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Abstract 

A large body of work in the Grubbs group has focused on the development of 

functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin 

metathesis reactions.  These catalysts have seen application in a wide range of fields, 

including classic total synthesis as well as polymer and materials chemistry. One 

particular family of compounds, interlocked molecules, has benefitted greatly from these 

advances in catalyst stability and activity.  This thesis describes several elusive and 

challenging interlocked architectures whose syntheses have been realized through the 

utilization of different types of ruthenium-catalyzed olefin metathesis reactions. 

Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain 

dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD 

possessing such a structural attribute will more forcefully seek to restore coordinating 

interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. 

Dimer functionalization facilitated incorporation into linear polymers, with a 48% size 

increase of an unbound, extended analogue of the polymer demonstrating slippage of the 

dimer units. Ongoing work is directed at further materials studies, in particular, exploring 

the synthesis of macroscopic networks containing the DCD units and analyzing the 

correlation between molecular-scale extension-contraction manipulations and resulting 

macro-scale changes. 

A “clipping” approach to a polycatenated cyclic polymer, a structure that 

resembles a molecular “charm bracelet”, has been described. The use of ring-opening 

metathesis polymerization of a carbamate monomer in the presence of a chain transfer 
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agent allowed for the synthesis of a linear polymer that was subsequently functionalized 

and cyclized to the corresponding cyclic analogue.  This cyclic polymer was 

characterized through a variety of techniques, and subjected to further functionalization 

reactions, affording a cyclic polyammonium scaffold.  Diolefin polyether fragments were 

coordinated and “clipped” around the ammonium sites within the polymer backbone 

using ring-closing olefin metathesis, giving the molecular “charm bracelet”.  

Confirmation of the interlocked nature of the product was achieved via 1H NMR 

spectroscopy and two-dimensional diffusion ordered NMR spectroscopy. 

A simple strategy for a one-pot, multi-component synthesis of polyrotaxanes 

using acyclic diene metathesis polymerization was developed. The polyrotaxanes were 

characterized by traditional 1H NMR spectroscopy as well as size exclusion 

chromatography, and the interlocked topology was confirmed using two-dimension 

diffusion-ordered NMR spectroscopy.  The dynamic, self-correcting nature of the 

ADMET polymerization was also explored through the equilibration of a capped 

polyammonium polymer in the presence of dibenzo-24-crown-8 ether and olefin 

metathesis catalysts.  The efficiency and ease with which these mechanically interlocked 

macromolecules can be assembled should facilitate rapid modulation to achieve versatile 

polyrotaxane architectures. 

Flexible, switchable [c2]daisy-chain dimers (DCDs) were synthesized, where the 

macromer ammonium binding site was adjacent to the crown-type recognition structure 

and separated from the cap by an alkyl chain. A DCD of this topology is expected to have 

an extended structure in the bound conformation (when the ammonium was coordinated 



xiii 
 
to the crown). Several different macromer candidates were designed to allow access to 

DCDs with flexible alkyl chains between the ammonium binding site and the cap, and a 

number of synthetic routes were explored in an effort to access these challenging 

materials. While the first generation DCD structure proved to be unstable due to a labile 

ester linkage, work is continuing toward the development of several cap structures in an 

effort to replace the ester linkage with an ether linkage, which, in the second generation 

model systems, has proven much more stable to the acidic and basic conditions necessary 

to induce switching of the dimeric architecture. 

One of the efforts in our lab is directed at the synthesis of 18F-labeled 

nanoparticles to be used as tumor imaging agents in positron emission tomography. We 

have been working to optimize fluorine incorporation while minimizing NP crosslinking. 

Because of evidence of NP side-reactions with the potassium carbonate base, we have 

begun to use potassium benzoate solid-state beads.  To analyze the fluorinated NPs, 

various sorbents were explored.  It was found that silica sorbents rapidly reacted and 

bound to the NPs, while the NPs remained unreactive and mobile on alumina. Further 

analysis of the NPs has been accomplished using 2D-DOSY NMR spectroscopy. Future 

work with the NPs will involve a systematic evaluation of the role of water on the extent 

of fluorination, as well as functionalization of the NPs with Cy5.5 dye for use in studies 

on eyes to be done in collaboration with researchers at the Mayo Clinic. 

 

 

 



xiv 
 
Table of Contents 
 
 
Acknowlegments……………………………………………………………………...iv  
Abstract…………………………………………………………………………..…... xi 
Table of Contents…………………………………………………………………… xiv 
List of Figures………………………………………………………………………. xvi  
List of Schemes……………………………………………………………………… xx 
List of Abbreviations……………………………………………………………… xxiv 
 
 

Chapter 1: Introduction………………………...………………………………... 1 
 Introduction………………………………………………………………....… 2 
 Interlocked Molecules………………………………………………………… 2 
 Crown Ether/Ammonium Molecular Recognition……….…………………… 8 
 Dynamic Covalent Chemistry……………………………………………….. 11 
 Olefin Metathesis……………………………………………………………. 13 
 References…………………………………………………………………… 22 
 
 
Chapter 2: [c2]Daisy-Chain Dimers, From Synthesis to 
Application in Materials……………………………………………………....... 31 
 Introduction…………………………………………………………….......... 32 
 Dimer Synthesis and Analysis………………………………………..……... 35 
 Dimer Switching…………………………………………………………...... 40 
 Materials Synthesis…………...……………………………………………... 42 
 Conclusions…………………………………..……………………………… 50 
 References…………………………………………………………………… 50 
 Experimental Information…………………………………………………… 55 
   
 
Chapter 3: Synthesis of a Molecular Charm Bracelet  
via Click Cyclization and Olefin Metathesis Clipping………………………... 164 
 Introduction………………………………………………………………… 165 
 Monomer Design and Synthesis…………………………………………… 169 
 Polymer Synthesis and Characterization………………………………...… 170 
 Polymer Functionalization…………………………………………………. 176 
 Molecular “Charm Bracelet” Synthesis and Analysis……………………... 179 
 Conclusions………………………………………………………………… 183 
 References………………………………………………………………….. 184 
 Experimental Information………………………………………………….. 192 
 
 
 



xv 
 

Chapter 4: Facile Synthesis of Polyrotaxanes via Acyclic  
Diene Metathesis Polymerization of Supramolecular Monomers.………..… 265 
 Introduction/Motivation……………………………………………………. 266 
 Results and Discussion…………………………………………………….. 266 
 Continuing Work………….……………………………………………….. 271 
 Conclusions………………………………………………………………… 273 
 References………………………………………………………………….. 273 
  
 
Appendix 1: Flexible [c2]Daisy-Chain Dimers………………………………..275 
 Introduction/Motivation……………………………………………………. 276 
 Synthesis of the First Generation Flexible [c2]Daisy-Chain Dimer..…….... 277 
 Macromer Modifications…………………………………………………... 284 
 Conclusions……………………………………………………………….... 289 
 References………………………………………………………………...... 290 
 Experimental Information………………………………………………...... 292 
 
 
Appendix 2: Progress Toward 18F Labeled Nanoparticles 
as in vivo Imaging Agents…………………………………………………...... 309 
 Recent Results and Discussion…………………………………………….. 310 
 Future Work………………………………………………………………... 313 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xvi 
 
List of Figures 
 
 
Chapter 1: Introduction 

Figure 1.1 Graphical depiction of the simplest interlocked  

 molecules, a [2]catenane, [2]rotaxane, and 

 [2]pseudorotaxane…………………..………………………… 2 

Figure 1.2 Supramolecular complex formation and  

 important parameters that impact complexation……..……….. 5 

Figure 1.3 Graphical representation of exotic interlocked  

 architectures that necessitate supramolecular  

 templation……………………………………………………...6 

Figure 1.4 Graphical representation of [2]rotaxane and  

 [2]catenane bistable molecular switches…………………….... 6 

Figure 1.5 Graphical representation of polyrotaxane  

 and polycatenane interlocked architectures…………………... 7 

Figure 1.6 Impact of crown ether structure on the association  

 constants with ammonium ions 2 and 10……………………. 10 

Figure 1.7 Structures of some ruthenium-based olefin  

 metathesis catalysts………………………………………….. 14 

Figure 1.8 Various olefin metathesis reactions and their products……... 16 

Figure 1.9 Various ROMP monomers and their ring-strain energies….... 19 

 

 



xvii 
 
Chapter 2: [c2]Daisy-Chain Dimers, From Synthesis to Application in Materials 

Figure 2.1 Graphical representation of switching of a  

 bistable DCD and a terminal-ammonium DCD……………... 32 

Figure 2.2 Structure of macromer 1-H·PF6…………………….……….. 34 

Figure 2.3 Solid-state structure of 20-H2·2PF6 and analysis  

 of π-π slipped-stacking interactions using the 

 crystal structure and NMR spectra………………………….. 39 

Figure 2.4 Diastereomers formed during dimerization of 1-H·PF6……...39 

Figure 2.5 NMR spectra of “switching” of dimer 18-H2·2PF6…………. 41 

Figure 2.6 Click gelation of 22-H2·2PF6 to produce 

 amorphous gels and gel cylinders………………………….... 45 

Figure 2.7 Relationship between copper catalyst loading 

 and trialkyne/22-H2·2PF6 gelation time……………………... 46 

Figure 2.8 Small library of trialkynes used to tailor the  

 stability and properties of the DCD click gels………………. 46 

 

Chapter 3: Synthesis of a Molecular Charm Bracelet via Click Cyclization and Olefin 

Metathesis Clipping 

Figure 3.1 Graphical representation of the macrocyclization  

 of an α,ω-heterotelechelic polymer under  

 high-dilution conditions……………………………………. 166 

Figure 3.2 Ruthenium olefin metathesis catalysts 1 and 2…………….. 166 



xviii 
 

Figure 3.3 Examples of a mechanically-interlocked [2]rotaxane 

 and a [2]catenane synthesized using olefin metathesis…….. 167 

Figure 3.4 Graphical representations of various polycatenane  

 structures, including main-chain, side-chain,  

 and cyclic polycatenanes…………………………………… 168 

Figure 3.5 GPC traces of linear bromide polymer L-11,  

 linear azide polymer L-12, doubly-clicked  

 linear polymer L-15, and cyclic polymer C-13……………. 172 

Figure 3.6 Proton NMR spectral analysis of polymer  

 end-group resonances for L-11, L-12, and C-13…………... 172 

Figure 3.7 FT-IR spectrum for L-11, L-12, L-15, and C-13…………...173 

Figure 3.8 Proton NMR spectral analysis of clicked polymer  

 end-group resonances for L-15 and C-13………………….. 175 

Figure 3.9 Proton NMR spectral analysis of the threading  

 interactions of 24-crown-8 ether with C-13 and L-15……... 178 

Figure 3.10 Two-dimensional DOSY 1H NMR spectra of ring-closed  

 crown 23, cyclic polyammonium polymer C-17-nH·nPF6,  

 molecular charm bracelet C-22-nH·nPF6, and a physical 

  mixture of C-22-nH·nPF6 and 23………………………….. 182 

 

 

 



xix 
 
Chapter 4: Facile Synthesis of Polyrotaxanes via Acyclic Diene Metathesis 

Polymerization of Supramolecular Monomers 

Figure 4.1 2D-DOSY NMR of polyrotaxane 6-mH·mPF6……………. 269 

Figure 4.2 Data for ADMET polymerizations of various monomers 

 to form polyrotaxane 6-mH·mPF6…………………………. 270 

 

Appendix 1: Flexible [c2]Daisy-Chain Dimers 

Figure A1.1 Graphical comparison of DCDs formed from a macromer  

 with adjacent recognition moiety and binding site and  

 the terminal-ammonium macromer from Chapter 2….……. 276 

Figure A1.2 First generation macromer 1-H·PF6………………………... 278 

Figure A1.3 Second generation macromer 20-H·PF6….............................284 

Figure A1.4 Cap structures 27, 28, and 29 that will be used to make  

 DCDs presenting functional handles for incorporation  

 in materials………………………………............................. 286 

Figure A1.5 Third generation macromer 30-H·PF6……........................... 287 

 

Appendix 2: Progress Toward 18F Labeled Nanoparticles as in vivo Imaging Agents 

Figure A2.1 Two-dimensional DOSY 1H NMR spectrum of  

 fluorinated nanoparticles………………………………….... 313 

Figure A2.2 General structure of Cy5.5 dye to be  

 appended to NPs…………………………………………… 314 



xx 
 
List of Schemes 
 
 
Chapter 1: Introduction 

Scheme 1.1 Synthesis of the First [2]Catenane 1…………………………. 4 

Scheme 1.2 “Perching” and “Nesting” Interactions Between  

 Crown Ethers and Ammonium Ions………………………….. 8 

Scheme 1.3 Irreversible Kinetic and Reversible Dynamic Covalent  

 Interlocking Reactions to Form a [2]Rotaxane……………… 11 

Scheme 1.4 Metal-Alkylidene Mediated Olefin Metathesis Mechanism… 13 

Scheme 1.5 Synthesis of a Monodisperse Polymer and an  

 End-Functionalized Telechelic Polymer via ROMP………… 20 

 

Chapter 2: [c2]Daisy-Chain Dimers, From Synthesis to Application in Materials 

Scheme 2.1 Graphical Representation of DCD Synthesis  

 via RCM or Capping………………………………………… 33 

Scheme 2.2 Graphical DCD Synthesis and Possible  

 Intramolecularly-Coupled Side-Products……………………. 34 

Scheme 2.3 Synthesis of Crown-Biphenyl Fragment 3…………………... 35 

Scheme 2.4 Synthesis of Cap Fragment 12………………………………. 36 

Scheme 2.5 Synthesis of DCD Macromer 1-H·PF6……………………… 37 

Scheme 2.6 Synthesis of DCD 18-H2·2PF6 and Ring-Closed  

 Macromer 19-H·PF6……………………………………….....37 

Scheme 2.7 Saturation of DCD 18-H2·2PF6……………………………… 38 



xxi 
 

Scheme 2.8 Switching of DCD 18-H2·2PF6……………………………… 40 

Scheme 2.9 Synthesis of Azide Dimer 22-H2·2PF6……………………… 42 

Scheme 2.10 Synthesis of Linear DCD Polymer 23-H2n·2nPF6,  

 Neutral Polymer 24, and Extended Acylated  

 Analogue 25…………………………………………………. 43 

Scheme 2.11 Click Gelation of 22-H2·2PF6 and Tripropargylamine……… 44 

Scheme 2.12 Screened Conditions to Elongate DCD Gels………………... 47 

Scheme 2.13 Synthesis of Porous DCD Gel………………………………. 49 

 

Chapter 3: Synthesis of a Molecular Charm Bracelet via Click Cyclization and Olefin 

Metathesis Clipping 

Scheme 3.1 Synthesis of 9-Membered Cyclic Carbamate Monomer 3.… 169 

Scheme 3.2 Synthesis of Linear Telechelic Dibromide Polymer L-11,  

 Diazide Polymer L-12, and Cyclic Polymer C-13………….171 

Scheme 3.3 ‘Click’ Removal of Linear Contaminants from  

 Cyclic Polymer C-13 Using Azide- and  

 Alkyne-Functionalized Beads…………………………….... 174 

Scheme 3.4 Synthesis of Doubly-Clicked Linear Polymer L-15……….. 175 

Scheme 3.5 Synthesis of Cyclic Polyammonium C-17-nH·nPF6  

 and Linear Polyammonium L-18-nH·nPF6………………....177 

Scheme 3.6 Screen Reaction to Determine Effect of Nitromethane  

 Concentration on RCM Olefin Conversion………………... 180 



xxii 
 

Scheme 3.7 Graphical Representation of the Synthesis of  

 Molecular “Charm Bracelet” C-22-nH·nPF6………………. 181 

 

Chapter 4: Facile Synthesis of Polyrotaxanes via Acyclic Diene Metathesis 

Polymerization of Supramolecular Monomers 

Scheme 4.1 Synthesis of Dialkenyl Ammonium Salts 2a and 2b and  

 Templation with DB24C8 to Provide Supramolecular  

 Monomers 3a and 3b………………………………………. 267 

Scheme 4.2 ADMET Polymerization of Supramolecular Monomers  

 3a and 3b to Form Polyrotaxane 6-mH·mPF6……………... 268 

Scheme 4.3 One-Pot ADMET Polymerization to Form 6-mH·mPF6…… 271 

Scheme 4.4 Proposed Threading Equilibration Test of Capped  

 Polyammonium Polymer 7-mH·mPF6 with  

 Catalysts 4 and 8…………………………………………… 272 

 

Appendix 1: Flexible [c2]Daisy-Chain Dimers 

Scheme A1.1 Synthesis of Crown Fragment 8……………………………. 278 

Scheme A1.2 Synthesis of Flexible Cap Fragment 15……………………. 280 

Scheme A1.3 Synthesis of Macromer 1-H·PF6…………………………… 281 

Scheme A1.4 Dimerization of 1-H·PF6…………………………………… 282 

Scheme A1.5 Synthesis of Macromer 20-H·PF6………………………….. 285 

Scheme A1.6 Dimerization of Macromer 20-H·PF6……………………… 286 



xxiii 
 

Scheme A1.7 Synthesis of Third Generation Flexible  

 Backbone-Cap 34…………………………………………... 288 

 

Appendix 2: Progress Toward 18F Labeled Nanoparticles as in vivo Imaging Agents 

Scheme A2.1 Fluorination of Mesylated Nanoparticles…………………...310 

Scheme A2.2 Synthesis of Resin-Bound Potassium Benzoate…………….312 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxiv 
 
List of Abbreviations 
 
 
24C8 24-crown-8 ether 

Ac2O acetic anhydride 

ADMET acyclic diene metathesis 

Boc tert-butyl carbamate 

Boc2O di-tert-butyl dicarbamate 

CD3CN deuterated acetonitrile 

CDCl3
 deuterated chloroform 

click Huisgen 1,3-dipolar cycloaddition 

CM cross metathesis 

COD cyclooctadiene 

COSY correlation spectroscopy 

CP cyclic polymer 

CsCO3 cesium carbonate 

CTA chain-transfer agent 

CuAAC copper-catalyzed alkyne-azide click 

CuBr copper(I) bromide 

DB24C8 dibenzo-24-crown-8 ether 

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene 

dc change in concentration 

DCC dynamic covalent chemistry 

DCD [c2]daisy-chain dimer 



xxv 
 
DCM dichloromethane 

DMAP 4-dimethylaminopyridine 

DMF N,N-dimethylformamide 

DMSO dimethylsulfoxide 

DMTS dimethylthexylsilyl 

dn change in refractive index 

D2O deuterium oxide 

DOSY (or 2D-DOSY) diffusion ordered nuclear magnetic 
resonance spectroscopy 

 
DP degree of polymerization 

DPTS N,N-dimethylaminopyridinium p-toluene-
sulfonate 

 
D.-S. Dean-Stark 

EDC 1-ethyl-3-(3-dimethylaminopropyl)-
carbodiimide 

 
EI electrospray ionization 

Et3N triethylamine 

FAB fast atom bombardment 

FT-IR Fourier-transform infrared 

GPC gel permeation chromatography  

1H proton 

HMBC heteronuclear multiple-bond correlation 

HPF6 hydrogen hexafluorophosphate 

HSQC heteronuclear spin quantum coherence 



xxvi 
 
K222 kryptofix-222 

Ka association constant 

K2CO3 potassium carbonate 

KOH potassium hydroxide 

kDa kilodaltons 

LAH lithium aluminum hydride 

M molarity 

MeNO2 nitromethane 

MALDI matrix-assisted laser-desorption/ionization 

MALLS multiangle laser light scattering 

MeOH methanol 

MgSO4 magnesium sulfate 

Mn number average molecular weight 

Mw weight average molecular weight 

MS mass spectrometry 

MsCl methanesulfonyl chloride 

MW molecular weight 

NaBH4 sodium borohydride 

NaOH sodium hydroxide 

NHC N-heterocyclic carbene 

NMR nuclear magnetic resonance 

NOESY nuclear Overhauser enhancement 
spectroscopy 



xxvii 
 
 
NP nanoparticle 

PCy3 tricyclohexylphosphine 

PDI polydispersity index 

PF6 hexafluorophosphate 

PMDETA N,N,N’,N”,N”-pentamethyldiethylene-
triamine 

 
PPh3 triphenylphosphine 

Rg radius of gyration 

Rh radius of hydration 

RCM ring-closing metathesis 

ROMP ring-opening metathesis polymerization 

r.t. room temperature 

TBDPS tert-butyldiphenylsilyl 

TBS tert-butyldimethylsilyl 

TBSCl tert-butyldimethylsilyl chloride 

TEA triethylamine 

TFA trifluoroacetic acid 

ThDMS thexyldimethylsilyl 

THF tetrahydrofuran 

THP tetrahydropyranyl 

TLC thin-layer chromatography 

TsCl para-toluenesulfonyl chloride 



xxviii 
 
TOF time-of-flight 

wt weight 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

 

 

 

 

 

CHAPTER 1 

 
 

Introduction: 
Interlocked Molecules and Olefin Metathesis 
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A large body of work in the Grubbs group has focused on the development of 

functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin 

metathesis reactions.  These catalysts have seen application in a wide range of fields, 

including classic total synthesis as well as polymer and materials chemistry. One 

particular family of compounds, interlocked molecules, has benefitted greatly from these 

advances in catalyst stability and activity.  This thesis describes several elusive and 

challenging interlocked architectures whose syntheses have been realized through the 

utilization of different types of ruthenium-catalyzed olefin metathesis reactions. 

 
Interlocked Molecules 

Interlocked molecules are defined as compounds composed of two or more 

discrete molecules that contain no covalent bonds between them, but that cannot be 

separated without cleavage of at least one covalent bond. The family of interlocked 

molecules1-5 has two primary categories: catenanes and rotaxanes (Figure 1.1). Catenanes 

are structures composed of two or more rings threaded through one another,6-10 and the 

simplest form is the [2]catenane (Figure 1.1A).  In this nomenclature system, the number 

Figure 1.1: Graphical depiction of the simplest interlocked molecules, the [2]catenane
(A) and [2]rotaxane (B), and a non-interlocked precursor, the [2]pseudorotaxane (C). 

[2]Catenane [2]Rotaxane [2]Pseudorotaxane

A B C
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in brackets designates how many independent molecules are interlocked together.  

Rotaxanes are the second major class of interlocked molecules,11-17 and are composed of 

a dumbbell-like rod encircled by one or more rings. Nomenclature of rotaxanes is the 

same as that for catenanes, with the lowest-complexity rotaxane, a [2]rotaxane (Figure 

1.1B), having just a single ring encircling a rod-like structure.  Often, the central rod has 

bulky groups on each end, as this prevents dethreading of the complex. A structure that 

lacks these “stoppers” is termed a pseudorotaxane (Figure 1.1B) due to the dynamic 

nature of the complex (the ring can slip off of the rod). Pseudorotaxanes are common 

precursors to both rotaxanes and catenanes. Though both rotaxanes and catenanes are 

interlocked molecules, catenanes are considered topological isomers since cleavage of a 

covalent bond is required to separate the rings, while rotaxanes are constitutional 

isomers, as it is theoretically possible to slip a ring over the blocking group and separate 

the molecules without covalent bond cleavage. 

The first synthesis (Scheme 1.1) of an interlocked molecule, [2]catenane 1, was 

reported by Wasserman and coworkers as Bell Laboratories in 1960,10 and was the result 

of statistical threading of a linear chain through a macrocycle and the subsequent 

cyclization of that linear chain via an acyloin condensation. While the researchers were 

able to isolate interlocked product, they were only able to obtain a 1% yield of 1 due in 

part to the low-probability threading-cyclization process. Indeed, the syntheses of 

interlocked molecules have traditionally suffered from a low yield of desired product, and 

these low-yielding reactions created a two-fold problem: first, producing reasonable 

quantities of well-controlled interlocked structures was an intractable task, and, second, 
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the interlocked product had to be separated from the non-interlocked by-products.  Many 

purification processes proved laborious and challenging, greatly increasing the time 

required to obtain bulk amounts of material and limiting the development of technologies 

employing mechanically interlocked structures as key building blocks. 

While interlocked molecules have always piqued the interest of researchers, these 

structures remained little more than intellectual curiosities for a long period of time. A 

major advance in the field occurred when supramolecular chemistry, also known as 

“host-guest” chemistry, was applied to the synthesis of interlocked structures.1-5,18,19 

Supramolecular chemistry enables assembly in solution of dynamic complexes composed 

of a number of different molecular constituents (Figure 1.2).  These complexes are often 

held together by weak intra- or intermolecular interactions (such as hydrogen bonding20 

or π-π stacking),21,22 though strong metal coordination has also been exploited to produce 

supramolecular complexes with good success.23-25 Regardless of the type of 
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O
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Scheme 1.1: Synthesis of the First [2]Catenane 1 
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+

Guest Host Complex

Ka

Increase in Temperature
Intermolecular
Interactions

Increase in Concentration

molecular recognition employed, the strength of the interaction between the pieces is 

denoted by the association constant, Ka, which has units of inverse concentration. The 

value of Ka determines whether, under specific conditions, a given system will favor the 

free constituents or the host-guest complex. Also, increasing the concentration of the host 

and guest structures favors complex formation, while increasing temperature decreases 

complexation. 

Designing precursor molecules that contain precisely-located recognition moieties 

has enabled researchers to control the orientation of the pieces of a supramolecular 

architecture with respect to one another prior to the final covalent interlocking reaction. 

Such control has not only facilitated higher-yielding syntheses of simple interlocked 

Figure 1.2: Supramolecular complex formation and various parameters that impact the
quantity of complex versus free guest and host. 
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structures, but has also allowed the realization of beautiful and elegant structures (Figure 

1.3) unattainable via statistical interlocking procedures.26-32 While mechanically 

interlocked complexes are intellectually intriguing and pose significant synthetic 

challenge, recent advances in nanotechnology have indicated that structures are more 

than simple curiosities.  Some design motifs enable coding of information using the 

topological orientation of the interlocked components, so-called molecular switches 

(Figure 1.4).  In addition to molecular data storage, other types of interlocked structures 

Figure 1.3: Graphical representation of various exotic interlocked structures whose 
syntheses necessitate the use of supramolecular host-guest templation 

Trigger

Trigger

Figure 1.4: Graphical representation of bistable [2]rotaxanes and [2]catenanes that can
be used as molecular switches. 
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such as daisy-chain dimers (Figure 1.3A)26-30 can potentially behave as molecular 

machines, undergoing changes of dimension30 and exerting forces on external surfaces. 

Regardless of the application, mechanically interlocked structures represent an intriguing 

subset of molecules that may allow control over device features on the nanoscale.33-45 

This type of “bottom-up” approach provides an attractive alternative to “top-down” 

fabrication techniques, such as microlithography. 

When designing a synthetic route to a particular interlocked compound, whether a 

small molecule (Figure 1.1 and 1.3) or polymeric structure (Figure 1.5),46-51 two 

parameters play the most significant role in the success (or failure) of the synthesis. The 

first involves the identity of the recognition motifs. Though utilizing a system with a high 

Ka is a worthy goal, further consideration of the type of molecular recognition is critical 

to not only the synthesis of the molecule but the subsequent “function” of the interlocked 

structure. Additionally, it is important to use a templation motif that is stable to the 

n nn nn

Main-Chain

Polyrotaxanes

n

Side-Chain

n

n n

n

Main-Chain

n

Side-Chain

Polycatenanes

n

Figure 1.5: Graphical representation of various polyrotaxane and polycatenane 
interlocked architectures. 



8 
 
necessary interlocking reaction, which is the second critical component of the synthesis. 

Both of these topics warrant further elaboration, and will be discussed in more depth in 

this chapter as well as the individual chapters of this thesis. 

 
Crown Ether/Ammonium Molecular Recognition 

While many classes of intermolecular interactions have been employed in the 

supramolecular assembly and synthesis of interlocked compounds, hydrogen bonding has 

received particular attention. Nature has provided inspiration for a number of these 

motifs,52 and some common biologically-based hydrogen bonding units exploited to 

template supramolecular complexes include base-pair hydrogen bonding53,54 and amide 

hydrogen bonding.55-59 In addition to these groups, hydrogen bonding between crown 

ethers and ammonium ions has a rich history in the interlocked molecules                

literature.1-5,20,60-62 Throughout the subsequent chapters, the threaded interactions between 

crown ethers and disubstituted ammonium ions (Scheme 1.2) were harnessed to produce 

complex interlocked architectures.  

Crown ethers are macrocyclic polyether structures containing a number of oxygen 

atoms within their skeleton.  These structures were first discovered by Pederson63,64 and, 
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later, studied by Cram,65 and their work with these structures earned them a Nobel Prize 

in 1987. It has been well-established that crown ethers bind metal cations (potassium, 

sodium, etc.), but these species can also form association complexes with mono- or 

dialkylated ammonium ions. Two conformations of such crown ether/ammonium 

complexes can be envisioned (Scheme 1.2): an external wrapping of the ammonium ion 

by the crown (a facial interaction) or a structure where the ammonium is encircled by the 

crown (a threading interaction).  These complexation structures are called ‘perching’ and 

‘nesting’, respectively, and the particular form adopted by the crown ether depends upon 

the size of the macrocycle. For instance, 18-crown-6 ether generally prefers to bind to 

ammonium ions in a perching fashion, while larger crown structures such as 24-crown-8 

ether will usually form a nesting structure with the same cation.57 

Not only does the size of the crown ether play a significant role in the type of 

complex formed, but the structure of the crown ether heavily influences the strength of 

the hydrogen bonding of the complex (the Ka). This phenomenon has been extensively 

investigated (Figure 1.6), and it has been found that with dialkylammonium ion 2, alkyl 

crown ethers (e.g., those crown ethers with dialkyl ether linkages) have the strongest 

bonding (ca. 4500 M-1 for 24-crown-8 ether 3).  Introduction of phenolic oxygens (either 

one or two pairs of phenolic oxygens, crown ethers 4 and 5, respectively) decreases the 

association constant of the crown ether (ca. 1000 M-1 for dibenzo-24-crown-8 ether 5). 

This decrease occurs because of two effects:  first, phenolic oxygens are less basic and do 

not H-bond as strongly as alkyl ethers, and, second, it is likely that the structural rigidity 

introduced by aromatic linkages on one or both sides of the crown decreases the 
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conformational flexibility of the crown ether and prevents maximized H-bonding with the 

complexed cation. Interestingly, while substitution of functionality around the crown 

affects the Ka, the crown ether association is impacted much more dramatically upon 

introduction of an additional methylene unit (crown ethers 6 and 7) within the 

macrocycle. Such an effect is due to distortion of the array of oxygen atoms around the 

complexed ion and prevents the crown ether from adopting an optimized hydrogen-

bonding geometry. The association of olefin-containing 24-crown-8 ether derivatives 8 

and 9 has also been explored.  Because of the absence of a pair of ethereal oxygens in the 

Figure 1.6: Impact of crown ether structure on the association constants with ammonium
ions 2 and 10. 
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ring, these structures form much weaker complexes with dibenzoammonium ion 10. 

However, despite the lower association constant, the olefin functionality makes these 

crown-type structures highly versatile building blocks for interlocked compounds. 

 
Dynamic Covalent Chemistry 

Generation of a supramolecular complex represents only the first step in the 

synthesis of an interlocked structure.  Of equal importance to the success of the synthesis 

is the ability to perform the covalent interlocking of the supramolecular structure to 

afford the final mechanically interlocked compound. Traditionally, many of the final 

bond-forming events were irreversible reactions under kinetic control.66 While these 

procedures do indeed afford some of the desired interlocked product (Scheme 1.3), the 

+
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+ +
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Reaction

Kinetic
Control

Non-Interlocked
Byproducts

Reversible
Reaction

Thermodynamic
Control

+ +

Ring-Opening
and Recoordination

Higher Yield
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Scheme 1.3: Irreversible Kinetic and Reversible Dynamic Covalent Interlocking
Reactions to Form a [2]Rotaxane 
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reversible and incomplete formation of the supramolecular complex results in a number 

of non-interlocked by-products that, because of the irreversible nature of the reaction, 

must be removed from the desired interlocked structure.  This results in challenging 

purification routes and decreased yield of product. Recently, the copper-catalyzed alkyne-

azide “click” (CuAAC) reaction has emerged as promising interlocking procedure,67-71 

and, although kinetically controlled and irreversible, has afforded high yields of several 

interlocked architectures because of the exceptionally high fidelity of the alkyne-azide 

cycloaddition reaction. 

In contrast to irreversible reactions, much attention has been devoted to the 

development of a number of reversible covalent reactions, members of the dynamic 

covalent chemistry (DCC) family.60,72-78 Employing a reversible reaction as the final 

bond-forming step in the synthesis of an interlocked compound enables error-checking to 

occur during the interlocking reaction, and allows the final yield of the interlocked 

product to reflect the thermodynamic stability of the interlocked material relative to non-

interlocked components. Though non-interlocked impurities would initially form in the 

same quantities as in kinetic interlocking reactions (Scheme 1.3), the reversibility of 

dynamic covalent reactions enable these non-interlocked products to reverse to starting 

materials, coordinate to generate more supramolecular complex, and react again to 

interlock the additional supramolecular complex.  In this way, the reversible reaction 

allows non-interlocked material to thermodynamically “funnel” to the interlocked 

product by allowing equilibrium to be reached, resulting in a higher yield of interlocked 

compound than would be obtained using an irreversible reaction under kinetic control. 
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Some common functional groups used in DCC reactions are disulfides,79-80 imines,81-88 

and cyclic acetals.89 The olefin metathesis reaction is another particularly powerful, 

reversible reaction under thermodynamic control, and is often performed by functional-

group tolerant ruthenium catalysts, an important consideration given the high degree of 

functional complexity required for most molecular recognition motifs.  Additionally, the 

olefin moiety is orthogonal to most functional groups used for templation, allowing the 

metathesis reaction to proceed without disrupting the supramolecular complex or 

interacting destructively with uncomplexed precursors. Lastly, one of the hallmarks of 

the olefin metathesis reaction is the number of substrate topologies that can be 

accommodated, making it an attractive choice to access a wide range of different 

interlocked architectures.  

 
Olefin Metathesis 

One of the most widely-used and versatile carbon-carbon bond-forming reactions 

in current organic chemistry is the olefin metathesis reaction.90  This process, mediated 

by a metal alkylidene complex, engages olefin-containing substrates and facilitates their 

conversion to new olefinic products via one of several possible reaction pathways. 

Chauvin first proposed the mechanism (Scheme 1.4)91 of the olefin metathesis reaction in 

Scheme 1.4: Metal-Alkylidene Mediated Olefin Metathesis Mechanism 
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1970, a mechanism that has three steps.  First, the olefin substrate coordinates to an open 

site on the metal center, and then, in the second step, undergoes a cyclization with the 

metal alkylidene to form a metallacyclobutane intermediate. At this point, metallacycle 

breakdown can regenerate the original starting materials (degenerate metathesis) or 

release a new olefin product (productive metathesis) and a new metal-alkylidene species 

capable of reentering the catalytic cycle. Typically, the reversible olefin metathesis 

reaction operates under thermodynamic control.91 

The first metathesis catalysts were heterogeneous, ill-defined mixtures capable 

only of polymerizing highly strained cyclic olefin substrates.92 More recent work has 

focused on the development of well-defined, highly active catalysts that are tolerant to a 

wide range of substrate structures and functionalities. A number of metals are capable of 

mediating the olefin metathesis reaction. Schrock and coworkers have expended 

considerable effort to develop molybdenum and tungsten olefin metathesis catalysts.93,94 

While these complexes are highly active for certain substrates, early transition metal 

complexes are extremely sensitive to both air and moisture impurities, and, because of 

the highly electrophilic nature of the metal, are, in general, intolerant of substrates 

containing polar functionality.  

In contrast to these early transition metal catalysts, Grubbs and coworkers have 

developed a number of ruthenium olefin metathesis catalysts (Figure 1.7).95-97 With 
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Figure 1.7: Structures of some ruthenium-based olefin metathesis catalysts. 
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certain ligand subsets, these ruthenium catalysts display not only high reactivity toward a 

wide range of olefin substrates, but are stable to both air and moisture impurities as well 

as many polar functional groups. Early ruthenium catalyst 11 did not have high activity, 

but could polymerize strained cyclic olefins.98  Increasing the electron-donating ability of 

the ligand by substituting the triphenylphosphine (PPh3) ligands for 

tricyclohexylphosphine (PCy3) ligands99 enhanced the activity of 12.  In addition to better 

activity, 12 also displayed greater functional group tolerance. Replacing one of the 

phosphine ligands with an N-heterocyclic carbene (NHC) ligand to produce 13 further 

enhanced the catalyst activity and expanded the substrate scope of the olefin metathesis 

reaction to include even electron-deficient olefins, such as acrylates.100  The effect of the 

NHC ligand101,102  and the origin of the increased activity and stability has been explored, 

and it was found that initiation of the complex (phosphine dissociation) is faster for 12, 

but that 13 prefers to bind olefins (π-acidic substrates) in lieu of phosphine ligands (σ-

donor species).97 The stability of the catalyst complex improved upon introduction of a 

chelating isopropoxystyrene alkylidene (catalyst 14) in place of the phosphine, albeit with 

a concomitant reduction in the rate of initiation of the complex.103,104  By contrast, 

bispyridine catalyst 15 displays extremely fast initition, and has proven particularly 

useful during the synthesis of well-defined polymeric materials.105  This rapid initiation, 

however, comes with the cost of decreased catalyst lifetimes (with respect to similar 

NHC derivatives). Recently, ortho-methyl substituted NHC catalyst 15 has enabled olefin 

metathesis reactions of sterically hindered substrates to proceed to high conversion,106,107 

a challenge that, except for a few substrates,108 had remained unsolved. A wide range of 
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additional catalyst structures has been explored in an effort to produce asymmetric olefin 

products,109 afford high cis:trans product ratios, and effect water-based metathesis 

reactions.110-112 

  There are four primary categories of olefin metathesis reactions (Figure 1.8), and 

these classes of reactions are usually named by the type of structural transformation 

performed on the starting material in combination with the architecture of the generated 

product. Cross metathesis (CM) reactions produce coupled olefin material from two 

separate linear olefin precursors. By contrast, ring-closing metathesis (RCM) is the 

coupling of two olefin residues within the same molecule, often an α,ω-diene, to give a 

cyclic olefin product. Repeated couplings of α,ω-diene substrates in an iterative step-

growth polymerization process produces linear polyalkenamers, a reaction termed acyclic 

diene metathesis (ADMET). Another metathesis polymerization technique, ring-opening 

Figure 1.8: Various olefin metathesis reactions and their products. 
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metathesis polymerization (ROMP), involves the ring-opening of cyclic, olefin-

containing monomers to yield a linear polymer. Because of the general reversibility of the 

olefin metathesis reaction, a driving force is required to favor product formation from 

starting material.  Often, for CM, RCM, and ADMET reactions, this driving force is 

achieved via an irreversible expulsion of a small molecule olefin (such as ethylene) from 

the reaction mixture, a process that can be aided by application of high vacuum or an 

active purge of the reaction headspace.  ROMP, by contrast, exploits the release of ring-

strain energy of the cyclic monomers to favor the formation of linear polyalkenamers. 

