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Abstract

Aerosol, or particulate matter (PM), is an important component of the atmosphere responsible for
negative health impacts, environmental degradation, reductions in visibility, and climate change. In
this work, the global chemical transport model, GEOS-Chem, is used as a tool to examine chemistry-
climate interactions and organic aerosols.

GEOS-Chem is used to simulate present-day (year 2000) and future (year 2050) sulfate, nitrate,
and ammonium aerosols and investigate the potential effects of changes in climate and emissions
on global budgets and U.S. air quality. Changes in a number of meteorological parameters, such
as temperature and precipitation, are potentially important for aerosols and could lead to increases
or decreases in PM concentrations. Although projected changes in sulfate and nitrate precursor
emissions favor lower PM concentrations over the U.S., projected increases in ammonia emissions
could result in higher nitrate concentrations.

The organic aerosol simulation in GEOS-Chem is updated to include aerosol from primary
semivolatile organic compounds (SVOCS), intermediate volatility compounds (IVOCs), NO, depen-
dent terpene aerosol, and aerosol from isoprene + NOj reaction. SVOCs are identified as the largest
global source of organic aerosol even though their atmospheric transformation is highly uncertain
and emissions are probably underestimated. As a result of significant nighttime terpene emissions,
fast reaction of monoterpenes with the nitrate radical, and high aerosol yields from NOg3 oxidation,
biogenic hydrocarbons reacting with the nitrate radical are expected to be a major contributor to
surface level aerosol concentrations in anthropogenically influenced areas such as the United States.
Globally, 69 to 88 Tg/yr of aerosol is predicted to be produced annually, approximately 22 to 24

Tg/yr of which is from biogenic hydrocarbons.
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Introduction
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Particulate matter (PM) poses a health risk for people living in both developed and developing
countries. For regulatory purposes, PM is usually classified as PM10 (particles less than 10 pm
in diameter) and PM2.5 (particles less than 2.5 pm in diameter). The fine particles (PM2.5) are
able to travel deeply into the human respiratory system and have been linked to irritation, reduced
lung function, irregular heartbeat, heart attacks, and premature death (USEPA, 2004). PM2.5
can also cause reductions in visibility, environmental damage such as lake or stream acidification,
and visual damage to structures. Although there is no safe particulate matter level, the World
Health Organization (WHO) air quality guidelines recommend that the PM2.5 level not exceed 10
pg/m? annually averaged and 25 pg/m? daily averaged (WHO, 2006). In the United States, the
Environmental Protection Agency (EPA), under the authority of the Clean Air Act, sets standards
for acceptable levels of particulate matter to protect human health and welfare. These standards are
known as the National Ambient Air Quality Standards (NAAQS). The current NAAQS for PM2.5
is 15 pg/m? as an annual average and 35 pug/m? as a 24-hour average.

On a global scale, particulate matter influences the Earth’s radiation budget and therefore can
lead to climate change. Aerosols can directly affect climate by scattering and absorption of solar
radiation. Indirect effects include increased cloud droplet number concentration, drizzle suppression,
increased cloud height, and increased cloud lifetime (IPCC, 2007).

Regulation of particulate matter is complicated by that fact that aerosols contain many species
and come from both natural and anthropogenic sources. Sulfate, nitrate, ammonium, and organics
can be directly emitted to the atmosphere or form from gas-to-particle conversion in situ. Some
components of aerosol may also result from the synergistic effect of of natural and anthropogenic
emissions such as the oxidation of a biogenic hydrocarbon, like isoprene, by anthropogenic oxidants,
like NO2 (Surratt et al., 2010).

Chemical transport models can be used to assess the impact of air quality management strategies
as well as our understanding of the governing processes for aerosol formation. Modeling studies
are complementary to laboratory and field campaigns for developing a complete picture of the

atmospheric transformation of a species. For example, modeling work can highlight a deficiency in
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current understanding when the modeled and observed concentrations do not agree, and laboratory
experiments can identify a new species or formation pathway to include in a model. A well developed
model can then be used to diagnose how projected changes in emissions or climate may influence
pollutant concentrations.

GEOS-Chem (http://acmg.seas.harvard.edu/geos/) is a global 3-dimensional chemical transport
model managed at Harvard University that simulates fully coupled ozone-NO,-hydrocarbon chem-
istry (Bey et al., 2001). The model typically runs with assimilated meteorology from the Goddard
Earth Observing System (GEOS) but can also use meteorology from the Goddard Institute for Space
Studies (GISS) general circulation model (Wu et al., 2007). In addition to gas-phase chemistry,
GEOS-Chem currently simulates a wide variety of aerosols including sulfate, nitrate, ammonium,
sea salt, dust, and organic aerosol.

Chapter 2 of this thesis combines meteorology from the GISS model with GEOS-Chem to examine
the impacts of changes in emissions and climate on future sulfate, nitrate, and ammonium aerosol
levels. The thermodynamic partitioning model, ISORROPIA II (Foutoukis and Nenes., 2007), is
implemented to describe the formation of nitrate and ammonium aerosol, and GEOS-Chem is used
to simulate present-day (approximately year 2000) and future (approximately year 2050) aerosol
levels. Results are presented in terms of global budgets as well as surface layer concentrations over
the U.S.

Organic aerosol is a major constituent of atmospheric aerosol (Zhang et al., 2007) and accurately
simulating organic aerosol in global and regional models continues to be challenging. Organic aerosol
forms from direct emissions of low-volatility compounds that partition to the aerosol phase and higher
volatility compounds that are oxidized in the atmosphere. Organic aerosol has traditionally been
classified as either primary or secondary as a result of this distinction. Primary organic aerosol
(POA) is aerosol that partitions directly to the aerosol phase without any chemical transformation,
while secondary organic aerosol (SOA) is formed in the atmosphere by the reaction of gas-phase
species. Significant amounts of organic aerosol, including primary organic aerosol, is semivolatile

to some extent (Robinson et al., 2007) and can be modeled using absorptive partitioning theory
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(Pankow, 1994). Chapters 3 and 4 focus on improving the organic aerosol simulation in GEOS-
Chem. In Chapter 3, traditional, nonvolatile POA from biomass, biofuel, and fossil fuel burning is
replaced with a pool of semivolatile organic compounds (SVOCs) that partition directly between
the gas and aerosol phases. Aging of the SVOCs in the gas-phase is represented using a simple
parameterization. SOA from intermediate volatility compounds, which are much lower in volatility
than traditional SOA precursors but still volatile enough to be emitted almost entirely in the gas-
phase, are also introduced in GEOS-Chem. Chapter 4 focuses on aerosol that forms from biogenic
hydrocarbons emitted by plants. Major biogenic SOA precursors include isoprene, monoterpenes,
and sesquiterpenes. Using a new model framework, Chapter 4 details some important interactions

between anthropogenic emissions and the biogenic hydrocarbons.
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Chapter 2

Effect of changes in climate and
emissions on future

sulfate-nitrate-ammonium aerosol
levels in the United States *

*Reproduced by permission of American Geophysical Union from “Effect of changes in climate and emissions on
future sulfate-nitrate-ammonium aerosol levels in the United States” by H. O. T. Pye, H. Liao, S. Wu, L. J. Mickley, D.
J. Jacob, D. K. Henze, and J. H. Seinfeld, Journal of Geophysical Research, 114, D01205, doi:10.1029,/2008JD010701.
Copyright 2009 by the American Geophysical Union.



2.1 Abstract

Global simulations of sulfate, nitrate, and ammonium aerosols are performed for the present-day and
2050 using the chemical transport model GEOS-Chem. Changes in climate and emissions projected
by the IPCC A1B scenario are imposed separately and together with the primary focus of the work
on future inorganic aerosol levels over the United States. Climate change alone is predicted to lead
to decreases in levels of sulfate and ammonium in the southeast U.S. but increases in the midwest
and northeast U.S. Nitrate concentrations are projected to decrease across the U.S. as a result of
climate change alone. In the U.S., climate change alone can cause changes in annually averaged
sulfate-nitrate-ammonium of up to 0.61 pg/m?, with seasonal changes often being much larger in
magnitude. When changes in anthropogenic emissions are considered (with or without changes in
climate), domestic sulfate concentrations are projected to decrease due to sulfur dioxide emission
reductions, and nitrate concentrations are predicted to generally increase due to higher ammonia
emissions combined with decreases in sulfate despite reductions in emissions of nitrogen oxides. The
ammonium burden is projected to increase from 0.24 Tg to 0.36 Tg, and the sulfate burden to
increase from 0.28 Tg S to 0.40 Tg S as a result of globally higher ammonia and sulfate emissions
in the future. The global nitrate burden is predicted to remain essentially constant at 0.35 Tg
with changes in both emissions and climate as a result of the competing effects of higher precursor

emissions and increased temperature.

2.2 Introduction

Particulate matter is an important constituent of the atmosphere responsible for negative health
impacts [e.g., Dockery et al., 1993], reductions in visibility, and changes in climate (IPCC, 2007).
Atmospheric concentrations of aerosols will change in the future as climate and aerosol precursor
emissions change. Nitrate (NO3~), ammonium (NH4"), and sulfate (SO4%7) are significant con-
stituents of particulate matter (PM), forming mainly from gas-phase precursors.

In the absence of changes in aerosol precursor emissions, changes in climate alone will influence
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future aerosol levels. For example, alterations in wind speed, precipitation, and boundary layer
height can translate into changes in stagnation and ventilation (Leung and Gustafson, 2005). Mickley
et al. (2004) showed that a decrease in the number of cyclones tracking over southern Canada has
important implications for increased stagnation in the midwest and northeast U.S. during summer.
Dawson et al. (2007) demonstrated that perturbations to present-day temperature, wind speed,
absolute humidity, mixing height, and precipitation can all significantly affect PMs 5 (particulate
matter with diameter <2.5 pm).

Surface temperatures are generally projected to be higher in the future with particularly strong
warming over continents (IPCC, 2007). Temperature influences PMs 5 concentrations through its
effect on precursor emissions rates, chemical reaction rates, and gas-aerosol partitioning of semi-
volatile species. For example, increasing temperature can lead to a reduction in nitrate aerosol mass
as a result of ammonium and nitrate partitioning to the gas-phase (Dawson et al., 2007). Changes in
gas-aerosol partitioning of nitrate/nitric acid will also affect total nitrate (nitrate aerosol and nitric
acid) as a result of the different wet and dry deposition rates of the two species (Aw and Kleeman,
2003). In contrast, higher temperatures can result in increased gas-phase reaction rates and oxidant
concentrations, which can lead to higher sulfate concentrations (Dawson et al., 2007; Liao et al.,
2006; Rae et al., 2007). Jacob and Winner (2008) present a review of studies examining the effect
of changes in climate on ozone and PM.

Future PM concentrations in the U.S. will be influenced not only by changes in domestic emissions
but by changes in other regions as well. Transpacific transport of Asian pollution has been shown
to contribute to sulfate in the U.S. (Benkovitz et al., 2006; Heald et al., 2006; Park et al., 2006; Chin
et al., 2007; Koch et al., 2007; Liu et al., 2008), and the preferential export of sulfur dioxide (SO2)
from Asia over ammonia/ammonium leads to slight decreases in U.S. nitrate (Park et al., 2004).

This study is a companion study to the work of Wu et al. (2008), which investigated the effects of
projected climate and emissions changes on tropospheric ozone. This work investigates the potential
effects of projected climate and emission changes on sulfate-nitrate-ammonium aerosol levels, with

a focus on the United States. Future climate, for year 2050, is simulated with the Goddard Institute
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for Space Studies (GISS) general circulation model (GCM) version III (Rind et al., 2007). IPCC
emission scenario A1B (Nakicenovic and Swart, 2000) is adopted. Eventually, multiple emissions
scenarios will be tested with the GISS/GEOS-Chem framework. Warming under A1B is generally
predicted to be more pronounced than under Bl and less pronounced than under A2 since A1B
represents rapid growth with balanced energy use. However, for year 2050, A1B was found to
have the highest multi-model mean surface warming (compared to Bl and A2) in the IPCC Fourth
Assessment Report (IPCC, 2007).

The global meteorological fields from the GISS model provide the conditions for input into the
atmospheric chemical transport model GEOS-Chem for both present-day (1999-2001) and years
2049-2050. Effects of climate change alone, emission changes alone, and both climate and emissions
changes in concert on sulfate-nitrate-ammonium levels are simulated. While the focus is on a specific
future emission scenario, the mechanistic understanding of the magnitudes and directions of the
projected changes will allow for extrapolation of the effects to other potential emissions scenarios
such as mitigation strategies for air quality attainment. Due to the nonlinear nature of secondary
inorganic aerosol formation, particularly for nitrate, the change in sulfate concentrations due to
changes in sulfur dioxide emissions is likely to be the most robust and generally applicable sensitivity.

Secondary organic aerosol (SOA) is another important component of atmospheric aerosol and
should be included in an examination of PMy 5. GEOS-Chem currently has the capability to treat
SOA from biogenics (Chung and Seinfeld, 2002; Henze and Seinfeld, 2006) and aromatics (Henze
et al., 2008a). Studies indicate the amount of SOA predicted by models severely underestimates the
actual amount present in the atmosphere (de Gouw et al., 2005; Heald et al., 2005; Volkamer et al.,
2006; de Gouw et al., 2008). The treatment of SOA will be part of a future work that focuses on
improving the underlying SOA model in addition to examining the effects of changes in climate and
emissions on future organic aerosol levels.

The methods and model set-up used to examine sulfate, nitrate, and ammonium aerosols are
discussed in Section 2.3 followed by present-day predictions of those aerosols (Section 2.4). Section

2.5 presents predictions for future inorganic aerosol levels over the U.S. due to changes in climate
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alone, emission changes alone, and combined climate and emission changes. Global budgets for the
present-day and future can be found in Section 2.6, and Section 2.7 discusses some implications of

changes in climate and emissions for sulfur outflow from the U.S.

2.3 Methods

2.3.1 GEOS-Chem/GISS Model Set-up

The atmospheric chemical transport model, GEOS-Chem v.7-4-11 (http://www-as.harvard.edu/
chemistry/trop/geos), is employed with GISS GCM III (Rind et al., 2007) meteorological data. The
models use 23 hybrid sigma-pressure levels with the lowest layers extending up to 200, 500, and 900
m for a surface pressure of 1010 hPa. A comparison of present-day GISS Model E (similar to Model
III) predictions of precipitation, specific humidity, temperature, and other meteorological variables
to observations can be found in the work of Schmidt et al. (2006), and Rind et al. (2007) compares
Model E and Model ITT meteorology using several tracers. The analysis of (Rind et al., 2007) includes
the use of a radon tracer as a diagnostic of precipitation. The interface between GEOS-Chem and
the GISS meteorological fields is described by Wu et al. (2007), and the same meteorology as used in
the work of Wu et al. (2008) is used here. Present-day meteorological conditions in the GISS GCM
are simulated with greenhouse gas levels corresponding to years 1999-2001. Year 2049-2051 climate
is obtained from a dynamic GCM simulation in which CO5 and other greenhouse gases follow the
IPCC A1B scenario. Although changes in aerosols and ozone could have significant influences on
climate by the end of the 21st century (Levy et al., 2008), those effects are not considered here in
the GISS simulations. COj is calculated to reach 522 ppm by 2050. The GISS GCM yields a global
mean surface temperature increase of 1.6 K and an increase of 8% in annual mean precipitation for
2000-2050 (Wu et al., 2008).

The GEOS-Chem simulations use a global resolution of 4° latitude by 5° longitude with 23
vertical layers and include coupled ozone-NO,-hydrocarbon and aerosol chemistry (Bey et al., 2001;

Park et al., 2004; Liao et al., 2007) with all tracers listed by Liao et al. (2007). Changes in ozone



11

and aerosol precursor emissions are considered for both present-day and future (2050) scenarios.
SO; is both directly emitted and produced by atmospheric oxidation of dimethyl sulfide (DMS);
SO, reacts in either gas or aqueous phases to form sulfate. A minor sulfate formation pathway
on fine sea salt aerosol as a result of SOs reacting with ozone is also considered (Alezander et al.,
2005). The global burden of sulfate on coarse sea salt aerosol is expected to be small and its lifetime
short (Alezander et al., 2005), so the production of sulfate on coarse sea salt is neglected in the
analysis. Ammonium nitrate aerosol forms from gas-aerosol partitioning of ammonia and nitric acid
(Seinfeld and Pandis, 2006). Ammonia is emitted directly and does not participate in gas-phase
chemistry, although it is removed by wet and dry deposition. Nitric acid is formed from gas-
phase nitrogen oxides (NO, ), which are mostly of anthropogenic origin but have important natural
sources, including lightning and soils. In addition to its daytime photooxidation source, nitric acid
(HNO3) is produced in heterogeneous nighttime reactions involving NoOs, NO3, and NOy (Jacob,
2000; Martin et al., 2003; Evans and Jacob, 2005). In addition to these heterogeneous reactions,
aerosols may influence the gas phase by modifying photolysis rates (Martin et al., 2003). Nitric
acid, sulfate, nitrate, and ammonium are assumed to be completely soluble in the cloud condensate
phase in convective updrafts and rainout and washout. The representation of dry deposition follows
a resistance in series scheme (Wesely, 1989), with the surface resistances for sulfate, nitrate, and

ammonium aerosols following the work of Zhang et al. (2001).

2.3.2 Emissions

Present-day emissions of ozone and aerosol precursors in GEOS-Chem generally follow Wu et al.
(2007) with fossil fuel emissions outside the U.S. updated to 1998. The present-day ammonia emis-
sion inventory is based on the work of Bouwman et al. (1997), as implemented by Park et al. (2004).
Most ammonia is anthropogenic in origin and results from domesticated animals and agricultural
operations (Park et al., 2004). Ammonia emissions are not calculated on-line as a function of tem-
perature in this model, but do have an imposed seasonality that was determined as a function of

temperature for one base year (Park et al., 2004). Sulfur emission sources from the Global Emission
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Inventory Activity (GEIA) are also described by Park et al. (2004) and now include emissions from
ships (Corbett et al., 1999). Bey et al. (2001) and references therein provide information on the
anthropogenic NO,, emission inventories. Present-day methane levels in the model are based on
observations and are set to 1750 ppb with a 5% inter-hemispheric gradient ( Wu et al., 2008). Future
emissions follow the Integrated Model to Assess the Greenhouse Effect (IMAGE) model for IPCC
scenario A1B (Streets et al., 2004) and are implemented using prescribed growth factors for different
regions, species, and sources. Table 2.1 shows anthropogenic emissions for the present-day and year
2050 (following IPCC A1B). The future (2049-2051) methane level in GEOS-Chem is set to 2400
ppb for simulations in which changes in anthropogenic emissions are considered.

Natural emissions of DMS, NO, from lightning and soils, sea salt, and biogenic hydrocarbons
depend on meteorology and are computed online in the model. Natural emissions predicted for both
the present-day and future climate are given in Table 2.2. DMS emissions (Saltzman et al., 1993;
Nightingale et al., 2000) are treated as a function of wind speed, and present-day climatological
sea surface temperatures and DMS ocean concentrations are used. Lightning NO, emissions are
parameterized based on convective cloud-top height (Price and Rind, 1992; Wang et al., 1998)
and are distributed according to Pickering et al. (1998). Lightning NO, emissions are scaled to
produce 4.8 Tg N for year 2000. Soil NO, emissions are calculated as described by Wang et al.
(1998) considering changes in temperature, wind speed, and precipitation ( Yienger and Levy, 1995).
Sea salt is emitted in both fine and coarse sizes as a function of wind speed (Alezander et al., 2005;
Monahan et al., 1986). Biogenic hydrocarbon emissions include those from isoprene (Guenther et al.,
1995), monoterpenes (Guenther et al., 1995), acetone (Jacob et al., 2002), and other alkenes (scaled
to isoprene). Due to the relatively coarse resolution of surface wind speed and the particularly strong
dependence of dust emissions on wind speed, emissions of dust are not included. Changes in land

use and biomass burning due to climate change are also not considered.
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2.3.3 Inorganic Aerosol Model

ISORROPIA 1I (Fountoukis and Nenes, 2007) is implemented in GEOS-Chem to compute gas-
aerosol equilibrium partitioning of nitric acid and ammonia. Particles in this study are not size-
resolved; however, they can be generally assumed to represent PMs 5 since formation of sulfate-
nitrate-ammonium on coarse mode sea salt and dust is excluded. Submicrometer-sized particles are
likely to reach gas-aerosol equilibrium on time-scales less than the 1 hour computational time step
used here (Meng and Seinfeld, 1996).

Accumulation mode sea salt sodium and chloride are considered in the gas-aerosol equilibrium
along with sulfate, nitrate, and ammonium. Calcium, magnesium, and potassium concentrations are
not considered in the present study due to the issues with dust emissions previously mentioned. All
inorganic aerosols are assumed to exist on the upper, metastable branch of the hygroscopic hysterisis
curve. Although this assumption may not hold at higher altitudes in the free troposphere (Wang
et al., 2008), since the focus of this study is mainly on surface-level concentrations, where humidities

reach high values on a daily basis, the metastable assumption is acceptable.

2.4 Present-day Predictions

2.4.1 Sulfate

Present-day sulfate concentrations across the United States vary seasonally (Figure 2.1), as governed
by changes in photochemistry and wet removal with influences from transport. SOs emissions exhibit
little seasonality with the highest emissions in the eastern United States. Sulfate concentrations are
lowest in December-January-February (DJF) when oxidants/photochemistry are lowest. In March-
April-May (MAM), higher levels of photochemistry lead to enhanced levels of sulfate compared to
those in DJF, but increased precipitation and transport keep sulfate concentrations at moderate
levels. In-cloud sulfate production near the surface via reaction with HyO is highest in MAM
due to slightly more cloud cover than in JJA, but aqueous production is still significantly less

than production from gas-phase OH reaction. The most active photochemistry occurs during June-
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July-August (JJA), the season when precipitation is particularly intense in the Southeast for the
meteorology used here. As a result, sulfate concentrations are significant but tend to be more
localized than in MAM. September-October-November (SON) is characterized by intermediate, but
still significant, oxidant levels. While production rates of sulfate in MAM and SON are similar, as
a result of low precipitation, sulfate concentrations are actually higher in SON than JJA or MAM

for some locations like the Southeast.

2.4.2 Nitrate

Anthropogenic NO, emissions, like anthropogenic SOs, exhibit little seasonal variation and are
highest in the eastern United States. Soil NO, emissions peak in JJA over the middle of the United
States. Soil NO,, is potentially more important in the western United States where anthropogenic
NO, emissions are lower.

Nitrate aerosol concentrations (Figure 2.1) can be explained by the combined effects of temper-
ature, precipitation, and photochemistry. Oxidant levels and wet deposition determine the amount
of total nitrate (HNO3z + NO3™) available. Since HNO3 undergoes efficient dry deposition when
compared to that for particles, gas-aerosol partitioning also influences total nitrate levels. Maximum
predicted nitrate aerosol surface concentrations in the United States lie north and west of the main
anthropogenic NO, source region in the Northeast, reflecting the role of ammonia emissions in the
Midwest. As a result, nitrate formation in the Midwest tends to be nitric acid-limited (Park et al.,
2004) as diagnosed by the gas ratio (Ansari and Pandis, 1998) which is the free ammonia ([NH3] +
[NH4*H] - 2 x [SO427]) divided by total nitrate ((HNO3] + [NO3~]) expressed in molar concentration
units. The Northeast tends to be ammonia-limited due to higher sulfate concentrations and lower
ammonia emissions.

The highest nitrate aerosol (NO3~) concentrations are predicted to occur in winter due to low
temperatures and low sulfate concentrations. Total (gas + aerosol) nitrate is high in JJA, but both
high temperatures and precipitation lead to the lowest nitrate aerosol concentrations in this season.

Like MAM, SON is characterized by both intermediate photochemistry and temperatures. Because
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precipitation in SON is relatively low, which reduces loss of total nitrate by wet deposition, SON

nitrate aerosol concentrations are significant but not as high as those in DJF.

2.4.3 Ammonium

Unlike NO, and SOs, anthropogenic ammonia emissions, mostly from domesticated animals and
fertilizer use, exhibit pronounced seasonality with the highest and lowest emissions occurring in JJA
and DJF, respectively. NH3 emissions from sources such as crops and soils are also largest in JJA
and smallest in DJF. Spatially, emissions are highest in the eastern U.S., but also significant in the
West. Ammonium aerosol concentrations (Figure 2.1) follow those of sulfate and nitrate, with which

they are chemically linked.

2.4.4 Comparison to Measurements

To evaluate the predictions of present-day concentrations of sulfate, nitrate, and ammonium, simula-
tions are compared to the Clean Air Status and Trends Network (CASTNET, http://www.epa.gov/
castnet/) measurements (Figure 2.2). CASTNET provides concentrations of sulfate, nitrate, ni-
tric acid, and ammonium as well as estimates of dry deposition velocities and fluxes. While some
GEOS-Chem grid cells do not contain any CASTNET sites, a number of grid cells have 5 or more
CASTNET sites each over the eastern United States. Seasonal CASTNET averages are created
from monthly data from years 1998-2001 to represent a climatological mean. For the purposes of
analysis, an arbitrary division between eastern and western United States is made at 92.5° W lon-
gitude which runs from Minnesota to Louisiana. The Interagency Monitoring of Protected Visual
Environments (IMPROVE) network also provides sulfate and nitrate concentration measurements,
and Liao et al. (2007) present a comparison of sulfate concentrations predicted by GEOS-Chem to
IMPROVE observations. CASTNET measurements are chosen here for comparison because of their
more complete spatial coverage over the eastern U. S. where the highest sulfate and nitrate aerosol
concentrations occur.

Inorganic aerosol concentrations are generally under-predicted over the entire United States.
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However, nitrate is typically over-predicted in the eastern U.S. (e.g. JJA). The normalized mean
bias for the entire U.S. (NMB = Z?;(Pi - Oi)/Zf\;l(Oi)*lOO%, where P; is the prediction and O;
is the observation) ranges from -50% in JJA to -17% in SON for sulfate and -41% in MAM to -6%
in DJF for nitrate. The normalized mean bias for ammonium ranges from -32% in JJA to +5% in
SON. The correlation between nitrate observations and predictions is the weakest of the inorganic
aerosols with the poorest correlation in JJA. Nitrate aerosol concentrations in the western U.S. in
JJA are significantly under-predicted.

Some under-prediction could result from coarse (>2.5 pm diameter) material being captured in
the CASTNET samples. However, Morris et al. (2005) estimate that most secondary nitrate (>90%)
can be assumed to be present in fine particles in the rural West, although exceptions can occur. In
addition, nitrate may volatilize from the Teflon filters used in CASTNET (Ames and Malm, 2001).
As a result, CASTNET sites may under-report or over-report PMs 5 depending on the amount of
coarse aerosol present and the extent of nitrate volatilization.

Examining data from five individual CASTNET sites in the western United States (mostly South-
ern California) reveals that both gas-phase nitric acid and total nitrate are under-predicted, which
could be a result of (1) insufficient formation of HNOj in the gas phase or (2) insufficient partitioning
of HNOj3 to particulate nitrate resulting in total nitrate being preferentially lost via efficient dry
deposition of HNOg3. Dry deposition velocities predicted by the model at these 5 western sites in
JJA have a normalized mean bias of +88% compared to the CASTNET data. A sensitivity study,
performed in the West for JJA in which the dry deposition velocity of HNO3 was capped at 1.5
cm/s, however, did not produce a significant improvement in nitrate aerosol predictions, indicating
that under-prediction of nitrate aerosol is not a result of HNO3 dry deposition alone.

