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Introduction and Summary

vthen a flow of non-viscous incompressible fluid is irrotational,
it is well=known that the problem can be reduced Lo either the problem
of DPirichlet or that of Neumann, ond thet therse exists a uvniau. sclution
for any given boundary conditions. When the fluld is non-viscous but
compressible, the variation of density makes the mathematicel problem
very difficult end complex, In this cas , a ﬁufe potential flow
throughout the region is not always possible for a given body; this
depends very much upon the condition at infinity. If a ocertain speed
of the flow at infinity is reached, regions within the ficld of flow
will be created in which the irrotational flow does not exist due to
the appearance of "limiting lincs",? Such regions were pioturesquely
designated as “forbidden regions" by Th. von Kdrmin (Ref. 1) and they
appear when the local épeed of the fiow cdﬁsidornbly oxcecds the local
speed of sound, It hss baen shpwn that the occurrence of Yinmitine lires
is directly connected with the breankdown of irrotntional flow =nd with
the resultent increese in drag of the body due to shock waves, In
other words, if there is a limibting line in the field of flow, the
isentropic irrotational flow’must broak dovm. Ho&ever, the irrotational
flow may break down before the appearance of limiting line due to the
instability of the velocity fiéldo On the other hand, shock w@veS'
can bnly occur in supersonic flow. Therefore, there is no danger of
breﬁkdown of isentropic flow if the whole field of flow is subsonic,
Consequeﬁtly, the Mach number corresponding to the first appearance

of local speed equal to that of sound can be designated as the "lower
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eritical Mach number”; and the Maoh number corresponding to the firsk
appearance of limiting lines can be desighated as tho "upper critieal
Mach number", The actﬁal eritical Mach number for a given body will
be influonced by the boundary layor and henée the Reynolds' numbor,
However, it must lie between these two limiting critieal values.
(Ref. 2) Thus knowledge of these critical speeds of the f{low aro
essential for the design of efficient aerodynamic bodies.

To determine the oritieal Mach numbers, one has to solve the
general problem of flow of & compressible fluid abaut a given body.
The often used methods treating such a problem aro Janzen-Raylelph's
method of successive approximations and’uluuert-Prandti's method of
smnll perturbation, The latter method has been extended rocently
by both Hantzsche and Wendt (Ref. 3) end C. Kaplan (Ref. 4). Indeed,
both methods yield valuable informatim regarding the offects of com-
pressibility, and are useful for many practical design problems,
particularly the determination of the lower critical Mach number of n
given body. But so far as the general problem of limiting line and
upper critical number is concerﬁadg none seems to be adequate, due to
the doubtful convergence of such successive apbroxim&tions at the re-=
quired high Mach numbers,

An entirely different epproach was first made by Molenbraek
(Ref. 5) and Chaplygin (Ref. 6) by introducing the velocity ocomponcnts
instead of the usual space coordinates as independent wariables,

The advantage of the method is that, instead Sf a non=linear differential

equation as is the case in the physical plane, it leads. to a linear
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one in the velocity or hodograzph plane, The particular solutions
of this linear equation are found to be products of trigonometric
functions of the angle of inclination of velocity vector end hyper=
geonetric functiané of the mapnitude of the velocity vector., It is
then possible to construct a generel solution from the particular
solutions of the di °ferential equation, The difficulty, however, is
that the character of the field in the physical plane to which the
solution in the hodogravh plane corresponds cantot be determined be=
forehand. This difficulty prevents the exact formulation of the
boundary value problem in the hbdograph plane, Chaplygin has overcaome
this handicap by first clhrosing a "suitable solution™ in the hodograph
plane and then prdceeding t& find the correspondiﬁg flow in’the physiecal.
plane, The “suitable solution” is one which,in the limiting case of
zoro Mach number at infinity,becomes identical with the ihcompressible
flow over a body similar to the body éoncerned° Thig will ensure
the satisfaction of the proper boundary conditiong in the physical plane,
Furthermore, such & solution would‘be exact ‘both for the subsonic and
for the supersonic regions, as no approximation is introduced, There=
fore, it is particularly suitable fpr the problem of determining the
unper critical lMach number for a given hody, as limiting lines occur
orl+ in mixed subsonic and supersonic flows., This method is -followed
in the present Revort, éxcept for thre introduction of thr. +ra zPormed
‘potential functim %, for easy calculation of the space coordinates,
For the flow around & body, Chaplygin's procedure will leéd to
8 solution in the form of an infinite series, each term of which is

a product of a trigonometric function and e hypergeometric function§
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To put the method on a firm foundation, it is necessary to establish
the convergence of the infinite series. Chaplygin himself has done
this for the subsonic region, Thus, only the extension to include

the supersonic region remains to be completed. In Part I of the Re-
port, the general properties of hypergeometrie functions of large
order are investigated in preparation for the proof of the convergence
given in Part II. The essential point in these parts is to establish
the upper and lower bounds for the hypergeometric functions so that the
gum of the infinite series can Dbe discussed. It is appropriate to
mention here that fbr'the proper reprssentation of the general solu=
tion in the hodograph plane, both fundeamental solutions of the hyper=
geometric differential equation are required, This fact seems to hrve ss=-
caped the notice of all the previous investigators in this field,who
use only the first solution and forget about the second one. Some
of the investigators, &s a result, even conclude that Chaplygin's
procedure is unsuitable for the problem of the flow around a body.
(Ref, 7)

T 1o general solution constructed by the Chaplygin method
is really an existence,theorem.. The ‘extremely slow convergance of the
series makes numerical calculation very difficult, if not impossible,
This, in fact, constitutes the main difficulty of the method. In
Part IIT of the present.Teport, thic difficulty is overcoms by using the
asymptotic properties of the hypergeometric functions. The result
is the separation of the solution in the hedograph plane into two parts.

One part is of closed form end consists of the same solution #s for ine
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compressible flow but with a velocity distortion, or velocity correce
tion, The other part . is an infinite series which converges rapidly
everywhere except in a small rugion o both sides of a critical
circle with a redius corresponding to g=c¢ in the hodograph plane,
In practice, by using only a few terms of i3 Infinite series, one
can limit this zone of slow convergence to such a small intervel that
it is of no consequernce. Thus the Chaplyrin procedure is improved to
a point whers actual numerical calculations can be made without diffi-
culty.

As a result of this part of thn studs it bucorus clans il by the
mere substitution of a different speed scale, or vglocitydistortion,
in the solution for a. incompressible fluid, one cannot obtzin sn accuvcate
enough solution for the compressible flow, For if this were the case,
then the second part of the solution, the rapidly convergent series
given by the present method, would be negligible., But the value of
the second part of the solution is not small compared with that of
the first part for 4 speed neo. tast of sourd, 1In other words,
the usunal so-cnlled hodograph method (L, 8) cannot in goiner-l
yield satisfactory results, for mixed subsonic and supersonic flow,

On the other hand, the present wmethod does show that the second part
of the solutién .S zero, if the isentropic ex-
ponent is equal to =1, This means. that for this particular case, a
simple speed distortion is sufficient. - This is, of course, in accord=
ence with the previous investigation of von Karman (Ref. 1) and Tsien

(Ref. 9).
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Furthermore, the present method also shows that the rules of
speed distortion for the first part of the solution can be usad only for
subsoric flow, «nd thet there is a sinpulerity at the local sonic speed,
For regions of supersonic flow, the first oart of the solution in=-
volves both the incompressible streeam function and the incompressible
potential function, Thus even without considering the second part
og the solution, there is no possibility of making the compressible
strenr lincs coincide with those for incompressible flow in
%™ hodograph plane by a simple streteching of the speed scale. The
mathematical basis of this fact is the change in character of the
‘differential equation from elliptic %o hyperbolic in the transitio£:§:L=
sonic to supersonic flow., For the supersonic regions, one cannot
use a real transformation of the velocity varisble to convert the
differential equation of flow to the Laplace equation, and thus make
g simple connection between the corpressible and - incompregse-
ible flbwso This is one of the difficulties of the previously pro=-
posed hodograph method. In fact, writers using this method must
genafally limit ticis calculstion to cubsonic cpoosds (Fef. 9, 10),
Now this 1linit is removed - nd the whol: {i:1d of nixed subsoric and
supersoaic flows cen be trested 2t once Qith 8A8a,

For the purely subsonic flow, the second part of the solution
is small compered with the first part and may be neglected. In
other words, for this case, a simple speed distortion from tho solution
of incompressible flow is sufficient to give accurate enough results,
However, the subject of the "best" velocity distortion rule in subsonic

regions has been the subject of mery discussions (Ref.l and 8). The present
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analysis also settles this question once and for all, This is due
to the fact that the present veloelity dist:.-tion rfle is obtnined from
the asymptotic properties of the hypergcometric functions, and that
such properties are definite and unique, Therefore, the resultant ve-
locity distortion sule is not the result of uncertain speculation.
Furthermore, it is also the "best" rule, Eecause the analysis implies
that this rule will make the.sécond ~art of the solution, or the
correction terms, the smallest,

For the purely supersonic flow, the second vart of the solution
is again small compared with the first part and may be neglected,
In fact, the soluiion crr then be reduced to that of the simple wmve
equation with the inclination of the velocity vector and the distorted
velocity as independent variables. This is, of course, the cownter-
part of the fact that by a simple distortion in velocity, the differ=
ential equation for subsonic flows can be reduced to the Laplace
eqﬁation, The usefulness of this new result for purely supersonic
flows has yet ta be exploited.

Once the general problem of mixed subsonic and supersonic flow
around & body is solved, the determination of the upper critical
Me.ch number or the Mach number for the first appearance of the limjt=
ing lines is & simple matter, This problem is discussed in Part v
of the Report. A simple method is developed, based on the properties of
the limiting line as given by von Karman (Ref., 1), Ringleb (Ref. 11),

Tollmien (Ref. 12) and Tsien (Ref. 2)
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To test the practicability of the method developed; two numerical
examples are worked out in detail. However, in order to reduce the
amount of computational work and in view of the limited time availsble,
a slightly different procedure is actually used.‘ Thisvprocedure is
only epproximate. but is believed to be sufficiently accurate in
the supersonic region to give a satisfactory desceription of the most
interesting feature of such flows., The examples chosen are derived
from the incompressible solution of an elliptic cylinder of thickness
ratio 0,6, The free stream Mach numbers of the compressible flow
are 0.6 and 0,7 for these two examples. The first case gives a sﬁooth
flow over an "elliptie" eylinder of thickness ratio 0.42, The maxi=
rnum local Mach number is approximetely 1.25. Thus a considerable
supersénic region exists, The second case gives e flow with 1imiting_
line,

Finally, it must be said that due to the limitation of time,
only the case of flow without circulation is investigated in detail,
The explicit formulae for numerical calculation are given for two
cases: ) Flow arownd a body such as an ollipse; b) periodic “low pnttern
such 2s that over a wavy surface, However, it is believed that
more general cases can be studied by a slight extension of the present

results and using the same method of epproach,
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Notations

The symbols used in this report are classifisd according to the

following groups:

fro  Physical guantities

x,y : Cartesian coordinates

u,v : the velocity components

g : the absolute valus of the velocity vector

= U T o p ¢

[#]

: den

: the inclination of thekvelocity vector with x-axis
: density of ths fluid

sity of the fluid =t g = O,

: pressure within the fluid corresponding to @,

: pressure at g = O

: retio of the specific hants

: the local spsed of sound

o, : the spoed of sound at g = O

U : the value of q at infinity, essuming parsllel to the x-axis,
With subscript, howevoer, it may be s function of €

B. Hydrodynamic functions in the physical plane,

2= X+ iy

Wiz) =

P, xy) + iy (x,4): complex potential for incompressible flow

in z.

@ : velocity potentinl for incompressible flow

qk . stream function for incompressible flow

? : velocity potential for compressible flow

V : stream function for comprossible flow.

N

C. Hydrodynemic functions in the hodogreph plane,

Wgu‘-i'\h

W (w) =

Pluv) + i Yiuw): complex potential for incompressible flow

in we
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quv);valocity poterntirl for incompressible flow.

q&um):stronm function for incompressible flow

Nowd = 2w - W) = X, W)= 0 V) : transformsd corplex
potentiel function

Xolww) = ux+ vy - Quuy) X=?b_){§0’ U:\%": transformed potentieal
function

Vﬁwﬂﬁ the complex potentinl function for cormoressible flow,

Yiwiv) = :Lyn4{VV(W;1T)% ] stream function for compressible flow.

Aw;9: transformed complex potentisl function for comoressible flow.

)((mv): WX+ \rtd— Cf(x.g):ﬂ {/\\M;T)}: tronsformed cotentisl function
for compressible flow

X
@a(u.v) b& ’

Q,luwv) = 2% .

1l

29
) represents the contribution b
Yigo) = YT Y g9 0 ey y
the velocity distorsion. "*:2)(1’9:) stands for the

transformed infinite series, where Lhe superscriptlﬂ may

n n

1]
either mean L : the imner cr "0" tha outer solution,

In the case of coordinmtes, the notation is examctly the seme.

)
G, = Fw AP, + 222%w
£ TVT)

G’;A)(‘C) = C’E/(t) A”_NBW + B.AZ )
" o) e

~ @ =L 3 Sw . B, AZ, @
(£} = T )AB, v = hll

Gyu V+’ Vil f(_q) TV(T‘)

Parameters and varisbles.

y : positivo rational nunbers

m,n: positive integers

RESTRICTELD
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A : it denotes 1 or 2 when used as superscript with a bracket

or o(::\‘%}:]/- o

p : it denotes the dependence on P when used as subscript
— ..—-.J-—-‘ ’
TRT T

PHEYS il I B the ratio of the distorted speed to
G+ay™ Japr) TiO :
that et infinity,

W o

2p o

>
§

fi

Moo= c,o-_g" AT —)

2@":

'g)”[ : With super=or subscript they denote some functions of T
or stard for the two families of the characteristic para=

meters 9Q+ww) , 9~ wie) of the partial differential
equations for V49) or )((q,, ) .

7 . complex variable or f(r) a function of T »

M,= & :the liach number at infinity.

&
2
- u .
T,= 5’-‘5 cx
¢ @ geometrical parameter of the body
A laplecian or difference between the exect and approximate

values of a function or a constant,
Hypergeometric functions
a,bsc, = parameters of the hypergeometric functions. In parti=-
s ©

cular, 80 b are defined by (3:5) s

y vy

Fo=TFlanbyie;t) first integral of the hypergeometric

equation associated with the streem function.
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g_vm = F(lharo4bo-Cv;2-yi7T)

-y vV
_ T T [ TenThy) _ _Tlewd ] second
R = 2ac ) TleTy) b Thrar eI Tinbrey) FO " oy Fv

integral of the same cquation .

Gz 4 Ty

J‘M\t)= Flway, 1vby 40,5 T)

i

Jvh;) = 7, /%yqfl)

{r) .
To0= /%1‘ )

i

JV‘T)‘-_' gv(fc)-r v F, )

Rw= |3 <]

(R(T;:_- g ;f(t) ,

If any function or & constant is sassocierted with ‘)(lq's)p it will be

narked on top by a symbol ~» , such as 5,7; () .
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fart I

MAeforentiel Squatisne of <ompressible Flow and
Propaerties of Their FPerticulsr bSolutions

1, Zouations of Motion

It is proposed to study the irrotational steady motion of on
inviscid non-conducsting comprossible fluid in an infinitely extended
domain containing a cylirdricel body with its exis perpendiculrer to
the constant velocity at infinity. The flow is then two~dimsncional,
Let x and y be the Cartosian coordinates erd u and v be thre velocity
components pérallel to the x=-and the y-azis. The dyvnsmical equetions

governing suck a motion, in the absence of bsdy force, eare

g o oevEE = - 2k (1.1)
w?! VL\C _—:_--@_E. M
f DX + f b% z#
(1.2)

Here p is the pressure and § the donsity of the fluid, both being
continuous functions of x and y. In addition, the following equation

of continuity must be satisfied:

? ) N

—— LL s ‘I :o, 1.\}7

2(sw) + Frlev) (1.5)

Furthermore, since the velocity is constant at infinity, the fiow is
irrotational there. Then, according to Thomson's theorem, the flow

will remain irrotationel, i.e.,

2y o , )

if the pressure is a function of the density slone. In the case of
flow of an inviscid non=conducting gas, the thermodynemic change of
stete of the gas is adisbatic. If the flow is assumed to be continuous,

excluding shock waves, then the relation between p and § must
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be that of an isentropic process:

frord Conslun r
p = furt p (1.5)

where ) is the ratio of the specific heats.

As in the case of incompressible flow, there are more equations
than the number of the variables. However, by virtue of Bgs. (1.4)
and (105)3 thé dynamical equations (1,1) and (1,2) reduce to e single
differential equation and can be integrated easily to give a relation

between the pressure and the magnitude 4 of the velocity, namely

Y
2 e
= - A= ~| . 2 2
P, {\ XEL —2? ¥ : with "»=u+\r_ (1.6)
Here Po 8nd ¢, are respectively the pressure snd the speed of sound
at the stagnation point q=0_  and =92 | One can obtain a

ag
similar relation beﬁ:een ¢ and 9 by means of Eq. (1.5):

cb

. , A
o - LT (1.7)
where §b denotes the véltte of § at 4=0°-
"After integrating the dynamicél equations the velocities u and
v can be determined from the kinematic conditions, By elimimting ¥
from Eq. (1.3) one has
U__Lé' giu_w-ou+( ;_’_ s!.’r_O, (1.8)
where ¢ = ¢/ and thus can be ‘calculated in terms of the speed
by Bgs. (1.6) and (1.7). It is of interest to note that the equation
of continuity (1.8) now, unlike the case of incompressible flow,; be=
comes dependent on the dynemical equations and consequently is non=

linear, This change in the character of the fundamental equation

RESTRICTED
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mekes the direct soluticn of the vwroblem in space coordinates very
difficult,

2. Transforme"ion of the Differential Equations

The assum>tion of irrotatiomality implies the existence of a
velocity=rotential for such a flow. If this function is introduced
to eliminate w and v, the Pgs., (1.4) and {1.58) would give rise to a
nonelinear vartial differential equesion of the second order. The
problem is further complicated by the possible appearance of supersonic
regions, or regions where the speed of'flcw is larger than the local
sonic speed., This means that for some part of the domain, the equation
is of the elliptic type; while in the other part, it is of the hyperbolic
type, The equation is thus of mixed type and there is as yet no
successful method to deal with it directly in the physical plane,
Molenbroek (Ref, 5) and Chaplygin (Ref, 6) made some progress in
solving the problem by tronsforming the equations from the physical
to the hodogravh plane in which u and v are teken as the independent
varisbles, If this i3 done the diffi anti~l equationé become linear
end thus can be solved by welle=knovm methods.
ist the transformation be defined by
u = ulx,y) (2.1)
v = vi(x,v) . (2.2)

If u and v are continuous functions of x and y -=with contiau-

) -DLXAQJ

—_—d is finite
D (V)

ous pertinl derivative~, and if the Jacobian |
and non=venishing, a unique inverse trersformetion exists, Under these

conditions, Fqs. (1.8) end (1.4) are easily transformed into
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LWy DY 2uy X VR X
U C'*)’OW * ‘-Ef -“_\; g (‘ ?)'{i"'o' <2.5)
X . 2 =o
AV 22U
(2.4)

Corresponding to 5? (x,y) in the physical plune one introduces here

e function )i (u,v) defined by

~ = X (2.5)
,x"'—r\)& ) 3"03&'

Vihile Eq, (2.4) is satisfied identically, Eg. (2.3) becomes

_ury o vie ol IR N . 2,
(-0 53 + a5 BX 4 (1-8) Th =0 (@)

As ¢ is a function of q alone, the equat}ion for X (u,v) is then linear,
One recognizes from Eq. (2.5) that if )((u,v) is knowm, & one=to=one
correspondence between the space coordimates and the velocity com~
ponents cen be easily established,

However, it is also elear that this function is inconvenient for
obtaining the stream lines Qnd the flow in the physical plane,
»Tb solve this part of the problem one may adopt a plan similar to
Chaplygin's by introduciné; both the potential functimn ? (x,y) and

the stream function Ilf(x,y) defined bys
;'&

w22 v=3% (2.7)
Ju=R3% 5 pv=-pZE (2.8)

RESTRICTED
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From these definitions one has immediately the following equivalent
relations:
dg= wdx + vdy, (2.9)
PoY = -Pvdx + pudy. (2.10)
For the subsequent calculations, it was found convenient to iutro=
duce the polar coordirmtes in the hodograph plane defined by:
uz%mﬁ', v o= ﬂru‘m% (2.11)
whers 9 is the inclination of the velocity vector to the x-axis.
dx end dy cen be solved for from Eqs; (2.9) and (2,10). 4s dx end dy

are exact differentials, the conditions of integrebility then gives

42 =-§3(|—§)—-‘-é31 ,

24 § Y (2.12)
=2 _ £
3 T F 5)% ‘ (2.13)

By eliminating P between Egs. (2,12) and (2.13), an eguation for
\Jf is obtained: _‘-j .
o - D =
{g%.{*(‘*c)‘h%*“ %a);%"-i ©. (2,14)

(2.6) can also be trensformed in polar coordinates. The

procedure is straightforward and yields
1z - LY, - — o, (2.15)
TR DR

Eqe, (2,14) and (2,15) are the two fundemental equations in the present
problem dealing with the flow of a cumpressible fluid,

3. The particular solutions of the differentiml equations

As the differentinl equations for W(49) and X(§:?) are linear,

one can certainly build a genseral solution by superimposing the par~

RESTRICTED
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ticular integrals of the equations. To obtain the particular inte=-

grals, let VY{(§9) and 7%(4:9) be of the following forms:
v, Ly
Yigey= §Yippe
v o dvd
A= T34 e

where Y 1is any rcel numbder, DBy substituting ir Zgs. (2,14) and

(2.15), the equaticns satisfied by "}/v(‘],) and 7(,,(1,) ares

“_Y" (J.WH %= ‘1; d% + y i) f’\},’, =0, (51)

> 42 %y _
{4 9\ t G LY 0\7&»’., vw-‘) -

44 (3.2)
Now each of these equations ean be further reduced by changing the
independent variable, The appropriate transformation is

2
: = .

