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ABSTRACT 

The termite gut is an ideal ecosystem for studying hydrogen ecophysiology.  Hydrogen is 

central to the obligate mutualism between termites and their gut microbes and is turned 

over at rates as high as 33 m
3
 H2 per m

3
 hindgut volume daily and maintained near 

saturation in some species.  Acetogenic bacteria use hydrogen to produce up to 1/3 of the 

total flux of the termite’s primary carbon and energy source, acetate.  We have taken a 

three-fold approach to investigate the hydrogen ecophysiology of the termite gut.  In our 

first approach (Chapter 2) we completed a bioinformatic analysis of [FeFe] hydrogenase-

like (H domain) proteins encoded in the genomes of three termite gut treponemes.  

Treponemes are among the most highly represented groups of gut bacteria.  The 

remarkable diversity of H domain proteins encoded accentuates the importance of 

hydrogen to their physiology.  Moreover, they encoded a poorly understood class hydrogen 

sensing H domain proteins and thereby present a unique opportunity for their further study.  

In our second approach (Chapters 3 and 4) we analyzed molecular inventories prepared 

from termite gut microbiomes of a class of [FeFe] hydrogenases found highly represented 

in a termite hindgut metagenome.  The libraries of peptide sequences clustered with one 

another in a manner congruent with termite host phylogeny suggesting co-evolution.  

Interestingly, we observed that higher termite guts may harbor higher sequence diversity 

than lower termites.  In our third approach (Chapter 5) we used microfluidic digital PCR to 

identify bacteria in the gut of Reticulitermes tibialis encoding [FeFe] hydrogenases.  The 

majority of the 16S rRNA gene phylotypes observed to co-amplify with hydrogenase 

sequences were treponemal, and the only observed instances of the same 16S rRNA-

hydrogenase gene pair co-amplifying in multiple microfluidic chambers corresponded to 

treponemal phylotypes.  Therefore, treponemes may be an important or predominant 

bacterial group encoding an important family of [FeFe] hydrogenases in the termite gut.  

The above results provide support for an important role for treponemes in mediating 

hydrogen metabolism in the termite gut and accentuate the intimacy and stability of the 

association termites have maintained over the course of their evolution with their gut 

microbial communities.   
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C h a p t e r  1  

BACKGROUND 

Hydrogen in the Termite Gut 

Hydrogen is of central importance to the symbiotic community residing in the termite gut 

(1, 5, 15, 35, 36, 41).  This obligate mutualism, in many instances comprising microbes 

from all three domains of life, enables termites to derive carbon and energy from wood (2-

4, 6, 11, 12, 17, 19, 20, 35, 36, 56, 61, 62). 

The general scheme underlying the symbiosis between wood-feeding termites and their gut 

microbes is shown in Figure 1-1.  Termites ingest wood and microbial symbionts then 

ferment its component polysaccharides to produce primarily acetate, carbon dioxide, and 

hydrogen (1, 5, 12, 19, 35-37, 41, 54, 56, 62).  Acetate is absorbed by the termite and used 

for energy and biosynthesis (37). The carbon dioxide and hydrogen produced in this initial 

fermentation are used by bacteria in reductive acetogenesis to produce more acetate – up to 

1/3 of the total pool in the gut (1, 5, 27, 37, 41).  With these high rates of reductive 

acetogenesis, the termite gut is “the smallest and most efficient natural bioreactor currently 

known” (41).  Only a small portion of the hydrogen is used by methanogens to produce 

methane (1, 25, 41).  The total daily production of hydrogen in this environment can be up 

to 9-33 m
3 

H2 per m
3
 hindgut volume (41).  Hydrogen reaches partial pressures have been 

measured in the termite gut that exceed those measured for any other biological system (15, 

18, 41, 45, 47, 49, 53).  Figure 1-2 presents a comparison of partial pressures of hydrogen 

measured in representative microbial communities. 

A complex matrix of microenvironments characterized by different hydrogen 

concentrations are maintained in the termite gut (6-8, 15, 25, 26, 41).  Hydrogen partial 
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Figure 1-1. 

 

 

 

 

 

 

 

 

Figure 1-1. General scheme underlying symbiosis between anaerobes and wood-

feeding lower termites.  Termites consume wood and break it down into small particles.  

The particles are degraded and their component polysaccharides fermented by the 

symbiotic microbial community in the termite gut (12, 19, 56, 62).  The acetate produced 

in this fermentation is absorbed by the termite and used for respiration and biosynthesis 

(37).  The H2 and CO2 formed in the initial fermentation is used primarily by 

homoacetogenic bacteria in reductive acetogenesis to produce more acetate (1, 5, 41).  A 

small fraction of the H2 and CO2 is used by methanogenic archaea to produce methane 

that is emitted by the insect (41, 52, 54).  Figure was kindly provided through a private 

communication by Jared R. Leadbetter.  
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Figure 1-2.  

 

 

 

 

 

 
 

Figure 1-2. Representative biologically produced hydrogen partial pressures.  The 

partial pressure of hydrogen in the atmosphere is given as a reference.  Hydrogen 

pressures were measured in the bubble gas of a natural wetland (53); in a surface layer of 

intertidal mats dominated by Lyngbya spp. (18); in the hindguts of termites, shown in 

blue (41); in the open waters of Saanich Inlet, an anoxic fjord in British Colombia (47); 

in the rumen of a steer (49); and in the pyncocline of the Great Salt Lake in Utah (45). 
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pressures in the guts of termites have been found to vary dramatically with position, see 

Figure 1-3 (15, 41).  Hydrogen partial pressure reaches a maximum in the hindgut paunch, 

see Figures 1-3A, and decreases as you approach the axial extremities of the gut, see Figure 

1-3B (7).  Hydrogen partial pressures also vary radially being highest at the center of the 

gut and decreasing symmetrically to near zero at the epithelium (7).   

The work presented in the following chapters addresses questions remaining unanswered 

about genes encoding proteins that eubacteria use for producing, consuming, and 

monitoring hydrogen in the termite.  The objective has been to advance our understanding 

of the nature of the symbiosis in the termite gut.  Study of the rich diversity of 

hydrogenase-like proteins (H doman proteins) endemic to the termite gut is a unique 

opportunity to provide substantial contributions to our understanding of these proteins. 

Hydrogenases 

H domain proteins are used to make, break, or sense hydrogen.  Hydrogenases catalyze the 

following reaction:  

H2 ! 2 e
-
 + 2 H

+
  

There are four major classes of hydrogenases – all named according to the metal 

composition of their catalytic sites: the evolutionarily related nickel iron (NiFe) 

hydrogenases and nickel iron selenium (NiFeSe) hydrogenases, and two evolutionarily 

distinct classes called [FeFe] hydrogenases and metal-free hydrogenases, for a review see 

Schwartz et al. (46).   

The structures of two [FeFe] hydrogenases, CpI from Clostridium pasteurianum (42) and 

the heterodimeric [FeFe] hydrogenase from Desulfovibrio vulgaris (32), have been solved, 

and the catalytic site, or H cluster, of CpI from C. pasteurianum is shown in Figure 1-4.  
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Figure 1-3.! 

 

A. 

 

 

B. 

 

 

 

Figure 1-3.  Distribution of hydrogen partial pressures in the gut of Reticulitermes 

flavipes. (A) Radial distribution of hydrogen in the hindgut paunch of Reticulitermes 

flavipes with an image illustrating how hydrogen concentrations are maximal at the 

center of the hindgut paunch (dark blue) and diminish symmetrically (fading blue) toward 

the epithelium. (B) Distribution of hydrogen partial pressures along the axis of the gut of 

Reticulitermes flavipes.  M – midgut; Pa – hindgut paunch; Co – colon; R – rectum.  

Measurements were taken using a microsensor.  Figure is based upon a figure created by 

Ebert and Brune (15), which has been borrowed with permission. 
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Figure 1-4. 

 

A. 

 

 

B. 

 

 

 

 

Figure 1-4. H domain and its conserved sequence signatures. (A) [FeFe] 

hydrogenases can be identified by the three conserved sequence signatures in their H 

domain (31).  Each signature contains cysteine residues essential for catalysis (31).  The 

cysteines in red are involved in coordinating the [4Fe-4S] cluster or bridging the cluster 

to the 2Fe cluster (31).  The cysteine in green is believed to act as an acid/base in 

catalysis (31).  (B) The H domain of C. pasteurianum.  The cysteines of the H domain 

sequence signatures are in blue and the name of the sequence signature to which each 

belongs is indicated.  The image was prepared using MacPyMOL and structure 1feh from 

the PDB database.  C299 may participate in catalysis as an acid/base.  C300, C499, C355 

and C503 coordinate the [4Fe-4S] cluster domain (31).  C503 bridges the [4Fe-4S] cluster 

to the 2Fe cluster domain (31).  The 2Fe cluster is coordinated by CO and CN ligands and 

the two atoms are bridged by a carbon monoxide atom (31).   
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The cluster is made of a diatomic cluster of two iron atoms bridged by a cysteine to a [4Fe-

4S] iron sulfur cluster (32, 42).  These two iron atoms interact directly with hydrogen and 

are the namesake of this class of hydrogenases (42).  Three proteins, or maturases, HydE, 

HydG and HydF, are necessary for assembling the H cluster of [FeFe] hydrogenases (24).  

An analysis of hydrogenase-like proteins encoded in a termite gut metagenome sequence 

revealed that the vast majority are H domain proteins (60). It is unclear why only one of the 

over 100 hydrogenases identified was a [NiFe] hydrogenase.  This may be a consequence 

of the high specific molar activities of [FeFe] hydrogenases (16).  The metagenome paper 

provided initial experimental evidence that the termite gut microbial community is a rich 

reservoir of H domain proteins.  

The multitude and diversity of [FeFe] hydrogenases observed in the termite gut 

metagenome enabled the definition of families of H domain proteins based upon 

phylogenetic and primary sequence character analyses.  This was the first effort to classify 

these proteins based upon evolutionary relationships.  Because of their relevance to the 

termite hindgut and evolutionary significance, these family designations have been used in 

the following chapters.  Classifications based upon sequence characteristics have also been 

proposed by others (31, 57).  

H domain proteins can be identified by three conserved sequence signatures, see Figure 1-4 

(31, 57).  Sequences containing these signatures are likely to be H domain proteins (31, 

57).  

The signatures contain cysteine residues that are essential to the H domain coordinating the 

H cluster (31, 32, 42).  
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H domain proteins contain domains that augment the function of the H domain in catalysis.  

H domain proteins typically have several iron sulfur cluster coordinating sites that mediate 

electron transfer (31, 32, 42, 57).  The most common iron sulfur clusters are [Fe-S], [2Fe-

2S], and [4Fe-4S] (31, 57).  H domain proteins commonly contain two closely spaced, 

consecutive [4Fe-4S] clusters near their N-terminus (31, 57).  Iron sulfur clusters are 

usually coordinated by cysteine residues, but it is common to find near the N-terminus of a 

hydrogenase that the 1
st
 cysteine of a [4Fe-4S] has been replaced by a histidine (31, 57).  

Some H domain proteins contain domains not involved in electron transfer that, instead, 

may couple behavioral or transcriptional modifications to hydrogen levels.  

Prior to the sequencing of a termite gut metagenome, few (43, 48, 60, 61) H domain 

proteins were proposed to contain domains normally implicated in cell signalling, for a 

review see Schwartz et al. (46).  The only characterized hydrogen sensors are [NiFe] 

hydrogenase homologues including, most notably, those from Alcaligenes eutrophus and 

Rhodobacter capsulatus (9).  These two proteins, as shown in Figure 1-5, are components 

of two-component regulatory systems involved in transcriptional regulation (14, 29).  The 

Nasutitermes termite hindgut metagenome paper reported a multitude of H domains fused 

with domains usually implicated in signal transduction (60).  These domains include the 

PAS domain that, in bacterial systems, is most often found in sensors of two-component 

regulatory systems, as in the A. eutrophus and R. capsulatus sensory hydrogenases (55).  A 

response regulator receiver domain typically found in proteins participating in 

phosphorelays or two component regulatory systems (39, 50, 51) was also observed in 

some sequences.  The final sensory domain observed was the methyl-accepting chemotaxis 

protein domain that may function in regulating bacterial swimming behavior (59).  The  
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Figure 1-5.  

 

 

 

Figure 1-5.  Model for the sensory [NiFe] hydrogenases of Alcaligenes eutrophus and 

Rhodobacter capsulatus.  The sensory [NiFe] hydrogenases are part of a two-component 

regulatory system.  In the absence of hydrogen (A) the sensing system suppresses 

transcription of target genes, and in the presence of hydrogen (B) transcription of target 

genes in activated.  The input module is a PAS domain.  The output module is a 

transcriptional activator.  The transmitter and receiver modules are the canonical 

histidine-kinase and response regulator receiver modules of two-component regulatory 

systems.  In the presence of hydrogen, the [NiFe] hydrogenase oxidizes hydrogen.  The 

PAS domain then senses a change in electron potential and communicates this signal to 

the transmitter domain.  Figure is taken from Schwartz with permission (46). 

Fig. 22. Molecular model for H 2 sensing in R. eutropha  and R. capsulatus . The upper part of the d iagram (A) illustrates the
interactions between the components of the H 2-sensing apparatus in the absence of H 2. The lower part (B) repre sents the
protein-protein interactions in the pre sence of H 2. Tran smitter and rece iver doma ins of the h istidine k inases and re sponse
regulator s, re spectively, are shown in red. The solid arrow symbolizes the phosphotransfer react ion. Da shed arrow s indicate
positive (+) or negat ive ( - ) control .
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discovery of this domain in a putative H domain protein was intriguing because chemotaxis 

toward hydrogen has not been demonstrated experimentally.  Shaw et al. have recently 

reported a PAS domain containing H domain protein from Thermoanaerobacterium 

saccharolyticum and some clostridia encode similar proteins and Posewitz et al. have 

reported proteins in Halothermothrix orenii with a region sharing homology 

simultaneously with PAS and histidine kinase domains (10, 43, 48).  The discovery of a 

multitude of putative sensory H domain proteins in a termite’s gut metagenome supports 

the hypothesis that termites are a rich reservoir of novel [FeFe] hydrogenase homologues 

and that their study may provide insight into the functional diversity and evolution of this 

class of proteins.  

Some [FeFe] hydrogenases have heteromeric quaternary structures (31, 57, 58).  The best 

studied multimeric [FeFe] hydrogenases are the trimeric complex from Thermotoga 

maritima and the tetrameric complexes from Thermoanaerobacter tengcongensis, and 

Desulfovibrio fructosovorans, see Figure 1-6 (13).  These complex hydrogenases are 

believed to couple the oxidation or reduction of NAD(P)(H) to hydrogen production or 

consumption, respectively. 

Levels of Physiological Resolution to Study H Domain Proteins 

H domain proteins may be studied at three interdependent levels of molecular resolution:  

The level of individual genes or proteins, the level of individual cells or cell genomes, and 

the level of an entire symbiotic microbial community or metagenome.  A gene or protein 

based analysis of H domain proteins provides the highest level of resolution facilitating an 

understanding of function and evolution on the molecular level.  A higher level of 

complexity and lower level of molecular resolution may be sought through the study of the  
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Figure 1-6. 

 

 

 

 

 

 

 

 

Figure 1-6.  Gene organization and domain composition of multimeric [FeFe] 

hydrogenases.  Each arrow represents a gene and homologous genes share the same 

color. Domain symbols are listed in proper order but are not intended to represent precise 

locations.  Domains were identified using the Pfam server.  Domains represented in the 

figure are: 2[4Fe-4S] – F cluster made up of two adjacent Fer4 domains, PF00037; [2Fe-

2S] – PF00111, [2Fe-2S] iron-sulfur cluster binding domain; ATP-binding – PF02518, 

Histidine kinsae-, DNA gyrase B-, and HSP90-like ATPase; FMN and NAD(P)H binding 

– PF01512, Respiratory-chain NADH dehydrogenase 51 Kd subunit; H domain – 

PF02906 and PF02256, iron only hydrogenase large subunit, C-terminal domain, and iron 

only hydrogenase small subunit; His-[4Fe-4S] – a [4Fe-4S] cluster with the first 

coordinating cysteine replaced with a histidine. 
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physiological context of H domain proteins through the study of the genomes of single 

cells or metabolic and behavioral responses to hydrogen.  At the lowest level of molecular 

resolution H domain proteins are investigated across an entire bacterial community in its 

native setting, the termite gut.  This last level of resolution introduces the most complexity 

because it accounts for all interactions, environmental and biological, that occur in situ. 

Each level of resolution complements the understanding of the termite gut symbiosis made 

accessible by the others.  The metagenome sequence of a termite (60) has provided an 

initial glimpse into hydrogenase-like protein function and phylogeny through 

complementary analyses at the community-wide and individual gene levels of resolution.   

The studies reported in the following chapters provide examples of insights obtained using 

all three levels of resolution to advance of our understanding of the function and 

distribution of H domain proteins in the termite gut. 

Termite Species 

Over 281 genera comprising at least 2600 species of termites are known (23, 28).  Based 

upon evolutionary relationships, these termites may be divided into six families, see Figure 

1-7 (28).  Members of Termitidae, the largest family of termite species, are referred to as 

“higher termites.”  All other termites are “lower termites.”   

The most commonly referenced distinction between higher and lower termites is that the 

latter have protozoa in their hindgut and the former do not (11).  Higher termites also have 

a more segmented gut structure, see Figure 1-8 (6, 33, 34).  The family Cryptocercidae, or 

wood roaches, is believed to represent the most recent common ancestor of all termites (20, 

27, 30).  The six families of termites provide a unique opportunity to investigate the 

representation of H domain proteins across evolutionarily distinct symbiotic communities.   
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Figure 1-7.  

 

 

 

 

 

 

 

 

 

 

Figure 1-7.  Phylogram of termite families and wood roaches.  Tree based upon 

phylogenetic analyses reported by Inward et al. (21, 22). 
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Figure 1-8.  

 

 

 

 

 

Figure 1-8.  Higher and lower termite gut structures.  (A) Lower termite, 

Reticulitermies, gut and (B) a higher termite, Cubitermes, gut.  Pa – Hindgut paunch; R – 

rectum; C – crop; M – midgut; ms – mixed segment; P1-P5 – proctodeal segments.  

Images are taken from Brune with permission (6). 
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The hindgut metagenome has been sequenced for a higher termite, Nasutitermes, from 

Costa Rica (60).  Much of the work reported in the following chapters investigates H 

domain proteins in an untapped and potentially rich reservoir of their sequence diversity, 

namely lower termites.  We have furthered our understanding of factors that may influence 

the distribution and evolution of hydrogenases in gut communities by cross-comparing 

representative sets of sequences across termite species.  This has advanced our 

understanding of H domain proteins at the community level of resolution. 

Termite Gut Treponeme Isolates 

In 1999, Jared Leadbetter was the first to isolate treponemes from the hindgut of a termite, 

Zootermopsis angusticolis (17, 27, 30).  Treponemes are helical shaped bacteria belonging 

to the phylum Spirochaete.  Treponemes are among the most abundant groups of bacteria 

in the guts of termites, constituting up to 50% of the total prokaryotes in some species (6, 

40).  They may also be a major producer of acetate by reductive acetogenesis (38, 40, 44).   