Other studies using different global chemical transport models and different thermodynamic
models for inorganic aerosols also reveal significant underestimates in fine mode nitrate in Southern
California (Mhyre et al., 2006; Bauer et al., 2007). GEOS-Chem simulations with an inorganic
aerosol model based on MARS-A and GEOS assimilated meteorology at a finer resolution also

exhibit an underestimate (Park et al., 2006). Some models predict significant coarse-mode nitrate
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in Southern California, but the IMPROVE sites show significant fine-mode nitrate (on the order of
1 pug/m3 or more) is present in the vicinity of Southern California (Liao et al., 2007).

Nitrate aerosol formation is particularly sensitive to ammonia emissions [e.g., Bauer et al., 2007],
suggesting that inaccuracy in the NHj3 inventory may be a factor in model under-predictions. Yu
et al. (2005) found that total nitrate, total ammonia (NH; + NH, "), and sulfate strongly influence
nitrate predictions and that errors in total ammonia were more influential in this regard than er-
rors in sulfate. Also, Karydis et al. (2007) noted that modest errors in ammonium concentrations
can be associated with significant errors in nitrate predictions. The Bouwman et al. (1997) NHj
emissions inventory used here reports a global uncertainty of +25%, and individual seasonal and
regional uncertainties may be considerably higher. Some studies examining the validity of ammonia
emissions inventories have focused mainly on the eastern United States (Mendoza-Dominguez and
Russell, 2001; Gilliland et al., 2003; Pinder et al., 2006). Gilliland et al. (2006) investigated sea-
sonal allocations of the EPA National Emission Inventory (NEI) 2001 inventory and indicated that
summer NHg emissions are likely underestimated to a greater extent in the West than the East.

Additional box model calculations were performed here using conditions representative of summer
in Southern California to determine the extent to which errors in predicted total ammonia and total
nitrate could be responsible for under-predictions in nitrate aerosol. The analysis indicates that
both total nitrate and total ammonia would have to be more than a factor of five higher than
current model predictions to obtain nitrate levels consistent with CASTNET data. It is unlikely
that emissions inventories of ammonia and NO,, in Southern California during the summer are low
by this much. If total nitrate levels produced by the model were correct, then total NH3 (and
probably ammonia inventories) would have to be more than a factor of 10 higher than current
predictions, to produce simulations consistent with CASTNET observations in Southern California.
The EPA NEI for ammonia has been shown to be too high for use in GEOS-Chem (Gilliland et al.,
2003; Henze et al., 2008b), and errors in the ammonia inventory are probably not the primary
reason for inaccuracies in nitrate predictions based on the sensitivity analysis performed. Nitrate

under-prediction may result, at least in part, from a lack of representation of some processes in the
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model such as interaction with dust and organics (Ansari and Pandis, 2000). Since regional models
can capture the high nitrate concentrations in the Los Angeles basin (Kleeman and Cass, 2001), a
global model, even at 1° by 1° resolution (Park et al., 2006), may be too coarse to represent nitrate
formation in Southern California.

Since this work is primarily directed toward examining changes in aerosol concentrations as a
result of future climate change, the underestimate in present-day nitrate in the western U.S. does
not compromise conclusions regarding the direction in which inorganic aerosol levels are likely to

change in the future, but is an important issue to address in future work.

2.5 Predictions of Future Inorganic Aerosol Levels Over the

U.S.

Changes in sulfate, nitrate, and ammonium aerosol concentrations due to changes in climate and
emissions are now examined. Section 2.5.1 addresses how projected changes in meteorology from
2000 to 2050 are predicted to affect sulfate, nitrate, and ammonium aerosol levels with anthropogenic
emissions held at present-day values. Section 2.5.2 discusses the effect of climate change with
anthropogenic emissions at future levels. Section 2.5.3 describes effects of changes in anthropogenic
emissions with climate held at present-day conditions, and changes in climate and emissions together

are addressed in Section 2.5.4.

2.5.1 Effect of Changes in Climate Alone

Climate change alone will influence future aerosol concentrations through modifications of gas-phase
chemistry, transport, removal, and natural emissions. Most predicted changes in natural emissions
over the 50-year period considered here are relatively modest (Table 2.2), except for lightning NO,,
and biogenic hydrocarbons, both of which influence gas-phase tropospheric chemistry. Note that
natural ammonia emissions are assumed to be independent of meteorological conditions.

Meteorology influences aerosol concentrations through changes in temperature, precipitation,
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planetary boundary layer depth (PBL depth), transport, humidity, and oxidant levels. In some
seasons, certain effects appear to dominate, but generally, changes in concentrations result from
multiple climatic changes. Temperature generally increases 1- 2 K between 2000 and 2050 in all
seasons over the U.S. with increases in JJA over Texas being the largest and statistically significant
(at the 5% level). All tests of statistical significance were performed using 10 years of present-day
(2000) and 10 years of future (2050) meteorology although GEOS-Chem simulations only use 3 years
for the present-day and 3 years for the future. About 1 K of cooling is shown for DJF in the southwest
U.S. as a result of interannual variability and a relatively cold winter in 2051. The cooling during
DJF is not found in the trend using 10 years of present-day and future data and is not statistically
significant. Although the warming in DJF and JJA over the U.S. is generally statistically significant,
the warming in MAM and SON is not statistically significant (at 5%). Higher specific humidities
are predicted over the U.S. in the future as relative humidity is expected to remain roughly constant
(Held and Soden, 2000).

Precipitation trends shown in Figure 2.4 for three years of the present-day and future are generally
consistent with the trends using 10 years of present-day and future GISS meteorology. However,
not all changes in precipitation are significant at the 5% level. Predicting future rainfall over mid-
latitudes is difficult, as it involves two competing factors: 1) increased specific humidity in a warmer
climate, which increases rainfall and 2) increased atmospheric stability due to heating aloft which
decreases rainfall. Precipitation is predicted to generally increase (Figure 2.4), especially for DJF
and MAM over the eastern U.S., reflecting changes in both large-scale and convective precipitation.
DJF and MAM precipitation increases are roughly on the order of 1 mm/day which is more than
a 50% increase in DJF and about a 20-30% increase in MAM. The increase in precipitation over
the Midwest in DJF is consistent with the trend using 10 years of present-day and 10 years of
future GISS meteorology and statistically significant (at 5%). Convective precipitation is largest in
JJA and usually highest in the Southeast during all seasons. Changes in convective precipitation
may be more important than changes in large-scale precipitation as convective storms are generally

short-lived and do not necessarily completely wash out aerosols and their precursors (Dawson et al.,
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2007). Increases in precipitation in the west during JJA are generally small in magnitude (<0.2
mm/day) despite large percentage changes (>50%). The decrease in precipitation over Texas and
the increase in the Northeast during JJA are on the order of 30% and are statistically significant (at
5%). Precipitation increases almost 50% in the Southeast in SON and decreases approximately 40%
in the Northeast during that same time, but SON precipitation changes are generally not statistically
significant (at 5%). Models reviewed by the TPCC (2007) generally predict increased precipitation
over North America, with a warming climate (A1B), except for the Southwest, with increases in the
Northeast and decreases in the Southwest more certain. Regional projected precipitation changes
have large uncertainty, indicated by the fact that about half of the 21 models in the work of the
IPCC (2007) predict increases in precipitation and about half predict decreases in precipitation
across most of the U.S. for JJA.

The boundary layer depth over the U.S. is predicted to generally decrease from present-day to
2050 (Figure 2.4). In contrast, there is a particularly strong increase in the afternoon PBL depth
of about 30% over Texas during JJA associated with the northeastward movement of the Bermuda
high and the associated drying and warming of Texas (Wu et al., 2008). Increases and decreases in
the PBL depth are generally less than 20%. Note that decreases in the PBL depth (favoring higher
aerosol concentrations) are generally associated with increases in precipitation (favoring lower aerosol
concentrations), and these two changes will generally have opposite effects on aerosol concentrations.

The DJF and SON seasons are predicted to experience particularly strong changes in the zonal
winds in the lowest model level across the U.S. (Figure 2.5) with westerlies doubling in strength
during SON. During DJF, the westerlies are predicted to decrease in strength, while during SON,
both the westerlies and easterlies increase in strength. The increase in westerly wind strength in
SON is consistent with the ensemble of models examined by IPCC (2007) that show a strengthening
and northward shift in mid-latitude westerlies particularly in autumn and winter for 2100 under A1B
projections (although the meteorology here shows a weakening of the westerlies in DJF in 2050).
The DJF trend in zonal winds is consistent with trends using 10 years of present-day and future

GISS meteorology although the decrease is only significant in the Midwest (at 25%). The SON trend
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of weakening easterlies in the south and strengthening westerlies in the north is reflected in trends
using 10 years of GISS zonal winds at level 1 (at surface) and level 7 (at approximately 5 km) and
significant at the 25% level near the east coast. Additional changes in meteorology will be discussed
in relation to predicted changes in aerosol levels during each season.

Figure 2.6 shows the predicted change in surface concentrations of inorganic aerosols from the
present-day to 2050 as a result of predicted changes in meteorology alone. Table 2.3 summarizes
the climatic parameters important for explaining the changes in concentrations of sulfate, nitrate,
and ammonium aerosols. Each season will be discussed in the following sections since different

meteorological changes are influential during different times of the year.

2.5.1.1 DJF Season

In winter, SO», total nitrate, SO42~, and NH,T are predicted to show similar trends between 2000
and 2050, with increased concentrations over the Midwest but decreased concentrations over the
northeast U.S. (Figure 2.6). Changes in aerosol-phase nitrate are generally correlated with changes
in total nitrate except for the southeast U.S., where changes reflect additional processes including the
influence of higher temperatures. The largest change in nitrate for the southeast U.S. is predicted to
occur in a present-day ammonia-limited regime according to the gas ratio (<1), so increased sulfate
levels may result in less ammonia being available for nitrate. Additional factors may be influential
in the Southeast such as decreased dry deposition as a result of weaker westerlies and changes in
vertical transport. Future predicted changes in the planetary boundary layer (PBL) also play a
role determining concentration changes in the Midwest and Southeast, since the boundary layer is
generally lower leading to higher surface concentrations. Changes in precipitation and convective
flux do not appear to contribute significantly to changes in DJF concentrations.

Since many species, including carbon monoxide and black carbon, follow a trend similar to the
inorganic aerosols, changes in transport must be a major determining factor for changes in concen-
trations. Predicted changes in the strength of the wintertime westerly winds and meridional winds

across the United States are expected to play a major role in determining changes in inorganic aerosol
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concentrations. The westerly winds in the lower 2.5 km of the atmosphere decrease in strength over
most of the U.S., especially in the Midwest and Northeast where the wind strength decreases by as
much at 70% at 0.9 km in altitude. A lower PBL and weaker westerlies imply slower transport of
aerosols away from regions in the Midwest and higher inorganic concentrations. Weaker westerlies
also reduce the transport of aerosols and their precursors to the Northeast. Increased precipitation
in the Midwest may further reduce the amount of aerosols transported eastward. Present-day merid-
ional winds generally flow south to north in the eastern U.S. during DJF. With climate change, the
winds in the northeast U.S. are actually predicted to change direction and flow more intensely from
north to south. As a result, aerosols and their precursors are transported more quickly away from

the northeast U.S. and concentrations decrease.

2.5.1.2 MAM Season

In spring, sulfate concentrations are predicted to increase in the Midwest and Northeast and de-
crease in the Southeast (Figure 2.6). Nitrate, total nitrate, and ammonium concentrations generally
decrease. Increased wet deposition of gaseous HNOj in addition to higher temperature causes de-
creased nitrate concentrations. Gas phase sulfate production generally decreases in the future as a
result of lower OH concentrations due to climate change, but the increases in aqueous-phase oxi-
dation are generally of larger magnitude than the changes in gas-phase production for the lowest 4
levels (approximately 1.5 km) of the atmosphere. Although higher specific humidities are expected
to increase HO, (HO, = OH + HO3) production, higher temperatures and higher biogenic emis-
sions can result in decreasing OH and increasing HOs over the U.S. In the future springtime, HoO4
increases 20% to 40% due to higher temperatures and increased water vapor producing more HO,,
(with perhaps a minor effect of water fostering the HOy + HO» reaction). In the work of Liao et al.
(2006), annually increased sulfate levels in the future in the eastern U.S. were attributed to higher

oxidant concentrations.
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2.5.1.3 JJA Season

Predicted changes in concentrations during summer do not appear to be the result of a single
dominant factor. Wu et al. (2008) examined changes in ozone concentrations during JJA with the
same meteorology as used here. Ozone was predicted to increase in the Midwest and Northeast as
a result of increased isoprene emissions, lower peroxyacetylnitrate stability, a more shallow PBL,
reduced convective ventilation, and more frequent stagnation. Ozone in the Southeast was found
to be insensitive to climate change as a result of the competing effects of isoprene emissions and
meteorology. For aerosols, a lower PBL, reduced convective ventilation, and more frequent stagnation
could lead to higher concentrations, and sulfate concentrations generally increase over the Midwest
(Figure 2.6). Along the East Coast and somewhat inland, higher HoO9 levels and a lower PBL are
predicted to lead to more in-cloud HyOy production of SO42~. More precipitation adjacent to the
East Coast acts to reduce sulfate. A deeper PBL over Texas and part of the Southeast contributes
to sulfate and ammonium decreases in those regions. Changes in nitrate aerosol generally follow
changes in total nitrate. Dry deposition of nitric acid can act as a positive feedback by reducing

total nitrate when aerosol nitrate evaporates at higher temperatures (Aw and Kleeman, 2003).

2.5.1.4 SON Season

Multiple species (total nitrate, SO42~, SOy, and NH4T) show a similar trend during SON with
decreasing concentrations in the southeast U.S. and increasing concentrations in the northeast U.S.
(Figure 2.6). The increasing westerly zonal wind speed across the northern U.S. transports aerosols
and their precursors away from the Midwest more quickly and transports nitrate to the Northeast
where temperature increases are larger and sulfate increases are substantial. Thus, despite increases
on the order of 0.4 to 1 ppb (about 1 to 2.8 ug/m? at standard temperature and pressure, STP)
in total nitrate, aerosol nitrate shows relatively small increases in the Northeast. The Northeast
may also see slightly less transport in the future during SON as meridional winds are predicted to
decrease in strength in the Northeast and along the East Coast. In the northeast U.S., precipitation

is predicted to decrease by as much as 40% and convective fluxes around 1.4 km in altitude decrease,
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both of which contribute to higher concentrations.

For the Southeast, changes in vertical transport and precipitation play a role in determining
future inorganic aerosol concentrations. Precipitation is predicted to increase by as much as 50% in
the Southeast. Black carbon was used as a surrogate species to examine the effects of changes in
precipitation. Hydrophobic black carbon concentrations generally increase in the Southeast unlike
hydrophilic black carbon which shows a pattern similar to sulfate. Thus, increased wet removal must
be the primary reason for decreases in the Southeast during SON with changes in transport playing

a minor role.

2.5.1.5 Annual changes

On an annual basis, sulfate concentrations are predicted to decrease over the Southeast and southern
United States by up to 0.34 ug/m?, whereas sulfate increases over the Midwest and Northeast by
up to 0.32 pg/m3. In the work of Tagaris et al. (2007), sulfate concentrations in 2050 for scenario
A1B are generally predicted to increase in the U.S. due to climate change alone in the Midwest,
Northeast, and Southeast as a result of increases in climate sensitive SO5 emissions which increase
by 4% in their study. The increases in sulfate concentration in the Midwest and Northeast (>10%)
were larger (relatively) than the changes in the Southeast (<1%) (Tagaris et al., 2007).

Due to higher temperatures, future nitrate aerosol concentrations are expected to be lower, and
on an annual basis, nitrate aerosol is predicted to decrease across almost the entire eastern U.S. with
a maximum decrease of 0.24 ug/m3. Projected changes in nitrate aerosol are not purely a result of
temperature increases, as total nitrate can increase or decrease in individual seasons (as discussed
in the preceding sections). Higher absolute humidity can favor nitrate partitioning to the aerosol
phase (Dawson et al., 2007), but this effect is not pronounced in the annual changes in this study.

Ammonium changes reflect those of sulfate and nitrate. The largest annually averaged ammonium
decrease of about 0.16 pg/m? is predicted to occur over the South where both nitrate aerosol and
sulfate decrease. Annual increases of ammonium do not exceed 0.09 ;g/m? over the Midwest where

sulfate increases.
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The annually averaged decrease in sulfate in the southeast U.S. (bottom row of Figure 2.6, first
column of Figure 2.7) results from changes during SON. Racherla and Adams (2006) and Liao et al.
(2006) found that sulfate concentrations near the surface over the eastern U.S. generally increase
between the present-day and future (2050 and 2100, scenario A2), consistent with the results shown
here for the Midwest and Northeast. Racherla and Adams (2006) also predict that the largest
seasonal decrease in sulfate burden between the present-day and 2050 for the eastern U.S. will occur
during SON as a result of increased precipitation. Predictions of regional changes in precipitation
for the U.S. between the present-day and future are not necessarily robust model results (IPCC,
2007), and studies may continue to give different predictions for changes in sulfate for the Southeast

unless projected precipitation changes are consistent in both magnitude and direction.

2.5.2 Climate Penalty vs. Climate Benefit

As discussed in Section 2.5.1, aerosol levels will change due to changes in climate alone. Wu et al.
(2008) discussed the concept of a “climate change penalty” in which more aggressive emission con-
trols may be necessary to meet ozone air quality goals in the future as a result of climate change.
For sulfate-nitrate-ammonium aerosols, particulate air quality may benefit from climate change. In
this section, the effect of climate change on aerosols is further explored with anthropogenic emis-
sions at future levels. Figure 2.7 shows how alterations in climate alone are predicted to affect
inorganic aerosol concentrations with either (a) present-day or (b) future anthropogenic emission
levels. Both columns represent the effect of climate change, but anthropogenic emissions are held at
either present-day (column (a)) or future (column (b)) levels. For present-day emissions, column (a),
the annually-averaged change in ammonium closely resembles that of sulfate, and most ammonium
would likely be in the form of ammonium sulfate. At future emission levels, column (b), the absolute
changes in sulfate are predicted to be muted as concentrations of sulfate are generally predicted to be
lower. The relative change in sulfate for most of the Midwest and Southeast with either present-day
or future anthropogenic emissions is on the order of 10% to 15%. However, with future emissions,

the sulfate change in the Southwest becomes a larger relative amount at about 17%. With future
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anthropogenic emissions ammonium changes more closely follow those of nitrate aerosol, and more
ammonium is expected to be in the form of ammonium nitrate. With present-day emissions, nitrate
decreases due to climate change are largest in the Midwest where nitrate concentrations are gen-
erally highest with present-day emissions. However, with future emissions, the largest magnitude
decreases occur in the Southeast. Due to higher nitrate concentrations in the Southeast using future
anthropogenic emissions, changes in nitrate are still roughly 25% in the Southeast near Texas for
present-day or future emissions.

With either set of emissions, the Southeast is predicted to experience decreases in inorganic
aerosol levels as a result of the climate change scenario considered here. With present-day emissions
and climate change, the Midwest and Northeast would experience degraded air quality. With future
emissions, air quality improvements in the Southeast that would occur solely as a result of climate

change are reduced, but air quality degradation in the Midwest and Northeast is also reduced.

2.5.3 Effect of Changes in Anthropogenic Emissions Alone

This section addresses the extent to which changes in anthropogenic emissions of aerosol precursors
between the present-day and 2050 would influence inorganic aerosol concentrations with present-
day climate. Under the A1B scenario, anthropogenic NO,, emissions are predicted to increase 78%
globally compared to the present-day but decrease approximately 35% in the United States (Table
2.1). Ammonia emissions are predicted to increase globally and domestically by 32% and 40%,
respectively. SO, emissions are predicted to increase 31% globally but decrease 74% in the United
States.

Sulfate concentrations in the U.S. are predicted to decrease in all seasons due to domestic reduc-
tions in SO9 emissions (Figure 2.8). The largest decreases are predicted to occur in JJA and SON.
Annually-averaged sulfate concentrations are predicted to decrease by as much as 3.25 ug/m3 in the
Northeast. In contrast, global SO, emissions are projected to increase, which may have important
implications for background aerosol levels in the U.S. and the EPA Regional Haze Rule.

Unlike sulfate, future nitrate aerosol concentrations are predicted to exhibit both increases and
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decreases (Figure 2.8). Lower domestic NO, emissions lead to a general decrease of total nitrate
in the United States. The largest reductions in total nitrate are predicted to occur in JJA, with
decreases up to 1.43 ppb (about 3.6 ug/m? nitrate at STP). However, decreased sulfate levels coupled
with increased ammonia emissions result in more ammonia available to react with nitrate. Total
ammonia increases by as much as 1.9 ppb (about 1.3 ug/m?® NHs at STP) in JJA. As a result of
higher total ammonia and reduced sulfate, nitrate aerosol concentrations can more than double. In
some locations, the gas ratio increases from <1 (indicating ammonia-limited) to values >1 (nitric
acid-limited). Nitrate aerosol decreases in the Midwest occur where the gas ratio indicates a present-
day nitric acid-limited regime. Ammonium concentrations follow the trend in sulfate, except where
ammonium reacts predominately with nitrate (DJF). In general, considering only emissions changes,
U.S. levels of inorganic aerosols are predicted to be lower in the future than in the present-day. An
exception occurs in winter when an increase in the total sulfate-nitrate-ammonium inorganic aerosol

concentration on the order of 1 ug/m? is predicted in some locations.

2.5.4 Effect of Changes in Both Climate and Anthropogenic Emissions

Predicted sulfate, nitrate, and ammonium concentration changes considering both future emissions
and climate change (Figure 2.9) are similar to those due to emissions changes alone. For 2050
conditions, annual U.S. sulfate concentrations are predicted to decrease by up to 3.2 ug/m?, and
ammonium decreases by up to 0.79 pg/m?3. The percent decrease in sulfate, as high as 77%, is
similar to the percent decrease in SOy emissions (74% in the U.S.). Ammonium decreases up to 61%
in the Southeast which is higher than the percent increase in ammonia emissions (40% in the U.S.).

Nitrate increases in some areas by up to 1.67 ug/m® and decreases in others by up to 0.43 pg/m?.
Climate change slightly mitigates the effects of changes in anthropogenic emissions on nitrate levels.

Bauer et al. (2007) predicted nitrate aerosol levels for 2030 under the A1B scenario. The emission
projections used by Bauer et al. (2007) involve a decrease in SOy and NO,, as in the present study.
Changes in nitrate aerosol concentrations in the U.S. predicted in that study are somewhat similar

to those presented here, with a decrease in the Midwest and an increase in the Northeast. The
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predictions differ in the southern U.S. where Bauer et al. (2007) predict a decrease in nitrate,

whereas the present study predicts a slight increase.

2.6 Global Budgets of Sulfate, Nitrate, and Ammonium

2.6.1 Present-day Budgets

Table 2.4 shows the present-day global budget for sulfate aerosol. The present-day global burden of
sulfate aerosol is predicted to be 0.28 Tg S. This estimate is at the lower end of predicted present-day
sulfate burdens, as summarized by Tsigaridis et al. (2006), and slightly outside the range of burdens
reported in AeroCom Experiment A [Textor et al., 2006]. The effective wet deposition rate coefficient
for this work is high compared to coefficients for the AeroCom models (but still within range), which
contributes to the lower burden seen here. Differences in sulfate predictions can also result from
different representations of precursor gas removal, chemical production, atmospheric transport, etc.
[Textor et al., 2006]. The sulfate lifetime predicted here (against total deposition) is within the
range of those from AeroCom Experiment A. Under present-day conditions in this work, the global
sulfate source is 32 Tg S/yr. The largest contribution, about 62% globally and annually averaged,
is in-cloud oxidation of SO2 by hydrogen peroxide (H2O3). In-cloud oxidation by ozone contributes
5% of the global source, gas-phase SO, oxidation is 26%, and sulfate production on submicrometer
sea salt is 1%. Direct emission of sulfate aerosol represents 6% of global sulfate sources.

Nitrate and ammonium production listed in Table 2.5 represents the net production from gas-
aerosol equilibrium partitioning. Aerosol nitrate is predicted to have a present-day global burden
of 0.35 Tg and a lifetime of 7.6 days (against wet and dry deposition). The ammonium burden
is 0.24 Tg with a lifetime of 3.7 days. The predicted nitrate burden compares well with previous
GEOS-Chem simulations using assimilated meteorology, but sulfate and ammonium burdens are
slightly lower than those in the work of Park et al. (2004) as a result of a shorter lifetime against
deposition. Wet deposition is the dominant loss process for sulfate, nitrate, and ammonium, with

over 80% of each species lost through wet processes.
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The ammonium lifetime is shorter than that of nitrate since ammonium is associated with both
sulfate and nitrate. Sulfate has a shorter lifetime than nitrate, which reflects the spatial distribution
of its production in relation to removal by precipitation. Sulfate produced in-cloud is expected
to have a much shorter lifetime than sulfate produced in the gas-phase (Koch et al., 2003). Note
that in GEOS-Chem, SO, dissolved in precipitation is converted to SO42~ when evaporation of
that precipitation occurs. This source is included in the wet deposition row in Table 2.4; thus
wet deposition represents the net wet removal as a result of rainout, washout, and scavenging in

convective updrafts.

2.6.2 Effect of Changes in Climate Alone

Global burdens and budgets of sulfate, nitrate, and ammonium aerosol for future climate are pre-
sented in Tables 2.4 and 2.5. As in the study of Mahowald et al. (2006), the global sea salt source
and burden are found to be relatively insensitive to climate change since sea salt emission and the
global burden increase by less than 2%. The sulfate budget also changes imperceptibly with cli-
mate. In the work of Liao et al. (2006), simulating equilibrium climate under the A2 scenario in
2100 produced larger changes than those in this study, presumably as a result of more pronounced
changes in climate. Gas-phase production of sulfate decreased while in-cloud formation increased
by 5% in the work of Liao et al. (2006). Both Liao et al. (2006) and Racherla and Adams (2006)
showed decreased sulfate burdens in the future due to climate change alone of 14% and 8% for 2100
and 2050 (A2 scenario), respectively.

The nitrate aerosol burden is predicted to decrease by about 21% between the present-day and
future climate. This decrease is most likely a consequence of higher temperatures and increased
partitioning to the gas phase. The lifetime of nitrate aerosol is also predicted to decrease to 6.6 days
due to changes in wet removal. The decrease in nitrate burden compares well with that of other
models using the A2 scenario which predict decreases in nitrate due to climate change alone varying
from 13% to 47% (Liao et al., 2006; Racherla and Adams, 2006). Racherla and Adams (2006)

attribute the decrease in burdens and lifetimes of many PM species to increased wet deposition in
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the future. Liao et al. (2006) found that more nitrate remains in the gas phase. In the present
study, wet deposition of nitrate is predicted to decrease by about 11% in the future, and most
of the future reduced nitrate burden results from less nitrate partitioning into the aerosol phase.
However, increased precipitation in the future can play a role in reducing the lifetime of nitrate
against deposition.

