outer region were coupled.

In order to construct an integral method for the reverse flow
region, we use recently developed Alber's model of the turbulent shear
(22)

stress in the separated flow region Alber also obtained a family

of reverse flow velocity profiles by integration of the turbulent
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Falkner-Skan equations for the turbulent counterpart of the Stewartson
lower-branch laminar reverse flow(zz). By using this family of
velocity profiles, shear work integral CD and the mechanical energy
shape factor J can be expressed as functions of shape factor H.
Comparison of theoretical velocity profiles with transonic duct data
(23) shows good agreement.

By following the same integral approach as in the laminar case

and using the integral curves mentioned above, these integral quantities

are then curve-fitted as function of H to facilitate numerical work.
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IV. FORMULATION OF INVISCID OUTER FLOW FIELD

In order to calculate the inviscid flow field of stratified flow
over a slender barrier with the displacement effect of boundary layer
included, the solution derived for thin airfoil theory was used.

In the present study the flow field is assumed to be two-

dimensional and of infinite extent.

IV.1. Flow with Zero Density Gradient; Potential Flow Case

For the case of potential flow the well known solution derived

for thin airfoil theory was used (Fig. 8),

g lf" ton @ (%)

= 1 4+ -
.

U i
Where ”Ue" is surface velocity calculated by linear theory, it

d? (4.1)

o
- 00
is not valid at leading edge and remains to be corrected later.

From Figure 8 it is obvious that

o] ¥
@0 = 6, (r)+ tan (S222)

(4.2)

and x; - x = 5*(x1) sin@B(X.) (4.3)

Since the boundary layer is thin, X =B is small, and we
could approximate @ (Xl) by expanding @ into Taylor series around

X, = X in order to evaluate @ (x)

@ (xl) :®(X) + C_ld@jéﬁ (Xl' X) + oo é @(7‘) (44)

Comparison of {(4.2) and (4.4) implies

g *O)
@ (x)) = Qs(xl) + tan 1(%—-"——) (4.5)
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where Xy = 0 from figure (8). We could rewrite (4.5) as

ds

-
Gur= G (x)+ tan (ds ) for x>0 4. 6)
which implies
tan @) = %;m—f S:u) X70 0(‘4,,'5:)«!
*
where /(0= tan G | F = & (4.7)

The difference between x and % is neglected in the present
analysis, because the boundary layer is very thin near the leading
edge and elsewhere the slope of the barrier contour is very small,

Since slender body assumption is violated near the blunt
leading edge, in the present study Lighthill's correction is brought in
to obtain a uniformly valid expression of velocity distribution at the
surface of the effective body, the body which includes the effect of

displacement of boundary layer,

n

2

Mear te lead vy adge ¢f Joukowskl barfrier. locally it i
parabola. The exact surface speed on the parabola is easily calcu-
g* 12
lated as U, ( ) , where U. is the maximum speed on
[ S*4+Ro/2 1 P
parabola, S,P is horizontal distance from the effective leading edge,
RO nose radius, On the other hand thin airfoil theory gives the
solution of "U_'"' = U. .
e i1
It is now claimed that the ratio of these two expressions serves
as a multiplicative correction factor that converts the formal thin

airfoil solution “Ue” for the speed on any '"airfoil'' of nose radius RO

into a uniformly valid approximation Ue
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- ( S* )‘/2 [ U "
¢ S‘* + Ro /2 € e £

This rule was first deduced by Lighthill (1951) and hence is
referred to as Lighthill's rule,

From (4.1) and (4.8) we obtain corrected surface speed

{

/2 .
»*
_llqﬂ‘_):( > ) E"“H“"@‘i’%L (4. 9)

Uo ¥+ Ro/2 / ;

From the expression of tanf) given in (4,6) and (4. 7) we

obtain:

" 4 " d d§*d{ d
—’I'tan@(f)T_:fL=—'7E- ‘a‘;cp—;—z— i -——%—j— (4. 10)

T
L 0

Then (4. 9) becomes

3 ~ "8t dg
Go_( x Y| | ++ ?;cp—“—?—— + o j 42 x}
Uso \ Xx+R/2 / ] -1 ; ! 5) ;
(4.11)
Lighthill's primary Flow field Boundary layer
correction flow generated by displacement
factor field barrier itself effect

where R radius of curvature of effective leading edge

Ro= 8 €& + §)