Each of the classes of olefin metathesis reactions has unique advantages and 

disadvantages.  Throughout this thesis, the application of an appropriate metathesis 

reaction will be used to generate a variety of interlocked molecular architectures. In the 

following sections, pertinent factors for several of the olefin metathesis reaction classes 

will be addressed. 

 
Ring-Closing Metathesis 

Conversion of a linear diolefin to the closed cyclic olefin analogue necessitates 

several considerations. In general, RCM is limited to formation of sufficiently large rings 

that ring-strain energy of the product is negligible.113 However, formation of smaller 

rings can be readily accomplished as well, especially if the linear structure has a high 

degree of chain substitution (which sterically forces the olefins in the same structure into 

close proximity with one another). Usually, RCM reactions are performed under high-

dilution conditions (ca. 0.01 M solution of substrate) to favor intramolecular cyclization 

rather than intermolecular oligomerization of a number of substrate molecules. Also, 
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employing an α,ω-diene as the starting material can help drive the cyclization to higher 

conversion via release of a molecule of ethylene. 

 
Acyclic Diene Metathesis  

In an antithetical approach to RCM reactions, which suppress intermolecular 

oligomerization of diene substrates via high- dilution conditions, ADMET reactions113 are 

used to generate polymeric products via an iterative end-to-end oligomerization of 

monomer molecules (typically α,ω-dienes.)  ADMET reactions are favored at high 

concentration of monomer (ideally performed in neat substrate), and often require 

vigorous efforts to remove ethylene in order to reach high conversion.  Because of the 

step-growth nature of ADMET polymerization, high molecular weight (MW) polymeric 

material is only obtained at very high conversion,114 and, in practice, reaching a polymer 

MW above ca. 20 kDa is exceptionally challenging. One significant barrier to the 

synthesis of high MW polymer via ADMET is the increase in viscosity of the reaction 

mixture as the MW increases, inhibiting ethylene removal and preventing quantitative 

conversion by dramatically slowing the diffusion of an ever-decreasing number of free 

chain ends. Because of the lack of control over the polymer initiation and propagation, 

the step-growth ADMET polymers tend to have poorly controlled molecular weight 

ranges and broad polydispersities, with a theoretical polydispersity index (PDI) of 2 at 

complete monomer conversion. 
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 Ring-Opening Metathesis Polymerization 

  Unlike ADMET polymerizations, where removal of small molecule by-products 

(e.g., ethylene) provides the driving force for the formation of high MW material, ROMP 

relies on the release of ring-strain energy from the ring-opening of strained cyclic olefin 

monomers (Figure 1.9)115 to favor formation of polymeric products. Another feature of 

ROMP that differs from ADMET is that ROMP is often performed in the presence of 

solvent. Though, in certain cases, ROMP can be performed in neat monomer, it is often 

advantageous to include some solvent, as this mitigates the impact of increasing solution 

viscosity on the kinetics of the polymerization. 

Often, when polymerizing very highly strained monomers like norbornene 19, fast 

initiating catalysts such as 15 (which have very labile pyridine ligands) are used to 

produce monodisperse polymer product (Scheme 1.5A).105 Because the extreme ring-

strain of monomer 19 results in a very rapid rate of propagation (Kp), the rate of initiation 

(Ki) should be, ideally, several orders of magnitude faster to maintain control over the 

polymer characteristics.114  Thus, a rapidly initiating catalyst is essential to achieve a 

“living” (or “pseudo-living”) ROMP reaction, where polymer MW is determined by the 

catalyst to monomer ratio (assuming complete conversion) and the polymer product can 

54.5 30.6 27.2 16.7 7.4 6.8
Ring-Strain
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=

17 18 19 20 21 22

Figure 1.9: Various ROMP monomers and their ring-strain energies. 
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approach monodisperse (PDI approaching 1). However, controlling polymerization 

kinetics is not sufficient to fully control a polymerization.  In addition, chain-breaking 

reactions must also be eliminated. Chain-breaking reactions involve “backbiting” of a 

reactive chain end with a functional group near the center of the same polymer chain or 

another polymer chain and disrupt the uniform growth of the chain, resulting in loss of 

control of the polymer MW and PDI. Because of the reversibility of metathesis reactions, 

the potential for backbiting reactions is significant and depends on the particular system 

(catalyst, monomer, temperature, concentration, etc.) being used.116-118 As logic would 

indicate, the less hindered the olefin bonds within the polymer and the more active the 

catalyst used in the polymerization, the more prevalent backbiting reactions will be 

during the polymerization. To minimize these issues, ROMP reactions are typically 

stopped as soon as monomer conversion has reached completion. It is worth mentioning 

that polymers formed from some monomers, such as norbornene 19, contain olefins that 

Scheme 1.5: Synthesis of a Monodisperse Polymer (A) and an End-Functionalized
Telechelic Polymer (B) via ROMP 
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are sufficiently sterically congested that backbiting is essentially negligible. Because of 

the absence of backbiting, production of block copolymers can be readily achieved via 

addition of a second monomer upon complete reaction of the first monomer.119 

Though chain backbiting is often regarded as a detrimental side-reaction, these 

secondary polymer reactions (Scheme 1.5B) can be harnessed to afford functionalized 

polymers.  By allowing a linear polymer to undergo numerous chain-breaking reactions 

in the presence of a chain-transfer agent (CTA, a structure such as 23), the polymer 

structure equilibrates to the telechelic end-functionalized product.120-123 In such a system, 

the ratio of CTA to monomer ratio dictates the MW of the polymer product, but the 

equilibration process means the PDI approaches the theoretical value of 2 (like a step-

growth polymerization). Because the catalyst structure contained an initial alkylidene 

species that could also act as a chain end, in practice, it is important to not only carefully 

control the CTA-to-monomer ratio but also to keep the catalyst-to-CTA ratio low to 

minimize the number of non-CTA chain end-groups from catalyst alkylidene. 

Traditionally, only symmetric chain ends were able to be introduced.  However, recent 

work has shown that introduction of different chain-transfer agents at strategic time 

points during the polymerization will produce a polymer containing two different end-

groups.124  

 

 

 

 



22 
 
References 

(1) Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95, 2725.  

(2) Raymo, F. M.; Stoddart, J. F. Chem. Rev. 1999, 99, 1643. 

(3) Stoddart, J. F. Chem. Soc. Rev. 2009, 38, 1802. 

(4) Schill, G. Catenanes, Rotaxanes and Knots; Academic Press: New York, 1971. 

(5) Molecular Catenenanes, Rotaxanes and Knots Sauvage, J.-P.; Dietrich-

Buchecker, C., Eds.; Wiley-VCH: Weinheim, 1999. 

(6) Wisner, J. A.; Beer, P. D.; Drew, M. G. B.; Sambrook, M. R. J. Am. Chem. Soc. 

2002, 124, 12469. 

(7) Kilbinger, A. F. M.; Cantrill, S. J.; Waltman, A. W.; Day, M. W.; Grubbs, R. H. 

Angew. Chem. Int. Ed. 2003, 42, 3281. 

(8) Hannam, J. S.; Kidd, T. J.; Leigh, D. A.; Wilson, A. J. Org. Lett. 2003, 5, 1907. 

(9) Coumans, R. G. E.; Elemans, J. A. A. W.; Thordarson, P.; Nolte, R. J. M.; 

Rowan, A. E. Angew. Chem., Int. Ed. 2003, 42, 650. 

(10) Wasserman, E. J. Am. Chem. Soc. 1960, 82, 4433. 

(11) Kidd, T. J.; Leigh, D. A.; Wilson, A. J. J. Am. Chem. Soc. 1999, 121, 1599. 

(12) Weck, M.; Mohr, B.; Sauvage, J.-P.; Grubbs, R. H. J. Org. Chem. 1999, 64, 5463. 

(13) Mobian, P.; Kern, J.-M.; Sauvage, J.-P. J. Am. Chem. Soc. 2003, 125, 2016. 

(14) Iwamoto, H.; Itoh, K.; Nagamiya, H.; Fukazawa, Y. Tetrahedron Lett. 2003, 44, 

5773. 

(15) Wang, L.; Vysotsky, M. O.; Bogdan, A.; Bolte, M.; Böhmer, V. Science 2004, 

304, 1312. 



23 
 
(16) Sambrook, M. R.; Beer, P. D.; Wisner, J. A.; Paul, R. L.; Cowley, A. R. J. Am. 

Chem. Soc. 2004, 126, 15364. 

(17) Guidry, E. N.; Cantrill, S. J.; Stoddart, J. F.; Grubbs, R. H. Org. Lett. 2005, 7, 

2129. 

(18) Arico, F.; Badjić, J. D.; Cantrill, S. J.; Flood, A. H.; Leung, K. C.-F.; Liu, Y.; 

Stoddart, J. F. Top. Curr. Chem. 2005, 249, 203. 

(19) Fabio, A.; Chang, T.; Cantrill, S. J.; Khan, S. I.; Stoddart, J. F. Chem. Eur. J. 

2005, 11, 4655. 

(20) Badjić, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Acc. 

Chem. Res. 2005, 38, 723. 

(21) Fyfe, M. C. T.; Stoddart, J. F. Acc. Chem. Res. 1997, 30, 393. 

(22) Ashton, P. R.; Baldoni, V.; Balzani, V.; Claessens, C. G.; Credi, A.; Hoffmann, 

H. D. A.; Raymo, F. M.; Stoddart, J. F.; Venturi, M.; White, A. J. P.; Williams,  

D. J. Eur. J. Org. Chem. 2000, 1121. 

(23) Alexeev, Y. E.; Kharisou, B. I.; Garcia, T. C. H.; Garnovskii, A. D. Coord. Chem. 

Rev. 2010, 254, 794. 

(24) Dietrich-Buchecker, C. O.; Sauvage, J.-P. Chem. Rev. 1987, 87, 795. 

(25) Sauvage, J.-P. Chem. Commun. 2005, 1507. 

(26) Jimenez, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Angew. Chem. 2000, 39, 

3284. 

(27) Jimenez-Molero, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Chem. Commun. 

2003, 1613. 



24 
 
(28) Wu, J.; Leung, K. C.-F.; Benitez, D.; Han, J.-Y.; Cantrill, S. J.; Fang, L.; Stoddart, 

J. F. Angew. Chem. Int. Ed. 2008, 47, 7470. 

(29) Guidry, E. N.; Li, J.; Stoddart, J. F.; Grubbs, R. H. J. Am. Chem. Soc. 2007, 129, 

8944 

(30) Clark, P. G.; Day, M. W.; Grubbs, R. H. J. Am. Chem. Soc. 2009, 131, 13631. 

(31) Williams, A. R.; Northrop, B. H. ; Chang, T.; Stoddart, J. F.; White, A. J. P.; 

Williams, D. J. Angew. Chem. Int. Ed. 2006, 45, 6665. 

(32) Guo, J.; Mayers, P. C.; Breault, G. A.; Hunter, C. A. Nat. Chem. 2010, 2, 218. 

(33) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; 

Raymo, F.; Stoddart, J. F.; Heath, J. R. Science 2000, 289, 1172. 

(34) Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R. 

Acc. Chem. Res. 2001, 34, 433. 

(35) Luo, Y. Collier, C. P.; Jeppesen, J. O.; Nielsen, K. A.; Delonno, E.; Ho, G.; 

Perkins, J.; Tseng, H.-R.; Yamamoto, T.; Stoddart, J. F.; Heath, J. R. 

ChemPhysChem 2002, 3, 519. 

(36) Diehl, M. R.; Steuerman, D. W.; Tseng, H.-R.; Vignon, S. A.; Star, A.; Celestre, 

P. C.; Stoddart, J. F.; Heath, J. R. ChemPhysChem 2003, 4, 1335. 

(37) Tseng, H.-R.; Wu, D.; Fang, N. X.; Zhang, X.; Stoddart, J. F. ChemPhysChem 

2004, 5, 111. 

(38) Steuerman, D. W.; Tseng, H.-R.; Peters, A. J.; Flood, A. H.; Jeppesen, J. O.; 

Nielsen, K. A.; Stoddart, J. F.; Heath, J. R. Angew. Chem., Int. Ed. 2004, 43, 

6486. 



25 
 
(39) Flood, A. H.; Ramirez, R. J. A.; Deng, W.-Q.; Muller, R. P.; Goddard III, W. A.; 

Stoddart, J. F. Aust. J. Chem. 2004, 57, 301. 

(40) Flood, A. H.; Peters, A. J.; Vignon, S. A.; Steuerman, D. W.; Tseng, H.-R.; Kang, 

S.; Heath, J. R.; Stoddart, J. F. Chem. Eur. J. 2004, 10, 6558. 

(41) Flood, A. H.; Stoddart, J. F.; Steuerman, D. W.; Heath, J. R. Science 2004, 306, 

2055 

(42) Jang, S. S.; Jang, Y. H.; Kim, Y.-H.; Goddard III, W. A.; Flood, A. H.; Laursen, 

B. W.; Tseng, H.-R.; Stoddart, J. F.; Jeppesen, J. O.; Choi, J. W.; Steuerman,      

D. W.; Delonno, E.; Heath, J. R. J. Am. Chem. Soc. 2005, 127, 1563. 

(43) Balzani, V.; Credi, A.; Silvi, S.; Venturi, M. Chem. Soc. Rev. 2006, 35, 1135. 

(44) Credi, A. J. Phys.: Condens. Matter 2006, 18, S1779. 

(45) Rescifina, A.; Zagni, C.; Iannazzo, D.; Merino, P. Curr. Org. Chem. 2009, 13, 

448. 

(46) Wenz, G.; Han, B. H.; Muller, A. Chem. Rev. 2006, 106, 782. 

(47) Niu, Z.; Gibson, H. W. Chem. Rev. 2009, 109, 6024. 

(48) Godt, A. Eur. J. Org. Chem. 2004, 1634. 

(49) Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y. Chem. Rev. 2009, 

109, 5974. 

(50) Fustin, C.-A.; Bailly, C.; Clarkson, G. J.; De Groote, P.; Galow, T. H.; Leigh, D. 

A.; Robertson, D.; Slawin, A. M. Z.; Wong, J. K. Y. J. Am. Chem. Soc. 2003, 125, 

2200. 



26 
 
(51) Clark, P. G.; Guidry, E. N.; Chan, W. Y.; Steinmetz, W. E.; Grubbs, R. H. J. Am. 

Chem. Soc. 2010, 132, 3405. 

(52) Rescifina, A.; Zagni, C.; Iannazzo, D.; Merino, P. Curr. Org. Chem. 2009, 13, 

448. 

(53) Seeman, N. C. DNA Cell Biol. 1991, 10, 475. 

(54) Mueller, J. E.; Du, S. M.; Seeman, N. C. J. Am. Chem. Soc. 1991, 113, 6306. 

(55) Hunter, C. A. J. Chem. Soc., Chem. Commun. 1991, 749. 

(56) Hunter, C. A. J. Am. Chem. Soc. 1992, 114, 5303. 

(57) Vogtle, F.; Meier, S.; Hoss. R. Angew. Chem., Int. Ed. Engl. 1992, 31, 1619.  

(58) Hunter, C. A.; Purvis, D. H. Angew. Chem., Int. Ed. Engl. 1992, 31, 792. 

(59) Carver, F. J.; Hunter, C. A.; Shannon, R. J. J. Chem. Soc., Chem. Commun. 1994, 

1277. 

(60) Ashton, P. R.; Bartsch, R. A.; Cantrill, S. J.; Hanes, Jr., R. E.; Hickingbottom, S. 

K.; Lowe, J. N.; Preece, J. A.; Stoddart, J. F.; Talanov, V. S.; Wang, Z.-H. 

Tetrahedron Lett. 1999, 40, 3661. 

(61) Cantrill, S. J.; Fulton, D. A.; Heiss, A. M.; Pease, A. R.; Stoddart, J. F.; White, A. 

J. P.; Williams, D. J. Chem. Eur. J. 2000, 6, 2274. 

(62) Schalley, C. A.; Weilandt, T.; Brüggemann, J.; Vögtle, F. Topics Curr. Chemistry 

2004, 248, 141. 

(63) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495. 

(64) Pedersen, C. J. Science 1988, 241, 536. 

(65) Cram, D. J.; Cram, J. M. Acc. Chem. Res. 1978, 11, 8. 



27 
 
(66) Dichtel, W. R.; Miljanic, O. S.; Zhang, W.; Spruell, J. M.; Patel, K.; Aprahamian, 

I.; Heath, J. R.; Stoddart, J. F. Acc. Chem. Res. 2008, 41, 1750. 

(67) Megiatto, J. D.; Schuster, D. I. J. Am. Chem. Soc. 2008, 130, 12872. 

(68) Coutrot, F.; Romuald, C.; Busseron, E. Org. Lett. 2008, 10, 3741-3744. 

(69) Megiatto, J. D.; Schuster, D. I. Chem. Eur. J. 2009, 15, 5444. 

(70) Goldup, S. M.; Leigh, D. A.; Long, T.; McGonigal, P. R.; Symes, M. D.; Wu, J. J. 

Am. Chem. Soc. 2009, 131, 15924. 

(71) Hanni, K. D.; Leigh, D. A. Chem. Soc. Rev. 2010, 39, 1240. 

(72) Glink, P. T.; Oliva, A. I.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Angew. 

Chem., Int. Ed. 2001, 40, 1870. 

(73) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. 

Angew. Chem., Int. Ed. 2002, 41, 898. 

(74) Aricó, F.; Chang, T.; Cantrill, S. J.; Khan, S. I.; Stoddart, J. F. Chem. Eur. J. 

2005, 11, 4655. 

(75) Haussmann, P. C.; Khan, S. I.; Stoddart, J. F. J. Org. Chem. 2007, 72, 6708. 

(76) Meyer, C. D.; Joiner, C. S.; Stoddart, J. F. Chem. Soc. Rev. 2007, 36, 1705. 

(77) Wu, J.; Leung, K. C.-F.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 

17266. 

(78) Haussmann, P. C.; Stoddart, J. F. Chem. Record 2009, 9, 136. 

(79) Kolchinski, A. G.; Alcock, N. W.; Roesner, R. A; Busch, D. H. Chem. Commun. 

1998, 1437. 



28 
 
(80) Furusho, Y.; Oku, T.; Hasegawa, T.; Tsuboi, A.; Kihara, N.; Takata, T. Chem. 

Eur. J. 2003, 9, 2895. 

(81) Cantrill, S. J.; Rowan, S. J.; Stoddart, J. F. Org. Lett. 1999, 1, 1363. 

(82) Rowan, S. J.; Stoddart, J. F. Org. Lett. 1999, 1, 1913. 

(83) Glink, P. T.; Oliva, A. I.; Stoddart, J. F.; White, A J. P.; Williams, D. J. Angew. 

Chem., Int. Ed. 2001, 40, 1870. 

(84) Horn, M.; Ihringer, J.; Glink, P. T.; Stoddart, J. F. Chem. Eur. J. 2003, 9, 4046. 

(85) Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave, G. W. V.; Atwood, 

J. L.; Stoddart, J. F. Science 2004, 304, 1308. 

(86) Hogg, L.; Leigh, D. A.; Lusby, P. J.; Morelli, A.; Parsons, S.; Wong, J. K. Y. 

Angew. Chem., Int. Ed. 2004, 43, 1218. 

(87) Schalley, C. A. Angew. Chem., Int. Ed. 2004, 43, 4399. 

(88) Cantrill, S. J.; Chichak, K. S.; Peters, A. J.; Stoddart, J. F.  Acc. Chem. Res. 2005, 

38, 1. 

(89) Fuchs, B.; Nelson, A.; Star, A.; Stoddart, J. F.; Vidal, S. B. Angew. Chem., Int. 

Ed. 2003, 42, 4220. 

(90) Grubbs, R. H. Tetrahedron 2004, 60, 7117. 

(91) Herisson, J.-L.; Chauvin, Y. Makromol. Chem. 1971, 141, 161. 

(92) Truett, W. L.; Johnson, D. R.; Robinson, I. M.; Montague, B. A. J. Am. Chem. 

Soc. 1960, 82, 2337. 

(93) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592. 

(94) Schrock, R. R. J. Molec. Catal. A: Chem. 2004, 213, 21. 



29 
 
(95) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. 

(96) Kuhn, K. M.; Bourg, J.-B.; Chung, C. K.; Virgil, S. C.; Grubbs, R. H. J. Am. 

Chem. Soc. 2009, 131, 5313. 

(97) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746. 

(98) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 

1992, 114, 3974. 

(99) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 

1995, 34, 2039. 

(100) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953. 

(101) Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 749. 

(102) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543. 

(103) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 

2000, 122, 8168. 

(104) Gessler, S.; Randl, S. Tetrahedron Lett. 2000, 41, 9973. 

(105) Sanford, M. S.; Love, J. A.; Grubbs, R. H. Organometallics 2001, 20, 5314. 

(106) Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.; Schrodi, Y. 

Org. Lett. 2007, 9, 1589. 

(107) Stewart, I. C.; Douglas, C. J.; Grubbs, R. H. Org. Lett. 2008, 10, 441. 

(108) Berlin, J. M.; Campbell, K.; Ritter, T.; Funk, T. W.; Chlenov, A.; Grubbs, R. H. 

Org. Lett. 2007, 9, 1339. 

(109) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 1840. 

(110) Hong, S. H.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 3508. 



30 
 
(111) Jordan, J. P.; Grubbs, R. H. Angew. Chem., Int. Ed. 2007, 46, 5152. 

(112) Burtscher, D.; Grela, K. Angew. Chem., Int. Ed. 2009, 48, 442. 

(113) Grubbs, R. H., Ed. Handbook of Metathesis; Wiley-VCH: Weinheim, Germany, 

2003; Vol. 1. 

(114) Odian, G. Principles of Polymerization; Wiley-Interscience: Hoboken, New 

Jersey, USA, 2004; 4th Ed. 

(115) Schleyer, P. V. R.; Williams Jr., J. E.; Blanchard, K. R. J. Am. Chem. Soc. 1970, 

92, 2377. 

(116) Bielawski, C. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 2000, 39, 2903. 

(117) Bielawski, C. W.; Benitez, D.; Grubbs, R. H. Macromolecules 2001, 34, 8610. 

(118) Scherman, O. A.; Kim, H. M.; Grubbs, R. H. Macromolecules 2002, 35, 5366. 

(119) Choi, T.-L.; Grubbs, R. H. Angew. Chem., Int. Ed. 2003, 42, 1743. 

(120) Hillmyer, M. A.; Grubbs, R. H. Macromolecules 1993 

(121) Hillmyer, M. A.; Laredo, W. R.; Grubbs, R. H. Macromolecules 1995, 28, 6311. 

(122) Maughon, B. R.; Morita, T.; Bielawski, C. W.; Grubbs, R. H. Macromolecules 

2000, 33, 1929. 

(123) Morita, T.; Maughon, B. R.; Bielawski, C. W.; Grubbs, R. H. Macromolecules 

2000, 33, 6621. 

(124) Matson, J. B.; Virgil, S. C.; Grubbs, R. H. J. Am. Chem. Soc. 2009, 131, 3355. 

 

 

 



31 
 

 

 

 

 

 

CHAPTER 2 

 
[c2]Daisy-Chain Dimers:  

From Synthesis to Applications in Materials 
 
 

 

 

 

 

 

 
Portions of this chapter have previously appeared as:  Clark, P. G.; Day, M. W.; Grubbs, 

R. H.   J. Am. Chem. Soc. 2009, 131, 13631-13633. 



32 
 

[c2]Daisy-Chain Dimers: 
From Synthesis to Applications in Materials  

 
Introduction 

In an effort to miniaturize devices for a variety of applications, many researchers 

have begun to explore systems derived from examination of nature.1  The elegance and 

complexity of biological systems provides a wealth of inspiration for synthetic chemists.  

A particularly intriguing challenge for materials scientists is mimicking the extension and 

contraction of natural fibers.  One approach is to use switchable non-covalent interactions 

to guide the extending and contracting of macromolecules.  Recently, the utilization of 

supramolecular chemistry to self-assemble complex molecular networks, coupled with 

dynamic covalent chemistry,2 has facilitated the synthesis of a variety of interlocked 

molecules.3  One class of these compounds, [c2]daisy-chain dimers4 (DCDs, Figure 2.1), 

appeared to be a promising molecular actuator candidate due to the switchable 
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Figure 2.1: Graphical representation of binding and switching of a bistable DCD (A) and
a DCD with ammonium binding sites near the caps, a “terminal ammonium” dimer (B). 
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conformation5 of the dimer upon removal of coordinating interactions.  It has been 

proposed that incorporation of mechanically interlocked species into macromolecular 

materials will impart unique properties6 to those materials not achievable via traditional 

covalent linkages. To this end, several reports of interlocked polymeric species have 

recently emerged.7,8  Particularly, DCDs incorporated within polymers have shown facile 

switching behavior.8b Herein, we report the synthesis of a DCD whose structural topology 

enhances the stability of the contracted state, and the subsequent incorporation of this 

DCD into linear polymers that undergo a significant conformational change upon 

extension of the dimeric units.  

Synthesis of a DCD (Scheme 2.1) involves the pairing and interlocking of two 

self-complementary macromers (molecules that contain both host and guest recognition 

moieties bound covalently within the same compound).4a,8  One common process utilizes 

the threading of an ammonium-containing fragment through the dibenzo-24-crown-8 

ether or other recognition moiety of a partner macromer followed by a  “capping” 

reaction9 to prevent dethreading of the complex.  This technique gives DCDs in good 

yield, and allows introduction of a second, albeit significantly weaker, binding site near 

the cap of the dimer (Figure 2.1A).5a,d,8b  The facile “switching” of such dimers from 

Encircling
and

Ring-Closing
+

Threading
and

Capping

Recognition MoietyBinding Site Cap

Scheme 2.1: Graphical Representation of DCD Synthesis via Ring-Closing or Capping  



34 
 

extended to contracted conformations has been clearly demonstrated.5a-c,8b  In contrast to 

reversible “capping” reactions, the dynamic ring-closing metathesis (RCM) reaction 

(Scheme 2.1), catalyzed by functional-group tolerant ruthenium alkylidene complexes,10 

has enabled the synthesis of [2]catenanes,11 [2]rotaxanes,12 and other interlocked 

species.13  DCDs have also been synthesized by RCM, where the two diolefinic polyether 

fragments of each macromer encircle and close around an appropriately substituted 

dibenzylammonium ion of a partner macromer, thus interlocking the DCD.8a  We 

believed that designing a DCD with a strongly coordinating binding site near the cap of 

the dimer would enhance the stability of the contracted state and produce a “stronger” 

molecular actuator (Figure 2.1B).  With this criterion in mind, we envisaged macromer 

structure 1-H·PF6 (Figure 2.2) to be a promising target.  A long, rigid biphenyl linker 

between the host and guest residues was incorporated to minimize the formation of self-

Figure 2.2:  Structure of the targeted DCD macromer 1-HPF6. 
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Scheme 2.2: Graphical DCD Synthesis and Possible Intramolecularly-Coupled Side-
Products  
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complexed monomer14 (Scheme 2.2C), promote dimer preassembly via macromer-

macromer π-π slipped-stacking interactions, and enhance the linearity of the dimer, 

aiding elongation via slippage of the rod-like backbone through the closed crown ether–

type rings.  

 
Dimer Synthesis and Analysis 

Synthesis of 1-H·PF6 required 13 steps.15 Retrosynthetically, it was most 

convenient to envision fragmentation of 1-H·PF6 at the ammonium, with a crown/ 

backbone component and a cap component as individual targets.  Crown-biphenyl 

fragment 3 (Scheme 2.3) was obtained in five steps. Alkylation of commercially available 

ethyl 3,4-dihydroxybenzoate (5) with mesylate 4 (synthesized via monoalkylation of 

Scheme 2.3:  Synthesis of Crown-Biphenyl Fragment 3
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diethylene glycol with 5-bromo-1-pentene and subsequent mesylation of the resulting 

compound) produced ethyl ester 6.  Reduction of 6 using lithium aluminum hydride gave 

benzylic alcohol 7, which could be readily converted to chloride analogue 8.  The 

commercially available 4’-hydroxy-4-biphenyl-carboxylic acid (9) was esterified to give 

10, followed by subsequent coupling with 8 to generate 11. Reduction of methyl ester 11 

produced the desired crown-biphenyl fragment 3. 

 Cap synthesis (Scheme 2.4) began by transforming commercially available 3,5-

dimethoxy-4-hydroxy-benzaldehyde (13) to nitrile 14.  Alkylation of 14 with 16  

(obtained via THP-protection of commercially available 6-bromo-1-hexanol (15)) gave 

access to the cap precursor 17.  After reduction of nitrile 17 to amine 12, subsequent 

coupling (Scheme 2.5) with 3 using standard Dean-Stark conditions produced the imine-

linked product.  The imine was reduced using sodium borohydride, followed by a tandem 

amine-protonation and THP-deprotection using hydrochloric acid. Counterion exchange 

with ammonium hexafluorophosphate completed the synthesis of 1-H·PF6. 

Hexafluorophosphate counterions have been shown to increase the binding constant 

Scheme 2.4: Synthesis of Cap Fragment 12 
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between crown etherether–typetype species and ammonium ions, and also enhance the 

solubility of the charged complex in organic solvents.16 

Treatment of self-complementary macromer 1-H·PF6 with olefin metathesis 

catalyst (H2IMes)(PCy3)(Cl)2Ru=CHPh (2) furnished the desired interlocked DCD 18-

H2·2PF6 in 71 % isolated yield (Scheme 2.6).  Additionally, some ring-closed macromer 

Scheme 2.5: Synthesis of DCD Macromer 1-H·PF6
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19-H·PF6 was also obtained (<10%).   

Confirmation of the interlocked nature of the product was achieved through a 

variety of characterization techniques.  High-resolution mass spectrometry showed a 

dicationic species corresponding to the proposed DCD 18-H2·2PF6.  Further evidence for 

the interlocked nature of the product was observed in the increased complexity of the 1H 

NMR spectrum, a result of the presence of both (E) and (Z) olefin isomers and a mixture 

of diastereomers.4a  Full assignment of the 1H NMR spectrum was accomplished using a 

complementary set of two-dimensional NMR techniques.15  In addition to NMR 

spectroscopy and mass spectrometry characterization of 18-H2·2PF6, we prepared the 

saturated analogue 20-H2·2PF6 (Scheme 2.7), which readily produced x-ray quality 

crystals (Figure 2.3a and 2.3b).17 The solid-state structure unambiguously confirmed the  

interlocked nature of 20-H2·2PF6, with the crown ether–type arms encircling the 

ammonium of a partner macromer.  In contrast to other reports of such compounds,4a,8a 

we observed the mesoform of 20-H2·2PF6 in the solid-state structure (Figure 2.4). We 

attribute this phenomenon to the presence of strong π-π slipped-stacking interactions18 

(average inter-“backbone” distance of 3.4 Å) between rings A and F as well as C and D 

(Figure 2.2b), imparting enhanced stability to the mesoform of the dimer.  Due to 

inversion of one crown-aryl ring (either A or D) prior to interlocking, the racemic form of 

Scheme 2.7: Saturation of DCD 18-H2·2PF6 
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Figure 2.3: ORTEP representation of 20-H2•2PF6: side-on view (a) and top-down view 
(b), showing π-π slipped-stacking interactions between rings A and F as well as C and D
(average interplanar distance: 3.4 Å).  Hydrogen atoms, counterions, and solvent
molecules have been omitted for clarity. Partial 1H NMR spectrum of 20-H2•2PF6

corresponding to the signal from Hb of the racemate (c) and mesoform (d). 

Figure 2.4: Different diastereomers formed during dimerization of 1-H·PF6. 
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 20-H2·2PF6 is likely unable to simultaneously engage in extensive π-π slipped-stacking 

interactions and strong crown ether-ammonium hydrogen bonding interactions, resulting 

in limited crystallinity.  Evidence for the distinct environment of crown-aryl proton Hb of 

each diastereomer is observed in the 1H NMR spectrum (Figure 2c and 2d), confirming 

the altered alignment of the crown-aryl rings.  Evidence from the crystal structure 

provided insight into the expected extension distance of the deprotonated forms of 18-

H2·2PF6 and 20-H2·2PF6. One scenario would involve sliding of the dimer backbone 

through the crown-type macrocycles until ring A aligned over ring D in a conformation 

similar to ring C in the bound state.  In this case, the measured distance between A1 to 

C1 (a 10.7 Å extension distance) can be related to the binding-site-to-binding-site dimer 

length from N1 to N2 (18.3 Å), giving an extension of 58%.  This value closely 

approximates the largest known extension percent of synthetic interlocked molecular 

actuators (66%).19 

 
Dimer Switching 

To demonstrate utility as a molecular actuator, switching between bound and 

unbound conformations of 18-H2·2PF6 must be facile and rapid.  Addition of a solution 

of potassium hydroxide in D2O to 18-H2·2PF6 in CD3CN (Scheme 2.8) quickly affected 

ammonium deprotonation to give the unbound analogue 21.  Due to the absence of a 

secondary binding site, the 1H NMR spectrum broadens significantly upon deprotonation 

3.0 eq KOH
CD3CN

3.0 eq HPF6
CD3CN

OH

HO

2118-H2•2PF6

(quant)

OH

HO

Scheme 2.8: Switching of Dimer 18-H2·2PF6 
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(Figure 2.5), indicating conformational heterogeneity possible only upon removal of 

crown-ammonium coordinating interactions.  Heteronuclear single quantum coherence 

(HSQC) NMR analysis15 of the deprotonated dimer confirmed an upfield shift (from 4.5 

ppm to 3.7 ppm) of the resonance of the benzylic protons Ha adjacent to the ammonium, 

suggesting deprotonation.  Furthermore, the resonance of proton Hb shifts downfield to 

7.0 ppm and coalesces, indicating the presence of a variety of conformations distinct 

from the native forms of 18-H2·2PF6. Upon addition of an equivalent amount of 

hexafluorophosphoric acid, the original 1H NMR spectrum of 18-H2·2PF6 was restored, 

completing the switching and showing facile return of the dimer to the contracted, bound 

conformation.   

Figure 2.5: Partial 600 MHz 1H NMR spectrum of 18-H2•2PF6 depicting the switching 
from bound to unbound conformations upon addition of 3.0 eq KOH, and subsequent 
recoordination upon addition of 3.0 eq HPF6. An aqueous workup restores ammonium 
proton resonances. 
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Materials Synthesis 

In preparation for materials synthesis, the terminal alcohols of 18-H2·PF6, were 

converted to mesylates and subsequently treated with sodium azide to give diazide 22-

H2·2PF6 (Scheme 2.9).  Use of a copper catalyst and N,N,N’,N”,N”-

pentamethyldiethylenetriamine ligand facilitated the Huisgen 1,3-dipolar cycloaddition 

“click” reaction20 between 22-H2·2PF6 and 1,4-diethynylbenzene to give the step-growth 

linear polymer 23-H2n·2nPF6 (Scheme 2.10).  Gel permeation chromatography (GPC)21 

coupled with multiangle laser light scattering (MALLS) detection analysis of 23-

H2n·2nPF6 showed that the polymer had a molecular weight (MW) of 48,000 g mol-1 and 

a radius of gyration (Rg) of 14.8 nm.  Since each DCD unit is about 2.5 nm and the degree 

of polymerization is approximately 22, we would expect the polymer to have an Rg value 

of 27.5 nm if it were fully extended.  The measured value (14.8 nm) indicates that the 

polymer, while not perfectly rod-shaped, appears to be mostly linear and is not 

excessively folded.  Like the monomeric dimer, the polymer could be readily 

deprotonated to produce neutral analogue 24 (Scheme 2.10).  Reprotonation of 24 to 

regenerate 23-H2n·2nPF6 was rapidly achieved upon treatment with HPF6, and five cycles 

of switching were performed with excellent polymer stability.  By MALLS analysis, 24 

had a Rg of 13.5 nm, indicating the dimeric units within the deprotonated polymer 

18-H2•2PF6

(63% )

OH

HO

N3

N3

22-H2•2PF6

1) MsCl, Et3N

2) NaN3, DMF

Scheme 2.9:  Synthesis of Azide Dimer 22-H2·2PF6 
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remained in the contracted conformation.  This effect is likely due to a combination of  

π–π slipped-stacking interactions of the dimer aryl rings and limited solubility in the GPC 

eluent21, favoring the collapsed, contracted conformation of the polymer and preventing 

systematic extension of the dimeric units. Additionally, the similar dimensions of bound 

polymer 23-H2n·2nPF6 and deprotonated polymer 24 implies that the solvent effect on 

both charged and neutral polymers is similar, and does not impact polymer shape in 

solution. However, 1H NMR analysis of 24 in a good solvent (DCM)15 revealed 

conformational heterogeneity similar to that observed in the monomeric dimer, 

confirming the ability of the dimer units in the polymer to slide upon deprotonation.  In 

application, the DCD-containing materials will be placed under an external load, readily 

n

 Slipped-stacking
Interactions

23-H2n•2nPF6

Mn = 48,000 Rg = 14.8 nm

Ac2O
NaOAc

n

25

Rg = 21.4 nm

Acyl Protecting
Group

n

24

Rg = 13.5 nm

KOH in H2O
CH3CN

Triazole "Click"
Coupling

N3

N3

22-H2•2PF6

Cu(I)Br
PMDETA, DMF

Scheme 2.10: Synthesis of Linear DCD Polymer 23-H2n·2nPF6, Neutral Polymer 24, and
Extended Acylated Analogue 25 
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inducing a lengthening of the dimeric units.  To mimic the effect of such a force and 

demonstrate the extension ability of the DCD polymer, we employed acylation of 18-

H2n·2nPF6 to increase the steric bulk of the amines and force slippage of the crown-type 

rings to give extended analogue 25 (Scheme 2.10).  MALLS showed 25 had a Rg of 21.4 

nm, which indicated a size increase of 48% compared to the contracted analogue.  This 

value closely matched the anticipated dimer extension percent, and showed that the 

polymer dimensions were dramatically impacted by the switchable DCD units. 

Upon confirmation that the linear DCD polymer chains undergo physical change 

when the DCD units are extended, we began to explore the incorporation of diazide 

dimer 22-H2·2PF6 into larger, macroscopic materials.  To achieve this goal, we 

substituted a trialkyne crosslinker for the linear 1,4-diethynylbenzene unit (Scheme 2.11).  

