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ABSTRACT

The problem of the effect of a spanwise blowing jet on the
flow past a rearward facing step is considered both theoretically and
experimentally. The primary flow is considered to be a finite two-
dimensional jet blowing past a step and the spanwise jet is assumed
to blow perpendicular to this primary flow, The equations predicting
the separation bubble length are derived by assuming that the two-
dimensional jet is thin enough so that its radius of curvature can be
determined by the pressure difference across the primary jet and
the jet momenturm. Then by doing a momentum balance at the reat-
tachment point, the angle of reattachment is determined and the bubble
geometry is fixed. The effect of the spanwise blowing jet is modeled
by a two-dimensional sink with the sink strength given by the mass
entrainment per unit length of a round jet in a2 semi-confined space,

The experimental work, which measured the bubble length
as a function of the two-dimensional jet thickness and the strength
of the spanwise blowing jet, is matched with the theoretical predic-
tions giving the spreading parameters of the shear layers on both

gides of the primary jet,
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I, Introduction

The problem of boundary layer control has been of interest
in aeronautics for quite some time. Various methods have been
proposed of which the three major types are suction of the low energy
fluid from the boundary layer, motion of the solid wall to prevent
the formation of a boundary layer, and blowing in the same direction
as the outer flow in order to energize the fluid in the boundary layer.
By preventing separation these methods of control help to reduce
drag and stall and are therefore instrumental in the workings of high
lift devices.

in 1964, Lockheed Aircraft in Georgia began conducting
tests on a different approach to boundary layer control.(l) It was
observed that a jet blowing spanwise over a lifting surface helped to
increase the lift even past angles of attack greater than the stall
angle because the spanwise blowing jet caused the flow to reattach
onto the lifting surface after its initial leading edge separation. It
appears that the mechanism controlling this phenomenon is due pri-
marily to the spanwise jet entrainment. In effect, the jet is used to
remove the low energy fluid f{rom the stalled, recirculating region
thereby shrinking the separation bubble.

It is the purpose of this present investigation to examine
the phenomenon under somewhat idealized conditions both theoreti-
cally and experimentally, For this purpose the problem has been
simplified somewhat by considering the separation bubble formed by
a finite two-dimensional jet blowing past a rearward facing step and

considering the bubble length as a function of the strength of another
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jet placed at the base of the step, blowing perpendicular to the pri-
mary flow. Figure 1 shows a schematic of this configuration. In
formulating the theory, the assumption is made that the jet profile
remains unchanged by the jet curvature and thus changes only as a
function of its distance, as measured along an arc, from the jet slot.
By assuming that the cavity pressure in the separation bubble is
constant, the two-dimensional jet centerline should be an arc of a
circle within the framework of a thin jet approximation. One can
then find the reattaching streamline, that is, the streamline which
separates the returning flow from the main flow, with respect to
this jet centerline if a streamline of the jet profile is known. If one
can determine the position of the reattaching streamline at one
upstream location, then he should be able to determine the position
of this streamline at any other downstream location since the mass
filow between the reattaching streamline and the other known
streamline of the jet profile must be constant. Now the bubble
iength can be determined if the angle with which the jet centerline
crosses the ground plane can be found, This angle is determined
by forming a momentum balance near the reattachment point, and

this completes the solution of determining the bubbie length as a
function of the two-dimensional jet thickness., Adding in the effect
of the corner spanwise blowing jet, we find that the problem is only
slightly modified. The spanwise blowing jet is approximated by a
sink whose strength is taken to be the jet entrainment per unit
length., Since the sink is constantly being fed by the outer flow,

the volume flow between the top of the corner of the step and the
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reattaching streamline must equal the sink flow. This fact defines
the reattaching streamline as a function of the mass entrainment of
the spanwise blowing jet.

The first part of the problem dealing with the calculation of
the bubble length as a function of the jet thickness and step height
without the action of the spanwise blowing jet was originally formu-
lated by R. A. Sawyer, 2, 3} His solution assumed that fully developed
jet similarity profiles were formed before the jet impinged onto the
ground plane and thus this theory is applicable only to thin two-
dimensional jets with jet thicknesses much less than the step height,
The present solution continues Sawyer’s solution to include thick jets,
several times the step height. This approach uses shear layer
profiles with a potential core as representative of the velocity pro-
files issuing from the two-dimensional slot, In this way the solution
is applicable to jet thicknesses many times the step height although
it is not applicable to the problem of infinite jet thicknesses since
the momentum balance at reattachment tends to give a zero angle
thereby leading tc an infinite bubble length in the limit. In addition,
a "semi-thin jet" approximation, which assumes that the pressure
gradient across the jet can be modeled by a pressure difference
divided by the jet thickness, is no longer applicable for very large
jets since one reaches ambient pressures inside the jet when the jet

thickness is very large,
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II. Theoretical Analysis

The primary objective of this work is to create a model which
will demonstrate the effect of the spanwise blowing on the length of
the separation bubble behind a rearward facing step. However,
before considering the total problem, we should first see if we can
properly model the phenomenon of the separation bubble length as a
function of the two-dimensional jet thickness. Once this part is com-
pleted, it should be a relatively simpie matter to add in the effect of
the spanwise blowing jet.