= '5:%— ‘%'.;_ ) W\Th. - -\
By exparding the gas to zero pressure, or vacuum, the maximum velocity
is obtained, ®g. (1.6) shows that the maximum speed is ‘7MAX=J§ c .

Therefore, the maximum velue of - is unity. Similarly, it is.found

that for the speed of the flow equal to the local sonic speed =T = L.

2p1
Egs, (3,1) and (3.2) then become
" . 2)
TU-T)Y ) + [ ¢, ~ (9v+b,,+|)'c}y,l(fc)- a, b, W) =0, (3.3)
" .
,ﬂl,-c)’)\y(fp) + [Cv - l'“y*@*bw*#+')'5]')<"") - (ay’fﬁ)lbﬁp) ﬁylt): 0; (3 2)
where
ay+by= V=8 dvb=-Levor) and c,=v4], (5.5)
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These are the hypergeometric equations, of which Eq. (535)
was first obtained by_Chaplygiﬁ in 1904, The differentiel equation of
this type has thres regular singularities at 0, 1 and * oo, If
the exponent-differences ¢ = 1, a = b, a *b = ¢ are not integers
or zero, the two fundemental independent solutions are F(a,b;C;T)
and 1§° T (iva-¢, 1wb-¢;2-¢;2), They are single-valued ana regular
in the whole plane with a cut from *1 to * ©o ., The function F(ab;c;<)
known as the hypergeconetric function of general parémeters 8, b, and
¢, is defined by the hypergeometric wseries which is absolutely and
uniformly convergent when |tT|< ). pfovided RL le-a-b) >0,
and by continuation when y |t 3> | .. Furthermore, it is normalized
so thatat T =o0

Flab;cy@)=] . (3.6)
Hence, the particular solutions of Eq. ‘3.5) are

Flobritr;t) , T F Liease, whoty32°0,,T) ; (8.7)

The partidular solutions of Tgs, (3.4) are
Flaqpabigseyyt) ’L!’CV'F(HRV-*(B‘CV Wbtp=Cy 1 2765 T) (3? 8)
Here ay , b, and ¢, are parameters defined by Eq, (3.5).

When Yis a ocositive integer while a, and by remain as they are,
the second integral will reduce %to & constant multiple of the first
one. This case was first studied by Gauss (Ref. 13) who found &
.second integral involving a logarithmic term by considering the
limiting value of the integrals given above as ¥y +tends to an inte-
grul'va;ue. The method has been further developed by Tammery (Ref,
13) and Goursat (Ref, 14), However, the form regarded as conventionel
nowadays was that obtained by Frobenius's general method, According

to the latter method, the palr of fundamental solutions. of a hyper=-
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geomebric equation are

-n n o) i)
Tia,b; n+i;T) Ko T {’C%'F(ﬂ-b'»""” jT)’e”?T’*t Qn‘“"bﬂ)*‘ﬁ-.&ti} (3.9)

when (¢, = m+|,n being a positive integer; and

() 29 g
Q. leoe) = Tin) Ttarm)Tibrm) Wleb;mT
n TITIE) € 1 me)) T (nei+ M)

{ ntl
'F,’,_':(fc) = (1) Timt) Z‘“ M T{a-nem) T (b-ntm)Tinm) o
. T'(D-)T'(b) TLW“") )
(3.10)
.'"
m-/
N
Y(“‘b’”’) b ; [ qQ+r bﬂ* m—l-rr} ﬁ
Hore a, b may be either a, , b, or - P , bt (3 defined

in Bq. (3.5) according to whether the system (3.3) is referred to as
solution s of Eq. (3,3) or Egq. (3.4). K, can be  determined
so that the product of the second integral and %“ satisfies
the conditim (3,6),

In view of the fact that the second integra-l in (8,9) does not

constitute a family of solutions with the second integral given in

(3,7) or (3.8) » it is very desirable to define a new function as second
integral which will be continuous.in y as well as in = . Let g"(,c)
denote the first integral "F(a,b;¢,:t) - #5 2 second integral

one may take the linear combination of the solutions:

l'c-y
Eix)= Kv{T’(I'CV)T((L)T(b)g\V(m)'{'T'[l‘Cy)T’(!*&‘CV)T“"" b-c,) T &y(c)} : (3.11)
where &v i) =TF (1va-c it b"cy);z,‘(:y;"t) o This is evidently a
solution and velid for all values of y . The constant [, is de-

termined subject to the following condition:

v .
=€"ka‘€3=! -}or - = 0.,

(3.12)
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The value of Kv is then found to be

-l
K = (2pco)VT(cy-t)T'(u+a - )T Ui*b-cy) |

Using the ralation

TCeITUI~¢) = T ¢s¢c 5T

(3.11), when multipliad by 1” , will define = new function gyh') :

: (r) :
0w = T [ T@yTie) T F tv) _ Ly ] (3.13)

T AT [ T TD T U+a-e)TO+rb-cy) TG T(2-¢v)
When y takes integral values, the expression in the brecket

vanishes; however, the limit of the ratioc existe;

g, ) = V_,,W % ) (3.14)

The usual dsfinition of the limit of a quotisnt gives

v
g\*c) 5 H-Sm[ Y T T T Fee) Y F )
w ) 5:‘ Tiv+DT(v) T a~V)T (b~V) oV T'(v)ru..v)] '
' =N

By considering seperetely the first » terms in <, ('1:) , Qs
T{i-v) has poles at v=mn » 8 straightforward reduction yields:

2, (2) |
g%h,) = 6/7: ’{:ﬁyl Arf’t.y'%lt) -+ ’C%Q;)(‘C) + 'PM_’ it) (3.15)

b

where
() ) S _ Tlatm)T(brm) ™
Q.= T Tensa) T -nrb) & Z ,: (a+m) *V(k*m)~v(c”+m) , \{/(wa-;)j ‘r(thfwx)T(mﬂ)’L !

() | Nl m .
= T{a-nem)T{b-ntm) T (m-m) M
‘P‘h-l () Ty Tla-n)T (b-n) Z [’,) : nom i ,
: mzo [ {m+1)

. Nl
@ _— =1y T(adTlb)
" Tim) T{me1) P (a-n)Tlb-n)
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and \\/(5) denotes the derivative of Zﬂj T(7) . 1t can be seen
that the difference between (3.9) and (3 15) lies only in a constant
multiple of the first integral which has been absorbed in Q,,, »

In the following discussions, the two fundamental solutions
of the hyperpgeometric differential equation will be taken as 6%&4:)
and 2&”@ t) - The normalization conditions given by (3.6) end
(3,12) are.chosen for the conbinuous passage of a compressible to
an incompressible flow. Ultimntely, these functions are again
defined in terms of nower series which are absolutely and uniformly
convergent within the domain |z|<&|. However, since the maximun
value of  attainable by the fluid is unity, the continuation of
the solutions beyond the unit circle will not be discussed here.

Let {ﬁ,vc) and ‘%wg{ylf) denote the two independent integrals
of Eg. (3.3) where » is any positive rational number. The
particular solutions of Bg. (2.14) are then:

Y : 0 BN -V o) @ -

{8000 [ A) et + Ayainys] o 4 §,00[B) cervo+Braind] (s.16)

PR )

where A,, Ay , B, and Bt) are constants, Similarly, those

of Eq. (2.15) are

cg i‘,(‘c) [A"S’My9+i\viﬁ,¢£m vﬁ], % ?yw)[ﬁ‘;’m v9+ﬁ$¢iﬂ§‘] (3.17)
where 5’5(&) and a;u,?w) are the two independent integrals of Eq,
(3,4) and A“' A‘:’ ,’53) and B are constants,

In addition to these solutions, there are two other integrals

each of which is a function of one variable only. Assuming ‘f/ \]/(‘15)

or V(%) , then Bq. (2.14) and Eq. (2.15) yield respectively:
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CI 9’ and le(l-f{;)pft-—?- N <3018)

¢ 9 and G ot (3.19)

which correspond to the fundemental solution of the laplace'’s
equation,
As ¢, epproaches infinity, all these particular solutions

reduce to the familiar harmonic funetions, visz.

-V

14 , 2 ‘ o
% [ A‘V}CO’SYS‘F A"V)MV\V«;J ' ‘} ['B(:Qnys,fﬁs,mvﬂ (3.20)

< €2 Loy (3.21)

This property which is the consequence of (3,6) and (3, 12) is
essential in the method presented in ﬁhis Report for connectipg a
compressible flow with the incompressibie flow of similar configura=
tion.

In the subsequent calculations, one will encounter another
integral for the function ‘)‘(fb 9) which corresponds to the imeginary
part of WHWAW or "520‘}"544349-‘}‘"-3)053 of the incompressible
flow., Suppose the solution possesses the form:

A(49)= ) S = R ()(7-3) cox S (3.22)
By substituting the expression in Egs. (2.15), 7(! and 7‘7_ are found

to satisfy simultensously the following differential equations:
/" ' 2 / _ _ j:
TAG +0-2)g-) = 2 (- Z)) (3.23)

{')&Z * ("“g)(qﬂ/f ) =0 - (3.24)
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Eq. (3.24) can be easily integrated by putting X, = %5ﬁﬂ$) .
The candition that Y74 as G7 oo requires y RO to be a constant.
The second integral of Eq. (3.24) is just the second of (3,19)
which, in the 1limit; tends to log q. Thus XGz % is the appropriate
solubion. With this solution one can proceed to solve Bg. (3,23)
by essunming K,= % ﬁé%). The equation for 'ﬁJ%J is again integrable
by quadrature and the result is
T

fiy) = sl [pr bt - £+ K [ LSS ]y, (6e28)
vhere K; and K, are the constants of integration. Hence, the
desired particular integral is

A= R ~ Glm-R)ew I, (3.26)

4, The Proverties of the Hyperpeometric Functions of large Order

The behavior of TFla,,bvi¢,;t) for large positive values of ¥
has been discussed by Chaplygin in connection with the gquestion of
convergence of his series solution for the flow of a gas jJet.
However, his discussions are limited to the subsonic flow aﬁd for
this reaséon, the value of - is restricted to the interval

{ .
pitT £ ;E;T . In the more generel problem where both subsonic and

N3

supersonic flow may exist, the whole intervel o2 T £ has to
be considered. Furthermore, both integrals of the hypergemmetric
equation are involved as will be shown in FPart II, As a preparetion
for the proof of the convergence of the solutions, the properties

of the hypergeometric functions of large order in the extended

interval will be discussed presently.
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Chaplygin (Ref. 6) introduced & new functian 22 3, e

X
defined as the logarithmic derivative of <T* %(1;) s namely:

VE, )= 2T g7 A’] T’g’C (© , v#0 (4.1)

where Kyh}) denotes the first integral of the hypergeometric
squation (3.3) or (3.4) and ¥V can be either an integer or not an
integer, Then in the place of Eq. (3.3) or (3.4), the corresponding

differential equation for '5’1, is a Riccati equation:

_X_W’fy + tfv+ i [3, - (z H)]_ ° (#.2)
where the lower sipn corresponds to Eq, (3.4), As shown by Chaplygin,
g:v(’m s although an oscillatory funetion, can have no root in
04T é;—;—;—; and, consequently, 'fy (£) is finite and continuous in
the same interval., Moreover, it can also bs deduced that ';'y(a):. ]
and "f;(o).—.-(b and that 'f;'('z:) does mnot change sign in o <4 T é;lp-;;'; Ey(f)
is monotomic decreasing and eventually vénishes at T,z ’z;* s T*
being the first root of the hypergeometric function for V3yo o
Since ’C* is e decreasing function of y when VY Dbecomes large,
<" and consequently T, will differ from ;JF’:I by a small quantity.
A

Chaplygin's theorem: In ot T élfﬂ s if a monotomic continuous

function 7,t) satisfies (1) 7 e)=( end (i1) Xp)Z o0 ,
then

Wz ) . VO / (4.3)
The proof is given in Chaplygin's paper (Ref. 8) In the case of
the second integral 'E,l-r) , the theorém is still true with the signs

of inequalities reversed because it can be verified that .X.‘-?..y)'—'o »
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where 'g'_y\c) corresponds to the case of ‘FVH:) instead of 3;',(1;)
in (4.1), and J (=] , therefore 3,t) is negative in oé’cé;—{ﬁ;_'—.
Corollary 4,1 In o‘;’cé_,—;é-:‘, the functions Firy and ) fall

respectively between the limits:

(1) T <« R < - (4.4)
(11) Ty » 40 > T, vl (4.5)
where
T ity = exp {f m]%{%} , (4.8)
T.tt)= axp i J'[l~ hec)? al't, )I _ (4.7)
This can easily be verified by choosing ’7,, to be J'_‘,%@C*_')_E

/
2P+l

n , |- taprnT <y 4.8

when v | — 1.‘§Y4 (_l T) , ( )

and - | J=cp)T - (- i . (4.9)
4{*7:@5““ 7 3y 7o)

and furthermore, X (7,) Z 0 are satisfied; consequently, it follows

or (|- ‘C) o As, evidently, in o £ T £

the reisul’c Ss

Corollary 4.2 In o£ T £ z_pL;T’ the absolute value of the logarithmiec

derivative of T (ariy;¢,;z) Oivided by ¥ , is bounded both above

and below, that is

M. lt) £ Flor bl iotiiz) oy ,\1) (4.10)
"F(ay.by,c,,,f;)

where M,t) snd M,it) are independent of V . This really a conse-

quence of (4.8) and (4.9).

RESTRICTED



TESTRICTED 27,

D e

It shall be noted that the results established above are appli=
cable to fit)=F (a,rp,bp;c ;T ) provided ¥ 1is large, because
then the two Egs, (3.3) and (3.4) tend to be the same.

Obviously, Chaplygin's theorem ceases to be true when

T > ~t— . For in the interval I <1t & | , the solutions of the

2p+ el

hypergeometric equation are oscillatory and, hence, within any closed
. N i -
interval in e <t 4 | the number of roots of 5(‘),”;) will be pro
portional to y (Ref, 16). Vihen V is large, there will be a large
nunber. of roots in the interval, As a consequencs, the function :(’yh;)
will have there an over increasing number of sinmple poles and a finite
intervel in vwhich <%,(z) remains finite for all y does not exist,

To carry the investigation over inte -;é’_;’, 4T <], the
method is modified. Let %y(c] and 'F;,\’c/) be two independent solu=
tions of Zg, (2.3) or (3.4)s and let the linear combination be denoted
vy

* .
'FV\'D) = &»(1:) + »'—FY_('D) . (4,11)
The complex function is, of course, & solution of the same differential

equation. In bterms of its modulus ’Ryh») and argument 41’(1:,) s the

function may alsc be expressed as

. L Pic)
ey = R 5% , (4.12)

where both K,'t) and ‘k,l't?) are continuous functions with continuous
derivetives. By comparing with (4.11), it is necessary to have

?VV‘-’) = ’th") ‘:v“ﬁchhz‘) ’ (4’13)

—F';,\T’) = /KVL’C)W‘RH). (4.14)
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According to the Sturm's separation theorem »fy('c) and F;(o) never
venish simultaneously in any closed intervel and R, lt) never vanishes
sy e

apH ZT 4| and remains positive in the whole interval, Then corres=

*
ponding to (4.1), ome can defire a complex function '§'V ()

* _ d £
V3, = 2t Ll T (4.15)

which satisfies the same equation (4.2), On separating into real and

imaginary parts, the Riccati equation for 'g’:(q;) becomes

o) - ') <] 0} ) z, 2. -
g, 0z 30+ 553, -2 (37 1 vl =0, (4026

Ratfigz 1o £egts 2igy =0 ) (827

14

)

where ‘gy and ’g)‘/"’ are real continuous functions of T defined

as

12)°

+* 1Y} .
'gyﬁ,) = T, )+ 'gy e) (4.18)
Their commection with %,it) and gbyhz) separately are given by

means of (4.15), Nemely,

Y
u) d 2 ( 4,19
v 3, ) = at 7 log TRy 1) (4.19)
[§3) — o
V?V (‘c).—- 2T %43('0) . (4:020)

Wow Eq. (4.17) cen be integrated in terms of ‘3'{'){1) and whence

»
) - |
'gl:r\z) can be eliminated from Eg, (4.16). .Then the equations for ‘g‘)
v

and zl;) are

‘ Ly |7 AT
Kite 70 - AT £ U5 g P e, o

dg_.‘ﬂ

2) _‘EE

..g(—(,)--_jll T)

= 2 . (4.22)
aE o AAN
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¢
L

[rol
e
A

Eq. (4.21) together with the condition g:&o)= - determines uniquely
ths solution §:k¢) o The #ctual valus of §SQ1J can be, of course,
expressed in terms of the knownhypergeometric functions. But the
problem on hand is to determine the proverties of 3;G) for larpe V¥

To facilitate the discussion; 2g. (4.21) is first written in the form:

o) — qn) v . , (4025)
X'(jV)- ?V ‘©) + 2T Tl ;1, =
whare
— ) T
}’, ) 'gy () + ‘é“‘y(.-z) -+ ){H,) ,
- t) e'c' . “t ,
‘gzw) - cgv ‘) V(-1T) }f )
and

y.
V= | e ge bt
1% ]-T yr(-T)* TV R

when ¥ is large, the character of the functions ¢, end ¥, can be
easily studied in the T,?ﬁt plane (Fig. 1) by neglecting the third
term under the radical sign, This can be justified im the following
manner: Consider the case when Yy is positive and large but not an
integer. In the interval o< T < Ié;;j , 5!;“)«}-3 because T, )~ 'Jiy‘”)
by Eqs. (3.11) and (4.5). Then —Cyz ﬁy(ﬂm’c‘%’]{ya Thereforae, ’cy’" R,c)771
when V is large. But both JF,x) and T iv) are continuous with
respect to y » 80 the above result applies squally to the case of
integral o Hence, the third term in the radicel for }ftt)
can be neglected for large % 0 |

Due to the manner in which Xf is defined, corrssponding to each

2

. ] .
Y there is & line —<T= T, >m such that ‘}‘{;1)740 when T £ T, .

