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A computationally effective method is developed to study rank-1 saddle transport. In par-
ticular, the lifetime distribution is calculated for the planar, nonzero angular momentum
scattering reaction of H2 with H 2O. The scattering model uses the approximate potential of
Wiesenfeldet al.14, which has 3 essential degrees of freedom (DOF) and a rotating transition
state (TS) at physically relevant energies. A Monte Carlo sampling of the energy surface on a
transverse cut near the TS provides a representative set of trajectories which are integrated
forward and backward to test for reactivity. Reactive trajectories are then integrated for-
ward into the bound state until they escape the reaction, resulting in orbit/collision data for
each trajectory. This data is collected and binned until the standard deviation of the data
in each bin is within a user defined tolerance, yielding a lifetime distribution with bounded
error terms. To test this method, it is applied to the well studied phenomena of electron
scattering in the Rydberg atom with crossed fields1,4 and compared with the literature.
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1 Introduction

A scattering reaction between two molecules is a chemical reaction in the sense that the
molecules come close enough to interact, transfer momentum, and leave in a different state than
they entered. A scattering reaction has two potential energy wells corresponding toboundand
unboundstates which are separated in phase space by a rank-1 saddle†. The transition state (TS)
opens at energies slightly larger than that of the saddle and connects the bound and unbound states.
In this way, the TS is an energetic bottleneck through which reactants pass to become products.

Figure 1: Schematic energy surface for a scattering reaction. A surface which separates permissible
configurations from those which are energetically forbidden is known as aHill’s region .

Scattering reactions are typically studied with total angular momentum equal to zero,J = 0.
Experimentally, however, the importance of nonzeroJ is known in the context of collision-induced
absorption. Polar molecules, such as water, absorb light differently with different rotational veloc-
ities. For example, when water and hydrogen molecules collide and transfer angular momentum,
the absorption spectrum of water changes. Absorption shifts caused by the collision of water and
hydrogen molecules can therefore provide valuable clues about the density and energy distribution
of interstellar gas clouds12,14.

There are no fixed points in a laboratory frame for a planar scattering reaction with nonzero
angular momentum; therefore, the scattering TS is located near a rank-1 saddle of areducedsys-
tem. The reduced system is obtained by using conservation of angular momentum to work on a
γ-angular momentum level set. The equations of motion are then written in body frame coordi-
nates‡ which neglect internal motions of the molecules and have 3 degrees of freedom (DOF), an

†rank-1 saddle - fixed point with spectrum saddle×center× · · ·×center.
‡body frame coordinates - centered on and oriented about one of the molecules.
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improvement over the unreduced 4DOF system. The rank-1 saddle underlying the scattering TS is
thus a fixed point of the reduced system.

1a Non-RRKM Lifetime Distributions

Transition state theory (TST), a workhorse for the chemical community, typically operates
on the simplifying assumption of an unstructured phase space11. Under this assumption, the re-
action rate for the length of a scattering reaction is reflected by the ratio of flux across the TS to
the phase space volume of the bound state. This estimation leads to a RRKM (Rice-Ramsperger-
Kassel-Marcus) lifetime distribution for the expectation of bound times, characterized by expo-
nential decay. It is well known, however, that even chaotic phase space is structured. Reaction
dynamics through a TS near a rank-1 saddle are mediated by invariant manifold tubes associated
with periodic orbits around the saddle8,13. These Conley-McGehee tubes† have been used to guide
the Genesis Discovery craft into halo orbit around the L2 saddle point of the Sun-Earth Restricted
3-Body Problem (R3BP)7. Tube dynamics have also been merged with invariant set methods and
Monte Carlo methods to exhibit non-RRKM lifetime distributions in the isomerization of the Ry-
dberg atom with crossed fields1,4.

Previous efforts to study transport in a structured phase space have involved high order nor-
mal forms or invariant set methods to directly compute transport rates using the volumes of trans-
port tube intersections. Points in the intersection of incoming and outgoing tubes correspond to
reactive trajectories which become bound via the entrance tube, and escape via the exit tube. In
the case of scattering reactions, molecular species are preserved during and after the reaction; the
reaction occurs when molecules enter a bound state and then escape back to the unbound state after
some interaction. The relative volumes of the intersections of the entrance tube aftern revolutions
with the exit tube in the bound state provides a structured estimate of the lifetime distribution for
the number of revolutions in the bound state.

Instead of computing transport tube intersections directly, this method uses a Monte Carlo
random sampling to find a representative set of reactive trajectories which are evenly distributed
on the energy surface. Each reactive trajectory is flowed forward in time until its escape, after
which the bound time and either the number of nuclear core orbits or core collisions, depending
on the nature of the scattering, are recorded and binned. Because these trajectories are selected at
random, the lifetime distribution obtained from the orbit/collision data not only incorporates the
structure of phase space, but converges with a small number of trajectories as well.

1b Rank-1 Saddle Transport

A rank-1 saddle is a fixed point with eigenvalues:±λ,±
√
−1ω1, · · · ,±

√
−1ωn−1, meaning

it is a saddle in one direction and a center in every other direction. In linearized coordinates around
a rank-1 saddle of an n-DOF Hamiltonian vector field, the Hamiltonian may be written in quadratic

†invariant manifold tubes associated with rank-1 saddles are known as Conley-McGehee tubes.
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Figure 2: Projection of rank-1 saddle dynamics onto saddle and center directions.

normal form as:

H2(q1, q2, . . . , qn, p1, p2, . . . , pn) = λq1p1 +
ω1

2

(
q2
2 + p2

2

)
+ . . . +

ωn−1

2

(
q2
n + p2

n

)
where(q1, p1) may be thought of as the reaction coordinate (saddle direction) and(q2, p2), . . . , (qn, pn)
are bath modes (center directions). For energyh above the saddle, fixing0 6= λq1p1 < h leavesh−
λq1p1 = C energy for distribution among the bath modes. The equationC =

∑n−1
i=1

ωi

2

(
q2
i+1 + p2

i+1

)
defines a surface that is homeomorphic toS2n−3, the(2n−3)-sphere. Over the continuum ofλq1p1

between 0 andh, these spheres plus the point atλq1p1 = h add to form a surface homeomorphic
to D2(n−1), the filled(2n− 3)-sphere. It has been shown that the surfacesD2(n−1) associated with
q1, p1 ≥ 0 andq1, p1 ≤ 0 are thefootprintsof the entrance and exit tubes, respectively8.
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2 Methods

The method presented here is adapted from the method of Gabernet al. which merges tube
dynamics and Monte Carlo sampling methods to compute non-RRKM lifetime distributions for
electron scattering of the Rydberg atom. This new method addresses a number of issues such as
the numerical difficulty of computing with high order normal forms and the need for error estimates
on lifetime distribution data.

There are three stages to compute the lifetime distribution for a scattering reaction: 1.) find
the TS near a saddle & the Hill’s region (bound and unbound states), 2.) identify a representative
selection of reactive trajectories, and 3.) send them into the bound region and collect data until they
escape the reaction. The previous method utilizes a high order normal form expansion in stage 2
to determine theD4 footprint of the entrance tube (D4 × I), from which reactive trajectories are
randomly sampled. Reactive trajectories are represented by phase space points which integrate
forward along the vector field into the bound region, and backward along the vector field into the
unbound region. This method has been proven to work well for low (≤ 3) DOF systems, but
the normal form computation becomes exponentially difficult with higher DOF so that identifying
reactive trajectories soon becomes the limiting computation.

Figure 3: Nonlinear saddle dynamics near the TS for Rydberg scattering reaction.

As mentioned above, the invariant manifold entrance tube for an n-DOF model is homeomor-
phic toD2(n−1) × I, with I parametrizing the reaction coordinate (locally, the saddle direction).
Therefore, the intersection of the tube with a nearby transverse cut† is topologicallyD2(n−1), a
compact surface. BecauseD2(n−1) is compact, it may be bounded by a box in phase space.

This method requires a phase space box which tightly bounds the set of all reactive tra-
jectories on a transverse cut. Rather than using the normal form computation to find theD2(n−1)

footprint, points are selected at random from inside the bounding box and projected onto the energy

†transverse to the reaction coordinateI
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surface. The behavior of these trajectories quickly forms a statistically representative distribution
for the behavior of all such trajectories. If the transverse cut is made in the unbound state, trajec-
tories are tested for reactivity by integration forward until they either intersect a transverse cut in
the bound state (reactive) or a cut farther into the unbound state (unreactive).

2a Bounding Box Methods at Transverse Cut

To avoid trajectories which integrate both forwardandbackward into the bound region (cor-
responding to nontransit trajectories), the cut Cout is to be chosen sufficiently far from the saddle.
The algorithm used to obtain a bounding box at Cout proceeds as follows: 1.) find a rough box
around reactive trajectories at Cfp, 2.) select a handful of trajectories from rough box that integrate
forward into Cin and backward into Cout, ensuring reactivity of the trajectory. The intersection of
these trajectories with Cout gives a rough box at Cout. Finally, 3.) refine the rough boxes at each
step, growing them by test sampling in the border region.

Figure 4: Three stages involved in determining the bounding box at Cout.
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The Monte Carlo sampling method provides an unbiased sample from the bounding box.
This sample of points is then projected, via momentum variables, onto the energy surface; however,
because the bounding box is larger than the energy surface, some sample points project away from
the energy surface in every momentum direction. Therefore, a tighter bounding box results in
more efficient sampling. For example, if a tightly fitting box is expanded by 5% in each of its five
dimensions, then the volume of the new box is1.055 ≈ 1.28 times larger than necessary. This
means that at least.28

1.28
≈ 22% of points randomly selected in the box will not project onto the

energy surface. If the box is twice too large in each dimension then at least31
32
≈ 97% of randomly

selected points will not project onto the energy surface. The need for a tight-fitting bounding box
becomes more pronounced with higher dimensional energy surfaces.

2b Monte Carlo Sampling for Reactive Trajectories

After obtaining a tight-fitting bounding box at Cout, individual reactive trajectories may be
found and tested as follows: select points at random from inside the box until one projects onto
the relevant energy surface, and continue until one of these trajectories integrates forward into the
cut Cin, identifying it as reactive. Once a reactive trajectory is obtained, run it through the bound
region until it escapes, recording its specific behavior (e.g.,# of orbits/collisions in bound state).

Because the reactive trajectories are not chosen from a grid, but are randomly distributed on
the energy surface, each trajectory’s contribution to the lifetime distribution is independent from
that of any other trajectory. By binning the data collected, and running abundleof trajectories (say
100 or 1000 at a time) through the bound state, the average value of a bin for each bundle of data
may be compared with the average value for the entire data set. The standard deviation for each
bin value among the various bundles may be calculated according to the formula:

SD(i) =
1

N

√
(X1(i)−X(i))2 + . . . + (XN(i)−X(i))2

whereSD(i) is the standard deviation for theith bin, Xj(i) is thej th bundle’s average value of
theith bin, andX(i) is the average value of theith bin for the entire data set. Reactive trajectories
are tested in bundles until the standard deviation of each bin’s data among the bundles is within a
given tolerance. Therefore, no more data is computed than is needed to precisely bound the error
of the lifetime distribution. Finally, since some trajectories will be expected to stay in the bound
region for a very long time, it is possible to obtain a lifetime distribution with a finite number of
bins and lump all lingering trajectories into an error-bounded tail.

2c Key Ingredients Needed to Apply Method

A major strength of this method is the generality of systems to which it may be applied. The
key features needed by a system to apply this method are: a Rill’s region with a saddle separating
the bound and unbound states, and a nondegenerate Hamiltonian vector field. Distributions ob-
tained from this method may be combined to synthesize reaction rates in multi-channel systems5,
as long as each channel has a compact intersection with some transverse cut and each reaction state
has a clear phase space volume.
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3 Method Applied to the Rydberg Scattering Reaction

The Hamiltonian for electron scattering in the Rydberg atom with crossed fields is given by

H =
1

2

(
p2

x + p2
y + p2

z

)
+

1

2
(xpy − ypx) +

1

8

(
x2 + y2

)
− εx− 1√

x2 + y2 + z2
.

A stark saddle point exists atx = 1√
ε
, y = 0, z = 0, px = 0, py = − 1

2
√

ε
, pz = 0 with energy

ES = −2
√

ε. For energies aboveES, the TS opens and connects the bound and unbound regions
of phase space. For consistency with the literature, the all simulations are performed with energy
h = −1.52 and electric field strengthε ∈ (.57765, .60000)†.

Figure 5: Reactive & unreactive trajectories in the Rydberg scattering reaction. Trajectories are
either transit orbits entering (green) and exiting (red) the Hill’s region or nontransit orbits (blue).
Green points at Cout are sent into the bound state, yielding lifetime distribution data. Hill’s regions
for variousε’s are found in Appendix A.

In addition to recording the bound time for each trajectory, the number of orbits it makes
around the nuclear core is also recorded. To determine the number of nuclear orbits, it is sufficient
to have a counter which increases every time the bound trajectory passes a fixed cut transverse to
the bound orbits, say atΣx<0

y=0. To streamline this process, the integrator determines if the trajectory
has passed through the cut as it updates the trajectory.

†Holding energy fixed and varyingε has a similar effect to fixingε and varying energy.
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3a Data and Comparison with Literature

Below, the scattering lifetime of electrons in the Rydberg atom is computed using the new
method. To start, I plot the Hill’s region and Hamiltonian energy surfaces to get an idea of where
to place the inside and outside cuts; placing Cin and Cout a distance of .1 from the fixed point cut
Cfp works well. Finally, I confirm that the reaction coordinate through the saddle is locally the
x-axis (corresponding to the saddle direction).

Figure 6: Comparison of Lifetime Distributions computed by this method (left) and the method of
Gabernet al. (right). Electric field strengths ofε = .58 (top) andε = .60 (bottom) are used. This
method required 148,000 trajectories atε = .58 and 178,000 trajectories atε = .60 to compute 30
bins, each with error< .1%. The method of Gabernet al. uses 1,000,000 points for eachε.

The method of Gabernet al. uses 1000k points, takes 2 days, and gives no error estimate on
the data. The new method requires∼5k points and 3-5 min to compute data with error< .5% per
bin and∼150k points and 1 hr to compute data with error< .1% per bin.
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3b Kinetic & Potential Energy Distribution of Entering and Exiting Trajectories

Once a bounding box is obtained, reactive trajectories may be quickly sampled, making it
possible to obtain fast-converging distributions for a number of physically relevant quantities in
addition to the lifetime distribution. Trajectories in a scattering reaction, for example, are likely
to have a different partition of energy into translational and rotational modes before and after the
reaction. The total energy is therefore broken into three modes,K1 = 1

2

(
p2

x + p2
y + p2

z)
)

(transla-
tional), K2 = 1

2
(xpy − ypx) + 1

8
(x2 + y2) (rotational), andV = H −K1 −K2 (potential). The

energy partition among these three modes is recorded for a number of reactive trajectories before
and after the scattering reaction. This results in distributions for these quantities at the entrance and
exit. In addition, it is possible to obtain a distribution for how individual trajectories are expected
to shift energy during the reaction by computing∆K1, ∆K2 and∆V for each trajectory.

Figure 7: Distribution forK1 = 1
2

(
p2

x + p2
y + p2

z

)
of entering (green) and exiting (red) trajectories.

∆K1 for each trajectory is shown in blue.
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Figure 8: Distribution forK2 = 1
2
(xpy − ypx) + 1

8
(x2 + y2) of entering (green) and exiting (red)

trajectories.∆K2 for each trajectory is shown in blue.
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Figure 9: Distribution forV = H−K2−K1 of entering (green) and exiting (red) trajectories.∆V
for each trajectory is shown in blue.

