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ABSTRACT 

The termite gut is an ideal ecosystem for studying hydrogen ecophysiology.  Hydrogen is 

central to the obligate mutualism between termites and their gut microbes and is turned 

over at rates as high as 33 m
3
 H2 per m

3
 hindgut volume daily and maintained near 

saturation in some species.  Acetogenic bacteria use hydrogen to produce up to 1/3 of the 

total flux of the termite’s primary carbon and energy source, acetate.  We have taken a 

three-fold approach to investigate the hydrogen ecophysiology of the termite gut.  In our 

first approach (Chapter 2) we completed a bioinformatic analysis of [FeFe] hydrogenase-

like (H domain) proteins encoded in the genomes of three termite gut treponemes.  

Treponemes are among the most highly represented groups of gut bacteria.  The 

remarkable diversity of H domain proteins encoded accentuates the importance of 

hydrogen to their physiology.  Moreover, they encoded a poorly understood class hydrogen 

sensing H domain proteins and thereby present a unique opportunity for their further study.  

In our second approach (Chapters 3 and 4) we analyzed molecular inventories prepared 

from termite gut microbiomes of a class of [FeFe] hydrogenases found highly represented 

in a termite hindgut metagenome.  The libraries of peptide sequences clustered with one 

another in a manner congruent with termite host phylogeny suggesting co-evolution.  

Interestingly, we observed that higher termite guts may harbor higher sequence diversity 

than lower termites.  In our third approach (Chapter 5) we used microfluidic digital PCR to 

identify bacteria in the gut of Reticulitermes tibialis encoding [FeFe] hydrogenases.  The 

majority of the 16S rRNA gene phylotypes observed to co-amplify with hydrogenase 

sequences were treponemal, and the only observed instances of the same 16S rRNA-

hydrogenase gene pair co-amplifying in multiple microfluidic chambers corresponded to 

treponemal phylotypes.  Therefore, treponemes may be an important or predominant 

bacterial group encoding an important family of [FeFe] hydrogenases in the termite gut.  

The above results provide support for an important role for treponemes in mediating 

hydrogen metabolism in the termite gut and accentuate the intimacy and stability of the 

association termites have maintained over the course of their evolution with their gut 

microbial communities.   
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C h a p t e r  1  

BACKGROUND 

Hydrogen in the Termite Gut 

Hydrogen is of central importance to the symbiotic community residing in the termite gut 

(1, 5, 15, 35, 36, 41).  This obligate mutualism, in many instances comprising microbes 

from all three domains of life, enables termites to derive carbon and energy from wood (2-

4, 6, 11, 12, 17, 19, 20, 35, 36, 56, 61, 62). 

The general scheme underlying the symbiosis between wood-feeding termites and their gut 

microbes is shown in Figure 1-1.  Termites ingest wood and microbial symbionts then 

ferment its component polysaccharides to produce primarily acetate, carbon dioxide, and 

hydrogen (1, 5, 12, 19, 35-37, 41, 54, 56, 62).  Acetate is absorbed by the termite and used 

for energy and biosynthesis (37). The carbon dioxide and hydrogen produced in this initial 

fermentation are used by bacteria in reductive acetogenesis to produce more acetate – up to 

1/3 of the total pool in the gut (1, 5, 27, 37, 41).  With these high rates of reductive 

acetogenesis, the termite gut is “the smallest and most efficient natural bioreactor currently 

known” (41).  Only a small portion of the hydrogen is used by methanogens to produce 

methane (1, 25, 41).  The total daily production of hydrogen in this environment can be up 

to 9-33 m
3 

H2 per m
3
 hindgut volume (41).  Hydrogen reaches partial pressures have been 

measured in the termite gut that exceed those measured for any other biological system (15, 

18, 41, 45, 47, 49, 53).  Figure 1-2 presents a comparison of partial pressures of hydrogen 

measured in representative microbial communities. 

A complex matrix of microenvironments characterized by different hydrogen 

concentrations are maintained in the termite gut (6-8, 15, 25, 26, 41).  Hydrogen partial 
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Figure 1-1. 

 

 

 

 

 

 

 

 

Figure 1-1. General scheme underlying symbiosis between anaerobes and wood-

feeding lower termites.  Termites consume wood and break it down into small particles.  