A. Separation Flow Model Without Spanwise Blowing Jet

The sclution of this initial problem requires the determination
of the reattaching streamline location, the angle of reattachment,
and the geornetrical formulas relating the jet thickness to the re-
attachment length, However, since the first two pieces of the solution
require some knowledge of the jet profile, it is imperative that we
establish the form we will use.

I. Two-Dimensional Jet Profile Approximation

Throughout the analysis the approximation is made that the
streamwise two-dimensional jet profile is made up of a potential case
of uniform velocity bounded by two shear layers, each of which has a
different spreading rate in the general case. Various authors have
determined that the shear layer profile can be approximated by the
error integral,(4) but this analysis will instead use a hyperbolic
secant to model the shear layer. This is done because the resulting
form of the velocity expression is more amenable to mathematical

manipulation in closed form than is the error function.
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If the shear layer profile is given as a function of ¢ =%{X

where o is the spreading parameter, then the profile may be approx-

imated by

~ = O.
- SECHZ (a§+b) where P = ;iiq

gls

The points of matching are taken to be at £ = 1.19 where a+b = 0
and at € = -0, 135 where af+b = ~1. As shown in figure 2, the match
between the shear layer profile as given experimentally by Liepmann
and Laufer(S) and the approximation given above is quite good.
Referring to figure 3, the shear layer can be divided into
two parts by the horizontal line passing through the virtual origin,
The upper portion which meets the potential core is defined as 54
and the lower portion as 6. According to Liepmann and Laufer,(5)
this horizontal line which passes through the origin intersects the
shear layer profile at u/U = 0. 6875 or £ = 0. 36, Since &, and &,

are measured with respect to this line, it is convenient to define a
new parameter, &', such that §' = 0 at uw/U = 0. 6875 or

Ei =g 03¢
In this way we can define the shear layer growth as a function of x.

- 0.83
6@“ o X

e Db
67_—' 7 X
Referring to figure 3, one can see that the upper profile may

in general have a different spreading rate from the shear layer at

the bottom part of the jet,
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Su= 28X
_ 2.36

51.(4 (o4 £

According to Prandtl's mixing length theory, we would expect the
spreading of the lower shear layer to be suppressed by the wall
while the spreading of the upper shear layer should be enhanced by
the jet curvature. Defining v as the ratio of the spreading parame-

ters,

V::

QK

we should expect v € 1.

In general there exists a boundary layer at the edge of the
step at x = x_ as shown in figure 4, and we shall attempt to approxi-
mate it by part of a shear layer. In reality there exists a non-
similar transition region between the boundary layer profile at
x =x_ to the similarity shear layer profile farther downstream.
However, for the sake of simplicity, we can assume that the bound-
ary layer may be represented by the shear layer truncated at £ =
-0.73. This cutoff point was originally chosen by Sawyer(3) who
matched the volume in a truncated shear layer profile with that of

?

a boundary layer. If the boundary layer thickness at x = X is 60

then

60 = Suc 5 5?.0 = o. 83 Ko + i.gg XO

or & = .92 Xeo
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Now that the two-dimensional jet profile, which will be

used, has been defined, it is possible to calculate the jet momen-

tum:

J_=Fju‘d:j = 2‘ou’-.§. oK (X)
where o(G)= ZE4(0.063-1.09 %)Y and ¥=5 (1+ 3]

2. Position of Reattaching Streamline

Knowing the jet momentum and the two-dimensional jet
profile, we can now calculate the position of the reattaching stream-
line. The assumption has been made that the pressure in the sepa-
ration bubble is approximately constant and thus the centerline of
the jet may be represented by an arc of a circle except near the
reattachment point. Using the Navier-Stokes equation in cylindri-

cal coordinates with only thelowest order terms retained,

P _ PYs

Q7 r :

we can express the radius of curvature of the jet centerline as a
function of the jet momentum and the pressure difference across

the jet:
I

AP=R-R=T7g i
where B is the cavity pressure and Poo is the local ambient pres-
sure,
Thus if we know the position of the reattaching streamline,
i. e.,, the streamline leaving from the edge of the step, with respect
to the jet centerline, we can find the bubble length if we know the

angle with which the streamline intersects the ground plane. This
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reattaching streamline is found by matching the volume flow be-
tween a known streamline of the shear flow (£ = 0,125) and the step
corner (§ = -0.73) at x = X with the volume flow at an arbitrary
x between § = 0,125 and £ = gR. Since there is no flow through
streamlines, the volume flow between £ = .125 and §R should be
constant and this should define the reattaching streamline.