Near the blunt nose (4,11) indicates Ue(x) ~ xll2 .
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i. e., Ue(s) ~s and has the correct behavior by comparison with the
exact solution of the potential-flow equation at stagnation region.
Combining (4. 11), (3. 19) and (3. 20), we have three equations for
three unknowns, which complete the formulation provided the boundary
condition is properly given,
At the leading edge, the exact solution of two-dimensional
stagnation flow gives the relation

2dUedx

2
= o. at =0
T 45 0.64 %8 X

€, §*

(4. 12)

Sufficiently far downstream from the barrier, disturbances
die out, and for the case of laminar, the boundary layer becomes of
Blasius velocity profile,
Hence, A>>1, Ug=1 , H = Hb: 0.38414 Laminar case
(4. 13)
Governing equation given by (4. 12), (3.19), (3.20), (4.13) and
boundary condition of (4. 12) and (4. 13) complete the present case of

formulation.

IV.2 Case II: Stratified Flow Formulation

Two-dimensional stratified flow over a slender barrier in a
semi-infinite domain are examined theoretically. The density gradient
and f U2 are assumed to be constant upstream. Under these circum-
stances, governing equations could be reduced to a linear one, namely
Helmholtz's equation (1). Although the governing equation is now the
same as that of the diffraction theory, the boundary conditions are

different, instead of Sommerfeld's radiation condition, solutions have to

satisfy the condition of no waves far upstream,
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as indicated by the experimental observation (6) (24).

For the present study, the classical technique of diffraction
theory is used. A fundamental solution was first chosen, and the
upstream waves were cancelled out with the aid of the remaining
terms in the general solution. This technique has been used by
Lyra (25) for the study of stationary lee waves of small amplitude
over barriers with a uniform velocity and exponential density dis-
tribution upstream. Under the same assumption, Graham (26)
applied this technique to stratified fluid flow over a slender body.
For the case of a uniform upstream velocity and a uniform upstream
density gradient, Pao (11) successfully applied this technique to solve
problems by an inverse method, without assuming small amplitude
wave motion,

In the following derivations, slender body assumption was
used, but no assumption has been made on the amplitude of wave
motion, The density gradient and pU2 are assumed to be constant
upstream. Then the governing equations of two-dimensional, steady,

incompressible, inviscid, stratified flows become

2 2
vV & + ¢ A =0 (4.14)
2 g 1 de . : :
Here o - 3 — I is related to non-dimensional
U P Yo
(o]

Richardson number Ri, based on the characteristic barrier height, by
o’zei = Ri, and A = Vs = Xo (4.15)
as in Figure (9), is the value of streamline displacement.

The general solution of equation (4.14) in polar co-ordinates

is (Watson 1944)



-

o0
&= [’aan (o+)= ba Y W’]( Cuee B + dninn® ) (4 1)

n=|

' ~{
where ¥ = (x*+ ‘a")/l , 0=t (‘3/7()
In order to construct a doublet-like solution, the primary
s olution is chosen as AP = ~ b' Y' (O'r),d.vwe (4.17)

|

For small r, p = Aam @ and behaves like a doublet in potential

flow,

Then, from the remaining terms of equation (4.14), an auxiliary

solution is sought which helps to cancel out the undesired disturbance

of equation (4,17) at large distances upstream,

For large r, Y' (or) = -rfrr A ((rr._ :%_T—L—) (4.18)

Jater)e = 7!:20'? W(ﬂ—-%@ - 521[") (4.19)
For the function (4. 28) to be in phase or 180° out of phase
with the function (4.19), n must be an even number,
Thus, the auxiliary solution can be written as
[~
A, = —X Ay Jon (TF) 4in2n B

n=i
The condition of cancelled upstream wave implies

- - n 3
A=A,+A, =0 F>>1 , S <8<%0,
implies
- n s _ Tegg 3m
-b+7 1) Q,, em2ne =0 Z 0N
n=|
. b _8n
o ahz—il-4-n’“-—\
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and A:*,_b'Y'(o'r)mg— Z4’|
ne|

= -b, =K Y) (4. 20)

