Appendix 2.1

Failed Synthetic Approaches Toward a Macrocyclic Intermediate

(All Characterization Data Obtained for Compounds **i–xx** in Appendix 2.1 can be found in "JHP Characterized Compounds" binder)

Scheme A2.1.1 Stille coupling route: formation of vinyl halide and vinyl stannane.

Scheme A2.1.2 Stille coupling route: Attempts at macrocyclization.

Ch. 2 Appendices

Scheme A2.1.4 Ring closing metathesis route.

Appendix 2.2

Spectra of Compounds Relevant to Chapter Two

Figure A2.2.2 Infrared spectrum (film/NaCl) of compound 136

Figure A2.2.3 ¹³C NMR (125 MHz, CDCl₃) of compound **136**

о

Figure A2.2.5 Infrared spectrum (film/NaCl) of compound 128

Figure A2.2.6 ¹³C NMR (125 MHz, CDCl₃) of compound **128**

Figure A2.2.8 Infrared spectrum (film/NaCl) of compound 139

Figure A2.2.9 $^{1}\mathrm{H}$ NMR (500 MHz, $C_{6}D_{6})$ of compound 127

Figure A2.2.10 Infrared spectrum (film/NaCl) of compound 127

Figure A2.2.11 $\,^{13}\!\mathrm{C}$ NMR (125 MHz, $C_6D_6)$ of compound 127

Figure A2.2.13 Infrared spectrum (film/NaCl) of compound 141

o

Figure A2.2.15 Infrared spectrum (film/NaCl) of compound 143

Figure A2.2.16 $\,^{13}\text{C}$ NMR (75 MHz, CDCl_3) of compound 143

Figure A2.2.18 Infrared spectrum (film/NaCl) of compound 145

Figure A2.2.19 ¹³C NMR (75 MHz, CDCl₃) of compound **145**

Figure A2.2.21 Infrared spectrum (film/NaCl) of compound 147

Figure A2.2.22 ¹³C NMR (75 MHz, CDCl₃) of compound **147**

0=

0:

Figure A2.2.24 Infrared spectrum (film/NaCl) of compound 149

Figure A2.2.25 $\,^{13}\text{C}$ NMR (75 MHz, CDCl_3) of compound 149

Figure A2.2.27 Infrared spectrum (film/NaCl) of compound 151

Figure A2.2.29 Infrared spectrum (film/NaCl) of compound 153

Figure A2.2.30 ¹³C NMR (75 MHz, CDCl₃) of compound **153**

Figure A2.2.31 1 H NMR (300 MHz, CDCl₃) of compound **155**

6

Figure A2.2.32 Infrared spectrum (film/NaCl) of compound 155

Figure A2.2.33 ¹³C NMR (75 MHz, CDCl₃) of compound **155**

Figure A2.2.37 Infrared spectrum (film/NaCl) of compound 158

Figure A2.2.38 ¹³C NMR (75 MHz, CDCl₃) of compound **158**

Figure A2.2.40 Infrared spectrum (film/NaCl) of compound 159

Figure A2.2.41 ¹³C NMR (75 MHz, CDCl₃) of compound **159**

Figure A2.2.43 Infrared spectrum (film/NaCl) of compound 161

Figure A2.2.44 ¹³C NMR (125 MHz, CDCl₃) of compound **161**

0=

0=

ź

н 163

Figure A2.2.46 Infrared spectrum (film/NaCl) of compound 163

Figure A2.2.47 ¹³C NMR (75 MHz, CDCl₃) of compound **163**

Figure A2.2.49 Infrared spectrum (film/NaCl) of compound 37

Figure A2.2.50 $\,^{13}\text{C}$ NMR (125 MHz, CDCl_3) of compound $\boldsymbol{37}$

Figure A2.2.52 Infrared spectrum (film/NaCl) of compound 164

Figure A2.2.53 ¹³C NMR (125 MHz, CDCl₃) of compound **164**

Figure A2.2.55 Infrared spectrum (film/NaCl) of compound 164

Figure A2.2.56 ¹³C NMR (125 MHz, CDCl₃) of compound 164

Figure A2.2.58 Infrared spectrum (film/NaCl) of compound 166

Figure A2.2.59 $\,^{13}\text{C}$ NMR (125 MHz, $C_6D_6)$ of compound 166

Figure A2.2.61 Infrared spectrum (film/NaCl) of compound 171

Figure A2.2.62 13 C NMR (125 MHz, C₆D₆) of compound **171**

Figure A2.2.64 Infrared spectrum (film/NaCl) of compound 172

Figure A2.2.65 13 C NMR (125 MHz, C₆D₆) of compound **172**

Figure A2.2.67 Infrared spectrum (film/NaCl) of compound 168

Figure A2.2.68 ¹³C NMR (125 MHz, CDCl₃) of compound **168**

റ

Figure A2.2.70 Infrared spectrum (film/NaCl) of compound 169

Figure A2.2.71 13 C NMR (125 MHz, C₆D₆) of compound **169**

Figure A2.2.73 Infrared spectrum (film/NaCl) of compound 173

Figure A2.2.74 $\,^{13}\text{C}$ NMR (125 MHz, $C_6D_6)$ of compound 173

Figure A2.2.76 Infrared spectrum (film/NaCl) of compound 174

Figure A2.2.77 ¹³C NMR (125 MHz, CDCl₃) of compound **174**

Ch. 2 Appendices

Figure A2.2.79 Infrared spectrum (film/NaCl) of compound 175

Figure A2.2.80 $\,^{13}\text{C}$ NMR (125 MHz, $C_6D_6)$ of compound 175

Figure A2.2.82 Infrared spectrum (film/NaCl) of compound 176

Figure A2.2.83 $\,^{13}\text{C}$ NMR (125 MHz, $C_6D_6)$ of compound 176

Figure A2.2.85 Infrared spectrum (film/NaCl) of compound 177

Figure A2.2.86 ¹³C NMR (125 MHz, CDCl₃) of compound **177**

Figure A2.2.88 Infrared spectrum (film/NaCl) of compound 181

Figure A2.2.89 ¹³C NMR (125 MHz, CDCl₃) of compound **181**

Figure A2.2.91 Infrared spectrum (film/NaCl) of compound 182

Figure A2.2.92 ¹³C NMR (125 MHz, CDCl₃) of compound **182**

Appendix 2.3

X-Ray Crystallographic Data Relevant to Chapter Two

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Crystal Structure Analysis of:

Alcohol 182 (CCDC 606989)

Contents

Table 1. Crystal data

Table 2. Atomic Coordinates

Table 3. Full bond distances and angles

Table 4. Anisotropic displacement parameters

Table 5. Hydrogen atomic coordinates

Table 6. Hydrogen bond distances and angles

Figure A2.3.1 Representation of alcohol 182.

Table 1. Crystal data and structure refinement for alcohol 182 (CCDC 606989).

$C_{24}H2_3O_9Br$			
535.33			
Ethyl acetate/hexanes			
Fragment			
0.34 x 0.26 x 0.18 mm ³			
Colorless			
Data Collection			
Bruker SMART 1000			
0.71073 Å MoKα			
100(2) K			
2.43 to 41.82°			
a = 11.1074(2) Å b = 13.5443(3) Å c = 16.7177(4) Å	$\begin{aligned} &\alpha = 106.8590(10)^{\circ} \\ &\beta = 104.9520(10)^{\circ} \\ &\gamma = 98.6060(10)^{\circ} \end{aligned}$		
2255.89(8) Å ³			
4			
Triclinic			
P-1			
1.576 Mg/m ³			
1096			
Bruker SMART v5.630			
1.71 to 42.84°			
87.4 %			
$-21 \le h \le 21, -24 \le k \le 25, -31$	≤1≤31		
ω scans at 8 ϕ settings			
Bruker SAINT v6.45A			
68261			
28932 [$R_{int} = 0.0502$]			
1.876 mm ⁻¹			
Semi-empirical from equivaler	nts		
1.000000 and 0.820201			
	C ₂₄ H2 ₃ O ₉ Br 535.33 Ethyl acetate/hexanes Fragment 0.34 x 0.26 x 0.18 mm ³ Colorless Jection Bruker SMART 1000 0.71073 Å MoK α 100(2) K 2.43 to 41.82° a = 11.1074(2) Å b = 13.5443(3) Å c = 16.7177(4) Å 2255.89(8) Å ³ 4 Triclinic P-1 1.576 Mg/m ³ 1096 Bruker SMART v5.630 1.71 to 42.84° 87.4 % -21 ≤ h ≤ 21, -24 ≤ k ≤ 25, -31 ω scans at 8 ϕ settings Bruker SAINT v6.45A 68261 28932 [R _{int} = 0.0502] 1.876 mm ⁻¹ Semi-empirical from equivaler 1.000000 and 0.820201		

Table 1 (cont.)