In the following chapter, I will present the results of a bioinformatic analysis of the 

hydrogenases encoded in the genomes of Treponema azotonutricium ZAS-9 and T. 

primitia ZAS-1 and ZAS-2, shown in Figure 1-9.  Treponema primitia is a hydrogen 

consuming acetogen (17, 27).  T. azotonutricum is not an acetogen and, therefore, not 

believed to be a substantial consumer of hydrogen; rather, it produces hydrogen (17).   

These isolates represent a unique opportunity to study hydrogenases in species having 

distinct and complimentary hydrogen physiologies.  Investigating the hydrogenases of 

these strains has contributed to our understanding of these enzymes at the single cell 

genome and individual gene or protein levels of resolution. 
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Figure 1-9.  

 

 

 

 

Figure 1-9.  Phase-contrast microscopy images of T. primitia and T. azotonutricum.  

Insets show single cells of each strain.  (A) T. primitia ZAS-2, (B) T. azotonutricum 

ZAS-9.  Bars, 5 µm for images and 2.5 µm for insets.  Images taken from Graber et al. 

with permission (17). 
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C h a p t e r  2  

GENOMIC ANALYSIS REVEALS MULTIPLE [FeFe] HYDROGENASES AND 
HYDROGEN SENSORS ENCODED BY TREPONEMES FROM THE HYDROGEN 

RICH TERMITE GUT  

Abstract 

H2 is an important free intermediate in the breakdown of wood by termite gut microbial 

communities, reaching concentrations in some species exceeding those measured for any 

other biological system.  We have completed a bioinformatic analysis of the 

hydrogenases encoded in the genomes of three termite gut treponeme isolates: 

hydrogenotrophic, homoacetogenic Treponema primitia strains ZAS-1 and ZAS-2, and 

the hydrogen producing, sugar fermenting T. azotonutricium ZAS-9. These spirochetes 

encoded 4, 8, and 5 [FeFe] hydrogenase-like proteins, identified by their H domains, 

respectively, but no other recognizable hydrogenases.  The [FeFe] hydrogenases 

represented many sequence families previously defined in an analysis of termite gut 

metagenomic data (Warnecke, F., et al. 2007. Nature 450:560-569). Each strain encoded 

both putative [FeFe] hydrogenase enzymes and evolutionarily related hydrogen 

sensor/transducer proteins likely involved in phosphorelay and methylation pathways, 

and possibly even chemotaxis. A new family of [FeFe] hydrogenases is proposed that 

may form a multimeric complex with formate dehydrogenase to provide reducing 

equivalents for CO2-reductive acetogenesis in T. primitia.  The many and diverse [FeFe] 

hydrogenase-like proteins encoded by termite gut treponemes accentuates the importance 

of H2 to the ecophysiology of spirochetes in and the fermentation of lignocellulose by 

wood-feeding termite hindgut communities. 
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Introduction 

The role of termites in global carbon cycling is well established (9, 72).  Hydrogen plays 

a prominent role in this degradation of lignocellulosic biomass by wood feeding termites 

(6, 10, 18, 48, 49). In wood-feeding lower termites, hydrogen is produced by several 

protozoal species and is a major product of their cellulose and xylan fermentation (85, 

86).  Several hydrogenase genes have been cloned from the hindgut protozoa of 

Coptotermes formosanus, and one encoded enzyme, originating from the protist largely 

responsible for cellulose decomposition, preferentially catalyzed H2 evolution in 

biochemical analyses (31).  Before H2 escapes the system, most of this gas is consumed 

by CO2-reducing homoacetogenic bacteria (35, 50), and to a lesser extent, methanogenic 

archaea (6, 33). The flux and standing concentrations of gut H2 has lead to the 

development of the concept of this energy rich gas being the central free intermediate in 

the conversion of plant biomass in wood feeding termites (56).  In some species, 

hydrogen concentrations approach saturation and are among the highest measured for any 

biological system (18, 27, 56, 65, 68, 70, 73).  Moreover, daily productions as high as 33  

m3 H2
 per m3 gut volume have been reported (56).  The environment is also spatially 

complex, comprising a matrix of microenvironments characterized by different 

concentrations of hydrogen (12, 13, 18, 33, 34, 56). 

The importance of hydrogen to the termite gut is further highlighted by the abundance of 

H domain containing [FeFe] hydrogenase-like proteins that were revealed in an analysis 

of a termite gut metagenome (81). They represented a broad diversity of putative 

functions, including putative [FeFe] hydrogenase-like hydrogen sensors, which remains 

an uncharacterized and poorly understood class of proteins (21, 77, 78). The 
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overwhelming majority of the hydrogen-turnover enzymes identified in that study were 

[FeFe] hydrogenases (81).  

Termites rely upon a complex symbiosis with their respective gut microbial communities 

to derive carbon and energy from lignocellulosic biomass (7, 8, 11, 16, 17, 48).  The 

primary product of this symbiosis is acetate that the termites use for biosynthesis and 

energy (50).  The fermentation of polysaccharides produces primarily acetate, carbon 

dioxide, and hydrogen (29, 30, 49, 50).  Most of this carbon dioxide and hydrogen is used 

by bacteria in reductive acetogenesis to produce up to 1/3 (6, 10) of the total acetate pool 

in the gut.  This is why hydrogenases are so important to this environment.  A small 

fraction of the hydrogen is either used by methanogens or released to the atmosphere (6, 

35).  

Treponemes are among the most abundant groups of bacteria in termite guts (37, 53, 54, 

81).  They may be the primary agent of reductive acetogenesis (55, 63).  The first 

isolation of termite gut spriochetes was reported in 1999 (35).  Among the strains isolated 

were organisms later characterized as novel species, Treponema primitia strains ZAS-1 

and ZAS-2 and Treponema azotonutricium strain ZAS-9 (23, 35, 36).  They represent 

contrasting hydrogen physiologies.  T. primitia consumes hydrogen during reductive 

acetogenesis, and T. azotonutricium produces hydrogen during the fermentation of sugars 

(23).  The genomes of T. primitia ZAS-2 and T. azotonutricium ZAS-9 have recently 

been sequenced and closed (Genebank accessions tprim_26881 and tazo_31594, 

respectively). Here we report a bioinformatic analysis of hydrogenase-like proteins from 

the sequenced genomes of these spirochetes. The objective was to better understand the 
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genes underlying the hydrogen physiologies of these isolates and to identify potential 

adaptations to their unique, H2-rich environment.  

Methods 

Sequencing and Annotation. The details of the genome sequencing and closure of T. 

primitia ZAS-2 and T. azotonutricium ZAS-9 are being reported elsewhere (Genebank 

accessions tprim_26881 and tazo_31594, respectively).  Treponema primitia strain ZAS-

1 was grown under standard conditions for this isolate (35) and its genome was kindly 

partially sequenced via 454 pyrosequencing by the Steven Quake lab at Stanford 

University (sequence available in a local database). 

Identification of genes for putative H2 metabolism. A Hidden Markov Model from 

Pfam (4, 19) was used with HMMER (19) to search for nickel-dependent hydrogenases 

(PF00374) within each genome’s putative proteome.  [FeFe] hydrogenases were 

identified within each genome database with IPR004108 from the Blocks (57) server  

using MAST (3).  Sequences containing the three sequence signatures characteristic of 

the H domain of [FeFe] hydrogenases (44), corresponding to blocks 3, 4, and 6 of 

IPR004108, were collected for further analysis. Sequences sharing high sequence identity 

with each of the three chaperones, HydE, HydG, and HydF, necessary for the assembly of 

the H cluster of [FeFe] hydrogenases (5, 32, 58) were identified using BLAST.  

Homologs to [FeFe] hydrogenases from the T. primitia and T. azotonutricium strains 

were identified within the termite gut metagenome sequence database at the JGI IMG/M 

(41, 42) server using BLAST searches. 

Phylogenetic Analysis.  The ARB software environment was used for phylogenetic 

analyses (38).  Sequence alignments were prepared using DIALIGN (45) on the Mobyl 
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server (47).  Trees were routinely constructed in sets of three, corresponding to distance 

matrix (Fitch), maximum parsimony (Phylip PROTPARS), and maximum likelihood 

(Phylip PROML) methods.  The sequence database used within ARB contained 183 

publically available protein sequences harboring H domains.  Many of the [FeFe] 

hydrogenase sequences were chosen from those highlighted in reviews by Meyer (44) or 

Vignais (77).  A number of sequences were identified by BLAST searches against the 

NCBI GenBank non-redundant protein sequences database.  The database also included 

four protist [FeFe] hydrogenase sequences from the gut of Coptotermes formosanus (31).  

84 sequences from the 123 identified as containing H domains in the termite gut 

metagenome database were of sufficient length to be included in the analysis.  The 

following sequences comprised the outgroup used to construct Figure 2-2: 

Caenorhabditis elegans (NP_498092), Homo sapiens (NP_036468, NP_071938), 

Kluyveromyces lactis (CAA49833), Oryza sativa (XP_469746), Saccharomyces 

cerevisiae (NP_014159), Schizosaccharomyces pombe (NP_588309). The following 

sequences comprise the outgroup used to construct Figure 2-3: Chlamydomonas 

moewusii (Q56UD8), Chlorella fusca (Q8VX03), Holomastigotoides mirabile 

(AB331669), Pseudotrichonympha grasii (AB331668, AB331667), Scenedesmus 

obliquus (Q9AU60, Q9AR66), Trichomonas vaginalis (Q27096, Q27094, 

XP_001305709, XP_001310180, XP_001328981, XP_001322682, XP_001580286), 

uncultured parabasalid (AB331669).  The following sequences comprise the outgroup 

used to construct Figure 2-4: Caenorhabditis elegans (NP_498092), Homo sapiens 

(NP_036468, NP_071938), Kluyveromyces lactis (CAA49833), Oryza sativa 

(XP_469746), Saccharomyces cerevisiae (NP_014159), Schizosaccharomyces pombe 
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(NP_588309), Entamoeba histolytica (Q51EJ9, Q50YQ4), Giardia lamblia (EAA39802), 

and Spironucleus barkhanus (Q9GTP1).  Phylogenetic analyses were completed using 

only the H domain region of each peptide sequence, as defined by a filter used to select 

appropriate residues from sequence alignments.  This subset of amino acids corresponded 

to the roughly 310 span of residues: C. pasteurianum (P29166) E207-K515 (Total Length 

= 308) and D. vulgaris (YP_010987)  E83-V394 (Total Length = 311). 

Sequence and gene cluster analyses. Pfam (4) and InterProScan (46) were used to 

identify previously characterized domain sequences within each protein.  Sequences were 

not analyzed further if they lacked domains established by precedent to be essential for 

functionality, see reviews by Meyer and Vignais (44, 77).   The Prediction of Protein 

Subcellular Localization for bacterial sequences (PSORTb v.2.0) program (22) was used 

to predict protein subcellular localization. For gene cluster analysis, all genomes were 

uploaded to the SEED server (52) using RAST (2).  

Nomenclature.  Genes were named following the convention proposed by Vignais (78).  

Wherever possible, hydrogenases were also classified into termite gut community 

associated families as defined by Warnecke et al. (81); that is, according to their 

phylogenetic position.  Where no family membership was clear, a new family was 

proposed. 

Results 

Hydrogenase-like genes and associated maturases identified.  The closed genome 

sequences of Treponema primitia ZAS-2 and T. azotonutricium ZAS-9, and the partial 

genome sequence of T. primitia ZAS-1, were inspected for the presence of candidate 

genes that might be associated with H2 metabolism.  No obvious homologs of known 
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NiFe or NiFeSe hydrogenases were identified. In contrast, each genome encoded a 

number of proteins containing putative H domain modules similar to those from known 

[FeFe] hydrogenases.  T. primitia ZAS-1, T. primitia ZAS-2 and T. azotonutricium ZAS-

9 each encoded 4, 8 and 5 such proteins, respectively (Table 2-1). Within the H domain 

of [FeFe] hydrogenases there are three unique, highly conserved, sequence regions (or 

sequence signatures) that coordinate the H cluster (44, 77).  The H cluster is an iron-

sulfur cluster that functions as the site of catalysis in [FeFe] hydrogenases.  With respect 

to these conserved regions, the putative H domains encoded by the three treponemes fell 

into two groups (Table 2-1), one with canonical sequence signatures and the other with at 

least one key residue diverging from the conserved sequence, a topic discussed further, 

below. The genomes of the three treponemes also encoded “H cluster assembly” proteins 

(maturases) similar to the chaperones HydE, HydG, and HydF, which are known to be 

relevant to the expression of functional [FeFe] hydrogenases (32, 58).   

Domain architecture and predicted subcellular localization. In an initial effort to 

deduce possible functions for each of the proteins possessing H domains, we examined 

their domain architectures. The treponeme genome sequences collectively encoded a set 

of H domain containing proteins having domain architectures representing most of those 

observed in a termite gut metagenome (Table 2-2, Figure 2-1).  Only one domain 

structure was not represented, and it had a low representation in the metagenome (81). 

All sequences encoded a predicted 2[4Fe-4S] cluster immediately N-terminal to the H 

domain (Figure 2-1). We predict that all proteins encoding canonical H domain sequence 

signatures (44) (3, 5, and 2, respectively, in T. primitia strains ZAS-1 and ZAS-2, and T. 

azotonutricium ZAS-9; Table 2-1) function as [FeFe] hydrogenase enzymes. For all such  
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Table 2-1.  FeFe hydrogenase-like proteins observed in the genomes of three termite gut 
isolates.  
 

 

 

 
 

 

 

 

 

aGene numbers for T. primitia ZAS-1 are arbitrarily assigned based upon feature 
identifiers assigned by RAST (2).  
bFamily numbers are taken from Warnecke et al. (81).  The FDH-Linked family of [FeFe] 
hydrogenases has been proposed in the present study. 
cConserved sequence signatures observed in the H domain of all known [FeFe] 
hydrogeneases (44).  Variations from the canonical sequences are given in bold. 
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Table 2-2.  Putative hydrogenase-like proteins encoded by three termite gut spricochetes, 
a termite hindgut metagenome and  several reference bacteria. 

 

 
 
aFamilies have been defined by Warnecke et al. (81).   
bThe family of FDH-Linked hydrogenases has been defined in this chapter.   
cFamilies 3 and 7 share similar domain architectures.   
dFamilies 4 and 8 share similar domain architectures.   
eFamilies 5 and 10 share similar domain architectures, as defined by Warnecke et al. (81).   
fProteins for which a family designation could not be unambiguously defined or for 
which a [FeFe] hydrogenase familiy designation would not be relavant. 
gT. primitia strains ZAS-1 and ZAS-2 and M. thermoacetica are homoacetogens.  T. 
azotonutricium ZAS-9 is primarily a hydrogen producing bacterium.  B. hyodysenteriae 
and T. denticola are both well studied pathogens. 
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Figure 2-1. 
 

 

 

Figure 2-1.  Domain architectures representative of each family of H domain 
proteins observed in Treponema primitia strains ZAS-1 and ZAS-2 and T. 
azotonutricium ZAS-9.  Domains were identified using the Pfam server (4).  Following 
initial detection, iron sulfur cluster domain regions were annotated manually from 
alignments as spanning from the first to the last coordinating cysteine. The following 
domains were observed: 2[4Fe-4S] – F cluster made up of two adjacent Fer4 domains, 
PF00037; Cys Motif – eight Cys residues occurring in three runs, CC, Cx2C, 
Cx2Cx4Cx3C; Fer2 – PF00111, [2Fe-2S] iron-sulfur cluster binding domain; FeS – 
PF04060, putative Fe-S cluster; HATPase – PF02518, Histidine kinase-, DNA gyraseB-, 
and HSP90-like ATPase; His-[4Fe-4S] – a [4Fe-4S] cluster with the first (N-terminal 
most) coordinating cysteine replaced with a histidine; HisKA – PF00512, His Kinase A 
(phosphoacceptor) domain; Large Subunit – PF02906, iron only hydrogenase large 
subunit, C-terminal domain; MA – PF00015, methyl-accepting chemotaxis protein (MA) 
signaling domain; PAS – PF00989, PAS domain; PAS_4 – PF08448, PAS_4 domain, a 
part of the PAS domain clan; REC – PF00072, response regulator receiver domain; Small 
Subunit – PF02256, iron hydrogenase small subunit. The first residue of each conserved 
H domain signature, as defined by Meyer, is indicated in the Large Subunit domains by 
arrowheads (44). 
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sequences an additional domain or a conserved sequence motif was present at the N-

terminal flank of the 2[4Fe4S] cluster (Figure 2-1).  These modules consisted of either a 

duo of domains comprising a [2Fe-2S] cluster followed by a histidine-coordinated [4Fe-

4S] cluster, or a single cysteine-rich motif.  This motif, previously reported in a number 

of putative [FeFe] hydrogenase sequences (44, 81), has been proposed to coordinate an 

iron-sulfur cluster.  

All sequences having non-canonical H domain sequence signatures (Table 2-1) contained 

an [FeS] cluster C-terminal to the H domain followed by a putative signaling domain(s) 

(Figure 2-1), and are herewith considered to be putative H2-sensors falling within three 

functional groups.  One group contained a methyl-accepting chemotaxis protein (MA) 

domain; another a PAS domain; and the third a triad of domains comprised of a histidine 

kinase, ATPase, and response regulator domain.   

PSORTb gave an unambiguous prediction of cellular localization for only three groups of 

putative hydrogenase and H2 sensor proteins.  All putative H2 sensors with either MA or 

the domain triad (above) are predicted to localize to the cytoplasmic membrane.  

Sequences containing a PAS domain (Figure 2-1, Table 2-1) and classified as Family 8, 

sensu Warnecke et al. (81), are unambiguously predicted to be cytoplasmic.  All other 

putative sensors and enzymes were ambiguously predicted to be periplasmic (localization 

scores = 4.48 ea.) and cytoplasmic (localization scores = 5.41 ea.).  

Phylogenetic analysis of putative hydrogenases and H2 sensors.  Phylogenetic analysis 

was performed on all seventeen H domains identified from the genome sequences of the 

three treponemal strains. The H domains clustered within one or the other of two 

coherent clades (Figure 2-2). Each of these coherent clades was analyzed separately and 
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Figure 2-2.  
 

 

 

 

 

 

 

 

 

Figure 2-2. Phylogeny of H domain peptide sequences from putative hydrogen 
sensor and [FeFe] hydrogenase proteins.  The tree was calculated using a maximum 
liklihood (Phylip ProML, 100 bootstraps) method with 150 unambiguously aligned 
amino acids.  The clade containing hydrogen sensors is shown in white and clades 
containing [FeFe] hydrogenases are shown in grey.  Open circles mark groupings also 
supported by either parsimony (Phylip PROTPARS, 100 bootstraps) or distance matrix 
(Fitch) methods.  Closed circles mark grouping supported by all three methods.  Coloring 
of the circles reflects the magnitude of the corresponding bootstrap values for both 
maximum parsimony (100 bootstraps) and maximum likelihood (100 bootstraps) 
methods: black = one of the bootstrap values is below 50%; blue = both bootstrap values 
are over 50%; and red = both bootstrap values are over 85%.  All outgroup sequences are 
listed in the methods section. 
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in greater detail (Figures 2-3A & 2-4).  Based on the phylogenetic position of their H-

domains, most of the H-domain encoding proteins were classified as belonging to any 

one of several different termite gut community associated, iron-only hydrogenase 

families (Table 2-1, Figures 2-3A & 2-4), established previously (81). However, 2 

proteins (HydA1 from T. primitia ZAS-1 and HydA1 from T. primitia ZAS-2) fell within 

a clade that did not contain or group closely with any sequence from the termite gut 

metagenome database (81) and, therefore, could not be designated as belonging to a pre-

defined family.  The number of hydrogenase-like proteins representative of each 

sequence family were compared, see Table 2-2, between the termite gut isolates, two 

anaerobic treponemes, a termite gut metagenome sequence, and a canonical acetogen.  