The particles are degraded and their component polysaccharides fermented by the 

symbiotic microbial community in the termite gut (12, 19, 56, 62).  The acetate produced 

in this fermentation is absorbed by the termite and used for respiration and biosynthesis 

(37).  The H2 and CO2 formed in the initial fermentation is used primarily by 

homoacetogenic bacteria in reductive acetogenesis to produce more acetate (1, 5, 41).  A 

small fraction of the H2 and CO2 is used by methanogenic archaea to produce methane 

that is emitted by the insect (41, 52, 54).  Figure was kindly provided through a private 

communication by Jared R. Leadbetter.  
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Figure 1-2.  

 

 

 

 

 

 
 

Figure 1-2. Representative biologically produced hydrogen partial pressures.  The 

partial pressure of hydrogen in the atmosphere is given as a reference.  Hydrogen 

pressures were measured in the bubble gas of a natural wetland (53); in a surface layer of 

intertidal mats dominated by Lyngbya spp. (18); in the hindguts of termites, shown in 

blue (41); in the open waters of Saanich Inlet, an anoxic fjord in British Colombia (47); 

in the rumen of a steer (49); and in the pyncocline of the Great Salt Lake in Utah (45). 
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pressures in the guts of termites have been found to vary dramatically with position, see 

Figure 1-3 (15, 41).  Hydrogen partial pressure reaches a maximum in the hindgut paunch, 

see Figures 1-3A, and decreases as you approach the axial extremities of the gut, see Figure 

1-3B (7).  Hydrogen partial pressures also vary radially being highest at the center of the 

gut and decreasing symmetrically to near zero at the epithelium (7).   

The work presented in the following chapters addresses questions remaining unanswered 

about genes encoding proteins that eubacteria use for producing, consuming, and 

monitoring hydrogen in the termite.  The objective has been to advance our understanding 

of the nature of the symbiosis in the termite gut.  Study of the rich diversity of 

hydrogenase-like proteins (H doman proteins) endemic to the termite gut is a unique 

opportunity to provide substantial contributions to our understanding of these proteins. 

Hydrogenases 

H domain proteins are used to make, break, or sense hydrogen.  Hydrogenases catalyze the 

following reaction:  

H2 ! 2 e
-
 + 2 H

+
  

There are four major classes of hydrogenases – all named according to the metal 

composition of their catalytic sites: the evolutionarily related nickel iron (NiFe) 

hydrogenases and nickel iron selenium (NiFeSe) hydrogenases, and two evolutionarily 

distinct classes called [FeFe] hydrogenases and metal-free hydrogenases, for a review see 

Schwartz et al. (46).   

The structures of two [FeFe] hydrogenases, CpI from Clostridium pasteurianum (42) and 

the heterodimeric [FeFe] hydrogenase from Desulfovibrio vulgaris (32), have been solved, 

and the catalytic site, or H cluster, of CpI from C. pasteurianum is shown in Figure 1-4.  
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Figure 1-3.! 

 

A. 

 

 

B. 

 

 

 

Figure 1-3.  Distribution of hydrogen partial pressures in the gut of Reticulitermes 

flavipes. (A) Radial distribution of hydrogen in the hindgut paunch of Reticulitermes 

flavipes with an image illustrating how hydrogen concentrations are maximal at the 

center of the hindgut paunch (dark blue) and diminish symmetrically (fading blue) toward 

the epithelium. (B) Distribution of hydrogen partial pressures along the axis of the gut of 

Reticulitermes flavipes.  M – midgut; Pa – hindgut paunch; Co – colon; R – rectum.  

Measurements were taken using a microsensor.  Figure is based upon a figure created by 

Ebert and Brune (15), which has been borrowed with permission. 
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Figure 1-4. 

 

A. 

 

 

B. 