Structure solution program	Bruker XS v6.12
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	Bruker XL v6.12
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	28932 / 0 / 797
Treatment of hydrogen atoms	Unrestrained
Goodness-of-fit on F ²	1.189
Final R indices [I> 2σ (I), 18290 reflections]	R1 = 0.0407, wR2 = 0.0734
R indices (all data)	R1 = 0.0831, wR2 = 0.0812
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.007
Average shift/error	0.000
Largest diff. peak and hole	0.844 and -0.543 e.Å ⁻³

Structure solution and Refinement

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
	X	у	Z	U _{eq}
Br(1)	11019(1)	1482(1)	10581(1)	19(1)
O(1A)	4709(1)	873(1)	8210(1)	34(1)
O(2A)	5774(1)	1287(1)	7327(1)	20(1)
O(3A)	2091(1)	777(1)	5288(1)	36(1)
O(4A)	2261(1)	2445(1)	6087(1)	25(1)
O(5A)	5897(1)	4595(1)	7735(1)	19(1)
O(6A)	4432(1)	3010(1)	5395(1)	20(1)
O(7A)	7570(1)	3438(1)	7662(1)	16(1)
O(8A)	10665(1)	2911(1)	8096(1)	26(1)
O(9A)	9571(1)	3647(1)	8987(1)	18(1)
C(1A)	9361(1)	1314(1)	9804(1)	16(1)
C(2A)	9229(1)	1148(1)	8922(1)	20(1)
C(3A)	8037(1)	1072(1)	8348(1)	18(1)
C(4A)	6990(1)	1154(1)	8661(1)	15(1)
C(5A)	7140(1)	1289(1)	9543(1)	18(1)
C(6A)	8330(1)	1375(1)	10125(1)	18(1)
C(7A)	5707(1)	1080(1)	8070(1)	18(1)
C(8A)	4599(1)	1014(1)	6651(1)	22(1)
C(9A)	4200(2)	-138(1)	6108(1)	34(1)
C(10Å)	4018(1)	1783(1)	6549(1)	19(1)
C(11A)	2731(1)	1566(1)	5895(1)	24(1)
C(12A)	3206(1)	3353(1)	6785(1)	22(1)
C(13A)	4414(1)	2941(1)	7101(1)	17(1)
C(14A)	5506(1)	3668(1)	6955(1)	15(1)
C(15A)	4787(1)	3946(1)	6159(1)	17(1)
C(16A)	3600(1)	4196(1)	6402(1)	21(1)
C(17A)	6832(1)	5468(1)	7761(1)	25(1)
C(18A)	6643(1)	3217(1)	6874(1)	14(1)
C(19A)	6986(1)	2623(1)	6200(1)	16(1)
C(20A)	8221(1)	2463(1)	6582(1)	16(1)
C(21A)	8535(1)	2986(1)	7470(1)	16(1)
C(22A)	8979(1)	1840(1)	6099(1)	22(1)
C(23A)	9698(1)	3171(1)	8201(1)	17(1)
C(24A)	10696(1)	3849(1)	9740(1)	20(1)
Br(2)	3493(1)	3385(1)	-883(1)	18(1)
O(1B)	9806(1)	4309(1)	1640(1)	28(1)
O(2B)	8714(1)	3943(1)	2530(1)	19(1)
O(3B)	12418(1)	4788(1)	4624(1)	30(1)
O(4B)	12534(1)	3196(1)	3826(1)	23(1)
O(5B)	9146(1)	747(1)	2103(1)	20(1)
O(6B)	10420(1)	2346(1)	4444(1)	19(1)
O(7B)	7219(1)	1646(1)	2160(1)	16(1)
O(8B)	4007(1)	1961(1)	1733(1)	21(1)
O(9B)	5099(1)	1226(1)	841(1)	18(1)
C(1B)	5143(1)	3643(1)	-75(1)	15(1)
C(2B)	5228(1)	3750(1)	794(1)	17(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\mathring{A}^2x \ 10^3)$ for alcohol 182 (CCDC 606989). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

C(3B)	6417(1)	3885(1)	1395(1)	17(1)
C(4B)	7512(1)	3913(1)	1131(1)	14(1)
C(5B)	7415(1)	3819(1)	261(1)	17(1)
C(6B)	6229(1)	3685(1)	-347(1)	17(1)
C(7B)	8798(1)	4077(1)	1764(1)	17(1)
C(8B)	9866(1)	4308(1)	3237(1)	19(1)
C(9B)	10039(1)	5424(1)	3807(1)	28(1)
C(10B)	10611(1)	3636(1)	3334(1)	18(1)
C(11B)	11900(1)	3974(1)	4011(1)	21(1)
C(12B)	11713(1)	2235(1)	3104(1)	22(1)
C(13B)	10398(1)	2503(1)	2764(1)	17(1)
C(14B)	9408(1)	1648(1)	2882(1)	16(1)
C(15B)	10213(1)	1430(1)	3687(1)	18(1)
C(16B)	11459(1)	1343(1)	3466(1)	22(1)
C(17B)	8407(1)	-225(1)	2091(1)	25(1)
C(18B)	8174(1)	1940(1)	2947(1)	14(1)
C(19B)	7771(1)	2456(1)	3621(1)	15(1)
C(20B)	6467(1)	2480(1)	3241(1)	14(1)
C(21B)	6179(1)	1972(1)	2353(1)	15(1)
C(22B)	5613(1)	2941(1)	3728(1)	20(1)
C(23B)	4983(1)	1725(1)	1626(1)	15(1)
C(24B)	3965(1)	998(1)	90(1)	20(1)