The classification of these as likely being biochemically associated with hydrogenase-

linked formate dehydrogenases is described below.  Each sequence within this clade 

contained an insertion 28 amino acids in length falling within the H domain region 

(Figure 2-3B).  This insert was not observed in other sequences in our database and was 

not included in phylogenetic calculations.  Phylogenetic analysis revealed that the H-

domains associated with Family 7 proteins may be divided into two sub-families, based 

on the presence or absence of a thioredoxin-like [2Fe-2S] cluster in the parent protein.  

The cluster is absent from the Family 7 proteins identified in the treponemal isolates. 

Lastly, phylogenetic analysis revealed that the H-domains of the putative H2 sensors all 

cluster  together and likely comprise a radiation evolutionarily derived from putatively 

enzymatic Family 6 [FeFe] hydrogenases (Figure 2-2 & 2-4).  

Gene cluster analysis. Many of the putative [FeFe] hydrogenase encoding sequences 

were observed to occur within gene clusters on their respective genomes implying a 
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Figure 2-3.  
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Figure 2-3. Phylogeny of H domain peptide sequences from putative [FeFe] 
hydrogenase proteins.  A.) Refer to Figure 2-2. The tree was calculated using a 
maximum likelihood (Phylip ProML) method with 250 unambiguously aligned amino 
acids.  Open circles mark groupings also supported by either parsimony (Phylip 
PROTPARS, 1000 bootstraps) or distance matrix (Fitch) methods.  Closed circles mark 
grouping supported by all three methods.  Circle colors have the same meaning as 
described in Figure 2-2.  Family names are taken from Warnecke et al. (81).  Family 
names were assigned to the boxed regions based upon homology to sequences observed 
in the gut metagenome of a higher termite (81).  The “FDH-linked” [FeFe] hydrogenase 
clade is so named because of a close genomic proximity to formate dehydrogenase.  
Within the Family 7 clade, see sequences highlighted in grey, is a group of sequences 
containing a C-terminal Trx-like iron-sulfur cluster.  GenBank accession numbers for 
each protein are listed following the name of its origin species.  Numbers beginning in 
2004 are IMG gene object identifiers for sequences taken from a termite gut metagenome 
(81).  Treponema azotonutricium ZAS-9 and Treponema primitia strains ZAS-1 and 
ZAS-2 sequences are in bold.  Also in bold are the two [FeFe] hydrogenase sequence for 
which structures are available.  For clarity, the tree does not contain all enzymatic [FeFe] 
hydrogenase sequences in the ARB database used in analyses.  All outgroup sequences 
are listed in the methods section.  B.)  An alignment of sequences taken from the tree 
depicted in part A. of this figure.  Each member of the FDH-Linked family of sequences 
contained a 28 amino acid insert not observed in other sequences from the database.  
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Figure 2-4.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4. Phylogeny of H domain peptide sequences from [FeFe] hydrogenase 
Family 6 and putative H2 sensor proteins proteins.  Refer to Figure 2-2. The tree was 
calculated using a maximum likelihood (Phylip ProML) method with 238 unambiguously 
aligned amino acids.  Open circles mark groupings also supported by either parsimony 
(Phylip PROTPARS, 100 bootstraps) or distance matrix (Fitch) methods.  Closed circles 
mark grouping supported by all three methods.  Circle colors have the same meaning as 
described in Figure 2-2.  Family names are taken from Warnecke et al. (81).  Family 
names were assigned to the highlighted regions based upon homology to sequences 
observed in the hindgut metagenome of a higher termite (81).  GenBank accession 
numbers for each protein are listed following the name of its origin species. Numbers 
beginning with the number 2004 correspond to IMG gene object identifiers.   Treponema 
azotonutricium ZAS-9 and Treponema primitia strains ZAS-1 and ZAS-2 sequences are 
in bold.  For clarity, the tree does not contain all enzymatic [FeFe] hydrogenase 
sequences in the ARB database used in extensive analyses.  All outgroup sequences are 
listed in the methods section. 
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multimeric quaternary structure (Figures 2-5A, 2-5B &  2-5C).  Each Family 3 or 7 

putative [FeFe] hydrogenase from T. primitia strains ZAS-1 and ZAS-2 fell within gene 

clusters implying a hetero-trimeric quaternary structure (Figure 2-5A).  Several known 

trimeric [FeFe] hydrogenases have a C-terminal thioredoxin-like domain in the H domain 

containing protein (44, 76, 77).  This pattern was not observed in the treponemes, and no 

obvious gene was observed nearby in the genome that might serve to compensate for this 

absence.  This C-terminal thioredoxin-like module/domain was also entirely absent in 

homologous genes occurring within similar contexts in genomes available on the JGI 

IMG/M (41, 42) server.  The Family 3 putative [FeFe] hydrogenase encoded by T. 

azotonutricium ZAS-9 occurred within a gene cluster implying a hetero-trimeric 

quaternary structure (Figure 2-5B).  Gene configurations similar to the trimeric and 

tetrameric [FeFe] hydrogenases identified in the treponeme genomes were observed 

across sequence reads in the termite gut metagenome (81), see Figures 2-5A & 2-5B.  As 

introduced above, the genomes of T. primitia strains ZAS-1 and ZAS-2 each encoded a 

putative [FeFe] hydrogenase that did not cluster phylogenetically with previously 

established termite gut community families. Examination of their gene contexts 

suggested that they might be biochemically coupled in function to the recently described 

(43) cysteine variant of hydrogenase-linked formate dehydrogenases (FDH H, or FdhF; 

Figure 2-5C and Table 2-1) in T. primitia. The genes for these two proteins are each 

proximal to two genes encoding 16Fe ferredoxin-like proteins sharing homology with 

HycB from Escherichia coli and CooF from Rhodospirillum rubrum.  A similar gene 

configuration was observed in the genome of Clostridium difficile (Figure 2-5C). 
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Figure 2-5.  
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Figure 2-5.  Multimeric hydrogenase gene clusters. Arrows represent genes and the 
symbols within each arrow represent encoded protein domains. Domain symbols are 
listed in proper order but are not intended to represent precise locations. Homologous 
genes without annotated domains share the same shading or patterning.  [FeFe] 
hydrogenase subunit gene symbols are provided above the treponeme strain genes. A 
wavy line at the 5’ or 3’ end of a gene indicates an incomplete sequence. Domains were 
identified using the Pfam server (4). Domains represented in the figure are: 16Fe – a 
ferredoxin-like protein sharing homology to HycB from E. coli; 2[4Fe-4S] – iron-sulfur 
cluster made up of two adjacent Fer4 domains, PF00037; [2Fe-2S] – PF00111, [2Fe-2S] 
iron-sulfur cluster binding domain; ATP-binding – PF02518, Histidine kinsae-, DNA 
gyrase B-, and HSP90-like ATPase; FMN and NAD(P)H binding – PF01512, 
Respiratory-chain NADH dehydrogenase 51 Kd subunit; H domain – PF02906 and 
PF02256, iron only hydrogenase large subunit, C-terminal domain, and iron only 
hydrogenase small subunit; His-[4Fe-4S] – a [4Fe-4S] cluster with the first coordinating 
cysteine replaced with a histidine.  A.)  2004146071, 2004121886 are IMG gene object 
identifiers for a gene within sequence reads taken from a termite gut metagenome 
sequence database (81).  B.)  2004124867, 2004124867, and 2004142993 are IMG gene 
object identifiers for a gene within sequence reads taken from a termite gut metagenome 
sequence database (81).  C.)  The formate dehydrogenase gene is filled with a horizontal 
line pattern.  Hypothetical genes are colored white.  
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Discussion 

A previous metagenomic analysis of a subset of the gut community from a Costa Rican, 

wood-feeding “Higher” termite had identified a large number of genes for novel [FeFe] 

hydrogenases and novel [FeFe] hydrogenase-like sensor proteins (81). That study had 

also posited that the majority of these were encoded by not yet cultivated spirochetes. 

Here, we see a similar pattern mirrored and extended in our analysis of the genomes of 

hydrogen-metabolizing spirochetes isolated from a wood-feeding, dampwood termite 

from California. The three Treponema species analyzed in this study are intriguing 

because they 1) represent both hydrogen-consuming and producing physiotypes, 2) are 

members of one of the more abundant bacterial phyla (Spirochetes) generally observed in 

a variety of termite gut ecosystems, and 3) encounter, as members of this ecosystem, the 

most H2-rich environments found anywhere in Nature. The isolates encoded a large 

number and broad diversity of H domain containing proteins (Tables 2-1 & 2-2).  These 

included both putatively enzymatic [FeFe] hydrogenases and putative H2 sensors.   

The number and the variety of H-domains represented in these genomes is at the upper 

end for those typically observed in the sequenced genomes of bacteria (15, 44). This, 

taken together with the non-observation of other types of hydrogenases in these genomes 

(Table 2-1), accentuates and underscores the relevance of analyzing environments and 

isolates in which H2 has been demonstrated to be important. It is not yet clear why iron-

only hydrogenases would be the most abundant, and thus possibly the most dominant, 

types of hydrogenases operating in the termite gut environment (31, 81). Mechanistically, 

others have shown that [FeFe] hydrogenases may have higher specific molar activities 

than the other varieties of hydrogenases (21). The millimolar amounts of ferrous iron 
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bioavailable in the guts of several termites (21, 79) might also have an influence on what 

hydrogenases are at play in these systems. No doubt, many other possible factors might 

be relevant and at play, and it will become interesting in the future to learn more about 

what has shaped the hydrogenase landscape in termite gut ecosystems. 

The [FeFe] hydrogenase-like proteins encoded by the treponemes analyzed here comprise 

both putative enzymes and putative H2-sensors.  That each strain encoded examples of 

both types suggests that having them in concert may be relevant to H2 processing and 

competition within the termite gut ecosystem.  Curiously, the phylogeny of the H-domain 

of the putative sensor domains suggests that they have evolved as a radiation after a 

duplication and subsequent modification from a “Family 6” hydrogenase in the past 

(Figure 2-2 & 2-4).  

Putative multimeric [FeFe] hydrogenases.  Family 3 and 7 [FeFe] hydrogenases from 

the H2-consuming T. primitia strains ZAS-1 and ZAS-2 fell within gene clusters similar 

to that of the trimeric [FeFe] hydrogenase from T. maritima (76) (Figure 2-5A). 

Interestingly, T. maritima is a predominantly hydrogen-producing, anaerobic, 

fermentative hyperthermophile (28).  H2 is known to inhibit its growth, although it is 

consumed in a non-energy coupled detoxification reaction, also observed in Pyrococcus 

furiosus, to produce H2S in the presence of S0 (20, 28).  Thus, it is unclear whether it’s 

hydrogenase functions primarily in hydrogen production, or in some cryptic consumption 

capacity.  We postulate that the observed adjacent HydB and HydC genes form a 

complex with the hydrogenase.  These accessory genes are homologous to the NuoF and 

NuoE subunits of the E. coli NADH: ubiquinone oxidorecuctase (Complex I) (82), 

respectively, that together function in Complex I to oxidize NADH and transfer the 
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electrons along to other subunits.  Therefore, these accessory proteins may serve to form 

a diaphorase moiety interacting with the H domain containing subunit (HydA) to couple 

hydrogen turnover to the oxidation or reduction of NAD(P)(H).   

The Family 3 hydrogenase encoded by T. azotonutricium ZAS-9 fell within a gene cluster 

similar to those of the tetrameric [FeFe] hydrogenases from Thermoanaerobacter 

tengcongensis (40) and Desulfovibrio fructosovorans (71) (Figure 2-5B).  T. 

tengcongensis and many Desulfovibrio species produce hydrogen as a fermentation 

product (25, 75, 84).  D. fructosovorans can also couple energy production to hydrogen 

consumption, but the growth of T. tengcongensis is inhibited by H2 (51, 84).  The 

tetrameric [FeFe] hydrogenase of D. fructosovorans is known to be an NADP-reducing 

hydrogenase (40) and the T. tengcongensis enzyme may have a similar function, though it 

has not yet been biochemically characterized (71).  The accessory domains comprising 

this complex may, just as described above for the Family 3 and 7 proteins from T. 

primitia (above), form a diaphorase moiety to enable the coupling of co-factor oxidation 

or reduction to hydrogen production or consumption, respectively.  In support of the 

more general relevance of the multimeric [FeFe] hydrogenases to termite gut 

communities, analysis of sequence reads suggested that homologous trimeric and 

tetrameric complexes are present in a termite hindgut metagenome (Figure 2-5A & 2-

5B). 

It was surprising to us to find that T. primitia ZAS-1 did not encode a Family 3 [FeFe] 

hydrogenase.  This family was found in both of the other treponeme strains and was the 

most highly represented family observed in the termite hindgut metagenome.  Its absence 

from the genome of this hydrogen consuming strain was further supported by the lack of 
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any amplification product using degenerate primers targeting Family 3 [FeFe] 

hydrogenases (data not shown).  The strain did, however, encode a Family 7 trimeric 

[FeFe] hydrogenase.  This may imply that Family 7 hydrogenases have a physiological 

role similar to that of Family 3, and fulfill this function in T. primitia ZAS-1 (see also 

Figure 2-5A). 

Putative FDH-linked [FeFe] hydrogenases. Many of the hydrogenase genes identified 

in this study fall within phylogenetic clusters established during an earlier analysis of 

termite metagenomic sequence data (81), and several represent the first alleles identified 

from any cultured organism for their respective clusters. However, a few hydrogenases 

encoded by these spirochete pure cultures were not represented by any alleles identified 

in that earlier study. For example, both of the T. primitia strains encoded an [FeFe] 

hydrogenase gene whose locus is in close proximity to that for a formate dehydrogenase 

(FDH; Figure 2-5C).  Several homologs encoded by other bacteria clustered 

phylogenetically with these hydrogenases (Figure 2-3A), and all contained a unique insert 

of 28 amino acids in length at a conserved location. This stretch of amino acid residues 

was not found in other hydrogenases in our databases; moreover, it was filtered out 

during phylogenetic analyses, thus serving as independent support for the cluster. We 

hypothesize that, together, these FDH and hydrogenase genes operate in a formate 

hydrogen lyase-like complex, whereby the generation of formate from carbon dioxide 

and H2 would be the first step of the methyl-branch of the Wood-Ljungdahl pathway of 

reductive acetogenesis (60, 67). T. azotonutricium, which does not encode any obvious 

FDH genes and is not an H2 + CO2 acetogen, does not encode one of these particular 

hydrogenase homologs.  
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The FDH-linked [FeFe] hydrogenase genes in the two T. primitia strains were found 

proximal to two genes encoding putative 16Fe ferredoxin-like proteins. These may serve 

to shuttle electrons between the hydrogenase and FDH subunits of the formate hydrogen 

lyase complex.  Their shared homology with HycB from E. coli provides further support 

for this hypothesis because this protein is believed to shuttle electrons between the FdhF 

subunit (FDH-H) and the NiFe hydrogenase subunit  of  a  formate‐hydrogen  lyase 

complex (64). Interestingly, these ferredoxin-like proteins are also homologous to CooF 

of Rhodospirillum rubrum. CooF is believed to have an analogous electron shuttling 

function, only in this case it is between a carbon monoxide dehydrogenase (CooS) and a 

NiFe hydrogenase (1).   

E. coli is not a homoacetogen, and it operates it’s formate hydrogen lyase complex in the 

direction of formate oxidation to generate hydrogen, as does Eubacterium 

acidaminophilum, which also encodes its FDH gene in close proximity to a NiFe 

hydrogenase gene (1, 24). NiFe hydrogenases, absent in the treponemes analyzed here, 

are entirely distinct phylogenetically from the [FeFe] hydrogenases that are the focus of 

this study (78). Thus, we propose that the treponemes encode a novel formate hydrogen 

lyase-like complex, one that operates with an iron-only hydrogenase, and in the reductive 

direction (43).  Interestingly, homologs of these FDH-linked [FeFe] hydrogenase alleles 

were also found in other bona fide acetogens (Figure 2-3A), including Moorella 

thermoacetica, and other strains that encode genes associated with the Wood-Ljungdahl 

pathway. For example, the gut pathogen Clostridium difficile, which may be a cryptic 

acetogen (61), encodes a homolog of the FDH-linked [FeFe] hydrogenase gene in close 

proximity to an FDH gene (Figure 2-5C), and does not encode a NiFe hydrogeanses 
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homolog. Thus, it may turn out that there is a more widespread role for formate-hydrogen 

lyases in homoacetogenic and acetoclastic metabolic pathways than is currently now 

recognized.  

Putative hydrogen sensors.  The sensory [FeFe] hydrogenase-like proteins encoded by 

the three spirochete strains could be divided into two groups, those likely involved in 

two-component regulatory systems or phosphorelays, and those likely involved in 

methylation cascades, perhaps modulating changes in real time cell behavior such as 

bacterial chemotaxis.  To date, little is known about the function of sensory hydrogenase-

like proteins in biology, and those that have been examined comprise NiFe hydrogenase-

like moieties (78), not the [FeFe] hydrogenase H domain-like moiety observed in these 

termite gut treponemes.  Previously, [FeFe] hydrogenase-like sensory proteins have been 

reported (59, 69, 81, 83), but these remain poorly studied.  These sensors were found to 

be especially abundant in the termite gut metagenomic analysis (81); however, much less 

could be deduced about the modular structure and gene environment of the genes 

encoding those domains, due to the shrapnel based nature of that study. Thus, the 

cultured treponemes analyzed in this study become excellent candidates for examining 

the possible roles and functions of putative H2 sensor proteins in gene regulation and cell 

behavior.  

The H-domains of the putative H2 sensor proteins fell within 4 phylogenetic clusters. The 

H-domains corresponding to Families 4 and 8 each were associated with a PAS domain 

in the C-terminal region of their respective protein sequences.  A previously decribed and 

biochemically characterized NiFe hydrogenases-like H2 sensor also encodes a PAS 

domain (14).  Bacterial PAS domains, also referred to as LOV domains for their role in 
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sensing light, oxygen, or voltage, are usually found in sensor proteins of two-component 

regulatory systems (26, 74). Shaw et al. have recently reported a PAS domain containing 

H domain protein from Thermoanaerobacterium saccharolyticum and Posewitz et al. 

have reported proteins in Halothermothrix orenii with a region sharing homology 

simultaneously with PAS and histidine kinase domains (59, 69).  PAS domain containing 

H domain proteins have also been observed in clostridia (15). 