As a consequence 1‘ and jz are reel or complex conjugate according
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as T£ 7T, . In o%<T é’fo,ffoand 1,=° will give two one=
parameter families radiating respectively from ( o, - ) and (o0:7)
2
and joining together at a point where [, =0 , If o< <¢T,,
the product J mey be negative or positive according as the point
p y da2
lies to the left or right of the curve f =0 eand 7,=¢ ., On
the other hand, if T>7T, , 3,7, is always positive,
}

Now TM()= B  , while the initial slope of §, =0  is
!3(,-.)1;) s the integral-curve must lie above ¥, =¢ , and below
4,=0 e If it were not, the integral curve would cross the curve

) - ‘i .
3, =0, gL:a where T it)=¢ and ?V it) would be negative

L ! . . . (s)
£ ZpeT - This is not possible, for Zv —~ .f-v

gsomevhere - in 0 £ T

by an argument similar to that used for determining the mapgnitude
¥ e
of t* K% and according to (4.5) —j_’_‘_;_’;@%_‘.)} 73, 7- (- 1)5

. J . ! 1

L e )) 3 _J.—— 2
in o%7T £ ST hence ?j >0 in o¢tT 4 2(5“ and ?v continues
to increase until it intersects with ¥, =o0 . After it crosses

/
the curve. 1, =0 , 'g)’:’ £0 and never changes signas ¥, J,>¢ in
o . . .
To & T £ [ o Consequently, _gy)(1) is monotonic and decreasing

in the interval <t,<T<4| . VWhen ¥V is sufficiently large, T, will

/.

approach very rapidly to and -T,= when ¥ becomes

1
2p+)

24+
infinite.
ti? . . R . )
Theorem 4.2 If "qy(f) is continuous and monotonic in T,<T < |

o)

EAR » then for all Y > N

and satisfies X—l (r

Y

0 4,24)
yT) = 'g‘y ). (
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Proof': Form the follgwing identity:

R E e g0 ¢ U )]

T

1

(4525)

D] (.) a4t

+ L3 0-0)f J YT i, VJ(”}y 315 20

»

It can be shown thet the differential expression possesses an integrae«

tion faoctor -1 2
(7, -1y 0-T) PKLVSL (4,26)

where

T
R, -’Kv‘mutv{ j " %}' ,9,,=S,‘T,NX?M(’}?O%}.(4.-.27)

It will be noticed that the sign of (4,26) is determined by the first
factor (’7:'-‘§:) only, On mul’c'iplying (4.25) by (4.26) and inte=
grating the resulting total differential from T, to T , with a

ul )
suitably chosen initisl value (T,): IT,) , it 4is found that
¥ Y y

.%; n).§ )FC (IAT») IK)}S + ‘g RHJJ(T,)[ 5 7 -; )"’I] o

. . s : . w )
which is positive if and only if "]y- 3’), Z 0 everywhere in ‘T,41 <& “| .
0} "
Since both Tv and /7»' ere continuous and monotonic, the condie
tion is both necessary and sufficient. Furthermore, it should be
‘ . W
noticed that the condition ’7yt‘r‘,’)‘ ‘gy “y) 4is purely a convenience.
0

o)
I "’]),C‘Q;)#‘- fy 1,) , the validity of the theorem is not 3in the least

impaired,
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Corollary 4.3 In —1,<T £ | 5 the following inequality holds

*
for the modulus of éﬁy ) ¢

W) /gy 4 LF

Y > N (4.25)

where  (ap+ )t~ | = .

For in T,<T < | , 'g‘;]LO and hence ’7;’@:0 satisfies
the condition o> g:iu which gives (4,28) by inbegration,

Now, since ‘z’:}('c) is bounded by zero for all Y#0 in T,<®<|,
it vis also implied that

K,n) < -ravn) (4.29)

vwhere ']"3(1)= 3%9,1 » Here the constant fo can be detormined by joining
'[; et T=7T, with T/ or 7T, defined by Igs. (4.8) ana (4.7).

Then from (24.13) and (4,14) it follows that for y > N
j \ 2 - )
F, Ty (4.30

l gvm} < T;y(r). T, T & | (4.31)
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Part II

C-nstruction of the Solutions for Compressible Flow Around a Body

5, Chaplygin's Procedure

In the nrevious sections, the particular solutions of the diffor=-
ential equations in hodograph plane are obtained., Since the differen=-
tial equations in the hodograph plane sars linear, suverwvosition of solu-
tions is allowed. In other words, if these particular solutions are
multiplied by different constants and then added together, the sum
is apghin a solution of the differential equations, By this procedure,
gencral solutions can be constructed from the narticular solutions,

However, there is a difficulty in such a method of constructing
the general solution==- the difficulty of making a proper choice of
the multiplying constants for the particular solutions so that the
resultant solution will give a flow satisfying the boundary conditions
specified in the physical plene, This can bevseen from the fact that
the space coordinntes x and y are obbained fronn}&mﬁdch is not expli=
citly comnected with ‘Vf » the stream function. In fact, to obtain
the coordinate x and y directly from V/ would involve an integration
in the hodograph plane, Thus the linearization of differential equa=
tions in the hodograph plane is obtained at the expense of the
simplicity in boundary value vroblem,

Chaplygin (Ref, 6) suggested an ingenious method of solving this
difficulty by using the well=known solutions of the incompressible
flow., The first step in this method is to find the incompressible
flow arownd & body "similar" +to the body concerned. (The meaning of

the word "similar" will be made clear in the following paragraph).
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The stream function ﬁc for inetance, is then expressed in terms of
the speed % end the inclination ® ., The function ‘ﬂ{(g.e) can

be expanded into an infinite series, each term of which is of the

form ?MCﬂfha or %ﬁ4xna43 o For the flow around a body with
constant velocity U at infinity, the function WK(?,?) has a singularity
at the point § = U, @ = O in the hodograph plene, since there all the
stream lines, or lines of constant 'yé origirate., Thus there are tvo
forms of the series expansion of vg : one 1s convergent within the
cirele % = u, while theé other is convergent outside of the circle <%=UU
The first series, or the "inside" series, must be regular at the origin
of the hodograph plane, Therefore only positive values of the integers
N esn occur, Tho second series, or the 'outside" series, can have
both positive y and neghtive ¥ . Chaplygin's method is to use the
"inside" series for }Z as the sterting point for obtaining the de~
sired solution yV for the compressible fluid.  He suggested choosing
the multiplying coefficient of the particular solutions for the come
pressible flow by the condition that for the limiting case of infinite
sonlc speed; or incompressible fluid, the series will degenerate to

the "inside" serics of the incompressible flow already obtained, The
series for the compressible strean function 'u/ so constructed can be
called as the "inside" series of \V o The "outside" scries for WP
can then be obtained by the method of analytical continuation with the

aid of the "outside series"

of the incompressible flow,
These solubions so constructed for the compressible flow contain
the Mach number of the undisiurbed flow as 8 parameter. ihey constitute

a family of singly infinite solutions, Included in this

family of solubions is the limiting case of zero Mach number of the

RESTRICTD



RESTRICTED 35,

free stream, This limiting case will give the incompressible flow
around a body used as the starting point of this method. For other
values of the free stream Mach number, the body contour is generally
different from that corresponding to zero lach number, Thus, if the
compressible flow around a given body is desired, the body shape for
the initial incompressible flow must be slightly different from the
given body shape. However, if a geometric parameter is included in
the solution, such an adjustment is not difficult to meke.

It may be stated here that due to the regularity of the solution
at the origin of the hodograph plane, only the first solution of the
hypergeometric differential equation appears in the "inside" series.
For the "outside" series, both the first and the second solution of
the hypergeometric differential equation are necessary. This is in
direct analogy with the appearance of both positive and negative

"outside" series., This fact

exponents of % in the incompressible
is particularly importent, since previous investigators secem to be
maware of it. Chaplygin himself did not use the second solution of
the hypergeometric‘differential equation, but thet is simply because,
for his problem, there is no singularity in the hodograph plane and

hence only the "inside" series is needed,

6. The Functions for Incompressible Flow

Following the procedure outlined in the previous section, the
analysis starts with the functions required in défining an irrotational
incompressible flow, For this case, the sonic‘speed ¢, ‘tends to

infinity, and the equations for the velocity potential Qg(x,y) and
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the stream function \y (X ” all became harmonicl
o

A(fa = o , (661)

= (6.2)
Ay, =0
where A stands for the Laplacian operator. If -Woli-) is the complex

potential, it can be shown that
Wiy= ¢+ +¥ (6.5)
whcre 7 = X*C%.
If w denotes the complex veloecity wu-¢v, it is connectad with N(Z) by
w= A Ew(z) | (6.4)
dz
If  w'i2)#sone can always solve for z in terms of w, namely
Z = Zo(w) (6.5)
In peneral, this solution is not single=valued and will be discussed
later., By introducing this relation into Eq. (695). one obtains the
complex potential function in ths hodograoh plane,
Wowd = g, uwy+ e Yiue) (6.6)
In case 3g. (6.5) is many velued, this would correspend to one branch
of the function,
It is elsar that in this case K"N‘v) is also a harmonice

function. Let (;\uv) be the conjurate function defined by

bxo 246
p—t == = e 7 6,7
U DV ( )
o2& (8.8)
>V T 2w
Hence
Nowd = % = 86 (6.9)
Wiere W= u-iv
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Thys A /w) is en analytic function of w, From fq. (2.5), the deri=-
vative of J\,UU) with respect to w must be z, That is,
dho
T‘; = Z,(w) ,
But z(w) has elready been found from %g. (6.5). Therefore,
AU\W) = ‘J‘zo(w> A\A" -+ CMI (6010)

The real part of J\J”) gives 'Xum,q)as required, accordiug to

(6.9),

7. Conformal Mapping of Incompressible Flow on the Hodograph Plane,

Before the construction of solutions for the compressible flow,
the general character of the solutions in the hodograph plare should
be exemined. This can be easily done by investigating the behavior
of the transition function Z,(w) for an incompressible fluid. To start
with the simplest case first; consider a steady irrobtational flow in
an infinite simply~cornected domain D bounded by a curve C in tha z-plans,
with a parallel flow at infinity (Fig. 2). At every point z of D
there is one and only one velocity vector 1% o 1f the curve C
is mapped into ~é and infinity corresponds to a point P on the axis
of reals of w within ¢ , then the domain D is mapped intoD by a
mapping function
W= wiz)
defined in (6.4), where Wi(z) is an analytic function of Z . The
inverse function
Z = Z,\w)
will set up a continuous one-to-one correspondence between w= and z-

plane provided the mapping is conformal. This requires that wi(z) is
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enalytio, simple withinD, and  w'(2)fo,

Howaver, for most problems thess conditions cannot be satisfied
throughout the field of flow., 1In the first place, the function w (z)
is generally nonwehnple, for example, in the case of e uniform flow,
w(z) = const,, thus w'(2)zo end the whole z=plane ocorresponds only
to a polnt in the w-plans. Furthermore, the complex velocity for =
two=-dimensional boundary-velue problem can generally be put in the

following form:

W o= we + w¥iz),

where W is a constant. The boundery condition requires that

w 2)zo and, as a conseguence, n/*(z)zo 88 z becomes infinite,
Therefore, in sll cases, the point ® in the weplsne, is a singular point.
It is a branchepoint at W, if Zw) is many-velued; or a pole, if
otherwise. In practice, there are two kinds of singularities that
play a dominsnt role in the problem of two=-dimensional flow. Thase
singularities will be investigated presently.

A, Branch-point of order onex

One may recall that when a closed body is present in a uniform
flow, there always exist two stagnntion points which both correspond
to the origin of the w-plane. If one follows a stresm line PS, (Fig. 3)

for instance,; from + o0 to § s the portion ansland'theh to -0

*The function #£{w) is seid to have a dbranch point of ordsr ket w= w,

if its inverss w(z) gontains the part w* which has a zero of
order g+ | ot Z=o00
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one viould deseribe twicc along a curve gﬂ& in w=plane, This indicates

that the function 2(w) possesses two branches of Rbamann surfaces

joining together about the brench=point ® . In order to make the

domain ﬁa single~valued, & cut is put along the axis of reals from

the branch-point to + ©° , Then one nortion of the z-plane is mapped

into a definite branch of the Riemammsurfaces in the w-plans and this will be
defined as the domein 1 , If the body is symmetrical with respect

to the coordinate axes with parallel flow at infinity, then the domain
D:RLz £0  will be mapped conformally into & on one branch of

the Riemannsurfaces and :DI : RL2 7 0 on the other, where the region
within C is excluded,

B, Logarithmic Singularity

The flow over a wavy surface, for instaunce, placed parallel to a
uniforn stream has = periodic nature. TFor such flows there are infinitely
many points in the physicel plaone thet have the same velocity. Hence,
there ars infinite number of branches in ths weplane, oach of which corres-
ponds to a definite portion of the z-planse.The function®.Ww) must have
a berm Lr?(l“ ¥y and the point P now is a logarithmic singularity.
If, however, a cut is introduced from the branche=point to +e° and
- 4 W\?U—*—S‘)L T, then the domain ﬁ is agein made single-
valued,

8, Construction of a solubtion about the origin

From the considerstions of the last secobion, the domain within a
circle with radius (wi=FA=U, where U is the absolute value of W
et infinity in zeplane, is in all cases single=-valued, If a function

Wa("‘") is associnted with a definite flow in z=plane, from Section 6
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B

it is an analytic funetion of w and regular within the cirvle |wi=zU,

C~1sequently, the followinp Taylor's expansion exists:

Woiwy = Z A W'M , lwia (8,1)

nso

/ =D
where A,“s are in general complex, Since W"zje' and by (6.3)
the imaginary part of W,\“’) is equal to incompressible strean

funetion ’\I/a , iT can be written as

Yy.9)= Im { Wy} = i 3” )l A:c‘anf*A':w-ne}, (8.2)

According to Chaplygin's procedure, the corresponding compressible
52 Py - 3 - . " Lo
solutiam con be oblained by simply replacing the funstion 7 in 249,
. o}
(8,2) by the corresponging ﬁ $ (1) &s shown by (3.168), The second
w»
integral is excluded by the regularity requirement at 7$ o , llowever,

in order to prescrve the proper singularity at the point (U, 0) In

the hodograph plane, the compressible stream function Wy is written

as
o0 jg’] ) 1)) 12)
Vipod = 35§ Ew {a emmde Bamnd) @0
where
(v &1(1) T ma Ui Lo
&\1):——-—-""-"—' (q_b ’t)d-,ﬂé\f’ .
" ’;‘ml‘t’l.\ -F (a‘h_l bn), ', C“ "’Cl) <8°*)

and T, * 2 TCr s the value of T, corresponding to the free stremn
valoci'«t.y V. It is seen thaﬁ if o= o s them 1T = 7,7 @ ,
and %‘:”(-r)‘?l due to the normalizing cordition (3.6), Thus the s\olum
tion is reduced to the incompressible form, Furthermore, if 7-'? v

the character of the solution is exactly like that of the incompressible
solution. Hence, all the specified conditions are satisficd., Of
COUrsSo, fér the nized stbscric and supersonic flow, the free strean

Y oraetm s e oT
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it - vt

|

Mach number is always less than unity. Thus T, < ;_m ,

For later analysis as given in Part III, it is convenlent to write
($2) .

'\V in a different form, . Since 3; £) is & purely real cuantity,

a complex function W(N;'t) can be constructed as
o T (8 5)

Wiwyz) = Z AnF, =)W jwieU ’

nse

Then,similar to the relation between Egs., (8.,1)'and (8,2), ‘\}/(5',9) cen

be taken as the imaginary part of the new function Wlw;1) « Thus

“\!/(7,9) = Im {W(W;T)} . (8.6)

Similarly, one can construct another function A[w;*c) defined

by
Ao = 2 A F W . qeu @D

~
In this expression, the coefficients AM are obtained from the ex-

pansiom of J\o/W) for the incovpressible flow (6.10)1

= 7 w (8,8)

Ap‘“’);' Z Am W iwle U
and j,(v) _ .. )
Z )
» (8.9)
Then the function x (7,3) for the compressible flow is given by
%99 = L AT (8.10)
The functions Wkw;t) and A(w;t) are actually regular
and satisfy the condition that Wiwst) = W, w) and AwWit)EA W)

on |wl=1U . However, the following question may be raised:

Do the saries (8,5) and (8.7) converge and represent the functions
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W(q,a\) end ')((1.9) in the doumin of validity? To settle this question,
one has to »rove the following theorem:

Theorem 8.1  If the corstants A, enc ;4:1 are given in Eqs. {8.1)
and 18,8), while 5{:,';) and 6'(:'&'1))' are defined respectively by Egs.
(8.4) and (8.9), the series (8.5) and (8,”7) are uniformly and ab=
solutely convergent in the same domain as those of (8,1) and (8.8).

Conslider the first series: Multinlying tkroughout the inequality

(4.8), namely
'ghit) > } Kt pr)T ) 0 & T & -

\- T ZF"‘[

by % and integrating both sides from T to T, , it can be deduced

that
F ey < ‘ﬁ«:)
where  + (t) = Ttv) /1ty 2 (. Then it follows that
| A Eoy W | < T Am )|
Now i | A (g w)” \ corwerges when |4,w )< U due to Eg.

(8,1), By Weirstrass's theorem, the series (8,5) is unlformly and
absolutely convergent if }t]w] =49 <U . WNow t(t,) =1 , thus
't,‘] is equal to Uwhenﬂ=Uand T=1 - “fj‘7 is zero if7=0
and remains positive for 049« U, B), the definition of T, tt) given
by Eq. (4.6), it can be easily showm that

d

2"7' t/7 7 0 7
for o<t <T, , Thus {’/? inereases monotomieally from zero to U
in the interval o4 < T) Therefore, the series (8.5) is uniformly

ard absolutely convergent in eny closed domain in | wr [<U »
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Similarly ‘he convergence of the series (8,7) can be established,

9, Analytic continuation of the solution «= Branch point of Order One,

As proved in the last secbion, the series (8.5) is absolutely and
uniformly convergent and does represent & regular functiom W(ur,”!:) for
every - in =T £T, and on the circle of convergence it agrees

'Le . - . ¥ .
with M(UQ. ) s of.which the Fourier expansion existst

ot N in

Wowd® = Z AnlU e | (9.1)

In the oresent seobion, it 1s proposed to conbinue the solution
(8.5) anslytically outside the domain |w(4U with the initial value
given by Eq, (9.1), The domein outside |w|£U is generally many
valued. To fix ideas, discuss first the case of a branch—poinﬁ
of order one., Generally the function WW) he.s other singnlarities
besides the one at w=1 . However, such sinpularities lie outside
the region of interest and thus need not be investigated. Let the
nearest singularity be given by |w|= VU, Then, the domain to be
considered outside |w|=7 is an anrulus with & cut joining the two
singularities, The proper representation of ]/\L(W) in such a region

which has o branch point of order one at w=1U , is

Wotws = & wr Wot) (9.2)
where -W;TW) is sizngle-valued and regular within the open annulus
U<« [w-[.ﬁ V . Hence, in any closed domain U—t—% < leé \/—5 ) S
being & small number, there exists e uniformly and absolutely convergent

series:
* o -M
Wi =SB, w"+ Caw | | (9.5)
r=o

RUSTRICTLL
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which, on substituting in (9.2), will give the continuation of the
Taylor series (8.1).