Br(1)-C(1A)	1.8967(11)	C(20A)-C(21A)	1.3699(16)
O(1A)-C(7A)	1.2006(15)	C(20A)-C(22A)	1.4966(15)
O(2A)-C(7A)	1.3673(15)	C(21A)-C(23A)	1.4612(15)
O(2A)-C(8A)	1.4031(14)	C(22A)-H(22A)	0.86(2)
O(3A)-C(11A)	1.2030(18)	C(22A)-H(22B)	0.89(2)
O(4A)-C(11A)	1.3573(18)	C(22A)-H(22C)	0.91(2)
O(4A)-C(12A)	1.4575(16)	C(24A)-H(24A)	0.945(19)
O(5A)-C(17A)	1.4344(17)	C(24A)-H(24B)	0.950(18)
O(5A)-C(14A)	1.4363(14)	C(24A)-H(24C)	0.921(17)
O(6A)-C(15A)	1.4308(15)	Br(2)-C(1B)	1.8886(10)
O(6A)-H(6A)	0.76(2)	O(1B)-C(7B)	1.2031(14)
O(7A)-C(18A)	1.3641(13)	O(2B)-C(7B)	1.3679(14)
O(7A)-C(21A)	1.3745(12)	O(2B)-C(8B)	1.4040(13)
O(8A)-C(23A)	1.2169(13)	O(3B)-C(11B)	1.2033(17)
O(9A)-C(23A)	1.3406(14)	O(4B)-C(11B)	1.3588(17)
O(9A)-C(24A)	1.4513(14)	O(4B)-C(12B)	1.4660(16)
C(1A)-C(6A)	1.3878(15)	O(5B)-C(17B)	1.4358(18)
C(1A)-C(2A)	1.3900(17)	O(5B)-C(14B)	1.4305(13)
C(2A)-C(3A)	1.3897(16)	O(6B)-C(15B)	1.4301(15)
C(2A)-H(2A)	0.969(18)	O(6B)-H(6B)	0.79(2)
C(3A)-C(4A)	1.3984(15)	O(7B)-C(18B)	1.3659(13)
C(3A)-H(3A)	0.929(18)	O(7B)-C(21B)	1.3763(12)
C(4A)- $C(5A)$	1.3950(16)	O(8B)-C(23B)	1.2158(13)
C(4A)-C(7A)	1.4795(15)	O(9B)-C(23B)	1.3397(14)
C(5A)-C(6A)	1.3897(16)	O(9B)-C(24B)	1.4497(14)
C(5A)-H(5A)	0.891(17)	C(1B)-C(6B)	1.3940(14)
C(6A)-H(6A1)	0.951(16)	C(1B)-C(2B)	1.3935(16)
C(8A)-C(10A)	1.3341(19)	C(2B)-C(3B)	1.3865(16)
C(8A)-C(9A)	1.489(2)	C(2B)-H(2B)	0.901(16)
C(9A)-H(9A1)	0.88(2)	C(3B)-C(4B)	1.3958(15)
C(9A)-H(9A2)	0.97(2)	C(3B)-H(3B)	0.927(18)
C(9A)-H(9A3)	0.96(2)	C(4B)-C(5B)	1.3976(16)
C(10A)-C(11A)	1.4857(15)	C(4B)-C(7B)	1.4823(15)
C(10A)-C(13A)	1.5001(18)	C(5B)-C(6B)	1.3904(15)
C(12A)-C(16A)	1.525(2)	C(5B)-H(5B)	0.910(18)
C(12A)-C(13A)	1.5563(15)	C(6B)-H(6B1)	0.944(15)
C(12A)-H(12A)	0.902(19)	C(8B)-C(10B)	1.3346(18)
C(13A)-C(14A)	1.5609(16)	C(8B)-C(9B)	1.4872(19)
C(13A)-H(13A)	0.941(16)	C(9B)-H(9B1)	0.91(2)
C(14A)-C(18A)	1.5024(14)	C(9B)-H(9B2)	0.99(2)
C(14A)-C(15A)	1.5430(16)	C(9B)-H(9B3)	0.93(2)
C(15A)-C(16A)	1.5315(15)	C(10B)-C(11B)	1.4851(15)
C(15A)-H(15A)	0.966(16)	C(10B)-C(13B)	1.4994(18)
C(16A)-H(16A)	0.928(17)	C(12B)-C(16B)	1.522(2)
C(16A)-H(16B)	0.958(17)	C(12B)-C(13B)	1.5604(15)
C(17A)-H(17A)	0.95(2)	C(12B)-H(12B)	0.921(16)
С(17А)-Н(17В)	0.95(2)	C(13B)-C(14B)	1.5654(17)
C(17A)-H(17C)	0.88(2)	C(13B)-H(13B)	0.937(16)
C(18A)-C(19A)	1.3602(15)	C(14B)-C(18B)	1.5037(14)
C(19A)-C(20A)	1.4326(15)	C(14B)-C(15B)	1.5461(16)
С(19А)-Н(19А)	0.968(16)	C(15B)-C(16B)	1.5338(15)
			. ,

 Table 3. Bond lengths [Å] and angles [°] for alcohol 182 (CCDC 606989).

C(15B)-H(15B)	0.959(16)	H(9A2)-C(9A)-H(9A3)	106.3(17)
C(16B)-H(16C)	0.941(18)	C(8A)-C(10A)-C(11A)	122.62(12)
C(16B)-H(16D)	0.940(19)	C(8A)-C(10A)-C(13A)	128.54(10)
C(17B)-H(17D)	0.965(17)	C(11A)-C(10A)-C(13A)	108.45(11)
C(17B)-H(17E)	0.967(18)	O(3A)-C(11A)-O(4A)	119.81(12)
C(17B)-H(17F)	0.940(19)	O(3A)-C(11A)-C(10A)	131.28(14)
C(18B)-C(19B)	1.3621(15)	O(4A)-C(11A)-C(10A)	108.86(11)
C(19B)-C(20B)	1.4325(14)	O(4A)-C(12A)-C(16A)	109.45(10)
C(19B)-H(19B)	1.020(17)	O(4A)-C(12A)-C(13A)	106.21(11)
C(20B)-C(21B)	1.3693(15)	C(16A)-C(12A)-C(13A)	107.12(9)
C(20B)-C(22B)	1.4940(14)	O(4A)-C(12A)-H(12A)	105.6(12)
C(21B)-C(23B)	1.4673(15)	C(16A)-C(12A)-H(12A)	1147(12)
C(22B)-H(22D)	0.88(2)	C(13A)-C(12A)-H(12A)	113.4(12)
C(22B) - H(22E)	0.00(2) 0.92(2)	C(10A)- $C(13A)$ - $C(12A)$	103 48(9)
C(22B)-H(22E)	0.92(2)	C(10A)-C(13A)-C(14A)	103.40(9) 117 70(9)
C(22B) - H(22D)	0.93(2) 0.925(17)	C(12A) C(13A) C(14A)	103.81(10)
C(24B) - H(24E)	0.923(17) 0.040(10)	C(12A) - C(13A) - C(14A) C(10A) C(13A) - U(13A)	100.01(10)
C(24B) - H(24E)	0.949(19)	C(10A)-C(13A)-H(13A) C(12A)-C(12A)-H(12A)	109.9(10) 112 2(10)
$C(24B)-II(24I^{2})$	0.90(2)	C(12A)-C(13A)-H(13A)	113.2(10) 108 6(10)
C(7A) O(2A) C(8A)	115 49(0)	$C(14A)-C(15A)-\Pi(15A)$	100.0(10) 100.54(0)
C(11A) - O(2A) - C(0A)	113.46(9)	O(5A) - C(14A) - C(16A)	109.34(9) 100.05(10)
C(11A)-O(4A)-C(12A)	112.39(9)	O(5A)-C(14A)-C(15A)	109.03(10)
C(17A)-O(5A)-C(14A)	113.97(9)	C(18A)-C(14A)-C(13A)	110.10(9)
C(15A)-O(6A)-H(6A)	108.2(15)	O(5A)-C(14A)-C(13A)	102.55(8)
C(18A)-O(7A)-C(21A)	106.33(8)	C(18A)-C(14A)-C(13A)	115.37(10)
C(23A)-O(9A)-C(24A)	114.99(9)	C(15A)-C(14A)-C(13A)	103.20(9)
C(6A)-C(1A)-C(2A)	121.98(10)	O(6A)-C(15A)-C(16A)	110.76(10)
C(6A)-C(1A)-Br(1)	120.04(9)	O(6A)-C(15A)-C(14A)	107.37(10)
C(2A)-C(1A)-Br(1)	117.97(8)	C(16A)-C(15A)-C(14A)	101.58(9)
C(3A)-C(2A)-C(1A)	119.10(10)	O(6A)-C(15A)-H(15A)	111.0(9)
C(3A)-C(2A)-H(2A)	117.5(11)	C(16A)-C(15A)-H(15A)	115.1(9)
C(1A)-C(2A)-H(2A)	123.2(11)	C(14A)-C(15A)-H(15A)	110.4(9)
C(2A)-C(3A)-C(4A)	119.89(11)	C(12A)-C(16A)-C(15A)	104.43(10)
C(2A)-C(3A)-H(3A)	120.5(11)	C(12A)-C(16A)-H(16A)	110.8(11)
C(4A)-C(3A)-H(3A)	119.6(11)	C(15A)-C(16A)-H(16A)	108.7(11)
C(3A)-C(4A)-C(5A)	119.86(10)	C(12A)-C(16A)-H(16B)	110.1(10)
C(3A)-C(4A)-C(7A)	121.46(10)	C(15A)-C(16A)-H(16B)	113.1(10)
C(5A)-C(4A)-C(7A)	118.68(10)	H(16A)-C(16A)-H(16B)	109.6(14)
C(6A)-C(5A)-C(4A)	120.73(10)	O(5A)-C(17A)-H(17A)	112.3(12)
C(6A)-C(5A)-H(5A)	121.7(11)	O(5A)-C(17A)-H(17B)	106.5(12)
C(4A)-C(5A)-H(5A)	117.5(11)	H(17A)-C(17A)-H(17B)	109.6(16)
C(1A)-C(6A)-C(5A)	118.40(11)	O(5A)-C(17A)-H(17C)	109.7(15)
C(1A)-C(6A)-H(6A1)	122.4(10)	H(17A)-C(17A)-H(17C)	110.7(18)
C(5A)-C(6A)-H(6A1)	119.2(10)	H(17B)-C(17A)-H(17C)	108.0(18)
O(1A)-C(7A)-O(2A)	122.51(11)	C(19A)-C(18A)-O(7A)	110.52(9)
O(1A)-C(7A)-C(4A)	125.43(12)	C(19A)-C(18A)-C(14A)	135.62(10)
O(2A)-C(7A)-C(4A)	112.05(10)	O(7A)-C(18A)-C(14A)	113.85(9)
C(10A)-C(8A)-O(2A)	118.54(12)	C(18A)-C(19A)-C(20A)	107.01(10)
C(10A)-C(8A)-C(9A)	128.62(12)	C(18A)-C(19A)-H(19A)	126.8(10)
O(2A)-C(8A)-C(9A)	112.79(12)	C(20A)-C(19A)-H(19A)	126.2(10)
C(8A)-C(9A)-H(9A1)	110.0(14)	C(21A)-C(20A)-C(19A)	105.30(9)
C(8A)-C(9A)-H(9A2)	108.7(12)	C(21A)-C(20A)-C(22A)	128.17(10)
H(9A1)-C(9A)-H(9A2)	112.6(18)	C(19A)-C(20A)-C(22A)	126.52(10)
C(8A)-C(9A)-H(9A3)	107.5(13)	C(20A)-C(21A)-O(7A)	110.82(9)
H(9A1)-C(9A)-H(9A3)	111.6(18)	C(20A)-C(21A)-C(23A)	131.59(10)