The initial volume flow at x = X between £ =.125 and

£ = -0.73 is

§=0.i25

i ona - cho

onzj U_dj: 023-a—-67—-0.305 o
3= -073

where W, =U(X=X.) 5

Calculating the volume flow between £ = 0,125 and ¢ = gR at an

arbitrary x, we find
5= 0.i1256

Qu=] wdy

3

. DF (-0.666 -T)

where
—-TanH (a§e +b) .
Equating the two values for the volume flow, we arrive at an ex-
pression for T, However, this expression involves Uo/U which can
be rewritten in terms of the momentum parameter a{x) since we
know that the jet momentum, J, is constant for a two-dimensional

jet. Thus we find

o XA(x
T = TANH (a5,+ b) = -0.23/ 5280 - 0.¢66
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in terms of three parameters: a(x), a(xo) and xo/x.
But a(xo) can be written in terms of the initial boundary

layer thickness:

5«:
oc(xey = 1.92( g— (-—) —1.037Y%  for St constant

d. co
or O<CX6 - i.92£§; - l.037 X for —‘E (et nstan't

Also, x /x can be expressed as
X, _ 000 =0-063%
X = DX(%) — 0.053¥
by combining expressions for a(x) and o.(xo). Since a(xo) is known
as a function of h/t or Bo/t, xo/x can be specified in terms of a(x)
and h/t. Thus T can be found once a(x) and h/t are known, so all
we need now is a relationship between a(x) and h/t. This expression
will come later in this paper.
Knowing T, we can easily find §g'q by inverting the expression
for T. However, the particular form cannot be easily used in a
computer computation since it involves the inverse hyperbolic
tangent. To alleviate this difficulty, we will use an approximation
adopted by Sawyer(3) in his analysis. Since the volume flow between
£ =0.125 and £ = gR is constant and the shear layer spreads as it
goes downstream, we would expect gR to be between £ = 0,125 and

€ = -0.73. Within this region the shear layer profile may be approx-

imated by a linear expression
=L (i+3
5 (1+3)

Using this expression, we find
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3 = JLa6e 122 /BT IXe" _ 136

and this gives us the reattaching streamline position with respect

to the jet centerline,

3. Force Balance at Reattachment Point

Now if we can specify the angle with which the jet centerline
meets the ground plane, we will have determined the global charac-
teristics of the flow field, and we should therefore be able to find
the separation bubble length. This impingement angle is calculated
by doing a force balance on a control volume situated at the
reattachment point as shown in figure 5. The mass contained in
that portion of the shear layer below the reattaching streamline is
constantly fed back into the separation cavity and the velocity pro-
files will be assumed to remain self-similar as they exit from the
control volume. Thus the distance x = Xy and the angle 0 are defined
by the fact that the distance from the edge of the shear layer to the
reattaching streamline, %, is equal to the vertical distance from
the ground plane to the edge of the shear layer, B

Defining J3 as the momentum at X, above the reattaching

streamline, and JZ as the momentum at x, below the reattaching

i

streamline, we can write a momentum balance which will yield 6:
Jcos 6 = J3 - J

This equation assumes that the pressure forces and shear stress
forces are small enough to be neglected. We shall check this

assumption below.
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The integrated momentum equation, as given in general, is

jf( PR+T)ds [ e7(7#-A)ds fff . (P7)dY

S+0’

OOOY

where o’is the surface area of the body contained within the control
volume whose surface area is S and volume is ¥ . For our case,

we do not have a body in the control volume so the momentum equa-

tion becomes
e —b i - 3 s
[(-PR +T -pPV (V-7 )ds =0
S
We can now estimate the magnitudes of the three terms on each sur-
face of the control volume and compare them,
Estimating the shear stress term, we note that
— ou Eg .
T~ P& 5y Fe’s

But according to Schlichting, L&)

£=0.001372UX

for turbulent shear layers and so T ~ 0. 00516pU2 for 0 = 12 and

319

9 °—

x. Thus on surfaces @, @ . and@ of the control vol-
ume, 7 should have a maximum value of 0. 00516pU2. On surface
@, we can essentially assume that the integrated shear stress is
less than 0, 0051 6pU2 since the profile at the reattachment point
should be a zero shear profile and the velocity profiles near this
point should be low shear, low velocity forms.