J,n (TF) am 2N 6

Thus (4, 20) is the solution generated by a single doublet,

For a doublet with strength b at ( ‘% ,0), (4.20) becomes

A o R K(x-§,%) 4. 21)
Equation (4. 21) can be integrated to obtain the flow field
generated by a single source at ‘é , as
20
2
A.:_J__é_K(x—-g,\;)dg (4.22)
g a

By definition

2 &%
:—%:U(,?o)a% U(.yo ('+—}

e p) = 2% oL
v= 2 =-u()5y = - U2

So that the U'(x, y) generated by a single source at ‘g' , 1is

VoLy)=-U22 = U)é ;J K%, 9)d%

(4.23)

By the use of mathematical relations

J -{(x f)d’i 5 %'F(K‘i)dg = ‘F(x—?‘) the expression

for v becomes

vinyg) = U(?o)%_é K(x—g,,};) (4.24)

For a continuous source distribution with strength f('f’) starting at

origin,

v Y)= %f Uth)F g K¢, y)d¥

As y —» 0, the contribution to the integral comes only from ‘gzx and

also U(%)— U,
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Therefore, X+€;
v, 0% = dom U ‘H("J ploe (X'i’z)dé

4> 0" | P+(x-§)*
€, 0 x-—es
X+ €
Uo'('(’() 5 =\ - -
+ "f‘-’:’; Z 4,,,1 ] Ton (T[4 +(-§) )M(zntam xl—'{)d;
€3,—*0 X=-&;
(4. 25)
For small argument (0’ m)
V(s [#ed?) E -2 /(o fFregr)
2n
[rogp )2 - e[+ 0g)?
Ton(0d 4017 )= a2 (4. 26)
So that (4.25) becomes,
A+€;
V&)= Lim uow(»of ~2d%
Y g, T [+ 657 ] T
€,—+0
X+ €3
— _8n f00) 1 =
T(@msl) @n)l 27 lf(’/":b&f [m[ Yok (x- {)] (znﬂ.‘—;{—{) g
n=| R
X+€,
= »@vm. Uo % Fe0) —2d% ,va.
y—» ' 7t0'['3+(x-%’f] O(%)
o X-&
_ _ 2Ufw 42

T
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The boundary condition for slender body is

$y =g
V(Sooz ;41 tam® = ‘é 4. 253

where /8 is the thickness of effective barrier.

dg ' d% - dy Tds

The source distribution required to produce a given body % (x)
is thus defined.

Alternately, the dipole distribution, g(?), can be obtained by

E

; : _ ! r . _T
integration g(%) = L f(i)d‘é = - ‘je(%)

From (4. 21) the flow field generated by the body ye(x) is then

given by
A Y) = f % (3 K(5-§, 9)d%§

From (4.23)

(4.30)

U= uw.,>-|+'f,ﬂ

i

u (‘Ja)

(4.31)
from which surface speed "Ue“ could be calculated.

The detail work is similar to the case of potential flow.
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V. NUMERICAL ANALYSIS FOR INCOMPRESSIBLE
SEPARATED FLOW

The problem of viscous-inviscid interaction at supersonic speed
has been successfully treated in recent years. However, very few
published examples of work appear for the case of low-speed flow.
One of the reasons is that the case of low-speed flow is far more
difficult; the governing equations are elliptic in nature in subsonic
region, which requires that the interaction between the inviscid and
the inner viscous layer is not local but global.

In these days, it appears that two possible mathematical
techniques have been developed for obtaining a solution of low speed
separated flow problem; namely, boundary-layer integral methods
and finite difference methods for the full Navier-Stokes equations.

The boundary-layer integral analysis of L.ees and Reeves (3)
has demonstrated good agreement with experimental data in super-
sonic flow. Recently this method has been used for the case of sub-
sonic and transonic flow problem by Alber (4) (23). This method
considers flow field to be composed of two distinguishable viscous and
inviscid fluid flow regions, keeps only essential global feature of each
flow field, and it is relatively simple. But there remains a principal
difficulty to be overcome; the development of a convergent iteration
scheme which could properly match the boundary layer with the outer
inviscid flow.