O(7A)-C(21A)-C(23A)	117.52(9)	C(11B)-C(10B)-C(13B)	108.95(10)
C(20A)-C(22A)-H(22A)	109.5(13)	O(3B)-C(11B)-O(4B)	120.34(11)
C(20A)-C(22A)-H(22B)	109.0(13)	O(3B)-C(11B)-C(10B)	130.84(13)
H(22A)-C(22A)-H(22B)	113.7(18)	O(4B)-C(11B)-C(10B)	108.76(11)
C(20A)-C(22A)-H(22C)	113.4(14)	O(4B)-C(12B)-C(16B)	109.34(10)
H(22A)-C(22A)-H(22C)	107.2(18)	O(4B)-C(12B)-C(13B)	106.11(10)
H(22B)-C(22A)-H(22C)	104.0(18)	C(16B)-C(12B)-C(13B)	107.02(9)
O(8A)-C(23A)-O(9A)	124.47(11)	O(4B)-C(12B)-H(12B)	103.6(10)
O(8A)-C(23A)-C(21A)	123.07(11)	C(16B)-C(12B)-H(12B)	115.6(10)
O(9A)-C(23A)-C(21A)	112.46(9)	C(13B)-C(12B)-H(12B)	114.6(10)
O(9A)-C(24A)-H(24A)	109.4(11)	C(10B)-C(13B)-C(12B)	103.30(9)
O(9A)-C(24A)-H(24B)	104.7(11)	C(10B)-C(13B)-C(14B)	117.00(9)
H(24A)-C(24A)-H(24B)	114.6(15)	C(12B)-C(13B)-C(14B)	103.80(10)
O(9A)-C(24A)-H(24C)	110.5(10)	C(10B)-C(13B)-H(13B)	112.2(10)
H(24A)-C(24A)-H(24C)	110.9(15)	C(12B)-C(13B)-H(13B)	111.4(10)
H(24B)-C(24A)-H(24C)	106.6(14)	C(14B)-C(13B)-H(13B)	108.7(10)
C(7B)-O(2B)-C(8B)	115.66(9)	O(5B)-C(14B)-C(18B)	109.68(8)
C(11B)-O(4B)-C(12B)	112.32(9)	O(5B)-C(14B)-C(15B)	109.46(10)
C(17B)-O(5B)-C(14B)	115.45(10)	C(18B)-C(14B)-C(15B)	115 52(9)
C(15B)-O(6B)-H(6B)	106 6(16)	O(5B)-C(14B)-C(13B)	102.99(9)
C(18B) - O(7B) - C(21B)	106 33(8)	C(18B)-C(14B)-C(13B)	11551(10)
C(23B)-O(9B)-C(24B)	115 07(8)	C(15B)-C(14B)-C(13B)	102 78(9)
C(6B)-C(1B)-C(2B)	121 43(10)	O(6B)-C(15B)-C(16B)	102.70(9) 111.39(10)
C(6B)-C(1B)-Br(2)	120.97(8)	O(6B) - C(15B) - C(14B)	106.82(10)
C(2B)-C(1B)-Br(2)	117 56(8)	C(16B) - C(15B) - C(14B)	101.42(9)
C(2B) - C(2B) - C(1B)	119.09(10)	O(6B)-C(15B)-H(15B)	111 5(9)
C(3B)-C(2B)-H(2B)	118 7(10)	C(16B)-C(15B)-H(15B)	114 3(9)
C(1B)-C(2B)-H(2B)	122 2(10)	C(14B)-C(15B)-H(15B)	114.3(9) 110 7(9)
C(2B)-C(2B)-T(2B)	122.2(10) 120.33(10)	C(12B)-C(16B)-C(15B)	104.35(10)
C(2B)-C(3B)-H(3B)	120.35(10) 118 2(11)	C(12B)-C(16B)-H(16C)	112 9(11)
C(4B)-C(3B)-H(3B)	121.5(11)	C(15B)-C(16B)-H(16C)	112.9(11) 111 9(11)
C(3B)-C(4B)-C(5B)	119 95(10)	C(12B)-C(16B)-H(16D)	111.3(11) 111.3(12)
C(3B)-C(4B)-C(7B)	121.41(10)	C(15B)-C(16B)-H(16D)	108.7(12)
C(5B)-C(4B)-C(7B)	118 61(9)	H(16C)-C(16B)-H(16D)	107.6(12)
C(5B)-C(5B)-C(4B)	120.25(10)	O(5B) - C(17B) - H(17D)	107.0(13) 111.8(10)
C(6B)-C(5B)-H(5B)	119 5(11)	O(5B)-C(17B)-H(17E)	1057(11)
C(4B) C(5B) H(5B)	119.3(11) 120.2(11)	H(17D) C(17B) H(17E)	107.5(14)
C(1B) C(6B) C(5B)	120.2(11) 118 04(10)	O(5B) C(17B) H(17E)	107.5(14)
C(1B) - C(6B) + U(6B1)	110.94(10)	H(17D) C(17B) H(17F)	100.7(15)
C(5B)-C(6B)-H(6B1)	119.9(9) 121.2(9)	H(17E)-C(17B)-H(17E)	109.7(15) 110.4(15)
O(1B)-C(7B)-O(2B)	121.2(9) 122 88(10)	C(19B) - C(18B) - O(7B)	110.4(13)
O(1B) - C(7B) - O(2B)	122.88(10) 125.44(11)	C(19B) - C(18B) - O(7B)	134.82(10)
O(1B) - C(7B) - C(4B)	123.44(11)	O(7B) C(18B) C(14B)	134.82(10) 114.81(0)
C(10B) C(8B) O(2B)	111.00(9) 118.62(11)	C(18B) C(10B) C(20B)	107 13(9)
C(10B) - C(8B) - O(2B)	120 16(11)	C(18B) - C(19B) - C(20B) C(18B) C(19B) + H(19B)	107.13(9) 129 1(10)
O(2B) C(8B) C(9B)	129.10(11) 112.17(11)	C(10B) - C(10B) - H(10B) C(20B) C(10B) H(10B)	123.1(10) 123.7(10)
C(2B) - C(0B) + U(0B1)	112.17(11) 108 0(13)	$C(20B)-C(19B)-\Pi(19B)$ C(21B) C(20B) C(10B)	123.7(10) 105 20(0)
C(8B) - C(9B) - H(9B1)	108.9(13) 108.8(11)	C(21B) - C(20B) - C(19B)	103.29(9) 128 21(10)
$H(0R1)_C(0R)_H(0R2)$	111 2(17)	C(19B)- $C(20B)$ - $C(22B)$	126.21(10) 126.48(10)
C(8R) - C(9R) - H(9R2)	110.2(17)	C(20B)-C(21B) O(7B)	110 88(0)
H(0R1) - C(0R) - H(0R3)	10.2(13) 109 1(17)	C(20B)-C(21B)-O(7B)	130 75(0)
H(0R2) - C(0R) - H(0R2)	108.6(16)	O(7B) - C(21B) - C(23B)	118 37(0)
C(8R) = C(10R) = C(11R)	100.0(10) 122 54(12)	$C(20R)_C(22R) H(22D)$	112 6(12)
C(8B) - C(10B) - C(11B)	122.34(12) 128 24(10)	C(20B)-C(22B)-H(22D) C(20B)-C(22B)-H(22E)	112.0(13) 111 6(13)
C(0D)- $C(10D)$ - $C(13D)$	120.24(10)	$(20D)$ - $(22D)$ - $\Pi(22E)$	111.0(13)