To estimate the size of Pii, we should consider the maxi-

mum pressure difference that can occur on each surface. The

greatest pressure difference should occur on since this surface
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extends from the separation cavity to a distance past the reattach-
ment point., However, since we are interested in balancing forces
in the x direction, the components of interest will be zero. On
surfaces @ and @ , the maximum pressure difference will be
given by Poo-Pc since these surfaces go from the cavity to a point
outside of the jet. We have two ways to estimate this value. Using
the data in Sawyer's paper, we see that %I;—l =P =0.2 for h/t =3

gives the greatest value for Ap = Poo - PC. This gives

Ap s P P“ft ~ 0.067 pU?

For larger values of AP, we can extrapolate Sawyer's curve for
h/t— 0. Measuring the slope of the curve, we have Ap~ 0, 08pU2.
Another way of estimating AP is to use data obtained in this present
investigation., Extrapolating the curves of Cp vs. h/t, we see that

C = 0.2 which leads to
Prnax

Ap ~ O.l pUz

Since this is the largest value we have, we will say that Pn N.lpU2
on surfaces @ and @ . Finally on surface @ , we will estimate
the maximum pressure difference as P_-P_ where P_ is the peak
recovery pressure on the ground plane. From Sawyer's data,
| 0. 145pU2 and the present investigation gives pr-poo e
0. 13pU2 so we have Pii~0, 145pU2 on surface @ .

Knowing the maximum values of T and PA, we can now
compare them with pU2 to determine the maximum error we should
expect in our calculation of 8 by using only the momentum balance.

We find that the force balance uses 87% of the force components and
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so has a maximum error of 13%. This error appears to be accept~
able in view of the fact that the inclusion of the pressure forces in
the computation adds a great deal of complication for only a slight

correction, The pressure could have been estimated by
a0
| 2
== = — W
B-P =g [, PWd

and this expression could have been incorporated into the momentum
balance equation, But R is a function of 8 since X=X >~ RO and so
the solution of § would have involved an extra iteration,

Returning to the momentum balance equation, we can rewrite

it as

6059=i—-2.%{':— since J=Jd3+J;

Calculating the momentum below the reattaching streamline, we find

5& 3
L={ pudyceutg(T- L +%)

where T::TANH(C‘lgRD* b) and ég'f- éﬁ at X=X,
d . Lo P i o 2)
and 86 Cosb =1 - Fx) ' 3 3
Since we previously had T as a function of a(x) and h/t, we
need only find a relationship between h/t and a(x) to completely de-
scribe the global features of the flow field. We will now derive this
relationship by considering the geometry of the flow.

4. Geometrical Relationships Involving Jet Thickness, Step

Height, Bubble Length, and Cavity Pressure

Looking at figure 6, we can see that it should be possible to

relate h, t, and £ to various other lengths such as R, YR and &,
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But since these latter parameters are known in terms of a(x) and
h/t, we should be able to derive a set of equations which may be
solved to give £/h as a function of h/t.

From the figure, we can write

h+t = R—RCOSG +(t~&.o +&,l) COSQ +5l, +3&4

where 51( = 51 at x=x,

Notice that 62 t ¥R gives the difference between the two lengths
i 1
since 621 > 0 and YR, < 0 because of the ways in which they have
1
been defined. Since the radius of curvature of the shear layer cen-

terline, Ro” equals R-t + 620, we can write

h=R,(i-cosB)+§, (cosO +[ + Ju ’ék)

A =
Using the momentum parameter, a(xl), in the form
n o -
£ X, (%(%)-(0.063 -1.09%)¥) - X, T
Xl
X
and R, = - 3_“3 , we can finally write
‘ 8

% = 3_';(%(:—’3%)(!—6059)+2.36(Cose +i+§%é— 0.462%)).

This completes the set of equations which gives h/t as a function of
u(xl). If we can now write £/h as a function of o.(xl), we will have
completed the first half of the theoretical analysis.