Changes in nitrate will influence ammonium. The burden, wet deposition, and production of
ammonium are predicted to decrease by 5% to 6% in this study. Changes in ammonium here are
milder than those predicted by Racherla and Adams (2006) and likely reflect the fact that the sulfate
burden is relatively insensitive to climate change under the A1B scenario. The slight decrease in
ammonium production may reflect the reduced nitrate burden. Both studies (this one and Racherla

and Adams (2006)) predict a decrease in the global ammonium burden in the future.

2.6.3 Effect of Changes in Anthropogenic Emissions Alone

Sulfate, nitrate, and ammonium global burdens are predicted to change significantly in response
to predicted changes in anthropogenic emissions (under present-day climate, Tables 2.4 and 2.5).
The sulfate burden increases 39% to 0.39 Tg S as a result of higher global SOy emissions. Gas-
phase formation of SO42~ increases 79% and represents 35% of sulfate production (compared to
26% in the present-day). Sulfate production by aqueous HoO4 reaction also increases by about 21%,
but O3 aqueous production decreases almost 59%. Liao et al. (2006) also indicate that with future
emissions, in-cloud production from reaction with O3 will decrease. Present-day in-cloud production
by reaction with Og is largest over North America and Europe and these regions are projected to
have lower SO5 emissions in the future. Despite increases in both wet and dry deposition of sulfate,
the sulfate lifetime increases slightly compared to the present-day to 3.4 days. Globally, higher
NO, and ammonia emissions lead to the nitrate aerosol burden increasing 28% compared to the
present-day. Both nitrate production and wet deposition increase in magnitude, and the nitrate
lifetime decreases from 7.6 to 5.8 days. The ammonium burden increases 53% to 0.37 Tg, but the

ammonium lifetime remains relatively constant at 3.7 days. All source and loss processes increase
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in magnitude for ammonium and nitrate aerosol.

2.6.4 Effect of Changes in Both Climate and Anthropogenic Emissions

Most studies show the future sulfate burden following the global change in SOy emissions (Liao
et al., 2006; Bauer et al., 2007; Shindell et al., 2007). In contrast, for the Bl scenario in 2030,
Unger et al. (2006) calculated an increased sulfate burden despite decreased global SOs emissions;
this effect was attributed to emissions shifting to subtropical regions with higher oxidation rates
and lower wet deposition. The predicted sulfate burden change in the present study is larger for
changes in both climate and emissions together than for either change alone (Table 2.4). Changes in
the sulfate production and loss processes are dominated by the effects of changes in SOy emissions
alone, but the effects of climate change and emissions together on gas-phase production of sulfate
are not additive. The sulfate lifetime increases slightly over the control case by 0.3 days.

The aerosol nitrate burden is predicted to remain relatively constant at 0.35 Tg considering
combined changes in climate and emissions (Table 2.5). However, the nitrate lifetime decreases
significantly to 5.1 days. Formation increases due to higher precursor (NO, and NHj3) emissions but
decreases due to higher temperatures; the two effects effectively compensate for each other in terms
of the global burden. For other scenarios or models, one effect may dominate over the other (Liao
et al., 2006; Bauer et al., 2007). Shindell et al. (2007) calculated that the nitrate burden (excluding
nitrate on dust) was approximately the same in 2030 and 2050 but slightly lower than that in the
present-day under A1B despite increasing global NO, and NHj3 emissions. The assumed increase in
NHj3 emissions was much smaller in the work of Shindell et al. (2007) than in other studies (Adams
et al., 2001; Liao and Seinfeld, 2005; Liao et al., 2006; Bauer et al., 2007). Bauer et al. (2007)
(A1B 2030) determined that future nitrate depends most strongly on changes in ammonia emissions
between the present and 2030. Studies that consider only emissions changes and not the effects
of climate change on future nitrate levels show a quadrupling of the nitrate global burden in 2100
under the A2 scenario (Adams et al., 2001; Liao and Seinfeld, 2005). The current study highlights

the need to consider the effect of climate change when predicting future aerosol levels.
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For ammonium, the global burden increase under both climate and emission changes is primarily
due to increased anthropogenic NH3 emissions with some dampening from climate change. The
lifetime of ammonium is predicted to remain relatively constant due to an increased burden and an

increased rate of production.

2.7 Implications for Eastern U.S. Outflow

In this section, the effect of changes in climate and emissions on sulfur outflow from the U.S. East
Coast are examined. SO, and SO4%~ in U.S. outflow were chosen for further examination since
pollution transport has been shown to affect sulfate concentrations over the Atlantic Ocean and on
different continents (Park et al., 2004; Benkovitz et al., 2006; Heald et al., 2006; Chin et al., 2007,
Koch et al., 2007; Liu et al., 2008). The effect of long-range transport on nitrate concentrations (Park
et al., 2004) is less well known. To quantify the outflow of sulfur from the U.S., the rate of transport of
sulfur is obtained at 67.5° W from 26° to 50° N (Figure 2.10). Note that some pollution from Canada
will also be included in this outflow. For the present-day simulations performed here, the largest
seasonal SO, (SO, = SO, + SO,427) outflow rate across this plane occurs during DJF followed by
MAM. Exported SO, tends to have significant contributions of SO42~ and SO, although SO; usually
dominates in winter and SO42~ can dominate in summer reflecting the shift in photochemistry and
SO42~ production in the U.S. DJF also experiences particularly strong westerlies (Figure 2.5), which
can lead to higher rates of export than in other seasons.

Table 2.6 shows the annually averaged and DJF seasonal transport rates of SOz, SO42~, and
SO, across 67.5° W from 26° to 50° N for the present-day and future. The table also shows how the
transport is predicted to change in the future due to changes in climate and emissions combined.
Outflow of SO; and SO42~ decreases in the future annually as well as during DJF as a result of
lower SO9 emissions and weaker DJF westerlies. The changes in SO, outflow are substantial; export

is reduced 45% on an annual basis and 49% during DJF.
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2.8 Conclusions

Changes in both climate and emissions will influence future inorganic aerosol (sulfate, nitrate, and
ammonium) concentrations. The atmospheric chemical transport model, GEOS-Chem, driven by
meteorology from the GISS GCM, allows for the separation of the effects of changes in climate from
those in emissions. The GEOS-Chem/GISS framework with the inorganic gas-aerosol equilibrium
model, ISORROPIA II, generally provides a good representation of present-day sulfate, nitrate, and
ammonium levels in the United States; an exception is the under-prediction of nitrate in the western
United States. Ammonia inventories represent a significant source of uncertainty for nitrate aerosol
predictions, but sensitivity tests indicate that changes to the NHjs inventory alone will likely not
correct nitrate estimates in the West.

Future changes in meteorological parameters such as precipitation are somewhat uncertain. This
work is intended to give an indication of how sulfate, nitrate, and ammonium aerosols may respond to
future climate for the A1B scenario in 2050 and some meteorological changes that may be important
for aerosols in this, and other scenarios. Climate change alone is predicted to impact aerosol concen-
trations with different climatic changes being important in different seasons. In some seasons, like
winter, many different species show a similar pattern and one meteorological change appears to dom-
inate changes in aerosol concentrations, whereas in other seasons, like summer, a single controlling
factor cannot be isolated. Although aerosols are particularly sensitive to changes in precipitation,
changes in precipitation are not always the governing factor for changes in concentrations.

Simulations based on projected future emissions indicate that higher PM levels may occur in
winter (DJF) due to increased nitrate aerosol, but domestic SO2 emission reductions will have
benefits in all seasons. This study highlights the important role of ammonia emissions in determining
inorganic aerosol levels. Allowing ammonia to increase while reducing sulfate partially negates some
advantages of SO controls.

Studies summarized by the IPCC (2007) indicate that extreme meteorological events can be ex-
pected to become more prevalent in the future. Although the study here focuses on seasonally and

annually averaged concentrations, the effects of climate change on short-term, high concentration
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events merits examination. High concentration events may show trends different from those exam-
ined here as they are likely to reflect changes in episodic events. In addition, under the emission
scenario considered here (A1B) domestic emissions of NO, and SOz are predicted to decrease while
global emissions increase. The result of domestic SOy emissions reductions will have benefits for the
North Atlantic and other regions that receive U.S. pollution outflow. The implications of climate

and emissions changes on intercontinental transport should be further examined.
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Table 2.1: Present-day and 2050 predicted (IPCC A1B scenario) emissions of aerosol precursors.

Global U.S.@
Species 2000 2050 2000 2050
NO, (Tg N/yr)
aircraft 0.5 0.5 0.11 0.11

anthropogenic 23.7 479 6.11 3.88
biomass burning 6.5 8.1 0.05 0.08
biofuel 2.2 2.1 0.01 0.01
fertilizer 0.5 0.9 0.05 0.06
NHj (Tg N/yr)

anthropogenic 33.3  50.5 2.11 3.31
biomass burning 5.9 6.1 0.05 0.05

biofuel 1.6 1.7 0.18 0.16
natural 14.2  14.2 0.58 0.58
SOy (Tg S/yr)

aircraft 0.1 0.1 0.02 0.02

anthropogenic 61.2 81.8 9.24 2.35
biomass burning 1.2 2.0 0.01 0.03

biofuel 0.3 0.3 <0.01 <0.01
volcanos 5.5 5.5 0.07 0.07
ships 4.2 5.4 — —
SO4%~ (Tg S/yr)

anthropogenic 2.0 2.6 0.16 0.04

2U.S. emissions are for the contiguous states only.
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Table 2.2: Predicted changes in natural emissions due to predicted climate change (IPCC A1B
scenario).

Global U.S.@

Species 2000 2050 2000 2050
DMS (Tg S/yr) 16.0 16.0 - -
NO, (Tg N/yr)

lightning 4.7 5.6 0.08 0.09
soil 5.9 6.4 0.36 0.40
Seasalt (Tg/yr)

accumulation 71.5 72.5 - —
coarse 5322.0 5395.3 —

Biogenic HCs® (Tg C/yr)  631.9  778.2 4237 52.06

¢U.S. emissions are for the contiguous states only.
Tsoprene, monoterpenes, acetone, other alkenes
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Table 2.4: Global sulfate budget.

2000 Climate 2050 Climate 2000 Climate 2050 Climate
2000 Emissions 2000 Emissions 2050 Emissions 2050 Emissions

Burden (Tg S) 0.28 0.28 0.39 0.40
Emission (Tg S/yr) 2.04 2.04 2.62 2.62
Production (Tg S/yr)

Gas-phase 8.24 8.15 14.74 14.92
H505 in-cloud 19.53 19.37 23.70 23.17
O3 in-cloud 1.54 1.52 0.63 0.57
On fine sea salt 0.16 0.16 0.16 0.16
Deposition (Tg S/yr)

Wet 28.72 28.35 37.91 37.31
Dry 2.80 2.89 3.95 4.14

Lifetime (days) 3.2 3.3 3.4 3.5
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Table 2.5: Global budgets of nitrate and ammonium aerosol. Budgets are for present-day and
future climate (2000C, 2050C) and present-day and future emissions (2000E, 2050E).

Nitrate Ammonium
2000C  2050C 2000C 2050C 2000C 2050C 2000C 2050C
2000E 2000E 2050E 2050E 2000E 2000E 2050E 2050E

Burden (Tg) 035 027 044 035 024 023 037  0.36
Production (Tg/yr) 168 151 280 248 243 231 370 354
Wet deposition (Tg/yr)  13.7 122 231 203 211 199 322 305
Dry deposition (Tg/yr) 3.1 2.9 5.0 4.6 3.2 3.2 4.8 4.9

Lifetime (days) 7.6 6.6 5.8 5.1 3.7 3.6 3.7 3.7




49

Table 2.6: Annually averaged and wintertime outflow in kgS/s of SO, from the Eastern U.S.
(location depicted in Figure 2.10) for the present-day (1999-2001) and future (2049-2050) considering
both changes in climate and emissions. The percent change (in %) between the present-day and
future is shown in right column.

Present-day Future Percent Change

Annual (kgS/s)

SO2 38 19 -51%
S042~ 27 17 -37%
SO, 65 35 -45%
DJF (kgS/s)

SO2 78 33 -58%
S042~ 36 26 -29%

SO, 115 59 -49%
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Sulfate Nitrate Ammonium
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0.00 1.89 3.77 5.66 0.00 1.27 2.53 3.80 0.00 0.84 1.68 2.52 [ug/m®]

Figure 2.1: Present-day (year 1999-2001 meteorology and emissions) predictions of surface-level
sulfate, nitrate, and ammonium aerosols for the United States. Each of the first four rows is a
seasonal average (DJF, MAM, JJA, SON) and the bottom row is the annual average over three
years.
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Figure 2.2: Present-day predictions of sulfate, nitrate, and ammonium aerosols compared to CAST-
NET observations. Simulated values are seasonal averages for the three-year period 1999-2001.
CASTNET measured values are converted to model resolution for comparison and are seasonally
averaged over 1998-2001. Circles represent western U.S. sites (west of 92.5° W) and crosses represent
eastern U.S. sites. Also shown is the 1:1 line (dashed) and linear fit (solid line and equation). R is
the correlation coefficient between simulated and measured concentrations.
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Figure 2.3: Predicted change in U.S. surface temperature from the present-day (1999-2001) to
future (249-2051).
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(a) Precipitation Change (b) PBL Depth Change
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Figure 2.4: Predicted change in precipitation and afternoon planetary boundary layer (PBL) depth
between the present-day (1999-2001) and future (2049-2051). The change is expressed as percent
change relative to present-day.
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Figure 2.5: Predicted level 1 (approximately 0.13 km) zonal wind for the present-day (1999-2001)
and future (2049-2051) over the U.S. (averaged from 120° to 60° W longitude).
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Figure 2.6: Predicted change in U.S. surface-level aerosol concentrations due to changes in climate
alone from the present-day (1999-2001) to the future (2049-2051). Greenhouse gases follow the IPCC
scenario A1B. Anthropogenic emissions are held at present-day values, but natural emissions may
change in response to climate.
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Figure 2.7: Predicted changes in aerosol concentrations due to climate change from the present-
day (1999-2001) to the future (2049-2051) with (a) present-day emissions and (b) future emissions
(annually averaged). Column (a) is the same as the annual plots in Figure 2.6 except with a different
scale. Column (a) represents the difference between simulations of future climate with present-day
emissions and present-day climate with present-day emissions. Column (b) represents the difference
between future climate with future anthropogenic emissions and present-day climate with future
anthropogenic emissions.
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Figure 2.8: Predicted changes in U.S. surface-level aerosol concentrations from the present-day
(1999-2001) to the future (2049-2051) due to changes in anthropogenic emissions only (meteorology
is held at present-day values). Emissions follow IPCC A1B scenario as described in the text.
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Figure 2.9: Predicted changes in U.S. surface-level aerosol concentrations due to changes in anthro-
pogenic emissions and climate from the present-day (1999-2001) to the future (2049-2051). Emissions
follow IPCC A1B scenario as described in text.
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40°W

Figure 2.10: Annual change in SO, (SO2 + SO427) outflow from the U.S. due to changes in
climate and emissions from present-day to 2050. Transport is calculated through a plane (shown)
that runs along 67.5° W from 26° to 50° N. Numbers are averaged over the three present-day years
or future years as applicable.
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Chapter 3

A global perspective on aerosol
from low-volatility organic
compounds *

*Reproduced with permission from “A global perspective on aerosol from low-volatility organic compounds” by H.
O. T. Pye and J. H. Seinfeld, Atmospheric Chemistry and Physics, 10, 4377-4401. Copyright 2010 by the Authors.
CC Attribution 3.0 License.
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3.1 Abstract

Global production of organic aerosol from primary emissions of semivolatile (SVOCs) and interme-
diate (IVOCs) volatility organic compounds is estimated using the global chemical transport model,
GEOS-Chem. SVOC oxidation is predicted to be a larger global source of net aerosol production
than oxidation of traditional parent hydrocarbons (terpenes, isoprene, and aromatics). Using a
prescribed rate constant and reduction in volatility for atmospheric oxidation, the yield of aerosol
from SVOC:s is predicted to be about 75% on a global, annually-averaged basis. For IVOCs, the use
of a naphthalene-like surrogate with different high-NOy and low-NO, parameterizations produces a
global aerosol yield of about 30%, or roughly 5 Tg/yr of aerosol. Estimates of the total global organic
aerosol source presented here range between 60 and 100 Tg/yr. This range reflects uncertainty in
the parameters for SVOC volatility, SVOC oxidation, SVOC emissions, and IVOC emissions, as well
as wet deposition. The highest estimates result if SVOC emissions are significantly underestimated
(by more than a factor of 2) or if wet deposition of the gas-phase semivolatile species is less effective
than previous estimates. A significant increase in SVOC emissions, a reduction of the volatility of
the SVOC emissions, or an increase in the enthalpy of vaporization of the organic aerosol all lead to
an appreciable reduction of prediction/measurement discrepancy. In addition, if current primary or-
ganic aerosol (POA) inventories capture only about one-half of the SVOC emission and the Henry’s
Law coefficient for oxidized semivolatiles is on the order of 103 M/atm, a global estimate of OA
production is not inconsistent with the top-down estimate of 140 Tg/yr by (Goldstein and Galbally,
2007). Additional information is needed to constrain the emissions and treatment of SVOCs and

IVOCs, which have traditionally not been included in models.

3.2 Introduction

Organics represent a significant fraction of the aerosol mass in the atmosphere (Zhang et al., 2007).
Bottom-up estimates of particulate matter concentrations, such as those that would be used to

estimate aerosol radiative forcings, visibility, or implications for public health, must be able to
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represent the processes critical for organic aerosol formation. Work by Lipsky and Robinson (2006)
and Robinson et al. (2007) as well as others (Huffman et al., 2009a,b) indicates that what has
traditionally been considered non-volatile primary organic aerosol (POA) is actually a dynamic
system of semivolatile species that partition between the gas and aerosol phases as well as undergo
gas-phase oxidation to form species of different volatilities that can condense to form secondary
organic aerosol (SOA). We present the first estimates of the contribution of primary semivolatile
organic compounds and other low-volatility organic compounds to global aerosol production.

Emissions of low-volatility organic compounds can be subdivided somewhat arbitrarily into two
classes based on volatility (Donahue et al., 2006): semivolatile organic compounds (SVOCs) and
intermediate volatility organic compounds (IVOCs). Semivolatile organic compounds are those that
partition directly between the gas and aerosol phases under ambient conditions and include com-
pounds with saturation concentrations roughly between 0.1 and 10% ng/m3. SVOC emissions include
traditional POA plus any vapor phase species that are in direct equilibrium with the particle phase.
SVOCs include species such as large polycyclic aromatic hydrocarbons (PAHs) (e.g. fluoranthene)
and long n-alkanes (e.g. n-pentacosane).

Intermediate volatility organic compounds (IVOCs) are more volatile than SVOCs and roughly
span saturation concentrations from 10% to 10°png/m3. Since IVOCs partition appreciably to the
aerosol phase only under very high aerosol loadings (loadings that typically exceed those found in
urban areas), IVOCs are assumed to be emitted entirely in the gas phase. However, due to their
relatively low volatility compared to traditional SOA precursors, IVOCs can be easily converted to
lower volatility products that partition to the aerosol phase. Species that would fall in the IVOC
range include small PAHs (e.g. naphthalene), intermediate length alkanes (e.g. n-hexadecane), and
phenols.

Species with saturation concentrations below 0.11g/m? are also emitted. Under most atmo-
spherically relevant conditions, such species partition essentially entirely to the aerosol phase and
can be considered non-volatile. They are estimated to comprise less than 5% of traditional POA

inventories (Grieshop et al., 2009b).
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A major obstacle to representing low-volatility organic compounds in atmospheric models is that
the identities of many of the species that fall in the SVOC and IVOC categories are unknown.
In addition, current inventories used in atmospheric models may not include many of the IVOC
emissions (for example, see the work by Shrivastava et al., 2008). From a modeling perspective,
an efficient lumping mechanism must be developed. Since the volatility represents the tendency of
a species to be in the particle phase, an effective approach is to lump species based on volatility.
Information would then be needed about the volatility of the emissions and how the volatility changes
with atmospheric processing. A two-dimensional approach using a volatility basis set combined with
carbon oxidation state has also been proposed (Jimenez et al., 2009).

Isothermal chamber dilution (Grieshop et al., 2009b), thermodenuder systems (Grieshop et al.,
2009b; Huffman et al., 2009b), and dilution samplers (Lipsky and Robinson, 2006) have been used
to constrain the volatility of organic compound emissions. The volatility distribution of SVOC
emissions from various sources, such as wood burning and diesel exhaust, show sufficient similarity
that they can be represented with a single volatility distribution (Robinson et al., 2007; Shrivastava
et al., 2006; Grieshop et al., 2009b). Volatility fits of SVOC emissions have typically been assumed
to be directly applicable to existing POA inventories based on the assumption that emission factors
tend to be measured at unrealistically high organic loadings and often use filters that collect gas
phase emissions as well (Grieshop et al., 2009b). IVOC emissions must typically be estimated as
they are not captured by traditional POA sampling techniques. IVOC emissions may also vary
considerably from source to source (Shrivastava et al., 2008; Grieshop et al., 2009a).

Aerosol formation from SVOCs, IVOCs, and their oxidation products has been implemented in
regional models such as PMCAMx and CHIMERE (Robinson et al., 2007; Shrivastava et al., 2008;
Murphy and Pandis, 2009; Hodzic et al., 2010) as well as box models (Dzepina et al., 2009; Grieshop
et al., 2009a). The SVOCs, and IVOCs if applicable, are typically represented using the volatility
basis set framework (Donahue et al., 2006) and allow for oxidation in the gas phase and formation
of lower volatility products. Replacing the traditional non-volatile POA with semivolatile POA in

regional models has led to improvements in the urban to regional organic aerosol (OA) concentra-
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tion ratio (Robinson et al., 2007; Shrivastava et al., 2008) and predicts an ambient aerosol more
dominated by oxygenated species (Shrivastava et al., 2008; Murphy and Pandis, 2009), consistent
with observations.

In this work, organic aerosol formation from SVOCs and IVOCs is studied using the global
chemical transport model, GEOS-Chem. Section 3.3 describes the global model framework as well
as the emissions and atmospheric transformation of SVOCs and IVOCs. Results are presented in
Sect. 3.4 in terms of predicted aerosol levels, global budgets, and modern vs. fossil carbon. The
paper finishes by addressing model uncertainties (Sect. 3.5) and placing the results in the larger

context of top-down vs. bottom-up global aerosol budgets (Conclusions).

3.3 Model Description

3.3.1 Global Model

The global chemical transport model, GEOS-Chem (version 8-01-04, http://acmg.seas.harvard.edu/
geos/), is used to simulate year 2000 organic aerosol concentrations. Simulations are conducted
at 2° latitude by 2.5° longitude horizontal resolution using GEOS-4 assimilated meteorology with
30 vertical layers going up to 0.01 hPa for baseline simulations. For computational speed, and in
preparation for climate change-organic aerosol interaction studies, sensitivity tests are performed
at 4° latitude by 5° longitude horizontal resolution with 23 vertical levels up to 0.002 hPa using
GISS GCM Model IIT meteorology (Rind et al., 2007; Wu et al., 2007, 2008). All simulations are
conducted for year 2000 with a minimum of 11 months of initialization. Simulations include fully
coupled ozone-NOy-hydrocarbon chemistry (Bey et al., 2001), and formation of inorganic (Park
et al., 2004; Pye et al., 2009) and organic aerosol (Park et al., 2003, 2006; Henze and Seinfeld, 2006;

Liao et al., 2007; Henze et al., 2008).
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3.3.2 Absorptive Partitioning

Formation of organic aerosols occurs by absorptive partitioning (Odum et al., 1996), and the par-
titioning framework used here is based on the work of Chung and Seinfeld (2002). An equilibrium
partitioning coefficient, Kow,;, describing the partitioning between the gas and aerosol phases of a
semivolatile species can be calculated assuming a pseudo-ideal solution and absorptive partitioning

theory (Pankow, 1994):

RT

—_— 3.1
M, PP (3.1)

Kowm,i =

where R is the gas constant, T is temperature, M; is the molecular weight, ; is the activity coefficient
of compound i in the aerosol phase, and P; P is the vapor pressure of pure species i at temperature
T'. Absorptive partitioning can also be described using a saturation concentration, C}, which is the
inverse of the equilibrium partitioning coefficient (for a discussion of the difference between C; and

Kowm,; see the supporting material from Donahue et al., 2006):

Kowm,: = (3.2)

cr

K2

In terms of concentrations of the semivolatile i, [G;] and [A;], in the gas and aerosol phases,

respectively,
[A]

Kowm,i = m (3.3)

where [M,] is the concentration of particle-phase absorptive material into which the semivolatile
compound can partition. In this study, the partitioning medium includes only the particle-phase or-
ganics (inorganic constituents and water included in some studies are not considered here). Primary
and secondary organic aerosol is assumed to form a single absorbing phase. When non-volatile POA

is present,

[Mo] = [POA] + Z[AZ]7 (34)
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and if POA is semivolatile, this reduces to,

M) = STIA). (3.5)

Combining Egs. (3.3) and (3.4) or (3.5) as appropriate, along with a mass balance, yields an
implicit equation for M,. Organic aerosol will form only when (i.e. the implicit equation for M, will

only have a solution when) (Chung and Seinfeld, 2002),
> Komi ([A] +[Gi]) > 1. (3.6)

Simulations indicate that this condition is generally satisfied with a few exceptions. Formation of
organic aerosol through other means, such as cloud processing or reactive uptake, are not considered

in the present study.

3.3.3 SOA from Traditional Precursors

SOA from traditional precursors follows earlier studies for terpenes (Chung and Seinfeld, 2002),
isoprene (Henze and Seinfeld, 2006), and aromatics (Henze et al., 2008). Parent hydrocarbons are

oxidized in the gas-phase to form a series of semivolatile species,

HC+OX — O£1P1 +OZ2P2 + ... (37)

where aq,as,... are mass-based stoichiometric coefficients for products Py, Po, ... Sometimes,
only one semivolatile or nonvolatile product is necessary to represent chamber data (like for low-
NOy aromatic oxidation (Ng et al., 2007; Chan et al., 2009) or nitrate radical oxidation of terpenes
(Chung and Seinfeld, 2002)), but typically two semivolatile products have been used (Odum et al.,
1996) with partitioning parameters, a; and Koum,;, determined by fits to laboratory data. Models
such as PMCAMx have been used to investigate the possibility of continued aging of the SOA formed

from traditional parent hydrocarbons due to continued OH oxidation of the gas-phase semivolatile
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species (Lane et al., 2008). In the present work, traditional SOA species are not considered subject

to continued oxidation beyond that captured in chamber studies.

3.3.4 Aerosol from SVOCs

POA is defined to be any SVOC that partitions directly to the particle phase after emission without
undergoing oxidation. In source regions, there is likely to be net POA production, but as air masses
move to more remote regions, POA will be driven out of the particle phase due to dilution and
oxidation of the gas-phase species. Oxidation of the primary gas-phase SVOCs can lead to lower

volatility products that partition to make SOA.