H(22D)-C(22B)-H(22E)	110.7(18)
C(20B)-C(22B)-H(22F)	107.9(13)
H(22D)-C(22B)-H(22F)	108.0(18)
H(22E)-C(22B)-H(22F)	105.6(18)
O(8B)-C(23B)-O(9B)	124.50(10)
O(8B)-C(23B)-C(21B)	123.17(10)
O(9B)-C(23B)-C(21B)	112.32(9)
O(9B)-C(24B)-H(24D)	111.4(10)
O(9B)-C(24B)-H(24E)	107.6(11)
H(24D)-C(24B)-H(24E)	107.5(14)
O(9B)-C(24B)-H(24F)	109.6(11)
H(24D)-C(24B)-H(24F)	109.1(15)
H(24E)-C(24B)-H(24F)	111.6(15)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	146(1)	261(1)	176(1)	80(1)	24(1)	90(1)
O(1A)	132(4)	651(8)	255(5)	227(5)	30(3)	27(4)
O(2A)	141(3)	272(5)	191(4)	141(3)	1(3)	29(3)
O(3A)	266(5)	363(6)	294(6)	129(5)	-109(4)	-32(4)
O(4A)	120(3)	405(6)	231(4)	158(4)	-4(3)	56(3)
O(5A)	164(3)	229(4)	146(4)	15(3)	41(3)	60(3)
O(6A)	186(3)	296(5)	108(4)	66(3)	31(3)	101(3)
O(7A)	113(3)	235(4)	120(3)	52(3)	32(3)	71(3)
O(8A)	138(3)	413(6)	195(4)	45(4)	41(3)	119(4)
O(9A)	129(3)	280(4)	136(4)	62(3)	27(3)	68(3)
C(1A)	139(4)	167(5)	153(5)	58(4)	20(3)	59(4)
C(2A)	169(4)	287(6)	186(5)	88(5)	69(4)	112(4)
C(3A)	170(4)	245(6)	148(5)	81(4)	47(4)	82(4)
C(4A)	140(4)	165(5)	161(5)	75(4)	32(3)	32(4)
C(5A)	129(4)	256(6)	171(5)	88(4)	50(4)	40(4)
C(6A)	152(4)	226(6)	152(5)	73(4)	36(4)	42(4)
C(7A)	151(4)	212(5)	186(5)	97(4)	26(4)	31(4)
C(8A)	157(4)	274(6)	187(5)	120(5)	-6(4)	-10(4)
C(9A)	345(7)	232(7)	320(8)	102(6)	-71(6)	0(6)
C(10Å)	132(4)	275(6)	146(5)	108(4)	7(3)	21(4)
C(11A)	154(4)	342(7)	211(6)	158(5)	-20(4)	11(4)
C(12A)	135(4)	384(7)	144(5)	92(5)	46(4)	110(4)
C(13A)	115(4)	285(6)	117(4)	83(4)	30(3)	65(4)
C(14A)	124(4)	208(5)	123(4)	46(4)	37(3)	64(4)
C(15A)	169(4)	226(5)	144(5)	77(4)	52(4)	87(4)
C(16A)	190(5)	311(7)	157(5)	77(5)	47(4)	143(4)
C(17A)	214(5)	221(6)	275(7)	41(5)	46(5)	56(5)
C(18A)	112(4)	194(5)	124(4)	61(4)	31(3)	50(3)
C(19A)	132(4)	214(5)	130(5)	53(4)	38(3)	54(4)
C(20A)	132(4)	188(5)	163(5)	67(4)	59(3)	57(4)
C(21A)	113(4)	210(5)	161(5)	74(4)	49(3)	61(3)
C(22A)	174(5)	281(6)	196(6)	42(5)	74(4)	101(4)
C(23A)	131(4)	214(5)	163(5)	66(4)	37(4)	49(4)
C(24A)	139(4)	276(6)	168(5)	68(4)	18(4)	43(4)
Br(2)	116(1)	277(1)	151(1)	84(1)	26(1)	65(1)
O(1B)	129(3)	509(6)	203(4)	165(4)	39(3)	30(4)
O(2B)	126(3)	287(5)	155(4)	117(3)	11(3)	22(3)
O(3B)	251(4)	294(5)	232(5)	88(4)	-79(4)	-27(4)
O(4B)	104(3)	370(5)	184(4)	100(4)	-9(3)	25(3)
O(5B)	137(3)	262(4)	155(4)	1(3)	29(3)	61(3)
O(6B)	161(3)	297(5)	114(4)	66(3)	14(3)	82(3)
O(7B)	97(3)	248(4)	115(3)	45(3)	21(2)	59(3)
O(8B)	131(3)	308(5)	183(4)	55(3)	41(3)	89(3)
O(9B)	120(3)	273(4)	128(4)	50(3)	18(3)	60(3)
J() D)	1-0(0)		1-3(1)	23(2)	10(0)	30(3)