However, before writing ﬂ/h, we notice that a relationship
giving ¢ as a function of known parameters will be needed, since
it is obvious that £ depends upon ¢. This relationship can be found
by writing h/t in terms of ¢ and then equating this expression to the

previous one we derived for h/t as a function of 8. From the
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geometry, we can write

h _ EQ [ — Cos > —- (_SE!_. cos e 51.0 .
620 %o
But —— contains — which can be found by observing that x,-x., =
622 Xy 271

R (¢-6). Thus
. X Xo/ X,

T i+ (1-%)($-6)
&

Now we can equate the two expressions of h/t to give

’/ xo
Z(1-% Y(cosp - cos @) + 2.36(cos B *“5‘36 -1+ 42 7'2;(“6"9)) cosg )=0

and this gives us a way tc calculate ¢.
At this point we can write { in terms of the known lengths in

the problem:
f=(R-t+4,, - 5123 sSIN@D + Sin + He,

LT
This expression is only approximate since it assumes that the reat-
taching streamline is perpendicular to the radius R at x = Xq and that
the streamline is very nearly straight from X, until it impinges upon
the ground plane.

The expression for £ requires a(xz) since

5., = ?-%‘1 = /m.ce — 122 fZ0xd e Z;:,_ - 136

X
However, by manipulating a(x,) = 2= + (0053 - 1,09 =)y and

X, =X

5 + R0(¢-e), we find

1
(¢ () — 0.053%)
[ + g

(=% )(¢-6)

-tH and finding %, we will be able to calculate % y

O<O(:.> = X(%) —

Gl ks

By writing % =

The expression for %—is
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%___ i(g(,_:_:')S,N¢+(‘+(I_-’§ﬁé(¢~9))(z.36+E.'z,_ __2_365”\,?5))

SW¢

and this completes the first half of the theoretical analysis for cal-
culating the bubble length as a function of jet thickness,

However, for completeness, we should try to estimate the
behavior of the cavity pressure as a function of the jet thickness,
We would expect that the pressure estimation should not be as accu-
rate as the bubble length calculation., This is due to the fact that

the pressure difference equation,
o0
l ] S z d
= — U )
AP= = &)W

is really only approximately true and, while it is used only indirectly
in the bubble length calculation, it is fundamental in predicting the
cavity pressure. It is more accurate to write the pressure differ-

ence equation as

élul T élq 2
g RO ¥ . P T

+
and for very thin jets, this expression approaches the previous one.
However for large jet thicknesses, this equation gives a smaller
value of AP owing to the fact that the integrand is reduced by the
denominator over the range of integration. Thus we would expect to
fiind that the calculated cavity pressures will be larger than the
experimental values especially for large jet thicknesses,

In Sawyer's papers,(z’ &) he presented the cavity pressure,
P , in the form of a pressure coefficient based upon the jet momen-

c
tum: -%1% . This value can easily be calculated since



mLe

8P o p- ho Re(1-c050) + Z(cosp+ i+ Ex —0a62%).

I/h = 7.36
|
But %: ’+ 9(3-“___"09)(7(2 ?
o “T:T")
x,

/ Xs
s AP _ P = 0’('*’{?’, ("'C059>+2-369(Cose+l+§_;_4_6—0.4-62-,-<-'
T/h o(i-%)+6(Jx —1.09%)

However, P goes to zero as h/t goes to zero since the jet momentum
becomes infinite, Therefore, since we are interested in jet thick-
nesses several times the step height, it is better to present the

cavity pressure as
8B F
CP = L oz
2 e

Combining this equation with the previous one, we obtain

Co=2.08 o (Ke) % P for % constant
or Co= 2.08 () S L }3 for © constant.
P . t h =

This completes the analysis of the problem of calculating the bubble
length and cavity pressure as a function of the jet thickness without
the effect of the spanwise blowing jet.

B. Effect of Spanwise Blowing on Separation Bubble

In order to account for the effect of the spanwise blowing jet,
we shall approximate its influence by a two-dimensional sink with
sink strength given by d(ij/dz where c'1j is the volume flow per unit
length of the spanwise blowing jet. Since {. is linear in z where z

is the distance along the jet axis from the jet nozzle, d(ij/dz is a con-
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stant. Let us call dqj/dz = cis. This is the volume flow per unit
time that the jet entrains.

The preceding analysis should remain intact except that the
mass balance relationship which gave the reattaching streamline
will now change. The new reattaching streamline will be defined as
that streamline, coming from upstream, under which all the fluid is
fed into the separation bubble and the sink, and above which all the
fluid continues downstream. Looking at figure 7, we can see that
qlb = qs will define the height of the reattaching streamline at x = X, .
Then by doing a mass balance between the streamline, £ = 0,125, in
the upper shear flow and the reattaching streamline at x = X s the
reattaching streamiline can be defined for all x.