3.3.4.1 SVOC Emissions

SVOCs from all sources are assumed to be emitted as two semivolatile surrogate species, SVOC; and
SVOC,, in roughly equal fractions of 0.49 and 0.51 based on the work by Shrivastava et al. (2006)
and Lipsky and Robinson (2006). Partitioning coefficients for SVOC; and SVOC, are given in
Table 3.1 and correspond to saturation concentrations of roughly 1600 and 20 pg/m?3. Under most
atmospherically relevant conditions, only the lower volatility component is expected to partition
appreciably to the aerosol phase.

The SVOC emissions are based on the traditional non-volatile POA emission inventory used
in GEOS-Chem (Park et al., 2003, 2006). The non-volatile POA inventory includes contributions
from biomass burning, biofuel burning, and anthropogenic sources (Table 3.2 and Fig. 3.1). Monthly
biomass burning emissions are based on the Global Fire and Emission Database version 2 (GFEDv2)
for year 2000 (van der Werf et al., 2006). Global biofuel and anthropogenic organic carbon emissions
are from the technology-based inventory by Bond et al. (2004). Over North America, anthropogenic
emissions are superseded with those based on work by Cooke et al. (1999). US biofuel emissions are
constructed based on residential and industrial wood fuel consumption, as implemented in the work
of Park et al. (2003). The scaling and seasonal distribution of US anthropogenic and biofuel organic

carbon (OC) emissions are also detailed in the work of Park et al. (2003).
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Providing a global estimate of SVOC emissions is difficult due to the fact that it is unclear what
portion of the SVOCs traditional POA represents, and traditional POA emissions themselves are
uncertain. Estimates of the traditional POA emission rate in global models has ranged from 17 to
142 Tg/yr as summarized in the work of Farina et al. (2010). Note that since biomass burning is
a significant POA contributor, emissions of SVOCs likely vary from year to year as different areas
become more or less prone to burning. Part of the uncertainty in global OC emissions, estimated
at a factor of two in the work by Bond et al. (2004), is likely due to the fact that traditional POA
inventories try to capture organic aerosol emissions over all atmospherically relevant conditions using
measurements or observations of emission factors under a single or limited set of conditions in terms
of temperature and organic aerosol loadings. For a species that is semivolatile, like POA, one set of
conditions will not characterize the emissions well.

Debate continues on whether traditional POA inventories represent most SVOC emissions or a
very limited subset. POA emission factors are often obtained under organic concentrations higher
than atmospherically relevant, which may force organic vapors that would be in the gas phase
under ambient conditions into the particle phase during sampling. Under such conditions, the
POA inventory may be a good representation of SVOC emissions. However, an examination of
the Schauer et al. (2001) inventory for wood burning, which gives OC emission factors consistent
with those used in the GFEDv2 biomass burning inventory, shows individual PAH compounds with
saturation concentrations of 12, 100, and 9x10% ng/m? being emitted 91, 56, and 4% in the particle
phases. Thus, compounds over the entire SVOC volatility range exhibit appreciable mass in the
gas and particle phase. Furthermore, models using non-volatile POA tend to underestimate, not
overestimate, ambient organic aerosol concentrations (Heald et al., 2005; Liao et al., 2007). We
proceed by assuming traditional non-volatile POA inventories likely represent a subset of SVOC
emissions.

The SVOC emission rate in grid cell I, .J can be estimated using:

Gr
POAR

Esvoc (I, J) = |:1 + :| Exvroa (I, J) (38)
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where Egyoc is the emission rate of SVOCs (Tg C/yr), Gg is the emission of the gas-phase SVOC sur-
rogate in a representative study (mg/kg), POAR is the emission of organic aerosol in that same repre-
sentative study (mg/kg), and Exypoa is the traditional, non-volatile POA emission rate (TgC/yr).
For unit conversion purposes, the organic matter to organic carbon (OM/OC) ratio is assumed to
be the same for Gg and POAg in the above equation. Using the work of Schauer et al. (2001)
as the representative study, the ratio of gas-phase SVOC surrogates to the particle-phase organ-
ics (Gr/POAR) is about 0.27. The gas-phase SVOC surrogate estimate is based on adding up
the gas-phase speciated emissions that were also found in the particle phase. Some of the SVOC
emissions could be part of the gas-phase unresolved complex mixture in the work of Schauer et al.
(2001) or were misclassified as IVOCs and are not reflected in the 0.27 estimate. Accounting for
all the gas-phase species on the PUF sampling train/filter and the entire gas-phase UCM would
increase the 0.27 estimate to 0.61. The possibility remains that POA inventories may represent a
significantly different fraction of SVOCs than in the study of Schauer et al. (2001), and scaling POA
emissions up 27% is likely a fairly conservative estimate, given that the uncertainty in the baseline
POA emissions is easily a factor of 2 (Bond et al., 2004). Global emissions of SVOCs are predicted
to be 37 TgCyr~! (Table 3.2 and Fig. 3.1).

Since traditional POA inventories are reported as the mass of carbon emitted, the mass of organic
matter that includes any additional oxygen, nitrogen, or other species associated with the carbon
must be determined. The range of OM/OC ratios for SVOCs likely ranges from just above 1 for
carbon-rich species to above 2 for highly oxygenated species such as those found in wood smoke
(Schauer et al., 2001). Simulations here use a value of 1.4, which is only slightly higher than the
OM/OC ratio estimated for hydrocarbon like organic aerosol, HOA (OM/OC: 1.2-1.3) (Aiken et al.,
2008; Zhang et al., 2005), slightly lower then the OM/OC ratio for primary biomass burning organic
aerosol, P-BBOA (OM/OC: 1.6-1.7) (Aiken et al., 2008), and consistent with the wood burning
inventory of Schauer et al. (2001) (OM/OC: 1.4-1.7). The OM/OC ratio affects the partitioning of

organics since it determines the total SVOC mass available for partitioning.
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3.3.4.2 SVOC Oxidation

Primary SVOC emissions age in the gas phase by reaction with OH, based on the wood burning
chamber experiments of Grieshop et al. (2009a). An OH rate constant of 2x107' cm?/molec/s is
assumed for the present work. The mass of the parent SVOC is assumed to increase 50% through
functionalization, a value slightly larger than, but still consistent with, Grieshop et al. (2009a) for
oxidation of wood smoke. The volatility of the SVOC is reduced by a factor of 100 as a result of the
OH reaction. This represents a slightly slower rate of oxidation, but a more aggressive addition of
oxygen and reduction in volatility, than that used by Robinson et al. (2007) and was found to give
better O:C ratio agreement with experiments than the traditional Robinson et al. (2007) parameters
in the work of Grieshop et al. (2009a). Table 3.3 summarizes the SVOC oxidation parameters
and compares them with the optimized parameters in the work of Grieshop et al. (2009a) and the
parameters of Robinson et al. (2007).

The mechanism by which aging of low-volatility organic compounds occurs is not well-constrained.
Previous work (Robinson et al., 2007) has suggested that aging occurs as the result of sequential
OH oxidation reactions in the gas-phase. The SVOCs in the present study are assumed to undergo
only one generation of oxidation. This assumption is made for three main reasons. First, chamber
studies, which are the source of oxidation data, tend to access only initial reactions. Secondly, since
the model assumes that oxidation leads only to functionalization of the molecule and therefore a
reduction in volatility, it is likely to be less valid for later generations of oxidation in which molecular
fragmentation becomes more important (Kroll et al., 2009). Lastly, for a 50% (or 40% as used by
Grieshop et al., 2009a) increase in mass per generation, a parent SVOC with an initial OM/OC
of 1.4 would require only 1 generation of oxidation to reach a final OM/OC of about 2, consistent
with the observed OM/OC of aged aerosol in the experiment on which the parameters are based
(Grieshop et al., 2009a), with the OM/OC of oxygenated organic aerosol, OOA (OM/OC: 1.8-2.4,
2.2) (Aiken et al., 2008; Zhang et al., 2005), and with other estimates of the OM/OC of oxidized

regional aerosol (OM/OC: 2.1) (Turpin and Lim, 2001).
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3.3.5 Aerosol from IVOCs

IVOCs are emitted entirely in the gas phase and form aerosol only upon oxidation. Since naphthalene
is predicted to be a major SOA precursor in the oxidation of wood burning and diesel combustion
exhaust (Chan et al., 2009), here, IVOCs are represented as a naphthalene-like surrogate that forms
aerosol according to the chamber studies of Chan et al. (2009).

In addition to naphthalene, other important classes of speciated IVOCs include alkanes and phe-
nols (Schauer et al., 2001, 2002). A significant portion of IVOCs likely belongs to the unresolved
complex mixture and thus its identity and aerosol yield is not known. Aerosol yield information is
available for many alkanes (Jordan et al., 2008) as well as naphthalene and functionalized naphtha-
lene species (Chan et al., 2009). Gasoline combustion likely produces more alkanes than aromatics
(Schauer et al., 2002), but wood burning, globally the largest source of POA, likely emits more
gas-phase aromatics than alkanes (Schauer et al., 2001; Hays et al., 2002). Approximately 75%
of the speciated IVOC surrogate in the wood burning inventory of Schauer et al. (2001) is phenol
(C* about 10° ug/m3) or substituted phenol compounds. Due to their ring structures, these phenol
compounds are likely to behave more like naphthalene than an alkane in terms of yields under high-
NOy vs. low-NOy conditions. So, if all IVOCs are to be represented with one surrogate compound,

naphthalene is a good choice.

3.3.5.1 IVOC Emissions

Since naphthalene is an important IVOC from many sources including wood combustion and vehicle
exhaust (Chan et al., 2009; Schauer et al., 2001, 2002), IVOC emissions are assumed to be spatially
distributed like naphthalene. First, a baseline emission inventory of naphthalene (NAP) is created.
For biomass and biofuel burning, this is done using an emission ratio to CO. An emission factor
of 0.025 g NAP /kg dry matter burned is used along with CO emission factors (Andreae and Merlet,
2001) to produce emission ratios of 0.0602 and 0.0701 mmol NAP/mol CO for biomass and biofuel
burning, respectively. The emission factor presented by Andreae and Merlet (2001) is consistent

with that of naphthalene presented by Hays et al. (2002) for the burning of foliar fuels, but about a
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factor of 10 lower than the value in the work of Schauer et al. (2001). Anthropogenic naphthalene
emissions, from sources such as traffic oil combustion, consumer products, and industrial sources
(Zhang and Tao, 2009), are spatially distributed like benzene from the EDGAR2 inventory and are
aseasonal. Emissions given for 1990 are scaled to year 2000 based on CO emissions from liquid fossil
fuel usage (Bey et al., 2001; Fu et al., 2008). The magnitude of non-biomass and biofuel burning
emissions of naphthalene is estimated based on Zhang and Tao (2009) to be about 0.09 Tg C/yr.
The baseline naphthalene emission inventory from all sources constructed here is approximately
0.22TgC/yr (Table 3.2).

As is the case for SVOCs, the magnitude of total IVOC emissions is uncertain. To estimate total
IVOC emissions, the naphthalene emission inventory is scaled up. This assumes that the relative
contributions of biomass burning vs. biofuel burning vs. anthropogenic sources to IVOC emissions
are consistent with those of naphthalene. The emission rate of IVOCs in grid cell I,J (Eryvoc) is

determined by scaling the naphthalene emission (Exap),

Ewoc(I,J) = Exapr(I,J) (3.9)

where, the scaling factor, 3, is estimated from,

Ervoc,BB+BF Ervoc,rot 1
B = ENVPOA BB+BF ( ’ (3.10)
Exveoa,BB+BF /g, \ E1voC,BB+BF /R, \ ENAP,TOT

E 4 p are the global emissions of species A (IVOC, NVPOA: traditional POA, or NAP: naphthalene)
from source type B (BB: biomass burning, BF: biofuel burning, or TOT: total). Subscripts R; and
Ro are used to label the two ratios for further discussion.

The first ratio in Eq. 3.10, R4, is estimated based on the Schauer et al. (2001) inventory for pine
wood burning. Ervoc,Be+BF 1S approximated as any species collected on the filter/polyurethane
foam (PUF) sampling train with only a gas-phase emission reported plus the entire gas-phase unre-
solved complex mixture (UCM). The gas-phase UCM in the work of Schauer et al. (2001) for pine

wood burning represents roughly 10% of the total non-methane organic carbon (gas+aerosol) mass
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emitted. The two contributions (PUF gases and UCM gases) to IVOC emissions are roughly equal.
Using the organic aerosol emission rate (Exvpoa,Bp+pr) from the work of Schauer et al. (2001) as

well, R, is estimated as,

E1voc,BB4+BF

~0.34. (3.11)
ENvPOA,BB+BF

Since the IVOC is spatially distributed like naphthalene, R can be replaced by:

Ervoc,ror  ExapToT
ErvocBB+BF  ENAP.BB+BF

(3.12)

and consequently, only Exap Be+BF is needed to complete the scaling factor.

Thus, our scaling incorporates two ideas: IVOCs are spatially distributed like naphthalene and
the ratio of IVOCs to traditional POA for wood burning sources is 0.34 as in the work of Schauer
et al. (2001). As a result, the predicted scaling factor, 3, is 66 and yields a global IVOC emission
rate of about 15 TgC/yr (Table 3.2 and Fig. 3.1). The large value of the scaling factor, 3, means
that naphthalene itself is actually a relatively small (<2%) contribution to global IVOC emissions.

The IVOC emissions are not linked to the POA emission inventory within each grid cell; rather,
they are spatially distributed like naphthalene. On a global basis, the present work predicts IVOC
emissions of roughly 0.5xPOA in magnitude. As a result of the separation of POA and IVOC
emissions, the ratio of IVOC:traditional POA emissions is roughly 2.1 for anthropogenic sources and
0.34 for biomass and biofuel sources combined. These ratios are consistent with the discussion by
Shrivastava et al. (2008) and box model studies by Grieshop et al. (2009a), indicating that diesel

combustion (an anthropogenic source) may produce relatively more IVOCs than wood burning.

3.3.5.2 IVOC Oxidation

IVOC aging behavior is based on the chamber studies of Chan et al. (2009) and Kautzman et al.
(2010) examining the oxidation of naphthalene under high- and low-NO, conditions. Similar to
light aromatic oxidation (Ng et al., 2007), naphthalene oxidation under high-NOy conditions was

found to produce semivolatile SOA while oxidation under low-NOy conditions was found to produce
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essentially non-volatile SOA. The yield of aerosol ranged from 13 to 30% for the high-NO, oxidation
and was constant at 73% for low-NO, oxidation. For naphthalene, the results indicate that the
first oxidation step is rate-limiting for SOA formation. Calculations using diesel engine and wood
burning emission profiles indicate that naphthalene and other PAHs are responsible for substantially
more SOA than light aromatics on short timescales (about 12h) (Chan et al., 2009), and ambient
aerosol contains compounds indicative of naphthalene oxidation (Kautzman et al., 2010).
Formation of aerosol from IVOC oxidation is modeled similar to the aerosol from aromatic
oxidation in the work of Henze et al. (2008). Reaction of the parent hydrocarbon with OH in the

presence of oxygen results in the formation of a peroxy radical species,

Naphthalene + OH — RO (3.13)

Under high-NOy conditions, reaction of the ROs radical with NO likely dominates over reaction of

RO5 with HO5 or RO5 and thus SOA can be assumed to form from the following channel:

ROy +NO — OLNJPNJ + OtN72PN72 (314)

where the two semivolatile products are described using parameters by Chan et al. (2009). Under
low-NOy conditions, the RO radical is expected to react predominantly with HO5 and lead to one

essentially non-volatile product (Chan et al., 2009; Kautzman et al., 2010):

ROy +HOy — OZH71PH,1 (315)

In practice, the non-volatile SOA product is represented in GEOS-Chem using a partitioning coef-
ficient, Kowm, of 10*m?/ng. Values for the partitioning coefficients and mass-based stoichiometric
coeflicients of all the products are given in Table 3.1, and Table 3.4 contains the gas-phase rate

constants.
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3.3.6 Additional Model Parameters and Specifications

In the current version of GEOS-Chem, the semivolatile products of parent hydrocarbon oxidation
are lumped together into several gas-phase and aerosol-phase tracers (Henze and Seinfeld, 2006; Liao
et al., 2007; Henze et al., 2008). Since the identity of each individual species is not preserved during
transport, some artificial migration of mass between the volatilities may occur. In the present work,
for the SVOC related species, separate tracers are used for each phase (gas and aerosol) as well as
each volatility for a total of 4 tracers related to primary SVOC emissions and 4 tracers for SVOC
oxidation products. The use of separate tracers prevents migration between the different volatilities
during transport which was found to be significant at 4°x5° resolution using a lumped tracer. For
IVOC oxidation, the effects of lumping were found to be less significant, but in order to obtain the
best estimate of IVOC aerosol produced under high-NOy conditions, separate tracers for each of the
IVOC oxidation products are used. Each species with a saturation concentration below 10° pg/m3
in Table 3.1 has a separate gas and aerosol phase tracer. The IVOC has a gas-phase tracer only for a
total of 15 additional tracers for the low-volatility organic aerosol simulation. A list of GEOS-Chem
tracers for a standard full-chemistry SOA simulation can be found in Table 2 in the work of Liao
et al. (2007).

Emitted SVOCs, aged SVOCs, and aged IVOCs in the gas and aerosol phases are subject to wet
and dry deposition. The IVOC surrogate gas is not deposited. Dry deposition is represented by a
resistance in series method (Wesely, 1989), with the surface resistances for aerosols following the work
of Zhang et al. (2001). SVOCs that partition directly to the aerosol phase to form POA are treated
as hydrophobic and are assumed insoluble. Gas-phase SVOC emissions are treated as relatively
hydrophobic with an effective Henry’s law coefficient of 9.5 M/atm and a heat of dissolution, AH/R
of —4700 K based on phenanthrene (Sander, 1999). Other SVOC species, such as long-chain alkanes,
are more hydrophobic with Henry’s law coefficients of 10~* M/atm to 0.3 M/atm. However, SVOCs
such as functionalized phenols or oxygenated species, will likely be more soluble than phenanthrene.
The SVOC and IVOC oxidation products are treated like the traditional SOA species and are

hydrophilic (Henry’s law coefficient of 10° M/atm for all gas-phase semivolatiles), and all SOA is
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scavenged with an 80% efficiency (Chung and Seinfeld, 2002). The effect of a lower Henry’s law
coefficient will be examined in sensitivity studies.

The equilibrium partitioning coefficients of all species are adjusted for temperature based on the
Clausius-Clapeyron equation. As in previous studies using GEOS-Chem, the enthalpy of vapor-
ization is assumed to be 42kJ/mol for all organic species (Chung and Seinfeld, 2002). However, a
discrepancy exists in the predicted enthalpy of vaporization for semivolatile organic aerosol estimated
for complex SOA systems (around 10-40kJ/mol, Offenberg et al. (2006)) and based on theory or
single component systems (around 100kJ/mol, Epstein et al. (2010)). The enthalpy of vaporization

is examined in Sect. 3.4.4.1.

3.3.7 Aerosol Aging

Modeling efforts are still limited in their ability to represent aging that occurs on timescales longer
than a few days, as these conditions are not readily accessed in chamber experiments (Jimenez
et al., 2009). On long timescales, compounds may continue to functionalize and form more aerosol
or may fragment and reduce aerosol formation. Chamber experiments tend to produce aerosol that
resembles semivolatile oxygenated OA, SV-OOA, which is higher in volatility and lower in O:C than
that observed in the atmosphere which tends to be dominated by low-volatility oxygenated OA,
LV-OO0A, with high O:C (Ng et al., 2009). Lane et al. (2008), Murphy and Pandis (2009), Jimenez
et al. (2009), and Farina et al. (2010) have postulated that the semivolatiles formed from traditional
precursors such as isoprene, terpenes, and aromatics continue to oxidize in the atmosphere in the
gas phase. However, the analysis of Chhabra et al. (2010) indicates that the chamber oxidation of
several parent hydrocarbons, including toluene, xylene, and naphthalene, does approach LV-OOA
type aerosol with high O:C. In the work presented here, chemical reaction and aerosol formation
from all parent hydrocarbons (traditional, SVOCs, and IVOCs) is limited to the behavior that is

currently captured in chamber experiments.
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3.4 Results and Discussion

3.4.1 OA from SVOCs and IVOCs

Figure 3.2 shows the amount of organic aerosol predicted to form from direct partitioning of SVOC
emissions (POA), oxidation of SVOCs, and oxidation of IVOCs. Concentrations are shown for the
winter and summer at the surface. The highest POA concentrations (Fig. 3.2a, b) reflect biomass
burning source regions, but anthropogenic source regions such as the US and East Asia also have high
POA concentrations. Compared to POA, the SOA formed from SVOC oxidation is more regionally
distributed (Fig. 3.2¢, d). SOA from IVOC oxidation has a similar spatial distribution to SOA from
SVOCs, but in general, concentrations are lower (Fig. 3.2e, f).

Compared to the traditional simulation with non-volatile POA and no IVOCs, generally less
total organic aerosol is predicted at the surface in the revised simulation with semivolatile POA,
primary SVOC aging in the gas phase, and SOA from IVOCs (see Fig. S1 in supplement located in
Appendix B, note that both traditional and revised simulations form aerosol from traditional SOA
precursors such as biogenic hydrocarbons and light aromatics). The largest decreases in total organic
aerosol are over the biomass burning and isoprene source regions. Small increases of up to 0.2 ug/m3
in organic aerosol are predicted at northern high latitudes in DJF (December-January-February).
The largest surface level, seasonally averaged increase (0.4 png/m?®) occurs during SON (September-
October-November) over Eastern Russia near a biomass burning source region as a result of IVOC
oxidation.

While the revised simulation generally predicts lower total OA concentrations near the surface,
starting at roughly 4 km (model level 7) OA concentrations tend to be higher in the revised simulation
(Fig. S1). Not all regional changes necessarily transition from decreases to increases at 4 km though.
Concentrations over the US during JJA (June-July-August) tend to be lower than the traditional
simulation predicts up until about 7km. Biomass burning outflow (JJA Africa), South American
outflow (JJA and SON), and Asian outflow regions are among the first locations other than high

latitudes at which increases in total OA occur as altitude increases.
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Several factors influence the change in organic aerosol concentration between the traditional and
revised simulations. With semivolatile POA, concentrations will tend to decrease, as a large portion
of the POA is predicted to evaporate. The SVOC emission rate is higher (27%) than the standard
POA emission rate, but not high enough to compensate for POA evaporation. This shift to the gas
phase is reflected in Fig. 3.3, which displays the fraction of primary SVOCs in the particle phase as
POA in the revised simulation. During DJF over the eastern US, about 20% and as much as 27% of
the primary SVOC is partitioned to the aerosol phase. (At 270K, a typical wintertime temperature
in the Northeast US, the saturation concentration of SVOC, is about 3 pg/m?.) In JJA, 10 to 20%
of the SVOC is in the aerosol phase. In the western US as much as 36% is in the particle phase due
to high biomass burning emissions. In addition to the effect of evaporation, the OM/OC ratio for
POA decreases from 2.1 in the traditional simulation to 1.4 in the revised simulation, which affects
the amount of aerosol available for partitioning.

Concentrations of total OA could also increase for a number of reasons. Since SVOCs are oxidized
in the gas phase, OA will tend to be shifted toward more remote or downwind areas relative to source
regions. Also, changes in wet deposition (SVOCs and oxidized SVOCs are less aggressively wet
deposited than hydrophilic traditional POA) allow further transport of some SVOC emissions. The
introduction of IVOCs adds another source of OA. Oxidation of the IVOC through the RO3;+HO4
route (which is more dominant than the RO2+NO route in remote regions, Henze et al., 2008)
produces non-volatile aerosol at a high yield. Still, even with the introduction of IVOCs, surface

OA levels are lower than those in the traditional model (Fig. S1 in supplement).

3.4.2 Global Budgets

Despite the fact that the revised simulation, with the new SVOC and IVOC inventories, has a
larger pool of organics with the potential to form OA, global production of OA decreases 23%
in the revised simulation compared to the traditional simulation. Table 3.5 shows the global OA
budget for each simulation. In the traditional simulation, traditional SOA and non-volatile POA

represent a global OA source of 87 Tg/yr. In the revised simulation, the net OA source decreases
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to 67 Tg/yr. The formation of traditional SOA decreases as well (although only 11%), likely as a
result of a reduced partitioning medium into which the SOA may absorb. The tropospheric lifetime
of OA against deposition (defined as the tropospheric burden divided by the sum of wet and dry
deposition) increases in the revised simulation. In the traditional simulation, POA is assumed to be
emitted as 50% hydrophobic and 50% hydrophilic and converted from hydrophobic to hydrophilic
forms with an e-folding lifetime of 1.15days. In the revised simulation, the hydrophobic nature of
POA leads to a much longer POA lifetime (17 days against deposition). In addition, production of
aerosol is shifted to higher altitudes where it is less subject to wet or dry deposition and thus has
a longer lifetime. By coincidence, the global tropospheric burden of organic aerosol is roughly the
same in the traditional and revised simulations.

As shown in Fig. 3.4, only about 50% of the carbon emitted as an SVOC leads to net aerosol
production. The rest is wet or dry deposited in the gas phase. Of the 37 TgC/yr emitted, only
0.5 Tg C/yr are predicted to lead to net POA formation, most of which (97%) is due to the lower
volatility SVOC (SVOCs). 95% of the emitted SVOC carbon reacts in the gas phase with OH to
form an oxidized SVOC (O-SVOC). The O-SVOC is fairly effectively wet and dry deposited (it is
treated like traditional gas-phase SOA products with a Henry’s law coefficient of 10° M/atm) and a
significant fraction is lost to deposition in the gas phase. Only 18 Tg C/yr forms net SOA. Roughly
80% of the SOA from SVOCs is from the lower volatility product (C* =0.2pg/m?) while 20% is
from the higher volatility product (C* =16 pg/m?). Ultimately, the OA from SVOCs is lost to wet
and dry deposition with wet deposition being dominant. The yield of OA from SVOCs is about 50%
on a carbon basis (mass of carbon in aerosol/ mass of carbon emitted) and about 75% in terms of
total mass of SVOC aerosol produced divided by total mass of SVOC emitted. Figure 3.4 also shows
the relative rates of formation of aerosol from each source in the pie chart (in Tg C/yr). More than
half of the global aerosol carbon is predicted to come from primary SVOC oxidation products. The
second largest contribution is from traditional SOA followed by SOA from IVOCs and POA.

Figure 3.5 shows the emission, oxidation, and SOA formation predicted for light aromatics and

IVOCs. Because of where they are emitted, most of the parent hydrocarbons react following the
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high-NO4 RO2+NO pathway. As shown by Henze et al. (2008), aromatics that react faster with OH
will have a greater tendency to follow the RO2+NO pathway since biofuel and fossil fuel burning
emissions tend to be colocated with anthropogenic NOy sources, and the parent hydrocarbon is
more likely to be oxidized in the source region. The IVOC surrogate, naphthalene, reacts faster
with OH than benzene or toluene, but similar in rate to xylene. For both naphthalene and xylene,
the amount of oxidation through the high-NO, pathway is about twice that through the low-NOy
pathway. Benzene, with the slowest OH rate constant, reacts slightly more through the RO2;+HO4
than the RO24+NO pathway. The high-NO, IVOC oxidation pathway results in about 1 Tg/yr of
SOA and the low-NOy pathway results in about 4 Tg/yr, leading to an overall yield of aerosol from

IVOCs of about 30%.