On the other hand, the time dependent numerical solution of
full Navier-Stokes equation by Nakayama and Daly and Harlow (27, 28),

finite difference form, certainly eliminates the problem of matching
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but it is much more complicated and introduces different kinds of
difficulties such as long computer times, question of numerical
stability.
As already mentioned, the principal difficulty of applying
Lees and Reeves integral theory to subsonic separated flow problem is
the difficulty of developing a convergent it eration scheme which could
properly match the boundary layer with the outer inviscid flow field.
However, the recent computation of transonic flow by Klineberg and
Steger (29), which includes the separated boundary layer flow along
the surface and the wake downstream of the airfoil, shows that the
iteration scheme they developed is a converging one.
Inthis sectionaniterative scheme following the Klineberg-Steger
method is developed for calculating theincompressible flow field which

includes the separated and reattached boundary-layer flow along the

surface.

V.1l The Basic Iteration Scheme

Starting with the given body shape, the corresponding inviscid
flow field could be calculated by thin airfoil theory., The computed
surface pressure (or surface speed)is then specified for the boundary
layer calculation and the equations are integrated toward the
separation point for obtaining the corresponding 6*. At this location,
the boundary layer equations have a singularity and the solution
diverges. A joining point x_ 1is then selected upstream of this location.

J

To continue the iteration sequence, the distribution of the tan@ is

arbitrarily specified over the remaining partof the flow field (x >xs ).
With the specifiedtan@ , tan @ = jg’:‘ +J e , the boundary layer
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equations are integrated over the flowfield beyond the joining point,
and the corresponding Ue distribution is computed,

Upstream of the joining point, with the computed 5* distri-
bution, we calculate the effective body shape ge . Then, with the
effective body shape upstream of the joining point and the computed
U distribution downstream of the joining point given, the inviscid
flow field is calculated with the mixed boundary conditions. The
solution of Laplace equation of potential flow with this mixed boundary
condition provides corrected values for u and v in the regions upstream
and downstream of the joining point, respectively, These distributions
are then used as the input of the boundary-layer calculation in the
respective regions and the alternate iteration of the inner and outer
solution is continued until a desired convergence is achieved.

This scheme is illustrated in the sketch on the following page.

V.2 Inviscid Flow Calculation

Consider the case of symmetrical Joukowski airfoil connected
with a semi-infinite flat plate downstream.,

This body is given by,

Wy = 0 for x <o

i %
v, = 4 €,x*(=X) for 0 ¢ X £ | 5.1)
Y = 0 for 1 < X

The corresponding inviscid flow field is calculated by thin

airfoil theory. The surface speed "Ue” is

1 b( 3
nyg o= e j
, LDy
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Jteration Scheme

K]

5
Qo 10
R iz y (1)
c}
|
1
- Y, i
0 == + (2)
L
%y
@azm?u'ted
| © assumed
e T e (3)
0 !
%
u ‘ 0 or %
J & : (4)
l © or de Ue
Ky
W |
a) : — (5)
u 4, *
ky

(6)

With given body shape
Calculate ue(x) from inviscid
thin airfoil "theory

With computed u
calculate ® distribution from
boundary layer equations

Select a joining point x_ or s
and assume a ® distribution

fors>sJ.

J

Given u_ for x < x
— e J
® forx=x

J
Calculate ® for x <x

J

J
From boundary layer equations

u forx =2x
e

Given computed ;e for x < Xj

computed u for x = Xj

Compute u for x < Xj
Compute ¥e for x = Xj

from Laplace (inviscid) equations

Go backto (4) if not converged
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= 1+2 € (3-4x) for1 2x 20
L.

2
1+2 € [(3-4’-x)+ (4x’=5x+1)(x=x) } for x » 1
The uniformly valid expression of "Ue" is obtained after
applying Lighthill's multiplicative correction for blunt nose body, Then
I +2¢€ (3-4x) for 12x 20
X
)= | —————— (5.2}
Ue®= | ea . .4
| +26, [ (3-4x)+ (@x-sx+)(X)" | Sor x5

where 4 6: is one half of the leading edge radius,

V.3 Forward Portion Boundary Layer Computation

The governing equations are

€
Momentum Integral Equation Hds‘ *‘M +( H+|)—3:‘—JPS—€ = 1—}:—5—; (3.19)

Mechanical Energy Integral Equation

d7 R-LL
J.J S*""" 37 Ue 45 Up§* (3.20)

where € = V/Uol.