The solution for a compressible fluid, which has the seme character
of singularities as W.iw)  and velid in the annulus T« iw]<V,
can be obtained from (9.3) by sintroducing the proper hypergeometric func=

tions corresponding to each exponent of w . That is:.

{o) - + v * . =Y
W fwyT) =V Z [.Bﬂ%‘ﬂ w + (, §mw :1 , (9.4)
nEv
. . . , 1) : i
which is the conbinuation of W (w;t) o lere vEart gy , N
-2/
being a positive integers %l'c) and "‘6 %yh:) are the first

and second integrals of the hypergeometric equation; and 'Bi and
C:‘ are constants, It.should be noticed that the coefficients B:,
and C: in the outside series for the compressible flow are not equal
0 B and Cn in Bg. (9.3) for the outside series of the incompressible
flow., The outside series of the incompressible flow is only used to
give the proper form of ’D()w;t) » While the exact determination of
W(D)W;‘c) has +to be made By the conditions of continuity.

Since the partial differential equation considered here is of the

e}
segond order, to ensure that lw;t) is the analytic continuation

()
of (w;1) two conditiong have to be inposed at the boundary of the
respective regions of convergence, i.e. the circle %:U » These two

conditions are the followings

V/“)( U-é? TI — W'w)(u‘é‘.?; ‘61) (925)
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[ ﬁf‘rw (vv)t)]

[baﬁ W“z“’ ‘v>] L (9.6)

On accownt of Egs, (9,5) and (9,6), there are two relations which have

the imeginary parts:

o0 y -y 20 M
Z {B: &,u.)\f + C: 4y‘®:)u JCo—.er) =-%AMUW%9

ms

1]

b % v x -V , x " ’
> b«d (vF ot m,%’t@,))q» ¢, U-vh +m,§,u.§)mv3 :'Z:DA”‘U (w fkt,i’,'g';)w{m’nﬂ

no

Here the orime denotes differentiati n with respect to T
Evidertly, the-coefficients ou the left hand side can be solved for
in terms of the kuown constants A . . They are:

* -V 20 m B
BifmV + Cu g U == Z Anl (7 + 57) (9.7)

X 14 J *’ -V J l o wm |

B, U gyt O, U (-vgy(r,)+m,§,<r.))=—;;uwAWU i m(;;,*;;‘;) (9,8)
From these two equations, the constants ‘5’:,_ and C: can be uniquely
determined provided the determinant A (Jy, }'—;) does not vanish,

These results are:

' 4,1
B U =- 2‘)“((]1:_[)52/\ U %+V+ V)("m‘;’(-r,) v%‘n)) ) (9.9)

-V Fy
C: T ch‘rﬂz‘ Z/lm (mv TJ’J)(’”? 1) - vgu,), (9.10)

, - p
as the Wronskian A (4, F )::: - -%% -T)#o0 and ?ytr) is

defined in (4.1).
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The solution is again formal. To prove thet the function LVKW;ﬁ)
is a regular function in the annulus region, the truth of the followiny
theorem must be first demonstrated.

* *
Theorem 9.1  If the constants B, and C, ars determined
according to (9.5) and (9.6) and if the seriss (9.%) converges
uniformly and sbsolutely in & closed domain U+§ £ |w[< V-$§

then the series ($9.4) will converge uniformly and absolutely in the
1

domain U+ 5 £ kwl < V-3 , S 7o

It is observed that the following idontities exist amonpg the

constants involved in (9.,1) end (9.2) :

v o9 ™ |

BV = pr > AU SR ) ) (0.11)
-y | =90 '

oV = gym a2l Am U (S 53 me) (5.12)

Now, by the inequnlities (4.8) and (4.9), the functions ?>(u) ,'f ir,)
-V
can be bounded both above and below for &ll V$0 , when o< ¢ ég“;‘, 5

And if a smaller valus of A, F) is taken, it can

be deduced that

I
o,
3

| Bl | & oM, 2

X%
| Co | = My -5

where My und M , are constents independent of n.

On the other hend, from the inequality (4.8)

( _«‘C)P A l
gy(‘b) < 1 b} [ - 2{54.‘
it follows that
v
éEW)/ikﬁ) £ flbt) , T, €1 £ ;#Ii
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Consequently, the first part of (9.4) can be domineted:

[ B:{,gm w’/[ < | B LJr;w-)V’

where tov) = Tow) /1,y o The continuation of this inequality
for T > ;f,{;I cen bs easily done by defining a new <,(x) in
conformity with (4.29). By hypothesis, i IBM (,flw)y I converges
ir Jtaw | < YV . since t,ir) < ft;«fr. for T, £T<]|
the inesquality l’t,l,“" l< V is uniformly bounded.

Similerly, it can bs shown that

| Cn g, W’ | < | ca VV:“'SV :

~N
Y

But 3 | €,y (£,w) ] converges if |t,w| > U . Since on

nz o
iw | = U .{; )= | and ;%lo;lf,wl 7 © when o <-T 4"—2—(‘6—;’

| s

or ak lw] = when 9~_fi~Tl ¢« T <« | » the condition H‘l“" >J
holds for all T in T £ T < | « -Hence, by Weierstrass's

theorem the series (9.4) converges uniformly and absolutely in
U+ § < iwleV-5 .

By similar procedure, the continuation of (8.7) is

Lo

Axw;ﬂ:» [3 Zoyw'+ Cngow’] (9.13)

whore gy(‘c) and 9y(¢) are the first and second integrals of
Eg. (B3.4) and the constants B: and [‘: can be similarly determined,

Viﬁ&-

~ v g('\.’,) @0 ,
B,V = Y (- 1)PZ A’” “*HV m-v)< f!r) V? (T’))}"‘;! (8:34)

(r = ~—£~’——-‘T‘)2Au‘

21y (-, ¥ P i %L'J) (""f,,ﬂm‘yiwdﬁgrn.(S.ls)
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The solution sc fer determinsd is understood to be the' principal
branch of the function 3@7w;z)o It was assumed thet the flow at
infinity is parallel to the X=-axis. If in addition, the body is
symuetrical with respect to the coordinate exes, the expression for

(o)
the second bransh of £@7uv;q will be identical, However, in a more
general case where asymmetry comes in, the two branches will rsquire

separate considersation,

10, Continuation--Logorithmic sinpulerity

Consider now the second important tyvps of singularity: it is
assumed here that the only singularity possessed by ths function
VV;(K;) in the finite part of the w=plane is a logarithmic
branch=point at w=1/ ebout which infinitely many Riemann surfaces are
joined. By enalogy with (9.2), }W?w) ¢an now be conveniently written

ag

e

-+
Wotw) = W, wy + Wow) (10.1)

where LWG:)is e reguler function in the entire domain with possibly

an ossentiel singulsrity at infinity,and hence genafally is given by

n Teylor series or a polynomial in W, and W;M’) = S"Z(‘f'%) *‘:%“]'9)
is an analytic function which characterizes the singulrrity of MA(WU B

Thus; aside from a constant factor

Wotwy = + lg [1- ) (10.2)

If a cut is laid from +{J fp, + o and the argument of (\- %) is
rostricted in T émg(l-%)ﬁ'ﬂ‘ » then the function W (w) will be
single-valused in the whole cut plane.

The question of constructing & solution for the compresgitle

% ~
fluid consists, therefore, of two parts: L@C\md and }@l(ur) . However,
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E 3
the constructicn for )’Vow) is, in principle, exactly the same as thst
of (8.6) and hence only mfw) will be considered. TFirst let Mluv)
be developed into poweér series in the respective domnirns of validity.

The imeginery parts are:

n

~ i)

Ve = g}l = (%) com H %<V (10.3)
T oy = - ¢ oo J—[.‘L.)n o
V,(q.9) = L’?u *’é M AT R - 4>V (10,4)

The corresponding expression for “{/'{‘119) will mccordingly be.

o x
Vigs= 3 A, 3.0 () wnd oy (10.8)

n=i
(o)

£ 8 oo -n
Vi3.9)=-B J(u-i)—‘% + ZCﬂng)(%)ww'f’ . 3>V (10.6)

T nwi

where g’cﬂn) stand for Flau, by;enit) and 94, (v) is
defined by (3.15).

The function W,(w) mey be regarded as the complex potentisal of
2 complex source situmted at W=1U . It is known that in this case
the normal derivative of &,(‘].9) on |jwi=U is & constsant,
excopt at W =U where it becomes infinite. This boundary value cen

be expanded uniquely:

. X L
«ZC—W%% - 2, ' 9#0 (1007)

The. sorresponding preoblem in the case of compressible flow can be
put in an enalogous menner: to find a function '\yfq‘ ©)  which is
continuous teogether with continuous partiel derivatives and whose

normal derivetive on |w| =T is constent. Thus, the conditions
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(9.5) and (9.6) in conjunction with (10.7) demand:
F.aoh, - gt C, =0 (10.8)
; 8
[ nFuien r20 Fren] Aw® [ n Guiw- 20 6@ G =B U-TYL (14 o)
where the constant B can be determined when the normal derivative VQ($3)

on |lw|=VU is mssigned.

By solving (10.8) and (10.9) these yield

An = 2 B G Iu) , (10.10)
Cu = 2B G (10.11)

by the relation of the Wronskian of the two independent intsgrals
of Egq. (3.3). Thus the function ﬁ;(q,e) is completely determined.

The associated function. xdq.s) can be similarly constructed. As
N.\w) is derived from (6.10) by integration of the inverse mspping
function, it must involve a term (l-{%) Lag(}-u%é) which
represents the singularity of the function A,lw) o hs in

Bg. (10.1) Notw ) is again split-into two parts:

. .
Aotw) = Agw) + Ajlw)

(10.12)
where /Q:\W) is an entire function and A.{w) is
Adwy =+(1-4) Log (1-2) (10,13)
Now the solution corresponding fo fo% (- %%) cen be determined in

exactly the same mennsr except thet the hypergeometric functions in=
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.

volved are g('v) and QWH:) instead of L (r) and ?,”Lt) .
n

The pert thnat will require specisl consideration is the term %’Io}(!-g) °

QOH

. “~ ad .
Let it be denoted by - A,w)= %, — &

Notw) ==k Z leg 1= %) (10,14)

This function is also multiple-velued. Let the argument of (i- £%)
again bs restricted in -‘IT‘LM?U-%’)A’TT » then in the cut plane one

will have

1) | 20

=Tz ) Wl (10.15)
w w S L e

et gt e 2w ] wi>l (o.16)

According to (6.9), the function 5&»&%.%) is defined as the

real part of A lw) . That part represented by (10.15) and (10.16)

ig then
A > ‘ q "
Ao = - 20 5 (g) wiend (1031

N

;\(:’W‘M: %&3% ma-%(v-?')mMZ;I:,(%)W“% (10.18)

n=y

The particular solution corresponding to % Kog%MS‘ %,Hr- Ve &
has already bsen given in Zq. (3.26). Hence the solution for the

compressible flow is

2 A o~ N

40 = - 2 And© () wimn & . (10.19)
~ m g ). "’1’ .

140 L aimd- Limdwd+ 3 0G5 ) amand (10.20)

nw
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wners

3

hwv-ﬂmu[u@ﬂlﬂ,—-(r 2+ h, [ ﬂﬁwc] (20.21)

ey

4

The conditions (9.5) end (9.¢) together with an expansion

TAMEY + Z L5+ "Ln_ Yoimmy = (M-9)cwy | o< d<am
L
require that:

-

Jm,”-'ﬂ A“ + .9 ‘T)C - m‘-;'_:l , (10"22)
~ 4./ T o4l -\,( ~,( SN L.
nwX i)+ 2T £l | A n gy rangia|C, Yan L (10.2%)
and

-~ ~

gl(fd C;

i, (10.24)
2

Y -~ -~ 7
[‘i”0+lﬁfm)]Q + o2t K =g 0 wel (10.25)

-~

By solving (10.22) and (10.23) for A, and  (, , one obtains

Ro = 53 Lo me)dm (10-26)
- ) P
G = BB (- 2u)Ee (10,27)

by using the Wronskisn of the independent integr“lé of #a. (Be4).
With €y givgn by (10.24), the constant Kl csn be solved for from
(10.26); it is
B ~
Kl =-(-T) [ VBT, T m+|)’rf 4 “')/@,lf,)} : (10.28)

The solutiuns 1%[&0):uui ‘qu.%) in the whole domain under

considerati-n Are uniquely determined. Since the dominant properties

u\)T‘pIUTL)D
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of the hypergeometric functions discussed in section 4 hold in general,
consequently the equation of convergence can be similarly settled.

11, Transition to Physicel Plane = In the previous sectims, it has

been proved that for a given incompressible flow for which two asso=
ciated functions \K(%‘%) and 7&(%,‘3) are defined, there exist two
associated functions \{/(q,.%) and '7‘(1,%}) for the corresponding compregs=
ible flow, depending upon two parameters Y end T, The question is
whether the associated functions V(§.9) and X(%.%) belong Lo the

same flow pattern in the physical pleane. To answer this question one
has to fall beck once more to the fundamentel equetions (2.5) and (2.10).
On substitutiﬁg; dx end dy from Eqs, (2,5) in Bg . (2,10), the relation

between Y(4.§) and 7&(‘1.%) so obtained leads to Fgs. (2,12) and (2.13)

15 -K=9

This is, of course, the Legendre transformetion and cen be regarded

if

ag an equation of compatibility. Since vhen \Vlt\\%) is given, 60(3,%)
is lmown by solving Bgs. (2.12) and (2.13). Hence if 7((3\9).,
satisfying Eq,. (2,15) and approaching to 7&0 as (,~»o0o is to be
associated with Y(9.9) for the same flow, then it is necessary thet
the equation of compatibillty be satisfied., Lxcept in the case of
section 10 where the complefe W(93) function was not discussed, this
condition has been properly cmsidered.

Once the relatimnship between Y(4:9) end %14:%) is established,
the next objeet is to caloulate the flow pattern W) = const.
in the physical pleane corresponding to Y(4.9) and X(q.%) . In the
first place, tne must recall the faet that the transformation defined

by Eqs. (2.1) and (2.2) is generally one=to-one. Suppose

HESTRICTED
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that in the hodograph plane there is a line defived by

'\l/(ob\%Bz Const. = K (11.1)
vhich will correspornd to a definite, or a definite vart of, a stream-
line in the physical plane., The stream=-line ocan be obtained by

eliminating one of the two variables in x(9,9) and y(4,8). To do

this, first the Ba. (11.1) is solved for ¥ , namely

I =3(3n) (11.2)

provided that Wﬁ(q‘%) #0 . Introducing this relation into Eq. (2.5)

which, when transformed into polar coordinates, are

x - CDSS% — 5"%9228\

il (11.3)
Y = sfnsg’%} + w_%r;,fﬁ%%\ , (11.4)

one obteins a paremetric representation of this particular stream=-

line corresponding to '\l/ (4.8) = K in the hodograph plene,

5h
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Part III

Improvement of the Convorgence of bolution by the Asymptotic Properties

of Hrpergeometric Functions

12, General Concepts - The significance of the general solutions cone

structed in Part Il of the present Report when viewed from the practical
point, rests in the fact thet thoy constitute an existance theorem,

It shows thet an irrotational isentropic fléw about a body can be ob-
tained from thes corresponding problem of an incompressible fluid, if the
free stream Mach number is not too high., However, the solution in the
form of a slowly convergent infinite seriss caonnot be conveniently used

to obtein numerical vrlues, as the labor of computation would be
prohibitive,
By examining the infinite series obtained in Part II, the

essential difference between the compressible flow solution and the
incompressible flow solution is seen to be associsted with the fact
that,while in incompressible flow solution the individual terms of the
series ars of the forms

g]V Cos 3 ?V colsyfr

At YV I

WV&’ 7 ?

in compressible flow solution the individual terms of the series are of

the forms
14 Cof))/& 4 505V3
9 Jv"r’) oy & ﬁ%v"") iy
If it were possitle to writs

-V

C}v Jvm) = [Q(q)]v ‘r %yn)z [CM)]

then trers would be no differsnce beiwsen the incompressible flow solution
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end the compressible flow solution except the "distortion of .the speed"
q by the new scale O . In fact, this possibility is realized under the
speciel condition of )=z-1 as shown by von Kérm;n (Ref. 1) and Tsien
(Fefs 9)e
For the case of isentropic flow with the generel exponent [
there is no such scale factor @. However, if v is sssumed to be
vory large, then there is such a function (0, at least to a first
approximetion., In other words, the leading term in the asymptotic
rgpresentations of 3&%) and -gp(ﬂ) does give the desired form,
Cn the other hsnd, the use of asymptotic representntion necessarily
impliss <an approximation. But this defect is not difficult
to remedy as the difforence between an exact hypergeometric function end
its asymptotic form can be added to the approximate solution as a cor=-
rection téerm . Since there are an infinite number of terms in the series
form of the solution and each gives a correction term, the correction
terms also constitute an infinite series. Therefore, the originsl
infinite series is now trensformed into a closed function plus another
infinite series of correction terms., At first sight, such a trsnsforma-
~tion seems unable to give a result thet will avoid the difficulty of
prohibitive computetional work. But aectually, due to the good epproxi-
mation given by the asymptotic representstion even for moderste values of
Y » the correction series converges very rapidly. A few terms seam
to be all that are necessary., Thus for all practicsel purposes, the
originel infinite series igs now converted into a closed function with
"speed distortion" plus a few correction terms. Ths fundsmentally
interesting point is thatv for the case of a general exponent ) , the
simple method of speed distortion will not pive an accurate enough solution
(Cfo ref. 8),
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The chenpe in tvpe of the differentisl enustion at thre sonic speed
nisc introduces » sinpulrrity in tre speed distortion function Q.
Howgver, bv using the correction terms, the affect of ths singularity
¢nan ba limited S0 B vory unrrow rangs in the neighborhoods of sonic
spead and no practical difficulty is experienced. This will be mede
clear bv the numericsl exnmplé giver in Part V of this Report.,

-

18, Asymptotic solutiuns of the Hypergeometric Zqustions

tet U and V)  be two new deperdsrt variatles defined by

- vz 5
Yeor= iF (ooF U (51

) -£

-y 2

The differentinl eguations (5.3) and (%.4) reduce respectively to

! ; B0
UV(’D) - [ Vl?(®)+ ,@(T’)] Uy('t) =0, (15.3)
Voo = [ Vemes 2]V =0, (18.4)
where = A-ftepridT _ _pTipTEay- (=T
gre) = 4t*(-1) Eﬁ\t) ¥T* (1-t)*

Both Bqs. (15.%) ard (13.4) involve a constant psremeter V which
is real and positive but otherwise arbitrery for any fixed comstent f§ .
In the intervel o £ T < | in wkich the flow tekes place, tle functions
9¢t) end fipt®) are finite =nd continuous except st the axtremities T = O
and T = 1. To avoid the repstition, let Eos. (15;6) and (1%.4) be re-

placed by

1. ’

Ua(,vn’ - [ Vlcf(’t')* ﬁ‘(ﬁ} Ux.ww); . (15:5)

where Ur,,v(‘c)z U,,W) when kel I and U_P,V\“lr- vvw) when «=-p . In the
intervel $<&T $§T‘3‘;"S ,S?o, 9¢t) is bounded from zero and is
positive. Horn (Ref. 17) showed that when )} is =2 large poSitive

number, & pair of solutiosns of the followinpg forms exist in the interval
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concerned ;
) Vi “f; -+ (c) £ f.1o) (1"9 6)
I A R e I} o
B 4 v
3 “VK -
U:‘,v\t)f\/ 2 [ LF“ + i.t};ﬁ + +—£—-;(:)+ R 4 'f):,t:,_."] , (1;"'7)
vV
where
< ./ [
Kie) = chz(‘c]d‘t ’ o TL 2p+| (13.8)

A constant in (13%.8) was loft out @5 it can be absorbed in the constmnt
factor in (13.6) and (15.7). This representation can be shown to bo
unique 50 long as V remsins greater than a large positive numbor N,
By substituting .U;ty‘t) and :TL‘f) in Zq. (14.5) and choosing

the coefficients §,,® (rz 1 and 2; and 5 = 1,2,3, ...) to make

the individual terms vonish, Eq. (13.8) reduces to

.." " n_. '/
2 K +1.5+l t K -\Fl‘y&*l - ﬁx'f’.,s - ‘)L;I,s : (1509)

2w , + K”f‘ = - + " - .,
2,541 2) 4+t - y"'f-l»ﬁ fﬂnﬁ ) S:O:l)7-1~~ (1,’“‘010)

where j‘,,,('t)'-'fz,u“):jf’_#o The coefficients ‘f”(t) are then piven suce
cossively by a first order ordinary differentisl ecuntion snd their
determination douvs not involve aAny difficultv. The problem is thus
formally sclved.