Table 4. Anisotropic displacement parameters (Å²x 10⁴) for alcohol 182 (CCDC 606989). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U ¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(1B)	116(4)	195(5)	132(4)	60(4)	22(3)	39(3)
C(2B)	138(4)	241(6)	150(5)	71(4)	58(4)	58(4)
C(3B)	149(4)	226(6)	130(5)	71(4)	42(3)	49(4)
C(4B)	120(4)	170(5)	140(4)	62(4)	30(3)	30(3)
C(5B)	128(4)	237(6)	164(5)	81(4)	48(4)	39(4)
C(6B)	139(4)	250(6)	130(5)	79(4)	42(3)	46(4)
C(7B)	137(4)	217(5)	141(5)	78(4)	31(3)	37(4)
C(8B)	143(4)	259(6)	144(5)	88(4)	11(4)	2(4)
C(9B)	261(6)	229(6)	276(7)	70(5)	-1(5)	26(5)
C(10B)	121(4)	283(6)	110(4)	75(4)	8(3)	2(4)
C(11B)	146(4)	313(7)	150(5)	110(5)	-6(4)	-2(4)
C(12B)	107(4)	382(7)	132(5)	51(5)	20(3)	67(4)
C(13B)	100(4)	294(6)	110(4)	62(4)	14(3)	50(4)
C(14B)	107(4)	233(5)	109(4)	31(4)	15(3)	56(4)
C(15B)	134(4)	240(6)	153(5)	64(4)	19(3)	69(4)
C(16B)	136(4)	309(7)	189(5)	51(5)	19(4)	103(4)
C(17B)	158(5)	254(6)	273(7)	15(5)	36(4)	52(4)
C(18B)	99(4)	213(5)	109(4)	50(4)	18(3)	42(3)
C(19B)	127(4)	204(5)	117(4)	61(4)	33(3)	50(3)
C(20B)	127(4)	174(5)	141(4)	66(4)	53(3)	51(3)
C(21B)	105(4)	209(5)	135(4)	65(4)	41(3)	51(3)
C(22B)	167(4)	261(6)	174(5)	54(4)	78(4)	90(4)
C(23B)	118(4)	194(5)	148(5)	70(4)	37(3)	44(3)
C(24B)	137(4)	256(6)	154(5)	51(4)	7(4)	40(4)

	X	у	Z	U _{iso}
	4022(10)	2125(1()	5005(12)	24(5)
H(6A)	4022(19)	3125(16)	5005(13)	34(5)
H(2A)	9944(17)	1133(14)	8691(12)	29(5)
H(3A)	/926(17)	956(14)	//56(12)	29(5)
H(5A)	6455(17)	1346(14)	9/21(11)	25(4)
H(6A1)	8415(15)	1494(12)	10/28(10)	16(4)
H(9A1)	3480(20)	-272(16)	5676(14)	44(6)
H(9A2)	4130(20)	-548(16)	6491(14)	43(6)
H(9A3)	4890(20)	-310(17)	5886(14)	45(6)
H(12A)	2831(18)	3565(15)	7202(12)	33(5)
H(13A)	4643(15)	3019(12)	7703(10)	16(4)
H(15A)	5328(15)	4527(12)	6094(10)	15(4)
H(16A)	3834(16)	4872(13)	6823(11)	22(4)
H(16B)	2907(16)	4157(13)	5905(11)	20(4)
H(17A)	7453(19)	5236(15)	7498(13)	36(5)
H(17B)	7248(19)	5884(16)	8368(14)	39(5)
H(17C)	6440(20)	5868(18)	7502(15)	53(7)
H(19A)	6485(16)	2343(13)	5581(11)	20(4)
H(22A)	9760(20)	1990(16)	6439(13)	39(5)
H(22B)	8910(20)	1969(17)	5596(14)	42(6)
H(22C)	8670(20)	1125(18)	5922(14)	50(6)
H(24A)	10882(17)	3196(15)	9758(12)	29(5)
H(24B)	10482(17)	4239(14)	10234(12)	28(5)
H(24C)	11386(16)	4291(13)	9709(10)	19(4)
H(6B)	10850(20)	2237(17)	4856(14)	45(6)
H(2B)	4532(16)	3722(13)	977(11)	20(4)
H(3B)	6458(17)	3951(14)	1970(12)	27(4)
H(5B)	8127(17)	3839(14)	87(11)	26(4)
H(6B1)	6152(15)	3634(12)	-935(10)	15(4)
H(9B1)	9470(20)	5439(16)	4110(14)	43(6)
H(9B2)	9907(19)	5870(16)	3429(13)	38(5)
H(9B3)	10870(20)	5685(16)	4206(13)	42(6)
H(12B)	12161(15)	2122(12)	2706(10)	17(4)
H(13B)	10187(16)	2419(13)	2165(11)	21(4)
H(15B)	9775(15)	799(13)	3743(10)	18(4)
H(16C)	12138(17)	1399(14)	3962(12)	27(4)
H(16D)	11321(18)	673(15)	3039(12)	33(5)
H(17D)	8936(16)	-580(13)	2410(11)	19(4)
H(17E)	8073(17)	-680(14)	1479(12)	29(5)
H(17F)	7731(18)	-109(14)	2320(12)	30(5)
H(19B)	8272(17)	2803(14)	4277(12)	28(5)
H(22D)	4980(20)	3105(15)	3392(13)	37(5)
H(22E)	6070(20)	3520(17)	4226(14)	45(6)
H(22E)	5250(20)	2420(18)	3935(14)	50(6)
H(24D)	3248(16)	632(13)	160(11)	20(4)
H(24E)	<u>1100(18)</u>	552(15)	_413(17)	$\frac{20(7)}{31(5)}$
H(24E)	2812(18)	1640(15)	-713(12) 20(12)	32(5)
11(271)	3012(10)	10-7(15)	20(12)	52(5)

Table 5. Hydrogen coordinates ($x 10^4$) and isotropic displacement parameters (Å²x 10³) for alcohol 182 (CCDC 606989).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(6A)-H(6A)O(4B)#1	0.76(2)	2.26(2)	3.0125(12)	169(2)
O(6B)-H(6B)O(4A)#2	0.79(2)	2.16(2)	2.9238(12)	163(2)

Table 6. Hydrogen bonds for alcohol 182 (CCDC 606989) [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z #2 x+1,y,z

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Crystal Structure Analysis of:

Furan 169

(CCDC 602164)

Contents

Table 1. Crystal data

Table 2. Atomic Coordinates

Table 3. Full bond distances and angles

Table 4. Anisotropic displacement parameters

Figure A2.3.2 Representation of Furan 169.

Ζ

 θ range for data collection

Completeness to $\theta = 28.58^{\circ}$

Data collection scan type

Data reduction program Reflections collected

Independent reflections

Absorption coefficient

Absorption correction

Max. and min. transmission

Index ranges

$C_{32}H_{28}O_{11}Br_2$ Empirical formula Formula weight 748.36 Crystallization Solvent Ethylacetate/n-heptane Blade Crystal Habit Crystal size 0.31 x 0.24 x 0.11 mm³ Colorless Crystal color **Data Collection** Type of diffractometer Bruker SMART 1000 Wavelength 0.71073 Å MoKα 100(2) K Data Collection Temperature θ range for 10496 reflections used in lattice determination 2.30 to 28.23° Unit cell dimensions a = 17.2333(11) Å b = 10.2395(7) Å $\beta = 104.5150(10)^{\circ}$ c = 18.3237(12) Å3130.2(4) Å³ Volume 4 Crystal system Monoclinic Space group $P2_1/c$ Density (calculated) 1.588 Mg/m^3 F(000) 1512 Data collection program Bruker SMART v5.630

1.22 to 28.58°

 ω scans at 5 ϕ settings Bruker SAINT v6.45A

 $49509 [R_{int} = 0.0820]$

1.0000 and 0.6884

 $-22 \le h \le 22, -13 \le k \le 13, -23 \le l \le 23$

93.7 %

49507

2.651 mm⁻¹

TWINABS

Table 1. Crystal data and structure refinement for furan 169 (CCDC 602164).