These are rewritten as

*ZJUC évﬁ_
Ha57, oty Guen) S TF = Y
€2 s** du €/R (>3
J 4% 1 dH & dUe _ Ev
2 ds I:l_;+ 3J Ue dS Ue

The initial conditions at the leading edge are obtained from
the stagnation-point solution that is locally similar (dH/ds = 0) and
Ue o¢ s, This requirement provides relation for the initial profile

quantities and displacement thickness,
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3PJ -(1+2H)R = 0

*Ziﬁ 5.4
vs 33 ke

The present curve fitting formulae for P,J,R give

H = 0,4499334

§**= 04214910 Ev/(éi’sﬁ) A @

{5. 5}
Eq. (5. 3) with the specified Ue of (5.2) can be rewritten as
2 dU
ji* _26 { (PT-R)+[37-(2H+1)7'] £-9te]
Ue (HI'=T) "

dr__ & rH-P1Y+TCI-

d Ue }
)
dS U€s¥z(HJI_J.)

Eq. (5.6) with initial condition (5.5) are solved by Runge-Kutta
integration for 5*2(5) and H(s).

It should be noted that, in the right hand sides of the expression
(5.6), the denominators go to zero as Ue goes to zero at the leading
edge. At the same place, by using the relation of (5.4), it can be
shown that the numerators go to zero too, In order to approach the
stagnation-point solution at the leading edge, the numerators should
vanish faster than the denominator does. It can be shown by applying
the #Hospital rule that it is the case provided %Z—U:% = 0 at the leading
edge, which is satisfied for the symmetric nose shapes, In the
present computation, Ue(x) is approximated by cubic spline, i.e.,
piecewise cubic polynominal with continuous first and second order

derivative, In order to have dZUe/ds2 = 0 at the leading edge, the

natural spline is used.
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Even with U (s) satisfying the condition, the computation near the
leading edge still needs more attention, The following series expan-
sion was used for the computation near the leading edge.

For §<< 1, Let H = H_+H S+ ...

2

8*2: %0 T st o £

3
Ue = Ul +U3s +¢oc
i m (5. 7)
J _JO+JOH2$ i
etc,

After substituting (5.7) into (5. 3) and equating like powers of

¢, we obtain

(0)

s CI42H) S,U, = RE,
3\7950‘-][ = Roev (5.8)
¢ La+3H)U, ] 6, + [4Ui%— € R TH, = —3U;(14+2Hy)5,

'
[4 U Jo J 6t [SLI,SO.TO "ech:] H, = =i o By 1o ¥
Here (5.8), which gives the value of §  and Hg in terms of
Ul)is equivalent to the initial condition (5. 4).

SZ and H, are obtained from (5. 9).

V.4 Boundary Layer Computation in Strong Interaction Region

The ordinary boundary-layer computation cannot proceed
beyond the separation, Near this 10cation,(HJ"—-—J) goes to zero,
The governing equation (5,6) is singular and the solution diverges.

The joining point was chosen at ten boundary-layer thicknesses
upstream of this location. Downstream of the joining point tan

distribution is assumed in the following form:



5% =
5 -25*
(as*+bs+c)e +or 5,252 S

(5.10)
tan @) =

ogé17258 € [(s-a " Hor S2S  (6.11)

where S5 is the value of s corresponding to the joining point. a, b
and c are constants calculated from the matching conditions of tan & (Sy)
dtan@(SJ)/ds, dztan(sa,)/d &" between previously calculated and the
form given in (5.10),

tan@(s) in (5.11), which corresponds to the correct
asymptotic behavior, i. e., constant velocity Blasius solution, is then
matched to tan®(s) given in (5.10), By requiring the continuity of
tan@ and (gl—stan@ , the position of matching, Sy» and the effective
origin, a,, are computed,

With the assumed tan@® , (M@ =d 5*/dS 4+ d \ijx ) , g—? for
S 2 S; are known, Approximating d S*/ds by spline and integrating
it by the Simpson's rule, the 5* distribution was obtained.