From the previous three figures, it may be concluded that after the reaction, trajectories gain
translational kinetic energy, losing both rotational and potential energy in the process.
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3c Dual Method Test - Lifetime Distribution of Exiting Trajectories Integrated Backward

To further test the method, I construct a dual method which first identifies a box at Cout

bounding those reactive trajectories which are leaving the bound region, and then integrates the
trajectoriesbackwardalong the vector field and back into the bound state. These trajectories are
flowed backward along the vector field until they escape into the unbound region. Trajectories that
escape in this way correspond to forward reactive trajectories that are on their way into the bound
state. Therefore, the dual method takes a reactive trajectory which is exiting the bound region and
flows it backward until the instance when the trajectory first enters the bound state. Because a
trajectory cannot escape the bound state without first entering, the lifetime distributions obtained
using the dual method should precisely match the distribution obtained by regular application of
the method. It is clear from the data below that both the method and its dual produce the same
lifetime distributions.

The dual method test proves useful when there is no known lifetime distribution to compare
results with. For example, a disparity between the two distributions would indicate that either one
or both of the methods are not selecting unbiased trajectories, or there is some integration error.

Figure 10: Comparison of Lifetime Distributions atε = .58 computed by integrating inbound
trajectories forward (left) and outbound trajectories backward (right) along the vector field. The
top two tiles show the number of nuclear core orbits and the bottom tiles show the bound times.
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3d Higher DOF Analog of Rydberg Atom

Because of the simplicity of the Rydberg scattering model, it serves as a base for generalizing
the method to higher DOF systems. The Rydberg atom has three degrees of freedom, and these may
be classified asx−like, y−like, andz−like. Computing transport rates for a generalized Rydberg
atom with 4DOF (1x−like variable, 1y−like variable, and 2z−like variables) is theoretically no
more difficult than adding the following terms to the Hamiltonian:

H(x, y, z, w) =
1

2

(
p2

x + p2
y + p2

z + p2
w

)
+

1

2
(xpy − ypx) +

1

8

(
x2 + y2

)
− εx− 1√

x2 + y2 + z2 + w2
.

Lifetime distributions for 3-8DOF systems (each constructed by adding anotherz−like variable):

Figure 11: Lifetime Distributions for core loops of higher dimensional Rydberg scattering analogs.

Each of these lifetime distributions was computed in 5-20 minutes, despite the dimensionality
of the systems. Because solving for the lifetime distribution is a one dimensional problem, it
converges in about the same amount of time for various DOF problems. At 9DOF, however, the
bounding box sampling became a computational bottleneck for the computation. It is worth noting
that this is a simple make-believe system, and that realistic higher DOF models may be more
nonlinearly coupled.

In addition to addingz−like variables, it is possible to add anotherx−like degree of free-
dom, resulting in a rank-2 saddle system. Although the set of reactive trajectories no longer has
a compact intersection with a transverse cut near the saddle, the generality of the above method
should be well suited for tackling high rank saddles.
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3e Experimental Verification and Gaussian Energy Sampling

Because this method was developed to compute accurate rate constants in chemical scatter-
ing reactions, it is important to consider how numerical results may be experimentally verified.
Sampling points from a fixed energy level set, for example, is not physically realistic, since any
experiment will have some expected error for the energy of reactive trajectories. Choosing a Gaus-
sian distribution around a target energy is more physically relevant for experimental verification.

When sampling with a Gaussian energy distribution, it is natural to ask whether or not non-
RRKM structure persists. If non-RRKM structure only exists on a fixed energy level set, then the
reaction iseffectively RRKMbecause the non-RRKM structure is destroyed with the addition of any
experimental error. The experiment below samples the Rydberg scattering problem with a Gaus-
sian energy distribution around the target energyh = −1.5 (in section 3, this would correspond
roughly toh = −1.52 andε = .60). Notice that the lifetime distribution remains non-RRKM.

Figure 12: Lifetime Distribution for fixedε = .58 and a sample with a Gaussian energy distribu-
tion.
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4 Planar, Nonzero Angular Momentum Scattering of H2O with H 2

4a Model Hamiltonian and Reduction

The model for the planar scattering of H2O-H2 used by Wiesenfeldet al. is given by the 4
DOF system shown in figure 13. The intermolecular radiusR may be thought of as the reaction
coordinate along which the scattering reaction takes place, and the anglesχα andχβ are the ori-
entations of the H2O and H2 molecules with respect to the axis between them. The fourth variable
θ is the angle between the intermolecular axis and the laboratory frame. The Hamiltonian uses
variablesR,α = χα, β = χβ − χα and is given by

H =
p2

R

2m
+

(pθ − pα)2

2mR2
+

(pα − pβ)2

2Ia

+
p2

β

2Ib

+ V

whereV is the potential energy function obtained by summing dipole/quadrupole, dispersion,
induction, and Leonard-Jones potentials. Since the potential is invariant under rotations of the
system in the laboratory frame, it is possible to reduce the system from 4DOF to 3DOF by simply
considering the Hamiltonian in the rotating frame. The total angular momentumpθ is a conserved
quantity and is therefore fixed to a specificpθ ≡ J . In this way, the total angular momentumJ
is aparameterfor the reduced system. Reduction from 4DOF to 3DOF provides two immediate
benefits: first, lower DOF systems are much easier to work with both from a computational and
a visualization standpoint. Second, in reduced coordinates, the relative TS becomes an actual TS
located near a saddle of the reduced potential energy surface. The details of this reduction in the
general context of abelian reduction9,10 are presented in Appendix C.

Figure 13: Schematic for reduction to rotating frame. See Appendix C for details.

20



The reduced system has four saddle points. Two of the saddles are rank-1 which means that
they have the desired energy spectrum saddle×center×center. For energies slightly larger than that
of the lowest energy saddle, a TS opens up connecting the bound and unbound states.

Figure 14: Four Saddle Points Exist for Reduced System.

The two regions are separated in configuration space by a Hill’s region, which is simply
the projection of the energy surface specified byH = E0 onto configuration space. This projec-
tion indicates which configurations are energetically forbidden, and is characterized by a single
opening (located at energies slightly above the TS). Therefore, all reactive trajectories entering
the bound state must pass through the opening of the Hill’s region. It can be seen in figure 15
that for energies much larger than the TS, more scattering channels associated with the other
three saddles open up. It is worth noting that the Hill’s region is viewed in physical coordinates
(x, y, β) = (R cos(α), R cos(β), β) where(R,α, β) = (R,χα, χβ − χα) are body-frame coordi-
nates obtained by reducing the system to the coordinate frame which is fixed to and aligned with
the water molecule. A three dimensional Hill’s region may be visualized by stackingβ−slices; see
Appendix B.

Figure 15: Hill’s region at various energies of H2O-H2 potential. The white region represents
energetically forbidden configurations on the sliceβ = 0 (corresponding to H2 aligning with H2O
dipole). (far left)E0 < ES. (left) E0 = ES. (right) E0 > ES. (far right)E0 >> ES.
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4b Potential Pitfall of Model - Collisions

Figure 16: H2-H2O Collisions are typical for this potential. (left) A diagram shown in Wiesenfeld
et al., (right) A trajectory computed in body frame coordinates.

Despite providing an illustration for how to reduce a nonzero angular momentum scatter-
ing model in order to identify the saddle underlying a TS, the scattering model for H2O-H2 has
a number of potential defects. Instead of reactive trajectories making orbits around the scattering
core (H2O), the hydrogen molecule repeatedly collides with the water molecule. Because the prod-
ucts of a scattering reaction do not change molecular combination, the collisions of the hydrogen
molecule with the hydrogens on the water raises suspicion that the system is actually undergo-
ing a non-scattering chemical exchange reaction. Because of the Leonard-Jones potential, these
collisions are modeled as elastic, when in reality the conditions may be right for chemical bonds
to break. In addition to the physical implications of molecular collisions in a scattering reaction,
these collisions are numerically volatile, slowly driving the trajectory off of the relevant energy
surface. Finally, the depth of the potential well results in a large number of average collisions,
making runtimes intractable for a majority of trajectories at low energies.

These difficulties not withstanding, the scattering model still possesses all of the ingredients
needed by the above bounding box and sampling methods. In fact, it may be thought of as a
particularly poorly behaved model system, from which the method is still able to extract structured
data.
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4c Data and Analysis

Figure 17: Lifetime Distribution for the planar H2O-H2 scattering reaction for various bin sizes
and maximum recorded collisions. Data takes∼2 days to compute.

Figure 18: Lifetime Distributions using forward (middle) and backward (right) integration are
compared. LD is also computed using a smaller time step h (left).

The above data was computed for the H2O-H2 scattering potential with energyH =3.e-3
and total angular momentumJ = 7.6193. It is clear that on a large enough scale, the lifetime
distribution is strongly statistical. Below∼100 collisions, however, there is definite non-RRKM
structure which is displayed by the above data. These trajectories account for only a small fraction
of total reactive trajectories, yet they illustrate that even in a strongly statistical distribution, there
may still be some types of collisions that are favored locally over others. In fact, one could test any
number of hypotheses such astrajectories are more likely to have an even number of collisions
before escaping.
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5 Conclusions and Future Directions

The method developed here is applied to compute accurate lifetime distributions for two
3DOF scattering reactions. The lifetime distribution for the Rydberg scattering matches the distri-
bution of Gabernet al., confirming the accuracy of the method. Additionally, the method converges
upon the lifetime distribution very quickly, on the order of an hour. Although the H2O-H2 model is
numerically more involved, the method is able to compute a lifetime distribution on various scales
with about 2 days of computation. We also address the introduction of nonzero angular momentum
into scattering reactions by reducing the dynamics to aJ−level set of the total angular momentum
and identifying the TS near a rank-1 saddle of the reduced system.

The next step in order to demonstrate the power and scope of this new method is to apply
it to study a> 3DOF chemical system. In addition to obtaining a lifetime distribution, it will be
important to investigate experimental verification of the data to broaden the range of applicability
of these methods. An ideal system to expand this analysis to is the generalized 9DOF H2O-H2

scattering model recently developed by Wiesenfeldet al.2,3.

5a Improving the Method

To streamline the method for≥ 3DOF systems, there are two main avenues for improvement.
First, implementing a tighter fitting bounding box, perhaps by utilizing a patchwork of smaller
boxes, will greatly improve the efficiency of stage 2.) sampling for reactive trajectories.

Figure 19: Improved Bounding Box which uses several smaller boxes to obtain a tighter fit (left),
and Current Bounding Box (right).

The second direction to pursue in order to improve the method is the introduction of a vari-
ational integrator to accurately compute reactive trajectories. Variational integrators not only keep
trajectories on the energy surface, which is ideal for long integrations involving sharp collisions,
but also allows for larger time steps which translates to faster run times. Since the bulk of the com-
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putation is currently involved in integration of reactive trajectories, stage 3.), this is an ideal setting
to showcase the power and speed of variational integration. Finally, one can see the numerical
error in using a Runga-Kutta 78 integrator in figure 17, where halving the time step or applying the
dual method test both result in subtly different lifetime distributions.

5b Physically Meaningful Distributions

Although the above method has been designed to quickly compute accurate lifetime distribu-
tions for rank-1 transport phenomena, the bounding box/random sampling tools allow for the fast
computation of distributions for nearly any property of a trajectory that can be quantified. Find-
ing clever physical quantities to compute distributions of, may prove useful in analyzing physical
systems such as chemical reactions or asteroid capture dynamics.

5c Experimental Verification and Half Scattering Reactions

Experiments that involve scattering reactions typically study what is known as a half scat-
tering reaction. Unlike the full scattering reaction, where trajectories start and end in the unbound
state, the reactive trajectories in a half scattering reaction start in the bound state and end in the
unbound state. To obtain experimental verification of the results produced with the above method,
it will be necessary to add half scattering functionality to the lifetime distribution code. This in-
volves determining a box bounding reactive trajectoriesinside the bound state, transverse to the
bundle of reactive trajectories which are found in the bound state. A good candidate for such a cut
is Σx<0

y=0 in the Rydberg scattering reaction.

5d Color Coding Trajectories at the Bounding Box and Poincaŕe Cut

To determine the lifetime distribution for a scattering reaction, a large number of reactive
trajectories are sampled at random from the bounding box. These trajectories are sent into the
bound state and every collision/orbit is recorded. The records of how many collisions/orbits each
trajectory makes is stored with the initial condition from the bounding box, and it is a trivial step
to also record the multiple intersections of each individual trajectory with the Poincaré cutΣx<0

y=0.
Assigning each number of collisions/orbits a color, it is possible to color code the phase space
regions in the bounding box and at the Poincaré cut containing all reactive trajectories. This would
result in a color codedheat mapindicating regions of greater and lesser scattering activity, which
would couple the reactive trajectories at the bounding box to their intersections at the Poincaré Cut.
In a similar effort, it would be possible to continuously deform initial conditions corresponding to
m−loops into initial conditions corresponding ton−loops, perhaps with intermediatek−loops.
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Appendix A Rydberg Scattering Reaction - Energy Surfaces

Figure 20: Hill’s region for Rydberg scattering reaction at various energies. The white region
represents energetically forbidden configurations on slicez = 0. (far left) E0 < ETS. (left)
E0 = ETS. (right) E0 > ETS. (far right)E0 >> ETS.

Figure 21: Hill’s region atε = .58 (blue) and Hamiltonian energy surface with momentum re-
stricted to fixed point momentum (red).
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Appendix B Planar H2O-H2 Scattering Reaction - Energy Surfaces

Figure 22: 3D Hill’s region constructed by stackingβ−slices for various energies.

Figure 23: Blue Hill’s region for H2O-H2 scattering reaction (left), superimposed with green
Hamiltonian surface for momentum of entering trajectory (middle), and superimposed with red
Hamiltonian surface for momentum of exiting trajectory (right).
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Appendix C Planar H2O-H2 Scattering Reaction - Abelian Reduction

The general method of abelian reduction9,10 is applied to the rigid rotor model for the scat-
tering of H2-O-H2.

C1 Equations of Motion

We consider a system comprised of two planar molecules H2-O and H2, approximated as
rigid rotors, interacting in the plane via the approximate potential of Wiesenfeldet al. Configu-
ration space for this system is SE(2)×SE(2), determined by an(x, y) position and orientationφ
for each body. Reduction via translational symmetry, i.e. conservation of linear momentum, sim-
plifies the configuration space to SE(2)×SO(2)∼= SE(2)× S1. The system is also invariant under
rotations in the plane, as seen by theθ−invariance of the potential of Wiesenfeldet al. Reduction
of these planar rotations further simplifies the configuration space to SE(2), which is expressed in
body-frame coordinates.

Fixing the origin at the center of mass of the H2O molecule in an inertial frame that translates
with the center of mass of both bodies, we may define the Kinetic Energy as follows

T (q̇, φ̇a, φ̇b) =
m

2
‖q̇‖2 +

Ia

2
φ̇2

a +
Ib

2
φ̇2

b (1)

The conjugate momenta are found via the Legendre transformation (with conservative potential
energy):p = ∂L

∂q̇ = mq̇, ji = ∂L
∂φ̇i

= Iiφ̇i. This yields the following Hamiltonian:

H =
‖p‖2

2m
+

j2
a

2Ia

+
j2
b

2Ib

+ V (q, φa, φb) (2)

The potentialV , given below, does not depend onθ, and we seek to reduce via this rotational
symmetry.