The H-domains corresponding to Family 10 had an arrangement of domains at their C-

termini similar to the same region of the RcsC signal receptor protein from E. coli (39, 

62).  This suggests that this hydrogenase-like protein operates in a phosphorelay that 

alters gene transcription in response to H2 (39). RcsC is known to be a cytoplasmic 

membrane protein; here PSORTb unambiguously predicts that the Family 10 H2 sensor is 

also a cytoplasmic membrane protein.   

Sequences belonging to H domain Family 5 contained a methyl-accepting chemotaxis 

protein domain (MA) at their C-termini. These can be postulated to modulate changes in 

swimming behavior in response to H2 gradients (80, 81), although to our knowledge H2-

taxis has not yet been demonstrated in any bacterium. Alternatively, MA domain 

containing proteins have been found to influence gene regulation – see Box 4 in 

Wadhams’ review (80). Methyl-accepting chemotaxis proteins are typically membrane-

bound, and each MA domain containing protein from the treponemes was predicted by 

PSORTb to localize to the cytoplasmic membrane. Each of the three treponeme strains 

encoded an H domain protein belonging to Family 5. 

Hydrogen sensors from termite gut microbes appear to have arisen as a late radiation 

from within the [FeFe] hydrogenase enzyme line of descent (Figure 2-2 & 2-4). A similar 
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pattern has been observed for the sensor proteins having moieties with homology to NiFe 

hydrogenases (77), suggesting that in each case, the sensory variants have arisen after a 

gene duplication with subsequent modification and radiation into a new niche. 

Conclusions.  H2 is a central metabolite during the degradation of organic materials and 

in the physiologies of the symbiotic microbial communities residing in all termites 

examined (13, 18, 56, 66).  Treponemes are among the most abundant bacterial groups 

comprising the gut communities in many termites.  The 17 [FeFe] hydrogenases and 

hydrogenase-like proteins identified here in the genome sequences of three termite gut 

treponemes underscore the importance of H2 to their tiny ecosystem.  It is intriguing that 

these strains encode putative [FeFe] hydrogenase-like hydrogen sensors, a function only 

recently proposed for H domain containing proteins (81).  This suggests that these 

spirochetes may have the ability to change their gene expression in response to (and 

perhaps even their physical positions along) hydrogen gradients encountered within the 

gut. Hydrogen and other chemical and pH gradients have previously been elucidated in 

termite guts (13).  It has previously been suggested that perhaps it might be the ability of 

highly motile, homoacetogenic spirochetes to better position themselves between their 

sources of H2 and their competitors that might help explain their otherwise enigmatic 

outcompetition for this electron donor with methanoarchaea (35).  Thus, the current 

genome sequence results provide another dimension to our understanding, as well as 

avenues for future exploration of H2 metabolism in high flux, H2-rich environments. 
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C h a p t e r  3  

A PHYLOGENETIC ANALYSIS OF [FeFe] HYDROGENASE GENE DIVERSITY 
IN THE HYDROGEN METABOLIZING GUTS OF LOWER TERMITES AND 

ROACHES REVEALS UNIQUE, ECOSYSTEM-DRIVEN, ADAPTATIONS AND 
SIMILARITY OF CRYPTOCERCUS AND LOWER TERMITE GUT COMMUNITIES 

Abstract 

Hydrogen is an important free intermediate in the breakdown of wood by termite gut 

microbial communities, reaching concentrations in some species exceeding those 

measured for any other biological system.  We have designed and utilized degenerate 

primers for the study of [FeFe] hydrogenase evolution and representation in the gut 

ecosystems of roaches and lower termites.  The primers target with specificity the largest 

group of enzymatic [FeFe] hydrogenases identified in a termite gut metagenome 

(Warnecke, F., et al. 2007. Nature 450: 560-569).  Sequences were cloned from the guts 

of lower termites, Incisitermes minor, Zootermopsis nevadensis, and Reticulitermes 

hesperus, and two roaches, Cryptocercus punctulatus and Periplaneta americana.  All 

termite and Cryptocercus sequences were phylogenetically distinct from non-termite 

associated hydrogenases available in public databases.  This may be a consequence of 

unique adaptations to their respective ecosystems.  The abundance of unique sequence 

OTUs cloned, as many as 21 from each species, highlights the physiological importance 

of hydrogen to the gut ecosystems of wood feeding insects.  The diversity of sequences 

observed may be reflective of multiple niches to which the enzymes have adapted.  

Sequences cloned from Cryptocersus and the lower termite samples, all wood feeding 

insects, clustered closely with one another in phylogenetic and Unifrac analyses to the 

exclusion of those from P. americana, an omnivorous roach.  These results provide 



3‐2 

 

evidence for the importance of hydrogen metabolism to the gut ecosystems of wood 

feeding insects.  Moreover, they provide support for a close evolutionary relationship of 

lower termites to wood roaches and a common origin of their symbiotic microbial 

communities.  
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Introduction 

Hydrogen plays a prominent role in the digestion of wood by termites (1, 6, 13, 39, 40, 

44).  Hydrogen concentrations in the guts of some termites can reach concentrations 

exceeding those measured for any other biological system (13, 16, 44, 46, 48, 49, 51).  

Turnover rates have been measured in some species at fluxes as high as 33 m3/m3 gut 

volume (44).  The environment is also spatially complex, comprising a matrix of 

microenvironments characterized by different hydrogen concentrations (8, 9, 13, 24, 25, 

44).  

This hydrogen is produced during the fermentation of lignocellulosic polysaccharides by 

the symbiotic microbial community residing in the termite gut, particularly the protozoa 

(15, 17, 18, 40, 53, 57, 58).  The termites are dependent upon this complex symbiosis for 

the degradation of wood (2-4, 7, 10, 11, 39).  The primary product of this symbiosis is 

acetate, which the termites use as their primary carbon and energy source (41).  Most of 

the hydrogen produced in the gut is used by CO2-reducing bacteria to produce up to 1/3 

of this acetate in reductive acetogenesis (1, 6, 26, 41, 44).  Methanoarchaea consume only 

a small portion of this hydrogen (1, 24). 

The role of termites in global carbon cycling is well established (50, 61).  It is, therefore, 

of interest to further investigate factors influencing how the gut ecosystem processes 

hydrogen so efficiently. Indeed, the termite gut has been reported as the smallest, most 

efficient natural bioreactor degradation system known (44).  

A rich diversity of hydrogenases were identified in the recently published Nasutitermes 

gut metagenome (56).  The vast majority of the hydrogenases – over 99% – were 

classified as [FeFe] hydrogenases (56).  Nasutitermes is a member of a group of termites 

known as higher termites, which are distinguishable from lower termites by their 



3‐4 

 

characteristic lack of protozoa in their gut and by their more extensively segmented gut 

anatomy (10, 21, 22, 27).  Chapter 2 reports a total of 17 [FeFe] hydrogenase-like genes 

in the genome sequences of three treponemes isolated from the gut of Zootermopsis 

angusticolis indicating that lower termites too may be a rich source of [FeFe] 

hydrogenase diversity.  

Wood roaches, Cryptocercus punctulatus, are generally believed to share their most 

recent common ancestor with all termites (20, 27, 30).  In fact, termites have been 

referred to as eusocial cockroaches (20).  The gut ecosystem of Cryptocercus shares a 

number of characteristics with termites.  For example, they and termites are dependent 

upon a complex mutualism with a microbial community in their gut to be able to derive 

nutrition and energy from wood (5, 23, 42, 53).  The predominant microbes found in the 

cockroach gut are similar to those found in termites and, more specifically, protozoa are 

believed to play an important role in this symbiosis (5, 23, 53).  It is for this reason, and 

as a consequence of evolutionary relationships (20), that Cryptocercus are most 

specifically similar to a group of termites classified as lower termites.  Moreover, the 

Cryptocercus gut is anatomically similar to the lower termite gut (38). 

The similarities of Cryptocersus to lower termites may extend to the metabolic activities 

of their gut microbial communities.  Hydrogen concentration profiles have been 

quantified for the gut of the roach, Blaberus sp., and Cryptocercus may harbor similar 

profiles along its gut (28).  The gut microbes of Cryptocercus are capable of carrying out 

reductive acetogenesis implying that hydrogen produced in the gut may be utilized in 

acetate genesis (6, 28).   
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Here we report a phylogenetic analysis of [FeFe] hydrogenase genes cloned from the guts 

of roaches and lower termites using degenerate primers.  The objective was to better 

understand the diversity, adaptation, and evolution of the genes in these hydrogen-

metabolizing ecosystems. 

Methods 

Termites.  Incisitermes minor collection Pas1 termites were collected from a woodpile in 

Pasadena.  Reticulitermes Hesperus collection ChiA2 and Zootermopsis nevadensis 

collection ChiA1 were collected at Chilao National Park in Southern California. 

Termites were classified previously (43, 60) using insect mitochondrial cytochrome 

oxidase subunit II (COXII) gene sequences (43).  The COXII genes were amplified 

directly from the DNA samples that hydrogenases were cloned from.  COXII was 

amplified using the primers CI-J-1773 and B-tLys and cycling conditions described by 

Miura et al. (35) where FailSafe PremixD (Epicentre) and Expand High Fidelity Taq 

(Roche) were substituted for the polymerase and buffers, respectively.  Sequences were 

edited and analyzed in the same manner as that described below for cloned [FeFe] 

hydrogenase sequences.  Samples were identified as belonging to the genus of the termite 

harboring harboring the COXII sequence to which they were found most near in 

phylogenetic analyses.   

Cryptocercus punctulatus were kindly provided by Christina Nalepa (NC State 

University).  The adult sample was from a roach collected at Mt. Collins, and the nymph 

sample was collected at the South Mountains.  Periplaneta americana (HM208259) was 

collected on the Caltech campus and identified as belonging to the genus of the roach 

harboring the COXII sequence to which it was found most near in phylogenetic analyses 

(43).  
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DNA Extraction.  DNA was extracted from whole dissected guts as described previously 

(33).  DNA concentrations were quantified using the Hoefer DyNAQuant 200 

fluorometer and DNA quantification system (Amersham Pharmacia Biotech) according 

to manufacturer instructions.   

Primer Design.  Degenerate primers for the amplification of [FeFe] hydrogenases 

classified as belonging to “Family 3” by Warnecke et al. (56) were designed manually 

from a multiple-sequence alignment, see Figure 3-S1 in the appendix to this chapter. 

Family 3 [FeFe] hydrogenases, first described by Warnecke et al. (56), were the most 

highly represented group of enzymatic hydrogenases observed in the Nasutitermes 

hindgut metagenome sequence and have also been observed in the genome sequences of 

treponemes isolated from the gut of Zootermopsis angusticolis, see Chapter 2.  To 

highlight their physiological relevance, Family 3 [FeFe] hydrogenases were the only 

group of hydrogenases observed in the Nasutitermes gut metagenome whose in situ 

translation was verified by mass spectroscopy (56). 

Sequences were aligned using ClustalX available on the PBIL network protein sequence 

analysis server (12).  Included in the alignment were the two Family 3 [FeFe] 

hydrogenase sequences previously identified in the genome sequences of two treponemes 

isolated from a termite gut, see Chapter 2, and 9 Family 3 sequences identified in the gut 

metagenome sequence of Nasutitermes (56).  The [FeFe] hydrogenases of Desulfovibrio 

vulgaris and Clostridium pasteurianum were included in the alignment because they are 

the best characterized [FeFe] hydrogenases (37, 45).  Also included in the alignment were 

top BLAST hits identified using the termite gut treponeme Family 3 [FeFe] hydrogenase 

sequences identified in the genomes of the treponemes isolated from a termite gut as 
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queries against GeneBank.  Sequences not having a termite origin were included in the 

alignment to identify regions conserved across a broad evolutionary range.  Upon 

identifying these highly conserved regions, the consensus of the termite sequences in this 

region was used for primer design. 

A functional primer set and optimal conditions for gene amplification were determined 

empirically.  The primers amplify approximately 537 bp, or 51%, of the H domain (34, 

54, 55) known to be highly conserved among all [FeFe] hydrogneases.  The amplified 

region corresponds approximately to the regions spanning T330-I494 and A209-I373 in 

the [FeFe] hdyrogenases from C. pasteurianum (P29166) and D. vulgaris (YP_010987), 

respectively.  The sequences for the forward and reverse primers were 

WSICCICARCARATGATGG and CCIIKRCAIGCCATIACYTC, respectively, where 

“I” represents inositol.  The peptide sequences targeted by the primers are highlighted in 

Figure 3-S1 found in the appendix of this chapter.    

Cloning.  Primers were ordered from IDT DNA.  Gene sequences were amplified from 

template DNA using Expand High Fidelity Taq Polymerase (Roche), FailSafe Premix D 

(Epicentre) and 0.1 or 10 ng of template DNA.  The temperature cycling regimen was 5 

min at 95°C, 35 x (30 s at 95°C, 30 s at 53°C, 1 min at 72°C), 10 min at 72°C, and final 

cooling to 4°C.  It was necessary to use 50 cycles to successfully clone sequences from 

the P. americana sample.  

Sequences amplified were cloned into TOP10 chemically competent E. coli (Invitrogen) 

using the TOPO TA cloning kit (Invitrogen) according to manufacturer instructions.   

RFLP Analysis.  96 clones were randomly selected for analysis.  Each clone was 

suspended in TE (Sigma) and used as a template for PCR.  The cloned sequences were 
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amplified by PCR using T7 and T3 primers, NEB Taq Polymerase (New England 

Biolabs) and FailSafe Buffer H (Epicentre).  The temperature cycling regimen was  5 min 

at 95°C, 25 x (30 s at 95°C, 30 s at 55°C, 1.5 min at 72°C), 10 min at 72°C followed, and  

final cooling to 4°C. 

The products of each of these reactions were then subjected to digestion with HinPI1 and 

the resulting restriction fragment length polymorphism (RFLP) patterns were analyzed by 

agarose gel electrophoresis.   

Sequencing.  For each termite sample analyzed, cloned sequences representing each 

unique RFLP pattern observed were arbitrarily selected for sequencing.  Plasmids were 

purified using a QIAprep Spin Miniprep Kit (Qiagen) and submitted to Davis Sequencing 

for sequencing.  The sequences obtained were manually trimmed in SeqMan, available 

from DNA* as part of the Lasergene software suite, to remove the plasmid and 

degenerate primer sequences.   

The identity of each sequence as a hydrogenase was verified by BLASTing it against 

GeneBank.   

Phylogenetic Analysis.  An operational taxonomic unit (OTU) was defined as those 

peptide sequences sharing a minimum of 97% sequence identity.  Sequences were 

grouped into OTUs using the furthest-neighbor algorithm in DOTUR (47).   

The ARB software environment (32) was used for phylogenetic analysis of hydrogenase 

sequences.  Sequence alignments were prepared using DIALIGN on the Mobyle server 

(36).  Trees were constructed using 173 unambiguously aligned amino acid positions 

with distance matrix (Fitch), maximum parsimony (Phylip PROTPARS), and maximum 

likelihood (PhylipPROML) treeing methods. The sequence database used within ARB 
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contained 183 publically available protein sequences harboring H domains.  Many of the 

[FeFe] hydrogenase sequences were chosen from those highlighted in reviews by Meyer 

(34) or Vignais (54).  A number of sequences were identified by BLAST searches against 

the NCBI GenBank non-redundant protein sequences database.  The database also 

included four protist [FeFe] hydrogenase sequences from the gut of Coptotermes 

formosanus (19).  84 sequences of the 123 identified as containing H domains in the 

termite gut metagenome database were of sufficient length to be included in the analysis.  

The following sequences comprised the outgroup used to construct Figures 3-3, 3-4 and 

3-5:  Pseudotrichonympha grassii (AB331668); uncultured parabasilid (AB331670); 

Holomastigotoides mirabile (AB331669).  The following Family 3 [FeFe] hydrogenase 

sequences reported elsewhere, were also used to construct Figures 3-3, 3-4 and 3-5:  

Treponema primitia strain ZAS-2 (HndA1, see Chapter 2); Treponema azotonutricium 

strain ZAS-9 (HndA, see Chapter 2); Nasutitermes sp. gut (2004084376, JGI gene object 

ID (56)). 

Diversity and Sequence Richness Calculations.  Chao1 sequence richness and Shannon 

diversity indices for each clone set were calculated using EstimateS version 8.0.0 for 

Macintosh computers, written and made freely available by Robert K. Colwell 

(http://viceroy.eeb.uconn.edu/EstimateS). OTUs and their respective sequence 

abundances were used as input for the program.  To visualize the evenness and diversity 

of OTUs sequences represented in each clone library, collector’s curves were constructed 

showing the number of sequences represented by each OTU.   

Community Comparisons.  Unifrac (31) was used for quantitative comparisons of 

[FeFe] hydrogenase sequence libraries cloned from each insect sample.  A maximum 
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liklihood phylogenetic tree was prepared as described above.  Each sequence library was 

designated as a unique environment in the environment file used as an input to Unifrac 

and the file was also used to input abundance weights.  The environments were compared 

using the Unifrac jackknife and principle component analysis calculations.  Normalized 

abundance weights were used in each calculation. The jackknife calculation was 

completed with 1000 samplings and using 75% of the OTUs contained in the smallest 

environment sample input as the minimum number of sequences to keep. 

Results 

[FeFe] Hydrogenases Cloned.  At least 28 unique RFLP patterns were cloned from each 

termite sample, see Table 3-1.  The sequences could be grouped into 16, 20 and 21 OTUs 

for the Incisitermes minor, Reticulitermes hesperus, and Zootermopsis nevadensus clone 

sets, respectively.  Sequences representing 28 and 37 unique RFLP patterns were cloned 

from the C. punctulaus adult and nymph samples, respectively.  Their corresponding 

sequences could be grouped into 15 and 17 OTUs, respectively.  14 RFLP patterns were 

cloned from the P. americana sample, which could be grouped into 8 OTUs.   

Collector’s cures are provided as Figures 3-1 and 3-2.  The Shannon diversity index and 

Chao1 species richness index for each sample are listed in Table 3-1.   A list of all 

sequences cloned in this study and their respective abundance weights is provided as 

Table 3-S1.  

Phylogenetic analysis of cloned sequences.  In phylogenetic analyses, all hydrogneases 

from the lower termite and Cryptocercus samples grouped within a single clade separate 

from all previously sequenced non-termite associated bacterial [FeFe] hydrogenases in 

the database, tree not shown.  This clade contained both of the Family 3 [FeFe] 

hydrogenases previously identified, see Chapter 2, in the genomes of treponemes isolated  
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Table 3-1. Quantifying hydrogenase clone library diversity. 