With the specified S*(s), the boundary-layer equation (5, 3) can

be rewritten as follows,

g5+
ds

ar S[37P=(2H+)R]+ LT U-H)

o ¥ [37-7'(aH+ )]

(5.12)
14U '
W, g, [R-PT'JHF(HT=T) IF
oe $** (37 -7 GzH+ ]

With the initial condition H(sJ), Ue(SJ) specified from the previous

computation, (5.12) could then be integrated.
In the present computation, the computation js carried

out to the point at ten times body chordlengthfromthe origin. After
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this point the behavior of Ue could be obtained by asymptotical anal-
ysis. In order to match the Ue to its asymptotic form, the computa-

tion must be carried out at least to the point where dUe/ds > 0.

V.5 Downstream Asymptotic Behavior of Ue

Because the subsonic separated flow problem is an elliptic
one, the interaction is global, and the proper treatment of the down-
stream asymptotic behavior is then crucial for the convergence of
the whole iteration scheme.

At large distances downstream from the body, the classical
boundary-layer concept is then applicable; namely Ue can be calcu-
lated simply from the inviscid theory. Furthermore, in this region
the disturbance generated by the body and the boundary-layer dis-
placement effect could be approximated by a point force singularity
acting near the origin. From the Blasius' law in two-dimensional
potential flow, it follows immediately that an axial force corresponds
to a source. Hence,

Ue=1+;:—i—b fory =0, x>>1 (5.13)

Here a, b are constant, and are computed by matching Ue and

dUe/dx at the farthest grid point of the boundary-layer computation.

V.6 Inviscid Flow Computation - The Mixed Boundary Value Problem

From the previous boundary-layer computation, ;e and u are
obtained for s < Sy and s 2 S 1 respectively. With this computed v and
u, say v = g(x), u = f(x), the inviscid flow field is calculated as follows.

First of all, the governing equation, the lL.aplace equation is

linear. Then, the superposition principle could be used to decompose

the present problem to two simple ones, the first problem and the
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second problem.
The first problem is a conventional one: with the specified

*
v(x) for x £ x_ and a suitably chosen v(x), say v(x) = ’g\(x) for x > x

J J
as boundary condition, The corresponding velocity u can be calculated
from the thin airfoil theory, Call the computed u as ul(x).

The second problem is then a mixed boundary-value one: given

the boundary condition, v(x) = 0 for x € X; and u(x) = f(x) - ul(x) for

x 2> X1, then compute u(x) and v(x) for x 2 x5 and x < X1, respect-
ively, say u = uz(x), v o= vz(x).
The superposition could be expressed as follows:
*7

Given v = g(x) v = g (x)
Prob, 1 4

Obtained u = ul(x)

Given v =o0 u = f(x) - ul(x) = fz(x)
Prob, 2 ;

Obtained u = uz(x) vV = vz(x)
Prob, 1 :

Obtained .
+ Prob, 2 v = g(x) u = f(x)

gt = ul(x) + uz(x) v :’g\(x) + v2(x)

V.7 The First Problem

Given v = g(x) for X ¢ XJ. and v :@(x) for x ;)S,, ul(x) can be

calculated by the thin airfoil theory,

" In principle §(x) = 0 may be used. In practice, however, a
form for B(x) is chosen such that v(x) is smooth at x = x_ in
order to avoid the singularity in the corresponding u(x) aistribution,
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X A
=l+—7'7{ JJM+J®—§£—;%§— (5. 14)

x-%
2y
where ?(g) was approximated by
%, ~ U
it
9=V + ———2—(§-%) Hor x,2% 7 X
7(”' ﬂi

iz2.3, (Me=1)  (5.15)

where X(M)= XA,

9(%)= %b<g>+‘“*(g>

— - %5 (s z 5\ .4
=26ft 46 (E-T)r (Tt Sage)r

for X, >§ > o (5. 16)

whereal_'_—’-_ (;-—355:)/4,6‘, .

2,
g g (5. 17)

where gy» 8y are constant, obtained from the condition g(xJ) :g(xJ)

! ot
A
With the expression of f(i) and ?(i) given above the integration
of (5.14) 1is carried out analytically, During the summation process

terms with logarithmic singularities at the end points of the subin-

tervals cancel each other.
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V.8 The Problem 2

The problem 2 is solved by means of the technique of complex
variables, By the symmetry property, the problem in the semi-
infinite domain (Y 2 0 ) is extended to the problem in the whole xy
plane with a straight line cut ( X 2 Xy, ¥=0 ). The boundary condition

in this plane is: u = fz(x) on (x >Xy, y=to).