Obvinusly, the solution is of the exponentinl type when.{it) is
positive in the renge concerned and of an oscillatory type when @(c) is
nogative. Now in the interval 8¢t ¢t-% , 8§79 where ¥ie) Z 0
when T £

Eé:T » both types of solution exist. It is evident thst in

the neighborhood of ’t=;#ﬁ a change of choracter of the solutions must

t ske plnce;Abuttthe menner in which the trsnsition occurs cennot te

deducsad from BEas. (1%.6) and (14.7) due to the frilure of the repre-
I

sentrtion of the-solutions in the neighborhood T = T . This is

closely relsted £o0 the Stokes vhenomsnon.,
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The method w98 extended b Jeffravs (Ref., 18) to include the case
where @(t) has a simple root in en interval under cénsideration and can
be spplied suitebly to the first order of approximation. The gensral
problem has been treated by Lenger (Fef, 19) in e series of papers,
considering both the case where V and T are real and that where ¥
and T are complex. Attention wa: especially given to the
Stokes phenomenon and » law of connectién of the solution valid on each
side of the critical point was explicitly stated. 1In the present case,
however, only the first approximation is used and Jeffrey's method is
sdooted for convenience.

It is seen from Eas. (13.6) and (15.7) that the first approxi=-
mation depends only on @(thand the effect of futt) is felt only by the
higher order terms. Hencs, for the first approximation only, the Eq.
(13.,5) can be written as

U:"t) - Vz?m U,y =0, (13.11)
‘where Uﬂw =:L[P” = |/, . Thus, when y »§N , the dominant terms

of the asymptotic solutions are

. LYK
U;)m ~ ¢* & [ 1+ O('{‘/‘)] [ (18.12)
|
12 .1 -VK , 0 <X L5
U ~ cf" rs [ |+ O(T)] . 2! (15.13)

Here Q<) , in each cnse, denotes the fact that the term is unie-
v

formly of the ordsr ﬁ} when vV is sufficiently large in an interval
| .

S¢tT £ :TP—;T-% , $yo and is & function of y o
On the other hand; in the intervel i‘é—,“"B £z £(-3 s Where

P) <o and K is 8 pure imaginrery quantity 1w where W is real, the
dominant terms of the asymptotic solutions must be a linear combinsetion
of (13.6) and (13.7) and must be of the forms:

Uy ~ %/; Coo (YW+E,) | (13,14)
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12} ¢ . Lo« )
Uy'er ~ o pon LY0r &) o gue=cl (1sas)

where c; » €, 8nd &, are constants to be determined.

The question of determination of thess constants is actuslly the
samo as that of determining ths mode of continuation of the asymptotic
representation of the solutions in the range ;{h—l+35té -8 . This
can be done, according to Jeffreys, by considering the solutions valid
in the neighborhood of fc=;'1;;:, . Lot = rc-zpﬂ . When g is
sufficiently small end Y is lerge, Eq. (13.11) can be written

aporoximately eas
7 2
I %) + Y gor g Uyg) =0 (13,16)
providesd :£~$2 ~ |} » This i4 known as Stokes equation., The inde=

n! Qo)

pendsnt intsgrals are

3 yv i e . - - o
THO 3 H;;(S) o with 1= % )f’ (18.17)

Consider as two independent solutions the following linear combinstions:

U = T H, 0+ T Ry (18.18)

4L L
U‘:‘g)z 7 H;:«s'r 3 H};’ts) : (13.19)
As H)ékg) and ﬁz)(g) are analytic functions in the whole <
plana, this immedintely provides a means of identifving the asvmptotic
forms that represent the same function,
Suppose first that for aa; ? =0 > the solutions are given
in Bg. (13.18) and (13.19). The same solutions for which A3 T and

M?‘S 3%1[' are

, L *ﬂl- 1) 31"- __* 31!4.

Uy gy = 3 e Hytse?) + ‘f 2 H,(se ), (15,20)
liJ P 312!4 Ji 1‘: ) 3}3

U, ‘7) = 3 H/ {32*) - T ez H./3 (€7 (13.21)
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Now ) 'E—‘ . L (z)

= 1 % _ E EE
H%(—ia.z ) = - er Hy Uger)

pii o
H/ je* e L =2 sl H'ISQIJ+Q3 H/(:Sq,f’-) ;
and when 4 is large and - WZW\}je'Ezzqr » bhe dominant tsrms of
(n v 2] T‘_g'
the asymptotic expansions of Hy (jef%) and I%gé( $e*) are
[E ‘(15-2 )
H, 1e%) ~ | 2 {l-&'O(‘l’)?}
5 wg &
1'{
L ’ikXQT = %E)
H/l‘ge’)m-%i X,H_Ok)lj'

By substituting in Egs. (13.20) and (13.21) and neglecting the term of
lower order in 4 , one obtains by expanding at the same tims Bq.

(13018) and (13019):

s _ «}t— - 5 s o
2-34cw(-_{-:"1';)——'9' ‘; e (13.22)

'JL'} . A <

3 w(g—f’-?f)ag",e, . (13.23)

Here the arrow is used to indicate the trarsition of the asymptotic

represontation of the same function from the left hend to the right

-4 L
hand. member. For small -5 » ‘5"2 60‘* and |~ -V ; (13,14) and
(13.15) finally become

U")m o~ _‘.F/ wo (v - Ty |+O(*,':)}- (13.24)
—L'LTAl
Uy ) ~ 7;74 o (Yot Iy o O&-#)}. (13.25)

with ¢=2 , ¢y=-} and €, =-2 o+ Under the hypothesis made
above, the pair of expressions (13.12), (13.24) and (13.13), (13.25)
actually represent respectively the dominant terms of the two asymptotic
expansions of the solutions Uy () and U:)l‘r) for a V which

mey be eny positive but large number,
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14. The Asymptotic Representation of F( av, by; ¢, ; -© ) and F(a#p.bs;c « )

The dominant terms of the asymptotic expansion of Lff%v)

{2} .
and U, (v} are given respectively by (13.12), (13.24) and {(13.13),
(13.25). By evsaluating the simple integrals in (13.12) end (13.24),

0! 2
the explicit expresions for the first approximetion of U}(t) and Uan)

are
) ~YR=1) v+l
U ) ~o \7_{3) 2 %’H»U =) )] Tz T*n) (14.1)
-
N e % " , oLt L3 ¥l
U, t) ~ ZP) 2 { H-'L: < * T‘r"‘) . (14.2)
o CRD
U, ) o~ l{w(. % T o (Y - T, (14.3)
dt-i t
S
\ 2p+1
) - 4 L
Uy~ {Hm28 1% o (vwr §) (14.4)
x [« (- 't:)y"* (- ey ]‘"
where T hey= . W = [a’+l (14.5)

(-t Y + (1-2)*

-1
e
W -8 ‘tam m -

The values of the function W(t) are given in Pig, 4 together with
|
the function /ubr) » defined by oo M = 7%‘ .
In the respective ranges of validity, each pair of expressions differs

from the exact solution only by a constant factor which can bs determined

to satisfy the normalization conditions (3.6) ‘and (%.12). By

substituting Eq. (14.1) inte Eq. (13.1), these were found to be
o= | xy

Coy = 5 2p) = ARt
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Thus, the exprassions for tle desired asymdtotic forms, when y >y ,

arg for the intorval o % T < S »

2|a+|
v

;,,W) ~ fi=y Ty, (14.6)
-y

4y0) ~ f© Tz) (14.7)

srd by G 2ee T
where -fn,) = ._(.‘_2137 5 Ty = 2=, [x (-2 ("“)ﬂ . (14.8)
(-4 )™ 014 (S, (- Byt

For the interval. A ¢ } s they are

, {14.9)
JZ;M) ~~ T) Tiv) ,m(vw—%) ,
! =V T (14.10)
gyh) ~1+(¢)T(1) m(vw«».ﬁ) ; o]
where ok "
- 2 0 4
Joy = 2 22T Tgy= 2 B2 L (14.11)
(K= ) ISEFS) /zpt

The values of Tit) are given Fig. 6 as @ function of © together with the
local Mach number M.
Similarly, as from (13.11) Uyred ~ ¥, 1) » corresponding

expressions for F(. GytpibrpCy; T ) are:

-~ |4
ey ~ 9y Tw) (14.12)
o2 T 4L—
~ v 2pri :
gt} ~ gre) T (wy (14,13)
8., L
= -—
whera ?h’:) = (-c)* “ ; (14.14)
(1-22)7»

RESTRICIED
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~

ond ‘ 4
5},%) ~ 7«1) Tr) o (Yw-F), (14.15)
-z—l—:"' LT <& l
N( L It) g (Yw+ M P
4,9 ~ Zi) T we =) (14.16)
-8y
_ (i-t)2
where Jley = & Y | (14,17)

Hore  f tt) denotes invariably the first integral ¥( ay,by; ey;T )

while 4§, 1t) , when multiplied by i“ s denotes the second inte=

gral 'FV vt) , defined by (8:.1%) when V is not en integer or

by (3.15) when ¥ is an integer, since the asymptotic expansions are

valid for both integral snd nondntegral velues of V¥ provided y >N
In the domains of valsidity, the asymptotic expansions mey be

differontinted with respect to T with the seme order of approx=

imation. Hence, for V> A , it cen be shown thet for 9514—21(;;,

o~ Y
L~ Rl Tey $it ol )’] (14,18)
~ -y n
g, ) ~ fie) T 1) 51 1+ 0 ,,)} ' (14.19)
where x> -L % Loy ot
fiv) = 2 (- TYF (-2 [ e a0 ] (14.20)

and ‘}or - <1 4
o (14.21)
%,,(f) o~ hie) Tr) we | VN"/"%){H‘O(-L‘)}

7 ) ~ A -f'fm) to {(Ywtpw+Z) 2 1+0(5)08 (14.22)
‘%V;I ?b /’L

-4
where 'ﬁ,h;) = Y- 1.)7‘T (1~ 1)“ (zpt)l , /M-('t).. qu

’P1 ' (14,23)

The values of the functions 7\‘0) and ‘ﬁ."@) ere given in Fig. 6.
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65,
It is intsresting to note that when )= -| the constant <«
vanishes and onlw the exuonential type of solutions exist . In the
cnss of V@h) the solution is exact, namely for = - %:
14
; = —
& [ ,+ﬁ:3,1;1] ’ (14.24)

~y

—_ 2
Fy) = [ 1+ m} , (14.25)

of which the first is in agreement with tho rosult obtained by Tsien

(Ref.9), while for wa) the solutions which are not exazci reduce to

e 3 yg_ , Y
o~ R S L ,
F, <) [Hi}:,} [ —~ m%%} hir o)y (14.26)
Yy z N
-~ 3 2 -y
?va —~ &H’%}] I‘WVL] 2\\* O(.JJ)} (14.27)

This may be the cause that destroys the analogy between the
coordinates of the corresponding compressible and the incompressible
flows.
For 7 =]405end y=mn++ ,nbeing a positive integer the three
R - - g N~ -~
groups of functions Jyh) ;Eyw), F, ) .:T"_Vn:) and :7;”\1.) , ,J'_V”(t)
together with their asymptotic expressions were onlculsted for T
varying from o to o5 and m from 0 to |0 , The rasults are
presented in the Tables 1 - 12. The behnaviour of the approximation
is i1lustrated in Figs. 7 = 12, It can be observed thet the degree of
approximation of the functions increoeses, on the one hand, with V
for any fizxed T o On the other hand, for eny fixed n, the spproxe
]

imation becomes worse ss T sapproaches the critical point T = pye 5
t

corresponding to the local sonic spsed.. On the whole, if the
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15. Transformation of the Functiaan(h!;’D ) : Branch-point of order 1

The funat‘anAMﬁvV'}Tf} faor a Plow thet possesses a branch=point

€
o
}....l
Q
R
ot
Q
(=
K
jav]
ot
R
Q
b
v

as can be seen, ara not in gensral suitsble for practi

The difficulty is two-fold: TFirst, the series involves infinitsly many

hvpergeometric functions which thamselves ars in turn defined as

dacressaes with an inerease of tha parameter J. This means that it is
very aifficult to compute the value of the leter terms of the series
for pv&uf;'t Jo Secondly, the convergence of the powsr series dsfining
the function pV%uf;ﬂﬂ ) itself 1s, es expected, very slow in the
neighborhood of the singularity. To increase the convergence onsg
resorts to the following method:

Observe that the corresponding function for the incompressible

flow thet hes the seme character of singularity is

)

‘1&2(“’) o ;é; /A4~ VV“- P fw ) < U

2
o
jve
2]
o
’.J!

s absclutely and uniformly convergent in any closed domein in

‘ G}
fw i< U . Now, if in (8.5) -ga}t) is replaced by

(r

= i) R
g, 163 * m,tm , efT&o=  (15.1)

57} R —— N "
whare tLt)E'Tﬁaﬂﬂn)’ as by hyvpothssis, o<gtl<<2ﬁ*‘ ; then it is

VAR P
claar LhLRY

(¢} ey " )
W (WiT) = i > A 1EW) 4 H:»viéU (15.2)



=3
1

which is also ﬂﬁsolutely and uniformly convargeﬁt in ths scme domeinp
}@LLW) and consecuently (16.2) will be denoted by iz )VVLt) In
doing this, however, one violetes the restriction thet (15.1) holds
only when n is greater then a large number N. The error can be removed
by adding and subtracting from (8.4) the qurntity given in (15.2); then

it follows immediately thest

“’ ; () ( z
ey = Wowin + Witwie) sl
' Z fit) [ y
W, twi<) p W, (1w) (15.4)

‘)
Wa twi)

! (r) "
) = —.
G‘ 3;}1) ;ﬁﬁ'tkv)

whare .

1

2 n
2y Aw Gom W, fwi<lU (15.5)
Mo

with

Fere n is a positive integer. The function Mﬂw;qis then repressnted

[y}
by the sum of two functions VVJN;t) which is of closed form and W,(wid

which is the difference of two convergent power series and hence is also
convergent, But, according to the theory of asymptotic expansion, Gu\t)
tends to zero as n epprosches to infiﬁity. In fect, G0 is of order
7? " theréfore, tle convergeﬁce of LV(w;t) is incressed by the order
of M . This actunslly is the gist of the whole proﬁlem.

As the form of the reprasentation of the hypergeometric function
given in Eg. (15.1) is valid for all T in o= 1‘43{;‘;‘ " W(M;m} given
by Ta. {15.4) holds sutomatically even outside the circle jwl=U . For
this resason, Pv;letj should be identicel in form with that derived

from Ba. (9.4). That this is the cnse can bs seen from the following

ainsiderstion. For, in addition to %q. (15.1), if it is essumed thet

Ll

gvkrc} = .f\‘\:)‘r () (15.6)
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: _ - - ];—4*—5. , (15.7)
zy"q) =4 g_v('tl) T:—‘E;-—- -

then Hge (9.9) and {9.10) yield, by Ig. (9,11} and (9.12).

+ i ¥

~. Bn ot Cai 4 ;
G B e = m= " 15.8
B ‘ T("Cl) ) Cw »5-(1:0 T(‘C{) = (16 )
By using thess sets of a}prrx:,mﬂte cosfficients and replacing & )
and %V(c) by their respective asymptotic expression, one obtainsg

the following relrstion with the aid of Eg. (9.3)

{e) 8 .
W (wit) = W (wjt) + W‘()vu ) | (15.9)

1

whaers

(o)
(i) ) ; h
W (wit) = Z J\‘ Gv {T)w + G— n:)w % (16.10)
* * =
In this case the coefficients B” and C. as well 2= the functions
55;(1') and g,,WJ used in deriving W(u;‘c) are approximste.

«) ) 3
Hence, if both are corrected GV, (c) and Gy (T) should be

of the forms

!

Gv )

1l

¥
AP F ) + fmT(’c)A?(t) , (16.11)

. |
G = Alu o+ &= Teey 8 g0 )

where

* o LA v
b = B frz)T‘ W, AfwEfe-feTe; (151
* * v ‘
ACw = Cun- jcx Tm  adw=do-foTe,
s .
Here the differences A Ba.. and A C.  depend upon the con-

\

dition at infinity for any sets of constants B, and Cw while those
of A?Fh:) and A% ft) are functions of € only and, for this reason,

can be tsbulsted once for all. It can be alsc shown thet the order




supsrseript ( {) denotes either (i) or (o), end if the coefficients
ars real the stream function for t subsonic flow is according to

(B.6), given by

V.14.9) = fi“—‘}/“‘iﬁ) sgnds= (25,13}

20+
() 2 * o,
Y, (4312 - >, As Gu) G o -, 9<U  (15.14)
h=po
snd e U2 q<&V
o0
(0 . w v 2y -V
Vs 14.81% 2, [ Gowq + G, ®@q Jewvs  (15.15)
h=0
with 9 restricted by o€ 9 < am « This result is striking in
that for =T, » 1V 4= WP(U 9) as G,‘t)=0, i.e., the function
Y (q.9) represgnts the correct singulerity of the exact function,

(=)
¥ar swey from the singulsrity the term Vi(q.ﬁj greduelly comes into

{ =5
prominance especially nesr = EE:T but the convergence there is
already so rapid thet a small numbar of terms is snough to sscure 2 high

v

accurscy in (4.8] =

On the other hund, if in (9.4) ?,,t‘c) nd gytt) are replaced

o v P
F,1) 2 fio) T e) o (Yw-TF) (15,16)

-
g 2) = L fe) T o (Yo+rE)

e
(a1
»

@D
s

whar -fl-r_) G T(—f,) snd Wte) are given in (14.11) and (14.5),
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end substituting as bsfore in Bq. (9.4), we are leAd again to the sum of

(o)

M/,(WIT—J and  Waitwi<) , where

W

z 2 i i %_B,"H,we )Y+ C,,t«m’e:“)"}] )

- W v i2) -V e o o |
Wl(b\l’;‘c): L > { Gyt w + G, (=)W } » ot .
MnM=0o

According to Bg. (8.3), Wl(lﬂ;'t) can alsc be summed:

P
[ =]
on
°

b
0
"

e i nt —we
(wie)= + 1= [ 22 W twe™ )« 2 Wowe )} :

* fi

Furthermore, from (14.11) it can be seen thet |tw |z AU , A being 2

2, ;
= ALY L5 : (18.19)

4P gy T
which is a functisn of the Msch number and the characteristic constent

of tha gas but indspendent of the shepe of ths bound-rye. The
& P £ :
As & conseacusncs, the furnctions constituting the stream function for
d ] (4

V(q.8) = 1% [ WL gew) + Wot3-wyt Figewd- Flo-)l ,  (1£.20)
i
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whers @, =nd ﬂé are the velocity potential and the straam function
respsctively of the corresponding in-compressible flow. The functions

it (2) : ! ;
Gyle) and G (’C) ars the seme as defined in (15.11) except %hat A{ﬂ('t)

and A‘%yh) 8re now g‘“en by

) ¥ fu) " ™ L1BsEe
AT, 0= F,0 F Twvudy | afm= G- T Twueg) (160280
) : - = (1) ;‘ -
Unlike the previous calculations, (yt) in (15.21) is not

fo

wf vV

of the order of Vv due to the pressnce of 1/2 in front of f%q-TCw(wd-g)o
Tris, howsver, does not offer = ssrious objection &s ths ssrisess in

whieh iread = 3%k d ing 1 th

which it aopesars already convergss with Ltq) » T being less than
unity.