 

 

 

 

Figure 1-4. H domain and its conserved sequence signatures. (A) [FeFe] 

hydrogenases can be identified by the three conserved sequence signatures in their H 

domain (31).  Each signature contains cysteine residues essential for catalysis (31).  The 

cysteines in red are involved in coordinating the [4Fe-4S] cluster or bridging the cluster 

to the 2Fe cluster (31).  The cysteine in green is believed to act as an acid/base in 

catalysis (31).  (B) The H domain of C. pasteurianum.  The cysteines of the H domain 

sequence signatures are in blue and the name of the sequence signature to which each 

belongs is indicated.  The image was prepared using MacPyMOL and structure 1feh from 

the PDB database.  C299 may participate in catalysis as an acid/base.  C300, C499, C355 

and C503 coordinate the [4Fe-4S] cluster domain (31).  C503 bridges the [4Fe-4S] cluster 

to the 2Fe cluster domain (31).  The 2Fe cluster is coordinated by CO and CN ligands and 

the two atoms are bridged by a carbon monoxide atom (31).   
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The cluster is made of a diatomic cluster of two iron atoms bridged by a cysteine to a [4Fe-

4S] iron sulfur cluster (32, 42).  These two iron atoms interact directly with hydrogen and 

are the namesake of this class of hydrogenases (42).  Three proteins, or maturases, HydE, 

HydG and HydF, are necessary for assembling the H cluster of [FeFe] hydrogenases (24).  

An analysis of hydrogenase-like proteins encoded in a termite gut metagenome sequence 

revealed that the vast majority are H domain proteins (60). It is unclear why only one of the 

over 100 hydrogenases identified was a [NiFe] hydrogenase.  This may be a consequence 

of the high specific molar activities of [FeFe] hydrogenases (16).  The metagenome paper 

provided initial experimental evidence that the termite gut microbial community is a rich 

reservoir of H domain proteins.  

The multitude and diversity of [FeFe] hydrogenases observed in the termite gut 

metagenome enabled the definition of families of H domain proteins based upon 

phylogenetic and primary sequence character analyses.  This was the first effort to classify 

these proteins based upon evolutionary relationships.  Because of their relevance to the 

termite hindgut and evolutionary significance, these family designations have been used in 

the following chapters.  Classifications based upon sequence characteristics have also been 

proposed by others (31, 57).  

H domain proteins can be identified by three conserved sequence signatures, see Figure 1-4 

(31, 57).  Sequences containing these signatures are likely to be H domain proteins (31, 

57).  

The signatures contain cysteine residues that are essential to the H domain coordinating the 

H cluster (31, 32, 42).  
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H domain proteins contain domains that augment the function of the H domain in catalysis.  

H domain proteins typically have several iron sulfur cluster coordinating sites that mediate 

electron transfer (31, 32, 42, 57).  The most common iron sulfur clusters are [Fe-S], [2Fe-

2S], and [4Fe-4S] (31, 57).  H domain proteins commonly contain two closely spaced, 

consecutive [4Fe-4S] clusters near their N-terminus (31, 57).  Iron sulfur clusters are 

usually coordinated by cysteine residues, but it is common to find near the N-terminus of a 

hydrogenase that the 1
st
 cysteine of a [4Fe-4S] has been replaced by a histidine (31, 57).  

Some H domain proteins contain domains not involved in electron transfer that, instead, 

may couple behavioral or transcriptional modifications to hydrogen levels.  

Prior to the sequencing of a termite gut metagenome, few (43, 48, 60, 61) H domain 

proteins were proposed to contain domains normally implicated in cell signalling, for a 

review see Schwartz et al. (46).  The only characterized hydrogen sensors are [NiFe] 

hydrogenase homologues including, most notably, those from Alcaligenes eutrophus and 

Rhodobacter capsulatus (9).  These two proteins, as shown in Figure 1-5, are components 

of two-component regulatory systems involved in transcriptional regulation (14, 29).  The 

Nasutitermes termite hindgut metagenome paper reported a multitude of H domains fused 

with domains usually implicated in signal transduction (60).  These domains include the 

PAS domain that, in bacterial systems, is most often found in sensors of two-component 

regulatory systems, as in the A. eutrophus and R. capsulatus sensory hydrogenases (55).  A 

response regulator receiver domain typically found in proteins participating in 

phosphorelays or two component regulatory systems (39, 50, 51) was also observed in 

some sequences.  The final sensory domain observed was the methyl-accepting chemotaxis 

protein domain that may function in regulating bacterial swimming behavior (59).  The  
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Figure 1-5.  