V (R,χa, χb) =
3µQ

4R4

{
cos χa

(
3 cos2 χb − 1

)
− sin χa sin 2χb

}
− 1

R6

{
3(A−B) cos2 χb + (A + 5B)

}
− µ2ᾱ (3 cos2 χa + 1)

2R6
− µ2δα

4R6

{
cos 2χb

(
3 cos2 χa + cos 2χa

)
+ 2 sin 2χa sin 2χb

}
+

CLJ

R12

Notice that the potential is written in terms of relative anglesχa = φa − θ andχb = φb − θ.
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C2 Trivializing Rotational Symmetry

We first apply two canonical coordinate transformations that trivialize the action of the sym-
metry groupG = S1 on the configuration space. The first change is the introduction of polar
coordinates

qx = R cos θ, qy = R sin θ

which makes clear the fact thatθ is the angle to be reduced. The second change is the introduction
of relative coordinates:

χa = φa − θ, pa = ja

χb = φb − θ, pb = jb

We may now reformulate the Kinetic Energy in terms of these new coordinates:

T (Ṙ, θ̇, χ̇a, χ̇b) =
m

2
Ṙ2 +

mR2

2
θ̇2 +

Ia

2

(
χ̇a + θ̇

)2

+
Ib

2

(
χ̇b + θ̇

)2

(3)

=
m

2
Ṙ2 +

mR2 + Ia + Ib

2
θ̇2 + (Iaχ̇a + Ibχ̇b) θ̇ +

Ia

2
χ̇2

a +
Ib

2
χ̇2

b (4)

We therefore have a Lagrangian in the following form:

L(qα, θ̇, q̇α) =
1

2
g00θ̇

2 + g0αθ̇q̇α +
1

2
gαβ q̇αq̇β − V (qα) (5)

wheregij is the Kinetic Energy metric,

g =


θ̇ Ṙ χ̇a χ̇b

θ̇ mR2 + Ia + Ib 0 Ia Ib

Ṙ 0 m 0 0
χ̇a Ia 0 Ia 0
χ̇b Ib 0 0 Ib

 (6)

and the indices are arranged as(θ, qα) whereqα = (R,χa, χb). θ is a cyclic variable and its
conjugate momentum

pθ =
∂L

∂θ̇
= g00θ̇ + g0αq̇α

=
(
mR2 + Ia + Ib

)
θ̇ + Iaχ̇a + Ibχ̇b

= l + pa + pb ≡ J

is a conserved quantity, namely the total angular momentum.

We may again calculate the conjugate momenta to the variablesqα = (R,χa, χb) via the Leg-

endre transformation:pR = ∂T
∂Ṙ

= mṘ, pa = ∂T
∂χ̇a

= Ia

(
χ̇a + θ̇

)
= ja, pb = ∂T

∂χ̇b
= Ib

(
χ̇b + θ̇

)
=
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jb. In these coordinates the Hamiltonian isH = 1
2
gijpipj + V (R,χa, χb) wheregij is the inverse

of gij:

H =
p2

R

2m
+

(pθ − pa − pb)
2

2mR2
+

p2
a

2Ia

+
p2

b

2Ib

+ V (R,χa, χb) (7)

C3 Body Frame

For body frame coordinates we introduce(R,α, β) ≡ (R, χa, χb − χa). The kinetic energy
may be written as

T (Ṙ, θ̇, α̇, β̇) =
m

2
Ṙ2 +

Izz

2
θ̇2 + (Iaα̇ + Ib(α̇ + β̇))θ̇ +

Ia

2
α̇2 +

Ib

2
(β̇ + α̇)2

with an associated metric tensor

g =


mR2 + Ia + Ib 0 Ia + Ib Ib

0 m 0 0
Ia + Ib 0 Ia + Ib Ib

Ib 0 Ib Ib


The corresponding HamiltonianH = 1

2
gijpipj + V is

H =
(pθ − pα)2

2mR2
+

(pα − pβ)2

2Ia

+
p2

β

2Ib

+
p2

R

2m
+ V (8)

with conjugate momentapα = pa + pb andpβ = pb.

C4 Body frame - SE(2)

Similarly, we write the kinetic energy in cartesian bodyframe coordinates:

T =
m

2

(
xẋ + yẏ

x2 + y2

)2

+
Izz

2
θ̇2 +

(
Ia + Ib

x2 + y2
(xẏ − yẋ) + Ibβ̇

)
θ̇ +

Ia

2

(
xẏ − yẋ

x2 + y2

)2

+
Ib

2

(
xẏ − yẋ

x2 + y2
+ β̇

)2

The kinetic energy metric iṅθ, ẋ, ẏ, Ṙ is
Ia + Ib + m(x2 + y2) − (Ia+Ib)y

x2+y2

(Ia+Ib)x
x2+y2 Ib

− (Ia+Ib)y
x2+y2

(Ia+Ib)y
2+mx2

(x2+y2)2
(−(Ia+Ib)+m)xy

(x2+y2)2
− Iby

x2+y2

(Ia+Ib)x
x2+y2

(−(Ia+Ib)+m)xy
(x2+y2)2

(Ia+Ib)x
2+my2

(x2+y2)2
Ibx

x2+y2

Ib − Iby
x2+y2

Ibx
x2+y2 Ib


The corresponding Hamiltonian is

H =
(pβ − pyx + pxy)2

2Ia

+
p2

β

2Ib

+
p2

θ

2m(x2 + y2)
+

pθ(ypx − xpy)

m(x2 + y2)
+

p2
x(x

4 + y2(x2 + 1))

2m(x2 + y2)
(9)

+
p2

y(y
4 + x2(y2 + 1)

2m(x2 + y2)
+

pxpy(x
3y − xy + xy3)

m(x2 + y2)
(10)
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C5 Reduced Hamiltonian

Because the system isθ−invariant, to reduce out this cyclic variable amounts to fixing each
instance ofpθ equal toγ. This means that in any given instance, we are working on aγ−level set
of the total angular momentum. The details of this process are explained and worked out in detail
in C8-9.

The reduced Hamiltonian(s) are as follows:

H =
p2

R

2m
+

(γ − pa − pb)
2

2mR2
+

p2
a

2Ia

+
p2

b

2Ib

+ V (11)

H =
(γ − pα)2

2mR2
+

(pα − pβ)2

2Ia

+
p2

β

2Ib

+
p2

R

2m
+ V (12)

As a sanity check, confirm that Eqs. 11 & 12 are equivalent:

Eq. 7 H =
p2

R

2m
+

(γ − pa − pb)
2

2mR2
+

p2
a

2Ia

+
p2

b

2Ib

+ V

=
p2

R

2m
+

p2
a

2Ia

+
p2

b

2Ib

+
γ2

2mR2
− γ(pa + pb)

mR2
+

(pa + pb)
2

2mR2
+ V

Eq. 13 H =
(Ia + Ib)γ

2

(2mR2)(Ia + Ib + mR2)
− (pa + pb)γ

mR2
+

(pa + pb)
2

2mR2
+

R2(Ibmp2
a + Iamp2

b + IaIbp
2
R)

2mIaIbR2

+
γ2

2(mR2 + Ia + Ib)
+ V

=
p2

a

2Ia

+
p2

b

2Ib

+
p2

R

2m
− γ(pa + pb)

mR2
+

(pa + pb)
2

2mR2
+

(Ia + Ib + mR2)γ2

(2mR2)(Ia + Ib + mR2)
+ V

=
p2

R

2m
+

p2
a

2Ia

+
p2

b

2Ib

+
γ2

2mR2
− γ(pa + pb)

mR2
+

(pa + pb)
2

2mR2
+ V

Clearly Eqs. 11 & 12 are equivalent using the relationshippα = pa + pb andpβ = pb.
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C6 Canonical Transformations

Now, to check that Eq. 7 is the canonical reduced Hamiltonian, assume a canonical symplec-
tic form dqi ∧ dpi and compute the Hamilton’s equations accordingly. Then compute Hamilton’s
equations for the noncanonical form with Hamiltonian (12) and transform the first set of equations
via the transformation fromp′s to p̃′s. If the equations are the same, then our assumption of the
canonical symplectic form for Eq. 7 was valid and this Hamiltonian is canonical:

Ṙ =
pR

m
ṗR = −∂V

∂R
+

(γ − pa − pb)
2

mR3
(13)

χ̇a =
pa

Ia

− γ − pa − pb

mR2
ṗa = − ∂V

∂χa

(14)

χ̇b =
pb

Ib

− γ − pa − pb

mR2
ṗb = − ∂V

∂χb

(15)

The noncanonical symplectic form may be written locally as

ωµ =

(
−µBαβ −I

I 0

)
(16)

From this we obtain the Hamilton’s equations for the Hamiltonian in Eq. 12:

∇H = ωµż =⇒



− (p̃a+p̃b)
2

mR3 − mRµ2

I2
zz

+ ∂V
∂R

∂V
∂χa
∂V
∂χb
p̃R

m
p̃a

Ia
+ p̃a+p̃b

mR2

p̃b

Ib
+ p̃a+p̃b

mR2


=


0 −Ba −Bb −1 0 0

Ba 0 0 0 −1 0
Bb 0 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




Ṙ
χ̇a

χ̇b

˙̃pR

˙̃pa

˙̃pb


Applying the coordinate transformation described in (13)-(15) these equations may be written as
follows

˙̃pR = ṗR = −χ̇aBa − χ̇bBb +
µ2mR

I2
zz

+
(p̃a + p̃b)

2

mR3
− ∂V

∂R
Ṙ =

p̃R

m
=

pR

m
(17)
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˙̃pa = ṗa +
2µmIaRṘ

I2
zz

= − ∂V

∂χa

+
2µmIaRṘ

I2
zz

χ̇a =
p̃a

Ia

+
p̃a + p̃b

mR2
(18)

=⇒ ṗa = − ∂V

∂χa

=
pa

Ia

− µ

Izz

+
pa + pb

mR2
− µIa + µIb

IzzmR2
(19)

=
pa

Ia

− pa + pb

mR2
− µ

mR2 + Ia + Ib

mR2Izz

(20)

=
pa

Ia

+
pa + pb − µ

mR2
(21)

˙̃pb = ṗb +
2µmIbRṘ

I2
zz

= − ∂V

∂χb

+
2µmIbRṘ

I2
zz

χ̇b =
p̃b

Ib

+
p̃a + p̃b

mR2
(22)

=⇒ ṗb = − ∂V

∂χb

=
pb

Ib

− µ

Izz

+
pa + pb

mR2
− µIa + µIb

IzzmR2
(23)

=
pb

Ib

− pa + pb

mR2
− µ

mR2 + Ia + Ib

mR2Izz

(24)

=
pb

Ib

+
pa + pb − µ

mR2
(25)

Substitute into˙̃pR theχ̇a andχ̇b values obtained from the reduced Hamilton’s equations:

˙̃pR = −χ̇aBa − χ̇bBb +
mRµ2

I2
zz

+
(p̃a + p̃b)

2

mR2
− ∂V

∂R

p̃a = pa −
µIa

Izz

, p̃b = pb −
µIb

Izz

χ̇a =
p̃a

Ia

+
p̃a + p̃b

mR2
, χ̇b =

p̃b

Ib

+
p̃a + p̃b

mR2

=
pa

Ia

+
pa + pb − µ

mR2
=

pb

Ib

+
pa + pb − µ

mR2

Ba =
2µmRIa

I2
zz

, Bb =
2µmRIa

I2
zz

−χ̇aBa − χ̇bBb +
mRµ2

I2
zz

= −mR2µ2 − 2mR2µ2 − 2µ2(Ia + Ib)

RI2
zz

− 2µ(pa + pb)

RIzz

= −mRµ2

I2
zz

+
2µ2

RIzz

− 2µ(pa + pb)

RIzz

(p̃a + p̃b)
2

mR3
=

(
(pa + pb)− µ(Ia+Ib)

Izz

)2

mR3

=
(pa + pb)

2

mR3
− 2µ(Ia + Ib)(pa + pb)

mR3Izz

+
µ2(Ia + Ib)

2

mR3I2
zz
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˙̃pR = −mRµ2

I2
zz

+
2µ2

RIzz

− 2µ(pa + pb)

RIzz

+
(pa + pb)

2

mR3
− 2µ(Ia + Ib)(pa + pb)

mR3Izz

+
µ(Ia + Ib)

2

mR3I2
zz

− ∂V

∂R
(26)

=
(pa + pb)

2

mR3
− 2µ(pa + pb)

mR3
+

µ2

mR3I2
zz

(
−(mR2)2 + 2mR2Izz + (Ia + Ib)

2
)
− ∂V

∂R
(27)

=
(pa + pb)

2

mR3
− 2µ(pa + pb)

mR3
+

µ2

mR3I2
zz

(
mR2 + Ia + Ib

)2 − ∂V

∂R
(28)

=
(µ− pa − pb)

2

mR3
− ∂V

∂R
≡ ṗR (29)

Hence the Hamiltonian of Eq. 7 is canonical with canonical symplectic form. We also want to
confirm that the Hamiltonian in body frame coordinates is canonical. As before, we assume that
the symplectic form is canonical and compare with Eqs. 13-15.

Ṙ =
pR

m
ṗR = −∂V

∂R
+

(γ − pα)2

mR3
(30)

α̇ = −γ − pα

mR2
+

pα − pβ

Ia

ṗα = −∂V

∂α
(31)

β̇ = −pα − pβ

Ia

+
pβ

Ib

ṗβ = −∂V

∂β
(32)

Adding the expressions foṙα andβ̇ we recover the equation foṙχb. Since we obtain the cartesian
coordinate (SE(2)) Hamiltonian from a polar transformation, it follows that this Hamiltonian is
also canonical.
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C7 Relative Equilibrium Conditions

First, we will compute the R.E. conditions for the canonical Hamiltonian of Eq. 7. We
must note that by conservation of total angular momentum,θ̇ = Ω is a constant. Thus the R.E.
conditions become

Ṙ =
pR

m
= 0 =⇒ pR = 0 (33)

ṗR = −∂V

∂R
+

(γ − pa − pb)
2

mR3
= 0 =⇒ ∂V

∂R
=

(γ − pa − pb)
2

mR3
= mR2Ω2 (34)

ṗa = − ∂V

∂χa

= 0 =⇒ ∂V

∂χa

= 0 (35)

ṗb = − ∂V

∂χb

= 0 =⇒ ∂V

∂χb

= 0 (36)

χ̇a =
pa

Ia

− γ − pa − pb

mR2
=⇒ χ̇a = 0, θ̇ = Ω (37)

χ̇b =
pb

Ib

− γ − pa − pb

mR2
=⇒ χ̇b = 0, θ̇ = Ω (38)

We must now compute the relative equilibrium conditions for the momentum shifted Hamiltonian
and reconstruct these conditions from them.