Commercially available tripropargylamine and 22-H2·2PF6 formed an amorphous, solid 

gel (Figure 2.6A) in the presence of copper catalyst. Based on isolated mass of the gel 

relative to the original components, we observed a quantitative incorporation of dimer 

and trialkyne. This click gel is composed of 96 wt% mechanically interlocked material, 

much higher than many other non-covalently linked gels.22 Though amorphous gel 

N3

N3

22-H2•2PF6

Cu(I)Br
PMDETA, DMF

N

Scheme 2.11: Click Gelation of 22-H2·2PF6 and Tripropargylamine 
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materials containing DCD interlocked units can be readily formed, a measure of control 

over the gel architecture requires sufficient time between catalyst addition and gel 

formation to manipulate the solution into a form or mold.  Thus, a study of the 

relationship between catalyst loading and gel time was undertaken (Figure 2.7).  By 

keeping the ratio of copper to azide equivalents near 2.5, the gelation time can be slowed 

to faciliate any necessary operations on the mixture.  

While gel structure and crosslinking events are, generally, random processes 

control over at least the final architecture of the gel must be achieved if uniform materials 

are to be repeatedly synthesized.  Having an understanding of the relationship between 

gelation time and catalyst loading allows the molding of the gel solution prior to 

solidification.  Utilizing this knowledge, we have demonstrated that the reaction mixture 

can be flowed into a glass melting-point tube before the gelation event (Figure 2.6B).  

After allowing the reaction to proceed for several days at elevated temperature (50 °C), 

the crosslinked product can be removed from the capillary to yield a long, cylindrical gel 

Figure 2.6: Click gelation of 22-H2·2PF6 and tripropargylamine produces amorphous gels
(A), or, prior to gelation, the reaction solution can be flowed into glass tubes to produce
uniform gel cylinders (B).  These cylinders can be removed from the glass mold and
swollen to several centimeters in length (C). 

A B C

Amorphous Gel Gel Cylinder
in Glass Tube

Swollen
Gel Cylinder
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fragment.  After swelling with solvent, the gel becomes nearly colorless due to leaching 

of copper and ligand out of the material (Figure 2.6C).   

Though the glass capillary tubes enable control over the shape of the gel 

cylinders, we found that similar deprotonation/reprotonation conditions to those 

employed for switching of polymer 23-H2n·2nPF6 resulted in decomposition of the 

tripropargylamine crosslinking units and destruction of the gel. As a result of this 

instability, we explored alternate trialkyne structures (Figure 2.8).  Gels formed with the 

short-chain alkyne units displayed good stablity to acidic and basic conditions but were 

X N

Rigid Gel
Acid/Base Unstabile

Very Rigid Gel
Acid/Base Stable

O

OO O

O

O

n

n

n

Tailorable Flexibility
Acid/Base Stable

Figure 2.8: Small library of trialkyne structures to tailor the stability and properties of
the DCD click gels. 

Figure 2.7: Relationship between copper catalyst loading and trialkyne/22-H2·2PF6

gelation time. 
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brittle and not well suited for materials studies.  However, when the longer-chain 

trialkyne crosslinker was employed, the resulting gels had similar stability as observed 

for the short-chain trialkyne but had increased flexibility and could be handled and 

manipulated without fracture. 

Despite successfully obtaining DCD-rich gels that were stable to a range of 

switching conditions, we have been unable to induce dimensional elongation of the gels 

via deprotonation of the DCD units using a large number of reaction conditions (Scheme 

2.12). This result is not entirely surprising given that the deprotonated DCD polymer 24 

did not readily elongate. Consequently, we believed a more promising process would 

involve the forced elongation of the incorporated DCD units within the gel via a similar 

amine protection scheme as was employed with 25.  First, we subjected the gels to neat 

acetic anhydride at elevated temperature, but the gels contracted due to poor solubility. 

Addition of a 50:50 mix of DMF and acetic anhydride allowed the gels to remain swollen 

with solvent, but no significant dimensional changes were observed. At this point, we 

screened (Scheme 2.12) several common protecting groups (acetate and boc), and also 

Scheme 2.12: Screened Conditions to Elongate DCD-Gels 
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tried other suitable reagents, including tosyl chloride and mesyl chloride, which had been 

shown to react with ammoniums in 18-H2·2PF6. We have tried a number of bases 

(Scheme 2.12), such as sodium and potassium hydroxide, potassium and cesium 

carbonate, sodium acetate, DBU, triethylamine, and sodium hydride, but none have met 

with success.  To favor the swollen state of the gel and facilitate transfer of reagents to 

DCD units in the core of the gel cylinders, we explored a number of solvents and solvent 

systems (Scheme 2.12), and tried a range of temperatures (up to 120 °C). Unfortunately, 

none of these systems resulted in observable dimension changes of the gel.  

The inability to observe lengthening of the DCD gels does not imply that these 

DCD gel tubes cannot extend.  Instead, it is likely that the DCD gels simply do not 

facilitate diffusion of the protecting groups (Ac2O, Boc2O, etc.) or the base to the DCD 

ammoniums located within the center of the gel.  While the polymer DCD units are 

readily accessed by these small-molecule protecting agents, the gels often contract and 

shrink in the presence of such solvents/reagents as acetic anhydride. These gels have 

proven to be less of a chemical challenge and more of an engineering challenge. 

To visualize gel elongation, it is likely that the DCDs will have to be aligned in a 

uniform direction within the gel.  In this way, the gel would elongate primarily in a single 

direction, not in a three-dimensional fashion as would be anticipated with a randomly 

oriented DCD gel network. Succesfully aligning the DCD units within the gel will require 

a secondary mechanical force applied to the solution during the gelation process.  Such 

forces could be introduced via fiber “pulling,” where a DCD gel fiber is produced by 

withdrawing a portion of the solution at the moment of gelation.  The motion of “pulling” 
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the fiber from solution would be expected to align the DCD units parallel to the force of 

the fiber elongation. In a complementary fashion, injection of a gelling into a non-solvent 

reservior may facilitate alignment of the DCD units.  To produce a bulk quantity of DCD 

gel with aligned interlocked units, a solution of click-gel components could be subjected 

to flow in a uniform direction, possibly producing a gel sheet, tube, etc. containing 

highly-oriented DCD units.   

In addition to aligning the DCD units, it might also be possible to enhance the 

permeability of the DCD gels by incorporating small linear sections of DCD chains 

(Scheme 2.13), which would separate the crosslinking units from one another and 

increase the pore size of the gel.  This would enable faster and more facile diffusion of 

protecting or deprotonating reagents to the core of the gel. Tailoring the ratio of linear 

dialkyne to trialkyne crosslinker would enable control of the extent of gelation, and 

determining this ratio could prove critical to successfully obtaining a gel.  Also, the 

duration of time between start of the linear oligomerization and the addition of the 

trialkyne will be important to prevent side-products from forming once the 

oligomerization has completed. 

 

N3

N3

22-H2•2PF6

1) CuBr, PMDETA

2)

X

Scheme 2.13: Synthesis of Porous DCD Gel
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Conclusions 

In conclusion, utilization of olefin metathesis has enabled the synthesis of a 

[c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A 

deprotonated DCD possessing such a structural attribute will more forcefully seek to 

restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic 

molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, 

with a 48% size increase of an unbound, extended analogue of the polymer demonstrating 

slippage of the dimer units. Ongoing work is directed at further materials studies. In 

particular, we are exploring the synthesis of macroscopic networks containing the DCD 

units and analyzing the correlation between molecular-scale extension-contraction 

manipulations and resulting macro-scale changes. 

 

References 

(1) Rescifina, A.; Zagni, C.; Iannazzo, D.; Merino, P. Curr. Org. Chem. 2009, 13, 

448. 

(2) (a) Meyer, C. D.; Joiner, C. S.; Stoddart, J. F. Chem. Soc. Rev. 2007, 36, 1705.  

(b) Haussmann, P. C.; Stoddart, J. F. Chem. Record 2009, 9, 136. (c) Rowan,      

S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Angew. 

Chem. Int. Ed. 2002, 41, 898. 

(3) (a) Bilig, T.; Oku, T.; Furusho, Y.; Koyama, Y.; Asai, S.; Takata, T. 

Macromolecules 2008, 41, 8496. (b) Bugler, J.; Sommerdijk, N. A. J. M.; Visser, 

A. J. W. G.; van Hoek, A.; Nolte, R. J. M.; Engbersen, J. F. J.; Reinhoudt, D. N.  



51 
 

J. Am. Chem. Soc. 1999, 121, 28. (c) Hirotsu, K.; Higuchi, T.; Fujita, K.; Ueda, 

T.; Shinoda, A.; Imoto, T.; Tabushi, I. J. Org. Chem. 1982, 47, 1143. (d) Liu, Y.; 

Li, L.; Fan, Z.; Zhang, H.-Y.; Wu, X.; Guan, X.-D.; Liu, S.-X. Nano Lett. 2002, 2, 

257. (e) Liu, Y.; You, C.-C.; Zhang, M.; Weng, L.-H.; Wada, T.; Inoue, Y. Org. 

Lett. 2000, 2, 2761. (f) Wu, J.; Leung, K. C.-F.; Stoddart, J. F. Proc. Natl. Acad. 

Sci. U.S.A. 2007, 104, 17266. 

(4) (a) Cantrill, S. J.; Youn, G. J.; Stoddart, J. F.; Williams, D. J. J. Org. Chem. 2001, 

66, 6857. (b) M. Consuelo Jiménez, M. C.; Dietrich-Buchecker, C.; Sauvage,     

J.-P.; De Cian, A. Angew. Chem. Int. Ed. 2000, 39, 1295. (c) Yamaguchi, N.; 

Devdatt, S.; Nagvekar, D. S.; Gibson, H. W. Angew. Chem. Int. Ed. 1998, 37, 

2361. (d) Peter R. Ashton, P. R.; Baxter, I.; Cantrill, S. J.; Fyfe, M. C. T.; Glink, 

P. T.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Angew. Chem. Int. Ed. 1998, 

37, 1294. 

(5) (a) Coutrot, F.; Romuald, C.; Busseron, E. Org. Lett. 2008, 10, 3741. (b) Wu, J.; 

Leung, K. C.-F.; Benitez, D.; Han, J.-Y.; Cantrill, S. J.; Fang, L.; Stoddart, J. F. 

Angew. Chem. Int. Ed. 2008, 47, 7470-7474. (c) Jiménez, M. C.; Dietrich-

Buchecker, C.; Sauvage, J.-P. Angew. Chem. 2000, 39, 3284. (d) Elizarov, A. M.; 

Chiu, S.-H.; Stoddart, J. F. J. Org. Chem. 2002, 67, 9175. (e) Pease, A. R.; 

Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R. Acc. Chem. 

Res. 2001, 34, 433. 



52 
 
(6) (a) Fustin, C. A.; Clarkson, G. J.; Leigh, D. A.; Van Hoof, F.; Jonas, A. M.; 

Bailly, C. Macromolecules 2004, 37, 7884. (b) Fustin, C.-A.; Bailly, C.; Clarkson, 

G. J.; Galow, T. H.; Leigh, D. A. Macromolecules 2004, 37, 66. 

(7) (a) Fustin, C.-A.; Bailly, C.; Clarkson, G. J.; De Groote, P.; Galow, T. H.; Leigh, 

D. A.; Robertson, D.; Slawin, A. M. Z.; Wong, J. K. Y. J. Am. Chem. Soc. 2003, 

125, 2200. (b) Watanabe, N.; Ikari, Y.; Kihara, N.; Takata, T. Macromolecules 

2004, 37, 6663. (c) Werts, M. P. L.; van den Boogaard, M.; Tsivgoulis, G. M.; 

Hadziioannou, G. Macromolecules 2003, 36, 7004. 

(8) (a) Guidry, E. N.; Li, J.; Stoddart, J. F.; Grubbs, R. H. J. Am. Chem. Soc. 2007, 

129, 8944. (b) Fang, L.; Hmadeh, M.; Wu, J.; Olson, M. A.; Spruell, J. M.; 

Trabolsi, A.; Yang, Y.-W.; Elhabiri, M.; Albrecht-Gary, A.-M.; Stoddart, J. F. J. 

Am. Chem. Soc. 2009, 131, 7126. 

(9) (a) Chiu, S.-H.; Rowan, S. J.; Cantrill, S. J.; Stoddart, J. F.; White, A. J. P.; 

Williams, D. J. Chem. Commun. 2002, 2948. (b) Rowan, S. J.; Cantrill, S. J.; 

Stoddart, J. F.; White, A. J. P.; Williams, D. J. Org. Lett. 2000, 2, 759. (c) Ueng, 

S.-H.; Hsueh, S.-Y.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H. Chem. 

Commun. 2008, 817. (d) Hoshino, T.; Miyauchi, M.; Kawaguchi, Y.; Yamaguchi, 

H.; Harada, A. J. Am. Chem. Soc. 2000, 122, 9876. 

(10) (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (b) Scholl, M.; 

Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953. 

(11) (a) Kidd, T. J.; Leigh, D. A.; Wilson, A. J. J. Am. Chem. Soc. 1999, 121, 1599.  

(b) Weck, M.; Mohr, B.; Sauvage, J.-P.; Grubbs, R. H. J. Org. Chem. 1999, 64, 



53 
 

5463. (c) Mobian, P.; Kern, J.-M.; Sauvage, J.-P. J. Am. Chem. Soc. 2003, 125, 

2016. (d) Sambrook, M. R.; Beer, P. D.; Wisner, J. A.; Paul, R. L.; Cowley, A. R. 

J. Am. Chem. Soc. 2004, 126, 15364. (e) Guidry, E. N.; Cantrill, S. J.; Stoddart,   

J. F.; Grubbs, R. H. Org. Lett. 2005, 7, 2129. 

(12) (a) Wisner, J. A.; Beer, P. D.; Drew, M. G. B.; Sambrook, M. R. J. Am. Chem. 

Soc. 2002, 124, 12469. (b) Kilbinger, A. F. M.; Cantrill, S. J.; Waltman, A. W.; 

Day, M. W.; Grubbs, R. H. Angew. Chem. Int. Ed. 2003, 42, 3281. (c) Hannam, J. 

S.; Kidd, T. J.; Leigh, D. A.; Wilson, A. J. Org. Lett. 2003, 5, 1907. 

(13) (a) Coumans, R. G. E.; Elemans, J. A. A. W.; Thordarson, P.; Nolte, R. J. M.; 

Rowan, A. E. Angew. Chem. Int. Ed. 2003, 42, 650. (b) Badjić, J. D.; Cantrill,     

S. J.; Grubbs, R. H.; Guidry, E. N.; Orenes, R.; Stoddart, J. F. Angew. Chem. Int. 

Ed. 2004, 43, 3273. (c) Wang, L.; Vysotsky, M. O.; Bogdan, A.; Bolte, M.; 

Böhmer, V. Science 2004, 304, 1312. (d) Zhu, X.-Z.; Chen, C.-F. J. Am. Chem. 

Soc. 2005, 127, 13158. 

(14) Nielsen, M. B.; Hansen, J. G.; Becher, J. Eur. J. Org. Chem. 1999, 2807. 

(15) See the supporting information for complete details. 

(16) (a) Ashton, P. R.; Cantrill, S. J.; Preece, J. A.; Stoddart, J. F.; Wang, Z.-H.; White, 

A. J. P.; Williams, D. J. Org. Lett. 1999, 1, 1917. (b) Montalti, M. Chem. 

Commun. 1998, 1461. (c) Doxsee, K. M. J. Org. Chem. 1989, 54, 4712. (d) Jones, 

J. W.; Gibson, H. W. J. Am. Chem. Soc. 2003, 125, 7001. 

(17) Crystallographic data have been deposited at the CCDC: deposition number 

734570.  See supporting information for complete details. 



54 
 
(18) Coates, G. W.; Dunn, A. R.; Henling, L. M.; Dougherty, D. A.; Grubbs, R. H. 

Angew. Chem. Int. Ed. 1997, 36, 248. 

(19) Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop, B. H.; Tseng, 

H.-R.; Jeppesen, J. O.; Huang, T. J.; Brough, B.; Baller, M.; Magonov, S.; 

Solares, S. D.; Goddard, W. A.; Ho, C.-M.; Stoddart, J. F. J. Am. Chem. Soc. 

2005, 127, 9745. 

(20) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 

2004. (b) Lutz, J.-F. Angew. Chem. Int. Ed. 2008, 47, 2182. 

(21) All GPC/MALLS measurements were performed using 0.2 M LiBr in DMF in an 

effort to minimize the effects of charge on the polymers in solution and prevent 

aggregation of charged species on the columns. 

(22) Ito, K. Polym. J. 2007, 39, 489. 

 

 

 

 

 

 

 

 

 

 



55 
 

Experimental Information 

 

Supporting Information 

Experimental procedures and characterization data (1H and 13C and 2D NMR, IR, HRMS, 

GPC) for all compounds and their precursors. 

 
General Information.  NMR spectra were obtained on either a Mercury 300 MHz 

spectrometer, an INOVA 500 MHz spectrometer equipped with an AutoX broadband  

probe with z-gradients, or an INOVA 600 MHz spectrometer equipped with an inverse 

HCN triple resonance probe with x-, y-,and z-gradients.  All spectrometers were running 

Varian VNMRJ software.  Chemical shifts for both 1H and 13C spectra are reported in per 

million (ppm) relative to Si(CH3)4 (δ=0) and referenced internally to the proteo solvent 

resonance. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), 

quartet (q), quintet (qt), septuptlet (sp), multiplet (m), and broad (br).  MestReNova NMR 

5.3.2 software was used to analyze all NMR spectra.  Molecular mass calculations were 

performed with ChemBioDraw Ultra 11.0.1 (Cambridge Scientific). Mass spectrometry 

measurements (FAB, EI, and MALDI) were performed by the California Institute of 

Technology Mass Spectrometry Facility. Analytical thin-layer chromatography (TLC) 

was performed using silica gel 60 F254 precoated plates (0.25 mm thickness) with a 

fluorescent indicator.  Visualization was performed using UV and iodine stain.  Flash 

column chromatography was performed using silica gel 60 (230–400 mesh) from EM 

Science.  Gel permeation chromatography (GPC) was carried out in 0.2 M LiBr in DMF 

on two I-series Mixed Bed Low MW ViscoGel columns (Viscotek) connected in series 
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with a DAWN EOS multiangle laser light scattering (MALLS) detector and an Optilab 

DSP differential refractometer (both from Wyatt Technology). No calibration standards 

were used, and dn/dc values were obtained for each injection assuming 100% mass 

elution from the columns. IR was obtained on a Perkin-Elmer BX-II FTIR spectrometer 

using thin-film techniques on NaCl plates. 

 
Materials and Methods.  Anhydrous N,N-dimethylformamide (DMF) was obtained 

from Acros (99.8% pure, Acroseal).  Dry tetrahydrofuran (THF), toluene, and 

dichloromethane (DCM) were purified by passage through solvent purification columns.1   

All water was deionized.  6-Bromo-1-hexanol (10, 97%), syringaldehyde (12, 98%), 5-

bromo-1-pentene (17, 95%), protocatechuic acid ethyl ester (20, 97%) 4’-Hydroxy-4-

biphenylcarboxylic acid (24, 99%), and 1,4-diethynylbenzene (96%) were purchased 

from Aldrich and used as received.  Anhydrous potassium carbonate (J. T. Baker, 99.6%) 

was used as received. Grubbs second-generation catalyst (H2IMes)(PCy3)(Cl)2Ru=CHPh 

(2) was obtained as a generous gift from Materia, Inc.  All other compounds were 

purchased from Acros or Aldrich and used as received.   

 
General Freeze-Pump-Thaw Procedure.  A flask charged with reagents and solvent 

was frozen with liquid nitrogen.  After the solution had frozen, the headspace of the flask 

was evacuated under vacuum.  The flask was sealed and allowed to thaw to room 

temperature.  The headspace of the flask was then backfilled with argon. The flask was 

sealed and the reaction mixture frozen again with liquid nitrogen.  This process was 

repeated twice.  On the third cycle, the solution was frozen and the headspace evacuated 
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and backfilled with argon.  Catalyst was quickly added to the top of the frozen solution, 

the headspace was again evacuated, and the solution allowed to warm to room 

temperature.  The solution was backfilled with argon, refrozen, and subjected to another 

cycle for a total of four freeze-pump-thaw cycles. 

 
General Phenol Alkylation Procedure.  To a cooled, flame-dried, two-neck round 

bottom flask, equipped with a stir bar and fitted with a septum, water-jacketed reflux 

condenser, and vacuum adapter was added, under argon, 3 equivalents (relative to each 

mole of phenol) of anhydrous potassium carbonate, anhydrous DMF (to make an ~0.1 M 

solution), and phenol at room temperature.  To this stirring mixture was added the 

alkylating agent dissolved in a minimal amount of DMF.  The reaction was heated to 90 

°C in an oil bath for 2 to 3 days, and, upon completion, was stopped by cooling to room 

temperature.  The reaction mixture was poured into a separatory funnel, and partitioned 

between water (5x original volume of DMF) and ethyl acetate (1x original volume of 

DMF).  The aqueous layer was extracted three times with fresh portions of ethyl acetate 

(1x original volume of DMF), and the combined organic layers were washed three times 

with fresh portions of water and brine (1x original volume of DMF).  The washed organic 

layer was dried over anhydrous magnesium sulfate (MgSO4), filtered through filter paper, 

and evaporated to dryness under reduced pressure to give the alkylation product.  

Purification was achieved by silica gel flash chromatography using various eluents. 

 

General Lithium Aluminum Hydride Reduction Procedure.  To a cooled, flame-dried 

2-neck flask, equipped with a stir bar and fitted with a septum, water-jacketed reflux 
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condenser, and vacuum adapter was added, under argon and at 0 °C, 3 equivalents of 

lithium aluminum hydride (LAH) powder (95+%), dry THF, and, slowly, 1 equivalent of 

ester, acid, aldehyde, or nitrile dissolved in a minimal amount of dry THF.  The reaction 

was heated to 87 °C overnight in an oil bath.  To quench the reaction mixture, the oil bath 

was removed and the reaction cooled to 0 °C.  Water (1 ml per gram of LAH) was added 

very slowly to the stirring mixture, followed by very slow addition of a 15% sodium 

hydroxide solution (1 ml per gram of LAH).  Water (3 ml per gram of LAH) was added 

very rapidly, and the resulting slurry was allowed to stir for 4 hours at room temperature.  

After this time, a large excess of celite and anhydrous MgSO4 was added, and the mixture 

allowed to stir for an additional hour.  The reaction was filtered, and the solvent removed 

by rotary evaporation.  The product was redissolved in organic solvent (0.5x original 

volume of THF), and partitioned with water (1x original volume of THF) in a separatory 

funnel.  The water layer was extracted three times with fresh solvent (0.25x original 

volume of THF), and the combined organic layer was washed with two fresh portions of 

water (0.5x original volume of THF), dried over anhydrous MgSO4, filtered, and 

evaporated to dryness under reduced pressure to give the reduced product.   The products 

were used with no further purification, or purified via specified protocols. 
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EXPERIMENTAL SECTION 

 

 

O

H

OO

O

OO

O

O

3

MeO OMe
O OTHP

H2N

12

4

+

(76 % )
over 4 steps

1) C6H6, Dean-Stark Trap, reflux, 1d
2) NaBH4, MeOH, r.t., 12h

3) 1.0 M HCl, THF/MeOH, r.t., 1d
4) NH4PF6, MeOH, r.t., 12h

OO

O

OO

O

O

N
H2

OMe

OMe
O

OH

PF6

1-H•PF6

O

O

OO

O

OO

O

O

O

O

N
H2

O OH

PF6

0.01M CH2Cl2,
43 °C, 24h

Ru

PCy3

PhCl

Cl

NN

O
O

O

O

O

O

N
H2

O

O

O
O O

O

O

O

H2
NO

O

PF6

PF6

1-H•PF6

18-H2•2PF6
(71% yield )

4

O OH
4

OHO

4

2

OO

O

OO

O

O

O

O

N
H2

O OH

PF6

19-H•PF6
(<10% yield )

4

+



60 
 

 

KOH in D2O,
CD3CN/d8-THF

n

24

Ac2O, NaOAc

n
25

22-H2•2PF6

N3

N3

n
23-H2n•2nPF6

Cu(I)Br
PMDETA,

DMF

HPF6 in D2O,
CD3CN/d8-THF

X

Gel Network with Dimer Linker

Cu(I)Br
PMDETA

18-H2•2PF6

OH

HO

1) MsCl, TEA
2) NaN3, DMF

HPF6 in D2O,
CD3CN

KOH in D2O,
CD3CN

H2,
Pt(IV)O2,

MeOH

OH

HO

20-H2•2PF6

OH

HO

21



61 
 

 

Br OH

15 (81 % )

4
Br OTHP

4

16

Dihydropyran, pTSA, DCM

0 °C to r.t., 12h

N

MeO OMe
OH

OMeMeO
OH

HO

14(68 % )
over 3 steps

13

1) NH2OH•HCl, NaOAc,
MeOH, reflux, 2h

2) Ac2O, reflux, 12h
3) NaOH, MeOH, r.t., 1d

N

OMeMeO
OH

+

14

16

Br OTHP
4

N

MeO OMe
O OTHP

17

4(85 % )

K2CO3, DMF

90 °C, 3d
MeO OMe

O OTHP

H2N

12

4(80 % )

LAH, THF

ref lux, 12h

HO
O

OH HO
O

OBr

B-4 C-4

NaOH/H2O

80 °C, 1d

(79 % )

MsCl, TEA, DCM

0 °C to r.t., 12h

(95 % )

MsO
O

O

4

HO

HO

OEt

O

4

+

OO

O

OO

O

5

OO

OMs

(84 % )

K2CO3, DMF

90 °C, 3d

O

OEt

6

OO

O

OO

O

(75 % )

OH

7

LAH, THF

reflux, 12h

OO

O

OO

O

OH

7

OO

O

OO

O

(75 % )

Cl

8

HCl, C6H6

r.t., 5 min

+

HO

O

OH

(72 % )

H2SO4, MeOH

reflux, 3d

HO

O

OMe

9 10

(82 % )

K2CO3, DMF

90 °C, 3d

OO

O

OO

O

11

O

O

OMe
OO

O

OO

O

Cl

8

HO

O

OMe

10

+

OO

O

OO

O

11

O

O

OMe

(79 % )

RedAl,
N-MethylPiperazine

Toluene
0 °C, 8h

OO

O

OO

O

3

O

O

H

A-4



62 
 

 

Self-Complementary Macromer (1-H·PF6).  A flask equipped with a stir bar was 

charged with 3 (6.8249 g, 10.79 mmol, 1 eq), 12 (3.9635 g, 10.79 mmol, 1 eq), and 

benzene (250 ml).  The flask was fitted with a Dean-Stark trap and reflux condenser, and 

heated to 100 °C.  The trap was flushed several times over the course of the reaction.  

After 1 day, the reaction was cooled to room temperature and the benzene removed under 

reduced pressure to give imine 1a as a viscous oil (10.59 g).   

 

Imine 1a (10.59 g) was dissolved in methanol (108 ml), and sodium borohydride (1.2241 

g, 32.37 mmol) was added to the reaction.  Stirring was continued at room temperature 

for 12 hours.  The methanol was removed under reduced pressure, and the residue 
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dissolved in DCM and transferred to a separatory funnel.  Water was added, and the 

organic layer was rinsed three times with fresh portions of water.  The organic layer was 

then dried over magnesium sulfate, filtered, and concentrated under reduced pressure, 

giving amine 1b as a thick oil (10.3 g).  

 

The amine 1b (10.3 g) was dissolved in methanol (20 ml) and THF (100 ml), and to this 

mixture was added 1.0 M hydrochloric acid (155 ml, in water).  This mixture was 

allowed to stir for 1 day, poured into a separatory funnel, and diluted with water and 

DCM.  The water layer was extracted three times with fresh DCM and the combined 

organic layers were washed another two times with water, dried over magnesium sulfate, 

filtered, and evaporated to dryness under reduced pressure, giving ammonium-alcohol 1c 

as a waxy solid (7.9 g).   

 

The compound 1c was redissolved in methanol (150 ml), and ammonium 

hexafluorophosphate (13.7485 g, 84.34 mmol) was added.  The reaction mixture was 

allowed to stir overnight, and was halted by evaporation of methanol under reduced 

pressure.  The residue was dissolved in DCM, poured into a separatory funnel, and 

diluted with water.  The organic layer was washed several times with fresh water, poured 
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through filter paper, and evaporated to dryness under reduced pressure.  Flash 

chromatography (SiO2: gradient from 2%, then 2.5%, then 10% DCM to methanol 

eluent) gave 1-H·PF6 (8.6 g, 76% yield over 4 steps) as a pale-yellow waxy solid.  1H 

NMR (500 MHz, CDCl3):  7.37 (m, 6H), 6.91 (m, 4H), 6.78 (s, 1H), 6.70 (s, 2H), 5.76 

(m, 2H), 5.05-4.86 (m, 4H), 4.74 (s, 2H), 4.48-3.98 (m, 4H), 3.91 (t, J = 6.50 Hz, 2H), 

3.88-3.66 (m, 16H), 3.66-3.42 (m, 12H), 2.08 (m, 4H), 1.67 (sp, J = 1.67 Hz, 4H), 1.58-

1.27 (m, 8H).  13C NMR (126 MHz, CDCl3):  158.42, 153.70, 146.50, 145.99, 141.44, 

137.88, 137.72, 137.44, 131.86, 130.52, 130.03, 128.23, 127.82, 126.48, 126.35, 119.65, 

115.14, 114.92, 112.30, 110.80, 105.89, 73.28, 71.18, 71.02, 70.94, 70.72, 69.85, 69.76, 

69.53, 69.34, 68.53, 67.66, 62.64, 56.14, 52.41, 32.47, 30.08, 30.01, 29.86, 28.58, 28.46, 

25.49, 25.38.  HRMS-FAB (m/z): [M – PF6] calcd for C53H74NO11, 900.5262; found, 

900.5245. 
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[c2]Daisy-Chain Dimer (18-H2·2PF6).  A cooled, flame-dried flask equipped with a stir 

bar, gas port, and septum was charged, under argon, with 1-H·PF6 (10.00 g, 9.56 mmol, 1 

eq) and dry DCM (960 ml, 0.01 M).  This mixture was sparged with argon for 30 

minutes, and catalyst (H2IMes)(PCy3)(Cl)2Ru=CHPh 2 (406 mg, 0.478 mmol, 5 mol %) 

was added.  The reaction was heated to 43 °C for 24 hours and was then quenched by 

addition of 5 ml of ethyl vinyl ether, which was allowed to stir for 30 minutes at elevated 

temperature.  The solvent was removed under reduced pressure to give crude 18-H2·2PF6 

as a brown foam (9.2650 g, 91.4% recovered).  A 100.0 mg portion of the foam was 

purified by flash chromatography (SiO2: gradient from pure DCM to 0.5% methanol in 

DCM to 1.0% methanol in DCM to 2% methanol in DCM to 5% methanol in DCM) to 

afford pure 18-H2·2PF6 as a white foam (77.6 mg, 71% overall isolated yield).  Note:  see 

1H spectra for full assignment.  1H NMR (600 MHz, CD3CN):  8.10 (br s, 2H), 7.75 (br 

s, 2H), 7.48-7.35 (m, 4H), 7.30-7.12 (m, 8H), 7.09 (d, J = 7.6 Hz, 1H), 7.02-6.75 (m, 
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11H), 6.38 (m, 1H), 6.25 (m, 1H), 5.75-5.39 (m, 4H), 4.88-3.12 (br m, 72H), 2.44 (t, J = 

5.3 Hz, 2H), 2.41-1.99 (br m, 8H), 1.91-1.55 (m, 8H), 1.67 (qt, J = 7.0 Hz, 4H), 1.54-1.43 

(m, 8H), 1.41-1.32 (m, 4H). 13C NMR (126 MHz, CD3CN):  159.96, 159.87, 155.30, 

147.41, 147.26, 146.89, 146.81, 142.47, 139.18, 133.46, 133.36, 132.78, 132.69, 132.06, 

132.01, 131.93, 131.59, 131.48, 131.33, 131.27, 130.90, 130.85, 130.25, 129.30, 129.27, 

128.46, 127.43, 127.29, 120.35, 119.82, 116.20, 116.16, 113.52, 113.24, 111.42, 111.02, 

107.71, 107.27, 74.31, 73.45, 73.25, 73.07, 72.85, 72.80, 72.51, 72.41, 72.11, 72.05, 

71.41, 71.23, 71.15, 71.00, 70.96, 70.77, 70.56, 70.48, 69.72, 69.46, 69.11, 68.90, 62.97, 

57.30, 57.27, 53.66, 53.43, 33.98, 31.79, 31.75, 31.25, 30.44, 30.35, 29.71, 29.67, 29.58, 

29.19, 29.09, 29.07, 26.93, 26.80, 26.66, 25.95. FTIR (NaCl, cm-1):  3594.29, 3445.56, 

3143.46, 3008.55, 2936.49, 2870.07, 2625.68, 2249.01, 1949.63, 1721.96, 1607.67, 

1594.00, 1514.17, 1502.65, 1463.46,  1433.21, 1391.50, 1372.07, 1354.31, 1334.36, 

1291.77, 1249.20, 1195.92, 1181.75, 1162.97, 1128.93, 1100.34, 1050.97, 993.38, 

973.95, 948.94, 913.43, 842.34, 780.57, 763.77, 730.64, 697.31, 673.00, 647.63, 619.96.  

ESI-TOF MS (m/z): [M + 2H – 2PF6]
+2 calcd for C51H70NO11, 872.9966; found 

872.9941. 
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Saturated [c2]Daisy-Chain Dimer (20-H2·2PF6).  To a round bottom flask equipped 

with a stir bar was added 18-H2·2PF6 (40.0 mg, 19.6 μmol, 1 eq) and methanol (25 ml).  

The dimer was dissolved in the methanol via heating, then allowed to cool to room 

temperature.  To the solution, “Adam’s Catalyst” platinum(IV) oxide (89 mg, 0.393 

mmol, 20 eq) was added in one portion.  The flask was sealed with a septum, and, with 

stirring, was vigorously sparged with hydrogen gas for 15 minutes.  The catalyst changed 

color from brown to black-gray.  After the sparging was complete, a balloon of hydrogen 

was placed into the septum, and a positive pressure of hydrogen was maintained 

throughout the course of the reaction.  The reaction was stirred very vigorously for one 

hour then filtered through a pad of celite to give the saturated dimer 20-H2·2PF6 as a 

white solid (36.4 mg, 91% yield). (see 1H of 3-H2·2PF6 for proton letter assignments) 1H 

NMR (600 MHz, CD3CN):  8.10 (br s, 2H), 7.75 (br s, 2H), 7.45 (d, J = 8.7 Hz, 1.6H, 
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Hn m), 7.41 (d, J = 8.7 Hz, 2.4H, Hn r), 7.30-7.24 (m, 4H, Hp), 7.21 (d, J = 8.2 Hz, 1.6H, 

Hq m), 7.17 (d, J = 8.2 Hz, 2.4H, Hq r), 7.8 (d, J = 6.7 Hz, 0.9H, Hl m), 6.98 (d, J = 8.5 Hz, 

0.9H, Hk m), 6.96-6.93 (s + d, 5.2H, Hr + Hl r), 6.89 (d, J = 8.5 Hz, 1.3H, Hk r), 6.86 (d, J = 

8.7 Hz, 1.6H, Ho m), 6.82 (d, J = 8.7 Hz, 2.4H, Ho r), 6.40 (m, 1.2 H, Hb r), 6.26 (m, 0.8H, 

Hb r), 4.85-4.25 (m, 12H, Ha + Hj), 4.15-3.40 (m + t3.95 + s3.79 + t3.47, 60H, [m = Hf -Hj] + 

[t3.95 = Ht] + [s3.79 = Hs] + [t3.47 = Hy]), 2.44 (t, J = 5.3 Hz, 2H, Hz), 1.73-1.33 (br m, 40 H, 

Hu -Hx + Hc -He).  13C NMR (126 MHz, CD3CN):  159.96, 159.87, 155.29, 147.34, 

147.24, 146.71, 146.66, 142.41, 142.28, 139.05, 133.34, 133.28, 131.98, 131.82, 131.60, 

131.47, 130.23, 129.26, 128.49, 128.47, 127.44, 127.31, 120.24, 119.83, 118.69, 116.13, 

113.35, 113.07, 111.31, 111.02, 107.32, 74.28, 73.44, 73.19, 73.15, 72.88, 72.83, 71.76, 

71.36, 71.11, 70.12, 69.93, 69.68, 69.40, 68.95, 68.78, 62.95, 57.29, 53.80, 53.73, 33.97, 

31.24, 30.88, 30.83, 30.53, 30.49, 29.10, 29.08, 28.96, 26.92, 26.79, 26.74, 26.73, 26.57, 

26.55. FTIR (NaCl, cm-1):  3593.99, 3433.21, 3137.28, 2933.11, 2860.90, 1952.15, 

1593.24, 1514.07, 1501.41, 1463.66, 1435.55, 1393.10, 1372.52, 1353.85, 1334.80, 

1293.11, 1248.93, 1196.12, 1181.25, 1162.76, 1128.62, 1099.00, 1048.90, 1001.31, 

974.66, 906.59, 842.20, 780.29, 763.75, 735.51, 701.04, 672.30, 619.80, 588.82, 557.65, 

528.46.   ESI-TOF MS (m/z): [M – PF6]
1+ calcd for C102H144N2O22F6P, 1893.9853; found, 

1893.9867. 

 

Crystals suitable for x-ray diffraction were obtained for the mesoform via slow 

evaporation of a solution of 20-H2·2PF6 (10.7 mg) in 3:3:1 hexanes:ethyl 

acetate:acetonitrile (0.5 ml, 0.5 ml, 0.17 ml, respectively).  The racemic mixture 
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remained soluble and did not crystallize (see 1H NMR of each diastereomer in spectra 

section).  The solid-state structure was deposited in the CCDC: 734570.  See the CIF file 

for complete details.  

 

 
Deprotonated [c2]Daisy-Chain Dimer (21).  To a vial was added 18-H2·2PF6 (44.3 mg, 

21.8 μmol, 1 eq) and deuterated acetonitrile (0.5 ml), and this solution was transferred via 

pipet to a 5 mm NMR tube.  To a separate vial was added potassium hydroxide (122 mg, 

2.18 mmol, 100 eq) and deuterium oxide (0.50 ml).  Using a 25 μl syringe (Hamilton 

1700 Series Gastight Syringe), 5 μl injections (total of 3 injections) of the KOH/D2O 

solution was added to the NMR tube.  After each injection, the tube was vigorously 

shaken for 10–15 seconds, and then reinserted into the spectrometer.  Deprotonation was 

complete after addition of 3 equivalents of potassium hydroxide, giving 21.  The sample 
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remained stable for 36 h, with an unchanged 1H NMR spectrum, and was subjected to 

reprotonation with no purification. 1H NMR (600 MHz, CD3CN):  7.75-7.30 (br m, 5H), 

7.30-7.15 (m, 4H), 7.15-6.19 (br m, 17H), 5.85-5.15 (br m, 4H), 4.87-3.15 (br m, 74H), 

2.45-2.00 (br m, 8H), 1.83-1.53 (br m, 12H), 1.53-1.42 (m, 8H), 1.34 (qt, 4H).  13C NMR 

(126 MHz, CD3CN):  159.48, 154.59, 148.98, 148.78, 147.07, 141.84, 140.98, 140.10, 

139.12, 136.49, 134.58, 131.68, 131.10, 130.54, 130.02, 128.94, 126.69, 120.72, 116.51, 

116.18, 112.85, 107.55, 107.29, 74.05, 72.76, 71.85, 71.49, 71.04, 70.77, 70.60, 70.42, 

70.01, 69.70, 69.03, 68.47, 62.72, 56.99, 56.89, 54.86, 53.48, 33.74, 31.73, 31.10, 30.40, 

29.71, 27.68, 26.81, 26.66. 