It is worth noting, moreover, thst in the hyperbolic domain

ot
Lo o
W

function {9,9) depends, sside frorm =a factor {¢r) , only on the two
independent families of characteristics defined by

-g:_; S+w ’ /-7.: 9—3) ? {\15524}

This result is most striking es it shows that the mein part of ths

solution s=tisfies the simple wave equation and thus clearly

demonstrates its hyparbolic character. %With both the incompressible

L

streern function end the incompressible potentiel function
(=} & : b ol

| &

appearing in the so 1ut1‘h it is impossible to esteblish = simple
2P B 3 i F

elation between the incompr ressible streasm lines and the compressible

E

et

stream lines. 8ince such = simple reletion is the foundetion of the
soc-called spsed correction formula for & guick estimation of wveloecity
distribution in compressible flow from thet of incompressible flow

over ths same body, this idea cannot be extended to supersonic regions,
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hend, this also indicates thst althouph the differentinl

ecuntion for VY (q.9) is hypsrboiic in the supersonic range, it csnnot

4
ct
=y
6]

ba reduced to the simpls wave sgurtion by 2 mere distortion o

region near sonic velocity. However, in the csse of pure supsrsonic
- (OJ . R 1

fiow, ‘Vé (9.9) might be smali; then ﬁq(q‘e) alone mey be ussd es &
satisfactory approximation. Of courss, whan ))z‘—[ ; ther , as in

th2 corresponding ¢=se in subsonic flow, the exact differentiol

gaustion for ths streem function can be reduced to the simgls weve

ecustion. In this cese, the appropriate form for the spesd function

. i

Wi = -Faw |Tg= (18.25)
el

1 denotes the conditions 2t the point of tsngency
of the trus isentrocic curve rnd the aporoximating tengent. This
agroes with the result obtained by b. Coburn (Ref, 20).

16. <Jontinustion: Logarithmic Sinpulsrity

In the csse of the logarithmic sing

&

f
ularity the functiocn VVlwqr)

was broken up into two parts of which only the one thet characterizes

ot

he singulerity was given in Eq. (10.8) =and (10.6). As an exemple,
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ated by the same
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method. Lf the same appreoximation is introduced as in Eg. {(15.1)

,11) end {10.12)
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A == L — $ 40elk /
" Y jti’ﬂ) e " ‘f'l'fq) /
with .B§?H3:%W s¢ chosen thet the form of Egs (15.13) is sgsein preserved.
iith thess coafficients and if one writes for the function inside the
gircle Cj:U i
Vig.0)= W19.2) + V¥, (9,8)
Zq. (10.E) reducss to the sum of
o e |
(9,9) = fv) (t9,9 PR TE (16,2}
M q ‘}(‘Lf) .\{[ q ) ) I(Jﬁ-‘ /
K8 e i =
V'@s)= 5 LG (LY ewns , qev (16.3)
=1
where
- A e
Guitl = Fo0) AG ey + “?w:‘)_ (16.4)
1) Ty
with
[ = g -— ‘g'ﬂ"‘r) —, =n * 3y
Ag‘,“ ’E\'— JM(T)B{lT)TL'D) ] Ag \T |\ _}1 ) —_F(T')Th:f) ” \Lbaf},ﬂ
l
Similsriy, in the case of Ec. (10.6) it reduces to
Jree) e 1)
Vq.9) = Y, 19.9) + ¥, "(q.5)
. i = e - ~(w -
Hers '\H(Q‘S) is egnin the same as (16.2/) while 1}/2 (9,9) is
> (o) [ d Pa {1,019 i ey 8
8} = e - g —1CosN (.53
‘\Vz (q.9) 24 o= E - R Z G U> SRV, 8.5,
T
where ~lo) _ ~ - ) .
G ) = gww).ﬂ};lr,‘) T fa) T, Aqn(f) ; {(16.7)
: J {t,) ™
with Q? Lq) - e Dl o g TlTI) A (T): ( _ -h
" f2e)  fimy §a=1=§ foTa) . (16.8)
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Uniike the previous casa, V19.9) = ¥,(9.:8) when end only when
¢, Lends to infinity. ns to {16.2), however, the singul-rity of

—L
<o
e
o
@
=
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ot
[€¢]
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=
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ran
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Goe) = 140 Tioy o (dwe Z)

e

s substituted for Q»L:) » it can similerly be stown that

o~ _g n - = o s
(q,0) = fsz;)}[ W, (9+w)+ F, (0-w) - Dlo+w) + @3~w)] o (18.9)
‘ | g-w zo
~ T e -n
B we dt 1 AR ¥ G .-
2 99270 {U—zf-;c— + 27 T egh w)+“Z:( Su(esne,  (16.10)

whera \,(3%tw) and ' $,(62W) are defined anslogouslv to (15.22) and
X 19)
A@“\c) in wtt) 1is now given by

Agjwh:) = @ni’cj = -!7-_{11:) '"]-’c)::) Cod (nw*-%) ) (18.11) )
This seems to indicate thst the results obtasined so far for Wg{q_s)
gre quite general: It may differ for different cssss;, at most, by =
conatant factor. Ths general property, however, is not shsared by
‘V{H.%J whose chsracter changes radicelly with the nature of ths

singulsrity end the shaps of the boundary . Hence its importance

e
3

ot
o

16 present problem is evidsent.

17. The Uoordincte Functions x(4:® ) and y(9.9 )

Whenever ths function ’%(ﬂ.%} for & boundary problem is determined,
tha coordinﬂte functions x(q.e) and g(q‘a) cen be celculated
sccording to Zgs. {1l.2) and (11.4). Suppose, for instsfce, ¢ boundsry
45 assigned with the property thst the function Alw;it) is truly |

escribed by (8.7) end (8.15) of which the resl pert j(lﬁ-ﬂL defined
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'}‘(q.e):z . wm)ﬂwmﬁ ; a9z U (i7.1
=0
vhere the constent i in (8.7} eore agein reel and are regsrded

2z known and 5[:){1 )= AL /;—w‘t‘) :

iniformly convergent in q<V.,

and (11.4), there results:

o 5 =iy) el e
x(39) = > WAWEC“ 9 ccs(*n.—”s’ﬁtZ“A ? )ﬁc::mSch) (17.2)
=i ".—" \ 4
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oo

~ - n-l =
?(q‘s):-% 5[ ﬂm\n-nlﬁ Ptz A 11.1'1 :%)ﬂ“wnsma;‘(lr‘“b)

2w (Antptl  b2p4l 5 Ct 15 T)
where 3,» | 2y = Fhearp e i
1 : 3 -
Flaw L ou 5 em; 1) (17.4)
It is interestinrg to note that the stsgnation point which corresponds
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H A= ZA ci T T
M| g
by introducing the approximetisn given by Zgs. (14.12) and (14.18),
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by defining
4 s L
X(4.9)=  x,(4,8) + x;_)Lq‘e) . (17.5)
_ 3+ o

: s By il e IS sy
it can be shown by the ssme menner thaet

x,(9.9) = £2 4oy X,(19.9)- BT ‘?"’ £,(19,9)Co09 (17.7)

flt\

$i19:8) = ]cm’fvc)’Jqu %%Q,Lfﬁ.ﬁ)wgl i)

and = "
{q 8y = Zn G“h:)q Dol ﬁtZuA G, D ]eondeasd (17,5)
n=
< U
) tv) 9
\él(?la) 'VLA G‘M('C) %M!ﬂ l)%’ PIZI“A G‘M ﬁm% Me ‘:":01:}
=i
vhere
Gulx) = Fliwafls batp iTn el 201 ix) {17:11)
Bl oo bw o  Cu i) <) ' ‘
= Bl Ela b b6t T) At (aay
G"‘-l( n+| g O SR s G _’T‘) i’t,)-t !
.09, 9) o0 . (17.13)
% . o, EETEA,
On the other hand, the expressisn for }UT.%) valid outsids the
eircle of convergence is
& ~-ﬁ = \4 "*’ Py "V P N\
%(1‘6) - 2 [B‘H ?v{t) Ci T otw @vﬁt]ﬂ ]WV& J \iT7.14)
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he functions ¥(9.9) and 4(9,9) corresponding to (17.14) cen bs
9 9 4

found similarly These are
o { ~n V—" o —¥={
Aig.e) = Z | vB.. F,@ 9 i v-09+¥ (o 40 9 Ada ven) 5‘&
= - . {1715 )
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Hore the constants B, and Cn satisfy the relations (G.14)}
end (9.15) ®mnd can be reduced to
S -.\/ ~ E V
T~ ¥ g2 A v o1
3 = = Ty Cr = T T (1) (F7.1%)
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provided the semo approximation is made as in (18.8). PFurthermore,

o - y-i ~ -V~
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symptotic forms, wviz.
T = f g’: ey = {Ll‘t)‘r":‘t) - (u——-'
F )= THY g T e ) 28+
n in like manner (17.15) and (17.16) c2n be transformad and can

sach be represented by ths sum of two functions X,{4.8) ,» 4,§.8) , =and

i i G HEE Hha . 2 goas a5
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o v R ot .
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(15.12).
5 iarly, if the hvpergeometric functions lnvolved ir ths higl
réer torms are substituted by
T 2 ¥ w- T ~1=f‘,c)vc w- M-
T’Trvtt)-:' 3‘1)7- m(y ﬂ) ) 55;/111)— T W(Y /“ T«r').
0, e iy I o =+ 'V(_,, Lyw*)&*ﬂ)‘
g0 = L30T comvwr Ly, g, [O= 70T %)
and br resolving the products of the trigonometric functions 1nto sums,
“cr Anctanedd

2 aam V=118 Lo (Y -T) = aam [w-;)(sm)ﬂw-%)},, ME(,,_O(S_Q)- W_g)]

L 4t Y418 Lo (ywt ) = Ao [ (V41 (8+@) - (0-T0] & Avn [Lvwdd-wys kw-gjl :

o BrEop seats ekl miows soln ko G g l
7 L3 rredluvld £% 1

R 1(3*\

e
&l
w
+3
i
4
L]
3
L=d

)




X,19,9) —} [ Xotavw)+ X t0- w)fcos (T -w) - [Ykﬂw -Yie- o] gg_w)}

o :

1’& f) i W) - - ¥
% W{[ons«w)+ﬂa(9-wl]m(ﬂ*%) {@.}3 w)-@,9 “’)}M(%w)} cos9

Y o
(LFs28)

Y9 =t %‘j—’, 1 Yatena, 9~w)1un{§§-w)+[Lot%*w&-iuk%-w)]w{%-wl}

= g %‘%‘-’) Sl[noxs:myme,m)]m(mg)-[@n«mw!—@o@w)]m:%-w}m 3

49
] 1)
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Part 1V

o

Criteria for the Upper Critical ilech Number

18, Limiting Line and the Breskdown of Isentropic Flow

The solutions constructed in the previous sections ere known
to be regular in the hodograph plane except at & few singular points,
It is also known that for the limiting case of infinite sonie speed,
or By i o9 , the solution will give the desired flow pattern
in the physical pléene. ﬁhén the sonic speed is finite or when the
¥ech muaber of the free steam 1s different from zero, one has no

1

the physical plane

gusrantee as to the behavior of the solution in
except the probzble continuity of the flow pattern with respect to the
free stream Mach number. It is found that such continuity in the flow

o3

pattern actually exists up to & certain Mach number. In other words, the
pettern of the compressible flow is only slightly different from thet
of the incompressible flow up to a certain Mach number &t which the
so=-called limiting lines appear. At the limiting line, the
acceleration of the flow 1s infinite and the flow is reversed. 1t

was shown by Tollmein (Ref. 12) and Tsien (Ref. 2) that, without
congidering visgosity, the flow cennot be continued scross the
limiting lines,and & forbldden region is crezfed in the space where

no fluid canm enter., In othér words, continuity of flow pattern
exists up to a critical Mach number beyond which no isentropie flow is
chslblﬁ with the imposed physical boundary conditions.

The breakdown of isentropic flow,or the compressibility burble, can

be effected in two ways. First of all, the asccelerzation in the
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neighborhood of the limiting line is very lerge. Thus e&ch one of the
following factors gives apprecizble altsratisns in the dynamic relations:
a) Viscous stress due to ordinery viscosity of the fluid (Ref. 21)3
b) Stress due to expansion or compression of the fluid, or viscous
stress due to the second viscosity coefficient (Ref. 22);
¢) Smnall but appreclable relaxztion time required for the
vibrationel modes of the molecules to reach equibibrium staie
{Ref. 23);
d) Heet conduction from fluid element to fluid element.
Secondly, the isentropie flow can elso bresk down through the appearénce
of g éhock waves. The breakdown of igentropic flow is associsted with
the introduction of vorticity to the flow. Thus the flow becomes rotational
with pert of the mechanical energy of the fluld converted into heat energy.
211 these factors tend to increase the entropy of the fluid and finally to
increese the drag of the body. Thus the criticel Mach number so defined
is of great physical importance tq the aerodynamic charscteristics of the
body concerned., o
0f course, the isentropic flow might break down due to the instability
of flow fluid with the final appearance of shock waves. Furthermom, the
action of boundar* layer and possible econdensation of one component of the
fluid* on the flow might also lead to the premsture destruction of the
iséntropic flow. On the other hand, shock wavescan appear only in
supersonic flow; thus, if the speed of the fluid is everjwhere subsonie,

- T 1 =

there is no danger of %he compressibility burble., Hence the free siream Mech

* 5 —_ x ’
The phencrmanon of condensation shocks due to water vapor in the air flow
around sn airfoil was first brough to the attention of the authors by Kate

Liepmenn who observed them in her wind-tunnel experiments.



number for the first sopesrence of sonic speed in the field is called
the "lower criticsl Mach number™ while the free stream Mach number for
the first appeesrance of limiting lines is called the Mupper critical
Mach number®. (Ref. 2) The latter is always higher than the former
due to the fact that limiting lines appesr only in supersonic flow.
The actual critical Mach number for the compressibility burble must
lie between these two limits and depends, among other parameters, upon
the Reynold's number of ihe flow.

19. The Condition for the Limitingz Line.

At the limiting hodogreph, or the hodograph of the limiting line,

it was shown (Ref. 1, 2, 11 end 12) thet

S o 1 BT s otk s '
em =B -l e

Since the fector before the term ‘uél is positive for supersonic
regions only, ¢ <9, where f#0 , the limiting line cen appear only when
the local speed exceeds that of sound. It should be noted that the

s -

venishing of the Jacobian is the condition for the fzilure of the

e

10d0LTE

e

k

1 method,&s the trensformetion (2.1) end (2.2) would no long-
er be one-to-one and coﬁtinucuse Thus, the appearznce of the limiting
linesg is tﬁen the physical counterpart of the singularity of the trans-
foramation. :

As ”W@ﬁ%} is known, Eg. (19.1)defines two lines in the hodograph

planes

-4 :
Q’Er 1- T ] .\yt_ ’\!_/a =0 (19.2)

L a¥t -l

' !
2'1:[ = ]1’\Vt+ Y, =0, 'czi—g;;l (19.3)

LT |
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and & characteristic curve belonging to either family heve 2 common
tengent {Fef. 1). The problem can then be

property: tUhe necessary &nd suffieient condition for the existence

of & limiting line is that there exists & solubtion between the two

gimul teneous equations

l
o

(19.4)

2t [ L2 - Y
v ' (19.5)

i
o

I
o

et
or . l”\:[ *11‘1] ’\K + '\Ve

v =0 ; | (19.7)

{19.6)

where Y(t,9) is & definite branch associsted with the largest possible
T for & given boundary sncd a free stream Mach number. The zero stream

line 1s chosen as it generally gives the highest velocity end is the pleace

the ezrliest gppesrance of the limiting line.

Generally, these equations msy not possess & solution for & known

el

function f(r,9) when the paraneter My, is assigned. This mesns that
there will be a8 system of boundaries corresponding to & sequence of

4

values of M,, for which the limiting line does not oeccur. The first

be defined as the upper critical MaclL number and the corresvonding boundary

g
w
T

he criticel boundary.

in generel, difficult owing

to the fact that 'ﬂ&;&; is, in most casss, represented by an infinite series.

EESTRICTED
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However, if the stream lines ere deterained in the hodograph plans

Hy

cal test

pte

for the calculztion of the shape of the body, & simple greph

{11}

of whether there is & point of tangency between the zero streem line
and the characteristic cen be easily mede. On the other hend, if the
form .(15.30) and (15.21), for instance, is used, en approximste
analytic solution can be obtained without involving much labor.

20, The Approximste Determination of the Upper Critical Maech Number,

5 N e
As can be seen from Ssction 15, the lmportance of 7V, (z,9)
relative 1o ﬁK (t. 8) will decrease zs < rvecedes from the
critical circle 't=iizf towards the supersoniec region. For the
a

first appearence of the limitin

ne

line, T is elmost elways high,

especially when the boundary is & slender closed body. Let this be

the case, then 'qg?tﬁ) can be neglected in comparison with \k(m.%)

and a great simplification is possible. The zero stream line cen then

be represented apj
Wito)y s Ylrs)=o |

Furthermore, & simple reduction shiows thet the two peirs of equations,

(19.4), (19.5) and (19.6), (19.7) reduce respectively to
Bl + Lp=o (20.1)

5) + Wigr= 20 - U (20.2)

or

&,05) + Wig)=o - (20.3)

3. - W= B+ (20.4)

wiers 5 snd M ere the characterisiic paremeters defined in

i



Eq. {15.24). This reduction is msde possible by the fact that +(T)
never vanishes in the interval th 4 T <

Whenever the stream function VY and the potentisal function A
of the incompressible flow are given,.the functions V¥, and 3,
cen be eesily obteined by substituting AU for q according to
Eq. (15.22). Then, since A decreases with an increase in the free
stream Mach number M, as shown by Table 13 end Fig. 9, the upper
criticzl Mach number will bve given by the lergest vslue of N\ that
gives a solution either of the Egs. (20.1) and (20.2) or the Egs.
(20,3) and (20.4). An enslyticel solution can be made as the
functions W, snd P. are quite simple.