3.4.3 United States Organic Aerosol

Figure 3.6 shows the predicted concentration of total OA over the United States for the winter
and summer and the contributions of different OA types to that total. The contribution of light
aromatics to total OA is not shown but is similar in magnitude to that from IVOCs. The highest
concentrations in the winter are predicted to be located in the Southeast US as a result of a biomass
burning event and high SVOC emissions. During the winter, POA is a significant contributor to
total OA concentrations. POA contributions are highest in the Northeast where temperatures are
lower and partitioning to the aerosol phase is favored. Anthropogenic and biofuel burning emissions
also tend to be highest in the Northeast (Fig. 3.1). Despite significant POA contributions, SOA from
SVOCs is the dominant wintertime OA component, generally contributing 50% or more to surface
concentrations. In the summer, the highest OA also occurs in the Southeast, but is due primarily to
biogenic SOA. The highest POA contributions in summer reflect biomass burning sources. Outside
of the biomass burning locations, POA is generally lower in the summer than in the winter. Despite
the significant contribution of biogenic SOA, SOA from SVOCs remains an important contributor
to total OA, representing up to 50% of the OA in the Northeast and 50% or more in the Western

US.
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Since the winter organic aerosol is dominated by SVOC aerosol, further examination of winter-
time concentrations allows us to assess the model performance while minimizing uncertainties in the
biogenic aerosol parameterization as a source of discrepancy. Figure 3.7 shows winter (December-
January-February 2000) simulated and observed aerosol OC concentrations over the US. Surface
measurements of total OC from the Interagency Monitoring of Protected Visual Environments (IM-
PROVE) network (http://vista.cira.colostate.edu/improve/) are overlaid in circles on top of the
simulated OC concentrations. Since the IMPROVE network observations are reported as mass of
carbon rather than the mass of total organic aerosol, converting model values, which tend to be in
total organic mass, to organic carbon mass is an additional source of potential discrepancy. Since
the aerosol from SVOCs is tracked in GEOS-Chem as the mass of carbon and OM/OC ratios of 1.4
for POA and 2.1 for SOA are applied in the partitioning routines, focusing on the wintertime, where
aerosol is dominated by SVOC sources with a model imposed OM/OC ratio, can reduce the effect
of the OM/OC ratio which must be specified for traditional and IVOC SOA. To convert traditional
and IVOC SOA to OC, an OM/OC ratio of 2.1 is used and is roughly consistent with chamber data
with the notable exception of a-pinene SOA (Chhabra et al., 2010). Comparisons to the IMPROVE
network by Liao et al. (2007) indicate that GEOS-Chem underpredicts annual OA levels by about
0.56 pg/m? (mean bias) or 34% (normalized mean bias) with the bias being larger in magnitude in
the western US and lower in magnitude in the eastern US. A comparison of simulated and observed
OC levels for the US during DJF 2000 in this work, indicate that GEOS-Chem underestimates OC
by 0.20 ngC/m? (21%) for the 2°x2.5° simulations and 0.37 ngC/m? (39%) for the 4°x5° simulation.
The bias for the 4°x5° simulation is likely larger as a result of the coarser model resolution and
the fact that a climatological meteorology has been used as opposed to the assimilated, year-specific
meteorology used by 2°x2.5° simulations. Compared to the semivolatile simulation (Fig. 3.7 bot-
tom), the traditional simulation (Fig. 3.7 top) is more consistent with the IMPROVE observations.
Sensitivity tests will be used to determine the factors that allow model performance to be brought

closer to observations.
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3.4.4 Sensitivity Tests

A number of key inputs and parameters involved in the global simulation of organic aerosol are
uncertain; this fact suggests that sensitivity simulations will be useful in understanding the extent
to which these uncertainties influence the predictions. The quantities examined in the sensitivity
tests are listed in Table 3.6. For computational efficiency, the sensitivity tests are performed at
4°x5° resolution with GISS GCM meteorology. The effect of changes in meteorology and grid
resolution on the global OA budget are examined in appendix (3.A) in this chapter. Although both
the resolution and meteorology differ from those in the simulations discussed in the previous section,
since the sensitivity tests address relative changes, the conclusions should be robust and relatively
independent of the meteorology used (a discussion of interannual variability and resolution appears
in Sect. 3.5.3). A Traditional (non-volatile POA and traditional SOA only) simulation is performed
for comparison purposes. Even though the Revised simulation better represents the current scientific
understanding of low-volatility organic compounds, the predicted concentration of OC over the US is
low compared to observations (see Fig. 3.7). Due to the sparse nature of the IMPROVE network data
for year 2000 DJF and the fact that the revised simulation predicts such low OC values, sensitivity
simulations are compared to the Traditional simulation as well as observations. A traditional GEOS-
Chem simulation has also been extensively evaluated against observations in the work of Liao et al.
(2007).

Table 3.6 lists the additional simulations performed. The Revised simulation with semivolatile
POA, oxidation of SVOCs, IVOC aerosol, and traditional SOA is described in previous sections. Two
sensitivity tests are performed to examine the effects of changes in emissions. IVOC emissions are
highly uncertain, and in the 2*IVOC simulation, the IVOC emissions are doubled. For the 2*SVOC
simulation, the traditional POA inventory is doubled to obtain SVOC emissions (Gr/POAgr=1).
Two simulations are also performed to address uncertainties in the SVOC and O-SVOC parti-
tioning coefficients. In SVOC K*10, the SVOC emissions are a factor of 10 less volatile than in
the Revised simulation, having saturation concentrations (1/Koyr) of 2 and 160 pg/m®. The 100x

decrease in saturation concentration is maintained so that the corresponding O-SVOCs have satura-
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tion concentrations of 0.02 and 1.6 ug/m3. For O-SVOC K*10, the SVOCs have the same saturation
concentration as in the Revised simulation, but the SVOC oxidation products are a factor of 1000
times less volatile than their parent and thus have saturation concentrations of 0.02 and 1.6 pg/m?
(the same as in the SVOC K*10 simulation). An additional simulation, H-Law/100, reduces the
effective Henry’s Law coefficient relevant for scavenging of the secondary gas-phase semivolatile
species to 10> M/atm. AH*2, in which the enthalpy of vaporization is doubled to 83 kJ/mol for all
semivolatiles, is performed to examine wintertime surface concentrations as well. Parameters not

listed in Table 3.6, such as biogenic hydrocarbon emissions, remain the same as in the base case.

3.4.4.1 Winter US Concentrations

As mentioned previously, wintertime OA concentrations are dominated by contributions from POA
and SOA from SVOCs and offer an opportunity to examine model performance while minimizing
the effect of errors in the parameterization of biogenic SOA. Figures 3.8 and 3.9 show the response
of wintertime surface concentrations to the sensitivity tests in Table 3.6 relative to the Traditional
simulation. Table 3.7 shows the mean bias and normalized mean bias for the sensitvity simulations
compared to the IMPROVE network. Panel (a) of Fig. 3.8 represents the difference in surface con-
centrations between the Revised and Traditional simulations and highlights the fact that the Revised
simulation results in a large decrease in surface concentrations as a result of POA evaporation. By
doubling the TVOC emissions, 2*IVOC, surface concentrations increase slightly, but a significant
underestimate still exists as IVOCs contribute generally a small fraction of the wintertime OA. In-
creasing the SVOC emissions within the uncertainty of traditional POA inventories, 2*SVOC, brings
surface concentrations much closer to the traditional simulation and thus observations, although a
slight underestimate persists. The SVOC K*10 simulation is also effective in reducing the discrep-
ancy between the new and traditional model formulations, since it is essentially making SVOCs
more similar to traditional POA. In this simulation, roughly a factor of 6 to 10 more SVOCs with
saturation concentrations of 1-2 pg/m? are emitted than recommended by Grieshop et al. (2009b).

A comparison to the O-SVOC K*10 simulation shows that the improvement in the SVOC K*10
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simulation must be primarily a result of greater POA formation, not greater formation of SOA from
SVOCs. The O-SVOC K*10 indicates that reducing the volatility of the SVOC oxidation products
alone is not especially effective for bringing the model closer to observations. The H-Law/100 sim-
ulation has only a small effect on winter surface concentrations, but can have a significant effect on
the global budget of OA, which will be addressed in the next section. Figure 3.9 shows the change
in OC surface concentration for DJF relative to the traditional simulation for the A H*2 simulation.
The new enthalpy produces a result similar to that of doubling the POA inventory (2*SVOC sim-
ulation) in terms of reducing the discrepancy with the traditional simulation and observations. In
conclusion, increasing the SVOC emissions, decreasing the SVOC emission volatility, or increasing
the enthalpy of vaporization effectively reduce measurement/model discrepancy, although signifi-
cant underestimates of the seasonal mean OC concentration persist (mean bias of —0.51 pgC/m? for
2*SVOC, —0.44 ngC/m?3 for SVOC K*10, and —0.50 ngC/m? for AH*2 compared to the IMPROVE
observations). The reduction in volatility in SVOC K*10 may be too extreme, and the higher en-
thalpy of vaporization may not be appropriate for lumped organics that span a relatively large range
of volatility (Donahue et al., 2006). However, the increase in SVOC emissions, 2*SVOC, lies within
the uncertainty of the POA emission inventory in the work of Bond et al. (2004). Tripling the POA
emission inventory to obtain SVOC emissions (not shown) results in DJF OC concentrations about
111g C/m3 higher than in the traditional simulation. The possibility remains that IVOCs could be
underestimated by a substantially larger amount than examined here, or that the doubling of IVOC
emissions in combination with doubling the POA emission inventory may provide a good present-day
simulation. Additional constraints as well as a correct treatment of SOA temperature dependence
are needed to assess the optimal model parameters.

For reference, Fig. S2 (see supplement in Appendix B) shows the effects of the first six sensitivity
simulations on surface level June-July-August OC concentrations. The summertime simulations also
indicate that increasing the SVOC emissions or decreasing the SVOC emission volatility are effective
ways of reducing the discrepancy with the traditional simulation. However, since the summer OA

is dominated by contributions from biogenic SOA, future updates to this source of SOA will likely
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have significant effects on the summertime predictions.

3.4.4.2 Global Budget Sensitivity

Figure 3.10 shows the effect of the different sensitivity simulations on the global OA production rate
compared to the Traditional simulation (all simulations use GISS meteorology at 4°x5° resolution).
The Traditional simulation (at 4°x5°) predicts 80 Tg/yr of net OA production using an OM/OC
ratio of 2.1 for POA. The net OA source for the Traditional simulation includes the emission rate
of non-volatile POA. As mentioned previously, the Revised simulation leads to a decrease of the net
global OA source (—26%, see Table 3.5 for 2°x2.5° simulation results), but an increase of the OA
lifetime due to a shift of production away from the surface. Doubling the IVOC emissions (2*IVOC)
increases the global OA production rate compared to the Revised simulation, but not compared to
the Traditional simulation (—17% compared to Traditional). Doubling the POA emission inventory
to obtain SVOC emissions (2*%SVOC(C), however, leads to an OA source that exceeds the Traditional
simulation by 12%. The SVOC K*10 and O-SVOC K*10 simulations lead to a global production
rate slightly larger than in the Traditional simulation (+3% and +2% respectively). The decrease
in effective Henry’s Law coefficient significantly increases the OA source (+12%) and lifetime due
to less effective wet removal.

Production of organic aerosol in the Revised framework at 2°x2.5° horizontal resolution with
GEOS-4 is estimated to be 67 Tg/yr compared to 87 Tg/yr in the Traditional framework. The lowest
global net production rate out of all simulations (at all resolutions and meteorologies) performed
occurs with the Revised framework at 4°x5° horizontal resolution (GISS) and is about 60 Tg/yr.
The sensitivity tests at 4°x5° horizontal resolution indicate that the global production rate could
be 12% higher than that predicted in the traditional simulation if SVOC emissions are significantly
underestimated or wet deposition of the gas-phase semivolatiles is less effective. The 2*SVOC test
was repeated using the 2°x2.5° resolution (with GEOS-4 meteorology, see supplement in Appendix
B) and the increase in production over the Traditional simulation was confirmed to be roughly the

same as in the coarser resolution simulations (13%). Thus, the range of estimates for global OA
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production examined here is approximately 60 to 100 Tg/yr.

One additional sensitivity test was performed to examine the effect of the biogenic emission
inventory on the OA budget. Using the GEIA biogenic inventory (Guenther et al., 1995) instead of
MEGAN (Guenther et al., 2006) results in a modest (about 7%) increase in the global OA production
rate. For the 4°x5° resolution with GISS GCM III meteorology, GEIA estimates global isoprene
sources to be 490 Tg/yr which is 24% higher than the MEGAN estimate. Terpene emissions increase
by 14% compared to the MEGAN inventory. Isoprene SOA increases to 8 Tg/yr, and terpene SOA
increases to 5 Tg/yr. However, the global OA budget (burden, sources, and losses) remains within
10% of the estimate using the MEGAN inventory. Current global chemical transport models and
chemical mechanisms are known to have significant issues simulating isoprene and OH levels under
low-NOy conditions like over the Amazon (Lelieveld et al., 2008; Butler et al., 2008; Archibald et al.,
2010). Improved isoprene chemistry and/or improved isoprene SOA formation parameterizations

could lead to substantial changes in the global estimate of SOA from isoprene.

3.4.5 Modern vs. Fossil Carbon

The fraction of modern vs. fossil aerosol carbon can provide an additional model constraint. The
major contributors to US surface OA are predicted to be biogenic hydrocarbons (mainly in summer)
and SVOCs followed by IVOCs and aromatics. Slightly more than half of the global aromatic
emissions are from fossil fuel sources (Henze et al., 2008). The fraction of modern carbon in POA
and SOA formed from SVOCs is not separately tracked but depends on the composition of the SVOC
emissions. Figure 3.11 shows the fraction of modern carbon in the SVOC emissions globally and for
the US. Biomass and biofuel burning produce modern C while anthropogenic sources are assumed
to be 100% fossil. Figure 3.11 indicates that aerosol from SVOCs over the US has a significant
and often dominant modern component. The IVOC emissions over the US are dominated by fossil
carbon (Fig. 3.12).

The radioisotope, *C, can be used to distinguish between modern (contemporary) and fossil

carbon in ambient samples. C is produced in the upper atmosphere by cosmic rays and has a half
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life of about 5700 years. Fossil carbon should be depleted in '#C, while modern carbon from sources
such as biogenic VOC oxidation or wood burning should be enriched. Carbon isotope measurements
have been performed in various locations to determine the contribution of modern and fossil carbon
to total aerosol carbon. Carbon isotope measurements in the Southern California air basin in 1987
indicate that 30-40% of the fine particulate carbon was modern (Kaplan and Gordon, 1994). Szidat
(2009) found OC was usually more than 50% modern for cities in Switzerland and Sweden, with
biogenic OA likely responsible for modern carbon in summer and wood burning responsible in winter.
Carbon isotope analysis of individual PAHs in Sweden indicates that residential wood burning is the
dominant source of PAHs in the winter (Sheesley et al., 2009). During two field campaigns (2003
and 2006), Mexico City was found to have, on average, 70% modern carbon (Marley et al., 2009). In
the analysis of aerosol at 12 US sites by Schichtel et al. (2008), total carbon was found to be about
50% modern in urban, 70-97% modern in near-urban, and 82 to 100% modern in remote areas.
In short, the carbonaceous aerosol in a variety of locations exhibits significant amounts of modern
carbon, with the fraction of modern carbon increasing with distance from urban centers (Schichtel
et al., 2008). These observations lend support to the hypothesis that SVOCs contribute significantly
to ambient OA and that scaling up SVOC emissions may be more justified than scaling up IVOC
emissions. However, when scaling up the POA emission inventory to obtain SVOC emissions in
this work, all sources were scaled up equally. Scaling up the POA emission inventories from all
sources equally is supported by the work of Shrivastava et al. (2006) and others that indicate that
diesel and wood combustion exhaust have very similar volatility profiles in the SVOC range. Thus,
traditional POA inventories may represent the same fraction of SVOC emissions in each case. But,
work by Shrivastava et al. (2008) and Grieshop et al. (2009a) indicate that diesel combustion or
other anthropogenic sources may produce relatively more IVOCs than wood burning. The volatility
at which the wood burning and anthropogenic emission volatility profiles diverge is not known (this
works assumes it is about 10% pg/m?® based on sources that have been examined), and the fraction
of SVOCs captured by diesel exhaust and wood burning POA inventories might differ leading to

the need for source specific SVOC scaling factors. SVOCs from anthropogenic sources could be
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underestimated to a greater extent by the traditional POA inventory than SVOCs from biomass or
biofuel burning sources which means the fossil carbon SVOC emissions may be underestimated.

Using alkanes to obtain the spatial distribution of IVOC emissions would likely lead to large
estimates of anthropogenic sources and small estimates of wood burning sources since wood burning
is not a large source of intermediate volatility alkanes (approximately C17) (Schauer et al., 2001).
Thus, the IVOC composition would be shifted even more toward fossil fuel sources than predicted
by the naphthalene spatial distribution. Since ambient data indicate a large modern C component
to aerosol, the alkane distribution would further diminish the expected role of IVOCs in ambient
organic aerosol formation.

Modern carbon, however, should be distinguished from non-anthropogenic carbon. Biofuel com-
bustion from activities like residential wood burning is a significant anthropogenic source of modern
carbon. The high fraction of modern carbon in urban areas, especially compared to rural areas, in
the winter suggests substantial contributions of wood burning to aerosol carbon in the US (Bench

et al., 2007; Schichtel et al., 2008).

3.5 Model Uncertainties

Modeling organic aerosol production from SVOCs and IVOCs requires extrapolating experimental
results obtained under idealized conditions or a from limited set of ambient observations to global
conditions. As a result, potential discrepancies between experiments, observations, and the atmo-

sphere must be addressed.

3.5.1 IVOC Behavior

Naphthalene is used as a surrogate to represent SOA formation from the entire set of IVOC emis-
sions. Other important classes of IVOCs include alkanes and phenol type compounds. A significant
portion of the IVOCs may also be part of the gas-phase UCM. Naphthalene is expected to be more
representative of phenol-type compounds than alkanes would be, but does naphthalene exhibit be-

havior representative of IVOCs? High-NOy oxidation of an alkane IVOC surrogate in the work of
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Presto et al. (2009) resulted in less volatile SOA than low-NOy oxidation, opposite of the behavior
observed for naphthalene (Chan et al., 2009). However, in terms of yields, the IVOC, heptadecane,
is predicted to react slightly faster with OH than naphthalene and result in a slightly lower but
similar (20% vs. 26%) yield of SOA under high-NO, conditions (Chan et al., 2009).

Assuming naphthalene is a good surrogate for IVOCs, is naphthalene behavior accurately cap-
tured by the current parameterization? Chamber experiments are likely to be most representative of
the atmosphere when aerosol loadings are low and oxidation times are long. Low-NOy conditions in
which the peroxy radical from IVOC oxidation is expected to react with HO5 is predicted to form a
non-volatile aerosol product based on chamber experiments (Chan et al., 2009). However, chamber
aerosol studies typically do not access very low organic concentrations, and thus what appears non-
volatile in a chamber study may actually be semivolatile under atmospheric conditions. As a result,
the dominance of aromatic and IVOC aerosol in remote regions near the surface could be a model
artifact. In addition, aerosol from the ROs+RO;, pathway, which should be minor, is not accounted
for in our model.

Another option for treating SOA from IVOC:s is the volatility basis set approach with parameters
by Robinson et al. (2007) or Grieshop et al. (2009a). IVOC compounds can be lumped into a
series of volatility bins and oxidized with a prescribed reduction in volatility and increase in mass.
With multiple generations of oxidation and no fragmentation reactions, this approach can give a
very high yield of aerosol from IVOCs which could be on the order of 200% or more (J. Jimenez,
personal communication, 2010). The yield is especially high using the parameters introduced by
Grieshop et al. (2009a). Modeling for the Mexico City area indicates that the Grieshop et al. (2009a)
parameters with multigenerational oxidation tend to overestimate organic aerosol downwind of the
city (Hodzic et al., 2010). While the Robinson et al. (2007) parameters may give more realistic
predictions of the total OA, the aerosol they produce predicts too low of an O:C ratio (Hodzic et al.,
2010). Currently, Robinson et al. (2007) or Grieshop et al. (2009a) frameworks likely cannot be
consistent with ambient measurements indicating that OOA is relatively non-volatile (Cappa and

Jimenez, 2010) without predicting too much of an increase in mass or too low of an increase in O:C.
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Simulations presented in this work obtain a lower net yield of aerosol from IVOCs of about 30%
indicating a more minor role of IVOC aerosol. Both the basis set and the naphthalene-like approach
used here may be similar in that near-source (i.e. high-NOy) SOA tends to be semivolatile, while
remote (i.e. low-NOy) SOA tends to be relatively non-volatile. However, the reason for this trend
and overall yields are very different in each case. Naphthalene can continue to serve as an IVOC

surrogate until more information on IVOC emissions and/or IVOC oxidation behavior is obtained.

3.5.2 SVOC Volatility

The parameterization for SVOC volatility uses two surrogate compounds to represent SVOC emis-
sions, in contrast to the volatility basis set which uses 4 or more volatility classes to represent
emissions. Very low-volatility compounds (those with C*<0.1 pg/m?) will be found in the aerosol
phase under almost all atmospherically relevant conditions. The lowest volatility SVOC emitted in
this work is assumed to have a C* of 20ug/m? (at 300K), and we likely do not represent SVOCs
with saturation concentrations below 1pg/m?3. The volatility basis set approaches of Robinson et al.
(2007) and Grieshop et al. (2009b) distribute low-volatility organic compounds with C*s down to
0.01 pg/m®. Grieshop et al. (2009b) indicate that up to 5% of SVOC emissions may be consid-
ered non-volatile under atmospheric conditions since the C* values are below 1pg/m?3. However,
emissions of these very low-volatility compounds are not well constrained. Fits of wood-smoke
data tend to diverge at organic concentrations less than about 100 pg/m? (Shrivastava et al., 2006).
Thermodenuder data can provide additional constraints but also show significant variability with
somewhere between 80 and 40% of the wood-smoke aerosol evaporating at 50 °C (Grieshop et al.,
2009b). Grieshop et al. (2009a) included low-volatility compounds in their model of chamber aging
and found that including a 9% contribution of C* 0.1 and 0.01 degraded model performance. The
two volatility components used here should roughly capture the partitioning of species with C* of
1 to 10 pg/m® and thus capture 95% (for wood burning) to 98% (for diesel) of the SVOC mass.
If a 5% low-volatility emission were to be included in our simulation, it could account for up to

2TgC/yr of net primary organic aerosol formation. This could easily more than quadruple the net
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POA source, but would have a small effect on the global aerosol production rate, which is predicted

to exceed 60 Tg/yr.

3.5.3 Horizontal Resolution and Inter-annual Variability

Sensitivity tests performed indicate that doubling SVOC emissions leads to more realistic surface-
level OC concentrations for the US in winter. This conclusion was reached using sensitivity tests for
DJF in year 2000 with GISS meteorology at 4°x5° horizontal grid resolution. The same tests were
repeated for DJF in year 2001 with GISS meteorology at 4° x5° to confirm that this conclusion is not
highly sensitive to the choice of meteorological year (see supplement Fig. S3 in Appendix B). Three of
the tests in Table 3.6 were also performed for year 2000 DJF using GEOS-4 meteorology at 2°x2.5°
horizontal grid resolution. Thus, the robustness of the conclusions with respect to meteorological
year as well as horizontal grid resolution and meteorology can be determined. GISS tests for year
2000 and 2001 both indicate that doubling SVOC emissions brings concentrations closer to those
observed, but still leaves a slight underestimate that may be larger in 2001. Using the GEOS-4
meteorology at 2°x2.5° indicates that concentrations might actually be higher compared to the
traditional simulation in the northeast when SVOC emissions are doubled (Fig. S4). In conclusion,
years 2000 and 2001 are roughly similar in terms of the effects of the sensitivity simulations on DJF
surface OC. The GEOS-4 2°x2.5° simulation confirms that doubling SVOC emissions is reasonable.
However, these tests and the fact that the 2°x2.5° and 4° x5° simulations have different mean biases
(Table 3.7) illustrate that tuning a model based on one simulation may not produce the same result
for other simulations (like the Northeast at 2°x2.5° vs. 4°x5°). Any tuning of the model emissions

should be based on multiple constraints and/or a large observational data set.

3.6 Conclusions

In this study, we present a global estimate, using GEOS-Chem, of organic aerosols from primary emis-
sions of gases and aerosols with saturation concentrations of roughly less than 10° png/m3. Sources

of these compounds include biomass burning, biofuel burning, and anthropogenic activities. POA,
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which has traditionally been considered non-volatile, is replaced by a pool of semivolatile organic
compounds, denoted here as SVOCs, that can partition between the gas and aerosol phases and can
be oxidized in the gas phase to less volatile species that partition even more effectively to the aerosol
phase. In addition, intermediate volatility organic compounds, denoted as IVOCs, which exist en-
tirely in the vapor phase, can undergo oxidation in the gas phase to form lower volatility species
that partition to the aerosol phase (based on naphthalene-like behavior). Aerosol that results from
the oxidation of any of these gas-phase species is termed secondary organic aerosol (SOA). Globally,
biomass burning and anthropogenic sources contribute similar amounts of IVOCs. Over the US, the
dominant fraction of IVOCs arises from anthropogenic sources.

Implementation of semivolatile POA generally leads to decreases in predicted surface-level con-
centrations of organic aerosol due to a portion of the POA evaporating upon emission. US winter
organic carbon concentrations from the IMPROVE network are used to assess the accuracy of model
predictions under conditions in which the effect of uncertainties in biogenic SOA formation are likely
to be at a minimum. Sensitivity tests indicate that uncertainties in the IVOC emissions, the Henry’s
Law coeflicient for scavenging of gas-phase semivolatiles, or the assumed 100x (or 1000x) decrease
in volatility upon oxidation of the primary SVOCs are not especially influential in reducing the dis-
crepancy between predictions and observations. However, a significant increase in SVOC emissions,
a reduction of the volatility of the SVOC emissions, or an increase in the enthalpy of vaporization
to 83kJ/mol all lead to an appreciable reduction of the prediction/measurement discrepancy. The
reduction in SVOC volatility examined is likely too extreme, but scaling up the SVOC emissions
by a factor of 2 seems reasonable considering that traditional inventories do not necessarily capture
SVOCs emitted in the gas phase. The higher enthalpy of vaporization is also supported by a recent
study (Epstein et al., 2010) but may not be appropriate for lumped organics (Donahue et al., 2006).

The range of estimates for global organic aerosol production is 60-100 Tg/yr. Virtually all of
this production is SOA, since POA tends to evaporate and oxidize in the gas phase after emis-
sion. The sensitivity tests examine uncertainties one parameter at a time, so the range in organic

aerosol production could be larger if uncertainties in multiple parameters were to be accounted for
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simultaneously. If current traditional POA inventories capture only about one-half of the SVOC
emissions and gas-phase semivolatiles are much less aggressively wet removed, this would lead to an
estimate of global OA production that is not inconsistent with top-down calculations, such as those
by (Goldstein and Galbally, 2007) who estimated SOA production ranging from 140 Tg/yr and up.
Much of the increase in SOA shown here compared to previous estimates, like those by Henze et al.
(2008), results from reclassification of most of the POA as SOA due to evaporation and subsequent
oxidation. Also note that the present estimate of OA production is net production, so a species that
partitions to the aerosol, but later evaporates, is not counted in net aerosol. The effects of chemical
aging of SOA beyond that reflected in current chamber experiments are not explicitly considered.