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	Bruker XS v6.12
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	Bruker XL v6.12
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	49509 / 0 / 412
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.273
Final R indices [I>2 σ (I), 35818 reflections]	R1 = 0.0465, wR2 = 0.0991
R indices (all data)	R1 = 0.0708, wR2 = 0.1032
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.002
Average shift/error	0.000
Largest diff. peak and hole	1.202 and -0.725 e.Å ⁻³

Special Refinement Details

The crystal is twinned. CELL_NOW was used to define the two domains and produce a matrix for the twin law as follows;

751 reflections within 0.100 of an integer index assigned to domain 1, 751 of them exclusively; 248 reflections not yet assigned to a domain

Rotated from first domain by 179.7 degrees about reciprocal axis 1.000 0.002 0.000 and real axis 1.000 -0.003 0.237

474 reflections within 0.100 of an integer index assigned to domain 2, 233 of them exclusively; 14 reflections not yet assigned to a domain

Twin Law: Transforms h1 -> h2 1.00010 -0.00089 0.47107 0.00022 -0.99985 0.00031 -0.00044 -0.00057 -1.00002

The data was integrated with SAINT then TWINABS was used to write the file used for refinement. From TWINABS;

13830 data (3969 unique) involve component 1 only, mean I/sigma 7.8 13557 data (3916 unique) involve component 2 only, mean I/sigma 5.4 23827 data (6687 unique) involve 2 components, mean I/sigma 7.3 36 data (36 unique) involve 3 components, mean I/sigma 4.0

Refinement using an HKLF 5 type file produced a final set of atomic parameters and a scale factor between the two domains, BASF=0.33261

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 >$ $2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	Х	У	Z	U _{eq}
Br(1)	1046(1)	2805(1)	-1563(1)	22(1)
Br(2)	6652(1)	13142(1)	1456(1)	27(1)
O(1)	1187(1)	9543(1)	-1711(1)	35(1)
O(2)	2058(1)	9038(1)	-609(1)	20(1)
O(3)	3071(1)	12918(1)	41(1)	21(1)
O(4)	2149(1)	12868(1)	709(1)	19(1)
O(5)	786(1)	12476(1)	499(1)	23(1)
O(6)	1221(1)	9189(1)	1375(1)	22(1)
O(7)	4613(1)	6506(1)	716(1)	22(1)
O(8)	4502(1)	8654(1)	420(1)	23(1)
O(9)	3103(1)	8783(1)	845(1)	16(1)
O(10)	3048(1)	10949(1)	1772(1)	17(1)
O(11)	3322(1)	12169(1)	2836(1)	25(1)
C(1)	1757(1)	6474(2)	-736(1)	18(1)
C(2)	1655(1)	5142(2)	-808(1)	21(1)
C(3)	1145(1)	4653(2)	-1455(1)	16(1)
C(4)	728(1)	5454(2)	-2020(1)	20(1)
C(5)	839(1)	6796(2)	-1941(1)	21(1)
C(6)	1362(1)	7304(2)	-1303(1)	17(1)
C(7)	1500(1)	8738(2)	-1257(1)	20(1)
C(8)	2396(1)	10292(2)	-517(1)	17(1)
C(9)	2936(1)	10604(2)	-1014(1)	25(1)
C(10)	2250(1)	10981(2)	45(1)	14(1)
C(11)	2562(1)	12316(2)	235(1)	17(1)
C(12)	1542(1)	11995(2)	853(1)	18(1)
C(13)	607(1)	13733(2)	765(1)	32(1)
C(14)	1668(1)	10657(2)	502(1)	14(1)
C(15)	1918(1)	9702(2)	1191(1)	17(1)
C(16)	684(1)	8458(2)	792(1)	30(1)
C(17)	2263(1)	10637(2)	1858(1)	17(1)
C(18)	1709(1)	11803(2)	1706(1)	19(1)
C(19)	2474(1)	8589(2)	1155(1)	15(1)
C(20)	2489(1)	7352(2)	1426(1)	19(1)
C(21)	3171(1)	6719(2)	1281(1)	18(1)
C(22)	3450(1)	5356(2)	1519(1)	28(1)
C(23)	3523(1)	7618(2)	921(1)	15(1)
C(24)	4257(1)	7678(2)	656(1)	17(1)
C(25)	5373(1)	6476(2)	504(1)	26(1)
C(26)	3520(1)	11758(2)	2291(1)	19(1)
C(27)	4283(1)	12027(2)	2093(1)	16(1)
C(28)	4504(1)	11392(2)	1500(1)	17(1)
C(29)	5210(1)	11697(2)	1320(1)	17(1)
C(30)	5693(1)	12672(2)	1724(1)	19(1)
C(31)	5490(1)	13312(2)	2315(1)	19(1)
× /	/	-= (= /	- (-)	(-)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for furan 169 (CCDC 602164). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

Br(1)-C(3)	1.9056(18)	C(11)-O(4)-C(12)	111.90(14)
Br(2)-C(30)	1.900(2)	C(12)-O(5)-C(13)	114.44(15)
O(1)-C(7)	1.198(2)	C(15)-O(6)-C(16)	116.16(14)
O(2)-C(7)	1.363(2)	C(24)-O(7)-C(25)	114.82(15)
O(2)-C(8)	1.402(2)	C(19)-O(9)-C(23)	106.47(14)
O(3)-C(11)	1.196(2)	C(26)-O(10)-C(17)	118.12(15)
O(4)-C(11)	1.376(2)	C(2)-C(1)-C(6)	120.62(18)
O(4)-C(12)	1.450(2)	C(1)-C(2)-C(3)	118.70(18)
O(5)-C(12)	1.392(2)	C(4)-C(3)-C(2)	122.03(18)
O(5)-C(13)	1.438(2)	C(4)-C(3)-Br(1)	119.91(15)
O(6)-C(15)	1 425(2)	C(2)-C(3)-Br(1)	118.05(14)
O(6)- $C(16)$	1.437(2)	C(3)-C(4)-C(5)	118.68(18)
O(7)-C(24)	1.340(2)	C(6)-C(5)-C(4)	120 12(18)
O(7) - C(25)	1.5 + 6(2) 1 458(2)	C(1)- $C(6)$ - $C(5)$	119 81(18)
O(8)-C(24)	1 206(2)	C(1) - C(6) - C(7)	121 52(18)
O(9) - C(19)	1.200(2) 1.357(2)	C(5)-C(6)-C(7)	118 65(17)
O(9) - C(23)	1.337(2) 1.385(2)	O(1)-C(7)-O(2)	123.04(19)
O(10)-C(26)	1.366(2)	O(1) - C(7) - C(6)	127.05(19)
O(10) - C(17)	1.300(2) 1.436(2)	O(2) - C(7) - C(6)	109.91(17)
O(11)- $C(26)$	1.100(2) 1.209(2)	C(10)-C(8)-O(2)	115 29(18)
C(1)-C(2)	1.209(2) 1.377(2)	C(10) - C(8) - C(9)	129 09(19)
C(1) - C(6)	1.377(2) 1.383(2)	O(2)-C(8)-C(9)	115 29(16)
C(2)-C(3)	1.303(2) 1.381(2)	C(8)- $C(10)$ - $C(11)$	123 14(18)
C(3)-C(4)	1.301(2) 1 374(2)	C(8)-C(10)-C(14)	123.14(18) 127.04(18)
C(4)-C(5)	1.374(2) 1 390(2)	C(11)-C(10)-C(14)	109 23(16)
C(5)- $C(6)$	1.396(2)	O(3)-C(11)-O(4)	120 67(18)
C(6) - C(7)	1.386(2)	O(3)-C(11)-O(4)	120.07(10) 131 11(10)
C(8)-C(10)	1.400(3) 1.324(2)	O(4)-C(11)-C(10)	108.22(17)
C(8)-C(9)	1.524(2) 1 489(2)	O(5)-C(12)-O(4)	100.22(17) 109.29(15)
C(10)- $C(11)$	1.409(2) 1 478(2)	O(5)-C(12)-O(4)	105.25(15) 115.84(17)
C(10)-C(14)	1.470(2) 1 495(2)	O(4) - C(12) - C(18)	107 84(16)
C(12)- $C(18)$	1.529(2)	O(5)-C(12)-C(14)	109.33(16)
C(12)- $C(14)$	1.529(2) 1.552(2)	O(4)-C(12)-C(14)	105.55(10) 106.62(15)
C(12)-C(15)	1.552(2) 1.570(2)	C(18) - C(12) - C(14)	107.52(15)
C(15)-C(19)	1.570(2) 1 502(3)	C(10)-C(12)-C(14)	107.32(15) 102.71(15)
C(15)-C(17)	1.502(3) 1.548(2)	C(10)-C(14)-C(15)	120 16(16)
C(17)-C(18)	1.540(2) 1.511(2)	C(12)-C(14)-C(15)	120.10(10) 104.72(14)
C(19)-C(20)	1.311(2) 1.359(2)	O(6)-C(15)-C(19)	104.72(14) 108.41(15)
C(20)- $C(21)$	1.337(2) 1 423(3)	O(6)-C(15)-C(17)	100.41(15) 102.80(15)
C(21)-C(23)	1.425(3) 1.361(2)	C(19)-C(15)-C(17)	102.30(15) 112.34(16)
C(21)-C(22)	1.501(2) 1 504(2)	O(6)-C(15)-C(14)	112.34(10) 110.07(16)
C(23)-C(24)	1.504(2) 1.467(3)	C(19)-C(15)-C(14)	119.06(16)
C(26)-C(27)	1.407(3)	C(17)-C(15)-C(14)	102 90(15)
C(27) C(32)	1.475(3) 1 307(3)	O(10) C(17) C(18)	111 90(16)
C(27) - C(32)	1.397(3) 1.398(2)	O(10)-C(17)-C(15)	103 75(15)
C(28)- $C(29)$	1.374(3)	C(18)-C(17)-C(15)	104 04(15)
C(20) - C(20)	1.37 + (3) 1 388(2)	C(17)-C(18)-C(12)	104.04(13)
C(30) $C(31)$	1.384(2)	O(9) - C(10) - C(12)	110 22(17)
C(31) - C(32)	1.30+(2) 1.377(3)	O(9) - C(19) - C(15)	110.22(17) 110.53(17)
C(31)- $C(32)$	1.377(3)	C(20) - C(19) - C(15)	130 16(10)
C(7) O(2) C(8) 1	10 53(15)	C(10) C(20) C(21)	107 20(19)
C(1) - O(2) - C(0) 1	19.33(13)	C(19) - C(20) - C(21)	107.29(10)