 

 

 

Figure 1-5.  Model for the sensory [NiFe] hydrogenases of Alcaligenes eutrophus and 

Rhodobacter capsulatus.  The sensory [NiFe] hydrogenases are part of a two-component 

regulatory system.  In the absence of hydrogen (A) the sensing system suppresses 

transcription of target genes, and in the presence of hydrogen (B) transcription of target 

genes in activated.  The input module is a PAS domain.  The output module is a 

transcriptional activator.  The transmitter and receiver modules are the canonical 

histidine-kinase and response regulator receiver modules of two-component regulatory 

systems.  In the presence of hydrogen, the [NiFe] hydrogenase oxidizes hydrogen.  The 

PAS domain then senses a change in electron potential and communicates this signal to 

the transmitter domain.  Figure is taken from Schwartz with permission (46). 

Fig. 22. Molecular model for H 2 sensing in R. eutropha  and R. capsulatus . The upper part of the d iagram (A) illustrates the
interactions between the components of the H 2-sensing apparatus in the absence of H 2. The lower part (B) repre sents the
protein-protein interactions in the pre sence of H 2. Tran smitter and rece iver doma ins of the h istidine k inases and re sponse
regulator s, re spectively, are shown in red. The solid arrow symbolizes the phosphotransfer react ion. Da shed arrow s indicate
positive (+) or negat ive ( - ) control .
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discovery of this domain in a putative H domain protein was intriguing because chemotaxis 

toward hydrogen has not been demonstrated experimentally.  Shaw et al. have recently 

reported a PAS domain containing H domain protein from Thermoanaerobacterium 

saccharolyticum and some clostridia encode similar proteins and Posewitz et al. have 

reported proteins in Halothermothrix orenii with a region sharing homology 

simultaneously with PAS and histidine kinase domains (10, 43, 48).  The discovery of a 

multitude of putative sensory H domain proteins in a termite’s gut metagenome supports 

the hypothesis that termites are a rich reservoir of novel [FeFe] hydrogenase homologues 

and that their study may provide insight into the functional diversity and evolution of this 

class of proteins.  

Some [FeFe] hydrogenases have heteromeric quaternary structures (31, 57, 58).  The best 

studied multimeric [FeFe] hydrogenases are the trimeric complex from Thermotoga 

maritima and the tetrameric complexes from Thermoanaerobacter tengcongensis, and 

Desulfovibrio fructosovorans, see Figure 1-6 (13).  These complex hydrogenases are 

believed to couple the oxidation or reduction of NAD(P)(H) to hydrogen production or 

consumption, respectively. 

Levels of Physiological Resolution to Study H Domain Proteins 

H domain proteins may be studied at three interdependent levels of molecular resolution:  

The level of individual genes or proteins, the level of individual cells or cell genomes, and 

the level of an entire symbiotic microbial community or metagenome.  A gene or protein 

based analysis of H domain proteins provides the highest level of resolution facilitating an 

understanding of function and evolution on the molecular level.  A higher level of 

complexity and lower level of molecular resolution may be sought through the study of the  
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Figure 1-6. 

 

 

 

 

 

 

 

 

Figure 1-6.  Gene organization and domain composition of multimeric [FeFe] 

hydrogenases.  Each arrow represents a gene and homologous genes share the same 

color. Domain symbols are listed in proper order but are not intended to represent precise 

locations.  Domains were identified using the Pfam server.  Domains represented in the 

figure are: 2[4Fe-4S] – F cluster made up of two adjacent Fer4 domains, PF00037; [2Fe-

2S] – PF00111, [2Fe-2S] iron-sulfur cluster binding domain; ATP-binding – PF02518, 

Histidine kinsae-, DNA gyrase B-, and HSP90-like ATPase; FMN and NAD(P)H binding 

– PF01512, Respiratory-chain NADH dehydrogenase 51 Kd subunit; H domain – 

PF02906 and PF02256, iron only hydrogenase large subunit, C-terminal domain, and iron 

only hydrogenase small subunit; His-[4Fe-4S] – a [4Fe-4S] cluster with the first 

coordinating cysteine replaced with a histidine. 
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physiological context of H domain proteins through the study of the genomes of single 

cells or metabolic and behavioral responses to hydrogen.  At the lowest level of molecular 

resolution H domain proteins are investigated across an entire bacterial community in its 

native setting, the termite gut.  This last level of resolution introduces the most complexity 

because it accounts for all interactions, environmental and biological, that occur in situ. 