Let us define qs = pcil. Then since qla : qlb = ql, we have

¥ W b (i —~/u.) ’
Using this equation, we can put in qla for an arbitrary x and write
c'il for x =x_, and this will define gR,
Now ql is the volume flow between § = -0, 73 of the lower

shear layer and § = 0. 125 of the upper shear layer, so
. U.Xe [o.a% 0.666 ot _ )]
% = = = + Z( = .92Y "

] av

Before calculating qia, we observe that this quantity must be
calculated in two different ways depending upon whether the reattach-
ing streamline lies above or below the upper boundary of the lower
shear layer. Defining 4, as the volume flow between the streamline
of the upper shear layer (§ = 0.125) and the upper boundary of the

lower shear layer, we find
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§, = UX(0866 45 (%% _1.09¥% — 0.63Y))

av

This volume flow will vary as a function of x since it is not bounded
by two streamlines, If qla > 4,, we have to integrate into the lower
shear layer and if qla < §,, we do not have to integrate into the shear
layer. By defining the quantity p* =1 - g—j— , we can specify the two
forms of qla by p < p* or p > p¥*,

It is apparent that p < p* marks the condition for which qla is
integrated into the shear layer and this condition is of greater interest

to us since this will include p = 0, The quantity p* will first be cal-

culated since both ql and 4, are already known:

* 0.23 ) + 0.666
U°x°(O 896 + 0__9_5;2 +2a (6"-6 =L 92){»

So for p < p*, we have

b= T [250 - T - 2(5 V(109 wos3))].

M

Equating this with ql(l-u), we obtain the expression for gR:

T= ke (/( (Za( —1.92Y) + %£%€ 1 0.89¢)-0.23)-0ccc

where T = tanh(a§R+b). Notice that the expression reduces to the
one found previously without the spanwise blowing jet when p = 0,

Rewriting T in a slightly more usable form, we have

- JEEX i(/“‘(29(6 —-~Y>+O"°"+0896) 023) o.cce
- X (X)X &
. (< )

(-2

for 'ﬁ = constant

oo Te SETE (e (1:9(3,¥) + 2454 + 0.896) ~029) oz

<
for By constant. (/“ At )

t
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As before, we see that it is difficult to use the form of the
inverse hyperbolic tangent when solving for &I'{ so we will again
approximate u/U by 1/2(1+£). The use of this expression here is
not as accurate as its use in the previous section; however the inac-
curacy may be minimized by avoiding large values of p near p*,
Using this approximation, we find that g'R is given by

= [B3T + 48 - 1.36 for o <

For large amounts of mass entrainment, we have to consider
4,, for > px:

G- (25 + 2% - 1o9¥ ) - 228 - )

Again, we equate this to C‘il(l-p) and find

g o Uk (o (2826 0kt 256 -192Y)) - 932) - 24 003
for /4>/‘4—*.

Since gi{ has been found directly, it is an easy matter to determine

T since T = tanh(a§R+b):
T = TANH (a,(g;-a—o.sg)-c-b) for > "
Both g'R and T should approach the same values for the cases
of p > p¥* and p < w*¥ when p = p*, At p =p*, Q]'R=O.83 and T =0 so
both expressions become

0 = ek (1 (089G + RELE & za (2t -1.92%))-023)-0.ccc -

it is interesting to note that even the approximate §'R derived for
p < p* becomes 0,83 when p = p*. So this approximation appears to
be not as bad as previously thought.

This completes the analysis since this gives the reattaching
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streamline as a function of the mass entrainment. However, for
convenience, we would like to be able to specify qs and have this
define p so we shall solve for p as a function of ds. This is a rela-
tively simple task since it merely involves expanding p = qs/q , into
more usable forms:

.45 K — P

FEER where * g
0.89¢ + S-ecé h % . e
5 +29(3 F ¥)

for % = constant

) .45 K
/T o89e + ocLee 4 2.9(:%_;/)

or

for %: Constant,

However, it would be even better to normalize § 5 with QO, the total

volume flow coming from the two-dimensional jet. We know that

E=o0.125
Q= §+J “%
' g=-o073

where the integral is taken over the upper shear layer., Thus we have

2 ono
Q, = %u + 0.23 e

$_ 3/ %

Taking _é: = IR , we have p as a function of qS/Qo:
%%
= Os ({1 + 0.666 £ _
M Qo( Q896 + == 2'9(:%, h X)

for éhi = constant

%o (14 0.23 /v . )
ar = —5—( 0.89C + 2:Le& +2.9(% -¥)

: o ét: = Constant .



2D
This ends the theoretical analysis, Presumably, it should
now be possible to predict the length of the separation bubble as a
function of the two-dimensional jet thickness with and without the

spanwise blowing jet.
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III. Experimental Investigation

An experiment was conducted to test the validity of several
of the assumptions used in the analysis, and also to verify the
behavior of the bubble length as a function of the spanwise jet blow-
ing and the two-dimensional jet thickness as predicted by the theory.
Moreover, since the theory is based upon the spreading of a turbu-
lent jet, the spreading parameter, o, is left undetermined and so it

is necessary to conduct an experiment to determine its magnitude.