 Table 3. Bond lengths [Å] and angles [°] for furan 169 (CCDC 602164).

C(23)-C(21)-C(20)	105.73(17)
C(23)-C(21)-C(22)	128.2(2)
C(20)-C(21)-C(22)	125.96(18)
C(21)-C(23)-O(9)	110.29(17)
C(21)-C(23)-C(24)	135.72(19)
O(9)-C(23)-C(24)	113.77(16)
O(8)-C(24)-O(7)	125.31(19)
O(8)-C(24)-C(23)	124.23(19)
O(7)-C(24)-C(23)	110.46(17)
O(11)-C(26)-O(10)	123.0(2)
O(11)-C(26)-C(27)	126.35(19)
O(10)-C(26)-C(27)	110.68(17)
C(32)-C(27)-C(28)	119.08(19)
C(32)-C(27)-C(26)	118.29(17)
C(28)-C(27)-C(26)	122.59(19)
C(29)-C(28)-C(27)	120.74(19)
C(28)-C(29)-C(30)	118.97(18)
C(31)-C(30)-C(29)	121.5(2)
C(31)-C(30)-Br(2)	119.30(16)
C(29)-C(30)-Br(2)	119.23(15)
C(32)-C(31)-C(30)	119.16(19)
C(31)-C(32)-C(27)	120.55(18)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	259(1)	175(1)	232(1)	-2(1)	60(1)	-29(1)
Br(2)	217(1)	295(1)	321(1)	-33(1)	84(1)	-52(1)
O(1)	409(12)	190(8)	336(9)	75(7)	-96(8)	28(8)
O(2)	278(10)	146(8)	156(8)	-5(6)	22(7)	-13(7)
O(3)	187(9)	183(8)	266(8)	10(7)	98(7)	-23(7)
O(4)	202(9)	162(8)	232(8)	-2(6)	101(7)	6(7)
O(5)	163(9)	238(9)	276(8)	6(6)	50(7)	74(7)
O(6)	161(9)	270(9)	240(8)	29(6)	98(7)	-26(7)
O(7)	190(9)	174(8)	288(8)	-13(6)	64(7)	32(7)
O(8)	256(10)	190(8)	273(8)	27(7)	119(7)	14(7)
O(9)	163(9)	151(7)	180(7)	25(6)	57(7)	5(6)
O(10)	149(9)	199(8)	161(7)	-36(6)	39(7)	-12(7)
O(11)	250(9)	324(9)	186(8)	-78(7)	87(7)	4(8)
C(1)	176(13)	181(12)	158(11)	-17(9)	2(10)	-4(10)
C(2)	213(14)	201(12)	191(12)	42(9)	30(11)	-11(10)
C(3)	184(13)	135(11)	176(11)	-18(9)	72(10)	6(10)
C(4)	208(13)	229(12)	150(11)	-37(9)	22(10)	-9(10)
C(5)	231(14)	200(12)	178(11)	35(9)	14(10)	33(10)
C(6)	201(13)	150(11)	168(11)	1(9)	72(9)	21(10)
C(7)	183(14)	225(12)	189(12)	-11(10)	50(10)	12(11)
C(8)	207(14)	113(11)	174(11)	51(9)	5(10)	19(10)
C(9)	322(15)	188(12)	250(12)	-10(10)	115(11)	16(11)
C(10)	132(12)	131(11)	153(11)	47(9)	15(10)	18(9)
C(11)	165(13)	184(12)	134(11)	34(9)	7(10)	42(10)
C(12)	144(13)	179(12)	208(11)	3(9)	56(10)	35(10)
C(13)	287(15)	274(13)	411(15)	14(11)	101(12)	117(12)
C(14)	125(12)	159(11)	144(11)	9(9)	21(9)	12(9)
C(15)	135(13)	194(12)	188(12)	26(9)	72(10)	-18(10)
C(16)	183(14)	335(14)	345(14)	41(11)	18(11)	-110(11)
C(17)	138(13)	236(12)	145(11)	18(9)	59(10)	11(10)
C(18)	153(13)	230(12)	198(11)	4(9)	87(10)	35(10)
C(19)	110(12)	199(12)	125(11)	2(9)	17(9)	-8(10)
C(20)	174(13)	191(12)	190(11)	-3(10)	44(10)	-45(10)
C(21)	182(14)	187(11)	147(11)	-20(9)	-24(10)	-6(10)
C(22)	338(16)	166(12)	330(14)	39(10)	67(12)	-22(11)
C(23)	172(13)	119(11)	142(11)	-10(9)	9(9)	36(9)
C(24)	147(13)	197(12)	136(11)	-28(9)	-20(9)	-4(10)
C(25)	201(14)	243(13)	332(13)	-28(10)	62(11)	77(11)
C(26)	203(14)	134(11)	193(11)	43(9)	-5(10)	24(10)
C(27)	180(13)	143(11)	128(10)	24(9)	14(9)	44(10)
C(28)	213(14)	120(11)	152(11)	-15(9)	11(10)	7(10)
C(29)	181(13)	163(11)	171(11)	-23(9)	48(10)	41(10)
C(30)	184(13)	177(11)	214(11)	34(10)	44(10)	39(10)
C(31)	208(14)	135(11)	199(12)	-13(9)	-12(10)	24(10)
C(32)	218(14)	159(12)	137(11)	-11(9)	-3(10)	48(10)

Table 4. Anisotropic displacement parameters (Å²x 10⁴) for furan 169 (CCDC 602164). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]