There is, however, &n interesting direct geometriecal inter-
pretation of these sets of equations in the physical plane of the
incompressible flow as shown by Fig. 10. According to Eq. (15.22),
the functions V. and ®, sre the stream function V; and the potential
function ¢, st the constant value of the speed AU . OSince 7?\ ) SR
for the body shown in Fig. 14, the constent speed A curve g\ forns a
loop symmetrical with respect to the y-axis. The variables are really
the angle of inclination of the incompressible velocity vector.r Along
the constent speed curve CX from the point S5 to P, the angle of
inclinetion of the veloeity vector is monotonieslly decressing. There-
fore, the parameter of the angle of inclinatioﬁ can be replaced by the
distances =along the curﬁe G « Let Eqg. (20.3) be satisfied st the
point § = 81_, then |

@:(S,)=’W:‘Sz) : ' {20.5)
~This means that, &t the point 8 ; 52 s the rate of change of the
petential function ¢ elong GAis egual to the negative of the rate

of change of the

w

trear fanction Y, . Since potentisl lines end

KESTRICTED



stream lines in incompressibie flow forman infinitesimal sguars o

this condition reguires thet the angle between the tzngent to the

=

3

curve G at 8 = §_ be 459, as sghown in Fig. 10. This is easily seen

by remembering that from 52 te P , the value of the stream function
increzses while the value of the potentisl funetion decresses, due
to the indiceted flow direction. Thus the point S, oan be easily
determined by this graphical condition, Eq. (20,4) can then be

written as

B (s) - V.is) = 3.15) + Wis,) (20,8)

If this condition is satisfied at 2 point Sy, then the condition for
g limiting line is completely satisfied, A similar graphiesl
interpretation for the Eqs. (20,1) and (20.2) can be worked out

for the side of the constant speed curve lying to the right of the
y-axis, From these eonsiderations, it is clear that the upper
eritical llach number is the lowest free stream Mach number which
gives & consbant speed § containing two points, S1 and Sg, defined

by BEqg,.(20,5) and (20,6),
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Part 'V

u

Application: FElliptic Cylinders

e
b
L

Preliminary Discussions. ;

This part of the Report is devoted to the application of the
sneral method, developed in Part III, to the study of the flow of
e compressible fluid around en elliptic cylinder. According to

Sections 8 and 2, if a solution was constructed about the stagnetion

point, the continustion of this solution would recuire that the

perameters m and m * &, as well 28 their derivatives. T¢ shortsn

ths length;

eaiculations, -in view of the limited smount of tims
aveilable, the following approximsate procedurs was adopied,.

Given the domein @, the solution valid in thz anulus region,

the stagnation point, was first constructed.
.

The constanbs which determine the Leurent expansion of the sslution,

% ~ Pres & - o e B e "
3;, and O,, for example, are nJ/ assigned and, consequently, ire zei
of hypergeomeiric functions with integral parameters is nst

immediately raguired. The diffieculty, however, is the gusstisrn of

=
(6]
ot
g
(44]
5
et
ot
e
4]
o
(@)
w
i
s
o
o
@
<t

¢ continus the sclution within the circio of
sonvergense. This continuation may not be possible owing to the
stringent continuity conditions given by Egs. (9.5) and {9.6), snd to the
requiremsnt that the function must be regular within the circle ¢ 3 U.
This, however, doss nnt offer a serious objection from tho
practical point of view. 1In the first place, the summed funstion,

%

\V (q.9) for instence, actuslly holds even within th
[

(]

girele of
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convergence ‘jAU; and the correction function, V,(3.9) , is generally
small compared with Y (q.9) due to the close asymptotic approximetion
of the hypergesometric functions in the elliptic domain, In other
words, although the solﬁtion within the circle of convergence striectly
reprasents a diffafent flow, numerioally it spproximates vérv closely
5o thet defined in the annulus regicn, In the
second place, since this region q«U is rslstivelﬁ unimportant in the
case of mixed flow, where T, is very much less than Eéﬁ » dvee for
free stream lach number considerably less than unity, the inaccuracy
of the solution is limited to a small regzion in. the hodograph plane,
Furthermore, the most interesting phenomena of Such & flow, such as
the appearance of limiting lines. alwsys take place in the anﬁulus
region, Therefore, this modified procedure, although unsatisfastory
from the general view point, is an expedient capable of ylelding an
interesting result and furnishing a test of the practicability of the
proposed solution, -
The situation may also be considered from another anzle, The
procedurs ﬁsed in this section can be derived by replacing the functions
gJ‘) and '§4V¢ with the approximate Vqlues‘given in Bg (15,7) in
the expressions for the coefficients involved in the solution within
lthe annulus region, e.z. (9.9) and (9,10), Thus the procedure may be
regarded as an appropriate method of approximation, The error
introduced is generally negligible if =, <<13é;f . This is indicated
by the fact that the corrgction funetion V,(q,t) , for instance, is
very small in comparisom with W (q.9) when 9 <U .
Another simplification is made by using the elementary integral
c'f“v 3 sy instead of Elu g, ) in the continued solution, as,

in this cese, 3:‘/ (<) is a well-defined function, In doing so, the
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asymptotic behaviour of the second solution rema’nz unchangad
because the first term in AQJI) is always small in comparison with
the second,

If, however, all the required hypergeometric functions sare
computed, there is no difficulty in carrying out the exact method
developed in Part III of the Keport for any accurate study of
two-dimensional flow, For this reason, the expressions for the
hydrodynamic functions derived for bot® the exact and approximate
procedures for the problem at hand c:o ziven,

In the numsrical exsmple, detailed calculations are madse for
the flow of air about a cylindrical body derived from the incompressible
flow about an elliptiec section with a ratio of the minor and major
axes egual to 0,8, The calculations were carried out for two
diffsrent free stream Mach numbers, 0,6 and 0,7,

22, The Funcbions Z.lw) , Wolw) and Adw) -,

The irrotational flow of an incompressible fluid about an elliptic
cylinder with the velocity at infinity parallel to the major axis is

reprosented by the complex potential [} (%)

Woz) = 1+ 5 (82.1)
with Z, = 3+ -% (22,2)
For convenienee I prectical caleulation, all the physical quantities

Z. » 9 and_l £ , will be normalized consistently throughout the
present Part, The major and minor axes of the Saection are respectively

I+ € and (-¢ , where €<, q=1at infinity end § = |
when g = 0, This will =mutomatically remder the hydrodynamic functions
dimensiocnless and the constants {/ and f will be elimimsied “rov the

formulse in the sucecssdinz sactions,
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By differentiating (22,1) with respect to 2., , the

dimensionlsss complex velocity of the flow is

s
= j:.—':a_
3 -y

Thus

5 - [Lﬂ}é , hi-ewl#o  (22.3)

|- W

This function is two-valued with two branchepoints at w = 1 and
w= € o In order to make Z.wW a siﬂgle-vé lued function of w, the
expression (22,3) is supposed to be the principal value so that

|ag W4T and |2 )iwl< €, The condition |ewl< |
must be satisfisd, for w = é” corresponds to J = 0 whieh is
another singularity, YWith the principal value so defined, if the
negative sign in (22,3) is taken, then the domain & corresponds to the
half plane RL 1< 0 amd |5|Z{ . On the other hand, since
the transformetion (22,2) is one-to-one when [{| = |, then the domain
D whieh is 7R{z.,<€ © with tEe region inside the section excluded,

corresponds uniquely to 9.

Consequently, the inverse mapping function 2Z,(w) is

Zolws) == { [ '_'-il_“—fj‘/l + el[ - 5 ]7;. } (22,4)

I= WF | ~€w

which will be single-valued provided a cut is introduced to join the
branchepoints in such a way that the argument of (1-w) is restricted to
- L :w?u-w):_ s and [ezwfét o Separating into real and

imaginary parts, it iz found that as o< $< 2T

X(q.8) =-5[ {1(7.e)+1m.e)§yﬂez {J:éﬁq.ewj‘m-af}  (22.8)
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%o A%
409,90 = 35 [ {11990 J@a 9] - €4, (49)+ Jao] T

-3

with WeEg 2 , Where ths functions I1(4.8), 1, (4.9) ,
and J(q.9) stand for:
z S 4
1145) = A= UEE)9enbr £ § (22,7)
f~2q9cm 9+ 31
= 2
L) Ao e yqemdy o L (22,8)
2 2z
|- 2e"qcom® + ¢ 9
' |- 26" qecm B+ €' 9" h
1G.9)= | ] (22.9)
1 -29cw @ + 9* '
On the other hand, substituting Eq, (22,2) in Eq, (22,1), the
funetion W. (z.) is carried over into 9, namely
s - y ,l/
- =& wr 1% e . ;
W,(W)— f-[ ‘_w] +[ (-etw] } ‘ (22.10)
Yow W-(“-’} = @9+, (q.8) 2 and 3imilarly

fola9) =-4, | {Inq\awm.e)?ﬂ{16(1.9)@!(3‘9)}’1} , (22a1)
¥ o 3
q}/a(q.e): :{_‘;* [ {-Itq‘aﬁ](‘m)?] »{-L(ﬂ.%hj(q.&) } ‘ (22,12)

By integrating Z.(w) according to (6,10) the trans-

formed potential fumetion A, lw) , aside from a constant,
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talkes the form:

D % ,\/
Aw)y = 2(1-00/2' (i- &€w)? (22,13)

The principal value of this function is again defined by

restricting the argument of (l-w) to =M< agU-WIL T  gng
-2
| W L &

k4

Within this domain ¥, the real and imaginary
oerts  are:

i

: 7
A(5.9) = 27 [ Kas) + L],

(22,14)

et SLam
1/ Z{ '
0,(q.6) =-~-2% [—K(q.%) 1 Lk‘l‘%)] , (22,15)

as j\c\wyﬁ

XoA9:9) ~i0,(9.9) , where the functions K(3.9)
and Leqg.9) '

are defined by:

K1q.9) = i—{wﬁmcw%+€f@n9 » (22,18)

y’- E 'F?_tz‘
{p;e qu9+e6] .

Liq.9)

t

[1-29e29 +9" ] (22.17)
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Expansions of IN&“°) and Astw).

Tha function TJAL(w) dofined in (22.10) is single-valuad and

e

regul ar everywiera in 1w| < | and hence possssses the following

g

8Xpeanslon:

oQ
A R lw i< (25.1)
n=0

where the coefficients A% are real and given by

S
e

S:)(EL) :':}r_ i T{n-m+LY T(m+L) él'm
m=o T n-m+)T{m+t) ‘

Yowever, in the region outside |w|< | the functinn W,lw)

[N
ez}

double wrlusd; and when & cuk is put between the branch=-points w = |
-1 . P — . ; : " 3 548
and w=¢€ , the principal velue is discontinuous along the positive

o
"
i
7]
Q

f reals within the annulus region. To obtain the desirsd

4.

tten in the following form

Pt
fde

expansion, the function is w

2 - L+e)w

: e b . fon oy
LT, St L 25.3)
w - = o
WO( ) W U_W.)yz_“__g.u))’l \KOe )
s 4 3. R 1
Now (1=w)? (- ew) is single-valued and continuous within the

annulus region, its Lesurent expension is

ot~ -y, > e (o3 2 n -n . s
(-T2 (-Ew ) = s+ 56 ( Ew ¢ w jyle e (23.4)
mn=1 ]
whers
o = 1 =
'S:" )(Ev) 8 % Z T(n+m+4)T(m+3) 6-“‘" ' (2355}
mMzo T (mtwm+)T(Mm+1)

~

= L oy = 4 &% . s .
Substituting (kw)ﬁ (;—e’“w)yl- from (23.4) in (23.3) , the expansion

for M/o(w} in the annulus region is
: = e ¥ ¥ -2
WOW)=bZ {Bme W+ Ca W ] , lelwlc €™ (23.8)
n=p

LR QPR T YT Y
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when the constants B, , €, and the exponsnt ¥ are defined by:

B = lélfif, -~ (1+&) 5:} , (28.7)
Cw = A5 ey & |
Y = %+-§_’ ;
Similarly, the transformed potential function A.w) can be ox-
pended and is

TR " ‘
Adwy = 2 5L AL w | fwi ¢ | (23.8)

when the constants A, are

7\‘.____-:{-“4'&") i A.:G .

) . : 5
and S,. is glven in (23.2).

Jn the other hand, in the annulus region the expsnsion is
o P M e T e ] 25.10
}\,,kw):-luZ[Bme w + (,w ] 1< lwle ( )
nz-o

with the constants B, and (., defined as

o o i8) te) ‘;l 1
Bo = S5 =038 ¢ &8 x| 28,14

nti 1

v

- {8} >
Bo = 26*5, - (e s,

~ lo) 2, (o)

Cw = S-I:) '('+€L)Smo| + € Svﬂ-l

fo)
where S, [€) is defined in (23.5).

24. . The Stream Function jy(q.ﬁz,

The ralationship between the domain B end D is thus fully

established and the functions corresponding to such domains are also
.given, From the genera}l schems developed in Sections 8 and @ ths

solutions for the similar motion of a compressible fluid cen be

constructed. First of all, the stream function V(q.9) govorning the




2]
o
)
o+

+

he sum of Y/(q.8) and V¥,(4.8) + According to (16.13)
f o< T ¥ "{é‘;l
Y
]{__” { [_ I(H\f’)*J"“"a)} = [ 1 (9. 9)+TM 9)

<
(D
\F-

L_—_——-J\:
\_—.(\J
|
L]
b

I, I, end J in (22,7) to (22.9) by replacing q by tq , t being
defined in {16.1). For 9<| , the function VY;(4:9) is

2
o
<
i
>
2
o
b ]
a
o}
3
o
IE
e

whare A, is dofined in (24,2) and (%) in {15.6)s For 9>! and in

BT = ' c§ear  (24.%)
'\{fl (3.9)= “Z:a [Gyn:l € 1 + G (1)0] lc‘ﬂva y PF ‘ /
w )
ars GQule) arnd Gotv) ers fined by (15.11) with ¢ constants

s
4]
by
[}
ja
oo
=
.
DS
o
a
F

F.!
44}
o

% P 52
Y1q.9) = 1{{—%{ 1T ] = [-Lape 7))

% =l Y2
e [T eTa] - I T Lo £z |
[»I (Ag) fJ{AZ)] [1 ()\'g)*fj(/\'g)l P

*[I(P\”ﬂ*ﬂ’“ﬂ] [Ie(}"’?”j‘('\‘m]zﬁ 1 (24.4)

according to (15.20). Here “5' and 7 ere the cheractaristic psarameters

[4:]
[¢]
(@]

¢ lowsr one, to <0 . The accompanying function

[G w € q + Cf,,mc; ]cavs ' ‘;‘—anf—l (24.5)

=
P
© .
ﬁMz
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. " . L : g
iw peshyicted to 5, 5T < instead of bl <%E ., us Té
is generally greater then unity which is impossible for the actual ges.

T3 A 7 Ty v : 4 ) 14i+1ihl

It should be remembered that 'ﬂi(q‘s} is always negligible
compared with 7/(q.9) within and on the unit circle q=| when T
is small in comparison wit - V(q:9) can be approximately
rapresentesd by Wkkq.S} alene throughout the interior of the unit circle.

rang

T
r by
o

constructing first & solution for the annulus region by using J )
instesd of 9\ and making an approximets connection across the unit
girela., In thst svent, the strsam function will be reducad
Vig.9) = VY,19.9) (24.6)
when o4 q & | s here xk(q'S) is again defined in (24.1 . on

the other hand, when =4 T o

apH
3 el
Vg9 = Yiq.8)+ Y tq9)
whera the function \prﬁq'g) which is small on g9=| is given by
v S -V (24.8)
V(q.8)= > [B G\ € ‘1*5 G.ie)g [Cosvd
ne
Here the functions @G,x) eand Guit) cen be shown tc¢ be
g ; (24.8)
™ f) o PR fe) [
Gt = 2oy Gte) = - 102 ,
!v’ ;V -j’(‘tpt ! ; +1TI) ‘t ’
end ‘the coefficients B, and (, are defined in (28.7).
The continuatisn of \M(q.s) is naturelly the exprassion given in

(24.,4) while that of (24.8) differs only in the definition of @, (%)



AL N S8.
I L {0 -tVC«n(VuJ- ay
G,) = F,12) - 3 iy LB (24.10)
—— 2 1 L |
2t

= {n i fea Y v LTy,
Gyl = 3Vl‘c) 9. m‘* cenl +7F)

25, The Coordinats Functions X(9.9) and Y(4.9),

=381

With the functions Z,w) and A.w) defined in Sections 22 and

ny

3, the corresponding functions Alwjt) and consequently Z(w;t) for
the motion of @& gompressible fluid can be constructed. The coordinsts

functions derived from AWwiz) are given respectively by the sun of two

functions X;(9.9) and Y,(9:9) which, according to Eg.

Xi19.9) = = T 1 (4q.9)+ T(es, % €] ettwfj'm.w]yl}

[yc 1}':)‘ gﬁz‘:}{ [+ 4 E49cnd-€+ T+ €T (9. e)} (25.1)

B 4 3 A
Y,(q.9) = il‘_;.f ‘}% [-Zi9.904T(2q.9)] - € [—thq-ﬁ)*:ﬂt%mf }

ht) 1 aam
._p ;) r(t‘ia){ |+ we t¢1w9 €-+J(t$9)+€jt13)}

. - . t () ; e
by t9 .« The funetions X, (3.9) and lju!%s) » 2cecording tc Eas.
e P8

(1 & i n- & x w n-l {25.3)
X,08)= 2 3" n A, G.mq ecoin-n3 '2PTZ“Aan..‘”3“””9“’SI
h=| . ) n=\ %
q<
oy gc = n- ‘ .
45 19, 93"12“A Gm‘fwmn% ll’&tn kG @ comdaind (50 4
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the furctions Gu'®) and GuWlt) sre defined by Egs. (17.11) and
(17.12) and the constants A, by (24.9).