Each level of resolution complements the understanding of the termite gut symbiosis made 

accessible by the others.  The metagenome sequence of a termite (60) has provided an 

initial glimpse into hydrogenase-like protein function and phylogeny through 

complementary analyses at the community-wide and individual gene levels of resolution.   

The studies reported in the following chapters provide examples of insights obtained using 

all three levels of resolution to advance of our understanding of the function and 

distribution of H domain proteins in the termite gut. 

Termite Species 

Over 281 genera comprising at least 2600 species of termites are known (23, 28).  Based 

upon evolutionary relationships, these termites may be divided into six families, see Figure 

1-7 (28).  Members of Termitidae, the largest family of termite species, are referred to as 

“higher termites.”  All other termites are “lower termites.”   

The most commonly referenced distinction between higher and lower termites is that the 

latter have protozoa in their hindgut and the former do not (11).  Higher termites also have 

a more segmented gut structure, see Figure 1-8 (6, 33, 34).  The family Cryptocercidae, or 

wood roaches, is believed to represent the most recent common ancestor of all termites (20, 

27, 30).  The six families of termites provide a unique opportunity to investigate the 

representation of H domain proteins across evolutionarily distinct symbiotic communities.   
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Figure 1-7.  

 

 

 

 

 

 

 

 

 

 

Figure 1-7.  Phylogram of termite families and wood roaches.  Tree based upon 

phylogenetic analyses reported by Inward et al. (21, 22). 
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Figure 1-8.  

 

 

 

 

 

Figure 1-8.  Higher and lower termite gut structures.  (A) Lower termite, 

Reticulitermies, gut and (B) a higher termite, Cubitermes, gut.  Pa – Hindgut paunch; R – 

rectum; C – crop; M – midgut; ms – mixed segment; P1-P5 – proctodeal segments.  

Images are taken from Brune with permission (6). 
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The hindgut metagenome has been sequenced for a higher termite, Nasutitermes, from 

Costa Rica (60).  Much of the work reported in the following chapters investigates H 

domain proteins in an untapped and potentially rich reservoir of their sequence diversity, 

namely lower termites.  We have furthered our understanding of factors that may influence 

the distribution and evolution of hydrogenases in gut communities by cross-comparing 

representative sets of sequences across termite species.  This has advanced our 

understanding of H domain proteins at the community level of resolution. 

Termite Gut Treponeme Isolates 

In 1999, Jared Leadbetter was the first to isolate treponemes from the hindgut of a termite, 

Zootermopsis angusticolis (17, 27, 30).  Treponemes are helical shaped bacteria belonging 

to the phylum Spirochaete.  Treponemes are among the most abundant groups of bacteria 

in the guts of termites, constituting up to 50% of the total prokaryotes in some species (6, 

40).  They may also be a major producer of acetate by reductive acetogenesis (38, 40, 44).   

In the following chapter, I will present the results of a bioinformatic analysis of the 

hydrogenases encoded in the genomes of Treponema azotonutricium ZAS-9 and T. 

primitia ZAS-1 and ZAS-2, shown in Figure 1-9.  Treponema primitia is a hydrogen 

consuming acetogen (17, 27).  T. azotonutricum is not an acetogen and, therefore, not 

believed to be a substantial consumer of hydrogen; rather, it produces hydrogen (17).   

These isolates represent a unique opportunity to study hydrogenases in species having 

distinct and complimentary hydrogen physiologies.  Investigating the hydrogenases of 

these strains has contributed to our understanding of these enzymes at the single cell 

genome and individual gene or protein levels of resolution. 
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Figure 1-9.  

 

 

 

 

Figure 1-9.  Phase-contrast microscopy images of T. primitia and T. azotonutricum.  

Insets show single cells of each strain.  (A) T. primitia ZAS-2, (B) T. azotonutricum 

ZAS-9.  Bars, 5 µm for images and 2.5 µm for insets.  Images taken from Graber et al. 

with permission (17). 
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