Ṙ =
p̃R

m
= 0 =⇒ p̃R = 0 (39)

˙̃pR = −χ̇aBa − χ̇bBb +
µ2mR

I2
zz

+
(p̃a + p̃b)

2

mR3
− ∂V

∂R
(40)

=
µ2mR

I2
zz

+
(p̃a + p̃b)

2

mR3
− ∂V

∂R
=⇒ ∂V

∂R
=

µ2mR

I2
zz

+
(p̃a + p̃b)

2

mR3

(41)

˙̃pa = − ∂V

∂χa

+
2µmIaRṘ

I2
zz

=⇒ ∂V

∂χa

=
2µmIaRṘ

I2
zz

= 0 (42)

˙̃pb = − ∂V

∂χb

+
2µmIbRṘ

I2
zz

=⇒ ∂V

∂χb

=
2µmIbRṘ

I2
zz

= 0 (43)

χ̇a =
p̃a

Ia

+
p̃a + p̃b

mR2
=⇒ p̃a + p̃b

mR2
= − p̃a

Ia

(44)

χ̇b =
p̃b

Ib

+
p̃a + p̃b

mR2
=⇒ p̃a + p̃b

mR2
= − p̃b

Ib

(45)

From these conditions we immediately recover the conditions

p̃R = pR = 0,
∂V

∂χa

= 0,
∂V

∂χb

= 0
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and we havep̃a

Ia
= p̃b

Ib
which impliesp̃a = p̃b = 0 (see below). The condition oñ̇pR becomes

∂V

∂R
=

µ2mR

I2
zz

+
mR2p̃2

a

I2
a

=
µ2mR

I2
zz

In other words,∂Vµ

∂R
= 0. This is summed up as

p̃R = 0, p̃a = 0, p̃b = 0 (46)
∂Vµ

∂R
= 0,

∂Vµ

∂χa

= 0,
∂Vµ

∂χb

= 0. (47)

To see that̃pa = p̃b = 0, let p̃b = Ib

Ia
p̃a and substitute into the expression forχ̇a:

p̃a

Ia

+
p̃a + p̃b

mR2
= p̃a

(
1

Ia

+
1

mR2

)
+ p̃a

Ib

IamR2

= p̃a

(
mR2 + Ia + Ib

IamR2

)
=

Izzp̃a

IamR2
= 0

SinceIzz is non-zero, it follows that̃pa = 0. The expressions∂Vµ

∂χa
= ∂Vµ

∂χb
= 0 and p̃R = 0

reconstruct exactly the expressions∂V
∂χa

= ∂V
∂χb

= pR = 0. Attempting to reconstruct the remaining
conditions, we come across the following equalities:

γ − pa − pb

mR2
= Ω =

µ

Izz

It is clear thatΩ = γ−pa−pb

mR2 , so only the second equality must be checked.
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C8 Abelian Reduction - Lagrangian Side

• Infinitesimal generator: The infinitesimal generator corresponding to the cyclic action of
θ ∈ S1 is

ξQ(θ, qi) =
d

dt

∣∣∣∣
t=0

(
etξ · (θ, qα)

)
= ((θ, qα), (ξ, 0))

• Lagrangian momentum map: The momentum map associated to this infinitesimal genera-
tor isJL : TQ → g∗

JL((q, q̇)) · ξQ = 〈FL(q, q̇), ξQ(q)〉 = 〈(g0j q̇
j, gij q̇

j), (ξ, 0)〉 = g0j q̇
jξ

= g00θ̇ + g0αq̇α

=
(
mR2 + Ia + Ib

)
θ̇ + Iaχ̇a + Ibχ̇b

• Locked inertia tensor: This is the instantaneous tensor of inertia calculated when the rel-
ative motion of the bodies is fixed. We introduce〈〈·, ·〉〉 as the inner product induced from
gij. Using this we may writeI(θ, qα) : g → g∗ (locally) as:

〈I(θ, qα)η, ξ〉 − 〈〈((θ, qα), (η, 0)), ((θ, qα), (ξ, 0))〉〉 = g00ηξ.

so thatI(θ, qα) = g00(q
α) = mR2 + Ia + Ib.

• Mechanical connection:We may write the connectionA : TQ → g (locally) asA(θ, qα)(θ, qα, θ̇, q̇α) =
I−1J(FL(θ, qα, θ̇, q̇α)) = g−1

00 g0j q̇
j. This simplifies as

A(θ, qα)(θ, qα, θ̇, q̇α) = θ̇ + g−1
00 g0αq̇α

= θ̇ +
Iaχ̇a + Ibχ̇b

mR2 + Ia + Ib

FromA we can obtain the one form:A(θ, qα) = dθ + Aαdqα, whereAα = g−1
00 g0α:

A(θ, qα) = dθ +
Ia

mR2 + Ia + Ib

dχa +
Ib

mR2 + Ia + Ib

dχb

The curvatureB = dA = Bαβdqα ∧ dqβ has local componentsBαβ =
(

∂Aα

∂qβ − ∂Aβ

∂qα

)
which

may be written in(R,χa, χb) coordinates as the following matrix:

Bαβ =


0 −∂Aa

∂R
−∂Ab

∂R
∂Aa

∂R
0

(
∂Aa

∂χb
− ∂Ab

∂χa

)
∂Ab

∂R
−

(
∂Aa

∂χb
− ∂Ab

∂χa

)
0

 =

 0 2mRIa

(mR2+Ia+Ib)
2

2mRIb

(mR2+Ia+Ib)
2

− 2mRIa

(mR2+Ia+Ib)
2 0 0

− 2mRIb

(mR2+Ia+Ib)
2 0 0


For a givenµ ∈ g∗ ∼= R, the mechanical connection on the fiberQ → Q/G is

αµ(θ, qα) = µdθ + µAαdqα

= µdθ +
µIa

mR2 + Ia + Ib

dχa +
µIb

mR2 + Ia + Ib

dχb

37



• Amended potential: Forµ ∈ g∗, the amended potential is defined as

Vµ(q) = V (q) +
1

2
〈µ, I−1(q)µ〉 = V (q) +

1

2
g−1
00 µ2

= V (q) +
µ2

2 (mR2 + Ia + Ib)

• Routhian: The Routhian is a function onTQ defined as

Rµ =
1

2
‖Hor(q, q̇)‖2 − Vµ

where Hor(q, q̇) = (−g−1
00 g0αq̇α, q̇α) is the horizontal component of(q, q̇) and the norm is

induced fromgij. We may write this locally as:

Rµ =
1

2

(
gαβ − g−1

00 g0αg0β

)
q̇αq̇β − 1

2
g−1
00 µ2 − V (qα)

=
1

2
hαβ q̇αq̇β − µ2

2 (mR2 + Ia + Ib)
− V (qα)

wherehαβ is as follows

hαβ = gαβ − g−1
00 g0αg0β =

m 0 0
0 Ia 0
0 0 Ib

− 1

mR2 + Ia + Ib

0 0 0
0 I2

a IaIb

0 IaIb I2
b


=

m 0 0

0 IamR2+IaIb

mR2+Ia+Ib
− IaIb

mR2+Ia+Ib

0 − IaIb

mR2+Ia+Ib

IbmR2+IaIb

mR2+Ia+Ib


Working these calculations out explicitly we find the following Routhian:

R̂ =
χ̇2

a(IaIb + IamR2)

2I
+

χ̇2
b(IaIb + IbmR2)

2I
+

mṘ2

2
− χ̇aχ̇bIaIb

I
− Vµ(R,χa, χb) (48)

from which we obtain the Lagrange-Routh equations:

mR̈− (χ̇aIa + χ̇bIb)
2mR

I2
+

2µmR(χ̇aIa + χ̇bIb)

I2
= −∂Vµ

∂R
(49)

(χ̈a − χ̈b)IaIb + χ̈aIamR2 + 2mRIaχ̇aṘ

I
− 2mRṘ((χ̈a − χ̇b)IaIb + µIa + χ̇aIamR2)

I2
= −∂Vµ

∂χa

(50)

(χ̈b − χ̈a)IaIb + χ̈bIbmR2 + 2mRIbχ̇bṘ

I
− 2mRṘ((χ̈b − χ̇a)IaIb + µIb + χ̇bIbmR2)

I2
= −∂Vµ

∂χb

(51)

38



C9 Abelian Reduction - Hamiltonian Side

We have a Hamiltonian which is written locally as

H(qα, pθ, p
α
q ) =

1

2
g00p2

θ + g0αpθpα +
1

2
gαβpαpβ + V (qα)

• Momentum map: The momentum map corresponds to the angular momentum of the sys-
tem: J : T ∗Q → g∗

〈J(θ, qα, pθ, p
α
r ), ξ〉 = 〈(pθ, pα), (ξ, 0)〉 = pθξ.

so thatJ(θ, qα, pθ, p
α
r ) = pθ = l + pa + pb ≡ J .

• Momentum shifting: We shift the momenta fromJ−1(µ) to J−1(0), both in the full space
and in reduced space. The momentum shifting is given by

p̃θ = 0

p̃R = pR

p̃a = pa −
µIa

mR2 + Ia + Ib

p̃b = pb −
µIb

mR2 + Ia + Ib

• Reduced Hamiltonian: In J−1(0)/G, we haveHαµ = 1
2
‖p̃‖2+Vµ where the norm is induced

from the metric andVµ is the amended potential. Sincẽpθ = 0 we have the following
Hamiltonian in the reduced spaceJ−1(0)/G:

Hµ(qα, pα) =
1

2
gαβ p̃αp̃β + V (qα) +

µ2

2
g−1
00

Written explicitly, the reduced Hamiltonian is as follows:

Hµ =
p̃2

R

2m
+

p̃2
a

2Ia

+
p̃2

b

2Ib

+
(p̃a + p̃b)

2

2mR2
+ Vµ(R,χa, χb) (52)

=
(Ia + Ib)µ

2

(2mR2)(Ia + Ib + mR2)
− (pa + pb)µ

mR2
+

(pa + pb)
2

2mR2
+

R2(Ibmp2
a + Iamp2

b + IaIbp
2
R)

2mIaIbR2
+ Vµ

(53)

• Reduced symplectic form: In general, in the reduced space, the symplectic form is not
canonical. The projection is given by the map:

((T ∗Q)µ, Ωµ)
−→
Pµ((T ∗(Q/G), ω −Bµ)

where the reduced symplectic form is

ωµ = ω −Bµ = dqα ∧ dp̃α − µ
∂Aα

∂qβ
dqβ ∧ dqα

= dR ∧ dp̃R + dχa ∧ dp̃a + dχb ∧ dp̃b +
2µmR

(mR2 + Ia + Ib)
2 (IadR ∧ dχa + IbdR ∧ dχb)
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Appendix D Lifetime Distribution Code

The code to compute lifetime distributions for the Rydberg scattering reaction and planar
H2O-H2 scattering reaction is written in C++ and compiled using gcc version 3.4.5 on a PC running
Redhat Linux. The software is broken into five major components, contained in five separate files:
fullscatter.cc, newt.cc, rk78.cc, moduls.h, and makefile.

fullscatter.cc -This contains the main loop which computes lifetime distributions for varying
system parameters, such as energyH, total angular momentumJ , and electric field strengthε.

newt.cc - All supporting functions, except the integrator, are contained in this file. Sup-
porting functions include the Hamiltonian and Hamiltonian vector fields, bounding box functions,
sampling code and functions used to project sampled points onto the energy surface.

rk78.cc - Runga Kutta 78 integrator that I inherited from Frederic Gabern during his Post-
doctoral work at Caltech.

moduls.h -This file contains static system parameters, such asπ, moments of inertia of H2O
and H2, among others.

makefile -The makefile tells the compiler how to combine code from the previous four files
to create an executable binary.

The code for the dual method test is very similar to fullscatter.cc, except that the order of all
integration is reversed, along with the necessary conditions for testing reactivity. The file is not
included in this appendix, however the code may be obtained by contacting the author.

40



D1  fullscatter.cc - Main Scattering Code

41

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "newt.h"   //Methods, Hamiltonian, Vector Field, etc.
#include "rk78.h"   //Integrator Code
#include "moduls.h" //System Parameters

#if !defined(DATA)
#define DATA ""
#endif

/*-Lifetime Distribution Parameters-*/
#define BINS 30
#define CHUNKSIZE 1000
#define MAXCHUNKS 1000
#define SDTOL .001
/*-Epsilon Parameters-*/
#define epsMIN  .58
#define epsSTEP .005 
#define STEPS 5

/*---ORGANIZATION OF CODE---see section 2 of thesis for details on method-----//
  
  * STEP 0 - INITIALIZE VARIABLES, INTEGRATOR, & MAIN LOOP 1

  * MAIN LOOP 1 (COMPUTES LDs FOR DIFFERENT VALUES OF EPSILON) {

        * SET EPSILON & FILE POINTERS

        * STEP I - IDENTIFY FIXED POINT AND CUTS

         * STEP IIa - DETERMINE BOUNDING BOX AT OUTCUT (NAMED "cut")

        * MAIN LOOP 2 (COMPUTES LD DATA UNTIL SD OF EACH BIN IS < SDTOL) {

                * MAIN LOOP 3 (COMPUTES LD DATA IN CHUNKS OF SIZE CHUNKSIZE) {

                        * STEP IIb - SELECT REACTIVE TRAJECTORIES

                        * STEP III - INTEGRATE INTO BOUND STATE UNTIL ESCAPE

                } CONTINUE ML3 UNTIL CHUNKSIZE TRAJECTORIES HAVE BEEN TESTED

                * STEP 4 - WRITE DATA CHUNK TO FILES

                * STEP 5a - COMPUTE SD OF EACH BIN CHUNKWISE

                * STEP 5b - FIND THE LARGEST SD OF ALL BINS (CALL IT SDMAX)