The same functions wvolid in the annulus region are again repressnted
by the sums . and (g:8)+ 451q.9) where (4.9
Dy Lne sums xl {q‘e) + Xj_(ﬁie) =361 ‘é‘ g ‘}l 3 vhere Xl 9. )

. L £y IR o {9 o\ iy o e A g g’
ant Y,(9.9) are dofined by Eos. (26.1) and (25.2) respsctively. When

o) °
T & 14."‘_;:" » X((ﬁﬁs’) » and \"J_{ﬁ\s) are

(c! n v-l =¥t

2
Xy (q.9) ""lZV{ U:]é 9 amty-0)9+ G—yw)q wa,)a]

o
“F’CZ v[Gme"q L899 Jeiwvieod |, (25.5)

(9} 0 21 -y-
Y,109.9) = -3 v[ GYar €' q C‘nw-t)3+ Gy qy ::,a—,-uﬂ)S]

o
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9.89043, -1 9.643688, -1 5.40408, -1 9.16846, -1 8.93970, -1 8,71665, =1 8.45517, -1 8.21712, -1 B.lBl2E, =1 T.R7875, =1 7.68217, -1
9.81477, -1 §,31047, -1 8.84817, -1 8.40269, -1 7.97656, -1 T.87862, -1 Tolvoev, =1 £.840E3, -1 €-43687, -1 £.1885¢, -1 5.84777, =1
89,7864, -1 ©.02632, -1 8.%4378, =1 7.70451, -1 T.11386, =1 6.56865, -1 £.0652%, =1 Rl.B0085, -1 E.17118, =1 4.7748¢, -1 4.408%1, -1
9.82737, -1 §.8087¢, =} 7.88704, -1 7.07885, =1 6.46549, -1 5.688CH, =1 5.09878, -1 4.57083, =1 4.09701, -1 3.87265, -1 3.29206, =1
2.08516, -1 8,67001, -1 7.52859, -1 €.553818, -1 6.679C4, =1 4.93204, =1 4,28330, -1 2.7188%, -1 3.250p8, =1 2.80565, =1 2.45(61, =1
1.03482, & £.6857¢, =1 7.28564, -1 £,11796, -1 5.12460, =1 4,30820, -1 3.61665, -1 3.055:04, -1 2.54746, -1 Z.15800, -1 1.79436, =1
1.12150, o 9.06455, -1 To3271s, -1 5.82244, =1 4,787C4, -1 2.869%1, -1 3.12752, -1 2.5:2794, -1 2.04531, -1 1.65188, =1 1.38486, -1
1.21894, 2 $.6287C, -1 7.62405, -1 6.02626, -1 4,77954, -1 2.7B447, =1 2.99¢56, -1 2.37269, -1 1.87871, -1 1.48787, -1 1.,17787, -1
1 43733, ¥ 1.11286, o 8.61644, -1 £.671368, -1 5.1€58€, =1 2.99018, -1 3.09651, -1 2.2978C, -1 1.850:8, -1 1.43728, -1 1.11180, =1
1.77527, & LSBT s C 1.03845, s 7.94238, -1 §.07480, =1 4.545%2, -1 3.55331, -1 2.71756, -1 207880, -1 1.68971, -1 l.2168E, =
L.vSéée, & Z iR, C  .1.69354, 0 1.281860, 4] $.87008, =1 7.29638, -1 5.50531, -1 4,153%2, -1 313426, -1 2.26482, -1 1.7865%,
2.06247, ¢ 1.58751, 0 1.14614, 0 8.54387, -1 £.36892, -1 4,74754, -1  B.53887, -1 2.51915, =i 1.96626, -1 l.46881, -1 1.06242,
1.76592, 2 1.20268, 0 9.60844, -l 7.086€7, -1 5.22627, =1 5.8p406, -1  2.84182, -1 2,09541, -1 1.64485, -1 l.138#1, -1 B 39808, =
1.69444, s LBy C £.45524, -1 €.20721, -1 4,53222, -1 1.3086%, -1 2.41431, -1 176222, =1 1.28568, -1 $.2764C, -2 6eBL5T2,
L4728, & 1.0657¢, C 7.71681, =1 5.55486, -1 4.0401%, -1 £.9214C, =1 2.11188, -1 1.5286%, -1 1.10182, -1 7.95442, -2 E.TA02R,
1.373¢4, 0 g.,90%78, -1 T.117c4, -1 5.10588, -1 Z.6005%6, =1 2.62272, -1 1.87771, -1 1.74364, =1 9.80:88, =2 6.86150, -2 4,89¢04,
1.30:80, i 9,30366, -1 § 62058 -1 &4,717€5, -1 3.25310, =1 2.38C4C, -1 1.68785, -1 1.1968:, =1 B.459%4, =2 5.98000, -2 4.22295,
1.1876%, & BeECi1E, =1 5.87028, -1 4,11061, =1 2.87118, -1 2,0007%, =1 1.3911¢, -1 9.£621€, -2 €.68006, -2 4.£187C, =2 5.18587,
1.0¢8¢62, & T.L4388, =1 §.25204, -1 3.847T20, =Y 2.803CE, =1 1.71109, =1  A.16548, -1 7.90955, -2 5.2508%, -2 Z.ECTET, -2 2. 40694, -
1.02¢75, 4 7.06681, -1 4.32601, -1 5.27278, -1 £.2057:, -1 1. éT(L‘, -1 $.84354, -2 6.5:368, =2 Eoles; = 2.82268, -2 1.8406¢, =
C.8¢408, -1 £.58445, -1 4.43616, -1 .968965, ~i 1.96625, -1 1.28263, -1  8.34320, -2 5.28726, =2 3.45085, =2 2.19802, -2 1.35007, -
2.143589, -1 17081, =1 4.10028, -3 2.68864, -1 1.74125, -1 1.1187¢, -1 T.07345, -2 £,43958, -2 2.75871, =2 1.6878%, -2 1.08885, -
B.83¢4E, -1 5.8071s, =1 2.80811, -1 2.45038, - -I 1.8535¢, =1 ¥.7089%, 2 5.98502, -2 3.64024, -2 2.1844C, -2 1.292¢4, -2 7.53883, -
8.277¢C, -1 E.4856%, =1 3.54141, -1 2.28772, =1 1.48667, =1 £.43758, <2  5.04444, -2 2.96305, -2 1.70884, =2 9.66225, =3 5.34348, -
7.8084%, -1 E.19186, -1 3.20282, -1 £.04584, -1 1.248714, -1 T.21873, -2 4.22785, =2 .28802, -2 1.31638, =2 7.04083, & 3.064046, =
T.57068, -1 4,92475, -1 3.08461, -1 1.87116, -1 1.10237, =1 £.71€5%5, -2 3. 51751 -2 1 SGL%Q, -2 9.91462, -3 4.05455, =3 2,33878, -
7.26875, -1 4.67:53, -1 2.88378, -1 1.71084, -1 E.80281, =2 §.42846, =2 R.8000C, @ -Z 1. 1AT48, =2 7..5698, =3 2.30€19, =% 1.26146, =
£.701581, -1 4.28917, -1 2.50064, -1 1.42689, -1 T.68466, =2 2,0%:80, <2  1.86878, -2 §.48€27, =3 3.,567T4, =% 1.0490G, =3 1.08178, =
£.20592, -1 3.8515%, -1 2.20817, -1 1.1821C, =1 £.80761, =2 2.75151, <2 1.,15B888, -2 4,07 67, =3 9.272%4, =4 =2.081C0, 4  -4.752:8, =
5.76927, -1 X.50441, -1 1.92855, <1 §.72485, -2 4,4717z, - -% 1.82567, -2  £.10691, =3 1.15648, -3  -4,9285c, -4 @ =T7.59940, -4  -§.81575, -
B.26903, -1 BJ1RGTs, -1 1.67828, -1 7.9C176, ~&  *.27108, =2 1.11127, =2 2.28204, =3 =£.50167, =& -1.20150, =3 =£,.5143¢ -4 =§,210486,
5.00188, -1 Z.50.92, -1 1.45383, -1 6.52897, -2 2.25020, =2 5.72187, =3 =2.85008, =4 =1,64655, =3 =1,44188, =& =S.281.8, -4 =5.00408, -4
4.66155, -1 2.£3689%, =1 1.252c2, -1 4.968638, -2 1.4983:, =2 1.77123, =3 -1.88852, -3 -2.48134, =2 =1,383B%, =2 ~7,51445, -4 -3.4176%,
4,%4¢24, -1 2.4018%, -1 1,07048, -1 3.80619, -2 5.69761, =3 -1.00218, =% =-2.87083, -3 -2.1172¢, -3 ~1.18585, =3  =5.u87¢7, -4  -2,00086, ~-<
4.04695, -1 2.16473, -1 9.07389, -2 2.81867, -2 t.8.887, =3 -2.8274€, =3 =3.08884, -3  -1.92264, -5 «8.1007%, -4 @ «2.3E57, -4 =8,07186, <5
3. 76233, -1 1.96351, -1 6.74C908,  -Z 1.9880&, -2 1,32108, -4 -3.90215, =% -&.38262, -3 -1.D9B2E, -& -B.c688l, -4 -1.654c24, -4 -2.522B68, -6
2.50240, -1 1.75684, -1 5.43218, =2 1.28782, -2 = ~2.B3621, -3 -4,36782, -3  =2.78413, -3 ~1.22:8p, -8 @ =3.71628, -4 -4.02791, -5 +4.18885,
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1001435, o 104072, ¢ 1.0689%, o 1.99488, ¢ 1. ABE0s, s 1.15094, 0 1.18039, o 1. 21060, 0 1.24187, 0 1.27334, 0 120805,
LeDkhua, < 1.088587, C 1.146847, 0 1.20738, ¢ 1. &TIEE, 0 1.33610, O 141027, C 1.48523, 0 1.56416, 0 1.64729, b 1.73484,
1.0658¢C, e 1.14783, G 1.24310, o 1.BEEEF, o 1.45802, 0 1.67904, 0 . 730, O 1.85205, 0 2SSO, O 2.17228, 0 235255,
1408629, & 188310, Y 1.36443, & LoBEniq, 0 1.69809, § 1.88435, 0 21150, X % S5TEE, 0 g A8, 0 2.93400, 0 427810,
114552, i) 182588, 9 1.52410, o 1.ToegE, & 202005, 0 B FEeTa, o g.07800, o 2.08499, 0 %.55284,; ¢ 4.09025, 0 4,70875,
1.235%22, ¢ 1.4€926, O 1.76068, 0 2.085%95, 8 2.480a$. 0 2.961485, o 3.52R862, G 4.20441, 0 5.00982, 0 5.96905, 0 T.11221,
1.38760, o 1.71689, Y 2. 12398, G 2.62744, o 2.25002 o] 4,02161, 0 4,975486, 0 B A 5EE0, 0 T.B1553, 0 9.42179, 0 1.16566,
1.R3B66, 0 1.94944, s 2.44959, 0 3.08845%, 0 : o 4.92446, 0 6.23139, C 7.86986, 0 9.9391% 0 1.25828, 1 1.58530,
1.85628, 0 2.25764, » 3.09668, O 3.59%55, O 0 B.67173, g 8.81852, G 1.,112€3, 1 :1,43741, 1 1.85648, 1 2.3977,
2.52115, & 2.0p48¢%, x 3.96807, 0 5.188z2, 0 0 B.BE94Z, 0 1.16967, 1 1.51862¢6, 1 1 1.98249, 3 2.592089, 1 3.38913,
1.877C4, 0 2. 50088, 7 3.4768¢, £ 4.60227, 2 C ],08405, i 1.07140, 9 1.41995, 1 1.88183, 1 2.49412, 1 3.308561,
1.58331, ¢ 185588, 8] £.48804, G 2.3E870, & 0 £,00585, ¢ 8.05685, & 1.080845, 1 T 449¢£ 1 1.54403, 1 2.60737,
1.18687, ¢ l.6z2228, o 2.12884, O 2.97957, 0 s} £.47005, o 741185, o 1.00410, 1 1.:28014, 3 1.842:3, 1 2.49508,
1.08951, G 1.48048, ¢ 2.08RsE, o 2.78751, 0 PRE o ¢ 5,20810, o 2:11815, 0 9,720¢5, 0 1.32748, 1 1850288, i 2.47382,
1.01502, 3 1.29g8z, 0 1.92881, ¢ 2.65822, o Bat: & 0 5.026R0, o) 8.92718, n 9.52115, 0 1.30782, 1 p o 795~~, 3 2.48253,
9,.585%¢, =X 1.5208E, o 1.84€561, o 2.55547, ¢ A 0 4,890170, o 6.77168, O 9.34345, o} 1.28752 1 1 TT174, i Z.48445,
9,12:8%4, =1 1.27452, 0 1.778689, o 2.47727, o Bah i, & 4.778:7, 0 B8.81855, o 9.14080, C 1. 46976, 1 1. 73152, 1 2447308,
8,40755, =3 1.186885, o 1.60788, 2 2.eAT1E, O t.085%5, o 4.80251, 0 B.24245, o &.5613%, 0 1.16569, 1 1.67371, | 18511,
7.87016, -1 1.115€0, C 1.57419, it 2.,2059%, G &5 8, o 4.1%690G, 0 5.588505 o T.B8025, 0 °.90410C, 0 1.25725, 3 1.5%538,
T 43388, w1 i.084%1, o 1.,48379, o 2.06489, £ Z.R197z, o Ly Y 0 4.883189, 0 6.06990, 0 7.06475, 0 7.30355, 0 7.1.740,
7.00090, =1 G.08020, =1 1.598%3, 0 1.91322, 2 LoE580 0, 0 321218, B 3795554, & 3.92921, & 2.95415, 0 -4,99985, =1 =2,.81451,
6.854C2, «1 2.47250, -1 1.4109¢%, o 1.748°2, o 2.1982%, ¢ 2 FanEs, 0 2.%8208, o) 1.10702, G -Z.81475, o -1.1427e, 1 =2,91687,
6.34158, =1 8,98065, -1 1.2:2048, 0 1.56128, o 1.80¢48, B 1.68%¢84, C 6.257€5, 0 ~2.48611, 0 =5.77445, 3 =2.51542, 1 =8.E8870,
€.05684, -1 8,50527, -1 1.1287%, 0 1.36733, C 1.858e7, ¢ £.89R15, -1 =1.480%%, 0 =-8.86430, G  =1.858750, 1  -4.2:2645, 1 ~-8,34745,
5.,78147, -1 8.05592, -1 1.02¢28, 2 1 EEETE, o B ALESD, =i -4,52902, =1  =3.96352, 0 =1.20262, 1  -2.899453, 1 -6.27515, 1 =1.272250,
5.54475, =1 T.58697, =1 9,28626; -1 8,966£8, =1 2.78121, =1 -1,73850, O =8,77225, 0 —1.79149, 1 =-4.08778, 1 -8,58%L0, I &1.757s,
£.21244, -1 7.13734, -1 8.,28800, -1 6.38375, a1 -2 42850, -1 -3,1RR72, 0 =9,90920, 0 -2.44720, 1 =5.40838, T =l.11232, 2 =2.17518,
4,88404, -1 £.2691C, -1 6.04795, -1 TT8700, 2 1.7247%, 0 -6, 57315, 0 -1.69445, 1 =Z,90849, 1 «R.2¢01%, 1 g, 2 «3.,0%18Y,
4.49410, -1 528827, =i £.7491c, -1  =£.34045, =1 ~3.C5EE1, 0 =5.3214F, 0  =2.3%4783, 1 =5.43555, 1 -1.1044%, 2 n04E2, 2 =R.73029,
d.15018, <1 4,54018, -1 1.48204, =} =L1.17827, 0 -4, E71(7, % -1,38061, "1 =8.21488, 1 £,807%0, I =1,31R%G, E  «2,pnRgE, 2 =RTTLE4,
3.8019%, -1 3.712185, -1 =1.01642, =1  =1,B:D048, 0 -€.,45000, 0 1. Ti4T5, 1 -2,877:8, 1 -?,8‘§25, 1 -1.40383, 2 -2.1983%, 2 -2,72873,
3.49107 -1 2.90807, -1 =4,40012, -1 =2.496311, G -R.0E6E0 0 -2.02872, 1 4,36043, 1 ~8.15840, 1 =1.29698, 2 «l.54484, 2 -4,5R521
2.1688G, -1 2.13287, -1 =B.72770, -1  -3,11842, ¢ -9,4E880, 0  ~2.25740, - "1 ~4.57567, i 453765, 1 =8.52630, 1 -3.1472zE, 1 255140,
2.92625, -1 1.39091, -1 -7.9842C, -1 -Z.89868, 0 -1.068211, 1 -2.40883, 1  -4.45007, 1 =6.18020, 1  =3,EB6233, 4 IJARGZY, 2 716475,
2.66812, =1 6.87472, -2  -1.0038Z, G =4.20472, 0 -1.14685, 1 ~2.43071, 1 -3.93544, I =Z.R4254, i 4.6452¢, 3 3.825R0, 2 1.14148,
242718, ~1 2,69C7h, =% <~1.62858, 0 -4.82820, 0 =1, 10795, 1 =2.,2182%¢, 1 -2.08825, 1 -~1.65651, o 43151, 2 §.615€0, 2 1.45880,
2,19056, -1 =5.864383, -2 <=1.87510, 0  -4.843468, C -1.19840, 1 ~2.08734, 1 -1.7238s5, 1 -4.00740, 1 2.43137, 2 T.29188, 2 1,£7688,
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.02 1,03963, 0 1.013€89, O 5.88402, -1 9.6:742, -1 9.%56607, -1 9.16251, -1 8.93380, -1 8.71101, -1 8.49366, -1  B8.281%5, -1 8.,07511,
.C4 1.036566, C 1.,03078, ¢ 9.787¢2, -1 9,28368, <1 ©,824£9, =1 8.37935, =1 7.95848, -1 7.55496, -1 11800, =1 6.8116%8, -1 £.45793,
.08 1.14018, 5 1.06279, < $,72108, -1 8.97606, =1 B,C88l%, =1 7.65284, -1 7.06642, -1 6.52485, -1 6.02473, -1  5.5E2T5, -1 5.136€9,
.08 1.2074s, 0 1.08237, Q 9.70230, -1 8.96712, w1 7.75807, -1 6.98838, -1 6.26436, -1 5.61535, -1 5.03389, -1  4.5120%, -1 4.04462,
e il 1.29495, e 1.12481, ¢ 9.76868¢, -1 8.48217, -1 7.3064F, -1 £.39750, =1 6.55500, -1 4.82518, -1 4.15050, -1 2.53228, -1 2.16060,
.12 1.4180%2, Y 1.150%4, 0 9.99612, -1 B.386E8, w1 7.74020, =1 5.90885, -1 .- 4.95893, -1 4,16188, =1 ' 3.49292, -1 2.$3180, -1 2.46C31,
.14 1.62754, ¢ 1.315338, Q 1.0633%, 0 8.55475, -1 £.04705, =1 5.61522, -1 4.53872, -1 3.66856, -1 2.96528, -1 2.39681, -1 1.53732,
15 1,81830, O 1.43828, O 1.1¥88%, O  9.016e0, -1 7.13939, =1  £.65301, -1  4.47608, -1  3.54418, -1  2.80630, -1  2.22204, -1  1.7594%,
.18 2.21068, o 1.71161, ¢ 1.32840, o 1.02508, 0 7.94448, =1 6.13694, -1 4.76253, -1 3.68743, -1 2.85503, -1  2.21083, 1 1.70998,
188 2.77097, o 2.11830, C 1.52089, J 15800, 0 2.48150, -1 7.26168, -1 §.54625, -1 4.24181, -1 3.24432, -1 2.48123, =1 1.8¢778,
A7 4.72637, o W o 2,69081, 8 2.08030, 0 1.53183, o 1.15587, C 8.72144, -1 6.58217, -1 4.96533, -1 2.74828, -1 2.82683,
75 3.31647, 0 2.472835, G 1.84300, o 1. 87288, o 1.02413, 0 7.63403, =1 5.68059, -1 4.05080, -1 3.16183, -1 2.3567C, -1 1.76668,
.18 2.882565, o 2.1263¢6, Y 1.5€840, o 1.15677, e B,82115, =1 6.29112, -1 4.63889, -1 3.420238, -1 2.5811T, =X 1.85908, -1 1.37041,
L1856  2,£3R9%, 0 1.92812, 0 1.40845, o 1.02863, o 7.51375, -1 5.48%05, =1 4.,00188, -1 2.92028, -1 2.13061, -1 1.55415, -1 1.1%:48,
.18 2.47544, ¢ 1.79311, C 1.29337, 0 8.39665, =1 6.79759, =1 4.91534, -1 3.55283, -1 2.56887, -l 1.86381, =1 1.33835, -1 5.85840,
L1898  2.35534, G 1.85287, e 1.21601, 2 B.72318, -1 6.25435, =1 4.48078, -1 %.20786, -1 2.2949%6, -1 1.64078, -1 1.17225, =1 8.3€57C,
<20 2.26219, 0 1.61413, 0 1.15030, o 8,184%1, -1 £,51743, -1 4.12985, -1 2.92841, -1 2.07429, -1 1.45774, -1 1.05748, -1 7 4 22650,
Bl 2.12529, g 1.49637, 0 1.06088, 0 Fudb68by =1 5.1%841, -1 3.53072, -1 2.48968, -1 1.72742, -1 1.18610, =i B.4€595, =2 5.7C16¢,
22 2.02900, & 1.41171, C 9.7736¢, -1 6. T8BBY,; =1 4.,42278, =1 5.,12014, =1 2.15231, -1 1.46078, -1 9.88131, =2 €.€u2L8, -2 4.,47852,
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