SVOC and IVOC emissions are predicted to have different fractions of modern and fossil carbon
which can provide constraints on estimates of SVOC and IVOC aerosol. In the US, SVOC emissions
have a significant biofuel component which, along with biomass burning emissions, results in a
significant fraction of modern C. US IVOC emissions, however, are predicted to be predominantly
fossil. The high fraction of modern carbon observed in organic aerosol in the US is consistent with
an important contribution of aerosol from SVOCs.

While representing POA as semivolatile is clear progress in modeling of organic aerosol, additional
constraints are needed to sharpen estimates. Information in the form of improved SVOC and IVOC
emission estimates or data (such as 1*C fractions, O:C ratios, AMS PMF components (OOA, HOA),
correlation with gas-phase tracers (Weber et al., 2007; de Gouw et al., 2005), or identification of
marker compounds (Bhave et al., 2007)) that allow for the determination of sources of OA can help
to constrain models.

Supplemental information can be found in Appendix B.
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3.7 Appendix 3.A: Effect of meteorology and grid resolution

on global OA budget

The effect of changes in meteorology and horizontal grid resolution on the global OA budget are
briefly examined. GEOS-Chem with GEOS-4 and GISS GCM III meteorology at 4°x5° has been
compared previously with a focus on tropospheric ozone budgets (Wu et al., 2007). Wu et al. (2007)
found that an important difference between the GEOS assimilated and GISS GCM meteorology is
the treatment of wet convection. The GISS model allows for non-precipitating condensed water,
and in GEOS-Chem with GISS meteorology, soluble species are not scavenged in shallow convective
updrafts below 700 hPa. Differences in clouds can lead to differences in oxidant levels. Boundary
layer turbulence is also treated slightly differently in GEOS-Chem with GEOS meteorology versus
GEOS-Chem with GISS meteorology (Wu et al., 2007). Although these differences exist between the
two meteorologies, organic aerosols have been successfully simulated and compared to observations
using GEOS meteorology at 2°x2.5° resolution (Park et al., 2003) and 1°x1° nested grid resolution
(Park et al., 2006) and using GISS meteorology at 4°x5° resolution (Liao et al., 2007). Note that
the 2°x2.5° GEOS and 4°x5° GISS simulations should be viewed as 2 different realizations of year
2000 conditions and should not be the same, but show similar responses to changes in parameters.

Table 3.8 shows the effect of changes in meteorology and resolution on precursor emissions, OA net
production, aerosol lifetime, and global OH. Natural emissions such as lightning NO, and biogenic
hydrocarbons that are parameterized based on meteorology are predicted to change significantly in
some cases. The change to 4°x5° GISS meteorology results in 7% higher terpene emissions, but
11% lower isoprene emissions, presumably due to differences in temperature. Except for POA, the
net OA production is expected to decrease. The change in global net OA production as a result of
the change in resolution is relatively larger for biogenic SOA compared to the change in emissions.
For example, although isoprene emissions are 11% lower at the coarser resolution, the production
rate of isoprene SOA is 40% lower. Presumably, global OA production decreases as a result of lower

isoprene emissions. SOA production could also decrease as a result of more effective deposition of
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the gas-phase precursors or semivolatiles. OH levels over the Amazon are generally slightly lower
in the GCAP 4°x5° simulation compared to the 2°x2.5° simulation which supports lower isoprene
SOA formation as well.

To gain further insight into the effects of changes in meteorology and resolution and why POA
production may have increased at 4°x5°, the effect of the changes on a traditional non-volatile
POA simulation are shown in Table 3.9. Hydrophobic and hydrophilic forms of POA are separated.
Hydrophobic POA is similar to the semivolatile POA, in that it is emitted but can be converted to
another species (hydrophilic POA for the traditional simulation or SOA in the revised simulation).
In the traditional simulation, for 4°x5° resolution compared to 2°x2.5°, hydrophobic POA is more
effectively wet and dry deposited as reflected by the higher deposition rates and shorter tropospheric
lifetime against deposition. For production of semivolatile POA to increase at 4°x5° for the same
SVOC emissions, POA must be more quickly lost to wet and dry deposition before it evaporates
and reacts with OH. The aerosol deposition velocity over land is generally higher for the 4°x5°
GISS study than 2°x2.5° GEOS-4 study due to a higher friction velocity over land in the GISS
meteorological fields. Thus, OA production can generally decrease as a result of lower isoprene
SOA, but POA production can increase due to more aggressive deposition. SOA from SVOCs,

IVOCs, and aromatics is only slightly affected by the change in resolution and meteorology.

3.8 Acknowledgements

The numerical simulations for this research were performed on Caltech’s Division of Geological and
Planetary Sciences Dell cluster. H. O. T. P. acknowledges support by a National Science Founda-
tion Graduate Research Fellowship. This research has been supported by the US Environmental
Protection Agency Science to Achieve Results (STAR) agreements RD-833749 and RD-83337001
and by the Office of Science (BER), US Department of Energy Grant No. DE-FG02-05ER63983.
Although the research described in the article has been funded in part by the US Environmental
Protection Agency’s STAR program, it has not been subjected to any EPA review and therefore

does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.



96

The authors would like to thank Arthur Chan, Jose Jimenez, Fabien Paulot, and Paul Wennberg

for useful discussions.

Bibliography

Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich,
I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M.,
Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen,
J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of
primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass

spectrometry, Environ. Sci. Technol., 42, 4478-4485, doi:10.1021/ES703009q, 2008.

Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global

Biogeochem. Cy., 15, 955-966, doi:10.1029/2000GB001382, 2001.

Archibald, A. T., Jenkin, M. E., and Shallcross, D. E.: An isoprene mechanism intercomparison,

Atmos. Environ., doi:10.1016/J.ATMOSENV.2009.09.016, in press, 2010.

Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and

alkenes, J. Phys. Chem. Ref. Data, 26, 215-290, 1997.

Atkinson, R. and Arey, J.: Atmospheric degration of volatile organic compounds, Chem. Rev., 103,

4605-4638, doi:10.1021/CR0206420, 2003.

Bench, G., Fallon, S., Schichtel, B., Malm, W., and McDade, C.: Relative contributions of fossil
and contemporary carbon sources to PMy 5 aerosols at nine Interagency Monitoring for Pro-
tection of Visual Environments (IMPROVE) network sites, J. Geophys. Res., 112, D10205,

doi:10.1029/2006JD007708, 2007.

Bey, 1., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu,

H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with



97

assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073-23095,

2001.

Bhave, P. V., Pouliot, G. A., and Zheng, M.: Diagnostic model evaluation for carbonaceous PMj 5
using organic markers measured in the southeastern U.S., Environ. Sci. Technol., 41, 1577-1583,

2007.

Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z.: A technology-
based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res.,

109, D14203, doi:10.1029/2003JD003697, 2004.

Butler, T. M., Taraborrelli, D., Brhl, C., Fischer, H., Harder, H., Martinez, M., Williams, J.,
Lawrence, M. G., and Lelieveld, J.: Improved simulation of isoprene oxidation chemistry with the
ECHAMS5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign,

Atmos. Chem. Phys., 8, 4529-4546, doi:10.5194/acp-8-4529-2008, 2008.

Cappa, C. D. and Jimenez, J. L.: Quantitative estimates of the volatility of ambient organic aerosol,

Atmos. Chem. Phys. Discuss., 10, 1901-1938, doi:10.5194/acpd-10-1901-2010, 2010.

Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crounse, J.
D., Krten, A., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol
formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxida-
tion of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9, 3049-3060,

doi:10.5194 /acp-9-3049-2009, 2009.

Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Elemental analysis of chamber organic aerosol
using an aerodyne high-resolution aerosol mass spectrometer, Atmos. Chem. Phys., 10, 4111-4131,

doi:10.5194 /acp-10-4111-2010, 2010.

Chung, S. H. and Seinfeld, J. H.: Global distribution and climate forcing of carbonaceous aerosols,

J. Geophys. Res., 107, 4407, doi:10.1029/2001JD001397, 2002.



98

Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J.: Construction of a 1°x1° fossil fuel emission
data set for carbonaceous aerosol and implementation and radiative impact in the ECHAMA4

model, J. Geophys. Res., 104, 22137-22162, 1999.

de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W. C., Roberts, J.
M., Fehsenfeld, F. C., Worsnop, D. R., Canagaratna, M. R., Pszenny, A. A. P., Keene, W.
C., Marchewka, M., Bertman, S. B., and Bates, T. S.: Budget of organic carbon in a polluted
atmosphere: Results from the New England Air Quality Study in 2002, J. Geophys. Res., 110,

D16305, doi:10.1029,/2004JD005623, 2005.

Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled partitioning,
dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol., 40, 26352643,

doi:10.1021/ES052297c, 2006.

Dzepina, K., Volkamer, R. M., Madronich, S., Tulet, P., Ulbrich, I. M., Zhang, Q., Cappa, C. D.,
Ziemann, P. J., and Jimenez, J. L.: Evaluation of recently-proposed secondary organic aerosol
models for a case study in Mexico City, Atmos. Chem. Phys., 9, 5681-5709, doi:10.5194/acp-9-

5681-2009, 2009.

Epstein, S. A., Riipinen, 1., and Donahue, N. M.: A semiempirical correlation between enthalpy of
vaporization and saturation concentration for organic aerosol, Environ. Sci. Technol., 44, 743-748,

doi:10.1021/ES902497z, 2010.

Farina, S. C., Adams, P. J., and Pandis, S. N.: Modeling global secondary organic aerosol formation
and processing with the volatility basis set: implications for anthropogenic SOA, J. Geophys. Res.,

d0i:10.1029/2009JD013046, 115, D09202, doi:10.1029/2009JD013046, 2010.

Fu, T. M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global
budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary

organic aerosols, J. Geophys. Res., 113, D15303, doi:10.1029/2007JD009505, 2008.



99

Goldstein, A. H. and Galbally, I. E.: Known and unexplored organic constituents in the earth’s

atmosphere, Environ. Sci. Technol., 41, 1514-1521, doi:10.1021/ES072476p, 2007.

Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of
photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of

organic aerosol evolution, Atmos. Chem. Phys.,; 9, 1263-1277, doi:10.5194/acp-9-1263-2009, 2009.

Grieshop, A. P., Miracolo, M. A., Donahue, N. M., and Robinson, A. L.: Constraining the volatility
distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and
thermodenuder measurements, Environ. Sci. Technol., 43, 4750-4756, doi:10.1021/ES8032378,

2009b.

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L.,
Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J.,
and Zimmerman, P.: A global-model of natural volatile organic-compound emissions, J. Geophys.

Res., 100, 8873-8892, 1995.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of
global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols

from Nature), Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006, 2006.

Hays, M. D., Geron, C. D., Linna, K. J., Smith, N. D., and Schauer, J. J.: Speciation of gas-phase
and fine particle emissions from burning of foliar fuels, Environ. Sci. Technol., 36, 2281-2295,

doi:10.1021/ES0111683, 2002.

Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J., Seinfeld, J. H., Liao, H., and
Weber, R. J.: A large organic aerosol source in the free troposphere missing from current models,

Geophys. Res. Lett., 32, L18809, doi:10.1029/2005GL023831, 2005.

Henze, D. K. and Seinfeld, J. H.: Global secondary organic aerosol from isoprene oxidation, Geophys.

Res. Lett., 33, doi:10.1029/2006GL025976, 2006.



100

Henze, D. K., Seinfeld, J. H., Ng, N. L., Kroll, J. H., Fu, T.-M., Jacob, D. J., and Heald, C. L.:
Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs.

low-yield pathways, Atmos. Chem. Phys., 8, 2405-2420, doi:10.5194/acp-8-2405-2008, 2008.

Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman, L.,
and Fast, J.: Potential contribution of semi-volatile and intermediate volatility primary organic
compounds to secondary organic aerosol in the Mexico City region, Atmos. Chem. Phys. Discuss.,

10, 657-710, doi:10.5194/acpd-10-657-2010, 2010.

Huffman, J. A., Docherty, K. S., Aiken, A. C., Cubison, M. J., Ulbrich, I. M., DeCarlo, P. F., Sueper,
D., Jayne, J. T., Worsnop, D. R., Ziemann, P. J., and Jimenez, J. L.: Chemically-resolved aerosol
volatility measurements from two megacity field studies, Atmos. Chem. Phys., 9, 7161-7182,

doi:10.5194 /acp-9-7161-2009, 2009a.

Huffman, J. A., Docherty, K. S., Mohr, C., Cubison, M. J., Ulbrich, I. M., Ziemann, P. J., Onasch,
T. B., and Jimenez, J. L.: Chemically-resolved volatility measurements of organic aerosol from

different sources, Environ. Sci. Technol., 43, 5351-5357, doi:10.1021/ES803539d, 2009b.

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H.,
DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin,
C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn,
M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A.,
Onasch, T. B., Alfarra, M. R., Williams, P. 1., Bower, K., Kondo, Y., Schneider, J., Drewnick,
F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel,
J. R., Sueper, D.; Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C.,
Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic

aerosols in the atmosphere, Science, 326, 1525-1529, doi:10.1126/SCIENCE.1180353, 2009.

Jordan, C. E., Ziemann, P. J., Griffin, R. J., Lim, Y. B., Atkinson, R., and Arey, J.: Modeling



101

SOA formation from OH reactions with C-8-C-17 n-alkanes, Atmos. Environ., 42, 8015-8026,

doi:10.1016/J.ATMOSENV.2008.06.017, 2008.

Kaplan, I. R. and Gordon, R. J.: Non-fossil-fuel fine-particle organic-carbon aerosols in Southern
California determined during the Los-Angeles aerosol characterization and source apportionment

study, Aerosol. Sci. Tech., 21, 343-359, 1994.

Kautzman, K. E., Surratt, J., Chan, M. N., Chan, A. W. H., Hersey, S. P., Chhabra, P. S., Dalleska,
N. F., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Chemical composition of gas- and
aerosol-phase products from the photooxidation of naphthalene, J. Phys. Chem. A, 114, 913-934,

2010.

Kroll, J. H., Smith, J. D., Che, D. L., Kessler, S. H., Worsnop, D. R., and Wilson, K. R.: Measure-
ment of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized

organic aerosol, Phys. Chem. Chem. Phys., 11, 8005-8014, do0i:10.1039/B905289¢, 2009.

Lane, T. E., Donahue, N. M., and Pandis, S. N.: Simulating secondary organic aerosol formation
using the volatility basis-set approach in a chemical transport model, Atmos. Environ., 42, 7439-

7451, doi:10.1016/J.ATMOSENV.2008.06.026, 2008.

Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder,
H., Lawrence, M. G., Martinez, M., Taraborrelli, D., and Williams, J.: Atmospheric oxidation

capacity sustained by a tropical forest, Nature, 452, 737-740, doi:10.1038/NATURE06870, 2008.

Liao, H., Henze, D. K., Seinfeld, J. H., Wu, S. L., and Mickley, L. J.: Biogenic secondary organic
aerosol over the United States: Comparison of climatological simulations with observations, J.

Geophys. Res., 112, D06201, doi:10.1029/2006JD007813, 2007.

Lipsky, E. M. and Robinson, A. L.: Effects of dilution on fine particle mass and partitioning of
semivolatile organics in diesel exhaust and wood smoke, Environ. Sci. Technol., 40, 155-162,

doi:10.1021/ES050319p, 2006.



102

Marley, N. A., Gaffney, J. S., Tackett, M., Sturchio, N. C., Heraty, L., Martinez, N., Hardy, K.
D., Marchany-Rivera, A., Guilderson, T., MacMillan, A., and Steelman, K.: The impact of bio-
genic carbon sources on aerosol absorption in Mexico City, Atmos. Chem. Phys., 9, 1537-1549,

d0i:10.5194 /acp-9-1537-2009, 2009.

Murphy, B. N. and Pandis, S. N.: Simulating the formation of semivolatile primary and secondary
organic aerosol in a regional chemical transport model, Environ. Sci. Technol., 43, 4722-4728,

doi:10.1021/ES803168a, 2009.

Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S.; Flagan, R. C., and Seinfeld, J. H.:
Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys.,

7, 3909-3922, doi:10.5194/acp-7-3909-2007, 2007.

Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H.,
Docherty, K. S., Chhabra, P. S.; Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L.,
DeCarlo, P. F., Lanz, V. A., Prevot, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic
aerosol components observed in worldwide datasets from aerosol mass spectrometry, Atmos. Chem.

Phys. Discuss., 9, 27745-27789, doi:10.5194/acpd-9-27745-2009, 2009.

Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/particle

partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 25802585, 1996.

Offenberg, J. H., Kleindienst, T. E., Jaoui, M., Lewandowski, M., and Edney, E. O.: Thermal prop-
erties of secondary organic aerosols, Geophys. Res. Lett., 33, L03816, doi:10.1029/2005GL024623,

2006.

Pankow, J. F.: An absorption-model of gas-particle partitioning of organic-compounds in the atmo-

sphere, Atmos. Environ., 28, 185-188, 1994.

Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of carbonaceous aerosols over
the United States and implications for natural visibility, J. Geophys. Res., 108(D12), 4355,

doi:10.1029/2002JD003190, 2003.



103

Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and transboundary
pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for

policy, J. Geophys. Res., 109, D15204, doi:10.1029/2003JD004473, 2004.

Park, R. J., Jacob, D. J., Kumar, N.; and Yantosca, R. M.: Regional visibility statistics in the
United States: Natural and transboundary pollution influences, and implications for the Regional

Haze Rule, Atmos. Environ., 40, 5405-5423, doi:10.1016/J.ATMOSENV.2006.04.059, 2006.

Presto, A. A., Miracolo, M. A., Kroll, J. H., Worsnop, D. R., Robinson, A. L., and Donahue, N. M.:
Intermediate-volatility organic compounds: A potential source of ambient oxidized organic aerosol,

Environ. Sci. Technol., 43, 4744-4749, doi:10.1021/ES803219q, 2009.

Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld, J. H.:
Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in

the United States, J. Geophys. Res., 114, D01205, doi:10.1029/2008JD010701, 2009.

Rind, D., Lerner, J., Jonas, J., and McLinden, C.: Effects of resolution and model physics on
tracer transports in the NASA Goddard Institute for Space Studies general circulation models, J.

Geophys. Res., 112, D09315, doi:10.1029/2006JD007476, 2007.

Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P.,
Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols: Semivolatile emissions

and photochemical aging, Science, 315, 1259-1262, doi:10.1126/SCIENCE.1133061, 2007.

Sander, R.: Compilation of Henry’s Law constants for inorganic and organic species of potential

importance in environmental chemistry (version 3), http://www.henrys-law.org, 1999.

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions from
air pollution sources. 3. C-1-C-29 organic compounds from fireplace combustion of wood, Environ.

Sci. Technol., 35, 1716-1728, doi:10.1021/ES001331e, 2001.

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions



104

from air pollution sources. 5. C-1-C-32 organic compounds from gasoline-powered motor vehicles,

Environ. Sci. Technol., 36, 1169-1180, doi:10.1021/ES0108077, 2002.

Schichtel, B. A., Malm, W. C., Bench, G., Fallon, S., McDade, C. E., Chow, J. C., and Watson,
J. G.: Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the

United States, J. Geophys. Res., 113, D02311, doi:10.1029/2007JD008605, 2008.

Sheesley, R. J., Krusa, M., Krecl, P., Johansson, C., and Gustafsson, O.: Source apportionment of
elevated wintertime PAHs by compound-specific radiocarbon analysis, Atmos. Chem. Phys., 9,

3347-3356, doi:10.5194 /acp-9-3347-2009, , 2009.

Shrivastava, M. K., Lipsky, E. M., Stanier, C. O., and Robinson, A. L.: Modeling semivolatile
organic aerosol mass emissions from combustion systems, Environ. Sci. Technol., 40, 2671-2677,

doi:10.1021/ES0522231, 2006.

Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson, A. L.: Effects of
gas particle partitioning and aging of primary emissions on urban and regional organic aerosol

concentrations, J. Geophys. Res., 113, D18301, doi:10.1029/2007JD009735, 2008.

Szidat, S.: Radiocarbon analysis of carbonaceous aerosols: Recent developments, Chimia, 63, 157—

161, doi:10.2533/CHIMIA.2009.157, 2009.

Turpin, B. J. and Lim, H. J.: Species contributions to PMs 5 mass concentrations: Revisiting

common assumptions for estimating organic mass, Aerosol. Sci. Tech., 35, 602-610, 2001.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano
Jr., A. F.: Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos.

Chem. Phys., 6, 34233441, doi:10.5194/acp-6-3423-2006, 2006.

Weber, R. J., Sullivan, A. P., Peltier, R. E., Russell, A., Yan, B., Zheng, M., de Gouw, J., Warneke,
C., Brock, C., Holloway, J. S., Atlas, E. L., and Edgerton, E.: A study of secondary organic
aerosol formation in the anthropogenic-influenced southeastern United States, J. Geophys. Res.,

112, D13302, doi:10.1029/2007JD008408, 2007.



105

Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale

numerical-models, Atmos. Environ., 23, 1293-1304, 1989.

Wu, S. L., Mickley, L. J., Jacob, D. J., Logan, J. A., Yantosca, R. M., and Rind, D.: Why are there
large differences between models in global budgets of tropospheric ozone?, J. Geophys. Res., 112,

D05302, doi:10.1029,/2006JD007801, 2007.

Wu, S. L., Mickley, L. J., Leibensperger, E. M., Jacob, D. J., Rind, D., and Streets, D. G.: Effects of
2000—2050 global change on ozone air quality in the United States, J. Geophys. Res., 113, D06302,

doi:10.1029/2007JD008917, 2008.

Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L.: A size-segregated particle dry deposition

scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549-560, 2001.

Zhang, Q., Worsnop, D. R., Canagaratna, M. R., and Jimenez, J. L.: Hydrocarbon-like and oxy-
genated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols,

Atmos. Chem. Phys., 5, 3289-3311, doi:10.5194/acp-5-3289-2005, 2005.

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R.,
Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo,
P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa,
N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams,
P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang,
Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L.L13801,

d0i:10.1029/2007GL029979, 2007.

Zhang, Y. X. and Tao, S.: Global atmospheric emission inventory of polycyclic aromatic hydro-
carbons (PAHSs) for 2004, Atmos. Environ., 43, 812-819, doi:10.1016/J.ATMOSENV.2008.10.050,

2009.



106

Table 3.1: Low-volatility organic compounds.

Species Description a? K&\ c* Reference
(m®/pg]  [ng/m”]

SVOC, primary SVOC emission 0.49¢  0.0006 1646 Shrivastava et al. (2006)
SVOC, primary SVOC emission 0.51°¢ 0.05 20 Shrivastava et al. (2006)
0O-SVOC; oxidized SVOC; 1.5 0.06 16.46 Grieshop et al. (2009a)
0O—-SVOC, oxidized SVOC, 1.5 5.0 0.20 Grieshop et al. (2009a)
vocC primary IVOC emission? NA 1x107° 10°

O-IVOCy,; high NO, IVOC oxidation product®  0.21 0.59 1.69 Chan et al. (2009)
O-IVOCy. high NO, IVOC oxidation product! ~ 1.07  0.0037 270 Chan et al. (2009)
0-IVOCy,; low NO, IVOC oxidation product? 0.73 10000 0.0001 Chan et al. (2009)

& See Equation 3.7.
b Reference temperature for SVOC parameters is 300 K. IVOC SOA reference temperature is 299 K.
¢ Fraction of total SVOC emissions.

4 IVOC behavior based on naphthalene.
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Table 3.2: Emissions of primary low-volatility organic compounds (year 2000).

Species Biomass burning Biofuel burning Anthropogenic sources® Total
[TgC/yr] [Tg C/yr] [TgC/yr] [TgC/yr]
Traditional non-volatile POA 19 7.1 2.7 29
SVOCs 24 9.0 34 37
NaphthaleneP 0.09 0.05 0.09 0.22
IVOC surrogate 5.7 3.2 5.8 15

# Excluding biomass and biofuel burning.
b The baseline naphthalene emission inventory is used only to obtain the spatial distribution of
IVOC emissions.
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Table 3.4: Rate constants for IVOC oxidation. k=AeB/T. Sources: Atkinson and Arey (2003);
Henze et al. (2008); Atkinson (1997).

Reaction A B kaos
[em3molec s [K] [cm®molec™!s™!]

NAP+OH 1.56x10~ 11 117 2.3x10~ 1!

RO2+HO, 1.4x10712 700 1.5x10~ 11

RO2+NO 2.6x10712 350 8.5x1012
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Table 3.5: Global OA budget for traditional (non-volatile POA) and revised (semivolatile POA,
SOA from SVOCs, and SOA from IVOCs) simulations. The OM/OC ratio for traditional, non-
volatile POA is 2.1. The OM/OC ratio for semivolatile POA is 1.4. The OM/OC ratio for all SOA
is 2.1. Simulations were performed at 2°x2.5° horizontal resolution with GEOS-4 meteorology.

Tropospheric Net ‘Wet Dry
burden Source* Deposition Deposition Lifetime
[Tg] [ Tg/yr] [ Tg/yr] [Tg/yr] [days]

Traditional Non-volatile POA Simulation

Traditional POA 0.92 61 53 8.4 5.5

Traditional SOA 0.72 26 23 2.3 10

Total OA 1.64 87 76 11 6.9
Revised Simulation

Semivolatile POA 0.03 0.70 0.22 0.49 17

SOA from SVOCs 0.81 38 34 4.4 7.7

SOA from IVOCs 0.09 5.2 4.6 0.6 6.5

Traditional SOA 0.71 23 21 2.0 11

Total OA 1.65 67 60 7.4 9.0
Percent Change in OA

Traditional OA —-1% —11% —11% —15% 12%

Total OA 0% —23% —22% —-31% 30%

& Net Source includes emission for POA in the traditional simulation.
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Table 3.7: Mean bias (MB) in ngC/m? and normalized mean bias (NMB) in percent (%) for the
N
sensitivity simulations for DJF 2000 (M B = & Z (P, —0;), NMB = 100% x Z (P, —0) /Z

where P; are the model predictions and O; are the IMPROVE obbervatlonb at N locatlons) IM-
PROVE observations are shown in Fig. 3.7. Sensitivity simulations are outlined in Table 6. 2°x2.5°
simulations use GEOS4 meteorology. 4°x5° simulations use GISS GCM meteorology.

Simulation MB NMB
(ngC/m®  [%]
2°x2.5° Traditional —0.20 —22
2°%2.5° Revised —0.59 —63
4°x5° Traditional —0.37 -39
4°x5° Revised —0.70 —75
4°x5° 2*IVOC —0.68 —-73
4°x5° 2*SVOC —0.51 —55
4°x5° SVOC K*10 —0.44 —47
4°x5° O-SVOC K*10 —0.60 —64
4°x5° H-Law/100 —0.67 -71

4°x5° AH*2 —0.50 —54
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Table 3.8: Effect of model resolution and meteorology on global OA budget. 2°x2.5° simulations
are performed with GEOS-4 assimilated meteorology. 4°x5° simulations were performed with GISS
GCM Model 3 meteorology. Both simulations use revised framework (semivolatile POA, SOA from
SVOCs, and SOA from IVOCs). To convert POA to TgC, divide by 1.4. To convert SOA to TgC,
divide by 2.1.