A Y IL)Z
—

N )
V=0 _U4=H us= £,(-1) u= £,
\x§ —_—— :
us=f,m X

E=x+1Y §=‘§+L7

f.00=Ffu- U

12
By using the transformation f:(Z—XJ) , the boundary (x> X,
y=*o ) is mapped on the ’7:0 axis in {- plane,
By mapping the complex velocity at the corresponding points,

the boundary condition on 71 =0 becomes

u=£(fo0) = £.(§)
From the symmetry it is obvious that
N N
.= £.() .
The complex velocity W({) U- VU = ‘ I %jl)dfl
T-%

- J Feglcs- i’)»u ag
e ) (§-§0+7°
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So that

u.)= sz %5 dy’ (5. 18)

(1- ‘i’) (o

il g k Tl !
v, =3 [ )Ui e Qﬁljf (5. 19)

From (5.18)

W{

A

2,(%) ocfane
P

2 'F;(‘i> -W<E <0

Thus

b Bl 4 1 e
AU L Ol e

-4 _%+% |4¢
VU= J1C(‘i)l.(‘i“i’)’"“(l (i*i')z'*’(zj i

From '{ = (-Z-—XJ)yz it follows that

i:._,zz;- X = Xy and 2§17 =14

[J(x—xJ) +4* +(x— xJ)]

[ ‘(X"XJ) + 4 —(x _.)(J)]

Ony=0, X?2X; we have ‘{Z=X—XJ— ’ r("= o

— o
PJ
v Nk—

=0 we have 2 _
Yy ’ X < Xy " =0 , qz_______(x__x:>
Hence

(,{Z(K<XJ,‘3=Q>=%[ :‘F:(i’) ‘J"'(X—X:r) Ji,

- x-xp)
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po
%8 ("”‘J. 7=0)=3‘-j %(3") X Ky d¢’ (5.20)
. o i'z_ (X-XJ) g

Let i’:(x’__xj)‘/z then i,«l:xl_xj and d ?l=dx'/zm

Furthermore -ﬂ('{'): 7Cz. [ X (i/)] = —{:2_ (x’) by definition,

Therefore (5.20) becomes

oo
TR _X;i £ x)dx' p
& - T J (x’_xxxl__ xJ_ )'/2, oF X & XJ
o]
(5.21)
U'z.(x)='1-(x—XJ§i ALY . for x >x
i A (X=x)(x'= X7 )" T

In computing the integral of (5.21) from x =otox = XM
where X\ is the farthest computed point, the approach similar to that
used in computing u, was used, fz(x') was approximate by continuous
line segment from each grid point to the next one, Then the integration
was carried out exactly, During the summation process, terms with
singular behavior cancel out each other,.

V.9 Downstream Asymptotical Analysis of Inviscid Computation

In order to carry out the integral of (5.21) from x’ = X to
x’— 00, it is necessary to have the correct asymptotical expression
of fz(x'), i.e. f(x') - fl(x'). The asymptotical behavior of f(x), i.e.
ue(x) in the boundary layer computation, was obtained in (V.5). The
asymptotic behavior of u,y is obtained by examining the expression of u

e LT _vdy
U)=I1+ )

1




s

g s 9 . %
U= | ++L{ LJ x"(g"f -+ ij +(—;—+;r)€o;
For x>7 Xy
Xy .
L '?:_(—ig)’_&g -H v(pd§ + O ")) =0(Y

- Hence for x >> 1 we obtain

g]— (gj_ X X.T
U(x)——l+m{xxJ +
and fZ(x) = f(x) - uy(x)
_ a1 (% (9. %) x—-xj |
T Xx+b T {xx ( * }&7 )