        } CONTINUE ML2 UNTIL SDMAX < SDTOL OR UNTIL #CHUNKS EXCEEDS MAXCHUNKS

        * STEP 6 - WRITE LIFETIME DISTRIBUTION FOR SPECIFIC EPSILON

  } CONTINUE ML1 UNTIL LDs ARE COMPUTED FOR ALL SELECTED VALUES OF EPSILON

  * STEP 7 - UNINITIALIZE INTEGRATOR
//----------------------------------------------------------------------------*/



D1  fullscatter.cc - Main Scattering Code

42

int main(void)
{
/*
   STEP 0 - INITIALIZING VARIABLES, INTEGRATOR, & MAIN LOOP 1
*/
   int i,j,k,outs,rpoints,letters,epscount; //counters
   double epsilon;  //field strength or total angular momentum parameter.
   double t,h,hmin,hmax;  //integrator parameters 
   double inincut,incut,fpcut,cut,outcut,cutdiff;  //cuts
   double min[5],max[5],omin[5],omax[5]; //bounding box dimensions   
   double saddle[6],randx[6],randxs[6];  //phase space vectors
   double pic[CHUNKSIZE][6],opic[CHUNKSIZE][6];  //image of reactive trajectories
   double picsave[CHUNKSIZE][6],opicsave[CHUNKSIZE][6],timesave[CHUNKSIZE];  //" "
   int orbit,orbitsave[CHUNKSIZE];  //saves orbit data for entire chunk of data
   char strOCI [50],strIFO [50],strLD [50],strSC [50], strFP [50];  //strings holding 
file names
   FILE *OCI,*IFO,*LD,*SC,*FP;  //file pointers
   /*-bin variables-*/
   int binLD[BINS];  //combined bin data (cummulative count)
   int bin[MAXCHUNKS][BINS];  //bin data for each data chunk
   int chunk;  //keeps track of which data chunk we are on
   int intraj;  //whether or not trajectory is reactive
   double maxsd;  //largest SD of all bins 
   double meanLD[BINS];  //average of binLD over all points
   double stdevLD[BINS];  //SD of each bin chunkwise
   /*-random number generator-*/
   srand((unsigned) time(NULL) );
   testrand();
   /*-integrator-(rk78.cc)-*/
   ini_rk78(6);
/*
   MAIN LOOP 1 (COMPUTES LDs FOR DIFFERENT VALUES OF EPSILON)
*/
   for(epscount = 0;epscount < STEPS; epscount++) {
     epsilon = epsMIN + epscount*epsSTEP;
     letters = sprintf(strOCI,"./fullscatter/OCI/OUTScomingIN_%e.oci.001",epsilon);
     letters = sprintf(strIFO,"./fullscatter/IFO/INSfromOUT_%e.ifo.001",epsilon);
     letters = sprintf(strLD,"./fullscatter/LD/distribution_%e.ld.001",epsilon);
     letters = sprintf(strSC,"./fullscatter/scatter_%e.sc.001",epsilon);
     letters = sprintf(strFP,"./fullscatter/fixedpoint.dad");
   /*
      STEP 1 - IDENTIFY FIXED POINT AND CUTS
   */
     FP=fopen(strFP,"r");
     if(FP==NULL) {printf("fullscatter: Can't open %s\n",strFP);exit(1);}
     for(i=0;i<6;i++) fscanf(FP,"%le ",&saddle[i]);
     fclose(FP);
     cutdiff = .1;
     fpcut = saddle[0];
     if(saddle[0]<0) cutdiff = -1.*cutdiff;
     inincut = fpcut - 1.2*cutdiff;
     incut = fpcut - cutdiff;
     cut = fpcut + cutdiff;
     outcut = fpcut + 1.2*cutdiff;
/*-alternate code for H2O-H2 scattering-*/
/*
     R = Req();
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     Om = Omeq(R);
     l = leq(R);
     gam = l+Om*(Ia+Ib);
     saddle[0] = R, saddle[1] = PI, saddle[2] = 0,saddle[3] = 0,saddle[4] = 
Om*(Ia+Ib),saddle[5] = Om*Ib;
     epsilon = gam - epscount*epsSTEP;
     //CALCULATING CUTS
     cutdiff = 2.5;
     fpcut = saddle[0];
     if(saddle[0]<0) {
       inincut = fpcut + 1.2*cutdiff;
       incut = fpcut + cutdiff;
       cut = fpcut - cutdiff;
       outcut = fpcut - 2*cutdiff;
     }
     else {
       inincut = fpcut - 1.2*cutdiff;
       incut = fpcut - cutdiff;
       cut = fpcut + cutdiff;
       outcut = fpcut + 2*cutdiff;
     }
*/
   /*
      STEP 2a - DETERMINE BOUNDING BOX AT OUTCUT (NAMED "cut")
   */
     /*-Determining Rough Bounding Box @ fpcut-*/
     roughbox(saddle,min,max,1.e-5,1.e+0,24,20,5,epsilon);
     /*-Refining Rough Box @ fpcut-*/
     refinebox(min,max,incut,fpcut,cut,epsilon);
     /*-Computing Rough Bounding Box @ cut by Integrating Outs Backwards-*/
     newcutbox(omin,omax,min,max,fpcut,cut,incut,500,epsilon);
     /*-Refining Rough Box @ cut-*/
     refinebox(omin,omax,incut,cut,outcut,epsilon);
     /*-Cleaning Bin Variables Before New Run-*/
     maxsd = 1.;
     chunk = 0;
     for(i=0;i<BINS;i++) {
        binLD[i] = 0;
        for(j=0;j<MAXCHUNKS;j++) {
           bin[j][i] = 0;      
        }   
        meanLD[i] = 0.;
        stdevLD[i] = 1.;   
     }
   /*
      MAIN LOOP 2 (COMPUTES LD DATA UNTIL SD OF EACH BIN IS < SDTOL)
   */
     while((chunk<MAXCHUNKS)&&(maxsd>SDTOL)) {
          i=0;
          outs = 0;
      /*
         MAIN LOOP 3 (COMPUTES LD DATA IN CHUNKS OF SIZE CHUNKSIZE)
      */
          while(i<CHUNKSIZE) {
               intraj = 0;
               t=0.e0;
               h=1.e-2;
               hmin=1.e-3;
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               hmax = 1.e+1;
               rpoints = 0;
         /*
            STEP 2b - SELECT REACTIVE TRAJECTORIES
         */
               /*-Select Point @ Random from BB-*/
               while(rpoints==0) {
                    randompoint(randx,omin,omax,cut);
                    rpoints = energyfit3(randx,1.e-15,omin,omax,epsilon);
               }
               /*-Test Point for Reactivity-*/
               for(j=0;j<6;j++) randxs[j] = randx[j];
               while((randx[0]<outcut)&&(randx[0]>incut)) 
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,ffield,epsilon);
               if(randx[0]>=outcut) outs++;
               if(randx[0]<=incut) {
                 for(k=0;k<6;k++) {
                    pic[i][k] = randxs[k];
                    opic[i][k] = randx[k];
                    picsave[i][k] = randxs[k];
                    opicsave[i][k] = randx[k];
                 }
                 intraj = 1;
               }
               /*-If Point is Reactive, Run Through Bound State-*/
               if((intraj==1)&&(fabs(ham(pic[i],epsilon)+1.52)<.0001)) {
         /*
            STEP 3 - INTEGRATE INTO BOUND STATE UNTIL ESCAPE
         */
                 orbit = 0;
                 t=0.e0;
                 h=1.e-2;
                 hmin=1.e-4;
                 hmax=1.e+1;
                 /*-Integrate Point until it Leaves Bound State-*/
                 while((orbit<BINS)&&(fabs(pic[i][0])<2)) {
                      orbit += rk78(&t,pic[i],&h,1.e-15,hmin,hmax,6,ffield,epsilon);
                 }
                 /*-Record Number of Orbits-*/
                 orbitsave[i] = orbit;
                 timesave[i] = t;
                 if(orbit<BINS) {
                   binLD[orbit]++;
                   bin[chunk][orbit]++;
                 }
                 else {
                   binLD[BINS-1]++;
                   bin[chunk][BINS-1]++;
                 }
                 i++;
               }
          }//MAIN LOOP 3 - CONTINUE UNTIL CHUNKSIZE TRAJECTORIES HAVE BEEN TESTED
      /*
         STEP 4 - WRITE DATA CHUNK TO FILES
      */
          OCI = fopen(strOCI,"a");
          if(OCI == NULL) {printf("cannot open %s\n",strOCI); exit(1);}
          for(i=0;i<CHUNKSIZE;i++) {
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             fprintf(OCI,"%d ",chunk*CHUNKSIZE+i);
             for(j=0;j<6;j++) fprintf(OCI,"%24.16e ",picsave[i][j]);
             fprintf(OCI,"%24.16e\n",ham(picsave[i],epsilon));
          }
          fclose(OCI);
          IFO = fopen(strIFO,"a");
          if(IFO == NULL) {printf("cannot open %s\n",strIFO); exit(1);}
          for(i=0;i<CHUNKSIZE;i++) {
             fprintf(IFO,"%d ",chunk*CHUNKSIZE+i);
             for(j=0;j<6;j++) fprintf(IFO,"%24.16e ",opicsave[i][j]);
             fprintf(IFO,"%24.16e\n",ham(opicsave[i],epsilon));
          }
          fclose(IFO);          
          SC = fopen(strSC,"a");
          if(SC == NULL) {printf("cannot open %s\n",strSC); exit(1);}
          for(i=0;i<CHUNKSIZE;i++) {
             fprintf(SC,"%d %24.16e ",chunk*CHUNKSIZE+i,ham(pic[i],epsilon));
             fprintf(SC,"%24.16e %d\n",timesave[i],orbitsave[i]);
          }
          fclose(SC);
      /*
         STEP 5a - COMPUTE SD OF EACH BIN CHUNKWISE
      */
          for(i=0;i<BINS;i++) {
             meanLD[i] = 1.*binLD[i]/(CHUNKSIZE*(chunk+1));
             stdevLD[i] = 0;
             for(j=0;j<chunk;j++) {
                stdevLD[i] += 
(meanLD[i]-1.*bin[j][i]/CHUNKSIZE)*(meanLD[i]-1.*bin[j][i]/CHUNKSIZE);
             }
             stdevLD[i] = 1.*sqrt(stdevLD[i])/(chunk+1.);
          }
          if(chunk>0) maxsd = 0;
      /*
         STEP 5b - FIND THE LARGEST SD OF ALL BINS (CALL IT SDMAX)
      */
          for(i=0;i<BINS;i++) {
             if(stdevLD[i]>maxsd) maxsd = stdevLD[i];
          }
          printf("chunk = %d, sd = %e\n",chunk,maxsd);
          chunk++;
     }//MAIN LOOP 2 - CONTINUE UNTIL SDMAX < SDTOL OR UNTIL #CHUNKS EXCEEDS MAXCHUNKS
   /*
      STEP 6 - WRITE LIFETIME DISTRIBUTION FOR SPECIFIC EPSILON
   */
     LD = fopen(strLD,"w");
     for(i=0;i<12;i++) printf("%le\n",meanLD[i]);
     if(LD == NULL) {printf("cannot open %s\n",strLD); exit(1);}
     for(i=0;i<BINS;i++) fprintf(LD,"%d %24.16e %24.16e\n",i,meanLD[i],stdevLD[i]);
   }//MAIN LOOP 1 - CONTINUE UNTIL LDs ARE COMPUTED FOR ALL SELECTED VALUES OF EPSILON
/*
   STEP 7 - UNINITIALIZE INTEGRATOR
*/
   end_rk78(6);
   return(0);
}
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#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "rk78.h"
#include "moduls.h"

/*-----

-NOTES: 1. If using H2O-H2 model, change ffieldH2OH2->ffield, bfieldH2OH2->bfield
 and hamH2OH2->ham. Also, roughbox will need to be modified to use pRmax,
 pamin, pamax, pbmin, and pbmax

 2. Any function whose name ends in B is the backward integration version of 
another function, and is used for the dual method test

 3. Code is arranged in 4 major blocks:

 1 - RYDBERG SPECIFIC FUNCTIONS
 2 - H2O-H2 SPECIFIC FUNCTIONS
 3 - TEST/DIAGNOSTIC FUNCTIONS
 4 - FUNCTIONS THAT REMAIN UNCHANGED WITH NEW MODELS

-----*/

/*-------------------------------------*/
// RYDBERG SPECIFIC FUNCTIONS:
// FUNCTIONS: 
// V(x,y,z,eps) - Potential Energy 
// ham(x[6],eps) - Hamiltonian 
// ffield(t,x[6],n,xdot[6],eps) - Forward Hamiltonian Vector Field 
// bfield(t,x[6],n,xdot[6],eps) - Backward Hamiltonian Vector Field 
// VARIABLES: 
// x[6] - phase space vector 
// xdot[6] - value of vector field at x[6] 
// eps - system parameter (angular momentum, field strength, etc.) 
// t,n - (unused) variables for time (t) or condition (n) dependant vector fields 
/*-------------------------------------*/

double V(double x,double y,double z,double epsilon)
{

/*
 V: Evaluates the Potential Energy at (x,y,z) with system parameter epsilon.

 */
double r,v_eps;

  r = sqrt(x*x+y*y+z*z);
  v_eps = -1./r-epsilon*x;

return(v_eps);
}

double ham(double x[6],double epsilon)
{

/*
 ham: Evaluates the Hamiltonian at point x[6] with system parameter epsilon.

 */
double V(double x, double y, double z,double epsilon);
double H;

  H = (x[3]*x[3]+x[4]*x[4]+x[5]*x[5])/2 + (x[0]*x[4]-x[1]*x[3])/2 +
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(x[0]*x[0]+x[1]*x[1])/8;
  H += V(x[0],x[1],x[2],epsilon); 
return(H); 

}

void ffield(double t,double *x,int n,double *f,double epsilon)
{

/*
 ffield: Evaluates the Ham. Vector Field at point x[6],

 parameter epsilon, time t, & condition n
 */
double r,r3;

  r = sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
  r3 = pow(r,3);

  f[0] = x[3]-x[1]/2;
  f[1] = x[4]+x[0]/2;
  f[2] = x[5];
  f[3] = -x[4]/2 - x[0]/4 - x[0]/r3 + epsilon;
  f[4] = x[3]/2 - x[1]/4 - x[1]/r3;
  f[5] = -x[2]/r3;
}

void bfield(double t, double *x,int n,double *f,double epsilon)
{

/*
 bfield: Evaluates the Neg. Ham. Vector Field at point x[6], etc.

 */
double r,r3;

  r = sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
  r3 = pow(r,3);

  f[0] = -x[3]+x[1]/2;
  f[1] = -x[4]-x[0]/2;
  f[2] = -x[5];
  f[3] = x[4]/2 + x[0]/4 + x[0]/r3 - epsilon;
  f[4] = -x[3]/2 + x[1]/4 + x[1]/r3;
  f[5] = x[2]/r3;
}

/*-------------------------------------*/
// H2O-H2 SPECIFIC FUNCTIONS:
// FUNCTIONS: 
// Req() - Equilibrium radius (of saddle) 
// Omeq(req) - Equilibrium Omega (at saddle) 
// leq(req) - Equilibrium l (at saddle) 
// h2oh2(r,a,b) - Potential Energy 
// hamH2OH2(x[6],eps) - Hamiltonian 
// ffieldH2OH2(t,x[6],n,xdot[6],eps) - Forward Hamiltonian Vector Field 
// bfieldH2OH2(t,x[6],n,xdot[6],eps) - Backward Hamiltonian Vector Field 
// pRmax(x[6],eps) - Computes max pR can drift from fp and hit energy surface 
// pamin(x[6],eps) - "" min pa "" 
// pamax(x[6],eps) - "" max pa "" 
// pbmin(x[6],eps) - "" min pb "" 
// pbmax(x[6],eps) - "" max pb "" 
// VARIABLES: 
// req - equilibrium radius 
// x[6] - phase space vector 
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// xdot[6] - value of vector field at x[6] 
// eps - system parameter (angular momentum, field strength, etc.) 
// t,n - (unused) variables for time (t) or condition (n) dependant vector fields 
/*-------------------------------------*/

double Req()
{

/*
 Req: Solves for Req using the bi-quartic expression of Wiesenfeld.

 The quartic is in depressed form:
 R^8+(Cl/E0)R^4+(2/E0)*((Ia+Ib)Cl/m-Dl)R^2-3(Ia+Ib)Dl/mE0=0.
 The solution comes from http://en.wikipedia.org/wiki/Quartic_equation

 */
double r2,c0,c1,c2;
double p,q,r,u,y;
double t1,t2;

  t1 = (Ia+Ib);
  t1 = t1/mass;
  t2 = 1/E0;

  c0 = -3.*Dl*t1*t2;
  c1 = (2.*Cl*t1-2.*Dl)*t2;
  c2 = Cl/E0;

  p = -c2*c2/12-c0;
  q = -c2*c2*c2/108+c2*c0/3-c1*c1/8;
  r = q/2+sqrt(q*q/4+p*p*p/27);
if(r<0) u = -1.*pow(-1.*r,1./3);
else u = pow(r,1./3);

  y = -5*c2/6-u+p/(3*u);
  r2 = (sqrt(c2+2*y)+sqrt(-(3*c2+2*y+2*c1/(sqrt(c2+2*y)))))/2;
return(sqrt(r2));

}

double Omeq(double req)
{

/*
 Omeq: Solves for Omega_eq given Req

 */
double t1,t2;

  t1 = 6*Dl/(pow(req,8));
  t2 = 4*Cl/(pow(req,6));
return(sqrt((t1-t2)/mass));

}

double leq(double req)
{

/*
 leq: Solves for l=m*Omega*Req^2 given Req

 */
double t1,t2;

  t1 = 6*Dl/(pow(req,7));
  t2 = 4*Cl/(pow(req,5));
return(sqrt((t1-t2)*req*req*req*mass));

}

double h2Oh2(double r,double a,double b)
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{
/*
 h2Oh2: Evaluates the Potential Energy at (r,a,b)

 */
double tQUAD,tDISP,tIND,tLJ;
double tINDa,tINDb;
double cb2,ca,s2b,r6;

  cb2 = pow(cos(a-b),2);
  ca = cos(a);
  s2b = sin(2*(a-b));
  r6 = pow(r,6);

  tQUAD = kv1*(ca*(3*cb2-1)-sin(a)*s2b)/pow(r,4);
  tDISP = -1*(kv2*cb2+kv3)/r6;
  tINDa = -1*kv4*(3*ca*ca+1)/r6;
  tINDb = -1*kv5*(cos(2*(a-b))*(3*ca*ca+cos(2*a))+2*sin(2*a)*s2b)/r6;
  tIND = tINDa+tINDb;
  tLJ = CLJ/(r6*r6);

return(tQUAD+tDISP+tIND+tLJ);
}

double hamH2OH2(double x[6], double epsilon)
{

/*
 ham: Evaluates the Hamiltonian at point x[6].