 

A third vial was charged with deuterium oxide (0.5 ml) and hexafluorophosphoric acid 

(296 μl, 2.18 mmol, 100 eq, 60 wt% in H2O).  Using the same 25 μl syringe, 5 μl 

injections (total of 3 injections) of this solution were added to the NMR tube containing 

21, restoring the 1H NMR spectrum corresponding to 18-H2·2PF6 and completing the 

“switching” of the dimer. (see 1H NMR spectral information for 18-H2·2PF6)  Note:  

Spectra were taken immediately after appropriate locking and shimming protocols with 

no extra time allowed for additional reaction.  All deprotonation and reprotonation 

reactions were complete by the time the necessary NMR protocols were complete (<3 

min).  

 

After the switching was complete, the NMR sample was transferred to a vial and the 

solvent was removed under reduced pressure.  The residue was dissolved in DCM (10 
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ml), and water was added (20 ml).  The aqueous layer was extracted with fresh DCM (2 x 

5 ml), and the combined organic layer further washed with fresh water (2 x 5 ml).  The 

organic layer was poured through filter paper, and the solvent removed via rotary 

evaporation to return 18-H2·2PF6 (37.5 mg, 85% recovery).  See 1H NMR spectral 

characterization information for 18-H2·2PF6. 

 

 
Diazide [c2]Daisy-Chain Dimer (6-H2·2PF6).  Crude 3-H2·PF6 was mixed with ethyl 

acetate (5 ml) and vigorously sonicated for 15 minutes giving a tan oil.  The ethyl acetate 

was decanted, and a fresh portion of ethyl acetate (5 ml) was added.  The suspension was 

again sonicated vigorously for 15 minutes, and the ethyl acetate was decanted to give a 

pale tan powder.  This terminal diol [c2]daisy-chain dimer 18-H2·PF6 powder (2.58 g, 

1.27 mmol, 1 eq) was dissolved in DCM (12.7 ml, 0.1 M) and triethylamine (1.1 ml, 7.62 

mmol, 6 eq), and cooled to 0 °C.  To this stirring solution, mesyl chloride (0.60 ml, 7.62 
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mmol, 6 eq) was added dropwise.  The reaction was warmed to room temperature for 12 

h, then poured into a separatory funnel and diluted with water (100 ml) and DCM (25 

ml).  The aqueous layer was extracted with fresh DCM (2 x 25 ml), and the combined 

organic layer was washed with fresh water (50 ml).  The organic layer was poured 

through filter paper, and evaporated to dryness.  The resulting foam was mixed with ethyl 

acetate (5 ml) and subjected to sonication for 15 minutes.  The ethyl acetate was 

decanted, and another 5 ml of fresh ethyl acetate was added.  The suspension was 

sonicated for an additional 15 minutes, the ethyl acetate decanted, and the tan powder 

(2.24 g) was used without further purification.  1H NMR (500 MHz, CDCl3):   8.08 (br 

m, 2H), 7.68 (br m, 2H), 7.43-7.27 (m, 4H), 7.22-7.02 (m, 8 H), 7.02-6.60 (m, 12 H), 

6.32-6.10 (m, 2H), 5.68-5.21 (br m, 4 H), 5.05-4.01 (br m, 19 H), 3.96 (t, J = 6.4 Hz, 4H), 

3.93-3.10 (br m, 48 H), 2.97 (s, 4H), 2.42-1.93 (br m, 8 H), 1.90-1.31 (br m, 24 H).  The 

dimesylated dimer (2.24 g, 1.02 mmol, 1 eq) was added to a flame-dried flask equipped 

with a stir bar and under a positive argon atmosphere, and dry DMF (50 ml, 0.02 M) was 

added.  Sodium azide (0.80 g, 12.24 mmol, 12 eq) was added in one portion, and the 

reaction mixture was heated to 50 °C for 12 h.  The solution was poured into a separatory 

funnel and diluted with ethyl acetate (100 ml) and water (50 ml).  The aqueous layer was 

extracted with fresh ethyl acetate (4 x 25 ml), and the combined organic layer was 

washed with fresh water (50 ml).  The organic layer was poured through filter paper and 

evaporated to dryness.  The resulting foam was sonicated with ethyl acetate (2 x 5 ml) to 

give 22-H2·2PF6 (1.67 g, 63%) as a pale-tan foam that was used without further 

purification.  1H NMR (500 MHz, CDCl3):  8.10 (br s, 2H), 7.65 (br s, 2H), 7.42-7.30 
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(m, 4H), 7.20-7.05 (m, 8H), 7.04 (d, J = 7.8 Hz, 1H), 6.95-6.70 (m, 11H), 6.28 (m, 1H), 

6.15 (m, 1H), 5.61-5.29 (m, 4H), 4.82-3.18 (br m, 72H), 2.41-1.90 (br m, 8H), 1.90-1.35 

(m, 24H). 13C NMR (126 MHz, CDCl3) δ 158.54, 158.48, 154.06, 154.01, 145.86, 

145.70, 145.31, 145.18, 141.53, 137.94, 131.62, 131.13, 130.61, 129.98, 128.24, 127.86, 

127.13, 126.23, 119.28, 118.75, 114.97, 111.89, 111.75, 109.89, 109.57, 105.94, 105.30, 

77.48, 77.23, 76.98, 73.57, 73.47, 71.83, 71.36, 71.22, 71.16, 71.04, 70.36, 70.04, 69.88, 

69.80, 69.40, 69.30, 68.67, 68.25, 67.93, 67.90, 67.57, 67.47, 62.89, 56.44, 56.40, 52.31, 

52.27, 51.51, 32.79, 30.62, 30.54, 30.11, 30.05, 29.18, 29.14, 28.90, 28.39, 28.34, 28.15, 

28.01, 26.59, 25.71, 25.62, 25.52, 24.96, 24.91. FTIR (NaCl, cm-1): 3956.56, 3659.54, 

3592.45, 3141.56, 3008.82, 2936.76, 2623.29, 2530.03, 2360.09, 2343.93, 2096.21, 

1952.38, 1593.87, 1505.34, 1455.83, 1393.37, 1372.65, 1353.86, 1335.16, 1249.54, 

1195.47, 1181.54, 1162.53, 1125.38, 1048.91, 973.99, 898.13, 838.37, 779.95, 763.92, 

734.50, 701.42, 672.28, 644.56, 632.82, 619.78, 588.90, 557.67, 528.21.  ESI-TOF MS 

(m/z): [M + 2H – 2PF6]
+2 calcd for C51H69N4O10, 897.5013; found 897.5054.  GPC (DMF 

with 0.2 M LiBr):  Mn = 3123 g/mol; Mw = 3868 g/mol; PDI = 1.24; dn/dc = 0.121 ; Rgz = 

n/a. 
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[c2]Daisy-Chain Dimer Polymer (23-H2n·2nPF6).  To a flame-dried vial equipped with 

a stir bar and septum cap was added 22-H2·2PF6 (75.0 mg, 35.9 μmol, 1 eq), 1,4-

diethynylbenzene (4.5 mg, 35.9 μmol, 1 eq), N,N,N′,N′′,N′′-pentamethyl-

diethylenetriamine (37.5 μl, 179.8 μmol, 5 eq), and dry DMF (360 μl, 0.1M).  This 

mixture was subjected to standard freeze-pump-thaw protocol, with addition of copper(I) 

bromide (26.4 mg, 179.8 μmol, 5 eq) after the third freeze.  After the fourth freeze-pump-

thaw cycle was completed, the vial was placed in a 50 °C oil bath for 24 h.   The viscous 

reaction mixture was cooled to room temperature, and added dropwise to a stirring 

solution of methanol (40 ml).  The precipitate was collected, dried, redissolved in 

dichloromethane (0.5 ml), and subjected to a second precipitation in fresh methanol (40 

ml).  The solid was collected and dried under reduced pressure to afford 23-H2n·2nPF6  

(60.4 mg, 76% yield) as an off-white powder.  The product was used with no further 

purification.  1H NMR (500 MHz, CDCl3):  8.10 (br m, 4H), 7.91 (s, 4H), 7.82 (d, J = 

7.7 Hz, 0.6 H), 7.70 (br s, 2H), 7.55 (d, J = 8.1 Hz, 0.6 H), 7.48-7.35 (m, 5H), 7.28-7.02 

(m, 11H), 7.01-6.75 (m, 13H), 6.45-6.15 (m, 2H), 5.71-5.35 (m, 4H), 4.85-3.08 (br m, 

88H), 2.50-1.80 (br m, 10H), 1.80-1.35 (m, 28H + HDO). 1H NMR (500 MHz, CD2Cl2): 

 8.12 (br m, 2H), 7.89 (s, 3H), 7.80 (d, J = 8.1 Hz, 0.5 H), 7.68 (br s, 2H), 7.53 (d, J = 

7.3 Hz, 0.6 H), 7.48-7.30 (m, 4H), 7.28-7.08 (m, 9H), 7.05-6.60 (m, 11H), 6.40-6.10 (m, 

n23-H2n•2nPF6

(76% )

N3

N3

22-H2•2PF6

Cu(I)Br
PMDETA, DMF
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2H), 5.71-5.35 (m, 4H), 4.90-3.08 (br m, 72H), 2.50-1.80 (br m, 12H), 1.80-1.35 (m, 22H 

+ HDO).  FTIR (NaCl, cm-1): 3645.89, 3436.49, 3275.37, 3140.73, 3047.82, 3007.96, 

2935.65, 2867.49, 2626.16, 2362.05, 2103.24, 1949.57, 1593.01, 1513.78, 1501.17, 

1463.53, 1432.12, 1389.82, 1371.32, 1353.86, 1333.98, 1291.59, 1248.54, 1195.05, 

1181.27, 1163.07, 1128.14, 1100.30, 1048.58, 973.32, 899.38, 842.74, 780.23, 763.80, 

734.32, 700.48, 672.09, 644.03, 632.82, 619.48, 588.59, 557.58, 528.37.  GPC (0.2 M 

LiBr in DMF):  Mn = 47,940 g/mol; Mw = 141,100 g/mol; PDI = 2.94; dn/dc = 0.116; Rgz 

= 14.8 nm. 

 

 

 

Deprotonation of [c2]Daisy-Chain Dimer Polymer 23-H2n·2nPF6 (24).  A vial was 

charged with 23-H2n·2nPF6 (10 mg, 9 μmol, 1 eq) and acetonitrile (2 ml).  To this 

mixture was added a 1.0 M solution of aqueous potassium hydroxide (1.8 ml), resulting 

in immediate precipitation of an off-white solid.  The solution was decanted, and the solid 

was washed with fresh acetonitrile (2 x 2 ml).  The deprotonated polymer 24 (9 mg, 

quant. yield) was analyzed with no further purification.  The CD2Cl2 used in the NMR 

study was passed through a plug of basic alumina prior to addition to the deprotonated 

polymer sample. 1H NMR (500 MHz, CD2Cl2):  7.92-7.82 (m, 3.8H), 7.80 (d, J = 7.7 

n
23-H2n•2nPF6

KOH in H2O

CH3CN

n
24

(quant. )
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Hz, 0.4H), 7.53 (d, J = 7.9 Hz, 0.4H), 7.48-6.20 (m, 26H), 5.65-5.35 (m, 4H), 4.86-3.05 

(br m, 72H), 2.55-1.55 (br m, 32H + H2O signal). GPC (0.2 M LiBr in DMF):  Mn = 

41,680 g/mol; Mw = 125,800 g/mol; PDI = 3.02; dn/dc = 0.148; Rgz = 13.5 nm. 

 

 

 

5x Switching of Polymer 23-H2n·2nPF6.  A vial was charged with 23-H2n·2nPF6 (11.6 

mg, 5.3 μmol, 1 eq), and the polymer was dissolved in CD3CN (0.4 ml) and loaded in an 

NMR tube.  To the tube was added d8-THF (0.4 ml), and the mixture was shaken 

vigorously for several seconds.  The switching was performed via addition of a stock 

solution of KOH in D2O (Stock Solution: 180 mg KOH in 0.5 ml D2O; 5 μl injection 

volume, 6 eq) followed by vigorous shaking for 15 seconds to give 24, and, after 

analysis, subsequent reprotonation via addition of a stock solution of HPF6 in D2O (450 

μl 65% HPF6 in 0.5 ml D2O; 5 μl injection volume, 6 eq) to regenerate 23-H2n·2nPF6. See 

21 for syringe specifications.  After five cycles of deprotonation and reprotonation were 

completed, the polymer solution was transferred to a vial and the solvent was removed 

under reduced pressure.  The residue was washed with water (2 x 2 ml) and dried under 

high vacuum, returning 23-H2n·2nPF6 as a white solid (11.6 mg, quant. yield).  

Protonated Polymer: 1H NMR (500 MHz, 1:1 CD3CN/d8-THF):  8.25-8.02 (m, 2.8 H), 

n
23-H2n•2nPF6

KOH in D2O
CD3CN/d8-THF

n
24

HPF6 in D2O
CD3CN/d8-THF
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7.92 (m, 2.6H), 7.85 (d, J = 8.0 Hz, 0.4H), 7.75 (br s, 2H), 7.53 (d, J = 8.1 Hz, 0.4H), 

7.48-7.35 (m, 4H), 7.32-7.13 (m, 8H), 7.12-6.75 (12H), 6.47-6.18 (m, 2H), 5.75-5.35 (m, 

4H), 4.86-3.15 (br m, 72H + d8-THF), 2.55-1.70 (m, 18H + CD3CN +  d8-THF signal), 

1.70-1.32 (m, 14H). 

 

 

 
Acylated [c2]Daisy-Chain Dimer Polymer (25).  To a vial equipped with a stir bar was 

added 23-H2n·2nPF6 (10.0 mg, 208 nmol, 1 eq), sodium acetate (18.5 mg, 225 μmol, 25 

eq per ammonium), and acetic anhydride (500 μl).  This solution was placed under a 

positive pressure of argon and heated to 90 °C for 2 hours.  The acetic anhydride was 

removed under reduced pressure, and the resulting residue washed with water (3 x 2 ml) 

to give the acylated derivative 25 (9.1 mg, quant. yield) as an off-white powder.  The 

product was used with no further purification.  1H NMR (500 MHz, CD2Cl2):  7.82-7.68 

(m, 5H), 7.67-7.48 (m, 8H), 7.48-6.67 (br m, 15H), 6.45-6.15 (m, 6H), 5.50-4.98 (m, 4H), 

4.60-4.15 (m, 16H), 4.09-3.05 (br m, 62H), 2.50-1.55 (br m, 30H), 1.50-1.28 (m, 10H).  

GPC (0.2 M LiBr in DMF):  Mn = 26,870 g/mol; Mw = 117,200 g/mol; PDI = 4.36; dn/dc 

= 0.133; Rgz = 21.8 nm. 

 

n

25

(quant. )

n
23-H2n•2nPF6

Ac2O, NaOAc
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Note on GPC Analysis:  All polymer GPC LS analyses were fitted using the Zimm 

Model.  Though all polymers displayed limited solubility in the 0.2 M LiBr DMF eluent, 

efforts to use an alternate eluent without salt (DMF or THF) generated chromatographs 

unsuitable for analysis due to severe polymer aggregation on the SEC columns. 

 

 

 

 

2-(2-(Pent-4-enyloxy)ethoxy)ethanol (C-4).  A flask equipped with a stir bar was 

charged with diethylene glycol (A-4) (637 ml, 6.71 moles, 20 eq) and 5-bromo-1-pentene 

(B-4) (50 g, 0.37 moles, 1 eq).  A solution of sodium hydroxide and water (67.1 g NaOH, 

1.68 moles, 5eq; 67 ml of H2O) was added slowly over a period of one hour via an 

addition funnel, resulting in turbidity of the reaction mixture.  The reaction was heated to 

80 °C for one day, and after cooling to room temperature, the mixture was poured into a 

separatory funnel, diluted with methylene chloride (500 ml), water (500 ml), and brine 

(500 ml).  The aqueous layer was extracted four times with fresh methylene chloride (4 x 

250 ml), and the combined organic layers were washed two times with fresh water and 

brine (2 x 500 ml), dried over magnesium sulfate, filtered, and evaporated to dryness 

under reduced pressure.  The resulting residue was purified by flash chromatography, 

(SiO2: gradient from 3:1 hexanes to ethyl acetate to 1:1 hexanes to ethyl acetate) to afford 
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pure C-4 (46.8 g, 80% yield) as a clear oil. 1H NMR (600 MHz, CDCl3): δ = 5.81 (m, 

center, 1 H), 5.05-4.94 (m, 2 H), 3.75-3.72 (m, 2 H), 3.69-3.66 (m, 2 H), 3.64-3.61 (m, 2 

H), 3.61-3.58 (m, 2 H), 3.48 (t, J = 6.7, 2 H), 2.42 (t, J = 6.1 Hz, 1H), 2.14-2.09 (m, 2 H), 

1.70 (qt, J = 7.1, 2 H); 13C NMR (125 MHz, CDCl3): δ = 138.37, 115.02, 72.70, 70.99, 

70.73, 70.43, 62.10, 30.41, 28.95.  HRMS-EI (m/z): [M + H] calcd for C9H18O3, 

174.1256; found 174.1262. 

 

 

 

 

2-(2-(Pent-4-enyloxy)ethoxy)ethyl methanesulfonate (4).  A cooled, flame-dried flask 

equipped with a stir bar and septum was charged with C-4 (46.3 g, 0.266 moles, 1 eq) 

and dry DCM (300 ml, 0.9 M), then cooled to 0 °C.  To the cooled reaction mixture was 

slowly added methanesulfonyl chloride (31 ml, 0.399 moles, 1.5 eq) and triethylamine 

(55.5 ml, 0.399 moles, 1.5 eq) alternately in several batches.  The reaction was allowed to 

warm to room temperature and stirred overnight.  Stirring was stopped and the reaction 

mixture poured into a separatory funnel and partitioned with water and brine (1 L).  The 

aqueous layer was extracted three times with fresh DCM (3 x 300 ml), and the combined 

organic layers were washed three times with fresh water and brine (3 x 300 ml), dried 

over magnesium sulfate, filtered, and evaporated to dryness under reduced pressure.  The 

resulting crude oil was purified by flash chromatography (plug of SiO2: 3:2 hexanes to 
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ethyl acetate) to give 4 (64.2 g, 96% yield) as a clear oil.  1H NMR (500 MHz, CDCl3): δ 

= 5.80 ppm (m,  1 H), 5.04-4.94 (br m, 2 H), 4.39-4.37 (m, 2 H), 3.78-3.75 (m, 2 H), 

3.67-3.64 (m, 2 H), 3.59-3.56 (m, 2 H), 3.45 (t, J = 6.6 Hz, 2 H), 3.06 (s, 1 H), 2.17-2.07 

(m, 2 H), 1.67, (qt, J = 7.1 Hz, 2 H); 13C NMR (126 MHz, CDCl3): δ = 138.34, 115.01, 

70.93, 70.92, 70.25, 69.48, 69.25, 37.92, 30.40, 28.97. HRMS-EI (m/z): [M + H] calcd 

for C10H21O5S, 253.1110; found 253.1119. 

 

 

 

Ethyl Ester Crown-Type Recognition Fragment (6).  Standard alkylation conditions 

were used with protocatechuic acid ethyl ester 5 (12.6345 g, 69.35 mmol, 1 eq), 4 

(35.0000 g, 0.139 moles, 2 eq), K2CO3 (57.5217 g, 0.416 moles, 6 eq), and dry DMF (1 

L, 0.07 M).  After 3 days, the reaction was extracted and purified via flash 

chromatography (SiO2: 4:1 hexanes to acetone), giving 6 (28.8 g, 84% yield) as a clear 

oil.  1H NMR (300 MHz, CDCl3):  7.60 (m, 1H), 7.53 (m, 1H), 6.86 (m, 1H), 5.75 (m, 

2H), 5.05-4.84 (m, 4H), 4.28 (m, 2H), 4.16 (m, 4H), 3.84 (m, 4H), 3.68 (m, 4H), 3.54 (m, 

4H), 3.41 (m, 4H), 2.13-1.98 (m, 4H), 1.62 (m, 4H), 1.31 (m, 3H).  13C NMR (75 MHz, 

CDCl3):  166.36, 152.90, 148.28, 138.32, 138.30, 123.98, 123.39, 115.00, 114.81, 

114.79, 112.69, 71.04, 70.97, 70.82, 70.28, 70.27, 69.71, 69.61, 68.91, 68.68, 60.84, 
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30.31, 28.85, 14.49.  HRMS-TOF MS (m/z): [M + Na] calcd for C27H42O8Na, 517.2777; 

found 517.2796. 

 

 

 

Benzyl Alcohol Crown-Type Recognition Fragment (7).  Standard LAH reduction 

conditions were used with 6 (28.6 g, 63.24 mmol, 1 eq), LAH (7.1998 g, 0.190 moles, 3 

eq), and dry THF (~630 ml, 0.1 M).  The reaction was refluxed overnight, quenched, 

filtered, and extracted to give 7 (21.9 g, 75% yield) as a clear oil.  The product was used 

with no further purification.  1H NMR (300 MHz, CDCl3):  6.94 (s, 1H), 6.87-6.79 (m, 

2H), 5.79 (m, 2H), 5.04-4.85 (m 4H), 4.55 (s, 2H), 4.14 (m, 4H), 3.83 (t, J = 5.09 Hz, 

4H), 3.60 (m, 4H), 3.57 (m, 4H), 3.45 (t, J = 6.60 Hz, 4H), 2.14 (s, 1H), 2.08 (q, J = 6.60 

Hz, 4H), 1.66 (qt, J = 6.60 Hz, 4H).  13C NMR (75 MHz, CDCl3):  149.02, 148.33, 

138.33, 134.74, 120.12, 114.83, 114.73, 113.75, 70.91, 70.85, 70.83, 70.25, 69.86, 69.83, 

69.06, 68.84, 64.96, 30.31, 28.83.  HRMS-TOF MS (m/z): [M + Na] calcd for 

C25H40O7Na, 475.2672; found 475.2649. 

 

OO

O

OO

O

O

OEt

6

OO

O

OO

O

(75 % )

OH

7

LAH, THF

reflux, 12h



82 
 

 

Benzyl Chloride Crown-Type Recognition Fragment (8).  In a flask, 7 (21.9 g, 48.42 

mmol, 1 eq) was dissolved in benzene (500 ml, 0.1 M), then transferred to a separatory 

funnel.  To this mixture was added concentrated hydrochloric acid (241 ml).  The 

reaction was shaken, with periodic venting, for 5 minutes.  To quench the reaction, the 

solution was diluted with water (500 ml).  The aqueous layer was extracted three times 

with fresh benzene (3 x 100 ml), and the combined organic layers were further washed 

with three portions of fresh water (3 x 100 ml), dried over magnesium sulfate, filtered, 

and evaporated to dryness under reduced pressure to provide 8 (21.4 g, 94% yield) as a 

pale yellow oil.  The product was used without further purification.  1H NMR (300 MHz, 

CDCl3):  6.96-6.78 (m, 3H), 5.78 (m, 2H), 5.05-4.89 (m, 4H), 4.49 (s, 2H), 4.14 (q, J = 

5.14 Hz, 4H), 3.83 (m, 4H), 3.69 (m, 4H), 3.57 (m, 4H), 3.44 (m, 4H), 2.09 (q, J = 7.23 

Hz, 4H), 1.66 (qt, J = 7.08 Hz, 4H).  13C NMR (75 MHz, CDCl3):  148.85, 148.69, 

137.96, 130.40, 121.58, 114.83, 114.49, 114.00, 70.58, 70.38, 69.94, 69.45, 69.41, 68.69, 

68.63, 46.18, 29.99, 28.55. HRMS-EI (m/z): [M + Na] calcd for C25H39O6NaCl, 

493.2333; found 493.2354. 
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Methyl Ester Backbone Fragment (10).  A flask equipped with a stir bar was charged 

with 4’-hydroxy-4-biphenylcarboxylic acid (9) (9.1003 g, 42.48 mmol, 1 eq) and 

methanol (40 ml, 1 M).  The solution was cooled to 0 °C, and concentrated sulfuric acid 

(6 ml, 33.2 mmol, 0.8 eq) was added dropwise.  The flask was fitted with a reflux 

condenser, and the reaction heated to reflux for 5 hours.  After cooling to 0 °C in an ice 

bath, a 10% sodium hydroxide solution (150 ml) was added slowly to the reaction.  The 

reaction mixture was poured into a separatory funnel, and diluted with ethyl acetate (250 

ml) and water and brine (500 ml).  The aqueous layer was extracted four times with ethyl 

acetate (4 x 100 ml), and the organic layers were combined, dried over magnesium 

sulfate, filtered, and evaporated to dryness under reduced pressure.  Recrystallization 

from a minimum of hot ethyl acetate afforded 10 (7.0104 g, 72%) as a white crystalline 

solid.  1H NMR (300 MHz, Acetone-d6):  8.64 (s, 1H), 8.04 (d, J = 8.53 Hz, 2H), 7.73 

(d, J = 8.80 Hz, 2H), 7.61 (d, J = 8.80 Hz, 2H), 6.97 (d, J = 8.80 Hz, 2H), 3.89 (s, 3H).  

13C NMR (126 MHz, Acetone-d6):  167.22, 158.93, 146.31, 131.81, 130.83, 129.28, 

129.08, 127.10, 116.84, 52.32. HRMS-FAB (m/z): [M + H] calcd for C14H12O3, 

228.0786; found 228.0796. 
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Methyl Ester Recognition-Backbone Fragment (11).  Standard alkylation conditions 

were used with 8 (14.4292 g, 31.91 mmol, 1.05 eq), 10 (6.7775 g, 29.69 mmol, 1 eq), 

K2CO3 (12.3121 g, 89.07 mmol), and dry DMF (500 ml).  The reaction was heated for 3 

days, then extracted with ethyl acetate.  The residue was purified via flash 

chromatography (SiO2: gradient from 12:1 to 8:1 to 6:1 to 4:1 to 2:1 hexane to acetone) 

as eluent to give 11 (16.1 g, 82% yield) as a white crystalline solid.  1H NMR (300 MHz, 

CDCl3):  8.05 (d, J = 8.25 Hz, 2H), 7.60 (d, J = 8.25 Hz, 2H), 7.55 (d, J = 8.81 Hz, 2H), 

7.03 (d, J = 8.80 Hz, 2H), 7.01-6.85 (m, 3H), 5.78 (m, 2H), 5.05-4.88 (m, 6H), 4.16 (m 

4H), 3.91 (s, 3H), 3.85 (t, J = 5.09 Hz, 4H), 3.70 (m, 4H), 3.58 (m, 4H), 3.45 (m, 4H), 

2.08 (m, 4H), 1.66 (m, 4H).  13C NMR (75 MHz, CDCl3):  167.22, 159.16, 149.24, 

149.00, 145.32, 138.43, 132.73, 130.26, 130.11, 128.52, 128.38, 126.63, 121.09, 115.46, 

114.89, 114.77, 114.42, 71.04, 70.93, 70.36, 70.17, 69.90, 69.11, 69.07, 52.26, 30.41, 

28.94.  HRMS-TOF MS (m/z): [M + Na] calcd for C39H50O9Na, 685.3353; found 

685.3358. 
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Aldehyde Recognition-Backbone Fragment (3).  A cooled, flame-dried two-neck flask 

equipped with a stir bar, water condenser, gas port, and septum was charged, under argon 

at 0 °C, with RedAl (9.84 ml, 32.79 mmol, 1 eq) and dry toluene (16.4 ml).  To this 

stirring mixture was added, slowly, N-methylpiperazine (4.01 ml, 36.07 mmol, 1.2), and 

the reaction allowed to stir for 30 minutes at 0 °C.  A separate cooled, flame-dried two-

neck flask equipped with a stir bar, water condenser, gas port, and septum was charged, 

under argon at 0 °C, with 11 (16.1 g, 24.29 mmol) and dry toluene (25 ml).  After the 30 

minute incubation time, the RedAl solution was added dropwise to the stirring solution of 

11 in toluene.  The reaction was allowed to stir for 8 hours at 0 °C, then quenched by 

addition of water (20 ml).  The reaction was poured into a separatory funnel, and 

partitioned between ethyl acetate (100 ml) and water (200 ml) and brine (200 ml).  The 

aqueous layer was extracted two times with DCM (2 x 100 ml), and the ethyl acetate and 

DCM layers were combined and washed with fresh water and brine (2 x 200 ml), dried 

with magnesium sulfate, filtered, and the solvent removed under reduced pressure.  Flash 

chromatography (SiO2: 4:1 hexane to acetone) gave 3 (12.1 g, 79% yield) as a white 

crystalline solid.  1H NMR (300 MHz, CDCl3):  9.93 (s, 1H), 7.82 (d, J = 8.25 Hz, 2H), 

7.61 (d, J = 8.26 Hz, 2H), 7.49 (d, J = 8.80 Hz, 2H), 6.98 (d, J = 8.57 Hz, 2H), 6.95-6.79 

(m, 3H), 5.73 (m, 2H), 5.05-4.88 (m, 6H), 4.12 (q, J = 5.04 Hz, 4H), 3.81 (t, J = 4.95 Hz, 
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4H), 3.67 (t, J = 4.68, 4H), 3.53 (t, J = 4.68 Hz, 4H), 3.40 (m, 4H), 2.12-1.98 (m, 4H), 

1.62 (m, 4H).  13C NMR (75 MHz, CDCl3):  192.04, 159.42, 149.27, 149.05, 146.87, 

138.41, 134.81, 132.37, 130.46, 130.01, 128.64, 127.20, 121.09, 115.55, 114.88, 114.81, 

114.47, 71.03, 70.91, 70.35, 70.17, 69.89, 69.13, 69.10, 30.39, 28.93.  HRMS-FAB 

(m/z): [M + H – H2] calcd for C38H47O8, 631.3271; found 631.325 

 

 

 

Nitrile Cap Fragment (14).   To a flask fitted with a reflux condenser was added 

syringaldehyde (13) (5.0000 g, 27.44 mmol, 1 eq) and methanol.  Sodium acetate (3.3999 

g, 42.43 mmol, 1.51 eq) was added to the stirring solution, followed by hydroxylamine 

hydrochloride (2.8610 g, 41.16 mmol, 1.5 eq).  The solution was heated to reflux for 2 h, 

then cooled to room temperature.  The methanol was removed under reduced pressure, 

and the residue redissolved in ethyl acetate (100 ml) and added to a separatory funnel.  

Brine (50 ml) and an aqueous solution of citric acid (23.1 g, 109.8 mmol, 4 eq in 220 ml 

water, 0.5 M) were added, and the aqueous layer was extracted twice more with fresh 

ethyl acetate (2 x 50 ml).  The combined organic layer was washed with brine (2 x 50 

ml), dried over magnesium sulfate, filtered, and evaporated to dryness under reduced 

pressure to give a yellow solid (5.1273 g, 95%).  The oxime was dissolved in acetic 

N

MeO OMe
OH

OMeMeO
OH

HO

14(68 % )
over 3 steps

13

1) NH2OH•HCl, NaOAc,
MeOH, reflux, 2h

2) Ac2O, reflux, 12h
3) NaOH, MeOH, r.t., 1d
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anhydride (25 ml, 250 mmol, 10 eq) and heated to reflux for 1d.  The acetic anhydride 

was removed under high vacuum, and the resulting black residue dissolved in ethyl 

acetate and mixed in a separatory funnel with saturated sodium bicarbonate and water.  

The aqueous layer was extracted with fresh ethyl acetate (2 x 100 ml), and the combined 

organic layers were dried over magnesium sulfate, filtered, and evaporated to dryness, 

giving a brown oil.  Methanol (80 ml, 0.4 M) was added to the oil, followed by a 50 

weight percent solution of sodium hydroxide (10.33 g, 250 mmol).   After stirring 

overnight, the methanol was removed by rotary evaporation and the aqueous layer 

acidified with 2 M hydrochloric acid.  Ethyl acetate was mixed with the aqueous layer, 

and the solution extracted with fresh ethyl acetate (3 x 50 ml).  The combined organic 

layers were washed with water (2 x 100 ml), dried over magnesium sulfate, and 

evaporated under reduced pressure to give a thick oil that solidified upon standing.  

Purification was achieved by flash chromatography (SiO2: gradient from 6:1 to 4:1 to 2:1 

hexanes to acetone) to give 14 as an off-white crystalline solid (3.1574 g, 68%).  1H NMR 

(600 MHz, Acetone-d6):  8.20 (br s, 1H), 6.97 (s, 2H), 3.85 (s, 6H).  13C NMR (75 MHz, 

Acetone-d6):  148.95, 141.51, 120.15, 110.41, 102.06, 56.91.  HRMS-EI (m/z): [M + H] 

calcd for C9H10NO3, 180.0661; found 180.0643. 
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2-(6-Bromohexyloxy)tetrahydro-2H-pyran (16).  A cooled, flame-dried round bottom 

flask equipped with a stir bar and septum was charged, under argon and at 0 °C, with 6-

bromo-1-hexanol (15) (7.6551 g, 42.28 mmol, 1 eq), dry DCM (10 ml), dihydropyran 

(4.25ml, 46.51 mmol, 1.1 eq), and p-toluenesulfonic acid (0.4030 g, 2.12 mmol, 5 mol 

%).  The reaction was allowed to stir at room temperature overnight, and was quenched 

by diluting with water (50 ml) and DCM (50 ml) in a separatory funnel.  The organic 

layer was washed three times with brine (3 x 50 ml), dried (MgSO4), filtered, and 

evaporated to dryness under reduced pressure. Flash chromatography (SiO2: 15:1 hexanes 

to ethyl acetate) gave 16 (9.0902 g, 81% yield) as a clear oil.  1H NMR (500 MHz, 

CDCl3):  4.56 (t, J = 2.75 Hz, 1H), 3.85 (m, 1H), 3.72 (m, 1H), 3.51 (m, 1H), 3.40 (m, 

3H), 1.95-1.36 (br m, 14H).  13C NMR (126 MHz, CDCl3):  99.05, 67.56, 62.54, 34.02, 

32.92, 30.94, 29.73, 28.18, 25.67, 25.65, 19.87.  HRMS-FAB (m/z): [M + H] calcd for 

C11H22O2Br, 265.0803; found 265.0804. 
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Alkylated Nitrile Cap Fragment (17).  Standard alkylation conditions were used with 

14 (2.8437 g, 15.87 mmol, 1eq), 16 (4.2089 g, 15.87 mmol, 1eq), K2CO3 (6.5802 g, 47.61 

mmol, 3eq), and dry DMF (150 ml, 0.1M).  The reaction was heated for 3 days, followed 

by extraction with ethyl acetate.  Flash chromatography (SiO2: 4:1 hexanes to acetone) 

gave 17 (4.9 g, 85% yield) as a clear oil.  1H NMR (500 MHz, CDCl3):  6.78 (s, 2H), 

4.49 (t, J = 2.75 Hz, 1H), 4.95 (t, J = 6.74 Hz, 2H), 3.80 (m, 1H), 3.78 (s, 6H), 3.65 (m, 

1H), 3.41 (m, 1H), 3.31 (m, 1H), 1.91-1.32 (m, 14H).  13C NMR (126 MHz, CDCl3):  

153.83, 141.77, 119.06, 109.50, 106.45, 98.90, 73.65, 67.55, 62.39, 56.39, 30.82, 30.03, 

29.75, 26.02, 25.64, 25.53, 19.76.  HRMS-EI (m/z): [M + H] calcd for C20H29NO5, 

363.2046; found 363.2031. 

 

Alkylated Amine Cap Fragment (15).  Standard LAH reduction conditions were used 

with 17 (4.9 g, 13.48 mmol, 1 eq), LAH (1.5349 g, 40.44 mmol, 3 eq), and dry THF (200 

ml, 0.07 M).  After heating overnight, the reaction was quenched, filtered, and the solvent 
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removed under reduced pressure to give 12 (3.9635 g, 80% yield) as a clear oil.  1H NMR 

(500 MHz, CDCl3):  6.52 (s, 2H), 4.55 (t, J = 2.75 Hz, 1H), 3.92 (m, 2H), 3.84 (m, 1H), 

3.82 (s, 6H), 3.80 (s, 2H), 3.72 (m, 1H), 3.47 (m, 1H), 3.37 (m, 1H), 1.86-1.26 (m, 14H).  

13C NMR (126 MHz, CDCl3):  153.58, 138.75, 136.09, 104.11, 98.89, 73.39, 67.66, 

62.39, 56.15, 46.79, 30.84, 30.22, 30.08, 29.81, 26.13, 25.80, 25.56, 19.76.  HRMS-FAB 

(m/z): [M + H] calcd for C20H34O5N, 368.2437; found 368.2450. 
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Macroscopic Gel Synthesis.  

(A) Amorphous Gel:  To an oven-dried vial equipped with a stir bar was added 22-

H2·2PF6 (70.0 mg, 33.6 μmol, 1 eq), tripropargylamine (3.0 μl, 22.4 μmol, 0.67 eq), 

N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (35.1 μl, 167.9 μmol, 5 eq) and dry DMF 

(340 μl, 0.1 M).  This mixture was subjected to standard freeze-pump-thaw protocol, with 

addition of copper(I) bromide (48.2 mg, 33.6 μmol, 1 eq) after the third freeze.  After the 

Vacuum 

Swelling 
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fourth freeze-pump-thaw cycle was completed, the solution was allowed to warm to room 

temperature. The solution became deep green and, after 30 seconds to 1 minute, became a 

solid gel (see video). The vial was placed in a 50 °C oil bath for 2 days to complete 

reaction, then cooled to room temperature.  The DMF and other volatiles were removed 

under reduced pressure, and the resulting amorphous gel was placed in a vial containing 

fresh DMF (10 ml).  The DMF was removed and fresh DMF was added (3 x 10 ml) to 

afford a pale-green gel.  The volatiles were again removed to generate a hardened gel (73 

mg, quant. yield). 