Then the integral of (5, 21) could be calculated exactly from

x " = XM to X' —» 0©. The result is:

k> g,' 9! gz. X'-XJ
J £ = U, (x") Jx _;(%TQ_-_TLE[ X! Xy +( x x”')&’y XJJI-L
x

=X )(x'= Xy)"™ (X'=x)(x =%, )
M

xl

X=Xy
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- ¥4

W (X +b)> -2 ' xu‘”:)
“f 7 )>o {(X,'Fb)'"}dtn (x:*b

a - 13
——) { f (x =1 FOrtb] + (K-
( b+X) J+L)<o {[~(x;+b)]%} Et;}[-(f +b)]yz_ (xM_XJ)'/Z ‘

n

i'F (XJ+b)=o _Z(XH_XJ)'/L

I,
. - 2 —’ xM -xT 3
X U
[4 (X5 )70 (X,"X)/‘ ctn (———H -

[uen) 4[]

~ -
%’ (X,"X)‘O [‘(’(y‘x)]%%

e,

+{I%;’;%{; (nx nx)a’:?xf}

L
4 0G=x)=0  2(xy-x )"

For]“[an)” |

/

T




+{%7H(

+ (=)

__.—-——

3/:.

x|
™

il

(% xmx)>0

% (x;—x)<o0

Y (X3 —=x)=0

%
_ (XM"XJ>VZ€’<7 (X=X, =

X X

(fog %,) ctr ( "”;

I
)5 (Xu=Xy)
(X=X \ (x”-xy)yﬂoy)(;
\ X3 Xm Xy

(5.22)

Although Eq. (5, 22) is correct from a mathematical point of

view, it is not a suitable form for numerical computation for small

values of x, A recombination of various terms give the following

form for x < X

J



=l

pe
5 "ﬁ(x')"bll()(') : d)(’ -Fol' 5 <x7

(X'—=x ) X'~ ¥5 )"

N -2 =l f X=X @
Gyt b)7o {"’“"'(x,ﬂ)‘é} ctn ("“x,+b)

a . i
= (m) \’ﬁ (’(J+b)<° {m}&

X

[‘(X,"" B)J:f:f- [ xM_xJ )'/2. l
(-04)] - ( x"—x,)/‘ w

Y (x5 tb)=o —ZQXM—XJS?'
2 0\ xM"xJ _
e <t (%, —x) o A S s My

» N+ N-)
—JZ[~ T8 R
: ~ e ] -2
-t) —);F " {__ LM’L\ 2N+Il[,‘z£z'§’.’(‘d(—’% ]}

% '*"IN x

N!
__—-—-——"“'—""'—_—
NG jlNd)!

p3
3
@
o
0
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V.10 Solution of Mixed Boundary Problem

From (5.21) and (V. 6 ), the solution of the complete mixed
boundary problem with v = g(x) for X <X, , u = {(x) for x 2 X;

given, turns out to be

u(x) = ul(x) + uz(x) for X< Xy
(5.23)
v(x) = g(x) + vz(x) for X 2Rz
% ® 3
where U o0=1 + -T'-L- { I i(i)di d(pdt ool
0 i L =% '
7
~ g 92
?(x‘»:-;’-—-l— e for x 3 x:r
L oo
u;(X)'-‘:*L (xw—x>z J 4(‘;)— udi}, J';
nt A (i-x)(f_xj)/z for x < XJ'
L
_ _, | D) = u
v, o= — (- x)f () 4% tor = »

4-0(1-%5)

The "u(x)" of (5.23) was then corrected to be a uniformly
valid solution by multiplying by the Lighthill's correction factor,

which in this case, equals
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So that
wor=L [ oo+ U 0] for x< X
A (5.24
V= f+Y00 for X Xg

V.11l The Completed Iteration

With the computed u(x) for X< x, and tan®  for x> Xy

tam @ = VX)) , the boundary-layer equations can then be integrated

as described in (V.3,4 ),



«Ef«

VI. CONCLUSIONS

In the present study, the complete integral formulation of
both inner and outer flow field of stratified flow over a barrier was
obtained. Furthermore, an iteration scheme of computation is
proposed for the simpler case of incompressible homogeneous flow
over a barrier with viscous-inviscid interaction included.

It is believed that with the completed basic formulation and
proposed computation scheme mentioned above, the gross effect of
boundary layer separation on the stratified flow field could be

estimated by means of the integral method of L.ees and Reeves.
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Fig. 3 The turbulent rotor by Pao(8).
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Fig. 4 Curvilinear co-ordinate system.
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Fig.5 J(H), P(H), R(H).
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Fig.6 Free stream vorticity generated
by density stratification.
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