 
 

 

aNumber of unique restriction fragment polymorphism patterns (RFLPs) observed. 
 
bNumber of operational taxonomic units (OTUs); calculated using the furthest-neighbor 
method and a 97% amino-acid sequence similarity cut-off. 
 
cChao1 species-richness index calculated using the classic method in EstimateS.  OTUs 
representing Family 3 [FeFe] hydrogenases with their respective abundances were used 
as program inputs. 
 
dShannon diversity index calculated using EstimateS. OTUs representing Family 3 [FeFe] 
hydrogenases with their respective abundances were used as program inputs. 
 
eOnly 5 of these OTUs represented Family 3 [FeFe] hydrogenase sequences, see Table 3-
S1, and were used in the calculation of diversity indices. 
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Figure 3-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3-1. Collector’s curves for lower termite samples.  The horizontal brackets in 
each figure indicate the number of OTUs comprising 75% of all sequences cloned.  Each 
bin represents an OTU calculated using the furthest-neighbor method in DOTUR (47) 
with a minimum of 97% amino-acid similarity used as a cut-off. A) Incisitermes minor, 
B) Reticulitermes hesperus, C) Zootermopsis nevadensis. 
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Figure 3-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2. Collector’s curves for roach samples.  The horizontal brackets in each 
figure indicate the number of OTUs comprising 97% of all sequences cloned.  Each bin 
represents an OTU calculated using the furthest-neighbor method in DOTUR (47) with a 
97% amino-acid similarity cut-off. A) Cryptocercus punctulatus Nymph, B) 
Cryptocercus punctulatus Adult, C) Periplaneta americana. 
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from a lower termite gut, T. azotonutricum ZAS-9 and T. primitia ZAS-2.  Three of the 

sequence OTUs from P. americana fell outside of this clade.  The families, as defined by 

Warnecke et al., into which these “outlying” sequences fell are provided as a footnote to 

Table 3-S1.   

Phylogenetic analysis.  Maximum likelihood trees for all termite, all roach, or the 

collective set of all Family 3 [FeFe] hydrogenase sequence OTUs cloned in this study are 

provided as Figures 3-3, 3-4, and 3-5, respectively.  In an analysis of all Family 3 [FeFe] 

hydrogenase sequences cloned in this study, Family 3 hydrogenases taken from the 

genome sequences of T. primitia ZAS-2 and T. azotonutricum ZAS-9 each formed 

coherent clades with sequence OTUs from Zootermopsis nevadensis. 

Community comparisons.  Unifrac jackknife and principle component analyses were 

used to cluser the [FeFe] hydrogenase sequences cloned from each insect sample.  

Consistent with qualitative observations drawn from phylogenetic analyses, see Figures 

3-4 and 3-5, the P. americana sequence community clustered to the exclusion of all other 

Family 3 [FeFe] hydrogenase sequences, see Figures 3-6 and 3-7.  The C. punctulatus 

and lower termite samples clustered closely with each other. 

Discussion 

Sequence diversity and phylogeny. An analysis of cloned sequences representing the 

largest family of [FeFe] hydrogenases observed in a termite gut metagenome, and the 

only family verified by mass spectroscopy to be translated in situ (56), has revealed that 

the guts of lower termites and woodroaches are rich reservoirs of [FeFe] hydrogenase 

sequence diversity uniquely adapted to these small ecosystems.  All sequence OTUs 

grouped together to the exclusion of all other sequences in our database, data not shown. 

This indicates that, as has been proposed for other environmental samples, the gut [FeFe] 
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Figure 3-3. 

 

 

Figure 3-3. Phylogram of Family 3 [FeFe] hydrogenases cloned from the guts of 
lower termites.  The tree was calculated using a maximum likelihood (Phylip ProML) 
method with 173 unambiguously aligned amino acid positions.  Open circles designate 
groupings also supported by either parsimony (Phylip PROTPARS, 1000 bootstraps) or 
distance matrix (Fitch) methods.  Closed circles designate groupings supported by all 
three methods.  Hydrogenase sequences taken from T. primitia ZAS-2 and T. primitia 
ZAS-9 are labeled as ZAS-2 (HndA1) and ZAS-9 (HndA), respectively.  The sequence 
labeled as “Metagenome” corresponds to the sequence with the gene identifier 
2004084376 taken from a termite hindgut metagenome sequence (56).    
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Figure 3-4. 

 

 
 

Figure 3-4. Phylogram of Family 3 [FeFe] hydrogenases cloned from the guts of an 
Adult and Nymph C. punctulatus samples. See Figure 3-3 caption for description of 
open and closed black circles and tree construction methods.  All sequences cloned from 
P. americana are highlighted by a grey box.     
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Figure 3-5. 
 

 
Figure 3-5. Maximum likelihood tree of all cloned Family 3 [FeFe] hydrogenase 
sequences.  See Figure 3-3 caption for description of open and closed black circles and 
tree construction methods.  Each leaf represents an OTU.  Leaves and branches 
representing OTUs cloned from lower termites are in blue, from C. punctulatus are in 
green, and from P. americana are in red. Hydrogenase sequences taken from T. primitia 
ZAS-2 and T. primitia ZAS-9 are labeled as ZAS-2 (HndA1) and ZAS-9 (HndA), 
respectively. The sequence labeled as “Metagenome” corresponds to the sequence with 
the gene identifier 2004084376 taken from a termite hindgut metagenome sequence (56).  
Tree drawn using Phylip drawgram (14). 
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Figure 3-6. 
 
 
 

 
 
Figure 3-6. Unifrac jackknife clustering of all cloned Family 3 [FeFe] hydrogenase 
sequences.  The maximum-likelihood tree shown in Figure 3-5 and the OTUs with their 
respective abundance weights given in Table 3-S1 were used as inputs to Unifrac.  The 
analysis was completed using normalized abundance weights, 1000 samplings, and 
keeping a number of sequences equal to 75% of the number of OTUs represented by the 
smallest sample analyzed (4 sequences).  Each insect gut sample was designated as a 
unique environment in calculations.  The numbers designate the percentage of samplings 
supporting a particular cluster. 
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Figure 3-7. 
 

 
 
Figure 3-7. Unifrac principle components analysis of all cloned Family 3 [FeFe] 
hydrogenase sequences.  The maximum-likelihood tree shown in Figure 3-5 and the 
OTUs with their respective abundance weights given in Table 3-S1 were used as inputs to 
Unifrac.  The analysis was completed using normalized abundance weights.  Each insect 
gut sample was designated as a unique environment in calculations.  Ca = C. punctulatus 
Adult, Cn = C. punctulatus Nymph, I = Incisitermes minor, P = P. americana, R = 
Reticulitermes hesperus, Z = Zootermopsis nevadensus.  
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hydrogenases are uniquely adapted to their respective ecosystems.  Further analysis 

revealed a diversity of sequence clades, see Figures 3-3, 3-4 and 3-5.  There is good 

reason to believe that this is only a portion of a much larger diversity present in the guts 

because only one of a total of 9 families of [FeFe] hydrogenases reported in the 

Nasutitermes gut metagenome sequence was targeted in this analysis (56).  Each coherent 

clade may represent an adaptation to a niche or microenvironment shown previously to 

exist in the guts of termites and roaches and have a measurable influence on bacterial 

community structure (7, 9, 13, 28, 59).  The sequence diversity shared among these 

samples may point toward metabolic similarities of their respective symbiotic gut 

microbial communities.  The comparable lack of sequence diversity observed in P. 

americana, further emphasized by a necessary increase in PCR cycle number to be able 

to clone any sequences, may reflect a corresponding fundamental metabolic difference 

from the other communities sampled.  This makes sense because P. americana is an 

omnivorous insect that does not consume wood, whereas the other insects sampled are 

wood feeders.  

As shown in Figures 3-3 and 3-5, the Family 3 hydrogenase sequences from the genome 

sequences of T. azotonutricium ZAS-9 and T. primitia ZAS-1 each fall within coherent 

clades containing sequences from a Zootermopsis gut community.  This is what one 

might expect because both of the treponemes were originally isolated from Zootermopsis 

angusticolis (26, 29).  This provides further support for the relevance of these treponemes 

and their respective hydrogenases to the ecology of the termite gut ecosystem from which 

they were isolated. 
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Community cross-comparisons.  There was a clear separation between the P. 

americana sequences and all other cloned [FeFe] hydrogenase sequences in phylogenetic 

analyses (see Figures 3-4 and 3-5).  This is what one might predict based upon the gross 

nutritional differences between P. americana, which is an omnivorous household roach, 

and the Cryptocercus and lower termite samples, which are all wood feeders.  Unifrac 

analyses (see Figures 3-6 and 3-7) provided quantitative support for this observed 

separation and pointed toward a close similarity of the sequence communities cloned 

from the Cryptocercus and lower termite samples.  This similarity provides evidence for 

a close relationship between the gut communities of these wood-feeding insects.  This is 

particularly interesting in light of previous proposals that lower termites are eusocial 

roaches descended from Cryptocercus (30).  Moreover, it provides further support for 

hypotheses proposing a common origin for the gut communities of these two insects (42, 

52).  

Conclusions. Hydrogen plays a pivotal role in the digestion of wood by the gut symbiotic 

microbial communities of termites (1, 6, 13, 39, 40, 44).  Our findings support this 

important role of hydrogen as a metabolic intermediate in wood degradation by 

establishing wood feeding insects as rich resevoirs of [FeFe] hydrogenase gene sequence 

diversity.  Moreover, cloned sequences represent unique adaptations to their respective 

ecosystems.  The non-wood feeding, cockroach P. americana, harbored comparatively 

few [FeFe] hydrogenase sequences.  Clustering of the sequence communities of each 

sample provides support for a close similarity between the gut communities of the wood 

feeding insects sampled.  This is in agreement with the currently accepted phylogenetic 

relationship between wood roaches and lower termites as well as proposals of a common 
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origin for the gut microbial communities of these insects (30, 42, 52).  The rich variety of 

[FeFe] hydrogneases observed in each of the lower termite and Cryptocercus samples 

accentuates the important role of hydrogen as an intermediate in wood degradation by 

xylophagous insects. 
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Table 3-S1. Cloned sequences 
 
Table 3-S2. Alignment used in primer design 
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Table 3-S1. Sequences cloned.  
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Continuing Table 3-S1. 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

aOTUs calculated using the furthest-neighbor method in DOTUR (47) with a 97% amino-
acid similarity cut-off. 
 
bNumber of cloned sequences grouped within each OTU. 
 

cPercent of cloned sequences represented by each OTU. 
 
dSequences that could not be classified as belonging to any of the sequence families 
defined by Warnecke et al. (56). 
 
eSequence classified as belonging to the Family 7 hydrogenase sequence family defined 
by Warnecke et al. (56). 
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Figure 3-S1. Alignment used to design degenerate primers to amplify Family 3 
[FeFe] hydrogenases.  The alignment was prepared using ClustalX on the PBIL network 
protein sequence analysis server (12).  C. pasteurianum = [FeFe] hydrogenase from C. 
pasteurianum (45), D. vulgaris = [FeFe] hydrogenase from D. vulgaris (37), ZAS-2 = 
Family 3 [FeFe] hydrogenase from T. primitia ZAS-2, ZAS-9 = Family 3 [FeFe] 
hydrogenase from T. azotonutricium ZAS-9.   aIMG Gene Object Identifier, bGenBank 
accession number.  
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C h a p t e r  4  

ANALYSIS OF [FeFe] HYDROGENASE SEQUENCES FROM THE HYDROGEN 
RICH GUTS OF HIGHER TERMITES REVEALS CORRELATION BETWEEN GUT 

ECOSYSTEM PARAMETERS AND SEQUENCE COMMUNITY COMPOSITION 

Abstract 

Hydrogen is the central free intermediate in the degradation of wood by termite gut 

microbes and can reach concentrations exceeding those measured for any other biological 

system.  Degenerate primers targeting the largest family of [FeFe] hydrogenases observed 

in a termite gut metagenome (Warnecke, F., et al. 2007. Nature 450: 560-569) have been 

used to explore the evolution and representation of these enzymes in termites.  Sequences 

were cloned from the guts of the higher termites Amitermes sp. Cost010, Amitermes sp. 

JT2, Gnathamitermes sp. JT5, Microcerotermes sp. Cost008, Nasutitermes sp. Cost003, 

and Rhyncotermes sp. Cost004. Each gut sample harbored a more rich and evenly 

distributed population of hydrogenase sequences than observed previously in the guts of 

lower termites and C. punctulatus (see Chapter 3).  This accentuates the physiological 

importance of hydrogen to higher termite gut ecosystems and may reflect an increased 

metabolic burden imposed by a lack of gut protozoa.  The sequences were 

phylogenetically distinct from previously sequenced [FeFe] hydrogenases.  Phylogenetic 

and Unifrac comparisons revealed congruence between host phylogeny and hydrogenase 

sequence library clustering patterns.  This may reflect the combined influences of the 

stable intimate relationship of gut microbes with their host and environmental alterations 

in the gut that have occurred over the course of termite evolution.  Interestingly, host 

feeding habits were similarly observed to correlate with sequence library clustering in 

Unifrac.  These results accentuate the physiological importance of hydrogen to termite 
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gut ecosystems and imply that gut microbes of wood feeding insects may have “co-

evolved” with their hosts.  
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Introduction 

Hydrogen plays a pivotal role in the digestion of wood by termites (3, 8, 16, 38, 39, 42).  

Concentrations in the guts of some species can reach concentrations exceeding those 

measured for any other biological system (16, 20, 42, 43, 46, 48, 49).  The turnover of the 

gas in the gut has been measured in some species at rates as high as 33 m3 H2 per m3 gut 

volume per day (42). The environment is also spatially complex, comprising a matrix of 

microenvironments characterized by different hydrogen concentrations (10, 11, 16, 27, 

28, 42). 

This hydrogen is produced during the fermentation of lignocellulosic polysaccharides by 

the symbiotic microbial community residing in the termite gut (19, 21, 22, 38, 39, 52, 56, 

57).  The termites are dependent upon this complex symbiosis for the degradation of 

wood (4-6, 9, 14, 15, 38).  The primary product of this symbiosis is acetate, which the 

termites use as their primary carbon and energy source (40).  The majority of the 

hydrogen in the gut is used by bacteria in reductive acetogenesis to produce up to 1/3 of 

this acetate (3, 8, 29, 40, 42).  A small portion of the hydrogen in the gut is used by 

methanogenic archaea (3, 27, 42). 

Termites can be classified as belonging to one of two phylogenetic groups, higher 

termites or lower termites (25).  Higher termites characteristically lack protozoa in their 

guts, which are abundant in the guts of lower termites, and have more highly segmented 

gut structures than lower termites (14, 36, 37).  Of the over 2600 known species of 

termites, over 70% are higher termites (25, 55).  They represent the largest and most 

diverse group of termites (24, 55).  Yet, most of what we know about termite gut 

microbes comes from work done with lower termites and comparatively little work has 
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been done with the communities of higher termites (4, 5, 7, 9).  The primary reason for 

this is that it was believed until recently that the gut microbes of higher termites played 

only a minor role in wood digestion (47, 51, 53).  This changed with the recent 

publication of the gut metagenome of a higher termite where it was found that the gut 

community encodes genes for reductive acetogenesis, polysaccharide degradation, and an 

abundance of [FeFe] hydrogenases, all pointing in the direction of a more active role in 

wood degradation (53).  This previously under-acknowledged role for the gut microbes 

has also found support in the findings of Toduda and Watanabe (51). 

Wood feeding insects have shared a stable and intimate mutualism with their respective 

gut microbial communities over the course of their evolution (54).  The composition of 

these communities has been shown to vary substantially with host feeding habits (35, 45, 

50).  Interestingly, a study on the distribution of formyltetrahydrofolate synthetase 

(FTHFS) genes in the guts of higher termites has provided evidence that feeding habits 

have an important influence on community composition (41).  Moreover, it has been 

proposed that the gut microbes of lower termites and Cryptocercus may “co-evolve” with 

their respective hosts (1, 12, 13, 17). 

Here we report a phylogenetic analysis of [FeFe] hydrogenase genes cloned from the guts 

of higher termites.  The objective was to better understand the diversity, adaptation, and 

evolution of the genes in these hydrogen-metabolizing ecosystems. Moreover, the 

influence of host ecosystem variations on the hydrogenase sequence composition of their 

associated microbial communities was investigated through cross-comparisons with 

sequence libraries reported previously for lower termite and wood-roach samples (see 

Chapter 3). 
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Methods 

Termites.  Nasutitermes sp. Cost003 and Rhyncotermtes sp. Cost004 were collected in 

the INBIO forest preserve in Guápiles, Costa Rica.  Cost003 was collected at a height of 

1.2 m from a Psidium guajaba tree and was believed to be feeding on deadwood.  

Cost004 was collected from a nest located under a Bromeliad.  Feeding trails leading 

from this nest to a pile of decaying wood and plant material suggested litter feeding.  

Microcerotermes sp. Cost008 was collected from the base of a palm tree about 100 m 

from the beach at Cahuita National Park in Costa Rica, and appeared to be feeding on the 

palm tree.  Amitermes sp. Cost010 was collected from the roots of dead sugar cane plants 

at a plantation in Costa Rica.  Amitermes sp. JT2 and Gnathamitermes sp. JT5 were 

collected from subterranean nests at Joshua Tree National Park (Permit#: JOTR:2008-

SCI-002).   

Termites were identified in a previous study (41) using insect mitochondrial cytochrome 

oxidase subunit II (COXII) gene sequences and morphology.  The COXII genes were 

amplified directly from the DNA samples that hydrogenases were cloned from.  COXII 

was amplified using the primers CI-J-1773 and B-tLys and cycling conditions described 

by Miura et al. (34)  FailSafe PremixD (Epicentre) and Expand High Fidelity Taq 

(Roche) were substituted for the polymerase and buffers, respectively.  Sequences were 

edited and analyzed in a manner analogous to that described below for cloned [FeFe] 

hydrogenase sequences.  Samples were identified as belonging to the genus of the termite 

harboring harboring the COXII sequence to which they were found most near in 

phylogenetic analyses. 

DNA Extraction and Cloning.  DNA was extracted from whole dissected guts and 

quantitated as described previously (33) and in Chapter 3.  Degenerate primers designed 
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in Chapter 3 for the specific amplification of Family 3 [FeFe] hydrogenases were used for 

the cloning of gut sequences as described there.  Family 3 [FeFe] hydrogenases, first 

defined by Warnecke et al., were the most highly represented group of enzymatic 

hydrogenases observed in the Nasutitermes hindgut metagenome sequence (53).  Family 

3 [FeFe] hydrogenases were the only group of hydrogenases observed in the 

Nasutitermes hindgut metagenome whose in situ translation was verified by MS (53).  

The degenerate primer sequences, which were ordered from IDT DNA, were 

WSICCICARCARATGATGG and CCIIKRCAIGCCATIACYTC for the forward and 

reverse primers, respectively, where “I” represents inositol. 

RFLP Analysis and Sequencing.  For each termite gut, 96 clones were randomly 

selected for RFLP analysis as described previously in Chapter 3.  Sequences representing 

each unique RFLP pattern observed were arbitrarily selected and submitted for 

sequencing, as described previously in Chapter 3.  The sequences obtained were 

manually trimmed in SeqMan, available from DNA* as part of the Lasergene software 

suite, to remove the plasmid and degenerate primer sequences. 

The identity of each sequence as a hydrogenase was verified using by BLASTing it 

against GeneBank.  Sequences that did not have hydrogenases as the top hits were not 

included in further analyses.  Also, sequences that in subsequent analyses aligned poorly 

with other cloned hydrogenase sequences were re-sequenced and analyzed manually for 

frame-shift mutations if they continued to align poorly or contain internal stop codons.  