 */
double h2Oh2(double R, double a, double b);
double H,denom;

  H =
x[3]*x[3]*x[0]*x[0]*Ia*Ib+(epsilon-x[4])*(epsilon-x[4])*Ia*Ib+(x[4]-x[5])*(x[4]-x[5])*x[0]
*x[0]*mass*Ib+x[5]*x[5]*x[0]*x[0]*mass*Ia;
  denom = 2*mass*x[0]*x[0]*Ia*Ib;
  H = H/denom;
  H += h2Oh2(x[0],x[1],x[2]); 
return(H); 

}

void ffieldH2OH2(double t, double *x, int n, double *f,double epsilon)
{

/*
 ffield: evaluates ham. vector field

 */
double ca,ca2,c2a,cb,cb2,c2b,sa,sa2,s2a,sb,sb2,s2b,r,pr,pa,pb,r2,r3,r4,r5,r6,r7;

  ca = cos(x[1]);
  ca2 = ca*ca;
  c2a = cos(2*x[1]);
  cb = cos(x[1]-x[2]);
  cb2 = cb*cb;
  c2b = cos(2*(x[1]-x[2]));
  sa = sin(x[1]);
  sa2 = sa*sa;
  s2a = sin(2*x[1]);
  sb = sin(x[1]-x[2]);
  sb2 = sb*sb;
  s2b = sin(2*(x[1]-x[2]));
  r = x[0];
  r2 = pow(r,2);
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  r4 = pow(r2,2);
  r6 = pow(r2,3);
  r3 = r*r2;
  r5 = r*r4;
  r7 = r*r6;
  pr = x[3];
  pa = x[4];
  pb = x[5];
  f[0] = pr/mass;
  f[1] = (pa-pb)/Ia-(epsilon-pa)/(mass*r*r);
  f[2] = -(pa-pb)/Ia+pb/Ib;
  f[3] =
12*CLJ/pow(r,13)+pow(epsilon-pa,2)/(mass*r3)-6*(kv3+kv2*cb2)/r7-6*kv4*(1+3*ca2)/r7+3*Q*mu*
(ca*(-1+3*cb2)-sa*s2b)/r5-6*kv5*((3*ca2+c2a)*c2b+2*s2a*s2b)/r7;
  f[4] =
-6*kv4*ca*sa/r6-2*kv2*cb*sb/r6-(kv1*((1-3*cb2)*sa-2*c2b*sa-6*ca*cb*sb-ca*s2b))/r4+kv5*(c2b
*(-6*ca*sa-2*s2a)+4*c2b*s2a+4*c2a*s2b-2*(3*ca2+c2a)*s2b)/r6;
  f[5] =
2*kv2*cb*sb/r6-kv1*(2*c2b*sa+6*ca*cb*sb)/r4+kv5*(-4*c2b*s2a+2*(3*ca2+c2a)*s2b)/r6;
}

void bfieldH2OH2(double t, double *x,int n,double *f,double epsilon)
{

/*
 bfield: Evaluates the negative ham. vector field

 */
double ca,ca2,c2a,cb,cb2,c2b,sa,sa2,s2a,sb,sb2,s2b,r,pr,pa,pb,r2,r3,r4,r5,r6,r7;

  ca = cos(x[1]);
  ca2 = ca*ca;
  c2a = cos(2*x[1]);
  cb = cos(x[1]-x[2]);
  cb2 = cb*cb;
  c2b = cos(2*(x[1]-x[2]));
  sa = sin(x[1]);
  sa2 = sa*sa;
  s2a = sin(2*x[1]);
  sb = sin(x[1]-x[2]);
  sb2 = sb*sb;
  s2b = sin(2*(x[1]-x[2]));
  r = x[0];
  r2 = pow(r,2);
  r4 = pow(r2,2);
  r6 = pow(r2,3);
  r3 = r*r2;
  r5 = r*r4;
  r7 = r*r6;
  pr = x[3];
  pa = x[4];
  pb = x[5];
  f[0] = -1*(pr/mass);
  f[1] = -1*((pa-pb)/Ia-(epsilon-pa)/(mass*r*r));
  f[2] = -1*(-(pa-pb)/Ia+pb/Ib);
  f[3] =
-1*(12*CLJ/pow(r,13)+pow(epsilon-pa,2)/(mass*r3)-6*(kv3+kv2*cb2)/r7-6*kv4*(1+3*ca2)/r7+3*Q
*mu*(ca*(-1+3*cb2)-sa*s2b)/r5-6*kv5*((3*ca2+c2a)*c2b+2*s2a*s2b)/r7);
  f[4] =
-1*(-6*kv4*ca*sa/r6-2*kv2*cb*sb/r6-(kv1*((1-3*cb2)*sa-2*c2b*sa-6*ca*cb*sb-ca*s2b))/r4+kv5*
(c2b*(-6*ca*sa-2*s2a)+4*c2b*s2a+4*c2a*s2b-2*(3*ca2+c2a)*s2b)/r6);
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  f[5] =
-1*(2*kv2*cb*sb/r6-kv1*(2*c2b*sa+6*ca*cb*sb)/r4+kv5*(-4*c2b*s2a+2*(3*ca2+c2a)*s2b)/r6);
}

double pRmax(double x0[6], double gam)
{

/*
 initial guess for how far from fixed point var pR must be varied to hit e-surface

 */
double ham(double x[6],double gamma);
double h;

  h = fabs(ham(x0,gam)-heng)+fabs(x0[3]*x0[3]/(2*mass));
return(sqrt(2*mass*h));

}

double pamin(double x0[6],double gam)
{

/*
 initial guess for how far from fixed point var pa must be varied to hit e-surface

 */
double ham(double x[6],double gamma);
double h,b,c,discrim,bnum,cnum,denom;

  h = fabs(ham(x0,gam)-heng)+fabs((((gam-x0[4])*(gam-x0[4]))/(2*mass*x0[0]*x0[0])) +
((x0[4]-x0[5])*(x0[4]*x0[5])/(2*Ia)));
  bnum = -2*(Ia*gam+mass*x0[0]*x0[0]*x0[5]);
  cnum = Ia*gam*gam+mass*x0[0]*x0[0]*(x0[5]*x0[5]-2*Ia*h);
  denom = Ia+mass*x0[0]*x0[0];
  b = bnum/denom;
  c = cnum/denom;
  discrim = b*b-4*c; 

if(discrim<0) return(0); 
else return((-b-sqrt(discrim))/2); 

}

double pamax(double x0[6],double gam)
{

/*
 initial guess for how far from fixed point var pa must be varied to hit e-surface

 */
double ham(double x[6],double gamma);
double h,b,c,discrim,bnum,cnum,denom;

  h = fabs(ham(x0,gam)-heng)+fabs((((gam-x0[4])*(gam-x0[4]))/(2*mass*x0[0]*x0[0])) +
((x0[4]-x0[5])*(x0[4]*x0[5])/(2*Ia)));
  bnum = -2*(Ia*gam+mass*x0[0]*x0[0]*x0[5]);
  cnum = Ia*gam*gam+mass*x0[0]*x0[0]*(x0[5]*x0[5]-2*Ia*h);
  denom = Ia+mass*x0[0]*x0[0];
  b = bnum/denom;
  c = cnum/denom;
  discrim = b*b-4*c; 

if(discrim<0) return(0); 
else return((-b+sqrt(discrim))/2); 

}

double pbmin(double x0[6],double gam)
{

/*
 initial guess for how far from fixed point var pb must be varied to hit e-surface

 */
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double ham(double x[6],double gamma);
double h,b,c,discrim,bnum,cnum,denom;

  h = fabs(ham(x0,gam)-heng)+ fabs((x0[5]*x0[5]/(2*Ib)) +
((x0[4]-x0[5])*(x0[4]*x0[5])/(2*Ia)));
  bnum = -2*Ib*x0[4];
  cnum = Ib*(x0[4]*x0[4]-2*Ia*h);
  denom = Ia+Ib;
  b = bnum/denom;
  c = cnum/denom;
  discrim = b*b-4*c; 

if(discrim<0) return(0); 
else return((-b-sqrt(discrim))/2); 

}

double pbmax(double x0[6],double gam)
{

/*
 initial guess for how far from fixed point var pb must be varied to hit e-surface

 */
double ham(double x[6],double gamma);
double h,b,c,discrim,bnum,cnum,denom;

  h = fabs(ham(x0,gam)-heng)+ fabs((x0[5]*x0[5]/(2*Ib)) +
((x0[4]-x0[5])*(x0[4]*x0[5])/(2*Ia)));
  bnum = -2*Ib*x0[4];
  cnum = Ib*(x0[4]*x0[4]-2*Ia*h);
  denom = Ia+Ib;
  b = bnum/denom;
  c = cnum/denom;
  discrim = b*b-4*c; 

if(discrim<0) return(0); 
else return((-b+sqrt(discrim))/2); 

}

/*-------------------------------------*/
// TEST/DIAGNOSTIC FUNCTIONS:
// FUNCTIONS: 
// oscillator(t,x[6],n,xdot[6]) - Vector Field for Harmonic Oscillator 
// testrand() - Tests the random number generator for mean and variance 
// VARIABLES: 
// x[6] - phase space point 
// xdot[6] - value of vector field at x[6] 
// freq[3] - frequencies of harmonic oscillator test system 
// t,n - (unused) variables for time (t) or condition (n) dependant vector fields 
/*-------------------------------------*/

void oscillator(double t,double *x,int n,double *xdot,double freq[3])
{

/*
 oscillator: Evaluates the Ham. VF for a harmonic oscillator with frequencies

 freq (for use testing integrator, etc.)
 */
  xdot[0] = freq[0]*x[3];
  xdot[1] = freq[1]*x[4];
  xdot[2] = freq[2]*x[5];
  xdot[3] = -freq[0]*x[0];
  xdot[4] = -freq[1]*x[1];
  xdot[5] = -freq[2]*x[2];
}
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void testrand()
{

/*
 testrand: Tests random number generator mean & variance for 999,999 points

 */
int i;
float r,mean=0,variance=0;
for(i=0;i<999999;i++){

  r = rand();
  r = (r/RAND_MAX);
  mean = mean+r;
  variance = variance+(r-.5)*(r-.5);

};
printf("MEAN: %4.4f VARIANCE: %4.4f\n",mean/i,variance/i);

}

/*-------------------------------------*/
// FUNCTIONS THAT REMAIN UNCHANGED WITH NEW MODELS:
// FUNCTIONS: 
// roughbox(x0[6],min[5],max[5],stepmin,stepmax,intervals,resmax,resmin,epsilon) 
// - Determines rough bounding box at fixed point cut (fpcut) 
// refinebox(min[5],max[5],incut,cut,outcut,epsilon) 
// - Refines rough bounding box 
// refineboxB(min[5],max[5],incut,cut,outcut,epsilon) 
// - Refines rough bounding box for backward integrated LD 
// 
newcutbox(omin[5],omax[5],min[5],max[5],originalcut,newcut,opposingcut,points,epsilon)
// - takes bounding box at originalcut and moves it to newcut through reverse 
integration
// 
newcutboxB(omin[5],omax[5],min[5],max[5],originalcut,newcut,opposingcut,points,epsilon)
// - takes bounding box at originalcut and moves it to newcut through integration
// randompoint(x[6],min[5],max[5],cut) 
// - Selects a point at random from box [min,max] with x[0] = cut
// randomboundpoint(x[5],min[5],minT[5],max[5],maxT[5],cut) 
// - Finds point at random from boundary [minT-min,max-maxT]
// energyfit(x[6],tol,e_0,pos,res,bound,epsilon) 
// - Projects x[6] onto e-surface e_0 using pos as dir. to proj.
// energyfit3(x[6],min[5],max[5],epsilon) 
// - Attempts to proj. x[6] onto e-surface using any momentum direction needed
// energyfitdown(x[6],min[5],max[5],fit,epsilon) 
// - currently unused projection function
// VARIABLES:
// x[6] - phase space point
// min[5] - Minimum dimensions for bounding box (i.e., box dimensions are [min,max][5])
// max[5] - Maximum dimensions for bounding box (i.e., box dimensions are [min,max][5])
// minT[5] - Min. dimensions for test box surrounding bounding box
// maxT[5] - Max. dimensions for test box surrounding bounding box
// cut - the value of x[0]
// tol - how close to energy surface projected point must be
// e_0 - Energy surface to project to
// pos - variable being projected
// res - How many steps to take between x[pos] and bound
// bound - the upper or lower bound opposite x[pos]
// fit - Indicates whether energyfitdown successfully fit x[6] to energy surface
// eps - system parameter (angular momentum, field strength, etc.)
/*-------------------------------------*/
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void roughbox(double x0[6],double min[5],double max[5], double stepmin,double stepmax,
int intervals, int resmax,int resmin, double epsilon)
{
/*

 roughbox estimates the min & max dimensions of a box bounding incoming trajectories 
by 

varying each parameter from the fixed point x0 until they pass the desired energy 
level.
*/

double ham(double x[6],double epsilon);
int energyfit(double x[6],double tol,double e_0,int pos,int res,double bound,double

epsilon); 
int var,i,up; 
double h,h0,step,stepscale,bound,fit_tol,x[6];

    h0 = ham(x0,epsilon);
    h = heng - h0; //free energy of incoming trajectories 

if(h/resmax<1.e-5) fit_tol = h/resmax; 
else fit_tol = 1.e-5; 
//vary every coordinate that is not fixed; i.e., not x[0]=fpcut
for(var=1;var<6;var++) { 

//vary every coordinate up & down from fixed point
for(up=0;up<2;up++) {

          stepscale = pow(stepmax/stepmin,1./intervals); //each step is bigger than last 
for(i=0;i<6;i++) x[i] = x0[i];

          step = stepmin; 
if(up==0) step = -1*step; 
while(((ham(x,epsilon)-h0)<(h/resmax))||((ham(x,epsilon)-h0)>(h/resmin))) { 

if((ham(x,epsilon)-h0)>(h/resmin)) {
         step = step/stepscale;

 stepscale = (1+stepscale)/2;
}

       step = step*stepscale;
       x[var] = x0[var] + step;

} //stepping sequence stops short of energy surface in (h/resmin,h/resmax)
  i=1;

//keep stepping with step until we cross energy surface
while((ham(x,epsilon)-heng)<0) {

             x[var] = x0[var] + step*i;
             i++;

}
//use energyfit to project onto energy surface as usual 
if(up==0) {

             x[var] = x0[var] + step*i;
             bound = x0[var] + step*(i-1);

}
else {

             x[var] = x0[var] + step*(i-1);
             bound = x0[var] + step*i;

}
energyfit(x,1.e-15,heng,var,5,bound,epsilon);
if(up==0) min[var-1] = x[var];
if(up==1) max[var-1] = x[var];

}
}

}

void refinebox(double min[5],double max[5],double incut,double cut,double outcut,double
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epsilon) {
/*
 refinebox expands the roughbox & newcutbox estimates until they minimally contain
 the entire compact intersection of the energy surface.