Process 2°%2.5° 4°x5° Difference
Assimilated GCM (%)
Meteorology  Meteorology

Precursor Emisions [Tg/yr]

SVOCs 52 52 0%
IVOCs 16 16 0%
terpenes 115 123 7%
alcohols 38 38 1%
sesquiterpenes 15 15 0%
isoprene 446 396 —-11%
aromatics 18 18 0%
OA Net Production by Parent Hydrocarbon Class [Tg/yr]
SVOC (POA) 0.7 1.1 56%
SVOC (SOA) 38.3 37.0 -3%
IVOCs 5.2 5.1 —2%
terpenes 5.6 4.1 —26%
alcohols 1.1 0.8 -32%
sesquiterpenes 1.5 1.0 —35%
isoprene 11.2 6.7 —40%
aromatics 3.5 3.3 —6%
Total OA Production 67 59 —12%
Tropospheric Lifetime Against Deposition [days]
POA 17.4 9.5 —45%
SVOC SOA 7.7 5.3 ~31%
IVOC SOA 6.5 4.4 —31%
Traditional SOA 11.4 9.1 —20%

Mass weighted OH Concentration [molec cm™3]

[OH] 1.07x 106 1.03x10° —4%
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Table 3.9: Traditional (non-volatile POA) simulation for 2°x2.5° and 4°x5° grid resolution.
2°x%2.5° simulations are performed with GEOS-4 assimilated meteorology. 4°x5° simulations were
performed with GISS GCM Model 3 meteorology.

Tropospheric Wet Dry Tropospheric
burden Emission Deposition Deposition Lifetime
[TgC] [TgC/yr]  [TgC/yr]  [TgC/yr] [days]
2°x%2.5° Traditional Non-volatile POA Simulation
Hydrophobic POA 0.042 15 0.3 0.7 15
Hydrophilic POA 0.40 15 25 3.3 5.2
Total POA 0.44 29 25 4 9.9
4°x5° Traditional Non-volatile POA Simulation
Hydrophobic POA 0.039 15 0.7 1.2 7.3
Hydrophilic POA 0.26 15 23 3.9 3.5

Total POA 0.30 29 24 ) 3.7
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Figure 3.1: Emissions of SVOCs and IVOCs. SVOC emissions shown here are the baseline POA
emission inventory. Plots are annual averages for year 2000. Note that the color scale is not linear.
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Figure 3.2: Predicted concentration of aerosol from SVOCs and IVOCs. Aerosol from SVOCs
includes POA, (a and b), and SOA, (c and d), and is expressed in pg C/m3. Aerosol from IVOCs
is shown in panels (e and f) and is expressed in pg/m3. Concentrations are shown at the surface for
December-January-February (DJF) and June-July-August (JJA) for year 2000 (GEOS-4, 2°x2.5°).
Note that the color scale is not linear.
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Fraction of primary SVOC in particle phase
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Figure 3.3: Fraction of primary semivolatile material in aerosol phase as POA at the surface,
seasonally averaged for year 2000. Fraction is simply the aerosol-phase SVOC concentrations (in
ppb) divided by the total SVOC (gas+aerosol) concentration (in ppb). Simulations performed with
GEOS-4 at 2°x2.5°.
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Figure 3.4: SVOC budget. Relative portions of pie indicate annual net production (32 TgC/yr
total). SVOC and O-SVOC (oxidized SVOC) are also wet and dry deposited (not shown). All
numbers are for year 2000. Simulation performed at 2°x2.5° with GEOS-4 meteorology.
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SOA Formation From Aromatics and IVOCs
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Figure 3.5: Emission, oxidation, and aerosol formation from aromatics and IVOCs. Simulation
performed at 2°x2.5° with GEOS-4 meteorology.
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Total Organic Aerosol During Winter and Summer 2000
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Figure 3.6: Total OA and contribution of each component to winter and summer concentrations
over the US. Not shown is the contribution of aromatic SOA to total OA. Fraction is fraction of
total OA. Simulations are 2°x2.5° with GEOS-4 meteorology.
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Winter (DJF) Simulated Total OC Concentration
with IMPROVE Observations (circles)
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Figure 3.7: Winter (December-January-February 2000) surface total OC concentration from
2°x2.5° (GEOS-4) simulations for the traditional and revised frameworks. Total OC includes POA
and SOA from traditional precursors, IVOCs, and SVOCs. IMPROVE observations (averaged over
DJF for year 2000) are overlaid in circles. An outlier value of >27ng C/m? has been removed from
the IMPROVE observations. Only sites with valid data for at least half of the DJF 2000 season are
shown.
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OC Concentration Relative to
Traditional (Non-volatile POA) Simulation for DJF
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Figure 3.8: DJF surface total OC concentration (POA, SOA from SVOCs, SOA from IVOCs, and
traditional SOA) relative to non-volatile POA simulation (POA and traditional SOA) using GISS
meteorology at 4°x5°. Sensitivity tests are given in Table 3.6.
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OC Concentration Relative to
Traditional (Non-volatile POA) Simulation for DJF
S

Figure 3.9: DJF surface total OC concentration (POA, SOA from SVOCs, SOA from IVOCs, and
traditional SOA) from a revised simulation in which the enthalpy of vaporization is 83 kJ/mol relative
to a non-volatile (traditional) POA simulation (POA and traditional SOA) using GISS meteorology
at 4°x5°.



124

Sensitivity of Global OA Source to Model
Parameters Relative to Traditional Simulation

SVOC and SVOC and Wet
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Figure 3.10: Change in global OA net source (from all types of organic aerosol) for sensitvitiy
tests. Values are relative to traditional simulation at 4°x5° using GISS meteorology. Sensitivity

tests are given in Table 3.6.
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Fraction of Modern Carbon in SVOC Emissions
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Figure 3.11: Fraction of SVOC emissions from modern carbon: (Biomass+Biofuel)/(Biomass+Bio-
fuel+Anthropogenic).
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Figure 3.12: Fraction of IVOC emissions from modern carbon: (Biomass+Biofuel)/(Biomass+Bio-
fuel+Anthropogenic). Note that the high contribution of modern carbon just of the coast of the US
(such as over the Gulf of Mexico) results from small, but non-zero emissions from biofuel burning.
Biofuel emissions occur in these location as a result of degredation of the emission inventory as it
is regridded from 0.25°x0.25° to 1°x1° and then 2°x2.5° or 4°x5° horizontal resolution for use in
GEOS-Chem.
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Chapter 4

Global modeling of organic aerosol:
The importance of reactive
nitrogen *

*Submitted to Atmospheric Chemistry and Physics as “Global modeling of organic aerosol: The importance of
reactive nitrogen” by H. O. T. Pye, A. W. H. Chan, M. Barkley, and J. H. Seinfeld.
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4.1 Abstract

Reactive nitrogen compounds, specifically NO, and NOs, likely influence global organic aerosol
levels. To assess these interactions, GEOS-Chem, a chemical transport model, is updated to include
improved biogenic emissions (following MEGAN v2.1/2.04), a new organic aerosol tracer lumping
scheme, aerosol from nitrate radical (NO3) oxidation of isoprene, and NO,-dependent terpene aerosol
yields. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with
the nitrate radical, and relatively high aerosol yields from NOgj oxidation, biogenic hydrocarbon-
NOg3 reactions are expected to be a major contributor to surface level aerosol concentrations in
anthropogenically influenced areas such as the United States. By including aerosol from nitrate
radical oxidation in GEOS-Chem, terpene aerosol approximately doubles and isoprene aerosol is
enhanced by 30 to 40% in the Southeast United States. In terms of the global budget of organic
aerosol, however, aerosol from nitrate radical oxidation is somewhat minor (slightly more than 3
Tg/yr) due to the relatively high volatility of organic-NOj3 oxidation products. Globally, 69 to 88
Tg/yr of organic aerosol is predicted to be produced annually, of which 14-15 Tg/yr is from oxidation

of monoterpenes and sesquiterpenes and 8-9 Tg/yr from isoprene.

4.2 Introduction

The aerosol phase is an important intermediate or terminal form for many species in the atmosphere
including volatile organic compounds (VOCs) (Goldstein and Galbally, 2007), and understanding
aerosol is important for assessing the climate change and human health impacts of air pollution.
Organic aerosol can result from direct emissions, producing primary organic aerosol (POA), or form
in situ from chemical transformation, yielding secondary organic aerosol (SOA). Anthropogenic
SOA contributors include light aromatics (Ng et al., 2007b), naphthalene (Chan et al., 2009), and
alkanes (Lim and Ziemann, 2005). Low-volatility compounds emitted from sources including diesel
combustion and biomass burning also lead to significant amounts of POA and SOA (Robinson et al.,

2007). In addition to these hydrocarbons, biogenic compounds such as isoprene, monoterpenes, and
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sesquiterpenes serve as SOA precursors (Hoffmann et al., 1997; Griffin et al., 1999a; Kroll et al.,
2006). Chamber studies have provided the foundation for organic aerosol parameterizations in global
models such as GEOS-Chem (Henze and Seinfeld, 2006; Liao et al., 2007; Henze et al., 2008; Pye
and Seinfeld, 2010), NCAR Community Atmospheric Model (CAM3) (Heald et al., 2008), TM3
(Tsigaridis and Kanakidou, 2003), and GISS GCM II-prime (Chung and Seinfeld, 2002).

A number of issues related to organic aerosol remain unresolved. Models often predict organic
aerosol levels that are much lower than those observed (Heald et al., 2005; Volkamer et al., 2006;
Liao et al., 2007; Pye and Seinfeld, 2010). In addition, organic aerosol even in urban areas tends to
contain significant “modern” carbon (Szidat, 2009; Marley et al., 2009; Schichtel et al., 2008) but
correlates with anthropogenic tracers (de Gouw et al., 2005; Weber et al., 2007).

Emissions of NO, represent a potential way for anthropogenic and biogenic systems to interact.
NO, (NO + NO,) levels have been identified as an important SOA factor in photooxidation and
ozonolysis (Presto et al., 2005; Ng et al., 2007a). Both modeling and experimental work indicate that
the yield of aerosol is highly sensitive to NO,, especially for low VOC/NO,, ratios (VOC/NO, <
1 ppb/ppb) (Ng et al., 2007a; Capouet et al., 2008). Light aromatics (Ng et al., 2007b), polycyclic
aromatic hydrocarbons (Chan et al., 2009), and monoterpenes (Presto et al., 2005) are expected
to have lower yields under high-NO, conditions (VOC/NO, < 0.1 ppb/ppb), in which the peroxy
radical reacts preferentially with NO instead of HO5. Ng et al. (2007a) examined the monoterpene,
a-pinene, and the sesquiterpenes, longifolene and aromdendrene, and postulated that sesquiterpenes
generally exhibit higher yields under high-NO, conditions as a result of a higher probability of
isomerization for ROs + NO alkoxy radicals or higher yields of less volatile organic nitrates. For
isoprene, yields under high-NO,, conditions are typically lower than under-low NO,. conditions (Kroll
et al., 2005, 2006). But, recent work indicates that high-NO, isoprene oxidation can be just as
effective as low-NO, oxidation in producing SOA (Surratt et al., 2010; Chan et al., 2010). During
the night, NOy reacts with O3 to produce nitrate radicals (NO3). Monoterpenes have a very short
lifetime against reaction with NOj3 (Fry et al., 2009), and the yield of aerosol from reaction with

NOs is generally higher than photooxidation yields (Griffin et al., 1999a; Ng et al., 2008).
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In this work, updated biogenic emissions are incorporated with a new lumping scheme to simulate
organic aerosol in the global chemical transport model GEOS-Chem. Possible interactions between
anthropogenic and biogenic emissions in terms of SOA formation are investigated for the United
States. New processes represented include aerosol from nitrate radical oxidation of isoprene and
NO,-dependent terpene aerosol yields. Section 4.3 describes the updated emissions and SOA pa-
rameterization. The Results section is devoted to examining the global organic aerosol (OA) budget

and surface concentrations over the U.S.

4.3 Model Description

4.3.1 Global Model

Present-day (year 2000) organic aerosol is simulated in the global chemical transport model, GEOS-
Chem (version 8-01-04, http://acmg.seas.harvard.edu/geos/). Simulations are performed at 2° lati-
tude by 2.5° longitude horizontal resolution using GEOS-4 assimilated meteorology with 30 vertical
layers up to 0.01 hPa. Simulations include fully-coupled ozone-NO,-hydrocarbon chemistry (Bey et
al., 2001). Updates to GEOS-Chem version 8-01-04 are discussed in the later sections.

A GEOS-Chem simulation using nonvolatile POA was found to have a mean bias of -0.56 ug/m?
or -34% compared to the Interagency Monitoring of Protected Visual Environments (IMPROVE)
observations over the United States (Liao et al., 2007). The bias tends to become even larger when
semivolatile POA is implemented (Pye and Seinfeld, 2010). As a result, two types of simulations are
performed in this work: a “traditional” POA simulation and a semivolatile POA simulation. The
nonvolatile (traditional) POA simulation, which uses nonvolatile POA and does not consider SOA
from intermediate volatility compounds, is used for some sensitivity simulations to compensate for
the fact that the semivolatile POA model predicts aerosol levels that are too low. The traditional
GEOS-Chem simulation has also been extensively compared to observations in the work of Park et al.
(2003, 2006), Heald et al. (2005), and Liao et al. (2007). The semivolatile POA simulation (Pye and

Seinfeld, 2010) replaces nonvolatile POA with a pool of primary semivolatile organic compounds
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(SVOCs) that immediately partition between the gas and aerosol phases as well as react in the gas
phase. The semivolatile POA simulation also includes intermediate volatility organic compounds
(IVOCs, saturation concentration about 10 ug/m?3) which are emitted entirely in the gas phase but
are assumed to behave like naphthalene in terms of SOA yields (Pye and Seinfeld, 2010).
Semivolatile organic species are removed from the atmosphere by wet and dry deposition as in
previous work (Chung and Seinfeld, 2002; Pye and Seinfeld, 2010). Dry deposition follows a resistance
in series method (Wesely, 1989; Zhang et al., 2001), and gas-phase secondary organic species are
assumed to be hydrophilic with a Henry’s Law coefficient of 10° M/atm (Chung and Seinfeld, 2002).
Primary organic aerosol is treated as hydrophobic in the semivolatile POA simulation or emitted as

half hydrophobic and half hydrophilic in the nonvolatile POA simulation.

4.3.2 Emissions

SOA precursor emissions include biogenic hydrocarbons, benzene, toluene, xylene, intermediate
volatility compounds, and semivolatile organic compounds or primary organic aerosol. The light
aromatic, IVOC, and POA/SVOC emissions are the same as in previous work (Henze et al., 2008; Pye
and Seinfeld, 2010). Briefly, benzene, toluene, and xylene are emitted from biomass burning, biofuel
burning, and other anthropogenic sources based on their emission ratios relative to CO (for biomass
and biofuel burning) and emissions described by the Emission Database for Global Atmospheric
Research (EDGAR V2.0). IVOCs are spatially distributed like naphthalene from biomass burning,
biofuel burning, and other anthropogenic sources and scaled up to represent all intermediate volatility
organic compounds as described by Pye and Seinfeld (2010). The traditional POA emission inventory
is described by Park et al. (2003, 2006) and is used as a surrogate for SVOC emissions. When POA
is treated as semivolatile (i.e. POA is replaced by SVOCs), the traditional POA inventory is scaled
up 27% (Schauer et al., 2001; Pye and Seinfeld, 2010) to account for SVOCs that are emitted entirely
in the gas-phase.

Biogenic emissions of isoprene and seven major monoterpenes (a-pinene, (-pinene, limonene,

myrcene, sabinene, A3-carene and ocimene), are updated to follow the Model of Emissions of
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Gases and Aerosols from Nature (MEGAN) v2.1 (Guenther et al., 2006) as implemented in GEOS-
Chem version 8-02-04. Other monoterpene and sesquiterpene (farnesene, S-caryophyllene, and other
sesquiterpenes) emissions are added based on MEGAN v2.1 plant functional types and MEGAN
v2.04 emission factors and parameters. Emissions are modeled as a species specific emission rate at
standard conditions (€) and corrected using emission activity factors for leaf age (yage), temperature

(vr), leaf area index (yrar), and light (yp) (Guenther et al., 2006; Sakulyanontvittaya et al., 2008):

EZﬁVAg@'YT’YLAI[’YPLDF + (I—LDF)] (41)

Included in the emissions updates (standard in GEOS-Chem version 8-02-04) are the use of monthly
MODIS instead of AVHRR for the leaf area index used to calculate y44e and yra7. The temper-
ature adjustment (v7) is computed as a function both of the current temperature and the average
temperature over the previous 10 days for isoprene (Guenther et al., 2006). For monoterpenes and
sesquiterpenes, yr is computed as an exponential function of current temperature (Sakulyanontvit-
taya et al., 2008). Unlike isoprene emissions which are 100% light-dependent, only a fraction of
the monoterpene and sesquiterpene emissions are light-dependent. The light-dependence fraction
(LDF) is around 5 to 10% for most monoterpenes (except ocimene) and 50% for sesquiterpenes
(Sakulyanontvittaya et al., 2008). The light activity factor (yp) uses the parameterized canopy
environment emission activity (PCEEA) algorithm of Guenther et al. (2006). The effects of soil
moisture and production or loss within the canopy are ignored.

Emissions of monoterpenes are grouped into three tracers: MTPA, LIMO, and MTPO (Fig.
4.1). MTPA (a-pinene and similar monoterpenes) consists of the bicyclic monoterepenes a-pinene,
[-pinene, sabinene, and A3-carene. Limonene (LIMO) is not lumped with any other species since
its aerosol yields tend to be much higher than other monoterpenes. MTPO (other monoterpenes)
consists of myrcene, ocimene, terpinene, terpinolene, and other terpenoid compounds such as alcohols
and ketones. MTPO is the equivalent of the MEGAN myrcene, ocimene, and other monoterpene

categories.
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4.3.3 SOA Parameterization

The yield of aerosol from a given hydrocarbon/oxidant pair can be parameterized using a volatil-
ity basis set (VBS) (Donahue et al., 2006) or an Odum 2-product approach (Odum et al., 1996).
Both methods adequately describe most chamber conditions because of the limited range of organic
loadings examined (on the order of one to several hundred pug/m?®). The Odum model is computa-
tionally advantageous since it requires only two (or one) surrogate species per parent hydrocarbon.
However, lumping multiple parent hydrocarbon systems together requires approximation (Bian and
Bowman, 2002). The VBS requires more semivolatile surrogates (generally four) (Pathak et al.,
2007; Lane et al., 2008b) per parent hydrocarbon/oxidant system, but combining different systems
is more straightforward.

The organic aerosols in this work are lumped into five aerosol systems based on the parent
hydrocarbons treated: terpenes, isoprene, light aromatics and IVOCs, primary SVOCs, and oxidized
SVOCs (Fig. 4.1). Each aerosol system is represented with either a unique VBS (for systems with
multiple parent hydrocarbons and/or multiple aerosol forming pathways) or Odum 2-product fit
(for systems in which there is essentially one parent hydrocarbon). The lumping was chosen to
maximize the amount of parent hydrocarbon information while maintaining a limited number of
tracers. The terpene system (TSOA/G) includes semivolatile aerosol formed from photooxidation,
ozonolysis, and nitrate radical oxidation of monoterpenes and sesquiterpenes. The isoprene system
(ISOA/G) contains semivolatile aerosol from photooxidation and nitrate radical oxidation. The
photooxidation aerosol from light aromatics and the naphthalene-like IVOC surrogate (ASOA/G)
are lumped together since they have similar behavior under high and low-NO, conditions. SVOCs
are emitted as two semivolatile species (POA/G1-2) in roughly equal amounts based on an Odum 2-
product fit to wood burning emissions (Shrivastava et al., 2006), and each of the primary SVOCs can
oxidize in the gas phase to form lower volatility species (OPOA/G) (Pye and Seinfeld, 2010). The
aerosol treatment with semivolatile POA requires 14 semivolatile gas-phase species, 14 semivolatile
aerosol-phase species, 1 nonvolatile species, and 7 gas-phase precursors (excluding isoprene) for a

total of 36 tracers (indicated by red outlined boxes in Fig. 4.1) in addition to the standard gas-
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phase simulation tracers. Except for isoprene and light aromatics, which are a part of the gas-phase
chemical mechanism, SOA precursor chemistry is performed offline. The partitioning equations are

the same as those in the work of Chung and Seinfeld (2002).

4.3.3.1 Aerosol Yields

Table 4.1 shows the VBS fits for the aerosol forming pathways. Following the work of Stanier et al.
(2008), mass-based stoichiometric coefficients, a, for each parent hydrocarbon/oxidant system are
obtained by minimizing the difference between modeled and observed yields. Most systems are fit
with a VBS using saturation concentrations, C*, of 1, 10, and 100 ug/m? at 298 K. If yields are
not available at the reference temperature, an enthalpy of vaporization of 42 kJ/mol is used (Chung
and Seinfeld, 2002). Figures showing the fits and data on which they were based is available as a
supplement.

The terpene aerosol parameterization in GEOS-Chem based on the work of Chung and Seinfeld
(2002) is updated to reflect NO,-dependent yields, a more realistic aerosol density, and new exper-
imental results. The behavior of the lumped monoterpenes, MTPA and MTPO, under low-NO,
conditions, is modeled based on the dark a-pinene ozonolysis fit by Shilling et al. (2008). Shilling
et al. (2008) were able to obtain very low organic aerosol loading (less than 1 pg/m3) and thus the
saturation concentration of 0.1 pug/m? is included in the fit. Using a-pinene ozonololysis yields for
all photooxidation and ozonolysis conditions for MTPO and MTPA is an approximation. This yield
might overestimate the amount of aerosol formed since photooxidation pathways often have a lower
yield than ozonolysis pathways (Griffin et al., 1999a), a-pinene has one of the highest ozonolysis
aerosol yields of the bicyclic monoterpenes (Griffin et al., 1999a), and UV light should suppress
SOA (Pathak et al., 2007). However, the Shilling et al. (2008) parameterization may underestimate
yields since not all monoterpenes behave like a-pinene; for example, monoterpenes with two double
bonds (like terpinene and to a certain extent myrcene) appear to have higher aerosol yields than
those with one double bond under photooxidation (Griffin et al., 1999a). In addition, species like

[-pinene and sabiene have higher yields under photooxidation than ozonolysis (Griffin et al., 1999a),
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and investigations by Ng et al. (2007a) indicate that if NO, is absent (or extremely low), a-pinene
photooxidation can produce very high yields. The yield may also be underestimated since the fit
from Shilling et al. (2008) was not corrected for wall loss, and as a result, the authors estimate
the yields could be 30 to 60% higher than those captured by the fit. The MTPA/MTPO fit for
high-NO, photooxidation and ozonolysis is obtained by reducing the low-NO, yield, and thus «, by
50% for a given loading based on work by Ng et al. (2007a) and Pathak et al. (2007). The yield
of aerosol from limonene under high and low-NO, conditions is based on data from Zhang et al.
(2006) using a density of 1.3 g/em?® (Ng et al., 2007a). The Zhang et al. (2006) experiments show
a very mild dependence on NO,, level with slightly higher yields under high-NO, conditions at low
loadings. The sesquiterpene yields are based on the same underlying data as previous GEOS-Chem
simulations; the yield data for §-caryophyllene and a-humulene from Griffin et al. (1999a) with a
[VOC]/[NO,] ratio greater than 3 ppbC/ppb are used to obtain a low-NO,, fit. The high-NO,, yield
curve is obtained by doubling the yield for a given loading based on Ng et al. (2007a). All terpene
(monoterpene and sesquiterpene) aerosol from the nitrate oxidation pathway is represented based
on (-pinene experiments by Griffin et al. (1999a).

Aerosol from the isoprene + NOgs pathway (Ng et al., 2008) is added to GEOS-Chem. SOA
from photooxidation of isoprene (Henze and Seinfeld, 2006), light aromatics (Henze et al., 2008),
and a naphthalene-like IVOC (Pye and Seinfeld, 2010) is essentially the same as previous work.
The underlying data from previous GEOS-Chem aerosol studies for isoprene, light aromatics, and
IVOCs are refit to a VBS with saturation concentrations of 1, 10, and 100 pg/m?. Although
high-NO, conditions have traditionally been thought to suppress isoprene aerosol (Carlton et al.,
2009), recent work shows high-NO, isoprene aerosol yields can be similar to the low-NO, yields at
atmospherically relevant NOy /NO ratios (Chan et al., 2010). As in previous versions of GEOS-Chem,
isoprene photooxidation aerosol follows low-NO,, behavior based on Kroll et al. (2006) regardless of
the NO, level (Henze and Seinfeld, 2006).

Primary SVOCs from biomass burning, biofuel burning, and other anthropogenic sources are rep-

resented using an Odum 2-product fit based on the work of Shrivastava et al. (2006), as implemented
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by Pye and Seinfeld (2010). SVOCs are emitted as two species with saturation concentrations of
1600 and 20 pg/m? at 300 K. As the gas-phase SVOCs react with OH, the volatility of the reaction
products decreases by a factor of 100 to form oxidized SVOCs (Grieshop et al., 2009). The oxidized
SVOCs remain semivolatile but more efficiently partition to the aerosol phase than the primary
SVOC emissions. More information about the SVOC and IVOC simulation can be found in the

work of Pye and Seinfeld (2010).

4.3.3.2 Implementation of NO_ -Dependent Yields

The difference in yield between high- and low-NO, conditions for photooxidation and ozonolysis is
assumed to result from competition between the NO and HO5 reactions of the peroxy radical (Presto
et al., 2005). Following the approach used in GEOS-Chem for light aromatics and intermediate
volatility compounds (Henze et al., 2008; Pye and Seinfeld, 2010), the amount of parent hydrocarbon
reaction through each pathway is calculated. The amount of hydrocarbon reacting through the high-

NO,, ROz + NO pathway, (AHCno ; ;) is computed as:
AHCno,i,j = BAHC; ; (4.2)

where (3 is the fraction of peroxy radicals reacting with NO and AHC is the amount of parent
hydrocarbon ¢ reacted with oxidant j. The amount of hydrocarbon reacting through the low-NO,,

RO2 + HO, pathway, (AHCgo, ;) is computed as:
AHCHO,,i; = (1- B)AHC’M (4.3)

Equations 4.2 and 4.3 assume RO 4+ RO reactions are negligible in the atmosphere and reaction
of the parent hydrocarbon with OH or ozone is the rate-limiting step for aerosol formation. The

branching ratio, 3, is computed from:

5 kro,+No[NO]
kRroy+NOINO| + kro,4+ 10, [HOs]
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where kro,+nvo and kro,+mo, are the rate constants for reaction of the peroxy radical with NO
and HOa, respectively. Due to limited information about reaction rates, all peroxy radicals resulting
in SOA are assumed to have the same ROy + NO and ROy + HO; rate constants (Henze et al.,

2008).