Frame-shift mutations were identified and manually corrected at the DNA level for three 

clones based upon sequence alignments and careful inspection of sequencer trace files, 

see footnotes to Table 4-S1 in this chapter’s appendix. 
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Phylogenetic Analysis.  An operational taxonomic unit (OTU) was defined as those 

peptide sequences sharing a minimum of 97% sequence identity.  Sequences were 

grouped into OTUs using the furthest-neighbor algorithm in DOTUR (44). 

The ARB software environment (32) was used for phylogenetic analysis of hydrogenase 

sequences, which was completed as described previously in Chapter 3.  Cloned sequences 

and their OTUs used in these analyses are listed in Table 4-S1 in the appendix to this 

chapter.  Trees were constructed using 173 unambiguously aligned amino acid positions 

with distance matrix (Fitch), maximum parsimony (Phylip PROTPARS), and maximum 

likelihood (PhylipPROML) treeing methods. The following sequences comprised the 

outgroup used to construct Figures 4-2 and 4-3:  Pseudotrichonympha grassii 

(AB331668); uncultured parabasilid (AB331670); Holomastigotoides mirabile 

(AB331669), Pseudotrichonympha grassii (AB331667), Treponema primitia ZAS-1 

(HndA1, accession), T. primitia ZAS-2 (HndA2, accession), T. primitia ZAS-2 (HndA3, 

accession), T. primitia ZAS-1 (HydA1, accession).  The following Family 3 [FeFe] 

hydrogenase sequences reported in Chapter 2, were also used to construct Figures 4-2 and 

4-3:  Treponema primitia strain ZAS-2 (HndA1, Chapter 2); Treponema azotonutricium 

strain ZAS-9 (HndA, Chapter 2). 

Diversity and Sequence Richness Calculations.  Chao1 sequence richness and Shannon 

diversity indices for each clone set were calculated using EstimateS version 8.0.0 for 

Macintosh computers, written and made freely available by Robert K. Colwell 

(http://viceroy.eeb.uconn.edu/EstimateS).  OTUs and their respective sequence 

abundances were used as inputs to the program. 
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Community Comparisons.  Unifrac (31) was used for quantitative comparisons of the 

higher termite [FeFe] hydrogenase sequences with each other or with those from lower 

termites and C. punctulatus reported previously in Chapter 3.  Maximum likelihood trees 

were constructed according to the methods described above and subsequently used as the 

input for Unifrac analyses.  173 unambiguously alighted amino acids were used in treeing 

calculations.  Each termite or C. punctulatus sequence library was designated as a unique 

environment. The number of cloned sequences represented by each OTU was input to 

Unifrac to be used for calculating abundance weights.  The environments were compared 

using the Unifrac jackknife and principle component analyses.  Normalized abundance 

weights were used in all calculations.  The jackknife calculation was completed with 

1000 samplings and using 75% of the OTUs contained in the smallest environment 

sample as the minimum number of sequences to keep. 

Results 

Sequences cloned.  Hydrogenase sequences representing as many as 44 sequence OTUs 

were cloned from each of the higher termites, see Table 4-1.  Table 4-S1 in the chapter’s 

appendix lists all clones, and their corresponding OTUs, analyzed in this study.  The 

collector’s curves for each sequence library are provided as Figure 4-1.  Microcerotermes 

was the only sample having 75% of all cloned sequences distributed among less than 7 

OTUs.  The Shannon diversity index and the Chao1 species richness index for each 

sequence library are listed in Table 4-1.  

Phylogenetic analysis.  In phylogenetic analyses comparing the cloned sequences to 

publically available [FeFe] hydrogenase sequences in our database, all but one (see 
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Table 4-1. Quantifying hydrogenase clone library diversity. 
 

 
aNumber of unique restriction fragment polymorphism patterns (RFLPs) observed. 
 

bNumber of operational taxonomic units (OTUs); calculated using the furthest-neighbor 
method and a 97% amino-acid sequence similarity cut-off. 
 

cChao1 species-richness index calculated using the classic method in EstimateS.  OTUs 
representing Family 3 [FeFe] hydrogenases with their respective abundances were used 
as program inputs. 
 

dShannon diversity index calculated using EstimateS. OTUs representing Family 3 [FeFe] 
hydrogenases with their respective abundances were used as program inputs. 
 

eOne of these OTUs represented Family 7 [FeFe] hydrogenase sequences (see Table 4-S1 
in the chapter’s appendix) and was not used in the calculation of the diversity indices. 
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Figure 4-1. 
 

 
Figure 4-1. Collector’s curves.  The horizontal brackets in each figure indicate the 
number of OTUs comprising 75% of all sequences cloned.  Each bin represents an OTU 
calculated with the furthest-neighbor method a 97% amino-acid similarity cut-off using 
DOTUR (44). A) Amitermes sp. JT5, B) Gnathamitermes sp. JT5, C) Microcerotermes 
sp. Cost008, D) Amitermes sp. Cost010, E) Rhyncotermes sp. Cost004, F) Nasutitermes 
sp. Cost003. 
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footnote to Table 4-S1 in the chapter’s appendix) formed a single large clade to the 

exclusion of all non-termite bacterial sequences, data not shown.  Within this clade were 

included Family 3 [FeFe] hydrogenase sequences from a Nasutitermes gut metagenome 

(53) and from the genome sequences of two treponemes isolated from Zootermopsis 

angusticolis, T. primitia ZAS-2 and T. azotonutricum ZAS-9 (see Chapter 2), data not 

shown.  A maximum likelihood tree for all of the cloned [FeFe] hydrogenase sequences 

is provided as Figure 4-2. 

Upon a cursory inspection of phylogenetic groupings, the hydrogenase sequences 

appeared to cluster in a manner roughly congruent with the phylogeny of their hosts.  For 

example, both Amitermes samples tended to group with each other in phylogenetic 

analyses.  Gnathamitermes and Amitermes were the only higher termite samples analyzed 

in this study whose COII sequences formed a tight, coherent clade with each other in 

phylogenetic analyses (41).  Interestingly, hydrogenase sequences from these samples 

tended to group with one another as well.  Moreover, hydrogenase sequences from a 

given termite sample tended to cluster with each other. 

Sequence library cross-comparisons.  A maximum likelihood tree comparing all of the 

Family 3 hydrogenases cloned from the higher termite samples to those cloned previously 

from C. punctulatus and lower termite gut samples (see Chapter 3) is provided as Figure 

4-3.  There is a clear separation between the higher termite sequences and those from C. 

punctulatus and lower termites.  The latter two groups of sequences appear to intermingle 

with each other in the tree.  This apparent congruence between the phylogenetic 

clustering of the cloned hydrogenases and that of their respective hosts was much more 

striking in the Unifrac jackknife clustering of the samples, see Figure 4-4.  In this 
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Figure 4-2. 
 

 
Figure 4-2. Phylogram for Family 3 [FeFe] hydrogenases cloned from the guts of 
higher termites.  The tree was calculated using a maximum likelihood (Phylip ProML) 
method with 173 unambiguously aligned amino acid positions.  Open circles designate 
groupings also supported by either parsimony (Phylip PROTPARS, 1000 bootstraps) or 
distance matrix (Fitch) methods.  Closed circles designate groupings supported by all 
three methods. Each leaf represents an OTU.  Leaves and branches representing OTUs 
cloned from Amitermes sp. Cost010 = blue; Amitermes sp. JT2 = purple; Gnathamitermes 
sp. JT5 = brown; Microcerotermes sp. JT5 = green; Nasutitermes sp. Cost003 = black; 
Rhyncotermes sp. Cost004 = red.  Hydrogenase sequences taken from T. primitia ZAS-2 
and T. primitia ZAS-9 are labeled as ZAS-2 (HndA1) and ZAS-9 (HndA), respectively.  
Tree drawn using Phylip drawgram (18). 
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Figure 4-3. 
 

 
 
Figure 4-3. Phylogram comparing Family 3 [FeFe] hydrogenases cloned from higher 
termites to sequences cloned previously from C. punctulatus and lower termites.  See 
Figure 4-2 caption for description of open and closed black circles and tree construction 
methods. Each leaf represents an OTU.  Leaves and branches representing OTUs cloned 
from lower termites are in blue, from C. punctulatus are in green, and from higher 
termites are in red.  Hydrogenase sequences taken from T. primitia ZAS-2 and T. primitia 
ZAS-9 are labeled as ZAS-2 (HndA1) and ZAS-9 (HndA), respectively.  Tree drawn 
using Phylip drawgram (18). 
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Figure 4-4. 
 
 
 
 
 

 
 
 
 
 
Figure 4-4. Unifrac jackknife analysis of Family 3 [FeFe] hydrogenase sequences 
cloned from higher termites, lower termites, and C. punctulatus.  The maximum-
likelihood tree shown in Figure 4-3 and the OTUs with their respective abundance 
weights listed in Table 4-S1 of the appendix to this chapter and taken from Table 3-S1 in 
the appendix to Chapter 3 were used as inputs to Unifrac.  The analysis was completed 
using normalized abundance weights, 1000 samplings, and keeping a number of 
sequences equal to 75% of the number of OTUs represented by the smallest sample 
analyzed.  Each insect sample was designated as a unique environment.  The grey box 
highlights all higher termite environments.  The numbers designate the percentage of 
samplings supporting a particular cluster.  
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analysis, the clustering of the hydrogenase sequences was congruent with the phylogeny 

of their respective hosts reported by Legendre et al. and Inward et al. (23, 24, 30).  This 

clustering was further supported by the Unifrac PCA analysis of the sequences, see 

Figure 4-5.  In the PCA analysis, there is a distinguishable separation between sequences 

from each of the three groups representing higher termites, lower termites, and C. 

punctulatus.  Principle component 1, which accounted for the separation of higher 

termites from lower termites and C. punctulatus, explained 34.87% of the variation. 

A Unifrac principle component analysis of the [FeFe] hydrogenase sequences cloned 

from higher termites is provided as Figure 4-6.  Sequences from Amitermes sp. Cost010, 

Amitermes sp. JT5, and Gnathamitermes sp. JT5 clustered together.  These termite 

samples are unique from the others because of their close phylogenetic relationship to 

one another, as discussed above, and because they were collected from sub-terranean 

nests.  These samples could be distinguished from the others according to principle 

component 1, which explained 30.68% of the variation.  

Discussion 

High [FeFe] hydrogenase sequence diversity in higher termites.  The abundance of 

[FeFe] hydrogenases cloned from the guts of higher termites, representing as many as 45 

OTUs in the case of Rhyncotermes sp. Cost004, emphasizes the physiological importance 

of these enzymes to these complex ecosystems.  Moreover, these cloned sequences, with 

the exception of one, belong to the largest family of [FeFe] hydrogenase sequences 

observed in a higher termite gut metagenome.  There is good reason to believe that this is 

only a sampling of a much larger diversity because only one of a total of 9 families 

reported in the Nasutitermes gut metagenome sequence was targeted in this analysis.  

Interestingly, all of the higher termite sequences grouped with one another to the 
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Figure 4-5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4-5. Unifrac principle component analysis of Family 3 [FeFe] hydrogenase 
sequences cloned from the guts of higher termites, lower termites, and C. 
punctulatus.  The maximum-likelihood tree shown in Figure 4-3 and the OTUs with their 
respective abundance weights given in Table 4-S1 of the appendix to this chapter and 
taken from Table 3-S1 in the appendix to Chapter 3 were used as inputs to Unifrac.  
Principle components were calculated using normalized abundance weights.  Each 
termite or C. punctulatus sample was designated as a unique environment. Higher termite 
environments are in red, lower termite environments are in blue, and C. punctulatus 
environments are in green. P1 = principle component 1, P2 = principle component 2. Ca 
= C. punctulatus adult, Cn = C. punctulatus nymph, GA = a cluster of samples 
comprising Amitermes sp. Cost010, Amitermes sp. Cost003, and Gnathamitermes sp. JT5, 
I = Incisitermes minor isolate collection Pas1, M = Microcerotermes sp. Cost008, N = 
Nasutitermes sp. Cost003, R = Reticulitermes Hesperus collection ChiA2, Rh = 
Rhyncotermes sp. Cost004, Z = Zootermopsis nevadensis collection ChiA1. 
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Figure 4-6. 
 
 

 
Figure 4-6. Unifrac principle component analysis of Family 3 [FeFe] hydrogenase 
sequences cloned from higher termites in this study.  The maximum-likelihood tree 
shown in Figure 4-2 and the OTUs with their respective abundance weights given in 
Table 4-S1 of the appendix to this chapter were used as inputs to Unifrac.  Principle 
components were calculated using normalized abundance weights.  Each termite sample 
was designated as a unique environment.  Environments representing sub-terranean 
termites are in purple, those representing all other higher termites are in red.  P1 = 
principle component 1, P2 = principle component 2.  Ac = Amitermes sp. Cost010, Aj = 
Amitermes sp. JT2, G = Gnathamitermes sp. JT5, M = Microcerotermes sp. Cost008, N = 
Nasutitermes sp. Cost003, Rh = Rhyncotermes sp. Cost004. 
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exclusion of all other non-termite [FeFe] hydrogenase sequences in our database.  This 

may imply unique adaptations of these sequences to the termite gut ecosystem.  Similar 

community-wide adaptations of [FeFe] hydrogenase sequences from unique ecosystems 

has been reported previously as reported in Chapter 3 and elsewhere (2). 

Higher termites characteristically lack protozoa in the gut (14).  Lower termites and C. 

punctulatus have an abundance of protozoa in their guts that are largely responsible for 

the fermentation of lignocellulosic polysaccharides and the concomitant production of 

most of the hydrogen in the termite gut (4, 7, 9, 15, 26, 42, 52).  The abscence of 

protozoa in higher termite guts may introduce important selective forces on bacteria 

unique to these ecosystems including a greater burden to produce and consume hydrogen.  

As one might expect then, the hydrogenases cloned from the higher termites tended to 

have a more even distribution and broader sequence diversity than sequences cloned from 

C. punctulatus or lower termites, compare Table 4-1 and Figure 4-1 from this study to 

Table 3-1 and Figures 3-1 and 3-2 from Chapter 3. 

Congruence of [FeFe] hydrogenase and host phylogeny.  [FeFe] hydrogenases cloned 

from closely related termites had a tendency to group with one another in phylogenetic 

analyses, see Figure 4-2.  For example, sequences from both Amitermes gut samples 

tended to group together despite their being collected from locations separated by a great 

distance – California and Costa Rica.  Sequence OTUs from a particular termite tended to 

group with one another rather than with sequences from other termites. In a phylogenetic 

analysis of the COII sequences used for molecular characterization of the termite 

samples, Gnathamitermes sp. JT5 and Amitermes sp. JT2 were found to be the most 

closely related of any of the higher termites used in this study (41).  Correspondingly, 
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there was a tendency for sequences from Gnathamitermes sp. JT5 to group with those 

from the Amitermes sp. samples. As one would expect, sequences taken from the 

genomes T. primitia ZAS-2 and T. azotonutricium ZAS-9, each isolated from the gut of a 

lower termite, did not group strongly with any of the sequences cloned from the higher 

termites, see Figure 4-2.   

This congruence was further supported by phylogenetic comparisons of the higher 

termite sequences to lower termite and Cryptocercus sequences cloned previously.  In the 

maximum likelihood tree shown in Figure 4-3, there is a clear segregation of the higher 

termite hydrogenase sequences from those of Cryptocercus and lower termites.  The lack 

of clear segregation of the lower termite sequences from those of C. punctulatus is in 

agreement with the close evolutionary relatedness of these insects (23, 24, 30).  A 

Unifrac principle component analysis using the maximum likelihood tree shown in 

Figure 4-5 further supported these qualitative observations.  The 1st principle component, 

explaining 34.87% of the variation, separated the higher termites from Cryptocercus and 

lower termites.  The jackknife clustering of the [FeFe] hydrogenease communities 

mimicked previously proposed termite phylogenies remarkably (23, 24, 30).   

The observed congruence between [FeFe] hydrogenase phylogeny and that of the host 

may imply that hydrogenases, and by extension their respective gut communities, have 

co-evolved in an intimate relationship with their host termites. This is in agreement with 

previous proposals of termite or Cryptocercus gut microbes having co-evolved with their 

host (1, 12, 13, 17).  Perhaps more accurately, this observation may be explained as a 

consequence of the influence of environmental alterations in the gut, such as the presence 
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or lack of protozoa or various anatomical alterations, that have developed over the course 

of termite evolution. 

Influence of host feeding habits.  Unifrac principle component and jackknife clustering 

analyses of a maximum likelihood tree of all higher termite sequences, see Figures 4-6, 

revealed a close clustering of the Amitermes sp. samples and Gnathamitermes sp. JT5 

samples.  This clustering was apparent when the 1st and 2nd principle components, 

collectively explaining 57.22% of variation, were plotted against each other.  In addition 

to sharing the close phylogenetic relationship discussed above, the Amitermes sp. and the 

Gnathamitermes sp. JT5 termite samples were all collected from sub-terranean gallies 

implying a grass- or soil-feeding diet and increased exposure to humics.  Elizabeth 

Ottesen has reported a similar distinguishability between sub-terranean higher termites 

and other higher termites in her work on the FTHFS gene using the same higher termite 

samples used in this study (41).  Previous studies have also shown that higher termites 

with different feeding habits have markedly different compositions of symbiotic bacteria 

in their guts (35, 45, 50).  Feeding habits may be an important parameter, intimately 

associated with host phylogeny, influencing the [FeFe] hydrogenase sequence 

representation in the termite gut.   

Conclusions.  Termites are a rich reservoir of uniquely adapted [FeFe] hydrogenase gene 

diversity.  The high representation of [FeFe] hydrogenases observed in the guts of higher 

termites accentuates the physiological importance of these ecosystems.  The enzymes had 

a higher representation and more even population distributions than was observed 

previously in lower termites and a woodroach, see Chapter 3.  This may be the 
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consequence of an increased metabolic burden on the gut bacteria in higher termites to 

metabolize hydrogen as a consequence of a lack of gut protozoa.  

The congruence of [FeFe] hydrogenase sequence phylogeny with host phylogeny 

provides experimental support for the hypothesis that the gut microbial communities of 

termites and Cryptocersus have “co-evolved” with their host.  This may reflect the 

combined influences of the stable, intimate relationship of gut microbes with their host 

and the environmental alterations in the gut, such as the presence or lack of protozoa or 

various anatomical or host nutritional alterations, that have occurred over the course of 

termite evolution.  Unifrac analyses further revealed that long standing host-feeding 

preferences, a variable perhaps closely correlated with termite evolution, may have an 

important influence on the hydrogenase sequence population in the termite gut. 