 Refinement is achieved by increasing the existing box by a factor %grow% and testing
 points in the boundary between the new and old box. If the point projects onto 
the energy surface and has the desired properties, then we expand the original box
 to contain this point. Repeat until 500 consecutive points are sample without the
 desired properties. Also, use a number of factors %grow% to speed up process.

*/
void randompoint(double x[6],double min[5],double max[5],double cut);
int randomboundpoint(double x[6],double min[5],double minT[5],double max[5],double

maxT[5],double cut);
int energyfit3(double x[6],double tol,double min[5],double max[5],double epsilon);
double minT[5],maxT[5],diff[5],mintemp[5],maxtemp[5];
int i,j,k;
int firstrun,firstcount,firstflag;
int badpoints,rpoints,fit,var,plus;
double randx[6],randxs[6],grow;
double t,h,hmin,hmax;

   FILE *ferror;
//giving original box a 10% border
for(j=0;j<5;j++) {

      diff[j] = max[j]-min[j];
      minT[j] = min[j]-.05*diff[j];
      maxT[j] = max[j]+.05*diff[j];

}
//Growing box around reactive trajectories

   grow = 0;
   firstrun = 1;
   firstcount = 1;
   firstflag = 0;

for(i=0;i<10;i++) {
if(i==0) grow = .20;
if(i==1) grow = .16;
if(i==2) grow = .12;
if(i==3) grow = .08;
if(i==4) grow = .07;
if(i==5) grow = .06;
if(i==6) grow = .05;
if(i==7) grow = .04;
if(i==8) grow = .03;
if(i==9) grow = .02;
printf("(%24.16e)i = %d\n",epsilon,i);

      badpoints = 0;
      fit = 1;

if(i==9) {
for(j=0;j<5;j++) {

           diff[j] = fabs(max[j] - min[j]);
if(diff[j]<=1.e-6) firstflag = 1;

}
}
//sample in boundary until 500 bad points are consecutively sampled
while(badpoints<500) {

if((badpoints==0)&&(firstrun!=1)) {
for(j=0;j<5;j++) {

                diff[j] = max[j] - min[j];
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                minT[j] = min[j]-grow*diff[j];
                maxT[j] = max[j]+grow*diff[j];

}
}
//sample in boundary

           var = randomboundpoint(randx,min,minT,max,maxT,cut);
if(var<0) {

             var = -1*var;
             plus = 0;

}
else plus = 1;
for(j=0;j<5;j++) {

              maxtemp[j] = maxT[j];
              mintemp[j] = minT[j];

}
if(plus==0) {

             mintemp[var-1] = minT[var-1];
             maxtemp[var-1] = min[var-1];

}
if(plus==1) {

             mintemp[var-1] = max[var-1];
             maxtemp[var-1] = maxT[var-1];

}
//project in boundary using mintemp and maxtemp

           fit = energyfit3(randx,1.e-12,mintemp,maxtemp,epsilon);
if(firstrun==1) {

             firstcount++;
             rpoints = 0;

while(rpoints==0) {
randompoint(randx,minT,maxT,cut);

                 rpoints = energyfit3(randx,1.e-12,minT,maxT,epsilon); 
}

             fit = rpoints; 
if(firstcount>=2000) {

               badpoints = 1000;
               i = 10;
               firstflag = 1;
               ferror=fopen("./fullscatter/ERROR","a");

if(ferror==NULL) {printf("refinebox: cannot open file 
%s!\n","./fullscatter/ERROR"); exit(1);}

fprintf(ferror,"ERROR: epsilon = %e, Still on firstcount at INS, 
CUT!\n",epsilon);

fclose(ferror);
}

}
if(fit==0) badpoints++;
//integrate point to see if it is reactive
if(fit!=0) {

             t=0.e0;
             h=1.e-1;
             hmin=1.e-3;
             hmax = 1.e+1;

for(k=0;k<6;k++) randxs[k] = randx[k];
while((randx[0]<outcut)&&(randx[0]>incut))

rk78(&t,randx,&h,1.e-10,hmin,hmax,6,ffield,epsilon); 
if(randx[0]>=outcut) {

               badpoints++; 
} 
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if(randx[0]<=incut) {
if(firstrun==1) firstrun = 0;

               badpoints = 0;
for(k=1;k<6;k++) {

if(randxs[k]<min[k-1]) min[k-1] = randxs[k]; 
if(randxs[k]>max[k-1]) max[k-1] = randxs[k]; 

}
}

}
}

}
//EXPANDING BOX BY 1 PERCENT (JUST TO BE SAFE)
for(i=0;i<5;i++) {

      diff[i] = max[i]-min[i];
      min[i] = min[i]-.01*diff[i];
      max[i] = max[i]+.01*diff[i];

printf("(eps=%le)min = %le max = %le\n",epsilon,min[i],max[i]);
}

}

void refineboxB(double min[5],double max[5],double incut,double cut,double outcut,double
epsilon) {
/*
 refineboxB expands the roughbox & newcutboxB estimates until they minimally contain
 the entire compact intersection of the energy surface.

 Refinement is essentially the same as in refinebox, except this uses a backward 
integration to determine if point is /reverse/ reactive

*/
void randompoint(double x[6],double min[5],double max[5],double cut);
int randomboundpoint(double x[6],double min[5],double minT[5],double max[5],double

maxT[5],double cut); 
int energyfit3(double x[6],double tol,double min[5],double max[5],double epsilon); 
double minT[5],maxT[5],diff[5],mintemp[5],maxtemp[5]; 
int i,j,k; 
int firstrun,firstcount,firstflag; 
int badpoints,rpoints,fit,var,plus; 
double randx[6],randxs[6],grow; 
double t,h,hmin,hmax;

   FILE *ferror; 
for(j=0;j<5;j++) {

      diff[j] = max[j]-min[j];
      minT[j] = min[j]-.05*diff[j];
      maxT[j] = max[j]+.05*diff[j];

}
//GROWING BOX AROUND INCOMING TRAJECTORIES

   grow = 0;
   firstrun = 1;
   firstcount = 1;
   firstflag = 0;

for(i=0;i<10;i++) {
if(i==0) grow = .20;
if(i== ) grow = .16;
if(i== ) grow = .12;
if(i== ) grow = .08;
if(i== ) grow = .07;
if(i== ) grow = .06;
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if(i==6) grow = .05;
if(i==7) grow = .04;
if(i==8) grow = .03;
if(i==9) grow = .02;
printf("(%24.16e)i = %d\n",epsilon,i);

      badpoints = 0;
      fit = 1;

if(i==9) {
for(j=0;j<5;j++) {

           diff[j] = fabs(max[j] - min[j]);
if(diff[j]<=1.e-6) firstflag = 1;

}
}
while(badpoints<500) {

if((badpoints==0)&&(firstrun!=1)) { 
for(j=0;j<5;j++) {

                diff[j] = max[j] - min[j];
                minT[j] = min[j]-grow*diff[j];
                maxT[j] = max[j]+grow*diff[j];

} 
}

           var = randomboundpoint(randx,min,minT,max,maxT,cut); 
if(var<0) {

             var = -1*var;
             plus = 0;

}
else plus = 1;
for(j=0;j<5;j++) {

              maxtemp[j] = maxT[j];
              mintemp[j] = minT[j];

}
if(plus==0) {

             mintemp[var-1] = minT[var-1];
             maxtemp[var-1] = min[var-1];

}
if(plus==1) {

             mintemp[var-1] = max[var-1];
             maxtemp[var-1] = maxT[var-1]; 

}
           fit = energyfit3(randx,1.e-12,mintemp,maxtemp,epsilon); 

if(firstrun==1) {
             firstcount++;
             rpoints = 0;

while(rpoints==0) {
randompoint(randx,minT,maxT,cut);

                 rpoints = energyfit3(randx,1.e-12,minT,maxT,epsilon); 
}

             fit = rpoints; 
if(firstcount>=2000) {

               badpoints = 1000;
               i = 10;
               firstflag = 1;
               ferror=fopen("./fullscatter/ERROR","a");

if(ferror==NULL) {printf("refinebox: cannot open file 
%s!\n","./fullscatter/ERROR"); exit(1);}

fprintf(ferror,"ERROR: epsilon = %e, Still on firstcount at INS, 
CUT!\n",epsilon);

fclose(ferror);
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}
}
if(fit==0) badpoints++;
if(fit!=0) {

             t=0.e0;
             h=1.e-1;
             hmin=1.e-3;
             hmax = 1.e+1;

for(k=0;k<6;k++) randxs[k] = randx[k];
while((randx[0]<outcut)&&(randx[0]>incut))

rk78(&t,randx,&h,1.e-10,hmin,hmax,6,bfield,epsilon); 
if(randx[0]>=outcut) {

               badpoints++;
}
if(randx[0]<=incut) {
if(firstrun==1) firstrun = 0;

               badpoints = 0;
for(k=1;k<6;k++) {

if(randxs[k]<min[k-1]) min[k-1] = randxs[k]; 
if(randxs[k]>max[k-1]) max[k-1] = randxs[k]; 

}
}

}
}

}
//EXPANDING BOX BY 1 PERCENT
for(i=0;i<5;i++) {

      diff[i] = max[i]-min[i];
      min[i] = min[i]-.01*diff[i];
      max[i] = max[i]+.01*diff[i];

printf("(eps=%le)min = %le max = %le\n",epsilon,min[i],max[i]);
}

}

void newcutbox(double omin[5],double omax[5],double min[5],double max[5],double
originalcut, double newcut, double opposingcut,int points,double epsilon) {
/*
 newcutbox takes a bounding box at original cut, samples points from the box, and 
integrates them either forward or backward to newcut to obtain a rough bounding
 box at newcut.

 forward and backward integration is chosen by whether or not newcut-opposingcut < 0

 points that integrate to opposingcut are discarded
*/

void randompoint(double x[6],double min[5],double max[5],double cut);
int energyfit3(double x[6],double tol,double min[5],double max[5],double epsilon);
int i,j,ins,outs,rpoints,newdir;
double t,h,hmin,hmax;
double randx[6],randxs[6];

//chooses direction of integration
if((newcut-opposingcut)>0) newdir = 1;
else if((newcut-opposingcut)<0) newdir = -1;

   outs = 0;
for(i=0;i<5;i++) {

      omin[i] = 1.e+10;
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      omax[i] = -1.e+10;
}
while(outs<points) {

        t=0.e0;
        h=1.e-2;
        hmin=1.e-3;
        hmax = 1.e-1;
        rpoints = 0;

//select points on e-surface from roughbox
while(rpoints==0) {

randompoint(randx,min,max,originalcut);
             rpoints = energyfit3(randx,1.e-15,min,max,epsilon);

}
for(j=0;j<6;j++) randxs[j] = randx[j];
if(newdir==1) {

while((randx[0]<newcut)&&(randx[0]>opposingcut)) 
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,bfield,epsilon); 

if(randx[0]>=newcut) { 
for(j=1;j<6;j++) { 

//expand box at newcut to contain new trajectory
if(randx[j]<omin[j-1]) omin[j-1] = randx[j]; 
if(randx[j]>omax[j-1]) omax[j-1] = randx[j];

}
            outs++;

}
if(randx[0]<=opposingcut) ins++;

}
if(newdir==-1) {

while((randx[0]>newcut)&&(randx[0]<opposingcut)) 
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,ffield,epsilon); 

if(randx[0]<=newcut) ins++; 
if(randx[0]>=opposingcut) { 
for(j=1;j<6;j++) { 

//expand box at newcut to contain new trajectory
if(randx[j]<omin[j-1]) omin[j-1] = randx[j]; 
if(randx[j]>omax[j-1]) omax[j-1] = randx[j];

}
            outs++;

}
}

}
}

void newcutboxB(double omin[5],double omax[5],double min[5],double max[5],double
originalcut, double newcut, double opposingcut,int points,double epsilon) {
/*
 newcutboxB is the same as newcutbox, except the direction of integration is reversed

*/
void randompoint(double x[6],double min[5],double max[5],double cut);
int energyfit3(double x[6],double tol,double min[5],double max[5],double epsilon);
int i,j,ins,outs,rpoints,newdir;
double t,h,hmin,hmax;
double randx[6],randxs[6];

if((newcut-opposingcut)>0) newdir = 1;
else if((newcut-opposingcut)<0) newdir = -1;

   outs = 0;
for(i=0;i<5;i++) {
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      omin[i] = 1.e+10;
      omax[i] = -1.e+10;

}
while(outs<points) {

        t=0.e0;
        h=1.e-2;
        hmin=1.e-3;
        hmax = 1.e-1;
        rpoints = 0;

while(rpoints==0) {
randompoint(randx,min,max,originalcut);

             rpoints = energyfit3(randx,1.e-15,min,max,epsilon);
}
for(j=0;j<6;j++) randxs[j] = randx[j];
if(newdir==1) {

while((randx[0]<newcut)&&(randx[0]>opposingcut)) 
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,ffield,epsilon); 

if(randx[0]>=newcut) { 
for(j=1;j<6;j++) { 

if(randx[j]<omin[j-1]) omin[j-1] = randx[j]; 
if(randx[j]>omax[j-1]) omax[j-1] = randx[j]; 

}
            outs++;

}
if(randx[0]<=opposingcut) ins++;

}
if(newdir==-1) {

while((randx[0]>newcut)&&(randx[0]<opposingcut))
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,ffield,epsilon); 

if(randx[0]<=newcut) ins++; 
if(randx[0]>=opposingcut) { 
for(j=1;j<6;j++) {

if(randx[j]<omin[j-1]) omin[j-1] = randx[j];
if(randx[j]>omax[j-1]) omax[j-1] = randx[j];

}
            outs++;

}
}

}
}

void randompoint(double x[6],double min[5],double max[5],double cut)
{
/*

 x[6]: point randomly selected in box [min,max] with x[0] = cut.
*/

int i;
double r;

    x[0] = cut;
for(i=1;i<6;i++)
{

       r=rand();
       r=r/RAND_MAX;
       x[i] = min[i-1]+r*(max[i-1]-min[i-1]);

}
}

int randomboundpoint(double x[6],double min[5],double minT[5],double max[5],double
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maxT[5],double cut)
{
/*

 x[6]: point between box [min,max] and box [minT,maxT]
 step 1 - x[0] = cut
 step 2 - One of x[1]-x[5] is chosen at random, call it %x%
 step 3 - %x% is set either between (minT,min) or between (max,maxT)
 step 4 - The remaining four coordinates are chosen at random between (minT,maxT) 

Return var, the boundary coordinate.
*/

int i,dim = 6,var;
double r;
//step 1

     x[0] = cut;
//step 2

     r = rand();
     r = (dim-1)*r/RAND_MAX;
     var = 0;

for(i=0;i<dim-1;i++) {
if((r>i)&&(r<i+1)) var = i+1;

}
//step 3

     r = rand();
     r = r/RAND_MAX;

if(r<.5) var = -1*var; //x[var] will be in max_boundary
if(r>=.5) var = var; //x[var] will be in min_boundary
//step 4
for(i=1;i<dim;i++) {

        r = rand();
        r = r/RAND_MAX;

if(i!=fabs(var)) x[i] = minT[i-1]+r*(maxT[i-1]-minT[i-1]);
if(i==fabs(var)) {
if(var<0) x[i] = minT[i-1]+r*(min[i-1]-minT[i-1]);
if(var>0) x[i] = maxT[i-1]+r*(max[i-1]-maxT[i-1]);

}
}
return(var);

}

int energyfit(double x[6],double tol,double e_0,int pos,int res,double bound,double
epsilon)
{
/*

 x[6] : Point projected onto energy surface H=e_0 via momentum variable x[pos].
 tol : Tolerance for how close the energy of point *x must be to the surface e_0.
 res : How many steps to take between x[pos] and bound.
 bound: Bound is the upper (or lower) bound for energyfit. 

x[pos] should be the lower (or upper) bound.
 bound and x[pos] should be determined before calling energyfit.