 

(B) Gel Cylinders:  To an oven-dried vial equipped with a stir bar was added 22-

H2·2PF6 (100 mg, 47.9 μmol, 1 eq), tripropargylamine (4.5 μl, 32.0 μmol, 0.67 eq), 

N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (50.1 μl, 239.7 μmol, 5 eq), and dry DMF 

(0.48 ml, 0.1 M).  This mixture was subjected to standard freeze-pump-thaw protocol, 

with addition of copper(I) bromide (34.4 mg, 239.8 μmol, 5 eq) after the third freeze.  

After the fourth freeze-pump-thaw cycle was completed, the solution was allowed to 

warm to room temperature and was stirred for 30 seconds.  The vial was rapidly opened 

and a glass capillary tube was added (cut to 20 mm long, 1.5–1.8 mm diameter, Kimax-

51 Glass Capillary Tubes, Fischer Scientific Product Number #34505).  The vial was 

turned horizontal and the solution was allowed to fill the capillary tube and solidify.  

After gelation, the vial was placed in a 50 °C oil bath for 2 days to complete reaction, 

then cooled to room temperature.  The glass capillary tube with intercalated gel was 

removed from the surrounding amorphous gel, and placed in a vial under high vacuum.  
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A blunt needle was used to carefully push the shrunken gel from the glass tube.  After 

removal from the tube, the gel was subjected to repeated swellings with 1:1 

DCM/Acteone (3 x 10 ml) to afford nearly-transparent gel cylinders. 
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deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on 
request, free of charge, by quoting the publication citation and the deposition number 734570." 
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Table 1.  Crystal data and structure refinement for PGC05 (CCDC 734570). 

Empirical formula  [C51H71NO11]+ (Hexafluorophosphate omitted) 

Formula weight  874.09  (Hexafluorophosphate omitted) 

Crystallization Solvent  Methanol/pentane 

Crystal Habit  Plate 

Crystal size 0.33 x 0.27 x 0.09 mm3 

Crystal color  Colorless  

 Data Collection  

Type of diffractometer  Bruker SMART 1000 

Wavelength  1.54178 Å  CuK  

Data Collection Temperature  325(2) K 

 range for 5815 reflections used 
in lattice determination  3.30 to 60.52° 

Unit cell dimensions a = 32.5892(12) Å 
 b = 15.3988(6) Å = 124.734(3)° 
 c = 28.4571(10) Å 

Volume 11736.0(8) Å3 

Z 8 

Crystal system  Monoclinic 

Space group  C2/c 

Density (calculated) 0.989 Mg/m3 (Hexafluorophosphate omitted) 

F(000) 3776 (1233 electrons recovered with SQUEEZE) 

 range for data collection 3.31 to 68.64° 

Completeness to  = 68.64° 87.2 %  

Index ranges -37 ≤ h ≤ 36, -17 ≤ k ≤ 17, -32 ≤ l ≤ 32 

Data collection scan type   scans at 17 settings 

Reflections collected 81248 

Independent reflections 9453 [Rint= 0.1374] 

Absorption coefficient 0.555 mm-1 

Absorption correction None 

Max. and min. transmission 0.9517 and 0.8379



154 
 

Table 1 (cont.) 

 Structure solution and Refinement  

Structure solution program  SHELXS-97 (Sheldrick, 2008) 

Primary solution method  Direct methods 

Secondary solution method  Difference Fourier map 

Hydrogen placement  Geometric positions 

Structure refinement program  SHELXL-97 (Sheldrick, 2008) 

Refinement method Full matrix least-squares on F2 

Data / restraints / parameters 9453 / 50 / 563 

Treatment of hydrogen atoms  Riding 

Goodness-of-fit on F2 2.758 

Final R indices [I>2(I),  5289 reflections] R1 = 0.1087, wR2 = 0.1987 

R indices (all data) R1 = 0.1521, wR2 = 0.2031 

Type of weighting scheme used Sigma 

Weighting scheme used w=1/2(Fo2) 

Max shift/error  0.001 

Average shift/error  0.000 

Largest diff. peak and hole 0.531 and -0.448 e.Å-3 

 Special Refinement Details  
Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under 

a nitrogen stream at 100K. 
The hydroxy tail (O1-C6) is disordered and was modeled isotropically with geometry restraints. 
All anions and possible solvent molecules were removed from the coordinates and the program 

SQUEEZE1 was used to adjust intensities so as to account for electrons in the solvent region without 
including them explicitly as discrete atoms. Approximately 1152 electrons (eight hexafluorophosphates) 
were excluded in this way and 1233 were recovered by the program. These were NOT included in the 
molecular weight, calculated density or F(000). 

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of fit (S) are 
based on F2, conventional R-factors (R) are based on F, with F set to zero for negative F2. The threshold 
expression of F2 > 2( F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of 
reflections for refinement.  R-factors based on F2 are statistically about twice as large as those based on F, 
and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix.  The cell esds are taken into account individually in the estimation of esds in distances, 
angles and torsion angles; correlations between esds in cell parameters are only used when they are defined 
by crystal symmetry.  An approximate (isotropic) treatment of cell esds is used for estimating esds 
involving l.s. planes. 

 

                                                 
1 SQUEEZE - Sluis, P. v.d.; Spek, A. L. Acta Crystallogr., Sect A 1990, 46, 194-201. 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement 
parameters (Å2x 103) for PGC05 (CCDC 734570) (CCDC 734570).  U(eq) is defined 

as the trace of the orthogonalized Uij tensor. 
________________________________________________________________________________ 
 x y z Ueq Occ 

________________________________________________________________________________ 
O(2) 12490(1) 6303(2) 13885(1) 63(1) 1 
O(3) 13286(2) 5579(2) 14833(2) 71(1) 1 
O(4) 11907(1) 5388(2) 12930(1) 58(1) 1 
O(5) 9658(1) -1359(2) 10049(1) 60(1) 1 
O(6) 8504(1) -2676(2) 7600(1) 46(1) 1 
O(7) 8217(1) -2302(2) 6500(1) 59(1) 1 
O(8) 7573(2) -1117(3) 5575(2) 88(1) 1 
O(9) 6075(2) -1331(4) 6301(2) 99(2) 1 
O(10) 6741(1) -2620(3) 7159(2) 78(1) 1 
O(11) 7806(1) -2940(2) 7751(1) 51(1) 1 
N(1) 12578(1) 2266(2) 13385(2) 43(1) 1 
O(1A) 10079(11) 7968(19) 12404(15) 460(20) 0.50 
C(1A) 10639(11) 7950(50) 12769(14) 650(30) 0.50 
C(2A) 10852(7) 8090(30) 13389(12) 470(20) 0.50 
C(3A) 11396(8) 8322(13) 13744(10) 299(15) 0.50 
C(4A) 11688(6) 7628(12) 14185(8) 186(8) 0.50 
C(5A) 12073(6) 7388(7) 14076(8) 115(6) 0.50 
C(6A) 12133(4) 6426(7) 14051(6) 76(4) 0.50 
O(1B) 10001(9) 7438(19) 13120(13) 387(14) 0.50 
C(1B) 10388(10) 7180(40) 13020(20) 690(40) 0.50 
C(2B) 10822(9) 7790(30) 13280(20) 570(20) 0.50 
C(3B) 11308(8) 7480(30) 13795(13) 439(18) 0.50 
C(4B) 11697(8) 7315(18) 13679(9) 286(13) 0.50 
C(5B) 12213(8) 7466(12) 14205(12) 309(15) 0.50 
C(6B) 12498(8) 6626(14) 14388(5) 213(10) 0.50 
C(7) 12600(2) 5436(3) 13890(2) 47(1) 1 
C(8) 13008(2) 5063(3) 14354(2) 47(1) 1 
C(9) 13128(2) 4196(3) 14350(2) 44(1) 1 
C(10) 12826(2) 3719(3) 13853(2) 41(1) 1 
C(11) 12422(2) 4094(3) 13374(2) 45(1) 1 
C(12) 12306(2) 4960(3) 13395(2) 47(1) 1 
C(13) 13751(2) 5255(4) 15282(2) 85(2) 1 
C(14) 11633(2) 4911(3) 12399(2) 70(2) 1 
C(15) 12978(2) 2788(3) 13842(2) 47(1) 1 
C(16) 12718(2) 1324(3) 13411(2) 45(1) 1 
C(17) 12288(2) 832(3) 12913(2) 39(1) 1 
C(18) 12229(2) 777(3) 12406(2) 41(1) 1 
C(19) 11810(2) 398(3) 11932(2) 41(1) 1 
C(20) 11436(2) 44(3) 11974(2) 36(1) 1 
C(21) 11508(2) 68(3) 12502(2) 43(1) 1 
C(22) 11930(2) 470(3) 12972(2) 45(1) 1 
C(23) 10978(2) -323(3) 11467(2) 35(1) 1 
C(24) 10952(2) -559(3) 10986(2) 45(1) 1 
C(25) 10520(2) -892(3) 10492(2) 49(1) 1 
C(26) 10106(2) -1021(3) 10508(2) 44(1) 1 
C(27) 10111(2) -804(4) 10973(2) 57(2) 1 
C(28) 10537(2) -441(4) 11447(2) 56(2) 1 
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C(29) 9641(2) -1595(3) 9563(2) 51(1) 1 
C(30) 9141(2) -1933(3) 9104(2) 39(1) 1 
C(31) 9080(2) -2141(3) 8587(2) 47(1) 1 
C(32) 8610(2) -2481(3) 8137(2) 41(1) 1 
C(33) 8238(2) -2607(3) 8210(2) 47(1) 1 
C(34) 8305(2) -2395(3) 8730(2) 56(2) 1 
C(35) 8767(2) -2059(3) 9170(2) 56(2) 1 
C(36) 8859(2) -2467(3) 7483(2) 55(1) 1 
C(37) 8676(2) -2761(4) 6915(2) 61(2) 1 
C(38) 8031(2) -2422(4) 5911(2) 76(2) 1 
C(39) 7951(2) -1586(4) 5606(2) 78(2) 1 
C(40) 7506(4) -330(7) 5298(4) 148(4) 1 
C(41) 7226(5) 358(7) 5396(4) 157(4) 1 
C(42) 6704(4) 153(7) 5088(4) 149(4) 1 
C(43) 6435(5) 847(8) 5221(5) 196(5) 1 
C(44) 5887(5) 677(9) 4973(5) 218(7) 1 
C(45) 5753(5) -111(10) 5099(7) 253(8) 1 
C(46) 5961(5) -202(9) 5673(4) 181(6) 1 
C(47) 5787(4) -1062(9) 5720(4) 174(5) 1 
C(48) 5928(2) -2145(6) 6403(4) 117(3) 1 
C(49) 6261(2) -2338(4) 7006(4) 107(3) 1 
C(50) 7053(2) -2856(4) 7755(3) 77(2) 1 
C(51) 7460(2) -3376(4) 7836(2) 61(2) 1 
________________________________________________________________________________
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Table 3.   Bond lengths [Å] and angles [°] for PGC05 (CCDC 734570) (CCDC 
734570). 
_______________________________________________________________________________
O(2)-C(7)  1.380(5) 
O(2)-C(6A)  1.498(2) 
O(2)-C(6B)  1.501(2) 
O(3)-C(8)  1.378(5) 
O(3)-C(13)  1.404(6) 
O(4)-C(12)  1.384(5) 
O(4)-C(14)  1.443(5) 
O(5)-C(26)  1.392(5) 
O(5)-C(29)  1.401(5) 
O(6)-C(32)  1.393(5) 
O(6)-C(36)  1.412(5) 
O(7)-C(38)  1.433(6) 
O(7)-C(37)  1.455(5) 
O(8)-C(39)  1.385(7) 
O(8)-C(40)  1.393(8) 
O(9)-C(47)  1.420(10) 
O(9)-C(48)  1.432(8) 
O(10)-C(49)  1.433(6) 
O(10)-C(50)  1.442(6) 
O(11)-C(33)  1.361(5) 
O(11)-C(51)  1.446(5) 
N(1)-C(15)  1.451(5) 
N(1)-C(16)  1.510(5) 
O(1A)-C(1A)  1.501(2) 
C(1A)-C(2A)  1.500(2) 
C(2A)-C(3A)  1.500(2) 
C(3A)-C(4A)  1.503(2) 
C(4A)-C(5A)  1.501(2) 
C(5A)-C(6A)  1.501(2) 
O(1B)-C(1B)  1.500(2) 
C(1B)-C(2B)  1.500(2) 
C(2B)-C(3B)  1.500(2) 
C(3B)-C(4B)  1.500(2) 
C(4B)-C(5B)  1.501(2) 
C(5B)-C(6B)  1.502(2) 
C(7)-C(8)  1.358(7) 
C(7)-C(12)  1.378(6) 
C(8)-C(9)  1.393(6) 
C(9)-C(10)  1.387(6) 
C(10)-C(11)  1.371(6) 
C(10)-C(15)  1.521(6) 
C(11)-C(12)  1.397(6) 
C(16)-C(17)  1.512(6) 
C(17)-C(18)  1.344(6) 
C(17)-C(22)  1.385(6) 
C(18)-C(19)  1.387(6) 
C(19)-C(20)  1.403(6) 
C(20)-C(21)  1.382(6) 
C(20)-C(23)  1.473(6) 
C(21)-C(22)  1.403(6) 

C(23)-C(24)  1.372(6) 
C(23)-C(28)  1.417(6) 
C(24)-C(25)  1.402(6) 
C(25)-C(26)  1.389(6) 
C(26)-C(27)  1.354(6) 
C(27)-C(28)  1.387(6) 
C(29)-C(30)  1.484(6) 
C(30)-C(35)  1.348(6) 
C(30)-C(31)  1.404(6) 
C(31)-C(32)  1.424(6) 
C(32)-C(33)  1.356(6) 
C(33)-C(34)  1.403(6) 
C(34)-C(35)  1.399(7) 
C(36)-C(37)  1.440(6) 
C(38)-C(39)  1.490(7) 
C(40)-C(41)  1.524(11) 
C(41)-C(42)  1.436(11) 
C(42)-C(43)  1.559(12) 
C(43)-C(44)  1.523(13) 
C(44)-C(45)  1.404(14) 
C(45)-C(46)  1.372(16) 
C(46)-C(47)  1.475(14) 
C(48)-C(49)  1.445(10) 
C(50)-C(51)  1.450(7) 
 
C(7)-O(2)-C(6A) 111.2(5) 
C(7)-O(2)-C(6B) 116.6(9) 
C(6A)-O(2)-C(6B) 41.5(9) 
C(8)-O(3)-C(13) 117.1(4) 
C(12)-O(4)-C(14) 116.3(4) 
C(26)-O(5)-C(29) 117.0(4) 
C(32)-O(6)-C(36) 118.9(4) 
C(38)-O(7)-C(37) 116.3(4) 
C(39)-O(8)-C(40) 109.8(6) 
C(47)-O(9)-C(48) 114.6(8) 
C(49)-O(10)-C(50) 110.5(5) 
C(33)-O(11)-C(51) 119.5(4) 
C(15)-N(1)-C(16) 113.4(3) 
C(2A)-C(1A)-O(1A) 112.1(14) 
C(1A)-C(2A)-C(3A) 113.9(14) 
C(2A)-C(3A)-C(4A) 109.6(13) 
C(5A)-C(4A)-C(3A) 102.0(10) 
C(4A)-C(5A)-C(6A) 113.5(10) 
O(2)-C(6A)-C(5A) 106.5(7) 
C(2B)-C(1B)-O(1B) 113.6(13) 
C(3B)-C(2B)-C(1B) 116.9(15) 
C(2B)-C(3B)-C(4B) 112.9(13) 
C(3B)-C(4B)-C(5B) 111.2(12) 
C(4B)-C(5B)-C(6B) 109.4(11) 
O(2)-C(6B)-C(5B) 106.5(10) 
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C(8)-C(7)-C(12) 119.6(5) 
C(8)-C(7)-O(2) 121.5(5) 
C(12)-C(7)-O(2) 118.7(5) 
C(7)-C(8)-O(3) 116.5(5) 
C(7)-C(8)-C(9) 121.4(5) 
O(3)-C(8)-C(9) 122.0(5) 
C(10)-C(9)-C(8) 118.5(5) 
C(11)-C(10)-C(9) 120.8(5) 
C(11)-C(10)-C(15) 121.1(4) 
C(9)-C(10)-C(15) 118.0(4) 
C(10)-C(11)-C(12) 119.3(5) 
C(7)-C(12)-O(4) 116.8(5) 
C(7)-C(12)-C(11) 120.3(5) 
O(4)-C(12)-C(11) 122.9(5) 
N(1)-C(15)-C(10) 113.8(4) 
C(17)-C(16)-N(1) 110.1(4) 
C(18)-C(17)-C(22) 119.2(4) 
C(18)-C(17)-C(16) 121.8(5) 
C(22)-C(17)-C(16) 118.9(4) 
C(17)-C(18)-C(19) 122.0(5) 
C(18)-C(19)-C(20) 120.2(4) 
C(21)-C(20)-C(19) 117.6(4) 
C(21)-C(20)-C(23) 121.7(4) 
C(19)-C(20)-C(23) 120.7(4) 
C(20)-C(21)-C(22) 121.0(5) 
C(17)-C(22)-C(21) 119.9(4) 
C(24)-C(23)-C(28) 116.1(4) 
C(24)-C(23)-C(20) 122.1(4) 
C(28)-C(23)-C(20) 121.7(4) 
C(23)-C(24)-C(25) 123.5(5) 
C(26)-C(25)-C(24) 117.3(4) 
C(27)-C(26)-C(25) 121.7(4) 
C(27)-C(26)-O(5) 115.5(4) 
C(25)-C(26)-O(5) 122.8(4) 
C(26)-C(27)-C(28) 119.8(5) 
C(27)-C(28)-C(23) 121.4(5) 
O(5)-C(29)-C(30) 111.5(4) 
C(35)-C(30)-C(31) 120.8(5) 
C(35)-C(30)-C(29) 123.7(4) 
C(31)-C(30)-C(29) 115.5(4) 
C(30)-C(31)-C(32) 117.7(5) 
C(33)-C(32)-O(6) 116.9(4) 
C(33)-C(32)-C(31) 120.8(4) 
O(6)-C(32)-C(31) 122.3(5) 
C(32)-C(33)-O(11) 115.6(4) 
C(32)-C(33)-C(34) 120.8(5) 
O(11)-C(33)-C(34) 123.6(5) 
C(35)-C(34)-C(33) 118.1(5) 
C(30)-C(35)-C(34) 121.8(5) 
O(6)-C(36)-C(37) 108.7(4) 
C(36)-C(37)-O(7) 109.7(4) 
O(7)-C(38)-C(39) 112.7(5) 
O(8)-C(39)-C(38) 110.0(5) 
O(8)-C(40)-C(41) 114.9(8) 

C(42)-C(41)-C(40) 111.1(10) 
C(41)-C(42)-C(43) 109.6(10) 
C(44)-C(43)-C(42) 116.3(11) 
C(45)-C(44)-C(43) 118.9(13) 
C(46)-C(45)-C(44) 112.2(17) 
C(45)-C(46)-C(47) 104.1(13) 
O(9)-C(47)-C(46) 109.5(9) 
O(9)-C(48)-C(49) 108.0(6) 
O(10)-C(49)-C(48) 112.0(7) 
O(10)-C(50)-C(51) 107.2(5) 
C(50)-C(51)-O(11) 116.5(5)
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Table 4.   Anisotropic displacement parameters (Å2x 104) for PGC05 (CCDC 734570) 
(CCDC 734570).  The anisotropic displacement factor exponent takes the form: -22[ 
h2a*2U11 + ... + 2 h k a* b* U12 ] 
______________________________________________________________________________ 
 U11 U22 U33 U23 U13 U12 
______________________________________________________________________________ 
O(2) 990(30)  410(20) 560(20)  -129(18) 490(20)  -70(20) 
O(3) 860(30)  600(30) 640(30)  -270(20) 420(20)  -170(20) 
O(4) 690(30)  440(20) 540(20)  63(19) 310(20)  90(20) 
O(5) 430(20)  940(30) 360(20)  -123(19) 175(17)  -130(20) 
O(6) 399(19)  480(20) 440(20)  -64(16) 196(17)  -97(17) 
O(7) 580(20)  740(30) 420(20)  -68(19) 274(19)  -30(20) 
O(8) 730(30)  1290(40) 620(30)  210(30) 370(20)  100(30) 
O(9) 630(30)  1200(40) 760(30)  -200(30) 180(30)  50(30) 
O(10) 570(30)  750(30) 930(30)  -260(20) 380(20)  -180(20) 
O(11) 440(20)  540(20) 420(20)  -71(17) 171(18)  -116(18) 
N(1) 400(20)  370(20) 400(20)  -95(19) 160(20)  -50(20) 
C(7) 680(40)  330(30) 460(30)  -70(30) 350(30)  -40(30) 
C(8) 570(30)  470(30) 450(30)  -240(30) 340(30)  -250(30) 
C(9) 360(30)  530(30) 440(30)  -80(30) 240(20)  -90(30) 
C(10) 400(30)  420(30) 420(30)  -90(20) 240(30)  -80(30) 
C(11) 440(30)  380(30) 380(30)  -110(20) 140(20)  -80(30) 
C(12) 550(30)  420(30) 530(30)  0(30) 360(30)  -20(30) 
C(13) 660(40)  1000(50) 630(40)  -430(40) 210(40)  -160(40) 
C(14) 720(40)  570(40) 530(40)  80(30) 180(30)  10(30) 
C(15) 320(30)  470(30) 430(30)  -140(20) 100(20)  -50(30) 
C(16) 340(30)  350(30) 490(30)  -10(20) 130(20)  40(20) 
C(17) 340(30)  320(30) 400(30)  -30(20) 150(20)  -10(20) 
C(18) 350(30)  380(30) 430(30)  -30(20) 180(20)  -50(20) 
C(19) 440(30)  370(30) 420(30)  10(20) 240(20)  60(30) 
C(20) 430(30)  250(30) 350(30)  -50(20) 190(20)  10(20) 
C(21) 460(30)  460(30) 410(30)  -20(20) 260(30)  -100(30) 
C(22) 520(30)  370(30) 300(30)  -30(20) 150(20)  -50(30) 
C(23) 300(30)  340(30) 400(30)  30(20) 190(20)  0(20) 
C(24) 410(30)  540(30) 440(30)  -90(30) 270(30)  -120(30) 
C(25) 440(30)  660(40) 330(30)  -100(30) 200(30)  -60(30) 
C(26) 350(30)  540(30) 240(30)  -70(20) 50(20)  -70(30) 
C(27) 300(30)  970(50) 370(30)  -40(30) 160(20)  -90(30) 
C(28) 470(30)  850(40) 340(30)  -120(30) 210(30)  -60(30) 
C(29) 490(30)  590(40) 400(30)  -80(30) 210(30)  -10(30) 
C(30) 390(30)  400(30) 300(30)  -70(20) 150(20)  -100(20) 
C(31) 400(30)  490(30) 400(30)  -20(20) 160(20)  40(30) 
C(32) 430(30)  330(30) 340(30)  -60(20) 140(20)  -10(20) 
C(33) 520(30)  420(30) 400(30)  -40(20) 230(30)  -90(30) 
C(34) 680(40)  550(40) 500(30)  -50(30) 370(30)  -60(30) 
C(35) 640(40)  540(40) 400(30)  -80(30) 230(30)  -20(30) 
C(36) 520(30)  640(40) 450(30)  -30(30) 250(30)  40(30) 
C(37) 530(30)  750(40) 610(40)  10(30) 370(30)  80(30) 
C(38) 710(40)  990(50) 640(40)  -270(40) 420(40)  -290(40) 
C(39) 720(40)  1010(60) 570(40)  10(40) 350(40)  -160(40) 
C(40) 1880(100)  1380(90) 1260(80)  610(70) 940(80)  350(80) 
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C(41) 1890(120)  1330(90) 1070(80)  210(70) 590(80)  10(90) 
C(42) 1300(90)  1490(100) 1110(80)  -330(70) 340(70)  -140(80) 
C(43) 1470(110)  2110(140) 2020(120)  -670(110) 820(100)  -180(100) 
C(44) 1800(140)  1690(130) 1790(120)  310(100) 270(100)  -50(120) 
C(45) 2060(160)  2100(170) 2800(200)  720(170) 1030(160)  570(140) 
C(46) 1510(100)  2360(150) 750(70)  660(90) 170(70)  390(100) 
C(47) 1270(90)  2680(160) 770(70)  -360(90) 290(70)  590(100) 
C(48) 470(40)  870(60) 1520(80)  -490(60) 190(50)  -100(40) 
C(49) 650(50)  700(50) 1990(90)  -360(60) 840(60)  -150(40) 
C(50) 680(40)  830(50) 730(40)  -230(40) 360(40)  -250(40) 
C(51) 670(40)  630(40) 650(40)  10(30) 450(30)  -100(30) 
______________________________________________________________________________
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Table 5.  Hydrogen bonds for PGC05 (CCDC 734570) (CCDC 734570) [Å and °]. 
____________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
____________________________________________________________________________ 
 N(1)-H(1AA)...O(11)#1 0.90 2.02 2.914(5) 172.2 
 N(1)-H(1AB)...O(7)#1 0.90 1.90 2.793(5) 174.8 
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CHAPTER 3 

 
Synthesis of a Molecular Charm Bracelet 

via Click Cyclization and Olefin Metathesis 
Clipping 

 

 

 

 

 

 

Portions of this chapter have previously appeared  as:  Clark, P. G.; Guidry, E. N.; Chan, 

W. Y.; Steinmetz, W. E.; Grubbs, R. H. J. Am. Chem. Soc. 2010, 132, 3405-3412. 
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Synthesis of a Molecular Charm Bracelet  
via Click Cyclization and Olefin Metathesis Clipping  

 
Introduction 

Novel polymer architectures have attracted significant interest from scientists in 

an unceasing quest to tailor the structural attributes of a material for specific applications.  

Cyclic polymers (CPs) have garnered particular attention due to a number of attractive 

traits, including desirable physical properties, increased functional-group density, and 

smaller hydrodynamic radii relative to linear polymer analogues.1-7  Recent work by 

Fréchet, Szoka, and coworkers8 has also indicated that CPs have potential biological 

applications, displaying better circulation half-lives than their linear counterparts and thus 

making them attractive candidates as possible drug carriers.   

In addition to their intriguing properties, CPs also present a unique challenge to 

synthetic chemists, as there are few procedures that favor the formation of these 

“endless” polymers in high purity.9-12  Traditionally, CPs have been synthesized via high-

dilution cyclization of dianionic linear polymers and a two-site coupling agent.  However, 

due to issues associated with polymer purity using this technique, modern efforts have 

focused on the development of a number of new routes to cyclic architectures, including 

macrocyclization of α,ω-heterotelechelic linear polymers (Figure 3.1)13-15 or olefin-

terminated polymers,16,17 cyclization of electrostatically-templated telechelic polymers,18-

25 and ring-expansion reactions of cyclic species, including lactides26 and olefin 

monomers.27-30  Macrocyclization reactions of α,ω-heterotelechelic polymers often 

employ high-fidelity, high-conversion “click” reactions31-36 such the Huisgen 1,3-dipolar 

cycloaddition between an alkyne and an azide, but necessitate high-dilution or pseudo-
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high-dilution conditions to favor cycles rather than oligomers. By contrast, reactions such 

as ring-expansion metathesis polymerization27-30 (REMP), catalyzed by cyclic ruthenium 

alkylidene species, overcome this limitation, and enable rapid synthesis of multigram 

quantities of pure cyclic polymer. In addition to the cyclic ruthenium catalysts used in 

REMP, a number of other functional-group tolerant ruthenium alkylidene catalysts, for 

example, catalysts 1 and 2 (Figure 3.2), have seen broad application in polymer 

synthesis.37-40 

Another intriguing and challenging area of research is the synthesis of 

mechanically interlocked molecules.41-44 Such structures contain two or more molecules 

that cannot be separated without covalent bond cleavage, but that do not contain any 

Figure 3.2: Ruthenium olefin metathesis catalysts 1 and 2. 
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Figure 3.1: Graphical representation of the macrocyclization of an α-ω-heterotelechelic
polymer under high-dilution conditions. 
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covalent bonds between them. Utilizing a combination of supramolecular chemistry45-47 

(often involving hydrogen bonding interactions between crown ether–type species and 

secondary ammonium ions)  to template the formation of preorganized structures and 

dynamic covalent chemistry48-54 to induce interlocking of the resulting complex, high-

yielding syntheses of rotaxanes55-58 and catenanes59-65 (Figure 3.3), as well as a variety of 

other, more complex architectures,66-72 have been realized. One particularly effective 

strategy to synthesize mechanically interlocked molecules employs the dynamic, 

ruthenium-catalyzed ring-closing metathesis (RCM) reaction, whereby a diolefin 

polyether fragment is subjected to RCM conditions and “clipped” around a disubstituted 

ammonium ion (Figure 3.3).56,63,69 

Due to the complexity of mechanically-linked structures, confirmation of the 

interlocked nature of the products can often prove difficult via standard characterization 

techniques.  However, the use of two-dimensional diffusion ordered NMR 

spectroscopy73-79 (2D-DOSY) facilitates the analysis of distinct complexes in solution 

Figure 3.3: Examples of a mechanically interlocked [2]rotaxane (A) and a [2]catenane 
(B) that were synthesized using olefin metathesis.  
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based on their unique diffusion rate.  Using this technique, small molecules with fast 

diffusion rates that are intimately associated (either covalently or mechanically) with a 

slowly diffusing macromolecule will diffuse at the speed of the larger structure to which 

they are appended.  The application of this protocol to linear polymers with threaded 

rings has been demonstrated previously.80 

The inclusion of interlocked moieties as a part of a larger macromolecular 

structure43,81 has been shown to have an impact on both the solution state and bulk 

properties82-85 of the resulting material, and, to this end, researchers have synthesized a 

number of polyrotaxanes,82,83 as well as polycatenane species (Figure 3.4A-D).72,84,85 The 

polycatenane “charm bracelet” structure (Figure 3.4E), however, has been particularly 

elusive.9-11,45,70  Recently, a few reports have emerged describing smaller cyclic 

complexes containing threaded moieties,86-91 and Harada has reported the cyclization of a 

threaded, capped polyrotaxane.92  

 In complement to these reports, we wanted to explore a “clipping” approach to 

such a polycatenated molecular “charm bracelet.” We synthesized a CP architecture via a 

Figure 3.4: Graphic representation of various polycatenane structures, including main-
chain polycatenanes (A and B), side-chain polycatenanes (C and D), and the targeted 
cyclic interlocked “charm bracelet” polycatenane (E). 
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pseudo-high-dilution, two-component “click” macrocyclization, and subsequently 

converted this species to the polyammonium analogue.  We were then able to “clip” 

diolefin crown ether–type rings around the ammonium sites of the polymer scaffold using 

RCM.  Confirmation of the interlocked nature of the “charm bracelet” product was 

achieved via 2D-DOSY NMR. 

 

Results and Discussion 

 Monomer Design and Synthesis.  We believed the nine-membered cyclic 

carbamate 3 (Scheme 3.1)93 possessed sufficient ring strain to be a suitable metathesis 

polymerization monomer and would afford the desired polyammonium polymer upon 

removal of the boc-protecting group. 

a Reagents and Conditions: (a) m-CPBA, CHCl3, 0 °C to r.t., 12 h. (b) LAH, THF, 0 °C to reflux, 4h.
(c) Oxalyl chloride, DMSO, TEA, -78 °C to r.t.,  4 h. (d) NH2OH•HCl, NaHCO3, MeOH, reflux, 4 h.;
(e) TsCl, Pyr, DCM, 0 °C to r.t., 12 h. (f) K2CO3, H2O, THF, r.t., 12 h. (g) LAH, THF, reflux, 4 h.;
(h) Boc2O, TEA, DMAP, DCM, r.t. 24 h. 

Scheme 3.1: Synthesis of Nine-Membered Cyclic Carbamate Monomer 3a
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Synthesis of 3 was readily achieved in eight steps and 31% overall yield. cis-1,5-

Cyclooctadiene (4) was treated with meta-3-chloroperoxybenzoic acid to afford 

monoepoxidized cyclooctene species 5.  Reduction of 5 with lithium aluminum hydride 

opened the epoxide to the corresponding alcohol 6, which was subjected to Swern 

oxidation conditions, giving ketone 7.  Refluxing 7 in the presence of hydroxylamine 

hydrochloride generated oxime 8, which was transiently converted to the tosyl oxime 

intermediate prior to undergoing a base-promoted Beckmann rearrangement that 

produced a regioisomeric mixture of lactams 9a and 9b.  By 1H NMR spectroscopic 

analysis, isomer 9b appeared to dominate the product mixture, not entirely surprising 

given that, in 8, the ratio of oxime anti to Ha versus syn to Ha was approximately 6 to 1, 

respectively.  The mixture of lactams was reduced to the cyclic amine by lithium 

aluminum hydride, and subsequently boc-protected to yield the desired nine-membered 

unsaturated cyclic carbamate monomer 3.  Interestingly, despite the mixture of starting 

materials, only the non-symmetric regioisomer of 3 was isolated. 

 

 Polymer Synthesis and Characterization.  Unfortunately, initial efforts to utilize 

REMP as the polymerization method proved challenging with monomer 3.  Thus, we 

turned our attention to ring-opening metathesis polymerization (ROMP) in the presence 

of a chain-transfer agent (CTA),94-98 as a suitably-functionalized telechelic polymer 

would be structurally analogous to early dianionic polymers used in the synthesis of 

CPs.9,99 
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Given the successful application of the alkyne-azide “click” reaction to the 

synthesis of CPs,13-15 we employed this protocol to cyclize our linear polymer. Our 

efforts to ROMP monomer 3 in the presence of a diazide CTA were unsuccessful.  

However, we readily accessed dibromo telechelic polymer L-11 upon treatment of a 

solution of 3 and dibromo CTA 10 with catalyst 1 (Scheme 3.2).100 Gel permeation 

chromatography (GPC, Figure 3.5) analysis of L-11 revealed that the polymer had an Mn 

of 4.1 kDa, correlating to a degree of polymerization (DP) of 17, and a polydispersity 

index (PDI) of 1.49.  By 1H NMR end-group analysis (Figure 3.6A), the DP of L-11 was 

found to be 19, in close agreement with the GPC results. Synthesis of the desired diazide 

telechelic polymer L-12 was accomplished by treating dibromotelechelic polymer L-11 

with sodium azide (Scheme 3.2).  The GPC traces for L-11 and L-12 overlapped closely 

(Figure 3.5), and polymer end-group conversion from bromide to azide was monitored by 

1H NMR spectroscopy (Figure 3.6B), which showed an upfield shift of the 

bromomethylene protons (from 3.37 to 3.23 ppm) after substitution with sodium azide.  

To verify that L-12 contained azide functionalities, we studied polymers L-11 and L-12 

a Reagents and Conditions: (a) catalyst 1, 1.0 M DCM, 43 °C, 1 d. (b) NaN3, DMF, 50 °C, 12 h. 

Scheme 3.2: Synthesis of Linear Telechelic Dibromide Polymer L-11, Diazide Polymer 
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by FT-IR (Figure 3.7). As expected, the spectrum of L-12 contained a strong band at 

2096 cm-1, while no azide peak was observed in the spectrum of L-11. 

We effected the cyclization of the linear diazide polymer L-12 to the targeted CP 

C-13 via a slow-addition, pseudo-high-dilution process13-15 (Scheme 3.2), whereby a 

solution of diazide linear polymer L-12 and 1,4-diethynylbenzene (14) was added by 

syringe pump over several days to a well-stirred DMF reservoir containing Cu-catalyst 

and N,N,N′,N′′,N′′-pentamethyl-diethylenetriamine (PMDETA) ligand.  Rather than 

Figure 3.5:  GPC traces of linear bromide polymer L-11 (black), linear azide polymer L-
12 (red), doubly-clicked linear polymer L-15 (green), and cyclic polymer C-13 (blue). 

Figure 3.6:  Partial 600 MHz 1H NMR spectrum at 25 °C in CDCl3 of polymer endgroup
resonances showing conversion of the telechelic bromide L-11 (A) to the diazide L-12
(B) to the post-click cyclic species C-13 (C).  After cyclization, the endgroup signal shifts
downfield to 4.37 ppm.  Full spectra can be seen in the SI. 
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attempt to fractionally precipitate linear polymer impurities99 from C-13, we instead 

utilized the high fidelity of the “click” reaction.  Since any linear polymer contaminants 

would likely contain either an azide or an alkyne chain-end functionality, we subjected 

the crude cyclization products to a more concentrated “click” reaction in the presence of 

alkyne-functionalized polymer beads and azide-functionalized Merrifield resin (Scheme 

3.3).100 Filtration of the solid beads resulted in the concomitant removal of all linear 

contaminants from solution and afforded a solution of pure cylic polymer C-13. 

The cyclic topology of C-13 was confirmed by 1H NMR end-group analysis and 

shifting of GPC peak elution volume.  Evidence for the success of the click reaction 

could be readily observed in the dramatic downfield shift of the azidomethylene proton 

(Hd) signal from 3.23 to 4.37 ppm (Figure 3.6C), indicating conversion of the azide to a 

Figure 3.7:  FT-IR spectrum for linear bromide polymer L-11 (black), linear azide
polymer L-12 (red), cyclic polymer C-13 (blue), and doubly-clicked linear polymer
L-15 (green). 
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triazole functionality.  IR spectroscopy of C-13 (Figure 3.7) also showed that the strong 

azide band in the spectrum of L-12 was no longer present.  Inclusion of the 1,4-

diethynylbenzene unit within the backbone of C-13 was readily apparent in the 1H NMR 

spectrum (Figure 3.8A), with the phenyl protons of the linker (Hf) generating a sharp 

singlet at 7.88 ppm that integrated to four protons upon assigning the end-group signal 

from the α-triazole methylene proton Hg an integration value of four (Scheme 3.2).  

Absence of splitting of the aromatic signal indicated the symmetric nature of the 

“clicked” unit and implied click coupling at both ends of the 1,4-diethynylbenzene.  The 

triazole moiety also produced a broad singlet at 7.78 ppm (Figure 3.8) that integrated to 

two protons.  GPC analysis of C-13 (Figure 3.5) showed the expected increase in peak 

retention time characteristic of cyclic polymers,9 with no appreciable change in molecular 

weight (MW) except for the addition of the diethynylbenzene unit (Mn = 4.4 kDa).101  

Additionally, end-group integration by 1H NMR remained identical to the linear species  

L-11 and L-12.  Though we attempted to confirm the MW of the polymers through 

matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-

TOF  MS), the lability of the boc-groups, as well as the lability of the bromide and azide 

Scheme 3.3: “Click” Removal of Linear Contaminants from Cyclic Polymer C-13 Using 
Azide- and Alkyne-Functionalized Beads. 
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end-groups of the linear precursors, prevented accurate mass analysis due to complex and 

intractable fragmentation patterns. 