Surveying the representation of Family 3 [FeFe] hydrogenases has begun to shed light on 

the physiology and evolution of the gut microbial communities of termites.   
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Table 4-S1. Sequences cloned.  
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Continuing Table 4-S1. 
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Continuing Table 4-S1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

aOTUs calculated using the furthest-neighbor method in DOTUR with a 97% amino-acid 
similarity cut-off. 
 

bNumber of cloned sequences grouped within each OTU. 
 

cPercent of cloned sequences represented by each OTU.  
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dSequences containing frame-shift mutations that were “corrected” manually by the 
addition or subtraction of nucleotides at the DNA sequence level to allow for 
phylogenetic analyses using amino acid sequences.  
 

eSequence OUT grouping phylogenetically with sequences previously classified as 
Family 7 [FeFe] hydrogenases (53). 
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C h a p t e r  5  

MICROFLUIDIC DIGITAL PCR REVEALS THAT TREPONEMES MAY BE A 
PREDOMINANT GENUS OF EUBACTERIA ENCODING AN IMPORTANT 
FAMILY OF [FeFe] HYDROGNEASES IN THE GUT OF RETICULITERMES 

TIBIALIS 

Abstract 

Hydrogen is an important free intermediate in the degradation of wood by termites and is 

turned over at high fluxes and maintained at concentrations exceeding those measured for 

any other biological system.  We have employed microfluidic digital PCR to identify 

bacteria encoding [FeFe] hydrogenase genes and, therefore, potentially participating in 

hydrogen metabolism in the gut of Reticulitermes tibialis.  We successfully designed 

degenerate primers specifically targeting the largest group of [FeFe] hydrogenases 

observed in a termite hindgut metagenome.  Nucleotide sequences gathered in previous 

molecular inventories were utilized in probe design.  27 16S rRNA – Family 3 [FeFe] 

hydrogenase gene pairs from putative single cell genomes were successfully co-amplified 

by multiplex PCR in microfluidic chambers and subsequently sequenced.  22 of the 16S 

rRNA phylotypes were treponemal, and of these 16 fell within the termite cluster of 

treponemes.  All instances of the same 16S rRNA – hydrogenase gene pairings observed 

in multiple independent chambers, referred to as “Reticulitermes environmental 

genomovars, corresponded to treponeme phylotypes.  The non-treponemal phylotypes 

fell within the β- and ε-Proteobacteria and Bacteroidetes phyla.  All but 3 of the 

phylotypes grouped closely with phylotypes previously sequenced from the guts of 

Reticulitermes termites.  A number of the hydrogenase gene peptide sequences grouped 

closely with sequences cloned from Reticulitermes hesperus in a previous study.  Our 
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results provide compelling evidence that treponemes, particularly of the termite cluster, 

represent an important genus encoding Family 3 [FeFe] hydrogenases in the gut of R. 

tibialis that perhaps is comprised of members making an important contribution to 

bacterially mediated hydrogen metabolism. 
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Introduction 

Hydrogen plays a pivotal role in the breakdown of lignocellulosic biomass by termites (3, 

7, 15, 39, 40, 49).  It can reach concentrations in some species exceeding those measured 

for any other biological system (15, 18, 49, 52, 55-57) and fluxes have been measured as 

high as 33 m3/m3 gut volume (49).  Moreover, the gut ecosystem is spatially complex 

being comprised of numerous microenvironments formed as a consequence of the 

numerous chemical gradients extant in the gut, hydrogen being among the most 

prominent (9, 10, 15, 24, 25, 49). 

This hydrogen is produced and turned-over as an important metabolic free intermediate in 

the breakdown of lignocellulosic biomass by the complex microbial community residing 

in the termite gut (17, 21, 22, 40, 58, 65, 66).  Termites are entirely dependent upon this 

symbiosis, which can include representatives of all three domains of life, to derive energy 

and carbon from wood (4-6, 8, 11, 12, 39).  Acetate, which serves as a termite’s primary 

carbon and energy source, hydrogen and carbon dioxide are the primary products 

produced in this symbiosis (41).  Only a small fraction of the hydrogen and carbon 

dioxide are emitted from the gut; indeed, these potential waste products are used by 

bacteria in reductive acetogenesis to produce up to 33% of the total acetate pool in the gut 

(3, 7, 26, 41, 49).  This contributes substantially to the metabolic efficiency of the system 

and has led some to postulate that it is among the smallest and most efficient bioreactors 

found in nature (49).  Only a small fraction of the hydrogen and carbon dioxide is lost 

from the system as methane produced by methanogens (3, 24).  

The sequencing of a termite hindgut metagenome has revealed the presence of an 

abundance and striking diversity of hydrogenase-like proteins in the termite gut (61).  
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The vast majority of these were classified as [FeFe] hydrogenase-like proteins (61).  

Through for some of these sequences predictions as to the identity of the host of origin 

were made based upon nucleotide composition using Phylopythia (34, 61), it remains 

nebulous precisely what bacterial species encode these sequences or play an important 

role in hydrogen metabolism in the termite gut.  

Traditionally, efforts to identify microbes filling a particular physiological niche in an 

environment have relied upon molecular inventories of a structural gene essential for a 

phenotype of interest.  Numerous studies have taken this approach, for instance, to gain a 

better understanding of nitrogen metabolism (64, 68, 69), methanogenesis (14), or 

hydrogen metabolism (2, 16, 62, 63) in environmental samples.  Several notable studies 

have taken this approach to analyze the diversity of microbes participating in reductive 

acetogenesis (48, 51) or nitrogen metabolism (38, 43, 64) in the termite gut.  To infer a 

bacterium’s phylogeny, these studies, by necessity, assume a reliable correlation between 

host phylogeny and the structural gene of interest.  In some instances this may indeed be 

a reliable assumption, but it is notably not the case for [FeFe] hydrogenases (54, 59).  

Schmidt et al. noted in their 2010 study, “the presence of homologous multiple 

hydrogenases per organism and inconsistencies between 16S rRNA gene and [FeFe]-

hydrogenase based phylogenies” (54).  One might propose addressing this challenge by 

isolating bacteria from the termite gut and subsequently annotating hydrogenases 

encoded in their genome sequences, as has been done in the cases of Treponema primitia 

ZAS-1 and ZAS-2 and Treponema azotonutricium ZAS-9 in Chapter 2.  But, on account 

of the resistance of termite gut bacteria to cultivation (23), one can not feasibly 
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investigate global community characteristics of the termite gut by isolating a large 

sampling of its component species. 

Microfluidic digital PCR (dPCR) was developed by Ottesen et al. in 2006 and 

successfully used to co-amplify formyl-tetrahydrofolate synthetase (FTHFS) gene 

sequences and 16S rRNA gene sequences from single bacterial cells from a termite gut 

(45).  This method allowed for the unambiguous pylogenetic identification of bacteria 

encoding FTHFS (45), an important marker for reductive acetogenesis (27, 28).  

Moreover, since a single microbial genome is used as a template in microfluidic digital 

PCR, the challenges of primer bias or chimera formation that plague the traditional 

molecular profiling techniques discussed above (1) were largely obviated.   

Here we report the use of microfluidic digital PCR to unambiguously identify bacterial 

species encoding [FeFe] hydrogenases in the gut microbial community of Reticulitermes 

tibialis.  Our objective was to use this metabolic marker as a means to identify bacteria 

that may contribute to hydrogen metabolism in the termite gut.  

Methods 

Sample collection and classification.  Reticulitermes tibialis collection JT2 termites 

were collected from a single colony found in a fallen tree along the side of a road in 

Joshua Tree National Park (Permit#: JOTR:2008-SCI-002) in Southern California on 

December 15, 2009 at 3:00 PM.  The GPS coordinates of the site were 34° 1’ 7.2” N and 

116° 10’ 6.9” W.  Termites were immediately used in experiments.  During the 5 days 

duration of experiments, they were stored in a room-temperature glass aquarium with 

moist, sterile sand, and wood cut from the tree from which they were collected.  The 

atmosphere of the chamber was maintained at 95% humidity.   
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The termites were classified using insect mitochondrial cytrochome oxidase subunit II 

(COII) gene sequences.  The COII genes were amplified from the head of one of the 

termites used in a digital PCR experiment.  The head was macerated with a sterile glass 

rod in a 2 ml tube with 50 µl TRIS-EDTA (Sigma).  The liquid fraction was transferred 

to another tube and incubated at 95°C for 10 min and subsequently diluted 10-fold in 

nuclease-free water.  3 µl of this solution was used as a template in a 50 µl PCR reaction.  

The template was amplified using primers COII-R and COII-F (see Table 5-1), each at a 

final concentration of 1 µM, Expand High Fidelity Taq Polymerase (Roche), and FailSafe 

Premix D (Epicentre).  The thermal cycling regimen was 94°C 3 min, (94°C 30s, 50°C 

30s, 72°C 1.5 min) x 30, 72°C 10 min.  Amplicons were cloned into One Shot Top10 

chemical competent Escherichia coli cells (Invitrogen) using a QIAGEN PCR Cloning 

Kit following manufacturers’ protocols.  Colonies were submitted to GENEWIZ for 

sequencing.  Sequences were edited manually using SeqMan, available from DNA* as 

part of the Lasergene software suite, and analyzed phylogenetically using the ARB 

software environment (32) in a manner analogous to that described below.  The termites 

were classified as Reticultermes tibialis (see Figure 5-1) and given the identifier 

“collection JT2.” 

Microbial Strains.  Microbial isolate Treponema primitia str. ZAS-2 was grown in 

anaerobic YACo medium under a headspace of 80% H2 + 20% CO2, as described 

previously (26, 29).  Treponema azotonutricium str. ZAS-9 was grown in a similar 

medium (26, 29).  

Primer and Probe Design.  Degenerate primers and probes for the detectable 

amplification of “Family 3” (61) [FeFe] hydrogenases in quantitative PCR (qPCR) and 
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Table 5-1. Primers and probes used. 

 
a“I” represents inositol. 
bGen. Bac., general bacterial. 
cBoldface residues are locked nucleic acids. (31) 
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Figure 5-1. 

 

 

 

 

Figure 5-1. Mitochondrial cytochrome oxidase II (COII) phylogeny of the termite 
sample used in this study.  Sequence accession numbers are listed in parentheses.  The 
COII sequence cloned from the termite sample used in this study is in bold.  The tree was 
calculated using a maximum likelihood (Phylip ProML) method with 225 unambiguously 
aligned amino acid positions.  Closed circles designate groupings also supported by 
parsimony (Phylip PROTPARS, 1000 bootstraps) and distance matrix (Fitch) methods.   
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dPCR were designed manually from multiple sequence alignments, see Figures 5-S1 and 

5-S2.  Family 3 [FeFe] hydrogenases were the most highly represented group of 

enzymatic hydrogenases observed in the Nasutitermes gut metagenome sequence (61) 

and have also been observed, see Chapter 2, in the genome sequences of treponemes 

isolated from the gut of Zootermopsis angusticolis.  They are the only group of 

hydrogenases whose in situ translation has been verified (61).   

An alignment prepared using DIALIGN (36), available on the Mobyle Portal (37), of 

[FeFe] hydrogenase gene sequences cloned previously from Reticulitermes hesperus 

collection ChiA2 revealed a highly conserved nucleotide region, see Figure 5-S2 in the 

chapter appendix.  Due to the short length of the region, 10 base pairs, it was necessary to 

use locked nucleic acids (LNA) (37) to design probes targeting it with sufficiently high 

melting temperatures to be use in qPCR or dPCR.  The probes designed, see Table 5-1, 

target 89% of the hydrogenase sequences cloned in a gut microbe molecular inventory 

prepared from R. hesperus, see Chapter 3.  Probes were manufactured by Integrated DNA 

Technologies.   

For degenerate primer design, the peptide sequences for all bacterial [FeFe] hydrogenase 

genes previously cloned from termite guts and a wood roach (see Warnecke et al. (61) 

and Chapters 2, 3 and 4) were aligned using DIALIGN on the Mobyle Portal.  A portion 

of the alignment is shown in Figure 5-S2 in the chapter appendix.  Highly conserved 

regions identified in this alignment, and flanking the sequence targeted by the probes 

designed as described above, were used in the design of degenerate primer combinations 

for use in dPCR.  A functional primer set and optimal conditions for gene amplification 

were determined empirically.  All oligomers were ordered from Integrated DNA 
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Technologies.  Initial screens for functionality of candidate primer sets and PCR 

conditions were done using qPCR.  Genomic DNA purified from Treponema primitia 

ZAS-2 or T. azotonutricium ZAS-9 was used as template in these screens.  The 

degenerate primers targeting Family 3 [FeFe] hydrogenases reported in Chapter 3 did not 

function well in qPCR.  Successful primer sets and PCR conditions were defined as those 

facilitating successful quantitative discrimination between different template 

concentrations in a dilution series in a multiplex qPCR reaction with the primer and probe 

set targeting 16S rRNA gene sequences, see Table 5-1.  The best conditions identified 

using qPCR, with minor modifications introduced following control dPCR experiments, 

are described below as those used for all dPCR experiments.  The best degenerate primer 

set identified is listed in Table 5-1.  The primers target the H domain known to be highly 

conserved among all [FeFe] hydrogenases (35, 60).  The amplified region corresponds 

approximately to the regions spanning I393-V470 and I272-V349 in the [FeFe] 

hydrogenases from Clostridium pasteurianum (P29166) and Desulfovibrio vulgaris 

(YP_010987), respectively.   

Template Preparation for Digital PCR.  For each digital PCR run, a single 

Reticulitermes tibialis collection JT2 gut was dissected out of a worker termite and 

resuspended in 250 µl of a “synthetic gut fluid” (SGF) solution.  The SGF comprised 500 

ng/ml bovine pancreas RNase (Roche), 10 mM Tris pH 8, 1 mM EDTA, 30 mM NaCl, 

and 60 mM KCl in water.  The contents of the whole gut was suspended in this solution 

by pipetting up and down and crushing it against the sides of a centrifuge tube using a 1 

ml tip.  This suspension was used as the template for use in digital PCR.  In control 

experiments, aliquots of Treponema azotonutricium ZAS-9 or Treponema primitia ZAS-
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2 cells in mid-log phase growth were added to the SGF solution instead of a termite gut 

suspension.  The crushed gut suspensions were allowed to stand for 30s to allow large 

particles to settle.  The templates were diluted to working concentrations in SGF.  These 

template solutions were then mixed with the PCR reaction mixture described below and 

immediately loaded onto a microfluidic digital array.  

Digital PCR Protocol.  Equipment for microfluidic digital PCR was purchased from 

Fluidigm Corporation and included a BioMark with its controlling software, a Nanoflex 

IFC controller with its controlling software, and custom microfluidic digital array 

12.765P digital PCR devices.  On-chip PCR reaction solutions contained iQ Multiplex 

Powermix (BioRad), 0.1% Tween-20 (Sigma), and 400 nM Rox standard (Quanta 

Biosciences).  The primers and probes used are all listed in Table 5-1 and were used at 

the following concentrations:  154 nM each of 357F and 1492RL2D; 304 nM each of 386 

F’ and 467 R’; 450 nM each of LNA H2-1a and LNA H2-1b; 300 nM Hex-1389Prb.   

Arrays were loaded and PCR was performed as recommended by Fluidigm.  The thermal 

cycling protocol was 95°C 5 min, ( 95°C 15 s, 60°C 45 s ) x 45, 60°C 10 min, 20°C 10 

min.  Data was analyzed using the Fluidigm Digital PCR Analysis program version 2.1.1, 

build 20090521.1140.  The program data analysis parameters were set to the following to 

detect wells containing putative positive co-amplifications:  target Ct range of 23-45, 

linear base correction, user data (global) Ct threshold method, a quality threshold of 0.65, 

and thresholds of 0.03 for FAM-MGB and 0.05 for VIC-MGB signals.  FAM-MGB and 

VIC-MGB thresholds were selected such that the number of putative amplifications 

detected in a no template control panel run on a digital array were routinely on the order 

of 1.5% or less.   
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Sample Retrieval and Analysis.  The thermal conducting silicon wafer was removed 

from each digital PCR array device using a device purchased for this purpose from 

Fluidigm.  Pressure was released from each device after this process.  Products were only 

retrieved from panels with less than 33% of the chambers containing putative 16S rRNA 

gene amplicons.  Assuming a Poisson distribution of particles, this precaution should 

have assured that only 6% of the chambers contained multiple particles.  Chambers 

containing putative successful co-amplifications were located with the aid of a dissecting 

microscope and pierced with the tip of a 26-gage needle.  The needle was then mixed 

briefly in 10 µl TRIS-EDTA (Sigma).   

Retrieved samples were initially screened for the presence of an [FeFe] hydrogenase gene 

product by PCR.  2 µl of each suspension were added as template to PCR reaction mixes 

comprised of 1.4 U Expand High Fidelity Taq (Roche) and FailSafe PCR Premix D 

(Epicentre), and 1 µM each of primers 386F’ and 467R’, see Table 5-1.  The thermal 

cycling program used was 95°C 5 min, ( 95°C 15 s, 60°C 45 s, 72°C 60 s) x 40.  

Reactions yielding a product detectable in gel electrophoresis were PCR purified using a 

QIAquick PCR Purification Kit (QIAGEN) following the manufacturer’s protocol.  2 µl 

of the resulting solutions were then used as template in PCR reaction mixes comprised of 

FailSafe PCR Premix D (Epicentre), 1 U Taq polymerase (Roche), and 500 nM each of 

primers 386 F’ and 467 R’, see Table 5-1.  The thermal cycling regimen was 95°C 5 min, 

( 95°C 15 s, 60°C 45 s, 72°C 60 s ) x 15.  The products of these reactions were cloned 

into One Shot® Top10 chemical competent Escherichia coli cells (Invitrogen) using the 

QIAGEN PCR Cloning Kit following manufacturer protocols.   
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All samples that yielded a detectable product in the above screen were further screened 

for the presence of a 16S rRNA gene product.  2 µl of each resuspension were added to 

PCR mixes containing iQMultiplex Powermix (BioRad) and 1 µM each of primers 

1492RL2D and 357F, see Table 5-1.  The thermal cycling regimen was 95°C 5 min, ( 

95°C 15 s, 60°C 45 s, 72°C 60 s ) x 30.  Samples yielding a product detectable in gel 

electrophoresis were purified using a QIAquick PCR Purification kit (QIAGEN) 

following the manufacturer’s protocol.  2 µl of the resulting suspensions were used as 

template in PCR reactions mixes comprised of FailSafe PCR Premix D (Epicentre), 1 U 

Taq polymerase (Roche), and 500 nM each of primers 1492RL2D and 357F, see Table 5-

1.  The thermal cycling regimen was 95°C 5 min, ( 95°C 15 s, 60°C 45 s, 72°C 60 s ) x 

15. The products of these reactions were cloned into One Shot Top10 chemical 

competent Escherichia coli cells (Invitrogen) using a TOPO TA Cloning Kit (Invitrogen) 

following manufacturer protocols.  Clones corresponding to array chambers A1, A8, 

A11, A12, B5, B2, B6, B9, C7, and D9 were prepared using a QIAGEN PCR Cloning Kit 

(QIAGEN) following manufacturer protocols. 

For each dPCR amplicon, 10 individual clones were selected at random for restriction 

fragment length polymorphism (RFLP) analysis.  Each clone was suspended in TRIS-

EDTA (Sigma) and used as a template for PCR.  Sequences were amplified in PCR using 

T7 and T3 primers, NEB Taq Polymerase (New England Biolabs) and FailSafe PCR 

Premix H (Epicentre).  Sequences cloned using the QIAquick PCR purification kit were 

amplified suing SP6 and T7 primers.   The temperature cycling program was 95°C 5 min, 

( 95°C 30 s, 55°C 30s, 72°C 5 min ) x 25, 72°C 10 min.  
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The products of each reaction were subjected to digestion with HinPI1 and the resulting 

RFLP patterns were analyzed by agarose gel electrophoresis.  Cloned sequences 

representing unique RFLP patterns were arbitrarily selected for submission to GENEWIZ 

for colony sequencing.   