4.4 Results and Discussion

4.4.1 Emissions

Table 4.2 shows the global, annually averaged emission rates of POA and SOA precursors. Com-
pared to standard GEOS-Chem version 8-01-04 (which uses MEGAN v2.0 and Griffin et al. (1999b)
speciation), the bicyclic monoterpene (a-pinene, -pinene, sabinene, and A3-carene) emission rate
is relatively unchanged. Ocimene emissions, however, are about a factor of 6 higher than previously
estimated, and limonene emissions are about 60% lower. Global sesquiterpene emissions differ by
less than 10% different from previous estimates based on the other reactive volatile organic com-
pound (ORVOC) inventory of Guenther et al. (1995) and the speciation of Griffin et al. (1999b).
Isoprene emissions are about 14% larger than MEGAN v2.0 as implemented in GEOS-Chem. One
of the largest differences between previous GEOS-Chem studies (e.g. Henze and Seinfeld (2006) or
Pye and Seinfeld (2010)) and this work is the significantly reduced terpenoid ketone and terpenoid
alcohol emissions. All relevant terpenoid ketone and alcohol emissions (previously estimated at 43
Tg/yr) are assumed to be a subset of the MEGANv2.04 other monoterpene category which is pre-
dicted to have emissions of about 14 Tg/yr. The net result is that global terpene emissions are
about 20% lower than previous model estimates. Regional differences may be much higher, and the
diurnal variation is often significantly different (for example: sesquiterpenes were treated as 100%

light dependent in previous work, but now are only 50% light dependent).
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4.4.2 Global Budget

Figure 4.2 (a) shows the fraction of each lumped parent hydrocarbon reacting under high-NO,
(RO3 4+ NO), low-NO, (RO2 + HOs), and nitrate radical oxidation pathways. All pathways sum
to one for each parent hydrocarbon except for isoprene which also reacts with ozone but does not
produce aerosol from that pathway. All isoprene photooxidation is shown as “low NO,” since the
aerosol yield is representative of those conditions. About 22, 52, and 26% of the lumped bicyclic
monoterpenes, MTPA, react under high-NO,, low-NO,,, and nitrate radical conditions, respectively.
The rate constant for MTPO ozonolysis is slightly higher than the MTPA ozonolysis rate constant
and consequently, the nitrate oxidation is less important, but still significant, for MTPO. In contrast,
only 2% of the sesquiterpenes (SESQ), with their much stronger dependence on light and temperature
for emission and relatively fast reaction with ozone, react with the nitrate radical. Isoprene is emitted
only during the daytime, and less than 3% is predicted to react with the nitrate radical. Note that for
all monoterpenes and sesquiterpenes, the low-NO, pathway is globally dominant, reflecting where
biogenic compounds are emitted and the branching ratio, 3, in those locations (Fig. 4.3).

The bottom of Fig. 4.2 shows the predicted contribution of each reaction pathway to net aerosol
production from a given biogenic parent hydrocarbon. These values were calculated using the
yield at an organic loading of 1.5 ug/m® which was found to approximately reproduce the lumped
global net aerosol production rate in GEOS-Chem. For the lumped monoterpenes, MTPA and
MTPO, the low-NO, pathway is even more important relative to the high-NO, pathways in terms
of net aerosol production than would be estimated based on gas-phase oxidation since the low-NO,
yield is about double the yield under high-NO, conditions. For limonene, the high-NO, pathway
becomes relatively more important for aerosol production. For sesquiterpenes, a similar amount of
net aerosol production is predicted to result from the high and low-NO, pathways since the yield
is about double under high-NO, conditions compared to low-NO,, conditions. For all monoterpenes
and sesquiterpenes, the nitrate radical reaction contributes less to global net aerosol production than
it contributes to gas-phase oxidation. Since very little isoprene reacts with nitrate, the majority of

the isoprene aerosol comes from the photooxidation path, even though the yield of aerosol from the
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nitrate radical path can be substantially higher.

Table 4.3 shows the predicted net production of SOA for year 2000. Despite the fact that the
simulated monoterpene emissions have decreased substantially (about 20% globally) since the work
of Pye and Seinfeld (2010), the amount of SOA predicted to form from terpenes has increased to
14-15 Tg/yr and isoprene SOA has decreased slightly to 8-9 Tg/yr. A traditional simulation in the
work of Pye and Seinfeld (2010) (year 2000, GEOS-Chem v8-01-04, 2° by 2.5° horizontal resolu-
tion), predicted 10 Tg/yr of terpene SOA and 12 Tg/yr of isoprene SOA. Previous work by Henze
et al. (2008) (year 2004, GEOS-Chem v7-04-11, 2° by 2.5° horizontal resolution), predicted 12 and
14 Tg/yr and work by Farina et al. (2010) (year 1980, Unified GISS-IT’, 4° by 5° horizontal reso-
lution) predicted 21 and 6 Tg/yr from terpenes and isoprene, respectively. Increased terpene SOA
production in the present work compared to Pye and Seinfeld (2010) is a result of higher aerosol
yields from monoterpene and sesquiterpene oxidation. At low loadings (about 1 pg/m?), the yield
of aerosol from low-NO, monoterpene (MTPA/O) oxidation is about 5x the yield using older pa-
rameterizations (Griffin et al., 1999a; Chung and Seinfeld, 2002). The high-NO, sesquiterpene yield
implemented in this work also results in significantly more aerosol from sesquiterpenes. Limonene
yields (Zhang et al., 2006) at low loadings are about a factor of 10 higher than previous work using
data from Griffin et al. (1999a), however limonene emissions are substantially lower. The nitrate
radical oxidation yield is also slightly higher as a result of the density correction. At higher or-
ganic aerosol loadings, like those typical of summertime conditions in the southeast U.S. (about 10
pg/m?); yields are generally higher than in previous work, but generally no more than about double
(except for limonene). The yield of aerosol from isoprene photooxidation is within 10% of that using
the Odum 2-product fit of Henze and Seinfeld (2006) at low loadings since it is based on the same
underlying data (Kroll et al., 2006). The addition of isoprene from the NO3 pathway contributes a
small amount of aerosol since relatively little of the parent hydrocarbon reacts through that pathway.
Changes in the estimated aerosol production rate from isoprene compared to previous work (Henze
and Seinfeld, 2006; Henze et al., 2008; Pye and Seinfeld, 2010) are likely due to differences in the

emissions and an improved tracer lumping scheme.
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The preceding discussion focused on the global net aerosol production which is the sum of pro-
duction and evaporation. Figure 4.4 shows the fraction of mass that partitions to the aerosol phase
but later evaporates. Mass partitions to the aerosol phase in locations with high loadings (such
as anthropogenic source regions) or low temperatures and evaporates when loadings becomes lower
(such as in outflow regions) or temperatures increase (for example due to diurnal temperature vari-
ation). For the terpene SOA species with a saturation concentration of 0.1 pug/m?, about 24% of
the mass that partitions to the aerosol phase eventually evaporates. For a species with a C* of 10
ug/m?3, about 80% eventually evaporates. The fit in Fig. 4.4 was obtained by modeling the fraction
evaporated (Fg) for a species emitted in a location with an initial loading of M, ; and transported

to an area with a loading of M, :

1+C*/Mo’i

Fp=1-— /"ot
B 1+C*/M,

(4.5)

Equation 4.5 neglects losses in the gas or aerosol phases which leads to some of the discrepancy
between the fitted curve and data. The fitted M, ; and M, ; were determined to be 2.56 and 0.33
pg/m3. Primary SVOCs are forced out of the particle phase to a greater degree than the other

semivolatiles as a result of gas-phase reaction and are not included in the fit.

4.4.3 Surface Level Aerosol Over the United States

The global budget is heavily influenced by remote areas where biogenic emissions are high and NO
levels are low (e.g. the Amazon basin). Biogenic hydrocarbons may behave differently when emitted
in a location with significant anthropogenic emissions. In this section, the United States is used as

a case study for aerosol formation in an anthropogenically influenced area.

4.4.3.1 Fate of the Peroxy Radical

NO, levels influence the yield of aerosol through the rate of peroxy radical reaction with either NO
or HO5. Over the U.S.; the ROs + NO reaction usually dominates over the ROs + HO5 reaction,

particularly in the Northeast (Fig. 4.3) and during the winter when HO,, levels are lower (Henze
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et al., 2008). Even in the summer in the Southeast, more than 50% of the ROs is predicted to react
with NO (Fig. 4.3). The effect of NO,, on light aromatic and IVOC SOA in a global model has been
investigated previously (Henze et al., 2008; Pye and Seinfeld, 2010).

Figure 4.5 shows the predicted surface level organic aerosol from terpenes, isoprene, aromatics,
and nonvolatile POA (a traditional simulation) during August 2000. The second panel shows the
fraction of that organic aerosol from oxidation of a biogenic parent hydrocarbon (monoterpene,
sesquiterpene, or isoprene). Compared to a semivolatile POA simulation in which a large fraction of
the POA evaporates (Pye and Seinfeld, 2010), biogenic aerosol contributes less but still significant
amounts of the aerosol in the southeast U.S. (about 50%). Compared to previous work, summertime
aerosol is up to 2.6 ug/m? lower in the Southeast and up to 0.66 pg/m?3 lower in the Northeast.

Increased reaction of the peroxy radical with NO leads to both increased and decreased aerosol.
More reaction through the high-NO, pathway reduces the yield of aerosol from monoterpenes and
light aromatics but increases the yield from sesquiterpenes. Figure 4.6 shows the effect on surface
level organic aerosol (OA) of forcing the aerosol yield through the low-NO,. (5=0) or high-NO,, (5=1)
path as compared to a simulation using the model calculated § for a traditional POA simulation
(reference simulation is depicted in Figs. 4.3 and 4.5). The northeast U.S. is dominated by the
response of monoterpenes and light aromatics which produce more aerosol in the low-NO,, simulation
and less in the high-NO, simulation. The difference between the standard simulation and the low-
NO, simulation is greater than the difference between the standard simulation and the high-NO,
simulation since model calculated NO, levels are already sufficiently high to force most of the
peroxy radical through the high-NO, pathway. In the Southeast, the model response is dampened
and shows an opposite trend for the high-NO, simulation. This response occurs as a result of
significant aerosol that is not dependent on the ROy branching ratio (POA, isoprene aerosol, and
nitrate radical aerosol from terpenes) and sesquiterpene aerosol that has higher yields in the f=1
than in the =0 simulation. While the branching of the peroxy radical reaction between high-NO,
and low-NO, pathways has an influence on surface concentrations, the effect is generally small (OA

levels are within about 10% of the levels using the model calculated ).
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4.4.3.2 SOA from Nitrate Radical Oxidation

With roughly 30 to 40% of the monoterpene emissions and 20 to 30% of the sesquiterpene emissions
occurring at night, aerosol from the nitrate oxidation pathway is predicted to be significant. Aerosol
formed from nitrate radical oxidation of terpenes and isoprene contributes up to 3.35 pg/m? of
organic aerosol during August over the U.S. The nitrate pathway has the largest effect on terpene
aerosol followed by isoprene. Aerosol production from the nitrate pathway increases terpene aerosol
by up to 2.76 ug/m? (generally 1.5 ug/m? or more in the Southeast) and isoprene aerosol by about
0.4 to 0.6 ug/m3. Figure 4.7 shows the percent increase in aerosol from terpenes, isoprene, and
all sources compared to a simulation in which the nitrate pathway does not produce aerosol (all
simulations use traditional POA). An enhancement of 100%, as in the case for terpene OA, indicates
that the aerosol level doubles when the nitrate pathway is included. Terpenes are predicted to be
the largest contributor to biogenic aerosol in the Southeast, and total organic aerosol is enhanced
slightly more than 30% over a wide area as a result of nitrate oxidation aerosol.

For nitrate aerosol to contribute to surface level OA, aerosol loadings must be significant. The
yield of aerosol from the nitrate pathway for terpenes is 4% at 1 ug/m? (less than the yield from
photooxodation and ozonolysis of monoterpenes and sesquiterpenes) and 26% at 10 ug/m? (more
than the yield from photooxoidation and ozonolysis of monoterpenes, see Table 4.1). So although
nitrate oxidation enhances aerosol across the U.S.; it is most pronounced in the Southeast where
aerosol loadings are higher.

In terms of global budgets, the NO3 pathway plays a modest role increasing net production of
aerosol from terpenes (3 Tg/yr, 20% increase) and isoprene (1 Tg/yr, 10% increase). This lesser role
in net global production compared to surface concentrations is due to the relatively low aerosol yield
at low loadings and expected evaporation of 80% or more of the nitrate aerosol due to its relatively
high volatility and the reduced importance of NOg reaction in the tropics where NO, levels are low

(see Table 4.1 for the volatility and Fig. 4.4 for the expected evaporation).
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4.5 Considerations

In this section, we provide cautionary notes for the implications of our results in terms of emis-
sion controls, possible reasons results may be biased, the potential influences of errors in isoprene

chemistry, and comments about extrapolating chamber data to the atmosphere.

4.5.1 Dependence of SOA Formation on NO, Level

Simulations presented in Section 4.4.3.1 indicate that the ROy + NO vs RO, 4+ HOs branching of
aromatic and terpene peroxy radicals does not exert a large control on organic aerosol concentrations.
Caution should be used when extrapolating these results to implications for air quality management
since there are other ways in which NO, may influence organic aerosol concentrations that have not
been examined or implemented in the model.

Another NO, control on terpene SOA is through the gas-phase oxidants such as the hydroxyl
radical, ozone, and nitrate radicals and previous modeling work indicates that changes in gas-phase
oxidants may be the primary anthropogenic control on SOA. Simulations by Carlton et al. (2010)
indicate that half of biogenic SOA can be controlled, and work by Lane et al. (2008a) indicates
that reductions in NO, emissions are likely to lead to decreased SOA concentrations as a result
of lower oxidant concentrations, despite the fact that monoterpene SOA yields are predicted to be
higher under low-NO, conditions. However, the global a-pinene study of Capouet et al. (2008)
indicates that the presence of NO, increases OH and NOg levels relative to Oz levels. As a result,
the expected role of the high-yield terpene ozonolysis pathway is diminished and less aerosol results.
Thus, a study looking at the implications of NO, emission reductions may need to parameterize
SOA based on gas-phase oxidant (OH vs. Os) as well as NO,, level and examine the effects of NO,
reductions on oxidant levels.

Our simulations do indicate that the fate of the peroxy radical (reaction with NO or HOg) is
likely not the missing anthropogenic control on organic aerosol especially since increasing 3 tends to
reduce OA concentrations (except in the southeast U.S.) based on current experimental results. Our

simulations also indicate that NO,-dependent monoterpene and sesquiterpene photooxidation and
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ozonolysis yields may lead to a more accurate simulation in the northeast U.S. where concentrations

are more sensitive to the branching ratio.

4.5.2 Modeled Importance of Nitrate Aerosol

Aerosol from nitrate radical oxidation of biogenic hydrocarbons has been included in previous global
modeling work (Chung and Seinfeld, 2002; Farina et al., 2010) but its contribution to aerosol produc-
tion not separately assessed. Experimental studies have been extrapolated to the global atmosphere
and estimated 5 Tg/yr of aerosol from monoterpenes + NOgs (Fry et al., 2009) and 2-3 Tg/yr from
isoprene + NOj3 (Ng et al., 2008). Both of these estimates are about double the values presented
in this work. However, our work highlights the potential for NO3 produced aerosol to have a very
large regional effect.

Observations indicate support for a large source of organic compounds from reaction of biogenic
VOCs with nitrate radicals. Hennigan et al. (2009) monitored water soluble organic compounds
(WSOC) in the gas and aerosol phases during summer in Atlanta and found a pronounced nighttime
maximum in gas-phase WSOC likely due to products of nitrate oxidation but no similar maximum
in nighttime particulate WSOC. Measurements near the northeast U.S. during the 2002 and 2004
New England Air Quality Studies also indicate a strong interaction between terpenes and nitrate.
Isoprene emitted in the afternoon when OH levels are declining persists long enough to be oxidized
by NOj3. The anticorrelation between a-pinene and NOj (Warneke et al., 2004) and isoprene and
NOj3 (Brown et al., 2009) indicates that biogenic VOC + NOj reactions can be an important sink
for both NO3 and VOCs. Averaged over the entire 2002 campaign, terrestrial biogenic VOCs were
estimated to be responsible for 19% of the combined NO3 and N5 O3 loss measured offshore (Aldener
et al., 2006).

As a consequence of the offline oxidation, the current version of GEOS-Chem assumes oxidants
such as OH, NO, HO,, O3, and NOj3 are 100% recycled when they react with monoterpenes and
sesquiterpenes (i.e. NOjs is not depleted when it reacts with monoterpenes or sesquiterpenes; iso-

prene, light aromatics, and IVOCs, however, are treated online). The offline treatment uses the
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oxidant concentration at a given timestep to solve the differential equation for the depletion of the
parent hydrocarbon. For constant oxidant concentrations, these equations generally have an analyt-
ical solution. Recycling of the oxidants is recommended when only a limited amount of the parent
hydrocarbon gas-phase oxidation is represented and later generation products may release oxidants,
but this approach may cause the model to overestimate the potential importance of aerosol from
nitrate pathways.

The yield of organic nitrate can provide an estimate of how much nitrate may be removed from
the system or sequestered for later release. Several studies have looked at the yield of organic
nitrate from isoprene + NOjs sytems (treated online in the model). Isoprene + NOj is expected
to yield 65 to 70% organic nitrate (Perring et al., 2009; Rollins et al., 2009), and first generation
nitrate products may react with NO3 again to produce secondary dinitrates (Rollins et al., 2009).
The organic nitrates themselves may or may not release NO, (Perring et al., 2009). This implies
recycling no higher than 35% for the isoprene + NOj3 system. Recycling of reactive nitrogen may be
higher in monoterpene systems than isoprene systems. The work of Fry et al. (2009) indicates that
the yield of organic nitrates from S-pinene + NOj is about 40 to 45%, so 55 to 60% of the reacted
NO3 could be immediately recycled as NOy or some other reactive nitrogen species (Fry et al. (2009)
were unable to detect the recycled species).

To gain insight into the potential role of monoterpene + nitrate reactions and possible depletion of
nitrate, we examine one grid cell in the Southeast U.S. (85°W, 32°N) at the beginning of September
using a coarse resolution simulation (4°x 5°). Based on the predicted NO3 and monoterpene levels,
Even for fairly aggressive levels of reactive nitrogen recycling, NO3 will likely be tritrated in the early
evening when isoprene is still present and NOg levels are lower. Later during the night, when NOj3
levels are higher, nitrate would likely be in excess. Following the analysis of Brown et al. (2009), we

can assume nitrate radicals are at a pseudo steady state as they are formed from:

NOs + O3 — NO3 + O (4.6)
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and removed by reaction with a hydrocarbon, HC:

HC + NO3 — RNOj3 + products. (4.7)

Reaction with the hydrocarbon is shown to recycle a fraction of the NOg, R. The fractional loss of

nitrate due to reaction 4.7, divided by all losses, including N5O5 hydrolysis, is:

'y kHCHNO[NOS|[HC]
¢ - (1 R) kNOz+O3[N02][03] - (1 R)(,ZS (48)

For a simulation with 100% recycling (R=1), ¢ for the lumped monoterpene MTPA is calculated to
be approximately 1-2. Thus for any recycling less than 50 to 75%, reaction with the HC could be the
dominant removal mechanism for NO3. Future work using online monoterpene and sesquiterpene
oxidation can more carefully examine the interactions between biogenic VOCs and nitrate including
the degree to which NO3 may be titrated and aerosol concentrations lower than predicted in this
work.

The amount of aerosol from the NO3 pathway may also be underestimated by this work since NOg
SOA-forming pathways of SVOCs and IVOCs have not yet been studied experimentally. SVOCs are
globally the largest contributor to net aerosol production and since yields are generally higher for
NOj oxidation compared to photooxidation and ozonolysis (for moderate loadings), SVOC reaction
with NOj3 could be a substantial method of aerosol production on regional and/or global scales.
However, a significant fraction of the SVOC and IVOC emissions are anthropogenic, and reaction
with the nitrate radical is expected to be a minor removal process for many anthropogenic species

such as alkanes and light aromatics (Warneke et al., 2004; Atkinson and Arey, 2003).

4.5.3 Uncertainties in Isoprene Chemistry

In remote areas with little anthropogenic influence (such as the Amazon basin), oxidation of isoprene
as represented in the model tends to deplete OH levels to an extent greater than expected based

on field measurements (Lelieveld et al., 2008; Butler et al., 2008; Archibald et al., 2010). This
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falsely low OH can have several effects on organic aerosol levels. Reduced OH can lead to less
isoprene, monoterpene, and sesquiterpene reaction with OH and therefore reduce the amount of
photooxidation aerosol that forms. The isoprene (or terpene) that is not reacted may be transported
to other regions where formation of aerosol is less favorable (for example due to low organic aerosol
loadings) or more favorable (for example due to low temperatures and/or reduced deposition aloft),
but in either case, the aerosol will be shifted away from where it would have normally formed.
Depressed reaction of biogenic hydrocarbons with OH may also lead to an overestimate in the
amount of hydrocarbon reacting with nitrate radicals. Isoprene and monoterpenes emitted during
the daytime should react primarily with OH and ozone, but if OH levels are abnormally low, a large
pool of biogenics may be left to react during the night. Fig. 4.2 indicates that 3% of the daytime
isoprene is oxidized at night by NOgs (isoprene is only emitted during the day), and coarse resolution
simulations predict that 10% or less of the monoterpenes emitted during the daytime react with
NOgs. Observations do indicate that a certain amount of daytime emissions should be oxidized at
night (Warneke et al., 2004). Even if the predicted amount of nitrate reaction is too high, it is likely
to have only a small effect on net global production of aerosol since only about 3 Tg/yr of SOA (15%
of the biogenic SOA production) is expected to come from nitrate oxidation. Aerosol levels over the
Amazon, however, may be significantly overestimated. Issues related to isoprene-OH recycling are
not expected to be as important for the simulations over the U.S. where NO,, levels are relatively

high.

4.5.4 Extrapolation of Chamber Studies

The most representative chamber aerosol yields are those that occur when the fate of the RO, radical
(reaction with ROs, HO5, NO, or NO3) is the same in chamber studies and the atmosphere. Work
by Ng et al. (2008) indicates that the aerosol from reaction of isoprene with NOjs results from RO»
+ RO, reactions although aerosol from the RO + NO3 pathway may contribute as well (Ng et al.,
2008; Rollins et al., 2009). This information raises the question of the applicability of the nitrate

oxidation yields to the global atmosphere where parent hydrocarbon concentrations are much lower
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and ROy + RO5 should be less important.

Modeling errors can also result when chamber studies do not constrain yields at atmospherically
relevant loadings. The SOA yields for terpene + NOj reactions are based on data collected by
Griffin et al. (1999a). After correcting for density, the loadings in the chamber range from about 40
to 600 pug/m3. Although the fit shows a low root mean square error (RMSE, 5.7%, Table 4.1) the
fit is unconstrained over the most atmospherically relevant loadings (1-10 ug/m?3) which could lead

to over-predictions or under-predictions of the importance of terpene + NOj aerosol.

4.6 Conclusions

The global chemical transport model, GEOS-Chem, has been used to simulate global organic aerosol
from monoterpenes, sesquiterpenes, isoprene, benzene, toluene, xylene, intermediate volatility com-
pounds, and semivolatile organic compounds as well as traditional (nonvolatile) primary organic
aerosol with a focus on biogenic aerosol. Models have historically under-predicted organic aerosol
levels, and semivolatile POA causes even lower concentrations due to evaporation of a significant
fraction of the emissions (Pye and Seinfeld, 2010). The semivolatile POA simulation should become
more accurate as additional processes, such as partitioning into aerosol water (Pankow, 2010), are
captured and new mechanisms of aerosol formation are elucidated. New terpene emissions used in
this work are about 20% lower than previous GEOS-Chem estimates, potentially leading to even
lower simulated aerosol concentrations.

Part of the expected decrease in surface concentrations and global production of aerosol in the
model is offset by updating the SOA yields to some of the highest values currently supported by
chamber experiments. A new lumping scheme is introduced that maintains a reasonable level of
parent hydrocarbon identity while ensuring that species of different volatilities remain distinct. As
part of the new framework, NO,-dependent phootooxidation and ozonolysis yields are implemented
for monoterpene and sesquiterpene aerosol to complement those previously implemented for NO,.-
dependent light aromatic SOA (Henze et al., 2008). The a-pinene dark ozonolysis experiments of

Shilling et al. (2008) are used to represent low-NO,, monoterpene oxidation and form significant SOA,
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particularly at low loadings. The yield of aerosol from sesquiterpenes under high-NO,, and limonene
under high- and low-NO, conditions is also significantly larger than in previous NO,-independent
implementations. Isoprene, light aromatic, and intermediate volatility compound aerosol is refit
using a 3-product volatility basis set, and aerosol from nitrate oxidation of isoprene is added.

Changing the photooxidation and ozonolysis of terpenes and light aromatics to use high-NO,
(RO3 + NO) vs low-NO,, (RO + HOs) yields leads to relatively small changes in surface concen-
trations as a result of competing effects of sesquiterpene aerosol (which is enhanced under high-NO,,
conditions) and monoterpene/light aromatic aerosol (which is enhanced under low-NO,, conditions).
Surface concentrations are more sensitive to the peroxy radical branching ratio (RO + NO vs RO5
+ HOy) in the northeast than in the southeast U.S. where aerosol from isoprene, sesquiterpenes, pri-
mary emissions, and nitrate radical oxidation, which are independent of the RO5 branching, dampen
the model response.

Globally, 14-15 Tg/yr of SOA is predicted to form from terpenes and 8-9 Tg/yr from isoprene
for 22-24 Tg/yr total of biogenic aerosol. Althought nitrate radical generated aerosol contributes
a small amount to the global burden as a result of its relatively high volatility, it can be very
important on a regional level. Aerosol from NOj oxidation is predicted to be potentially very
important in the Southeast U.S. where it enhances terpene SOA by about 100% or more and total
aerosol concentrations by more than 30%. Model estimates of nitrate aerosol can be refined by
better addressing recycling of nitrate for the terpene + nitrate reactions, and by obtaining better
estimates (at low loadings and for multiple terpenes) of the nitrate + terpene SOA yield.

More work is needed to resolve the apparent contradiction that organic aerosol is dominated
by modern carbon yet correlates with anthropogenic tracers. Simulations over the U.S. suggest
that higher NO,, levels will generally suppress SOA since monoterpenes and light aromatics will
generally have a lower yield of aerosol when NO levels are higher. However the impact of reduced
NO, emissions on OH and ozone oxidant levels was not examined and the effect of the RO5 branching
between NO and HO5 on SOA levels is generally small. Thus far, GEOS-Chem model results have

indicated two possible candidates for production of aerosol from modern carbon that would correlate
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with anthropogenic tracers: the nitrate radical oxidation of terpenes and isoprene and oxidation of
semivolatile organic compounds from biofuel burning (Pye and Seinfeld, 2010). Additional theories
that need further examination are the possible implications of acidity, sulfate, or NOs enhanced
production of biogenic aerosol (Surratt et al., 2007, 2010; Eddingsaas et al., 2010; Chan et al.,
2010).

Supplemental material contains the SOA yield curves for the systems described in Table 4.1

(Appendix C).
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