To confirm that the observed increase in retention time upon cyclization was not 

an artifact of the click reaction, we synthesized a control polymer using the original 

diazide polymer L-12.  We again subjected L-12 to “click” conditions, but in the 

presence of a significant excess of dialkyne 14 to give linear, doubly-clicked analogue L-

15 (Scheme 3.4).  The GPC trace for L-15 (Figure 3.5) overlapped identically with both 

L-11 and L-12, again with only a slight MW increase (Mn = 4.4 kDa) due to the addition 

of the clicked units.  In contrast to the symmetric singlet of the phenyl clicked endgroup 

of C-13, the signal from Hh and Hi of the phenyl group of the clicked units of L-15 

Figure 3.8.  Partial 600 MHz 1H NMR spectra at 25 °C in CDCl3 of the clicked
endgroups of the symmetric cyclic polymer C-13 (A) and the nonsymmetric doubly-
clicked linear polymer analogue L-15 (B).  Integration values in red were obtained by
assigning the endgroup signal from Hg an integration value of four. 
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produced two doublets (Figure 3.8) with coincidental overlap of the triazole signal from 

Hj with the downfield doublet.  Upon assigning the signal from Hg a value of four 

protons, each of the doublets from Hh and Hi integrated to four protons with an additional 

two protons from the triazole, confirming the clicking of two 1,4-diethynylbenzene units 

per polymer chain.  IR spectroscopy (Figure 3.7) also showed no azide resonance after 

the “click” reaction, though peaks at 3300 and 2200 cm-1 indicated the presence of 

remaining alkyne functionality. The alkyne protons, too, could be observed in the 1H 

NMR spectrum (3.10 ppm) as a sharp singlet extending above the broad signal from 

Hc.
100 

 

Polymer Functionalization.  Once we had confirmed the cyclic structure of C-

13, we began the process of functionalizing the polymer in preparation for the desired 

interlocking reaction.  The use of the ruthenium olefin metathesis catalyst 1 to affect the 

final “clipping” RCM reaction necessitated hydrogenation of all olefin residues within 

the cyclic polymer backbone, and this was achieved by treating C-13 with Wilkinson’s 

catalyst under high-pressure hydrogenation conditions (Scheme 3.5A) to give C-16.  No 

remaining olefin residues at 5.40 ppm were observed by 1H NMR spectroscopy, 

indicating saturation of C-13. 

 To reveal the coordinating ammonium sites within the backbone of the polymer, 

we treated C-16 with trifluoroacetic acid (TFA), removing the boc-protecting group.  The 

ammonium-TFA adduct was then subjected to counterion exchange with ammonium 

hexafluorophosphate to produce C-17-nH·nPF6.  Hexafluorophosphate counterions have 

been shown to increase the binding constant between crown ether–type species and 
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ammonium ions, and also enhance the solubility of the charged complex in organic 

solvents.102-105 Analysis of C-17-nH·nPF6 by 1H NMR spectroscopy showed a broad 

singlet (6.45 ppm) corresponding to the ammonium residues, and the sharp signal at 1.4 

ppm corresponding to protons on the boc-group was no longer present.  Additionally the 

α-ammonium methylene proton signal from Hc (Scheme 3.2) shifted upfield to 2.96 ppm 

(originally 3.13 ppm), an effect of the conversion of the boc-amine to an ammonium salt.  

Broadening and shifting of the triazole resonance (from 7.80 ppm to 8.14 ppm) suggested 

that the acidic conditions of the deprotection may have resulted in protonation of the 

triazole. 

The linear doubly-clicked analogue L-15 was subjected to the same 

hydrogenation conditions (Scheme 3.5B) as C-13 to give the saturated product.  

Deprotection and anion exchange were also performed, generating linear polyammonium 

adduct L-18-nH·nPF6. Unfortunately none of the charged polymers were amenable to 

Scheme 3.5: Synthesis of (A) Cyclic Polyammonium C-17-nH·nPF6 and (B) Linear
Polyammonium L-18-nH·nPF6 

a 

a Reagents and Conditions: (a) Wilkinson’s catalyst (Rh(PPh3)3Cl), 800 psi H2, THF, 50 °C, 24 h. 
(b) TFA, DCM, r.t., 4 h. (c) NH4PF6, MeOH, r.t., 12 h. 
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GPC analysis due to challenges associated with solubility.  As an alternate protocol for 

cyclic/linear topology confirmation, we exploited the well-known hydrogen-bonding 

association between 24-crown-8 ether (24C8) and dialkylammonium ions. Upon 

encircling a dialkylammonium ion, the strongly-coordinating 24C8 causes a downfield 

shift of the signal from the protons on the carbons adjacent to that ammonium site.  

Correlating the integration values of the original signal with the shifted signals enables 

quantitation of the threading of the polymeric chains by 24C8.  When a solution of the 

“endless” C-17-nH·nPF6 was mixed with 24C8 (0.5 equivalents per ammonium site), 

barely-detectable threading (< 2%) was observed 1H NMR spectroscopy (Figure 3.9A, 

see Supporting Information for full details).  However, linear analogue L-19-nH·nPF6 

engaged in significant threading interactions upon addition of the same amount of 24C8 

(nearly 30% threading, Figure 3.9B).  As expected, introduction of additional 24C8 (total 

of 2.0 equivalents per ammonium site) resulted in increased threading for both polymers, 

with coordination remaining low for C-17-nH·nPF6 (~10%) while L-19-nH·nPF6 

threaded to ~45%.  It is worth noting that, due to the dominance of cyclic architectures in 

Figure 3.9: Partial 600 MHz 1H NMR spectrum at 25 °C in CD3CN of (A) cyclic
polyammonium C-17-nH2·nPF6 with 24-crown-8 ether (24C8) showing less than 1.5%
threading, and (B) linear doubly-clicked polyammonium L-18-nH2·nPF6 with 24C8
showing more than 28% threading. (Note: approximately 0.5 equiv of 24C8 per
ammonium, see Supporting Information for complete details.) 
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the sample of C-17-nH·nPF6, the effective concentration of available 24C8 would be 

much higher per ammonium site for any linear, threadable polymers, and could explain 

the proportionally greater increase in threading upon introduction of additional crown. 

This topologically-based threading protocol was particularly valuable, as it enabled 

quantitative determination that the presence of linear contaminants C-17-nH·nPF6 was 

very low and unambiguously showed that the sample contained near or above 90% cyclic 

polymer.  

 

Molecular “Charm Bracelet” Synthesis and Analysis.  To enable “clipping” of 

CP C-17-nH·nPF6, we had to develop a suitable solvent system that would both 

solubilize the highly-charged polymer and facilitate the olefin metathesis reaction.  

Because the polymer displayed good solubility in nitromethane, we explored the 

possibility of using this as our RCM solvent.  To test the efficacy of this system, we 

monitored the effect of nitromethane concentration on the conversion of protons Hk and 

Hm to Hn upon “clipping” of diolefin crown ether–type fragment 19 around template 20-

H·PF6 to form pseudorotaxane 21-H·PF6 (Scheme 3.6).100 We observed that increased 

nitromethane volume fraction (relative to DCM) led to decreased olefin conversion.  

Consequently, we concluded that a 1:1 mixture (v/v) of dichloromethane to nitromethane 

would maximize the solubility of the polymer while still enabling reasonable olefin 

conversion. 
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Synthesis of the molecular “charm bracelet” polymer (Scheme 3.7) was achieved 

via addition of catalyst 1 to a solution of C-17-nH2·nPF6 and 19 in the 1:1 

dichloromethane to nitromethane (v/v) solvent mixture. Simple precipitation of the 

polymer into pure dichloromethane and isolation of the insoluble material afforded the 

desired interlocked “charm bracelet” C-22-nH·nPF6.  By 1H NMR spectroscopic analysis, 

~15% of the ammonium sites were clipped, indicating each polymer chain contained 

approximately two to three interlocked “charms.”  We believe there are several factors 

that resulted in this low clipping percent.  Because of the limited solubility of the 

polymer, the charged ammonium residues were likely concentrated in a dense core 

surrounded by the more-soluble alkyl components, severely limiting access of 19 and 

catalyst to the polymer binding sites and preventing extensive clipping.  Also, the large 

amount of nitromethane solvent required to dissolve C-17-nH2·nPF6 would significantly 

Scheme 3.6. Screen Reaction to Determine Effect of Nitromethane Concentration on
RCM Olefin Conversion 
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decrease the association constant governing coordination of 19 to the ammonium sites, a 

phenomenon further compounded by the inherently lower binding constant of 

dialkylammonium species relative to their dibenzyl counterparts.45 

 Though efforts to neutralize C-22-nH·nPF6 were unsuccessful, conclusive 

evidence for the interlocked nature of the molecular “charm bracelet” was obtained using 

1H and 2D-DOSY NMR spectroscopy.  Analysis of the proton signals of the interlocked 

crown showed significant line broadening100 relative to the free, non-interlocked ring-

closed analogue, a phenomenon that is commonly observed for interlocked 

complexes56,63,69 and arises from an increase in the rotational correlation time of the 

interlocked crown as a result of increased MW and volume (due to interlocking of the 

small ring with the large polymer). Additionally, a downfield shift in the –CH2– crown 

proton signals from 3.57 ppm to 3.64 ppm was observed, a phenomenon attributed to 

subtle electron-withdrawing effects from hydrogen bonding interactions occurring 

Scheme 3.7: Graphical Representation of the Synthesis of Molecular “Charm Bracelet”  
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between the ammonium protons and crown oxygens.  Though one-dimensional 1H NMR 

analysis suggested the interlocked nature of C-22-nH·nPF6, 2D-DOSY NMR provided 

convincing evidence. This technique enabled the direct detection of the diffusion rates of 

ring-closed product 23 after ring-closing in the absence and presence of polymer (Figure 

3.10A and 3.10C, respectively).  Typically, the diffusion values obtained from 2D-DOSY 

NMR are reported as log(D), where the diffusion constant, D, has units of m2s-1.  Thus, a 

smaller (more negative) diffusion value implies a slower diffusion rate.  For example, the 

large macromolecular template C-17-nH·nPF6 (Figure 3.10B) had a diffusion value of 

Figure 3.10:  2D-DOSY 1H NMR spectra at 400 MHz and 25 °C in CD3CN of free ring-
closed crown 23 (A), cyclic polyammonium template C-17-nH·nPF6 (B), purified
molecular “charm bracelet” C-22-nH·nPF6 (C), and a physical mixture of C-22-nH·nPF6

and 23 (D).  The units of the diffusion constant D are m2 s-1. 
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log(D) = –8.83 (slow), while free crown 23 (Figure 3.10A) had a faster diffusion value of 

log(D) = –8.45, expected behavior for a small molecule.  However, when the crown 

signals from C-22-nH·nPF6, were analyzed by 2D-DOSY NMR, a significant reduction 

in crown diffusion speed (log(D) = –8.85) was observed (Figure 3.10B).  The alignment 

of crown and polymer signals at the same diffusion rate indicated an intimate association 

between the two species, only possible if 23 was interlocked around the cyclic polymer 

framework.  To rule out the possibility of coincidental overlap between crown and 

polymer diffusion values observed in Figure 3.10B, a sample of C-22-nH·nPF6 was 

spiked with non-interlocked 23.  If the slow diffusion rate of crown signals in the 2D-

DOSY NMR of C-22-nH·nPF6 (Figure 3.10C) originated from hydrogen bonding 

interactions between the crown and polymer and not from interlocking of the crown 

around the polymer backbone, we would expect to see the introduced, non-interlocked 

crown diffuse at a similarly slow rate as the interlocked crown in C-22-nH·nPF6.  

However, upon 2D-DOSY NMR analysis of a physical mixture of C-22-nH·nPF6 and 23, 

a distinct difference between diffusion rates of the two types of crown (log(D) = –8.80 

and –8.52, bound and free, respectively) was observed (Figure 3.10D), confirming the 

interlocked nature of the crown in molecular “charm bracelet” C-22-nH·nPF6. 

 

Conclusions 

We have described a “clipping” approach to a polycatenated cyclic polymer, a 

structure that resembles a molecular “charm bracelet.” We have shown that the use of 

ring-opening metathesis polymerization of a carbamate monomer in the presence of a 

chain transfer agent allows for the synthesis of a linear polymer that could be 
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subsequently functionalized and cyclized to the corresponding cyclic analogue.  This 

cyclic polymer was characterized through a variety of techniques, and subjected to 

further functionalization reactions, affording a cyclic polyammonium scaffold.  Diolefin 

polyether fragments were coordinated and “clipped” around the ammonium sites within 

the polymer backbone using ring-closing olefin metathesis, giving the molecular “charm 

bracelet.”  Confirmation of the interlocked nature of the product was achieved via 1H 

NMR spectroscopy and two-dimensional diffusion-ordered NMR spectroscopy. 
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Experimental Section 

Experimental procedures and characterization data (1H and 13C and 2D NMR, IR, 

HRMS, GPC) for all compounds and their precursors. 

 

General Information.  NMR spectra were obtained on either a Mercury 300 

MHz spectrometer, an INOVA 500 MHz spectrometer equipped with an AutoX 

broadband  probe with z-gradients, or an INOVA 600 MHz spectrometer equipped with 

an inverse HCN triple resonance probe with x-, y-, and z-gradients.  All spectrometers 

were running Varian VNMRJ software.  Chemical shifts for both 1H and 13C spectra are 

reported in per million (ppm) relative to Si(CH3)4 (δ=0) and referenced internally to the 

proteo solvent resonance. Multiplicities are abbreviated as follows: singlet (s), doublet 

(d), triplet (t), quartet (q), quintet (qt), septuptlet (sp), multiplet (m), and broad (br).  

MestReNova NMR 5.3.2 software was used to analyze all NMR spectra.  Molecular mass 

calculations were performed with ChemBioDraw Ultra 11.0.1 (Cambridge Scientific). 

Mass spectrometry measurements (FAB, EI, and MALDI) were performed by the 

California Institute of Technology Mass Spectrometry Facility. Analytical thin-layer 

chromatography (TLC) was performed using silica gel 60 F254 precoated plates (0.25 

mm thickness) with a fluorescent indicator.  Visualization was performed using UV and 

iodine stain.  Flash column chromatography was performed using silica gel 60 (230-400 

mesh) from EM Science.  Gel permeation chromatography (GPC) was carried in THF out 

on two PLgel 10 μm mixed-B LS columns (Polymer Labs) connected in series with a 

DAWN EOS multiangle laser light scattering (MALLS) detector and an Optilab DSP 

differential refractometer (both from Wyatt Technology).   No calibration standards were 
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used, and dn/dc values were obtained for each injection assuming 100% mass elution 

from the columns. IR was obtained on a Perkin-Elmer BX-II FTIR spectrometer using 

thin-film techniques on NaCl plates. 

 

DOSY Information. The 2D-DOSY measurements were made at 400 MHz on a 

Bruker DPX spectrometer with a variable-temperature dual 1H/13C dual probe and a DPX 

Avance console.  Accessories relevant to the experiment included a GCU gradient 

shaping card, a GREAT gradient amplifier with a maximum gradient current of 10 A, and 

a single-axis gradient coil on the probe.  Bruker XWINNMR was used to control the 

spectrometer and process the data.  The execution of the experiment, which employs an 

automation program in addition to the ledbpgp2s  pulse sequence, is described in a 

special Bruker document.1  The coil constant for the probe was determined by applying 

the BP-LDE pulse sequence, which was developed for measuring the translational 

diffusion constant DT, on a sample with a known  DT.  Longsworth accurately measured 

DT of HDO in D2O.2 Accordingly, the HDO signal in 99.96 atom-% D2O was observed 

with the BP-LDE method of Stejskal and Tanner modified by Wu et al., which employs 

bipolar gradient pulses and the LED pulse sequence.3 The DOSY measurements were 

based on the 2D version of the BP-LDE method.  The acquisition parameters were SW, 

10.00 ppm; TD, 16k; NS, 512; AQ, 2.0447731 s;  (the diffusion time), 500 ms;   (the 

gradient recovery), 0.2 ms; Te (the eddy current delay), 5 ms; /2 (the gradient pulse), 0.5 

ms.  Sinusoidal gradient pulses and a quadratic ramp in gradient current were employed.  
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A quadratic ramp of 16 gradient currents ranging from 0.354% to 21.235% was 

employed. 

 

Materials and Methods.  Anhydrous N,N-dimethylformamide (DMF) was 

obtained from Acros (99.8% pure, Acroseal).  Dry tetrahydrofuran (THF) and 

dichloromethane (DCM) were purified by passage through solvent purification columns.4   

All water was deionized.  cis-1,5-Cyclcooctadiene (4, 99%), 5-bromo-1-pentene (95%), 

and 1,4-diethynylbenzene (14, 96%), and nitromethane (95+%, ACS reagent) were 

purchased from Aldrich and used as received.  Anhydrous potassium carbonate (J. T. 

Baker, 99.6%) was used as received. Grubbs second-generation catalyst 

(H2IMes)(PCy3)(Cl)2Ru=CHPh and Grubbs-Hoveyda second-generation 

isopropoxybenzylidene catalyst (H2IMes)(Cl)2RuCH(o-OiPrC6H4) (1) were obtained as a 

generous gift from Materia, Inc.  All other compounds were purchased from Acros or 

Aldrich and used as received.   

 

General Freeze-Pump-Thaw Procedure.  A flask charged with reagents and 

solvent was frozen with liquid nitrogen.  After the solution had frozen, the headspace of 

the flask was evacuated under vacuum.  The flask was sealed and allowed to thaw to 

room temperature.  The headspace of the flask was then backfilled with argon. The flask 

was sealed and the reaction mixture frozen again with liquid nitrogen.  This process was 

repeated twice.  On the third cycle, the solution was frozen and the headspace evacuated 

and backfilled with argon.  Catalyst was quickly added to the top of the frozen solution, 
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the headspace was again evacuated, and the solution allowed to warm to room 

temperature.  The solution was backfilled with argon, refrozen, and subjected to another 

cycle for a total of four freeze-pump-thaw cycles. 
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Cyclcooctene monoepoxide (5).  To a two-liter round bottom flask equipped with a stir 

bar was added cis-1,5- cyclooctadiene (50.0g, 0.41 mol, 1 eq).  The flask was fitted with 

an addition funnel, and the round bottom flask was cooled in an ice bath.  A solution of 3-

chloroperoxybenzoic acid (124.5 g, 0.556 mol, 1.36 eq) in chloroform (1 L) was added 

slowly over 2 hours.  The reaction was allowed to stir at room temperature overnight, 

then filtered.  The solution was washed in a separatory funnel with saturated aqueous 

sodium bisulfate, then saturated aqueous sodium bicarbonate, then saturated sodium 

chloride.  The organic layer was dried (MgSO4), filtered, and evaporated under reduced 

pressure.  The crude oil was subjected to purification via flash chromatography (SiO2: 

eluting in 10:1 hexanes to ethyl acetate) to afford monoepoxide 5 as a clear, colorless oil 

(31.985 g, 62% yield). 1H NMR (300 MHz, CDCl3):   5.55 (m, 2H), 3.02 (m, 2H), 2.42 

(m, 2H), 2.20-1.90 (m, 6H).  13C NMR (76 MHz, CDCl3):  129.06, 56.95, 28.31, 23.89. 

HRMS-EI (m/z): [M + H] calcd for C8H12O, 124.0888; found 124.0891. 

Cycloct-4-enol (6).  To an oven-dried two-neck two-liter flask equipped with a stir bar, 

septum, and reflux condenser under argon was added lithium aluminum hydride powder 

(28.3 g, 0.747 mol, 3 eq).  The flask was cooled in an ice bath, and dry THF (1 L) was 

added via cannulation.  To this slurry, and at 0 °C, was slowly added cyclooctene 
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monoepoxide 5 (30.90 g, 0.249 mol, 1 eq) dissolved in dry THF (100 ml).  The reaction 

was heated to reflux for 4 hours, then cooled to 0 °C.  Water (28.3 ml) was added 

dropwise to the slurry, then a solution of 15 % aqueous sodium hydroxide (28.3 ml), and, 

finally, additional water (84.9 ml).  This solution was allowed to stir at room temperature 

for 4 hours, and the gray salts slowly became white.  An excess of celite and MgSO4 

were added and allowed to stir for 30 minutes.  The salts were filtered, and the solution 

was concentrated by rotary evaporation to afford the desired alcohol 6 as a clear oil 

(31.29 g, 99% yield).  The product was used with no further purification.  1H NMR (500 

MHz, CDCl3):   5.75-5.50 (m, 2H), 3.80 (m, 1H), 2.30 (m, 1H), 2.14 (m, 3 H), 1.97-1.80 

(m, 2H), 1.77-1.58 (m, 2H), 1.52 (m, 2H).  13C NMR (126 MHz, CDCl3):  130.34, 

129.73, 72.93, 37.91, 36.47, 25.85, 25.07, 22.98. HRMS-EI (m/z): [M + H] calcd for 

C8H14, 126.1045; found 126.1043. 

 

 

Cyclooct-4-enone (7). To an oven-dried two-neck two-liter flask equipped with a stir bar 

and fitted with an oven-dried addition funnel was added, under argon, dry 

dichloromethane (DCM, 850 ml) and dimethylsulfoxide (71.0 g, 0.909 mol, 4 eq), and 

the solution was cooled to -78 °C.  Oxalyl chloride (57.7 g, 0.454 mol, 2 eq) was slowly 

added to the reaction, and the solution was allowed to stir for 30 minutes.  Alcohol 6 

(28.66 g, 0.227 mol, 1 eq) was added to the reaction as a solution in dry DCM (150 ml) 
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over 30 minutes.  After stirring for another 30 minutes, anhydrous triethylamine (230 g, 

2.27 mol, 10 eq) was added.  The reaction was stirred for 10 minutes at -78 °C, then 

warmed to room temperature and stirred for 30 minutes.  The salts were filtered, and the 

solvent removed by rotary evaporation.  The crude oil was purified first by flash 

chromatography (SiO2: eluting in a gradient of 20:1 hexanes to acetone, then 10:1, then 

4:1, then 1:2), and then via reduced pressure fractional distillation through a Vigreux 

column (10.0 torr, bp = 75-85 °C) to afford ketone 7 as a clear oil (23.134 g, 82%). 1H 

NMR (500 MHz, CDCl3):   5.66 (m, 2H), 2.43 (m, 6H), 2.13 (m, 2H), 1.56 (m, 2H).  13C 

NMR (126 MHz, CDCl3):  214.91, 130.95, 130.41, 47.43, 40.54, 26.50, 24.11, 22.02. 

HRMS-EI (m/z): [M + H] calcd for C8H12O, 124.0888; found 124.0847. 

 

 

Cyclooct-4-enone oxime (8).  To a one-liter round bottom flask equipped with a stir bar 

and reflux condenser was added ketone 7 (22.12 g, 0.178 mol, 1 eq), hydroxylamine 

hydrochloride (18.56 g, 0.267 mol, 1.5 eq), sodium bicarbonate (22.6 g, 0.269 mol, 1.51 

eq), and methanol (600 ml).  The solution was heated to reflux for 4 hours, then cooled to 

room temperature.  The methanol was removed by rotary evaporation, and the residue 

redissolved in ethyl ether (300 ml) and partitioned with water (500 ml).  The aqueous 
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layer was extracted with fresh ether (300 ml x 1, 100 ml x 2), and the combined organic 

layers washed with fresh water (500 ml), dried (MgSO4), and filtered.  The solvent was 

removed to give oxime 8 as a white crystalline solid (24.56 g, 99%).  The product was 

used with no further purification.  1H NMR (600 MHz, CDCl3):   8.30 (br s, 1H), 5.66 

(m, 2H), 2.57 (m, 0.3H, 8b), 2.42 (m, 1.7H, 8a), 2.28 (m, 4H), 2.11 (m, 2 H), 1.71 (m, 

1.7H, 8a), 1.61 (m, 0.3H, 8b).  13C NMR (76 MHz, CDCl3):  162.65, 131.28, 129.84, 

36.25, 28.25, 26.43, 23.93, 22.76. HRMS-EI (m/z): [M + H] calcd for C8H13NO, 

139.0997; found, 139.0999. 

 

 

Lactam (9a and 9b). Synthesis of the tosyl oxime intermediate was performed batchwise. 

Oxime 8 (12.00 g, 86.2 mmol, 1 eq) was added to a two-liter round bottom flask 

equipped with a stir bar and addition funnel, then dissolved in DCM (900 ml).  Pyridine 

(17.05 g, 215.5 mmol, 2.5 eq) and dimethylaminopyridine (a few crystals) were added.  

Tosyl chloride (24.65 g, 129.3 mmol, 1.5 eq) was dissolved in DCM (500 ml) and added 

to the addition funnel.  The reaction mixture was cooled to 0 °C, and the tosyl chloride 

solution was slowly added to reaction over 2 hours.  After addition was complete, the 

reaction was warmed to room temperature and allowed to stir for 1 day.  The reaction 

was poured into a separatory funnel and partitioned with water (500 ml). The aqueous 
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layer was extracted with fresh chloroform (4 x 100 ml), and the combined organic layers 

were dried (MgSO4), filtered, and evaporated to dryness under reduced pressure.  The 

tosyl oxime product was used in the next reaction with no further purification. 

 
Tosyl oxime (25.29 g, 86.21 mmol, 1 eq) was added to a flask, and a solution of aqueous 

potassium carbonate (11.32 g, 81.90 mmol, 0.95 eq in 688 ml H2O) was added.  This was 

allowed to stir for 30 seconds, at which point tetrahydrofuran (360 ml) was added.  The 

solution became bright yellow over several hours.  The reaction was allowed to stir at 

room temperature for 1 day, then poured into a separatory funnel and partitioned between 

water and chloroform (250 ml).  The aqueous layer was extracted with fresh chloroform 

(4 x 100 ml), and the combined organic layers were dried (MgSO4), filtered, and 

evaporated to dryness under reduced pressure.  The product was purified by flash 

chromatography (SiO2: eluting in 2:1 hexanes to acetone) to give the lactams 9a and 9b 

as a white, fluffy powder (8.488 g, 70 % overall yield from oxime 8). 1H NMR (300 

MHz, CDCl3):   7.33 (br s, 0.7 H), 6.15 (br s, 0.3 H) 5.70-5.20 (m, 2H), 3.50 (m, 0.3H), 

3.10 (m, 1.4H), 2.60 (m, 0.3H), 2.30-1.80 (br m, 6H), 1.80-1.60 (br m, 2H).  13C NMR 

(76 MHz, CDCl3):  178.07, 176.88, 134.12, 131.45, 128.82, 124.97, 42.17, 38.89, 36.39, 

29.41, 28.86, 27.67, 26.72, 25.55, 25.41. HRMS-EI (m/z): [M + H] calcd for C8H13NO, 

139.0997; found 139.0991. 
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Carbamate (3). To an oven-dried flask equipped with a stir bar, septum, and reflux 

condenser under argon was added lithium aluminum hydride powder (3.27 g, 37.95 

mmol, 3 eq).  The flask was cooled in an ice bath, and dry THF (287 ml) was added via 

cannulation.  To this slurry, and at 0 °C, was slowly added lactams 9a and 9b (3.50 g, 

28.7 mmol, 1 eq) dissolved in dry THF (25 ml).  The reaction was heated to reflux for 4 

hours, then cooled to 0 °C.  To quench the reaction, water (3.27 ml), 15 % NaOH/H2O 

(3.27 ml), and water (9.81 ml) were added sequentially, and the solution allowed to stir 

for 1 hour.  An excess of celite and MgSO4 were added, and the slurry was allowed to stir 

for 15 min.  The salts were filtered, and the solvent removed by rotary evaporation to 

yield a clear oil.  The crude amine was redissolved in DCM (287 ml), and 

dimethylaminopyridine (a few crystals), triethylamine (8.71 g, 86.1 mmol, 3 eq), and di-

tert-butyl dicarbonate (6.89 g, 31.6 mmol, 1.1 eq) were added.  The solution was stirred 

at room temperature for 12 hours, then poured into a separatory funnel and diluted with 

water (250 ml).  The aqueous layer was extracted with fresh DCM (2 x 50 ml), and the 

combined organic layers were dried (MgSO4), filtered, and evaporated to dryness.  The 

crude oil was purified by flash chromatography (SiO2: eluting in a gradient from 16:1 

hexanes to acetone, then 8:1) to afford the carbamate monomer 3 as a clear oil (5.10 g, 

89% overall yield from lactams 9a and 9b).  Though 1H NMR analysis of the crude 

reaction mixture showed the presence of both regioisomers, only regioisomer 3 was 
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isolated after column chromatography.  The reported NMR and MS data are for this pure 

regioisomeric form.  1H NMR (500 MHz, CDCl3):   5.76 (tt, J = 8.0 Hz, 1H), 5.43 (m, 

1H), 3.36 (t, J = 5.7 Hz, 1H) 3.27 (t, J = 5.7 Hz, 1H), 3.15-3.05 (m, 2H), 2.33-2.22 (m, 

2H), 2.12 (q, J = 7.1 Hz, 2H), 1.60-1.48 (br m, 6H), 1.46 (s, 9H).  13C NMR (151 MHz, 

CDCl3):  156.09, 155.51, 131.99, 131.37, 129.16, 128.58, 79.23, 79.12, 48.42, 48.26, 

47.89, 47.82, 28.63, 28.58, 26.91, 26.77, 26.68, 25.63, 25.54, 25.38, 24.29, 23.58. 

HRMS-EI (m/z): [M + H] calcd for C13H23NO2, 225.1729; found 225.1729. 

 

 

Dibromo Chain-Transfer Agent (10).  To an oven-dried vial equipped with a stir bar 

and fitted with a septa screw-cap and under argon atmosphere was added 5-bromo-1-

pentene (0.5 g, 3.36 mmol, 2 eq) and dry DCM (16.9 ml).  This solution was sparged 

with argon with stirring for 15 minutes, and Grubbs second-generation ruthenium olefin 

metathesis catalyst (H2IMes)(PCy3)(Cl)2Ru=CHPh (0.1424 g, 0.168 mmol, 5 mol%) was 

quickly added.  Sparging was continued for an additional 5 minutes, and the reaction 

heated to 41 °C for 24 h.  The reaction was cooled to room temperature, and excess ethyl 

vinyl ether was added.  Stirring was continued for 30 minutes, and the solution 

evaporated to dryness.  The crude oil was purified by flash chromatography (SiO2: 

eluting in hexanes) to afford the dibromo chain-transfer agent 10 as a clear oil (0.291 g, 
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64% yield).  1H NMR (300 MHz, CDCl3):   5.42 (m, 2H), 3.38 (m, 4H), 2.52-2.05 (m, 

4H), 2.05-1.75 (m, 4H).  13C NMR (76 MHz, CDCl3):  129.97, 129.49, 33.46, 32.46, 

32.26, 31.03, 25.93. HRMS-EI (m/z): [M + H] calcd for C8H14Br2, 269.9442; found 

269.9432. 

 

 

Linear Dibromo Homotelechelic Polymer (L-11).  To an oven-dried vial equipped with 

a stir bar and fitted with a septa screw-cap and under argon atmosphere was added 

monomer 3 (2.0000 g, 8.875 mmol, 180 eq), dibromo CTA 10 (0.1331 g, 0.4931 mmol, 

10 eq), and dry DCM (8.9 ml, 1.0 M with respect to monomer).  This solution was 

sparged with argon for 15 minutes, and Grubbs-Hoveyda second-generation 

isopropoxybenzylidene catalyst (H2IMes)(Cl)2RuCH(o-OiPrC6H4) 1 (30.9 mg, 49.3 

μmol, 1 eq) was quickly added.  Sparging was continued for 10 minutes, and the reaction 

was then heated to 43 °C for 24 h.  The reaction was cooled to room temperature, and 

excess ethyl vinyl ether was added.  After stirring for 10 minutes, the solvent was 

removed under reduced pressure.  The resulting viscous oil was added slowly to a 

vigorously stirring reservoir of hexanes (50 ml).  The dark-colored precipitate was 

filtered off, and the solution was evaporated to dryness to afford linear dibromo telechelic 

polymer L-11 as a pale-brown viscous oil (2.01 g, quant. yield). 1H NMR (600 MHz, 
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CDCl3):   5.35 (br m, 2H), 3.38 (m, 0.2H), 3.12 (br m, 4H), 2.16 (m, 2H), 1.96 (m, 2H), 

1.63 (br m, 2H), 1.42 (s, 9H), 1.28 (m, 2H).  13C NMR (126 MHz, CDCl3):  155.72, 

132.34, 130.43, 129.19, 127.24, 79.17, 47.23, 33.48, 32.62, 31.73, 31.04, 30.19, 28.71, 

26.92.  FTIR (NaCl, cm-1):  2973.03, 2929.73, 2858.16, 1693.70, 1468.26, 1415.23, 

1390.42, 1365.16, 1250.33, 1166.43, 968.18, 883.93, 771.79.  GPC (THF): Mn = 4.1 kDa; 

Mw = 6.1 kDa; PDI = 1.49. 

 

Linear Diazide Homotelechelic Polymer (L-12).  To an oven-dried vial equipped with a 

stir bar and fitted with a septa screw-cap and under argon atmosphere was added linear 

dibromo telechelic polymer L-11 (1.8000 g, 0.450 mmol, 1 eq) and DMF (18 ml).  Once 

all the polymer had dissolved, sodium azide (180 mg, 2.7 mmol, 6 eq, 3 eq per bromide) 

was added in one portion.  The reaction was heated to 50 °C for 12 hours, then cooled to 

room temperature.  The solution was added to a separatory funnel and partitioned 

between water (50 ml) and ether (50 ml).  The aqueous layer was extracted with fresh 

ether (3 x 25 ml), and the combined organic layers further washed with fresh water (2 x 

25 ml).  The organic layer was dried (MgSO4), filtered, and evaporated to dryness under 

reduced pressure to give the linear diazide telechelic polymer L-12 as a pale-orange oil 

(1.6235g, 90% yield). 1H NMR (600 MHz, CDCl3):   5.35 (br m, 2H), 3.23 (m, 0.2H), 

3.12 (br m, 4H), 2.16 (m, 2H), 1.96 (m, 2H), 1.52 (br m, 2H), 1.42 (s, 9H), 1.28 (m, 2H).  
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13C NMR (126 MHz, CDCl3):  155.72, 132.34, 130.42, 129.19, 127.28, 79.17, 77.48, 

77.23, 76.98, 50.98, 47.25, 32.61, 31.75, 30.24, 29.74, 28.71, 28.42, 28.10, 27.16, 27.08, 

26.92. FTIR (NaCl, cm-1):  3373.98, 2973.07, 2929.83, 2858.42, 2095.99, 1693.88, 

1468.40, 1415.38, 1390.47, 1365.19, 1250.54, 1166.69, 968.23, 884.04, 771.85, 672.26.  

GPC (THF): Mn = 4.4 kDa; Mw = 7.1 kDa; PDI = 1.54. 

 

 

Clicked Cyclic Polymer (C-13).  An oven-dried two-liter two-neck round bottom flask 

equipped with a stir bar and reflux condenser was charged, under argon, with dry DMF 

(1.12 L) and N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA, 0.4527g, 2.61 

mmol, 20 eq).  This solution was sparged vigorously with argon for 30 minutes, and 

copper(I) bromide (0.3747 g, 2.61 mmol, 20 eq) was added.  Sparging was continued for 

10 minutes, and then the reservoir was heated to 90 °C. To a separate flame-dried flask 

was added linear diazide homotelechelic polymer L-12 (0.5000 g, 0.1306 mmol, 1 eq) 

and 1,4-diethynylbenzene 14 (17.3 mg, 0.1375 mmol, 1.04 eq), and these compounds 

were dissolved in dry DMF (23.8 ml).  This solution was sparged with argon for 20 

minutes, then transferred to a 25 ml syringe.  The polymer/dialkyne mixture was added 

via syringe pump to the reservoir of copper/PMDETA/DMF at a rate of 0.3 ml per hour.  
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Once the addition was complete, the reaction was allowed to stir for an additional 2 hours 

at elevated temperature.  The DMF was removed via reduced pressure distillation, and 

the resulting residue was dissolved in ether (20 ml) and partitioned with water (100 ml).  

The aqueous layer was further extracted with fresh ether (3 x 20 ml), and the combined 

organic layers were washed with fresh water (2 x 25 ml).  The organic layer was dried 

(MgSO4), filtered, and evaporated to dryness.  The resulting residue was purified by flash 

chromatography (SiO2: eluting in a gradient from hexanes, to 25% ether in hexanes, to 

50% ether in hexanes, to pure ether) to afford a mixture of linear and cyclic polymer 

(94.1 mg).  This crude polymer residue was redissolved in dry DMF (5.0 ml), and 

PMDETA (20.4 mg, 0.1176 mmol, 5 eq) and azide-functionalized beads (104 mg, 0.235 

mmol azide, 10 eq) were added.  The solution was sparged for 15 minutes, and copper(I) 

bromide (16.9 mg, 0.1176 mmol, 5 eq) was added.  The mixture was heated to 90 °C for 

6 h with very gentle stirring, and, after this time, alkyne-functionalized beads (235 mg, 

0.235 mmol alkyne, 10 eq) were added.  Heating and gentle stirring were continued for 

another 6 h, and the reaction was cooled and filtered.  The solution was evaporated to 

dryness under reduced pressure, and the resulting residue was purified by flash 

chromatography (SiO2: eluting in a gradient of 1:1 hexanes to ether, to pure ether) afford 

pure cyclic polymer C-13 (80.0 mg, 16% yield) as a colorless oil. 1H NMR (600 MHz, 

CDCl3):   7.88 (s, 0.2H), 7.78 (s, 0.1H), 5.36 (br m, 2H), 4.37 (br s, 0.2H), 3.12 (br m, 

4H), 2.17 (m, 2H), 1.96 (m, 2H), 1.42 (br m, 2H), 1.41 (s, 9H), 1.29 (m, 2H).  13C NMR 

(126 MHz, CDCl3):  155.68, 155.66, 147.49, 132.30, 131.72, 130.40, 129.87, 129.15, 

128.26, 127.24, 126.56, 126.23, 119.80, 79.17, 79.13, 50.49, 49.87, 47.21, 46.95, 32.55, 
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31.73, 30.49, 30.18, 29.85, 29.48, 28.81, 28.66, 28.50, 28.38, 28.03, 27.17, 27.11, 27.00, 

26.87. FTIR (NaCl, cm-1): 2973.04, 2929.76, 2858.00, 1693.68, 1468.24, 1415.67, 

1390.40, 1365.27, 1301.11, 1250.58, 1167.26, 968.89, 883.92, 772.01, 733.43.  GPC 

(THF): Mn = 4.4 kDa; 6.3 Da; PDI = 1.45. 