Sequences were manually trimmed in SeqMan, available from DNA* as part of the 

Lasergene software suite, to remove plasmid and degenerate primer sequences.  The 16S 

rRNA sequences were checked for chimeras using GreenGenes/Bellepheron (13) 

available on the GreenGenes website (13).  A more rigorous screening for chimeras was 

not deemed necessary because digital PCR, by its very nature, dramatically reduces the 

likelihood of their formation because a single cell is used as the template in PCR 

reactions.  The [FeFe] hydrogenase sequences were each BLASTed against the 

Nasutitermes hindgut metagenome sequence on the IMG/M server (33) to verify, by 

means of the top hits, their identity as Family 3 [FeFe] hydrogenase sequences.   

The ARB software environment (32) was used for phylogenetic analysis of the 16S-

rRNA gene and [FeFe] hydrogenase peptide sequences.  Sequences cloned in this study 

and used for tree construction are listed in Table 5-S1 in the chapter appendix.  Peptide 

sequences were aligned using DIALIGN (36), available on the Mobyle server (37).  16S 

rRNA gene sequences were aligned using the Silva aligner (53). If 16S rRNA gene 

nucleotide sequences or [FeFe] hydrogenase peptide sequences corresponding to 

amplicons from a dPCR array chamber shared less than 97% sequence identity, all 

sequences from the chamber were discarded as a precaution assuming that this may be an 

indication of either contamination or co-localization of multiple cells.  
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Nomenclature.  All cloned dPCR products were given the prefix "Rt" designating the 

termite host of origin, Reticulitermes tibialis collection JT2, followed by an “H2” for all 

hydrogenase sequences or an “R” for all 16S rRNA gene sequences.  A dash followed by 

a letter-number combination uniquely identifying the dPCR array chamber from which a 

given sequence was collected was then added to this prefix.  This chamber designator 

was then appended on the right by a period and a number designating the identity of the 

specific clone out of the 10 prepared for each hydrogenase or 16S rRNA gene amplicon 

retrieved from a dPCR array chamber.   

Reticulitermes environmental genomovars (REG), using terminology proposed by 

Ottesen et al. (45), were defined as sets of sequences co-amplified in dPCR for which the 

16S rRNA gene nucleotide sequences and [FeFe] hydrogenase peptide sequences each 

share at least 97% identity.  REGs were arbitrarily assigned a number identifying the 

REG followed by a period and another number identifying a unique dPCR chamber that 

sequences co-amplified in.  The final “r” or “h” in each REG name serves to identify a 

sequence comprising the REG as a 16S rRNA gene sequence or an [FeFe] hydrogenase 

peptide sequence, respectively.   

Results 

Sequence amplification and retrieval.  Efforts to employ the method of Ottesen et al. 

(44) used in the past in the design of degenerate primers with an appended probe binding 

site (70) for use in digital PCR failed.  This method is typically employed by necessity 

when little is known about an environmental gene sequence of interest.  This obstacle 

was overcome in this study by utilizing nucleotide sequences of Family 3 [FeFe] 

hydrogenases cloned previously from the gut of R. hesperus collection ChiA2, see 
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Chapter 3.  These sequences allowed for the design of probes targeting termite gut 

Family 3 [FeFe] hydrogenases, as described in the methods section.  

In control experiments, the Family 3 [FeFe] hydrogenase and 16S rRNA gene sequences 

of T. azotonutricium ZAS-9 and Treponema primitia ZAS-2 co-amplified in dPCR.  In 

these control experiments, there were, on average (2 panels analyzed in each of two 

dPCR experiments), 9.5 16S rRNA gene amplification false positives and less than 1 

[FeFe] hydrogenase false positive observed in array panels loaded with PCR mix 

containing no template.   

A heat map for a representative panel from which PCR products amplified from 

Reticulitermes tibialis collection JT2 gut microbes were retrieved is shown in Figure 5-2.  

The digital array devices, panels, and chambers from which samples putatively amplified 

from a single cell were successfully retrieved and subsequently sequenced are listed in 

Table 5-2.  Samples were retrieved from 16 panels distributed across four digital PCR 

array devices. The panels from which product was retrieved had an average of 180 ± 51 

positive 16S rRNA gene signals, 11 ± 5 [FeFe] hydrogenase gene signals, and 4 ± 3 

putative co-amplifications.  

Sequence Analysis.  Twenty-seven chambers yielded co-amplification products 

successfully sequenced and putatively corresponding to a single cell genome according to 

the criterion put forward in the methods section, see Table 5-S1 in the chapter appendix 

and Table 5-2.  Of these, 22, or 81%, were classified as treponemal, see Figure 5-3.  All 

of the treponemal 16S rRNA gene sequences fell within one of two groupings.  Either 

sub-group 2 of known treponemes defined previously by Paster et al. (47), also referred 

to as “sub-cluster II” by Hongoh et al. (20), and the group of phylotypes referred to as 
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Figure 5-2. 

 

 

 

Figure 5-2. Representative heat map for a digital PCR array panel from which 
amplicons were retrieved for analysis.  The heat maps were constructed using the 
Fluidigm Digital PCR Analysis program version 2.1.1, build 20090521.1140.  The 
images correspond to panel 6 of the device with serial number 1151065028.  A.) Wells 
with positive FAM-MGB signals corresponding to putative Family 3 FeFe hydrogenase 
gene amplicons, B.) Wells with positive VIC-MGB signals corresponding to 16S rRNA 
gene amplicons, C.) An overlay of the heat maps represented in A. and B. used to identify 
wells corresponding to positive co-amplifications. 
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Table 5-2. Digital PCR array wells from which amplicons were retrieved. 

 
aPanel (1 of 12) of the microfluidic digital PCR array. 
bNumber of wells having a positive FAM-MGB signal (see Methods), corresponding to a 
putative [FeFe] hydrogenase gene amplification. 
cNumber of wells having a positive VIC-MGB signal (see Methods), corresponding to a 
putative 16S rRNA gene amplification. 
dNumber of wells predicted to have successful 16S rRNA gene and [FeFe] hydrogenase 
gene amplifications. 
eThe names chosen for the wells from which amplicons were retrieved and subsequently 
yielded products putatively originating from a single cell genome (see Methods) and used 
in sequence analyses. 
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Figure 5-3. 
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Figure 5-3.  Phylograms of 16S rRNA gene sequences (left panel) and putative 
Family 3 [FeFe] hydrogenase peptide sequences (right panel) corresponding to 
products co-amplified in dPCR.  The 16S rRNA gene sequence tree was calculated 
using the TreePuzzle algorithm (37) with 1,000 puzzling steps and 963 unambiguously 
aligned nucleotides.  The numbers adjacent to branches are bootstrap values.  Sequences 
from the genomes of termite gut treponeme isolates known to encode Family 3 [FeFe] 
hydrogenases in their genomes are in boldface, as is a 16S rRNA gene (clone Zn-S10) 
shown previously to co-amplify with a gene for FTHFS in dPCR (45).  The hydrogenase 
peptide sequence tree was calculated using a maximum likelihood (Phylip ProML) 
method with 70 unambiguously aligned amino acids.  On the hydrogenase tree, open 
circles designate groupings also supported by either parsimony (Phylip PROTPARS, 
1000 bootstraps) or distance matrix (Fitch) methods.  Closed circles on the hydrogenase 
tree designate groupings supported by all three methods.  For each REG (see text for 
definition), its associated sequences share the same color and a line has been connecting 
its hydrogenase and 16S sequences across the two trees.  Sequence accession numbers are 
listed in parentheses.  Clone names of sequences taken from public databases that are 
derived from a termite gut are each listed followed by a comma and the name of the 
termite host of origin.  Reticulitermes hesperus hydrogenase sequences are taken from 
Chapter 3.  
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“the termite cluster” by Lilburn et al. (30), or as “subcluster I” by Hongoh et al. (20).  

Most, 16 of 22 total, of the treponemal 16S rRNA gene phylotypes fell within the termite 

cluster.  All but one, RtR-B6, of the treponemal phylotypes grouped with sequences 

cloned in previous studies from termites belonging to the genus Reticulitermes.  These 

sequences shared an average of 98.2% ± 0.86% (minimum of 96.5%), across 917 aligned 

nucleotides, with the Reticulitermes gut microbe sequences available in public databases 

to which they associated most closely in phylogenetic analyses. One 16S rRNA gene 

sequence grouped closely (98.1% sequence identity across 917 aligned nucleotides) in 

phylogenetic analyses with clone ZN-S10 from the gut of Z. nevadensis proposed 

previously results to originate from a bacterium also encoding a gene for FTHFS (45).  

The 4 REGs observed in this study, see Table 5-3, have been predicted to correspond to 

treponemes, see Figure 5-3.  

Five of the 16S rRNA gene sequences fell outside the phylum Spirochaetes in 

phylogenetic analyses, see Figure 5-4. Three grouped with Beta-Proteobacteria, one with 

Bacteroidetes, and one with Epsilon-Proteobacteria. Three of these sequences shared an 

average of 98.2% ± 0.93% (minimum of 97.4%), across 917 aligned nucleotides, with the 

Reticulitermes gut microbe sequences available in public databases to which they 

associated mostclosely in phylogenetic analyses. The other two sequences did not group 

with any sequences cloned previously from termites belonging to the genus 

Reticulitermes. There was not an unambiguous correlation between 16S rRNA gene and 

[FeFe] hydrogenase peptide sequence phylogenies, see Figures 5-3 and 5-4.  In 10 

instances, Family 3 [FeFe] hydrogenase peptide sequences grouped closely in 

phylogenetic analyses with sequences cloned previously, see Chapter 3, from the gut 



5‐22 

 

Table 5-3. Reticulitermes environmental genomovars proposed in this study. 

 

 

aThe minimum percent identity shared by all sequences corresponding to a given set of 
hydrogenase peptide sequences or 16S gene sequences comprising a REG (see Table 5-
S1 in the chapter appendix for a list of all sequences) 

 

 



5‐23 

 

Figure 5-4. 

 

 

 

 

 

 

Figure 5-4. Phylogram of non-treponemal 16S rRNA gene sequences co-amplified 
with Family 3 [FeFe] hydrogenase genes in dPCR.  The tree was calculated using the 
TreePuzzle algorithm (37) with 1,000 puzzling steps and 931 unambiguously aligned 
nucleotides.  The numbers adjacent to branches are bootstrap values.  16S gene sequences 
from pure culture isolates are in boldface.  Sequence accession numbers are listed in 
parentheses. Clone names of sequences taken from public databases that are derived from 
a termite gut are listed followed by a comma and the name of the termite host of origin. 
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microbial community of Reticulitermes hesperus collection ChiA2.  In one instance, a 

hydrogenase peptide sequence, predicted to be treponemal in origin, was identical across 

70 aligned amino acid residues with the Family 3 FeFe hydrogenase from T. 

azotonutricium ZAS-9.   

Discussion 

We have used microfluidic digital PCR to directly associate 16S rRNA gene sequences 

with Family 3 [FeFe] hydrogenase structural genes from the genomes of individual 

members of the gut microbial community of a lower termite.  Hydrogen metabolism 

plays a prominent role in the degradation of wood in the termite gut (3, 7, 15, 39, 40, 49). 

By employing this microfluidic approach, we overcame many of the limitations inherent 

in traditional gene-inventory techniques for the characterization of bacterial genre or 

phyla filling a physiological niche in an environment.  

Traditionally, to identify important microbial contributors to a particular physiological 

function in the environment, degenerate primers are designed targeting a gene important 

to a physiology of interest and environmental gene inventories are prepared using them 

(2, 14, 16, 62-64, 68, 69).  The identity of the microbes from which the genes originate is 

then inferred based upon the phylogeny of the functional gene assuming a close 

correlation between the evolution of the gene and its cognate genome.  This is not always 

a valid assumption, particularly in the case of [FeFe] hydrogenases whose phylogeny has 

been shown to be an unreliable predictor of the genus of its host of origin (54, 59). In 

fact, in this study we observed instances of very closely related [FeFe] hydrogenase gene 

sequences associating with 16S rRNA gene phylogtypes from different bacterial phyla, 

see Figures 5-3 and 5-4.  This necessitates the use of methods such as microfluidic digital 
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PCR, a technique recently developed by Ottesen et al. (45), that allow for multiplex PCR 

using a single cell genome as template.   

Employing the technique of microfluidic digital PCR, we have shown that treponemes 

may be an important, perhaps dominant, bacterial group encoding Family 3 [FeFe] 

hydrogenases in the gut of Reticulitermes tibialis collection JT2.   This is important 

because Family 3 [FeFe] hydrogenase were the predominant group of hydrogenases 

observed in a termite hindgut metagenome and the only family for which translated 

products were detected in situ by mass spectroscopy (61).  This family of [FeFe] 

hydrogenase was also observed in the genome sequences of two treponemes isolated 

from the gut of Zootermopsis angusticolis, see Chapter 2.  Our results provide evidence 

consistent with an important role for treponemes in the metabolism of hydrogen, the 

“central free intermediate” in the degradation of wood by termites (49), in the gut 

microbial communities of termites.  This is in agreement with findings supporting a 

similar contribution of treponemes to acetogenesis (48, 51), an important hydrogen sink 

in the termite gut ecosystem (3, 7, 26, 41, 49).  In fact, one of the 16S rRNA gene 

phylotypes grouped closely with sequence Zn-S10 cloned from the gut of Z. nevadensis, 

shown previously in microfluidic digital PCR to co-amplify with an FTHFS gene, an 

important marker for acetogenesis (27, 28).  Moreover, the majority of the 16S rRNA 

gene phylotypes fall within the termite cluster of treponemes defined by Lilburn et al. 

(30), which is the cluster into which most termite gut treponemal phylotypes have 

associated in previous 16S rRNA gene inventories (20, 30, 42, 67).  The remaining 

treponemal 16S rRNA gene phylotypes associated with treponeme subgroup 2, as defined 
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by Paster et al. (47), and not subgroup 1, which is also consistent with the results of 

previous molecular inventories (20, 30, 42, 67).   

In microfluidic digital PCR, there is always the possibility that false associations may be 

observed as a consequence of multiple cells or genomic fragments localizing to a single 

chamber.  For this reason, we are suspicious of a 16S rRNA gene – [FeFe] hydrogenase 

gene co-localization in a dPCR chamber until the same co-localization is observed in 

another, independent, microfluidic chamber.  Importantly, the only instances of such 

observed multiple co-localizations, referred to as REGs, corresponded to treponemal 16S 

rRNA gene phylotypes.  

All but 3 of the 27 16S rRNA gene phylotypes observed grouped closely (98.2 ± 0.85% 

sequence identity across 917 aligned nucleotides) with phylotypes cloned previously 

from Reticulitermes termites, rather than those from any other genus.  This provides 

further evidence for previous proposals of the “co-evolution” of the symbiotic microbes 

in the termite gut with their host proposed in Chapter 4 and elsewhere (19, 30, 67).  

16S rRNA gene phylotypes were observed that fell outside the phylum Spirochaetes.  

These other phyla included Epsilon-Proteobacteria, Bacteroidetes, and Beta-

Proteobacteria.  It would not be unexpected to observe bacteria encoding hydrogenases 

within these phyla (50, 59), but we view these co-localizations with caution because no 

REGs were observed falling within any of these phyla in this study. 

On account of the short length of the [FeFe] hydrogenase sequences cloned, 

corresponding to 70 unambiguously aligned amino acid residues, it is difficult to draw 

precise conclusions with regard to their phylogeny, though two important observations 

are noteworthy.  First, clone RtH2-H10, which co-localized in dPCR with a treponemal 
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16S rRNA gene sequence, shared 100% sequence identity across 70 aligned amino acid 

residues with the Family 3 [FeFe] hydrogenase from T. azotonutricium ZAS-9.  This 

provides support for the relevance of the gene of this strain, isolated from the gut of 

Zootermopsis angusticolis (26), to termite gut ecosystems and their hydrogen 

metabolism.  Second, several of the sequences grouped with those cloned from R. 

hesperus collection ChiA2 in a previous study, see Chapter 3.  This provides support 

broader relevance of the cloned hydrogenase sequences cloned in this study to 

Reticulitermes termite gut ecosystems.   

Conclusions.  We have used the technique of microfluidic digital PCR to demonstrate 

directly that treponemes may be an important, perhaps dominant, bacterial group 

encoding Family 3 [FeFe] hydrogenases in the gut of Reticulitermes tibialis collection 

JT2.  This is in agreement with studies supporting an important role for termite gut 

treponemes in acetogenesis (48, 51) and the high fraction that they comprise of all gut 

eubacteria (8, 46).  It is now of interest to identify what bacterial phyla other families of 

[FeFe] hydrogenases may associate with, or to employ microfluidic techniques to 

sequence termite gut microbe genomes to elucidate the precise physiological context of 

hydrogenase genes in the termite gut.  Work should also be done to further understand the 

in situ expression of hydrogenases in the termite gut.  
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Appendix 

 

Table S1. Sequences cloned. 

Figure S1. Alignment used in primer design. 

Figure S2. Alignment used in probe design. 
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Table 5-S1.  Sequences cloned and proposed Reticulitermes environmental genomovars 
(REG).  
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Continuing Table 5-S1.  
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Continuing Table 5-S1. 

 

 

aIn boldface are sequences selected as representative of each set of sequences. 
bNumber of RFLP patterns corresponding to each sequence.  For each set of clones, this 
is out of a total of 10 clones selected at random from a clone library prepared from a 
digital PCR well.  Some sequences have less than 10 total RFLP patterns reported 
because several of the clones were false positives. 
cThe minimum percent sequence (peptide for hydrogenases and nucleotide for 16S rRNA 
genes) identity shared among each clone set. 
dReticulitermes environmental genomovar names. 
eThe minimum percent sequence identity shared by all hydrogenease gene (peptide 
sequence) or 16S gene (nucleotide sequence) clones corresponding to a particular REG. 
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Figure 5-S1. 

 

Figure 5-S1.  Alignment used to design degenerate primers for use in digital PCR. 
The highlighted highly conserved regions were used in the design of degenerate primers.  
The following host designators were used:  CA = Cryptocercus punctulatus adult, CN = 
Cryptocercus punctulatus nymph, N = Nasutitermes sp. Cost003, R = Reticulitermes 
Hesperus collection ChiA2, Z = Zootermopsis nevadensis collection ChiA1.  The 
numbers-letter names following each host designator correspond to sample names taken 
from Chapters 3 and 4. aFamily 3 [FeFe] hydrogenases identified in the genomes of 
Treponema primitia ZAS-2 (HndA1), and Treponema azotonutricium ZAS-9 (HndA), 
bIMG Gene Object Identifier.  
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Figure 5-S2. 

 

Figure 5-S2. Alignment used in the design of locked nucleic acid (LNA) probes for 
use in digital PCR.  See Figure 5-S1 for a description of sequence names used in the 
alignment.  The highlighted, highly conserved region was used in the design of LNA 
probes. 
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