A. Experimental Setup

In order to create the effect of a two-dimensional jet blowing
past a rearward facing step, a plenum chamber with a jet slot and
a ground plane were built to the specifications shown schematically
in figure 8. The air flow was provided by two five horsepower
blowers which were connected to the bottom of the plenum chamber,
The jet slot had a width of 30 inches and a variable thickness which
ranged from zero to 5. 70 inches. Pressure taps, connected to a
butyl alcohol multimanometer, were located at various positions in
the ground plane which could also be varied to give different step
heights, Side plates were provided to help contain the flow and to
approximate two-dimensional conditions,

The spanwise jet was created by taking air from the com-
pressed air line and running it through a 0.14 inch inner diameter
tube mounted flush against the corner formed by the step and the
ground plane. Splitter plates were used to minimize the three-

dimensional cross flow effects induced by the spanwise blowing jet.
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The jet was introduced through a hole in one of the plates and al-
lowed to exit through a larger hole in the other plate with care taken
to insure that the larger hole in the splitter plate was always below
the reattaching streamline surface.

Prior to starting the experiment, vertical velocity profiles
were taken at the edge of the jet slot at various stations along the
width of the jet to check for the two dimensionality of the flow.
Figure 9 shows a typical plot and it can be seen that the velocity
variations are greatest in the boundary layer and vary less than
one percent in the core flow.

As a final check on the flow conditions, tufts were used to
determine the flow direction and to insure that there were no unex-
pected separation regions or areas of secondary flow to distort the
experimental results.

B. Experimental Measurements

The measurement of primary importance was the separation
bubble length and it was determined in two different ways. The
first method employed was pitot measurements at the ground plane
surface. An upstream facing pitot tube was moved parallel to the
flow direction and pressure measurements were recorded. The
pitot was then turned to face the downstream direction and similar
measurements were taken. When the data were plotted as pressure
versus the distance from the step base, the lines crossed at the
location of the reattachment point., The second method employed
to determine the reattaching distance was the use of tufts on the

ground plane, By observing the flow direction, it was a relatively
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simple matter to determine the reattachment line, The maximum
disagreement between the two methods was about three percent
and so it was decided that all subsequent measurements would be
taken by uéing the tufts on the ground plane. It was also observed
that the reattachment distance seemed to remain constant within
two percent‘for measurements taken within the two-dimensional
flow region,

In addition to measuring the separation bubble length, the
pressure distribution on the ground plane and the boundary layer
profiles were taken with each run. Figure 10 shows the boundary
layer profile measurements suitably normalized. The velocities
measured throughout the experiment were taken with a total head
tube connected to a butyl alcohol manometer, All of the experiments
were run with a Reynolds number, Re{)*, between 2200 and 6330
where Reé* is the Reynolds number based on the displacement thick-
ness, This isq comparable to Sawyer's experiments which were
conducted with Re6*z 2400,

Whenever the spanwise jet was used, a Brooks Rotameter
flowmeter was employed to measure the volume flow of air being

fed to the 0. 14 inch tube.

C. Comparison of the Theoretical with the Experimental Results

Using the data obtained from the experiment, various curves
were plotted to compare these results with the theory. A listing of
the experimental results is shown in Table L.

A plot of Cp versus h/2t, shown in figure 11, reveals that

the theory matches the experiment only for small jet thicknesses
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and it begins to deviate quite a bit for h/2t less than 4, This type
of behavior was expected because of the approximation made that

Ap = %{ instead of using

6’.“
l U :
e

Therefore since we are primarily interested in larger jet thick-
nesses, we will no longer consider the pressure in the cavity as a
function of jet thickness for the experiments run with the spanwise
blowing jet.

Looking at figure 12, we have £/h versus h/2t without the
spanwise blov;ing jet. The trend of the data matches that of Sawyer
for large h/2t and seems to approach the limit of infinite jet thick-
nesses, i, e,, the flow past a rearward facing step in an infinite
flow, as given by Tani, 5 The theoretical curves appear to match
the data quite well for ¢ = 15, v= 2/3, and 6O/t ranging from 0, 2
to 0. 4. Throughout the experiment, it was noted that 60/t tended
to be about 0, 4 for larger values of h/2t and that it approached 0. 2
for the smaller values of h/Zt. Thus, as expected, the curve for
6o/t = 0. 4 matches the data better for large h/2t and the smaller
values of 6O/t are required to match the data for h/2t— 0.