 

 

 

Doubly-Clicked Linear Polymer (L-15).  To a flame-dried flask equipped with a stir bar 

and under argon atmosphere was added linear diazide homotelechelic polymer L-12 

(0.100 g, 26.12 μmol, 1 eq), 1,4-diethynylbenzene 14 (0.330 g, 2.6 mmol, 100 eq), 

PMDETA (23 mg, 0.1306 mmol, 5 eq), and dry DMF (26 ml).  This solution was sparged 

for 15 minutes, and copper(I) bromide (19 mg, 0.1306 mmol, 5 eq) was added.  The 

solution was heated to 50 °C for 4h, then cooled to room temperature.  The product was 

mixed with ether (50 ml) and partitioned with water (100 ml).  The aqueous layer was 

extracted with fresh ether (2 x 50 ml), and the combined organic layer was washed with 

fresh water (2 x 25 ml).  The organic layer was dried (MgSO4), filtered, and evaporated 

under reduced pressure.  This crude mixture was purified by flash chromatography (SiO2: 

eluting in a gradient from 1:1 hexanes to ether, to pure ether) to afford the doubly-clicked 
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linear polymer L-15 as a pale-yellow oil (50.9 mg, 48% yield).  1H NMR (500 MHz, 

CDCl3):  7.76 (d + s, J = 8.4 Hz, 0.22H), 7.51 (d, J = 8.2 Hz, 0.15 H), 5.34 (m, 2H), 4.36 

(br s, 0.15H), 3.10 (br m + s, 4H), 2.15 (br m, 2H), 1.95 (br m, 2H), 1.45 (m, 2H), 1.41 (s, 

9H), 1.27 (m, 2H).  13C NMR (126 MHz, CDCl3):  155.69, 155.67, 132.79, 132.32, 

131.74, 131.28, 130.41, 129.90, 129.16, 128.20, 127.24, 125.64, 121.81, 120.07, 83.66, 

79.18, 79.14, 78.07, 50.54, 49.92, 47.20, 46.95, 32.59, 31.71, 30.15, 29.88, 29.48, 28.68, 

28.40, 28.05, 27.19, 27.13, 27.02, 26.89. FTIR (NaCl, cm-1): 3301.80, 3230.47, 2973.68, 

2930.41, 2858.54, 2247.99, 1693.99, 1469.67, 1416.84, 1390.93, 1365.54, 1250.77, 

1166.70, 969.14, 923.02, 884.01, 772.35, 733.16, 672.20, 646.20.  GPC (THF): Mn = 4.4 

kDa; Mw = 7.1 kDa; PDI = 1.63. 

 

 

General Hydrogenation Protocol.  Polymer was added to a vial and dissolved in 

tetrahydrofuran (THF, 10 ml).  To this mixture was added Wilkinson’s catalyst 

(Rh(PPh3)3Cl) (1 mol %), and the the vial was sealed inside a stainless-steel high-

pressure hydrogenation bomb.  The bomb was subjected to three pressurization/release 

cycles (up to 400 psi H2 per cycle), then pressurized to 800 psi H2.  The bomb was placed 

in a oil bath set to 50 °C for 24 h.  After the reaction time, the oil bath was removed, and 

the pressure released.  The solvent was removed under reduced pressure, and the 

resulting residue slowly dripped into a reservoir of hexanes (50 ml).  Once the solution 

had settled, the solids were removed via filtration, and the solvent again evaporated.  The 

residue was purified by flash chromatography (SiO2: eluting a gradient from pure 
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hexanes, to 25% ether in hexanes, to 50% ether in hexanes, to 75% ether in hexanes, to 

pure ether) to give the hydrogenated polymer as a clear oil. 

 

 

 

Saturated Cyclic Product (C-16).  A portion of the cyclic polymer C-13 (48.2 mg, 12.1 

μmol, 1 eq) and Wilkinson’s catalyst (2.0 mg, 2.07 μmol, 1 mol % relative to double 

bonds) were subjected to standard hydrogenation conditions and purification protocols to 

produce the saturated derivative C-16 as a clear oil (37.6 mg, 77% yield). 1H NMR (600 

MHz, CDCl3):   7.88 (s, 0.2H), 7.78 (s, 0.1H), 4.39 (br s, 0.2H), 3.11 (br s, 4H), 1.94 (m, 

0.2H), 1.46 (br s, 4H), 1.42 (s, 9H), 1.35 (br s, 0.8H), 1.25 (m, 8H).  13C NMR (126 MHz, 

CDCl3):  155.81, 147.56, 130.60, 126.26, 119.66, 79.08, 79.05, 50.65, 47.20, 30.52, 

29.90, 29.80, 29.65, 29.47, 28.86, 28.71, 28.54, 27.13, 27.08, 26.95, 26.69. 
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Saturated Doubly-Clicked Linear Polymer (L-18a) A portion of the linear doubly-

clicked polymer L-15 (49.9 mg, 12.5 μmol, 1 eq) and Wilkinson’s catalyst (2.4 mg, 2.57 

μmol, 1 mol % relative to double bonds) were subjected to standard hydrogenation 

conditions and purification protocols to produce the saturated derivative L-18a as a clear 

oil (29.2 mg, 58% yield). 1H NMR (600 MHz, CDCl3):   7.72 (d, J = 8.1 Hz, 0.15H), 

7.68 (s, 0.08H), 7.23 (d, J = 8.2 Hz, 0.15H), 4.36 (t, J = 7.2Hz, 0.15H), 3.10 (br m, 4H), 

2.65 (q, J = 7.62 Hz, 0.15H), 1.92 (m, 0.15H), 1.46 (m, 4H), 1.42 (s, 9H), 1.23 (br m, 

8H). 

 

General Deprotection and Anion Metathesis Protocol.  A vial was charged with a stir 

bar, saturated polymer, and DCM (10 ml).  Trifluoroacetic acid (15 eq) was added, and 

the solution allowed to stir for 4 h.  The solvent and TFA were removed in vacuo, and the 

deprotected TFA-ammonium polymer adduct dissolved in methanol (10 ml).  

Ammonium hexafluorophosphate (10 eq) was added, and the solution allowed to stir for 

12 h.  The solvent was removed under reduced pressure, and the solid residue was mixed 

Boc
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n N N

N
NN

N

L-15 (54% )

Rh(PPh3)3Cl
H2 (800 psi), THF

50 °C, 24 h

Boc
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with water (10 ml).  The water was decanted, and the remaining solid washed with fresh 

water (2 x 10 ml) to afford the desired polyammonium hexafluorophosphate polymer as a 

white solid. 

 

 

Polyammonium Hexafluorophosphate Cyclic Polymer (C-17-nH·nPF6).  Standard 

deprotection and anion metathesis conditions were used.  Hydrogenated cyclic polymer 

C-16 (11.8 mg, 8.04 μmol, 1 eq) was dissolved in DCM, and TFA was added (150 μl, 15 

eq per boc).  The reaction was allowed to stir for 4 h, then pumped to dryness.  Methanol 

and ammonium hexafluorophosphate (210 mg, 1.29 mmol, 10 eq per N) were added. The 

solution was stirred for 12 h, the methanol was removed, and the standard extraction 

protocol was performed to afford the cyclic polyammonium hexafluorophosphate 

polymer C-17-nH·nPF6 as a white solid (25.3 mg, 67% over two steps).    1H NMR (600 

MHz, CD3CN):  8.13 (s, 0.1H), 7.91 (s, 0.2H), 6.47 (br s, 2H), 4.41 (s, 0.2H), 2.95 (s, 

4H), 1.62 (s, 4H), 1.32 (br s, 8H).  13C NMR (126 MHz, CD3CN):  126.95, 121.91, 

49.24, 49.03, 30.05, 29.74, 29.46, 27.04, 26.90, 26.66, 26.39, 26.34. 2D-DOSY NMR 

log10(diffusion) =  -8.83. 
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Polyammonium Hexafluorophosphate Doubly-Clicked Linear Polymer (L-18-

nH·nPF6). Standard deprotection and anion metathesis conditions were used.  

Hydrogenated linear doubly-clicked polymer L-18a (32.1 mg, 2.86 μmol, 1 eq) was 

dissolved in DCM, and TFA was added (150 μl).  The reaction was allowed to stir for 4 

h, then pumped to dryness.  Methanol and ammonium hexafluorophosphate (75 mg, 450 

μmol, 10 eq per N) were added. The solution was stirred for 12 h, the methanol was 

removed, and the standard extraction protocol was performed to afford the linear doubly-

clicked polyammonium hexafluorophosphate polymer L-18-nH·nPF6 as a white solid 

(13.6 mg, 98% over two steps). 1H NMR (600 MHz, CD3CN):   8.04 (s, 0.1H), 7.74 (d, J 

= 8.2 Hz, 0.2H), 7.30 (d, J = 8.2 Hz, 0.2H), 6.37 (br s, 2H), 4.39 (m, 0.2H), 2.95 (br m, 

4H), 2.67 (q, J = 7.6 Hz, 0.2H), 1.62 (br m, 4H), 1.32 (br m, 8H), 1.24 (t, J = 7.61 Hz, 

0.35H). 

 

 

Boc
N

n N N

N
NN

N

L-18a

(91% )
2 steps

1) TFA, DCM
r.t., 4 h

2) NH4PF6, MeOH
r.t., 12 h

N
H2

n N
N

N

N
N

N

L-18-nH•nPF6

PF6



216 
 

 

24-Crown-8 Ether Threading of Cyclic Polymer C-17-nH·nPF6.  A sample of C-17-

nH·nPF6 (1.0 mg) was dissolved in acetonitrile (0.75 ml,  5 mM ammonium 

concentration) and mixed with 24-crown-8 ether (24C8, 0.5 eq per ammonium).  After 

analysis, additional 24C8 (total of 2 eq per ammonium) was introduced, and the solution 

analyzed again. Threaded Peaks (0.5 eq 24C8):  1H NMR (600 MHz, CD3CN, 25 °C):  

3.25-3.00 (br m, 0.02H), 2.96 (br m, 1H); Threaded percent = (0.02 / 1)*100 =  2%.  

Threaded Peaks (2.0 eq 24C8): 1H NMR (600 MHz, CD3CN, 25 °C):  3.25-3.00 (br m, 

0.12H), 2.96 (br m, 1H). 

 

 

24-Crown-8 Ether Threading of Hexafluorophosphate Doubly-Clicked Linear 

Polymer L-18-nH·nPF6.  A sample of L-18-nH·nPF6 (1.0 mg) was dissolved in 
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deuterated acetonitrile (0.75 ml, 5 mM ammonium concentration) and mixed with 24-

crown-8 ether (24C8, 0.5 eq per ammonium).  After analysis, additional 24C8 (total of 2 

eq per ammonium) was added, and the solution analyzed again. Threaded Peaks (0.5 eq 

24C8):  1H NMR (600 MHz, CD3CN, 25 °C):  3.25-3.00 (br m, 0.28H), 2.96 (br m, 1H); 

Threading Percent = (0.28 / 1)*100 = 28% Threaded Peaks (2.0 eq 24C8):  1H NMR (600 

MHz, CD3CN, 25 °C):  3.25-3.00 (br m, 0.86H), 2.96 (br m, 1H). 

 

Procedure for “Clipped” Pseudorotaxane (21-H·PF6). ENTRY 5:  

Dibenzylammonium hexafluorophosphate template 20-H·PF6 (10 mg, 29.15 μmol, 1 eq) 

and diolefin crown ether–type species 19 (10.9 mg, 29.15 μmol, 1 eq)  were added to a 

flame dried vial equipped with a stir bar and under an argon atmosphere, then dissolved 

in solvent (50% DCM, 50% Nitromethane, 2.9 ml total volume, 0.01 M relative to 19).  

The mixture was degassed via the standard freeze-pump-thaw protocol, backfilling with 

N
H2
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O

O
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O
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19 20-H•PF6 21-H•PF6

Hm

Hk

Hn

N
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PF6
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cat 1
10 mol%

X% DCM
Y% MeNO2
(v/v), 0.01 M
43 °C, 24 h

Entry X % DCM Y % MeNO2 Conversion [%] a

1

2

3

4

5

6

7

100 0 quant

95 5 90

90 10 90

80 20 85

50 50 62

25 75 54

0 100 30

a Conversion measured by 1H NMR integration of Hm relative to Hn after 24h.
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argon. On the third freeze, ruthenium metathesis catalyst (H2IMes)(Cl)2RuCH(o-

OiPrC6H4) 1 (1.9 mg, 2.9 μmol, 10 mol %) was added.  The headspace was evacuated, 

and the reaction subjected to one final freeze-pump-thaw cycle.  The solution was heated 

to 43 °C for 24 h.  The reaction was cooled to r.t., and ethyl vinyl ether (0.2 ml) was 

injected and allowed to stir for 30 minutes.  The solvents were removed under reduced 

pressure, and the conversion of the crude product was analyzed with no further 

purification.  Example 1H integration for determination of conversion percent (Entry 5): 

1H (500 MHz, CDCl3):  5.85-5.72 (m, 1.74 H, Hk), 5.40-5.25 (m, 3.21 H, Hn), 5.03-4.88 

(m, 4.00 H, Hm).  Conversion %  = 3.21 / (3.21 + (4.00 / 2)) = ~62% 

 

 

Molecular “Charm Bracelet” (C-22-nH·nPF6).  To a flame-dried vial equipped with a 

stir bar and under argon was added a portion of C-17-nH·nPF6 (5.0 mg, 1.1 μmol, 1 eq) 

and diolefin crown ether–type species 19 (12.7 mg, 33.9 μmol, 32 eq, 2 eq per 

ammonium).  To this mixture was added nitromethane (1.7 ml), followed by DCM (1.7 

ml, total solvent concentration 0.01 M relative to 19).  The solution was degassed via 

sparging with argon for 15 minutes.  Catalyst (H2IMes)(Cl)2RuCH(o-OiPrC6H4) 1 (2.2 

50:50 DCM/MeNO2 (v/v)
0.01 M (relative to 19)

reflux, 24 h

+
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Ru
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Cl
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10 mol%
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mg, 3.39 μmol, 10 mol% relative to 19) was added, and the headspace quickly evacuated.  

Another freeze-pump-thaw cycle was completed, after which the reaction was heated to 

43 °C for 24 h.  The solution was cooled to r.t., and quenched via addition of excess ethyl 

vinyl ether (0.5 ml).  The solvent was removed under reduced pressure, and the resulting 

solid was dissolved in a minimum of acetonitrile and added to a stirring reservoir of 

DCM (30 ml). The solvent was decanted to afford the molecular “charm bracelet” 

interlocked complex C-22-nH·nPF6 as a white solid (2.7 mg, 47% yield, 15% clipping, 2 

to 3 charms per polymer).  1H NMR (600 MHz, CD3CN):   8.13 (br s, 0.6H), 7.92 (s, 

0.12H), 6.72 (br s, 1H), 5.90 (br s), 5.58-5.20 (br m, 0.2H), 4.41 (m, 0.14H), 3.68-3.30 

(m, 3.6H), 2.96 (m, 4H), 2.30 (m, 0.47 H), 1.63 (m, 4.8H), 1.33 (m, 12H). 2D-DOSY 

NMR for crown and polymer 1H signals:  log10(diffusion) =  -8.85 

 

Synthesis of Clipping Crown (19).  To a flame-dried flask equipped with a reflux 

condenser and stir bar and under an argon atmosphere was added sodium hydride (40 g, 

1.0 moles, 5 eq, 60% dispersion in mineral oil) and dry THF (1 L), followed by 4-penten-

1-ol (19.03 g, 221 mmol, 2.2 eq) dissolved in dry THF (110 ml).  The solution was heated 

to reflux for 1.5 h, then cooled to 0 °C.  The reflux condenser was replaced by an addition 

funnel charged with pentaethylene glycol ditosylate (54.9 g, 100.4 mmol, 1 eq) dissolved 
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in dry THF (110 ml), and this solution was slowly added over 1 h.  The solution was 

allowed to stir at r.t. under an Ar atmosphere for 6 d, then quenched by slow addition of 

methanol.  The volatiles were removed by rotary evaporation, and the oil dissolved in 

DCM (500 ml) and partitioned with water (500 ml) in a separatory funnel.  The aqueous 

layer was further washed with ether (2 x 200 ml), and the combined organic layers were 

dried (MgSO4), filtered, and evaporated to dryness to give an orange oil.  The crude 

product was purified by flash chromatography (SiO2: eluting in 2:1 hexanes to ethyl 

acetate) to afford 19 a clear, colorless oil (18.41 g, 49% yield) 1H NMR (500 MHz, 

CDCl3):  5.78 (m, 2H), 4.97 (m, 4H), 3.65-3.50 (m, 20H), 3.44 (t, J = 6.7 Hz, 4H), 2.08 

(q, J = 7.2 Hz, 4H), 1.65 (qt, J = 7.1 Hz, 4H). 13C NMR (126 MHz, CDCl3):  138.49, 

114.88, 70.91, 70.82, 70.80, 70.80, 70.31, 30.44, 28.98.  HRMS-FAB (m/z): [M + H] 

calcd for C20H39O6, 375.2747; found 375.2733. 

 

 

Pure Ring-Closed Clipping Crown (23).  A flame-dried vial was charged with 

dibenzylammonium hexafluorophosphate template 20-H·PF6 (202 mg, 587 μmol, 1.1 

eq), diolefin polyether fragment 19 (200 mg, 534 μmol, 1 eq), and dry DCM (53.4 ml, 

0.01 M).  The solution was sparged with argon for 20 min, and catalyst 1 (16.8 mg, 26.7 
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μmol, 5 mol%) was introduced in one portion.  Sparging was continued for 5 min, and 

the reaction heated to 43 °C for 24h.  The solution was cooled to r.t., and quenched with 

ethyl vinyl ether.  Volatiles were removed under reduced pressure, and the resulting 

residue was mixed with DCM (30 ml), triethylamine (328 μl, 2.35 mmol, 4 eq), and boc-

anhydride (270 μl, 1.18 mmol, 2 eq).  Reaction was allowed to continue for 12 h at r.t., 

and the solvent removed via rotary evaporation.  The crude orange oil was subjected to 

flash chromatography (SiO2: eluting in a gradient of 20:1 hexanes to acetone, to 16:1, to 

10:1 to 5:1), giving ring-closed product 23 as a clear, pale-yellow oil (0.1227 g, 66% 

yield over 2 steps).  1H NMR (500 MHz, CDCl3):  5.45-5.35 (m, 2H), 3.75-3.55 (m, 

20H), 3.48 (m, 4H), 2.15-2.05 (m, 4H), 1.65 (m, 4H). 13C NMR (126 MHz, CD3CN):  

130.49, 129.99, 71.03, 70.99, 70.95, 70.88, 70.67, 70.59, 70.41, 29.78, 29.40, 29.02, 

23.93.     2D-DOSY NMR log10(D) = -8.45. HRMS-FAB (m/z): [M + H] calcd for 

C18H35O6, 347.2434; found 347.2422. 

 

Synthesis of 24-Crown-8 Ether (24C8).  24C8 was prepared according to a literature 

procedure.5  A flame-dried flask equipped with an addition funnel and stir bar, and under 

an argon atmosphere, was charged with sodium hydride (24 g, 600 mmol, 24 eq, 60% 

dispersion in mineral oil) and dry THF (100 ml).  To the addition funnel was added a 
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solution of tetraethylene glycol ditosylate (12.94 g, 25.7 mmol, 1 eq) and tetraethylene 

glycol (5 g, 25.7 mmol, 1 eq) dissolved in dry THF (300 ml), and this was slowly 

introduced to the reservoir of THF/NaH at r.t. over 2 d.  After addition was complete, the 

solution was allowed to stir for 1 week at r.t. under an argon atmosphere.  The brown 

solution was quenched with water (12 ml), filtered (fritted glass) to remove salts, and 

evaporated to dryness under reduced pressure.  The brown oil was dissolved in refluxing 

hexanes (1000 ml total, added in 4 portions of 500 ml, 300 ml, 100 ml, and 100ml) and 

poured through filter paper.  The hexanes were removed via rotary evaporation, and the 

oil dissolved in acetonitrile (500 ml).  After concentration to 100 ml of solution volume, 

the mixture was placed in the freezer overnight, resulting in precipitation of clear, 

colorless crystals.  The crystals were quickly collected by decanting the supernatant, 

followed by several washings with fresh, cold acetonitrile.  The crystals were place under 

high vacuum to afford 24-crown-8 ether as a clear, colorless oil (1.8069 g, 20% yield). 1H 

NMR (500 MHz, CDCl3):  3.65 (s, 32H). 13C NMR (126 MHz, CD3CN):  71.05. 

HRMS-FAB (m/z): [M + H] calcd for C16H33O8, 353.2175; found 353.2192. 

 

 

 

 

Reference: 

(5) Talanov, V. S.; Bartsch, R. A. Synth. Commun. 1999, 29, 3555 
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Acyclic Diene Metathesis Polymerization of 
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Facile Synthesis of Polyrotaxanes via Acyclic Diene Metathesis 

Polymerization of Supramolecular Monomers 

 
Introduction/Motivation 

Advanced supramolecular and mechanically interlocked polymers such as 

polyrotaxanes, polycatenanes, and polypseudorotaxanes offer enticing synthetic targets 

and the promise of unique physical characteristics.1 The ability to construct these 

complicated architectures in an efficient, scalable, and modular fashion is key to realizing 

their full potential. A particular challenge in the synthesis of polyrotaxanes, for example, 

is achieving a combination of both threading to form a polypseudorotaxane and end-

capping to secure the interlocked nature of the ensemble – feats often executed in a step-

wise fashion. Inspired by elegant examples that have successfully accomplished these 

objectives,2 we sought a system of improved efficiency in which polyrotaxanes could be 

generated in one-pot from readily available, modular building blocks via a controlled 

polymerization. We envisioned that incorporating end-caps during polymerization, while 

also allowing threading to occur, would benefit from a dynamic, rapidly equilibrating 

polymerization strategy such as acyclic diene metathesis (ADMET) polymerization.3 

Herein we describe a method to accomplish a one-pot synthesis of polyrotaxanes via 

multi-component ADMET polymerization. 

 

Results and Discussion 

Starting from commercially available tert-butoxy carbamate 1, acyclic dienyl 

ammonium salts 2a and 2b were prepared in three steps and good overall yields           
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(Scheme 4.1). Specifically, alkylation of 1 using NaH and a bromoolefin in DMF 

furnished the corresponding dialkyl carbamate intermediates (not shown). Subsequent 

deprotection using TFA, followed by anion metathesis with NH4PF6 provided the desired 

dialkenyl ammonium salts bearing 6- or 11-carbon chains (2a and 2b, respectively). 

Efficient and quantitative threading of 2 using dibenzo-24-crown-8 ether 

(DB24C8) was confirmed via 1H NMR spectroscopy of a 1:1 molar ratio of the two 

species in CD2Cl2 (0.1 M in each).4 Specifically, the CH2 protons alpha to the ammonium 

moiety in 2 displayed resonances at δ = 3.0 ppm in the absence of DB24C8, and moved 

downfield to δ = 3.2 ppm in the presence of DB24C8. The resulting supramolecular 

complexes (3a and 3b, Scheme 4.1) were concentrated under vacuum and subsequently 

used in ADMET polymerizations without any further purification. 

To test the ability of the threaded supramolecular complexes to be polymerized 

via ADMET, we first subjected 3a to polymerization conditions (Scheme 4.2) using Ru-

alkylidene complex 4 as catalyst, and an end-capping chain transfer agent (CTA) (5) to 

ensure the structural fidelity of the interlocked macromolecules; key results are 

H2
N

PF6

O

O

NH2

1) NaH, DMF;

2) TFA, CH2Cl2

3) NH4PF6, MeOH

Br

4,9

n n

2a, n = 4, XX% yield
2b, n = 9, XX% yield

H2
N

PF6

n n

O

O

O O
O

O
OO

3a, n = 4
3b, n = 9

DB24C8

CH2Cl2

1

+ +

-

-

Scheme 4.1:  Synthesis of Dialkenyl Ammonium Salts 2a and 2b and Templation with
DB24C8 to Provide Supramolecular Monomers 3a and 3b 
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summarized in Table 1. Using [M/CTA]0 of 2.5:1, and [M/C]0 of 40:1 (entry 1), the 

reaction solution was prepared in dry CH2Cl2 (3 mM in 3a), sealed under Ar, and 

vigorously stirred in an oil bath at 50 °C for 2 h. The solution was then opened to vacuum 

to facilitate removal of ethylene, and then fresh CH2Cl2 was added under Ar. The process 

of adding CH2Cl2 and subsequently removing the solvent under vacuum was repeated 

after 6 h, and again after 9 h. After a total reaction time of ca 12 h, polyrotaxane             

6-mH·mPF6 was concentrated under vacuum to give a thick tan foam. Analysis of the 

polyrotaxane via 1H NMR spectroscopy indicated ca 82% of the repeat units remained 

threaded, and GPC analysis revealed a Mw of 11.0 kDa (PDI = 1.42). The calculated Mn 

value of 7.8 kDa corresponds to a degree of polymerization (DP) of ca 10. The calculated 

DP was higher than the theoretical DP based on the [M/CTA]0, implying full 

equilibration had not been reached. 

To confirm the end-capped, mechanically locked nature of the polyrotaxanes we 

conducted DOSY experiments on both the protonated and deprotanated polymers (i.e., 

Scheme 4.2: ADMET Polymerization of Supramolecular Monomer 3a to Form
Polyrotaxane 6-mH·mPF6 
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ammonium and amino backbones, respectively). As can be seen in Figure 4.1, the 

diffusion rates for both the polyammonium backbone of 6-mH·mPF6 and the DB24C8 

moieties are consistent with one another. This supports the successful incorporation of 

the end-caps, but may also have been ascribed to strong ammonium-DB24C8 

interactions. To investigate, 6-mH·mPF6 was treated with KOH (2 equiv relative to 

ammonium), producing the neutral amino repeat units. DOSY of this material also 

revealed consistent diffusion rates of the polymer backbone and the DB24C8 species, 

further indicating that end-caps were sufficiently incorporated and that dethreading was 

avoided. 

Figure 4.1: 2D-DOSY 1H NMR spectrum in CD3CN at 600 MHz and 25 °C of
polyrotaxane 6-mH·mPF6 (A) and polyrotaxane 6-mH·mPF6 with free DB24C8 (B). 

Polymer  Signals 

Free  DB24C8  Signals 

Polymer  Signals 

Threaded  DB24C8  Signals
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H2O 

CD3CN 



270 
 

 

To improve the efficiency of the ADMET polymerization, we next focused on 

monomer 3b bearing longer undecenyl groups in comparison with 3a. The reduced 

viscosity of the resulting reaction mixture appeared to indeed facilitate the 

polymerization, reaching full monomer conversion in ca 2 h (cf. 90% conversion at 6 h 

when 3a was employed). After ca 12 h and three cycles of adding CH2Cl2/vacuum, the 

polyrotaxane was concentrated to yield a thick viscous oil (entry 2, Figure 4.2). Analysis 

as before revealed ca 72% threading, and Mw = 13.2 kDa (PDI = 1.58). The DP (based on 

Mn) was calculated to be ca 9. Notably, the amount of threading did not benefit from the 

addition of 5 equiv of DB24C8 relative to ammonium species (entry 4), suggesting that 

the maximum amount of threading for this particular system had been reached.  

Encouraged by the ability to efficiently polymerization the congested 

supramolecular monomers via ADMET, and the rapid threading observed from 

ammonium salts 2 and DB24C8, we next attempted the polyrotaxane synthesis without 

pre-assembly of 3 (Scheme 4.3). Accordingly, 2b, DB24C8, CTA 5, and catalyst 4 were 

combined as a heterogenous mixture and degassed CH2Cl2 was added. The 

Entry Monomer
DB24C8

(eq)
Yield
(%)

Th. MW
(kDa)

GPC Mn

(kDa)
Threading

(%)
GPC Mw

(kDa)
PDI

1

2

3

4

3a

3b

2b

2b

1 94 82 4.6 7.8 11.0 1.42

1 85 72 4.6 8.4 13.2 1.58

1

5 50 80 4.6 10.8 14.9 1.37

80 82 4.6 16.4 19.3 1.18

Figure 4.2: Data for ADMET polymerizations of various monomers to form
polyrotaxane 6-mH·mPF6. 
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polymerization was conducted as described above. Analysis of the resulting polyrotaxane 

revealed similar threading and Mw values (75% threading, Mw = 13.2 kDa, entry 3) as 

those obtained using the pre-assembled 3b monomer (entry 3 and 4). In this way, 

polyrotaxanes could be obtained in a single operation from readily available building 

blocks. 

 

Continuing Work 

The ability to thread, polymerize, and end-cap to form the polyrotaxanes may 

benefit from the rapid association between 2 and DB24C8, occurring prior to metathesis 

events. In addition, however, the ability to form a terminal olefin at the polymer chain 

end would also facilitate threading during polymerization. The olefin-terminated polymer 

can be generated, for example, via cross metathesis with a Ru-methylidene complex, or 

pseudo-degenerate metathesis between a Ru-terminated propagating polymer and 

monomer (i.e, chain transfer to monomer).5 These events would allow the multi-
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CH2Cl2 50 °C
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(5)
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+

-
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O
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O

O O

O

O

OO

O
DB24C8

Scheme 4.3: One-Pot ADMET Polymerization to Form 6-mH·mPF6 
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component polymerization to equilibrate toward formation of the polyrotaxane, imitating 

“magic-ring” rotaxanation. 

To investigate, we are preparing an end-capped polyammonium species              

7-mH·mPF6 (Scheme 4.4) via ADMET of 2a in the absence of DB24C8. Treatment of    

7-mH·mPF6 with DB24C8 in CD2Cl2 is not expected to result in threading, and will be 

determined by 1H NMR spectroscopy.  This will confirm the end-capped nature of         

7-mH·mPF6. To facilitate chain transfer and polymer threading, the solution of                

7-mH·mPF6 and DB24C8 (1:1 molar ratio) in CD2Cl2 will be treated with second-

generation metathesis catalyst 8 (ammonium/Ru = 40/1 molar ratio). After being allowed 

to react for several hours at room temperature, we would expect to observe nearly 

complete threading (80%), consistent with the amount of threading observed in the 

previous polymerizations (entries 1–4). We also plan to monitor the threading progress 

over time in an effort to obtain insight into the rate of chain transfer. For comparison, we 

will investigate catalyst 4 under similar conditions with 7-mH·mPF6, but are not 

Scheme 4.4: Proposed Threading Equilibration Test of Capped Polyammonium Polymer
7-mH·mPF6 with Catalysts 4 and 8 
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anticipating any significant threading presumably due to the increased steric bulk of the 

benzylidene ether that can effectively serve as a polymer end-cap upon chain transfer. 

 

Conclusions 

In conclusion, we have developed a simple strategy for a one-pot, multi-

component synthesis of polyrotaxanes using acyclic diene metathesis polymerization. 

The efficiency and ease with which these mechanically interlocked macromolecules can 

be assembled should facilitate rapid modulation to achieve versatile polyrotaxane 

architectures. 
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APPENDIX 1 

 
Flexible [c2]Daisy-Chain Dimers 
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Flexible [c2]Daisy-Chain Dimers 

Introduction/Motivation 

 In complement to the work presented in Chapter 2, we sought to explore flexible, 

switchable [c2]daisy-chain dimers  (DCDs) where the macromer ammonium binding site 

was adjacent to the crown-type recognition structure and separated from the cap by an 

alkyl chain. A DCD of this topology would have an extended structure in the bound 

conformation (when the ammonium was coordinated to the crown). This DCD would not 

be a viable molecular muscle mimic, since coordination would induce extension of the 

structure rather than contraction (Figure A1.1).  However, this structural motif was 

expected to more successfully generate DCD material in high yield via RCM because of 

the close proximity of the binding sites and recognition moieties.  Because of the dilution 

Figure A1.1:  Graphical comparison of the [c2]daisy-chain dimers formed from a
macromer structure containing adjacent recognition structure and binding site (A) or the
terminal-ammonium macromer (B) presented in Chapter 2. 
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of the dimerization reaction (0.01 M), once one crown-type macrocycle encircled a 

partner macromer’s ammonium residue, the probability of the second interlocking RCM 

reaction would be significantly greater than encountering a third macromer to form a 

trimeric structure. By contrast, the macromer structure introduced in Chapter 2 has a 

longer distance between the crown-type structure and the ammonium binding residue. 

This increased separation decreases the chance of engaging in the second interlocking 

reaction and decreases the yield of DCD relative to more traditional macromer 

architectures.1 

Though DCDs formed from a macromer with an adjacent recognition moiety and 

binding site will not contract upon coordination, they still have the potential to undergo 

dimension changes upon switching. To enable comparison with DCD structures 

presented in Chapter 2, we designed several different macromers that were promising 

candidates to allow access to DCDs with flexible alkyl chains between the ammonium 

binding site and the cap. 

 

Synthesis of the First-Generation Flexible [c2]Daisy-chain Dimer 

Previous dimer species synthesized by ring-closing metathesis had a very limited 

distance along the backbone from the coordination site to the cap, prohibiting any 

significant extension or contraction motion.1,2   The target macromer structure 1-H·PF6 

(Figure A1.2) was a promising precursor for the “first-generation” flexible DCD. Key to 

the assembly of the structure was an esterifcation to append the cap compound to the 

crown-ammonium section, with a linear alkyl chain linking the two fragments. 
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 Synthesis of the crown analogue 8 (Scheme A1.1) has been reported 

previously,1,3 and can be accomplished in a straightforward manner.  Diethylene glycol 

(2) was subjected to basic conditions in the presence of 5-bromopentene (3), giving the 

monoalkylated species 4.  Due to the conditions of this alkylation reaction, a statistical 

distribution of products was observed, contributing to a lower yield.  It was found that 
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O
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Br

NH2

a, b c

Reagents and conditions: a) 50:50 wt% NaOH:H2O, 80 °C, 24h; b) MsCl, Et3N,
DCM, 0 °C to r.t., 17h; c) K2CO3, DMF, 80 °C, 60h; d) LiAlH4, THF, 87 °C, 24h.

4 R = H, 79%
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Scheme A1.1: Synthesis of Crown Fragment 8

Figure A1.2: First generation [c2]daisy-chain dimer macromer 1-H·PF6 with a flexible 
alkyl linker between ammonium binding site and bulky cap. 
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doubling the equivalents of 2 from the literature procedure significantly improved the 

ratio of monoalkylated to dialkylated 4.  Mesylation of 4 proceeded in excellent yield.  

Compound 5 was coupled to commercially available 3,4-dihydroxybenzonitrile (6) using 

potassium carbonate, giving the dialkylated benzonitrile crown analogue 7.  Reduction of 

nitrile 7 to amine 8 was achieved by treatment with lithium aluminum hydride (LAH) in 

refluxing THF.  Having 8 in hand, attention was directed at the synthesis of the backbone 

and cap. 

To obtain a more flexible DCD, the distance between crown and cap must be 

lengthened.  This can be accomplished by incorporation of a flexible alkyl linker in the 

backbone.  It has been shown that 3,5-dimethoxy substituted aromatic rings have 

sufficient bulk to prevent unthreading of [24]crown type macromers,1-5 and several 

derivatives of such compounds are commercially available.  Also, since the ultimate goal 

is formation of materials using the DCD, a synthetic handle must be present for future 

oligomerization or polymerization reactions.  By functionalizing the cap, no interference 

with dimer sliding motion is expected.  The envisioned backbone compound 15 (Scheme 

A1.2) meets all three of these requirements, possessing an alkyl unit for flexibility, 

dimethoxy substituents for capping purposes, and a terminal alcohol handle for future 

dimer polymerization.  Synthesis of 15 began by mixing commercially available 6-

bromo-1-hexanol (9) with dihydropyran and p-toluenesulfonic acid to give the 

tetrahydropyran (THP) protected alcohol 10.  Methyl 3,5-dimethoxy-4-hydroxybenzoate 

(11), also commercially available, was then subjected to alkylation conditions in the 

presence of 10 to afford methyl ester 12 in good yield.  Lithium hydroxide saponification 
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of the methyl ester produced the free acid 13.  A variety of standard ester coupling 

conditions, as well as several alcohol substrates, were used in an effort to obtain the ester 

linkage in 14, but met with little success.  After some further work, it was found that an 

alternate protocol using a mixture of DPTS, DMAP, 10, 13, and the well-known coupling 

agent EDC in DCM achieved formation of ester 14, albeit in moderate yield.  In the 

presence of potassium carbonate and commercially available 4-hydroxybenzaldehyde, 14 

can be readily converted to the cap/backbone component 15 in excellent yield. 

 

 

Scheme A1.2: Synthesis of Flexible Cap Fragment 15 
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With key fragments 8 and 15 in hand, attention was directed towards coupling and 

salt formation (Scheme A1.3).  Since 8 is an unstable benzylic amine, prone to oxidation 

under atmospheric conditions, it was freshly prepared from nitrile 7 immediately before 

use. Amine 8 and aldehyde 15 were condensed under standard Dean-Stark conditions, 

followed by reduction with sodium borohydride to afford the coupled amine product 16.  

Ideally, we wanted to affect both amine protonation and THP-deprotection of 16 

Scheme A1.3: Synthesis of Macromer 1-H·PF6
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simultaneously. Because of the highly electron-rich nature of the cap, typical acidic 

conditions used to perform these transformations resulted in cleavage of the ester linkage 

attaching the cap to the flexible backbone.  Consequently, we explored a number of 

amine protonation conditions and found that treatment of 16 with trifluoroacetic acid 

(TFA) successfully protonated the amine and revealed the primary alcohol. To enhance 

the organic solubility of the final macromer and increase the association constant (Ka) of 

the ammonium moiety, the TFA adduct was mixed with ammonium 

hexafluorophosphate, completing the synthesis of 1-H·PF6.
6-9 

Dimerization of 1-H·PF6 was achieved via addition of second-generation catalyst 

18 (Scheme A1.4). To favor dimer formation instead of oligomerization, the RCM 

reaction was run at a dilute macromer concentration (0.01 M) to favor formation of ring-

Scheme A1.4: Dimerization of 1-H·PF6
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closed product instead of oligomeric species. Evidence of the success of the dimerization 

reaction was observed by NMR analysis. The 1H NMR spectrum, though very 

complicated due to the formation of two diastereomeric forms of the dimer, showed high 

conversion to the internal olefin product. There was also distinct broadening of the 

signals corresponding to the benzylic protons, as well as the signals corresponding to the 

aromatic protons (adjacent to the ammonium center).  Proton resonances for the olefin 

region broadened as well, which can be attributed to the presence of both cis and trans 

isomers within the product mixture.  Attempts to purify 19-H2·2PF6 via silica 

chromatography resulted in significant loss of material (presumably due to the acid 

sensitivity of the ester linkage), but some pure material was obtained and submitted for 

mass spectrum analysis.  The species observed via MALDI-TOF MS had a measured 

mass one-half the calculated full mass of the dimer ([M – 2PF6]
+2 = 910.0195 m/z) with 

mass increments of 0.5 amu, indicative of a dicationic species of double the observed 

mass. Unfortunately, a yield was unable to be obtained, nor was any further work able to 

be done with 19-H2·2PF6 due to decomposition challenges.  The ester linkage, which 

proved challenging to install, was unstable to further manipulations, and was expected to 

be intolerant of conditions necessary to induce switching of the dimer. 
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Macromer Modifications   

To increase the stability of the final dimer structure, the design of 1-H·PF6 was 

modified, installing an ether linkage in lieu of the ester linkage.  Given the convergent 

synthesis of the macromer, achieving such a structural modification only requires 

alteration of the cap component. Because of the challenges encountered during formation 

of the ester linkage, we first wanted to observe whether the ether linkage would suitably 

inert. Consequently, we targeted “second-generation” macromer structure 20-H·PF6. In 

this model system, we used commercially available 3,4,5-trimethoxyphenol (24) as our 

capping fragment. Though the DCD obtained upon dimerization of 20-H·PF6 would not 

contain a polymerization handle, it would allow us to explore the stability of the proposed 

ether linkage (and, concomitatntly, the stability of the interlocked DCD structure). 

 To access the new macromer target, we revised the synthesis of the backbone-cap 

fragment (Scheme A1.5). Alkylation of para-hydroxybenzaldehyde (21) with 9 gave 

compound 22, whose terminal alcohol was subsequently mesylated to yield derivative 23.  

Displacement of the mesylate with model cap 24 produced the desired aldehyde 25.  

Condensation of 25 with crown-type compound 8, followed by reduction, salt formation, 

OO

O

OO

O

N
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O
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CROWN AMMONIUM FLEXIBLE BACKBONE
AND CAP

O
O

O

+

20-H•PF6

Figure A1.3: Second-generation macromer structure 20-H·PF6 containing an ether
linkage between the cap and backbone. 
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and anion metathesis completed the synthesis of macromer 20-H·PF6.  During salt 

formation, it was encouraging to observe that the phenolic cap linkage appeared to be 

highly stable to acidic conditions that were unsuitable for the ester bond in 1-H·PF6. 

O O
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O O
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Reagents and conditions: a) K2CO3, DMF, 90 °C, 2 d; b) MsCl, Et3N, DCM,
r.t., 12 h; c) K2CO3, DMF, 90 °C, 2 d; d) C6H6, D.-S. Trap, reflux, 12 h;
e) NaBH4, MeOH, r.t, 4 h; f) 1.0M HCl, MeOH/THF, r.t., 12 h; g) NH4PF6,
MeOH, r.t., 12 h.
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 Treatment of second-generation macromer 20-H·PF6 with catalyst 18 readily 

produced DCD 26-H2·2PF6 (Scheme A1.6) and completed our efforts with the model 

system.  Because of the lack of a handle with which to incorporate the dimeric structure 

covalently within a material, we did not pursue further work with 26-H2·2PF6.  

To obtain an analogue of 26-H2·2PF6 suitable for materials studies, we have 

pursued several cap compounds (Figure A1.4) that present a terminal functionality. 

Currently, phenol cap 27 has proven to be the most promising candidate. The high degree 

Scheme A1.6: Dimerization of Second-Generation Macromer 20-H·PF6 
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of oxygen substitution around the aromatic ring makes the benzylic derivatives highly 

reactive and unstable, and prevents purification and coupling of 28 or 29 with either 

alcohol 22 or mesylate 23, respectively.  In an effort to determine if coupling was feasible 

with these compounds, some crude material was reacted with an appropriate coupling 

partner. Though 1H NMR evidence indicated some coupling may be occurring 

(particularly for 29), facile cleavage at the benzylic position appears to be occurring 

before the backbone-cap fragments can be isolated (no effort to fully characterize the 

decomposition materials was made). Because of the difficulties associated with 28 and 29 

and because of the successful synthesis of DCD using 3,4,5-trimethoxyphenol 24 (a 

synthetic analogue of 27), we believed a phenol linkage might prove more stable than a 

benzylic linkage and focused much of our attention on phenol 27. 

For this “third-generation” flexible DCD structure, we targeted macromer         

30-H·PF6 (Figure A1.5). Cap compound 27 was accessed (Scheme A1.7) via selective 

protection of the less hindered phenol of 1,4-dihydroxy-2,6-dimethoxybenzene (31) using 

Figure A1.5: Third-generation macromer 30-H·PF6 
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a bulky silyl protecting group.  To perform the selective protection, we explored tert-

butyldimethylsilyl (TBS), dimethylthexylsilyl (DMTS), and tert-butyldiphenylsilyl 

(TBDPS) groups, as the increased bulk of the latter two (especially TBDPS) was 

expected to limit reaction at the methoxy-shielded phenol. Interestingly, treatment of 31 

with TBSCl afforded a mixture of regioisomeric products, but isolation proved 

challenging on larger (>0.1 g) scale.  Work has continued with the other two protecting 

groups, but accessing reasonable yields of the desired product has proven elusive.  One 

reason for the challenges we encountered was the ready oxidation of 31 to the 

Scheme A1.7: Synthesis of Third Generation Flexible Backbone-Cap 34 
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benzoquinone derivative. Indeed, even the material obtained from a commercial vendor 

contained at least 30–40 percent of the unreactive benzoquinone contaminant. We did 

briefly pursue purification of the starting material, both via recrystallization and 

chromatographic methods, but met with little success. We also explored in situ reduction 

of the starting material to the desired diphenol, but the reductions did not proceed cleanly.  

Given the challenges encountered during isolation of 31, we abandoned the reduction 

route.  While a high-yielding selective protection was not able to be realized with TBS 

chloride or DMTS chloride, we could observe some monoprotected material by 1H NMR 

spectroscopy when using TBDPS as the protecting group.  Believing that the desired 

derivative 33 would be more stable to isolation conditions than free phenol 32, we 

subjected crude 32 to alkylation conditions in the presence of 10. Unfortunately, we were 

unable to isolate any of protected, alkylated product 33. The final steps to synthesize the 

backbone-cap fragment 34 would involve deprotection of the phenol of 33, giving cap 

compound 27, followed by alkylation with  mesylate 23. Subsequent coupling of 34 and 8 

using standard conditions would produce the targeted macromer 30-H·PF6. In future 

work, isolation of 32 prior to the alkylation reaction may successfully allow access to 33, 

and, as a result, enable synthesis of 34.  Alternatively, other cap derivatives could be 

explored that do not possess such a highly electron-rich aromatic ring. 

 

Conclusions 

Several different [c2]daisy-chain dimer syntheses via ring-closing metathesis 

were discussed, with particular focus on the incorporation of a flexible alkyl linkage 
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between the ammonium binding site and the bulky cap component.  We varied the 

macromer structure in an effort to produce a stable bond between the cap and alkyl chain.  

In the first-generation, we installed an ester functionality.  However, acidic conditions 

necessary during subsequent transformations of the macromer revealed that the ester 

would be unstable to dimer switching conditions.  Consequently, we turned our attention 

to installing a phenolic ether linkage, which had proven highly stable in a model DCD 

system. Unfortunately, challenges were encountered during selective protection of the 

necessary starting material, and we are continuing our efforts to produce a suitably-

functionalized cap. 
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Experimental Information 

 

Supporting Information 

Experimental procedures and characterization data (1H and 13C and 2D NMR, IR, HRMS, 

GPC) for all compounds and their precursors. 

 

General Information.  Unless otherwise noted, all NMR spectra were obtained on 

Varian Mercury 300 MHz spectrometers using CDCl3 as solvent.  Chemical shifts for 

both 1H and 13C spectra are reported in parts per million (ppm) relative to Si(CH3)4 (δ=0) 

and referenced internally to the solvent resonance. Multiplicities are abbreviated as 

follows: singlet (s), doublet (d), triplet (t), quartet (q), quintet (qt), septuplet (sp), 

multiplet (m), and broad (br).  Molecular mass calculations were performed with 

ChemDraw Ultra 10 (Cambridge Scientific). Mass spectrometry measurements (FAB, EI, 

and MALDI) were performed by the California Institute of Technology Mass 

Spectrometry Facility. Analytical thin-layer chromatography (TLC) was performed using 

silica gel 60 F254 precoated plates (0.25 mm thickness) with a fluorescent indicator.  

Visualization was performed using UV, CAM, and iodine stain.  Flash column 

chromatography was performed using silica gel 60 (230-400 mesh) from EM Science.  

Grubbs second-generation catalyst (H2IMes)(PCy3)(Cl)2Ru=CHPh (1) was obtained from 

Materia.  X-ray crystal structure data was provided by the Caltech X-ray Crystallography 

Facility. 
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Materials and Methods.  Anhydrous N,N-dimethylformamide (DMF) was obtained 

from Acros (99.8% pure, Acroseal), and dry acetonitrile was obtained from Aldrich 

(99.8%, anhydrous, sureseal).  Dry tetrahydrofuran (THF), toluene, and dichloromethane 

(DCM) were purified by passage through solvent purification columns.1   All water was 

deionized. 4-dimethylaminopyridinium p-toluenesulfonate (DPTS) was received as a gift 

from the Stoddart group.  1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was 

purchased from Aldrich and used as received. 4-dimethylaminopyridine (DMAP) was 

purchased from Aldrich (99%) and used as received. Methyl 3,5-dimethoxy-4-

hydroxybenzoate (98%) was received from Acros and used as received.  All other 

compounds were purchased from Aldrich, unless otherwise specified. 

 

General Freeze-Pump-Thaw Procedure.  A flask charged with reagents and solvent 

was frozen with liquid nitrogen.  After the solution had frozen, the headspace of the flask 

was evacuated to low pressure.  The flask was sealed and allowed to thaw to room 

temperature.  The headspace of the flask was then backfilled with argon. The flask was 

sealed and the reaction mixture frozen again with liquid nitrogen.  This process was 

repeated a total of four times to give a degassed reaction mixture. 

 

 

 
References: 

1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. 

Organometallics 1996, 15, 1518-1520. 
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General Phenol Alkylation Procedure.  To a cooled, flame-dried, two-neck round 

bottom flask, equipped with a stir bar and fitted with a septum, water condenser, and 

vacuum adapter was added, under argon, 3 equivalents (relative to each mole of phenol) 

of anhydrous potassium carbonate (J. T. Baker, 99.6%), anhydrous DMF (to make a 

~0.1M solution), and 1 equivalent of phenol at room temperature.  To this stirring 

mixture was added 1 equivalent of alkylating agent dissolved in a minimal amount of 

DMF.  The reaction was heated to 80 °C in an oil bath for 3 to 4 days, and, upon 

completion, was quenched by cooling to room temperature.  The reaction mixture was 

poured into a separatory funnel, and partitioned between water and ethyl acetate.  The 

aqueous layer was extracted three times with fresh portions of ethyl acetate, and the 

combined organic layers were washed three times with fresh portions of water and brine.  

The washed organic layer was dried with anhydrous magnesium sulfate (MgSO4), filtered 

through filter paper, and evaporated to dryness under reduced pressure to give the 

alkylation product.  Purification was achieved by flash chromatography on silica gel 

using various eluents. 

 

General Lithium Aluminum Hydride Reduction Procedure.  To a cooled, flame-dried 

two-neck flask, equipped with a stir bar and fitted with a septum, water condenser, and 

vacuum adapter was added, under argon and at 0 °C, 3 equivalents of lithium aluminum 

hydride (LAH), dry THF, and, slowly, 1 equivalent of ester, acid, aldehyde, or nitrile 

dissolved in a minimal amount of dry THF.  The septum was replaced with a glass 

stopper, and the reaction was heated to 87 °C overnight in an oil bath.  To quench the 
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reaction mixture, the oil bath was removed and the reaction cooled to 0 °C.  Water (1 ml 

per gram of LAH) was added very slowly to the stirring mixture, followed by very slow 

addition of a 10% sodium hydroxide solution (1 ml per gram of LAH).  Water (3 ml for 

every gram of LAH) was added very rapidly, and the resulting slurry was allowed to stir 

for 4 hours at room temperature.  After this time, a large excess of celite and anhydrous 

MgSO4 was added, and the mixture allowed to stir for an additional hour.  The reaction 

was filtered into a separatory funnel and diluted with ethyl acetate, water, and brine.  The 

water layer was extracted three times with fresh ethyl acetate, and the combined organic 

layer was washed with two fresh portions of water and brine, dried with anhydrous 

MgSO4, filtered, and evaporated to dryness under reduced pressure to give the reduced 

product.  Unless specified, the products were used with no further purification.  

 

 

Monoalkylated Diethylene Glycol (4).  A flask equipped with a stir bar was charged 

with diethylene glycol (2) (637 ml, 6.71 moles) and 5-bromo-1-pentene (3) (50 g, 0.3355 

moles).  A solution of sodium hydroxide and water (67.1 g NaOH, 1.6775 moles, and 67 

ml of H2O) was added slowly over a period of 1 h via an addition funnel, resulting in 

turbidity of the reaction mixture.  The reaction was heated to 80 °C for one day, and after 

cooling to room temperature, the mixture was poured into a separatory funnel, diluted 

with methylene chloride, water, and brine.  The aqueous layer was extracted four times 

HO
O

OH + HO
O

OBr
NaOH/H2O

80 °C, 2 d
42 3

(79% )
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with fresh methylene chloride, and the combined organic layers were washed two times 

with fresh water and brine, dried with magnesium sulfate, filtered, and the solvent 

removed under reduced pressure. The resulting residue was purified by flash 

chromatography, eluting with a 3:1 to 1:1 hexanes to ethyl acetate gradient to give pure 4 

(46.8 g, 79 % yield) as a brown oil. 1H NMR (300 MHz, CDCl3):  5.74 (m, 1H), 4.94 

(m, 2H), 3.61 (m, 8H), 3.42 (m, 2H), 2.05 (m, 2H), 1.64 (m, 2H).  13C NMR (75 MHz, 

CDCl3):      138.0, 114.6, 72.4, 70.6, 70.2, 70.0, 61.5, 30.0, 28.5. 

 

 

Mesylated Arm Fragment (5).  A cooled, flame-dried flask equipped with a stir bar and 

septum was charged with 4 (46.3 g, 0.2657 moles) and dry DCM (~300 ml), then cooled 

to 0 °C.  To the cooled reaction mixture was added mesyl chloride (31 ml, 0.3986 moles) 

and triethylamine (55.5 ml, 0.3986 moles) alternately in several batches.  The reaction 

was warmed to room temperature and allowed to stir overnight.  Stirring was stopped and 

the reaction mixture poured into a separatory funnel and partitioned with water and brine.  

The aqueous layer was extracted three times with fresh DCM, and the combined organic 

layers were washed three times with fresh water and brine, dried with magnesium sulfate, 

filtered, and the solvent removed under reduced pressure.  The resulting crude oil was run 

through a plug of silica using 3:2 hexanes to ethyl acetate as eluent to afford 5 (64.2 g,  

96 % yield) as a yellow oil. 1H NMR (300 MHz, CDCl3):  5.70 (m, center, 1H), 4.95-

HO
O

O
MsCl, Et3N, DCM

r.t., 12 h
4

(96% )

MsO
O

O

5



297 
 

 

4.83 (br m, 2H), 4.29-4.26 (m, 2H), 3.68-3.65 (m, 2H), 3.65-3.61 (m, 2H), 3.57-3.53 (m, 

2H), 3.49-3.45 (m, 2H), 3.37 (t, J = 10.2 Hz, 2H), 2.99 (s, 3H), 2.04-1.96 (m, 2H), 1.56 

(quint, J = 6.6 Hz, 2H).  13C NMR (75 MHz, CDCl3):  138.10, 114.72, 70.55, 69.92, 

69.45, 68.90, 52.57, 37.54, 30.11, 28.67.  HRMS-FAB (m/z): [M + H] calcd for 

C10H21O5S, 253.1110; found, 253.1113. 

 

 

Nitrile Crown-Type Fragment (7).  Standard phenol alkylation conditions were used on 

a mixture of 3,4-dihydroxybenzonitrile (6) (7.0087 g, 0.05187 moles), 5 (26.1770 g, 

0.1031 moles), K2CO3 (21.5 g, 0.1031 moles), and dry DMF (1.0 L).  Flash 

chromatography using 2:1 hexanes to ethyl acetate as eluent gave 7 (14.9910 g, 65 % 

yield) as a yellow oil.  1H NMR (300 MHz, CDCl3):  7.26-7.23 (m, 1H), 7.15-7.14 (m, 

1H), 6.92 (d, J = 8.7 Hz, 1H), 5.87-5.73 (m, 2H), 5.04-4.93 (m, 4H), 4.22-4.15 (m, 4H), 

3.88 (qt, J = 5.1 Hz, 4H), 3.71 (m, 4H), 3.59 (q, J = 3.3 Hz, 4H), 3.49-3.44 (m, 4H), 2.10 

(qt, J = 7.2 Hz, 4H), 1.73-1.63 (m, 4H).  13C NMR (75 MHz, CDCl3):  152.89, 148.86, 

138.24, 138.19, 126.77, 119.17, 117.08, 114.76, 114.73, 113.49, 104.10, 70.98, 70.96, 

70.79, 70.77, 70.18, 70.16, 69.56, 69.42, 69.15, 68.69, 30.21, 28.74.  HRMS-FAB (m/z): 

[M + H] calcd for C26H40NO6, 462.2856; found, 462.2857. 
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Amine Crown-Type Fragment (7).  Standard LAH reduction conditions were used on 7 

(0.6116 g, 1.367 mmol), LAH (0.1556 g, 4.101 mmol), and dry THF (20 ml).  After 

workup, 8 (0.3578 g, 58 % yield) was obtained as a yellow oil. 1H NMR (300 MHz, 

CDCl3):  6.89-6.80 (m, 3H), 5.87-5.73 (m, 2H), 5.04-4.92 (m, 4H), 4.19-4.13 (m, 4H), 

3.85 (q, J = 5.4 Hz, 4H), 3.77 (s, 2H), 3.73-3.70 (m, 4H), 3.60-3.57 (m, 4H), 3.46 (t, 6.9 

Hz, 4H), 2.10 (q, J = 6.9 Hz, 4H), 1.67 (quint, J = 6.9 Hz, 4H).  13C NMR (75 MHz, 

CDCl3):  149.20, 147.91, 138.40, 120.02, 115.18, 114.85, 114.00, 70.97, 70.87, 70.32, 

69.93, 69.24, 69.04, 46.27, 30.37, 28.90. 

 

 

2-(6-Bromohexyloxy)tetrahydro-2H-pyran (10).  A cooled, flame-dried round bottom 

flask equipped with a stir bar and septum was charged, under argon and at 0 °C, with 9 

(7.6551 g, 42.28 mmol), dry DCM (10 ml), dihydropyran (4.25ml, 46.51 mmol), and p-

toluenesulfonic acid (0.4030 g, 2.114 mmol).  The reaction was allowed to stir at room 
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temperature overnight, and was quenched by diluting with water and DCM in a 

separatory funnel.  The organic layer was washed three times with fresh water and brine, 

dried with magnesium sulfate, filtered, and the solvent removed under reduced pressure. 

Flash chromatography using 15:1 hexanes to ethyl acetate gave 10 (9.0902 g, 81 % yield) 

as a clear oil.  1H NMR (300 MHz, CDCl3):  4.56 (t, J = 2.75 Hz, 1H), 3.85 (m, 1H), 

3.72 (m, 1H), 3.51 (m, 1H), 3.40 (m, 3H), 1.95-1.36 (br m, 14H).  13C NMR (75 MHz, 

CDCl3):  99.09, 67.60, 62.58, 34.10, 32.95, 30.97, 29.76, 28.21, 25.69, 19.91. 

 

 

Methyl Ester Cap (12).  Standard alkylation conditions were used with 10 (3.1637 g, 

11.90 mmol), 11 (2.7847 g, 13.09 mmol), K2CO3 (4.9465 g, 35.7 mmol), and dry DMF 

(~50 ml).  After 3 days, the reaction was worked up.  Flash chromatography using 4:1 

hexanes to acetone as eluent gave 12 (3.8678 g, 84 % yield) as a viscous, colorless oil.  

1H NMR (300 MHz, CDCl3):  7.27 (s, 2H), 4.56 (t, J = 2.75 Hz, 1H), 4.01 (t, J = 6.88 

Hz, 2H), 3.88 (s, 3H), 3.87 (s, 6H), 3.83 (m, 1H), 3.72 (m, 1H), 3.47 (m, 1H), 3.37 (m, 

1H), 1.89-1.34 (br m, 14H).  13C NMR (75 MHz, CDCl3):  166.88, 153.25, 141.55, 

124.97, 106.85, 98.97, 73.53, 67.68, 62.48, 56.28, 52.28, 30.87, 30.12, 29.82, 26.12, 

25.75, 25.57, 19.81. 
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Benzoic Acid Cap (13).  A flask, equipped with a stir bar and septum, was charged with 

12 (3.3962 g, 8.566 mmol), THF (47.6 ml), water (9.5 ml), and lithium hydroxide 

(1.0783 g, 25.698 mmol).  The reaction was allowed to stir for 3 days at room 

temperature, after which the THF was removed under reduced pressure.  The resulting 

mixture was dissolved in DCM, poured into a separatory funnel, and partitioned with 

water and brine.  To this was added ~75ml of a 5 % citric acid solution in water.  The 

aqueous layer was extracted three times with fresh DCM, and these organic layers were 

combined, dried with magnesium sulfate, filtered, and the solvent removed under reduced 

pressure.  Flash chromatography using 2:1 hexanes to acetone as eluent gave 13 (2.0931 

g, 63 % yield) as a colorless oil.  1H NMR (300 MHz, CDCl3):  10.60-9.75 (br s, 1H), 

7.33 (s, 2H), 4.56 (t, J = 2.75 Hz, 1H), 4.01 (t, J = 6.88 Hz, 2H), 3.87 (s, 6H), 3.83 (m, 

1H), 3.72 (m, 1H), 3.47 (m, 1H), 3.37 (m, 1H), 1.89-1.34 (br m, 14H).  13C NMR (75 

MHz, CDCl3):  171.28, 153.22, 142.18, 124.27, 107.38, 98.88, 73.526, 67.66, 62.37, 

56.23, 30.78, 30.09, 29.75, 26.07, 25.70, 25.51, 19.67. 
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Ester Backbone-Cap Fragment (14).  A cooled, flame-dried round bottom flask 

equipped with a stir bar and septum was charged, under argon, with 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (0.1504 g, 0.784 mmol), DPTS (75.0 mg, 0.255 

mmol), DMAP (95.8 mg, 0.784 mmol), 9 (0.1420 g, 0.784 mmol), and 13 (0.3000 g, 

0.784 mmol).  This solid mixture was then solvated with dry DCM (7ml) and allowed to 

stir at room temperature for 1.5 days.  The reaction mixture was stopped by dilution in a 

separatory funnel with water and brine.  The first organic layer was collected, and the 

aqueous layer extracted two additional times with fresh EA.  The combined ethyl acetate 

and DCM layers were dried with magnesium sulfate, filtered, and the solvent removed 

under reduced pressure.  Flash chromatography using 4:1 hexanes to acetone as eluent 

and loading with benzene, gave 14 (0.2725 g, 64 % yield) as a pale-yellow oil.  1H NMR 

(300 MHz, CDCl3):  7.28 (s, 2H), 4.56 (t, J = 2.75 Hz, 1H), 4.31 (t, J = 6.88 Hz, 2H), 

4.01 (t, J = 6.88 Hz, 2H), 3.89 (s, 6H), 3.83 (m, 1H), 3.74 (m, 1H), 3.56 (t, J = 6.60 Hz, 

2H), 3.47 (m, 1H), 3.37 (m, 1H), 1.95-1.35 (br m, 22H).  13C NMR (75 MHz, CDCl3):  

166.44, 153.27, 141.62, 125.27, 106.90, 98.98, 73.56, 67.70, 65.05, 62.49, 56.34, 33.80, 

32.69, 30.89, 30.13, 29.84, 28.70, 27.89, 26.14, 25.77, 25.60, 25.33, 19.83.  HRMS-FAB 

(m/z): [M + H] calcd for C26H41O7Br, 544.2036; found, 544.2034. 
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Aldehyde Backbone-Cap Fragement (15).  Standard alkylation conditions were used 

with 14 (0.9508 g, 1.743 mmol), p-hydroxybenzaldehyde (0.2341 g, 1.917 mmol), K2CO3 

(0.2412 g, 5.229 mmol), and dry DMF (20 ml).  Flash chromatography using 4:1 hexanes 

to acetone as eluent and benzene as the loading solvent gave 15 (0.9577 g, 94 % yield) as 

a colorless oil. 1H NMR (300 MHz, CDCl3):  9.78 (s, 1H), 7.72 (d, J = 8.79, 2H), 7.22 

(s, 2H), 6.89 (d, J = 8.79, 2H), 4.49 (t, J = 2.75 Hz, 1H), 4.25 (t, J = 6.66 Hz, 2H), 3.96 (t, 

J = 6.52 Hz, 4H), 3.80 (s, 6H), 3.75 (m, 1H), 3.66, (m, 1H), 3.40 (m, 1H), 3.31 (m, 1H), 

1.82-1.28 (br m, 22H).  13C NMR (75 MHz, CDCl3):  190.57, 166.14, 163.98, 153.03, 

141.40, 131.83, 129.66, 125.05, 114.57, 106.67, 98.71, 68.02, 67.43, 64.84, 62.21, 56.06, 

30.66, 29.92, 29.61, 28.83, 28.55, 25.91, 25.66, 25.57, 25.54, 25.38, 19.59. 
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Ester Macromer (1-H·PF6).  A flask equipped with a stir bar, Dean-Stark trap, and water 

condenser was charged with 8 (0.5419 g, 1.200 mmol), 15 (0.6532 g, 1.117 mmol), and 

benzene (~50 ml).  The reaction was heated to 100 °C for 4 days.  The Dean-Stark trap 

was emptied several times, followed by addition of fresh benzene.  The reaction was 

cooled and the benzene removed under reduced pressure to afford the imine condensation 

product 16a (1.1397 g, quantitative yield) as a brown oil.  The product was used without 

further purification.  1H NMR (300 MHz, CDCl3):  8.35-8.19 (br s, 1H), 7.82 (d, J = 

8.25 Hz, 2H), 7.28 (s, 2H), 6.98 (d, J = 8.8 Hz, 2H), 6.95-6.81 (br m, 3H), 5.79 (m, 2H),  

5.08-4.88 (br m, 4H), 4.70 (s, 2H), 4.57 (t, J = 2.75 Hz, 1H), 4.32 (m, 2H), 4.16 (q, J = 

4.67 Hz, 2H), 4.03 (qt, J = 6.81 Hz, 4H), 3.93-3.80 (br m, 11H), 3.78-3.66 (br m, 5H), 

3.64-3.54 (br m, 5H), 3.52-3.34 (br m, 5H), 2.09 (qt, J = 6.88, 4 H), 1.92-1.34 (br m, 

26H).  
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To a flask equipped with a stir bar was added crude imine 16a (1.1397 g, 1.117 mmol) 

and methanol (13 ml).  Sodium borohydride (0.1471 g, 3.891 mmol) was added in one 

portion to the stirring reaction mixture, resulting in much bubbling but no heat 

production.  The reaction was stirred at room temperature for 5 hours, and was quenched 

by removal of methanol under reduced pressure.  The product residue was dissolved in 

DCM, poured into a separatory funnel, and mixed with water and brine.  The aqueous 

layer was extracted two times with fresh DCM, and the combined organic layers were 

dried with magnesium sulfate, filtered, and the solvent removed under reduced pressure 

to afford amine 16 (1.0373 g, 91 % yield) as a thick orange oil.  The product was used 

without further purification.  1H NMR (300 MHz, CDCl3):  7.25 (d, J = 6.60 Hz, 2H), 

7.20 (d, J = 8.53 Hz, 2H), 6.89-6.72 (br m, 5H), 5.79 (m, 2H),  5.08-4.88 (br m, 4H), 4.55 

(t, J = 2.75 Hz, 1H), 4.30 (t, J = 6.88 Hz, 2H), 4.14 (q, J = 4.83 Hz, 4H), 4.00 (t, J = 6.88 

Hz, 2H), 3.93 (t, J = 6.47, 2H), 3.86 (s, 6H), 3.75-3.33 (br m, 24H), 2.09 (qt, J = 6.88, 4 

H), 1.92-1.34 (br m, 26H).   
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A flask equipped with a stir bar was charged with 16 (1.0373 g, 1.015 mmol), THF (17 

ml), methanol (3.5 ml), and 1.0M TFA in water (10 ml, 10 mmol).  The reaction mixture 

turned from pale yellow to bright orange over 3 days.  The THF and methanol were 

removed under vacuum, and the residue was dissolved in DCM, poured into a separatory 

funnel, and mixed with water.  The aqueous layer was extracted three times with fresh 

DCM, and the combined organic layers were dried with magnesium sulfate, filtered, and 

the solvent removed under reduced pressure to give deprotected, chloride salt macromer 

16b (0.7832 g, 68 % yield) as a bright orange oil.  The product was used with no further 

purification.  1H NMR (300 MHz, CDCl3):  9.75-9.25 (br s, 2H), 7.37-7.18 (br m, 6H), 

7.00 (s, 1H), 6.83 (m, 2H), 5.79 (m, 2H),  5.08-4.88 (br m, 4H), 4.32 (t, J = 6.88 Hz, 2H), 

4.11 (q, J = 4.83 Hz, 4H), 4.07-3.42 (br m, 30H), 2.16-2.02 (br m, 4H), 1.88-1.32 (br m, 

20H). 
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In a flask equipped with a stir bar, chloride salt 16b (0.7832 g, 0.744 mmol) was 

dissolved in methanol (8 ml), and ammonium hexafluorophosphate (0.2427 g, 1.488 

mmol) was added.  The solution was stirred for several days, followed by removed of 

methanol under reduced pressure.  The resulting residue was dissolved in DCM, and 

partitioned with water and brine.  The organic layer was washed three times with fresh 

water and brine, dried with anhydrous magnesium sulfate, filtered, and the solvent 

removed under reduced pressure to give 1-H·PF6 (0.5459 g, 68% crude yield) as a brown 

viscous oil.  The product was used without further purification.  1H NMR (300 MHz, 

CDCl3):  8.47 (br s, 2 H), 7.42 (d, J = 8.25 Hz, 2H), 7.25 (s, 2H), 7.05-6.65 (m, 3H), 

5.79 (m, 2H),  5.08-4.88 (br m, 4H), 4.29 (t, J = 6.6 Hz, 2H), 4.22-3.38 (br m, 34H), 2.05 

(br m, 4H), 1.95-1.25 (br m, 20 H).  13C NMR (75 MHz, CDCl3):  166.34, 159.91, 

153.14, 148.09, 147.57, 141.45, 137.85, 137.57, 131.01, 125.23, 123.45, 123.17, 122.49, 

115.25, 115.04, 114.90, 114.55, 113.47, 106.80, 73.38, 71.19, 70.99, 70.86, 70.80, 70.09, 
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70.00, 69.59, 69.51, 68.68, 68.21, 67.89, 65.84, 65.04, 62.75, 56.22, 50.77, 50.45, 32.68, 

30.11, 30.02, 29.10, 28.66, 25.82, 25.75, 25.58, 25.48.   

 

 

Standard Binding Motif Ester [2]Rotaxane Dimer Molecular Muscle (19-H2·2PF6).  

A cooled, flame-dried two-neck flask equipped with a stir bar, water condenser, gas port, 

and septum was charged, under argon, with 1-H·PF6 (0.5397 g, 0.498 mmol) and dry 

DCM (49.8 ml, 0.01M).  This mixture was subjected to standard freeze-pump-thaw 

conditions, followed by catalyst 1 (21.1 mg, 0.0249 mmol) addition.  The septum was 

replaced with a glass stopper, and the reaction heated to 42 °C overnight.  The reaction 

was quenched by addition of ethyl vinyl ether (~2ml), and was allowed to stir at elevated 

temperature for 30 minutes.  The solvent was removed under reduced pressure, yielding a 

brown foam.  Flash chromatography using a 50:1 DCM to methanol to 20:1 DCM to 
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methanol gradient as eluent afforded some 20 mixed with impurities and decomposition 

products.  No yield was obtained due to incomplete purification and decomposition.  1H 

NMR (300 MHz, CDCl3):  8.10-6.55 (br m, 11H), 5.415 (m, 2H), 4.82-3.36 (br m, 

36H), 2.62-1.36 (br m, 24H).  13C NMR (75 MHz, CDCl3):  166.32, 159.77, 153.12, 

146.55, 146.12, 141.45, 131.93, 130.35, 129.83, 125.88, 125.20, 123.49, 115.03, 114.78, 

106.77, 99.53, 74.676, 73.41, 73.35, 70.71, 70.11, 69.65, 68.00, 65.23, 65.01, 62.73, 

60.69, 56.20, 53.12, 52.07, 51.72, 32.66, 31.90, 30.00, 29.85, 29.65, 29.07, 28.91, 28.64, 

26.75, 26.22, 26.01, 25.80, 25.73.  ESI-TOF MS (m/z): [M – 2PF6]
+2 calcd for 

C51H76NO13, 910.5311; found, 910.5236. 
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APPENDIX 2 

 
Progress Toward 18F Labeled Nanoparticles as  

in vivo Imaging Agents 
 
 

 

 

 

 

 

 

For background and introduction to this appendix, see the thesis of Dr. John B. Matson, 

as well as the following published material: Matson, J. B.; Grubbs, R. H. J. Am. Chem. 

Soc. 2008, 130, 6731-6733. 
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Progress toward 18F Labeled Nanoparticles as in vivo Imaging Agents 

Recent Work:  One of the efforts in our lab is directed at the synthesis of 18F-

labeled nanoparticles to be used as tumor imaging agents for positron emission 

tomography.  We have been encountering some challenges during radiofluorination of the 

mesylated nanoparticles (NPs, Scheme 1).  One of these challenges involves the analysis 

of the crude reaction mixture after the one hour fluorination reaction via radio-thin layer 

chromatography (TLC) on silica, a technique identical to traditional TLC except that 

analysis of the developed TLC plate is performed by a radioactivity sensor. Because free 

18F does not move off of the baseline, any radioactive spot higher up the plate indicates 

appending of a molecule of 18F to the species that is moving up the plate.  Intriguingly, 

though we were seeing no radioactive spots higher up the TLC plate, 1H NMR analysis of 

our NPs after the 18F reaction indicated we were achieving ~12% fluorine substitution of 

the mesylates.  This led us to believe that radio-TLC of the NPs on silica gel may be an 

intractable analytical protocol, as reaction of a single mesylate on the surface of the NPs 

with the TLC silica surface could irreversibly bind the particles to the surface and prevent 

their movement off of the baseline. To test this theory, we analyzed a number of NP 

Scheme A2.1.  Fluorination of Mesylated Nanoparticles



311 
 

 

samples, both before and after fluorination, via preparatory and two-dimensional TLC on 

silica.  Though the preparatory TLC failed to yield conclusive evidence of particle 

decomposition or binding, the two-dimensional TLC showed very clear binding of 

mesylated NPs to the silica.  Fluorine-labeled NPs appear to suffer from a similar fate, 

which is not surprising given the limited fluorination.  It is likely that the surface of these 

fluorinated NPs contains functionality that can, similar to the mesylate, react with the 

silica and bind to the surface.  Consequently, to solve this challenge and enable the direct 

analysis of the NP radiofluorination studies by TLC, we have explored other sorbents for 

NP TLC and are continuing our efforts to maximize fluorine coverage across the surface 

of the NPs. Initial work indicates that the NPs readily move up aluminum oxide TLC 

plates, and that the particles can be successfully recovered from the aluminum surface of 

the plate. 

During the radiofluorination substitution of the NP mesylate groups, we had been 

employing potassium carbonate (K2CO3) as both a base, to prevent loss of fluorine from 

the reaction as HF, and as a potassium ion donor to generate more potassium/kryptofix-

222 (K222) phase transfer catalyst.  Unfortunately, after NP fluorination in the presence 

of K2CO3, 
1H NMR analysis shows substitution of a portion of the mesylates with 

carbonate.  The generation of a terminal carbonate can induce a number of side-reactions, 

including reaction with additional surface mesylates and concomitant decrease of 

available fluorination sites, or coupling between NPs, resulting in aggregation and 

decreasing the efficacy of the NPs as imaging agents.  In an effort to eliminate the 

problematic K2CO3 from the reaction, we have begun employing resin-bound potassium 
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benzoate (Scheme 2) as both a potassium ion source and proton sponge.  Initial results 

indicate that we obtain similar amounts of NP fluorination when using the beads in lieu 

of K2CO3, but there appear to be far fewer side-reactions and degradation products.  We 

are hoping that optimization of reaction conditions, including the quantity of resin, 

temperature, equivalents of other reagents, and possible solvent effects will increase the 

extent of fluorination while preventing NP degradation. 

One of the major difficulties associated with NP functionalization is the analysis 

of the NPs after functionalization.  Because TLC has not yet proven to be a viable 

technique, we have had to rely on NMR to ascertain the success of the fluorination.  

Unfortunately, the particle size results in significant line broadening in the one-

dimensional 1H NMR spectrum and makes separation of product and reagent peaks 

exceptionally challenging. However, two-dimensional diffusion-ordered NMR 

spectroscopy (2D-DOSY) enables separation of proton signals based on the solution 

diffusion rate of the species generating those signals.  In this way, signals corresponding 

to the protons on the rapidly diffusing small molecules (such as K222) are readily 

distinguished from the NP proton signals (Figure 1). Consequently, we will be using 2D-

DOSY during optimization of the reaction conditions to help maximize fluorine 

incorporation in the NP shell.  We are also beginning to explore the possibility of 2D-

Fluorine-DOSY for NP study. 
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Scheme A2.2. Synthesis of Resin-Bound Potassium Benzoate 
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Future Work 

Currently, we are working to enhance the extent of fluorination through the 

inclusion of a small amount of water during the fluorination.  While water can prove 

detrimental by reacting with surface mesylates and coupling two nanoparticles, we have 

observed that a small amount of water (contained as a component of the deuterated 

acetonitrile in which the NP fluorination reactions were performed) increased the 

quantity of NP surface fluorination.  This phenomenon is still being explored, but it is 

likely that trace water helps solubilize the fluoride salts and bring them into the 

acetonitrile/NP solution, something that cannot be achieved if very dry acetonitrile is 

Figure A2.1: Two-dimensional diffusion-ordered 1H NMR spectrum of fluorinated
nanoparticles. 
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used. We will be introducing controlled amounts of water into NP reaction solutions 

prepared in dry acetonitrile to determine the ideal quantity of water required to maximize 

fluorination and keep NP dimerization to a minimum. 

In addition to the 18F labeling of the NPs, we also will be exploring the 

distribution of the NPs within the eye. These studies will be performed in collaboration 

with Prof. Raymond Iezzi and colleagues at the Mayo Clinic, and necessitates 

conjugation of a cyanine 5.5 dye (cy5.5, Figure A2.2) to the surface of the NP. We will 

be synthesizing three different sizes of the NPs for these studies. 
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Figure A2.2: General structure of Cy5.5 dye to be appended to the NPs. 