Finally, in dealing with the effect of the spanwise blowing
jet on the separation bubble length, it was found that it was easier

_ 4

toc use K = —[—J———%—— as indicative of the mass entrainment of the jet
o o

instead of cis/Qo. The latter parameter required complete velocity

profiles across the two-dimensional jet slot and a graphical integra-

tion of these profiles while the use of K only required the boundary
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layer thickness at the jet slot edge. However in both cases, it was
necessary to make some statement about the volume flow entrained
by the spanwise blowing jet. Since the jet was mounted flush against
the corner, the volume flow entrainment should be greatly reduced
as indicated by Abramovich(7) in his work with two-dimensional wall
jets. As a test of this statement, an experiment was run for
h/2t = 4, 3 with the jet in the corner and with the jet removed approx-
imately 1. 95 inches from the nearest surface. In the first case,
£/h was found to be 1, 68 and the second case gave £/h = 1. 41.
Although it is difficult to make a quantitative statement about this
test, it is obvious that the entrainment was increased when the wall
effects were lessened. However it was impossible to remove the
jet sufficiently from the walls in order to attain the entrainment of
a free jet and still be within the separation bubble and therefore it
was decided to conduct all the experiments with the jet mounted
flush against the corner.

During the actual experiments, the parameter

:rj = 0.14/2 inches and

q_. .
K=+ 53 with
] o o q . = volume flow issuing

. from jet nozzle

was kept constant and was used to indicate the entrainment of the
jet. This was done because this parameter is directly proportional
to the entrainment and it was difficult to determine exactly what

the proportionality constant was experimentally. Two sets of data

were obtained for

G s 1

e | -
= _[—I—S— = 21.5 and 10. 75,

J oo



=28~
Looking at the experimental points in figures 13 and 14, we can see
the effect of this mass entrainment.

Using the theoretical curves for o = 15, v = 2/3, and 22
ranging from 0. 3 to 0. 4, it was found that a value of K = 0.1 was
needed to match the data for ¢ = 10.75 and K = 0. 2 was required
for 2C=21.5. But since K = CAK where C is the proportionality
constant of the entrainment, we find that C = 0, 0093 for both cases,
However, according to Schlichting, (4) the constant for the entrain-
ment due to a free jet is 0,228 if one assumes a top hat profile
at the nozzle exit and thus we see that the entrainment of the semi-
confined jet is reduced by a factor of 0. 0408. An attempt was made
to measure or at least estimate the volume flow entrained by the
jet in the corner by taking velocity measurements at different sta-
tions downstream of the jet, These velocity fields were then inte-
grated graphically to give the volume flow at various stations and
thus the entrainment could be estimated, However, owing to the
inaccuracy of the measurements and the graphical integration and
also to the fact that the entrained flow was so small, it was impos-
sible to make more than a qualitative statement about the entrain-
ment. From these measurements, one can only say that it is
possible that the flow entrainment constant is approximately 0. 0093;

however one cannot be sure about the actual magnitude,
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DIMENSIONAL JET SLOT EDGE
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Table 1

Without Spanwise Blowing: 2C= 0

Symbol

o R PD> PO OB g e g4+ a o

h/2t

0.616

L/h

4,19
3.44

4,43

0.179
0.162
g, 199
0. 091
0.135
0. 170
0.191
0.193
0.179
0.167
U 172
0. 091
0.115

0. 154

0. 097

h (in.)

% 9
4,
1
3.
2,
1.
Lo
1.
1.
Zis
1.
4,
4,
3¢

2.

508
966
036
54

826
898
170
154
836
536
836
820
005
220

340

1.700

5.

367

&/t

o)

0. 246
0,228
0.2372
0.538
0. 456
0. 391
0. 434
0. 348
0. 328
0. 340
0.332
0. 392
0. 484
0. 3848
0. 336
0.238

0. 368



Symbol

e & & & &

With Spanwise

Symbol
A

o » R P D

Blowing:

h/2t
4. 30
2.105
1,192
0. 655
0. 405

2.82
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Table 1 (Cont'd)

£/h C h (in.)
P
2. 25 0. 096 \
2 18 0. 094
0. 50 Data
2,00 0. 089
from
1. 97 0. 081
Sawyer's
1,96 0. 095
1. 00 Paper
1.83 0. 088
(2)
2.07 0.10
- 0. 095
1. 87 -
From
7. 00 - 1. 575 Tani's
Paper (6)
X#0
X =10.75 K =21.5
1/h L/h
£y 15 2.00
2. 56 s &7
3.00 2. 54
i 1D 2.63
3.00 2.53
2. 34 2, 20