 Essentially, I take /res/ steps from x[pos] to bound and wait for the point to cross 
the 

energy surface. If the point doesn't cross the surface, then energyfit returns 0, 
indicating that it failed to fit a point to the surface. If the point does cross, 

then I 
set res=2 and repeat until I refine the crossing point so that the energy of *x is 

within 
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tolerance of e_0.
*/

double ham(double x[6],double epsilon);
int i,j,fit,exitval,firstrun;
double error,y[6],range;

    fit = 0;
    error = 1.;
    range = bound-x[pos];
    exitval=0;
    firstrun = 1;

while((error>tol)&&(fit!=-1))
{

if(firstrun==0) res = 2;
         exitval = 0;
         i=0;

while(exitval==0)
{

for(j=0;j<6;j++) y[j] = x[j];
             x[pos] = x[pos]+(range/res);

if((ham(x,epsilon)>e_0)&&(ham(y,epsilon)<e_0)) {exitval = 1; fit = 1;}
if((ham(x,epsilon)<e_0)&&(ham(y,epsilon)>e_0)) {exitval = 1; fit = 1;}
if((i==res)&&(exitval==0)) {exitval = 1; fit = -1;}

             i++;
}

         firstrun = 0;
         range = x[pos]-y[pos];
         error = fabs(ham(x,epsilon)-e_0);

for(j=0;j<6;j++) x[j] = y[j];
}
if(fit!=1) fit=0;
return(fit);

}

int energyfit3(double x[6],double tol,double min[5],double max[5],double epsilon)
{
/*
 x[6]: A point fit on the energy surface between [min,max]. 
min-max: Must be chosen ahead of time to reflect which variable is on the boundary. 
energyfit3 attempts to project point onto energy surface in [min,max] using
 all momentum variables, projecting up or down, if need be.

 energyfit3 returns 0 if fit is unsuccessful 
*/

int i,j,exit;
int code[3],swapc,up;
double r[3],rnd,swapr,bound;
double x0[6];

   bound = 0; //so bound is not "possibly uninitialized"
//step 1 - Decide whether to project up or down 

   rnd = rand();
   rnd = rnd/RAND_MAX;

if(rnd<.5) up = 0;
else up = 1;
//step 2 - Choose order of momentum variables to try projecting with
for(i=0;i<3;i++) {

      code[i] = i;
      r[i] = rand();
      r[i] = r[i]/RAND_MAX;

}
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for(i=0;i<2;i++) {
for(j=i+1;j<3;j++) {

if(r[i]<r[j]) {
           swapc = j;
           swapr = r[j];
           r[j] = r[i];
           r[i] = swapr;
           code[j] = code[i];
           code[i] = swapc;

}
}

}
//step 3a - Try projecting using mom. vars. decided in step 2
// with up or down decided in step 1.

   exit=0;
   i=0;

while((exit!=1)&&(i<3)) {
for(j=0;j<6;j++) x0[j] = x[j]; 
if(up==0) {

          bound = min[code[i]+2];
          x0[i+3] = max[code[i]+2];

}
if(up==1) {

          bound = max[code[i]+2];
          x0[i+3] = min[code[i]+2];

}
        exit=energyfit(x0,tol,heng,code[i]+3,5,bound,epsilon);
        i++;

}

//step 3b - If the "up" projection doesnt work, then try
// "!up" projection so as not to be biased.
if(exit!=1) {

     i=0;
while((exit!=1)&&(i<3)) {

for(j=0;j<6;j++) x0[j] = x[j]; 
if(up==0) {

            bound = max[code[i]+2];
            x0[i+3] = min[code[i]+2];

}
if(up==1) {

            bound = min[code[i]+2];
            x0[i+3] = max[code[i]+2];

}
          exit=energyfit(x0,tol,heng,code[i]+3,5,bound,epsilon);
          i++;

}
}
if(exit==1) {

     exit=i+2;
for(i=0;i<6;i++) x[i] = x0[i];

}
return(exit);

}

int energyfitdown(double x[6],double min[5],double max[5],int fit,double epsilon)
{
/*
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x[6]: A point projected onto energy surface between [min,max]
 min-max: Must be chosen ahead of time to reflect which variable is on the boundary.
 fit: coordinate being fit
 energyfitdown returns 0 if fit is unsuccsesful

*/
int exit;
int up;
double rnd,bound;

   rnd = rand();
   rnd = rnd/RAND_MAX;

/*-choose randomly whether to project down or up-*/
if(rnd<.5) up = 0;
else up = 1;

if(up==0) {
          bound = min[fit-1];
          x[fit] = max[fit-1];

}
if(up==1) {

          bound = max[fit-1];
          x[fit] = min[fit-1];

}
/*-project onto energy surface using /fit/-*/

        exit=energyfit(x,1.e-13,heng,fit,5,bound,epsilon); 
return(exit); 

} 
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/*
this is a general purpose package to integrate ordinary differential
equations. the method used is based on two Runge-Kutta
algorithms of order 7 and 8 with automatic stepsize control.

NOTE: I inherited this code during my work with Dr. Frederic Gabern
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

static double alfa[13]={
           0.e0,      2.e0/27.e0,       1.e0/9.e0,        1.e0/6.e0,
     5.e0/12.e0,           0.5e0,       5.e0/6.e0,        1.e0/6.e0,
      2.e0/3.e0,       1.e0/3.e0,            1.e0,             0.e0,
           1.e0};

static double beta[79]={
           0.e0,      2.e0/27.e0,      1.e0/36.e0,       1.e0/12.e0,
     1.e0/24.e0,            0.e0,       1.e0/8.e0,       5.e0/12.e0,
           0.e0,    -25.e0/16.e0,     25.e0/16.e0,            .5e-1,
           0.e0,            0.e0,           .25e0,             .2e0,
  -25.e0/108.e0,            0.e0,            0.e0,    125.e0/108.e0,
   -65.e0/27.e0,    125.e0/54.e0,    31.e0/300.e0,             0.e0,
           0.e0,            0.e0,    61.e0/225.e0,       -2.e0/9.e0,
   13.e0/900.e0,            2.e0,            0.e0,             0.e0,
    -53.e0/6.e0,    704.e0/45.e0,    -107.e0/9.e0,      67.e0/90.e0,
           3.e0,   -91.e0/108.e0,            0.e0,             0.e0,
   23.e0/108.e0,  -976.e0/135.e0,    311.e0/54.e0,     -19.e0/60.e0,
     17.e0/6.e0,     -1.e0/12.e0, 2383.e0/4100.e0,             0.e0,
           0.e0,  -341.e0/164.e0, 4496.e0/1025.e0,    -301.e0/82.e0,
2133.e0/4100.e0,     45.e0/82.e0,    45.e0/164.e0,      18.e0/41.e0,
    3.e0/205.e0,            0.e0,            0.e0,             0.e0,
           0.e0,     -6.e0/41.e0,    -3.e0/205.e0,      -3.e0/41.e0,
     3.e0/41.e0,      6.e0/41.e0,            0.e0, -1777.e0/4100.e0,
           0.e0,            0.e0,  -341.e0/164.e0,  4496.e0/1025.e0,
  -289.e0/82.e0, 2193.e0/4100.e0,     51.e0/82.e0,     33.e0/164.e0,
    12.e0/41.e0,            0.e0,            1.e0};

static double c7[11]={
   41.e0/840.e0,            0.e0,            0.e0,             0.e0,
           0.e0,    34.e0/105.e0,      9.e0/35.e0,       9.e0/35.e0,
    9.e0/280.e0,     9.e0/280.e0,    41.e0/840.e0};

static double c8[13]={
           0.e0,            0.e0,            0.e0,             0.e0,
           0.e0,    34.e0/105.e0,      9.e0/35.e0,       9.e0/35.e0,
    9.e0/280.e0,     9.e0/280.e0,            0.e0,     41.e0/840.e0,
   41.e0/840.e0};

static double *x7,*x8,*xpon,*dx,*k[13];
static int neq=0;

#define MAX(a,b) (((a)<(b)) ? (b) : (a))
#define SGN(a) (((a)<0) ? -1 : 1)
#define NEG(a) (((a)<0) ? 1 : 0)
#define SGNCHG(y1,y2,x) (SGN(y1)*SGN(y2)>0 ? 0 : SGN(y2)*NEG(x))



D3  rk78.cc - Runga Kutta 78 Integrator

67

void ini_rk78(int n)
/*
this is to allocate space for the package. it must be called before
calling the rk78 routine.

parameters:
n: dimension of the system to be integrated.
*/
{
   int j;
   if (n < 1) {puts("ini_rk78: n must be at least 1"); exit(1);}
   if (neq != 0)
      {
         free(x7);
         free(x8);
         free(xpon);
         free(dx);
         for (j=0; j<13; j++) free(k[j]);
      }
   neq=n;
   x7=(double*)malloc(n*sizeof(double));
   if (x7 == NULL) {puts("ini_rk78: out of memory (1)"); exit(1);}
   x8=(double*)malloc(n*sizeof(double));
   if (x8 == NULL) {puts("ini_rk78: out of memory (2)"); exit(1);}
   xpon=(double*)malloc(n*sizeof(double));
   if (xpon == NULL) {puts("ini_rk78: out of memory (3)"); exit(1);}
   dx=(double*)malloc(n*sizeof(double));
   if (dx == NULL) {puts("ini_rk78: out of memory (4)"); exit(1);}
   for (j=0; j<13; j++)
   {
      k[j]=(double*)malloc(n*sizeof(double));
      if (k[j] == NULL) {puts("ini_rk78: out of memory (5)"); exit(1);}
   }
   return;
}
void end_rk78(int n)
/*
this is to free the memory previously allocated by ini_rk78.

parameter:
n: dimension of the systems of odes. it should coincide with the value
   previously used by ini_rk78.
*/
{
   int j;
   if (n != neq) puts("end_rk78 warning: dimensions do not coincide!");
   free(x7);
   free(x8);
   free(xpon);
   free(dx);
   for (j=0; j<13; j++) free(k[j]);
   return;
}
int rk78(double *at, double x[], double *ah, double tol,
            double hmin, double hmax, int n,
            void (*deriv)(double, double *, int, double *,double),double epsilon)
/*
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this routine performs one step of the integration procedure.
the initial condition (at,x) is changed by a new one corresponding
to the same orbit. the error is controlled by the threshold tol,
and an estimate of the error produced in the actual step is returned
as the value of the function.

parameters:
at:   time. input: time corresponding to the actual initial condition.
            output: new value corresponding to the new initial condition.
x:    position. same remarks as at.
ah:   time step (it can be modified by the routine according to the
      given threshold).
tol:  threshold to control the integration error.
hmin: minimun time step allowed.
hmax: maximum time step allowed.
n:    dimension of the system of odes.
deriv: function that returns the value of the vectorfield.

returned value: WHETHER OR NOT THE SIGN CHANGES!!! IN TERMS OF 0,+1,-1 !!! 

an estimate of the error produced in the actual step of
integration.
*/
{
   double tpon,tol1,err,nor,kh,beth,h1;
   int i,j,l,m;
   if (n > neq) {printf("rk78: wrong dimension (%d and %d)\n",n,neq); exit(1);}
   do {
/*
      this is to compute the values of k
*/
      m=0;
      for (i=0; i<13; i++)
      {
         tpon=*at+alfa[i]*(*ah);
         for (j=0; j<n; j++ ) xpon[j]=x[j];
         for ( l=0; l<i; l++ )
         {
            ++m;
            beth=*ah*beta[m];
            for (j=0; j<n; j++) xpon[j] += beth*k[l][j];
         }
         (*deriv)(tpon,xpon,n,dx,epsilon);
         for (j=0; j<n; j++ ) k[i][j] = dx[j];
      }
/*
      this is to compute the rk7 and rk8 predictions
*/
      err=nor=0.e0;
      for (j=0; j<n; j++)
      {
         x7[j]=x8[j]=x[j];
         for (l=0; l<11; l++)
         {
            kh=*ah*k[l][j];
            x7[j] += kh*c7[l];
            x8[j] += kh*c8[l];
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         }
         x8[j] += *ah*(c8[11]*k[11][j]+c8[12]*k[12][j]);
         err += fabs(x8[j]-x7[j]);
         nor += fabs(x8[j]);
      }
      err /= n;
/*
      next lines compute the new time step h
*/
      tol1=tol*(1+nor/100);
      if (err < tol1) err=MAX(err,tol1/256);
      h1=*ah;
      *ah*=0.9*pow(tol1/err,0.125);
      if (fabs(*ah) < hmin ) *ah=hmin*SGN(*ah);
      if (fabs(*ah) > hmax ) *ah=hmax*SGN(*ah);
   } while ((err >= tol1) && (fabs (*ah) > hmin));
   *at += h1;
/*
   the next line determines whether the trajectory has made an orbit
*/
   i=SGNCHG(x[1],x8[1],x[0]);
   for (j=0; j<n; j++) x[j]=x8[j];
   return (i);
}
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/*
   File where we define the system constants
*/

#define max(a,b) ((a)<(b) ? (b) : (a))
#define min(a,b) ((a)>(b) ? (b) : (a))

//RYDBERG CONSTANTS:
#define    PI                        3.1415926535897932
#define    heng                        (-1.52000000)

//H2O-H2 CONSTANTS:
/*
static double mu        =        0.730;
static double Q                =        0.710;
#define Ia                        (PI*2414)
#define Ib                        (PI*576)
static double IPa        =        0.464;
static double IPb        =        0.567;
static double IP        =        (IPa*IPb/(IPa+IPb));
static double abarH2O        =        9.830;
static double alphpl        =        6.803;
static double alphpp        =        4.845;
static double dalph        =        (alphpl-alphpp);
static double A                =        (abarH2O*alphpl*IP/4);
static double B                =        (abarH2O*alphpp*IP/4);
static double abarH2          =        ((alphpl+alphpp)/2);
//static double Cl        (-3*mu*Q/4)
//static double Dl        (A+5*B+2*mu*mu*alphpp)
static double Cl        =        (-3*mu*Q/2);
static double Dl        =        (4*A+2*B+2*mu*mu*alphpl);
#define       CLJ                100.
#define       mass                1.8        
#define       E0                (3.e-3)
//static double gamma   8.0
//TO MAKE POTENTIAL FASTER
static double kv1        =        (3*mu*Q/4);
static double kv2        =        (3*(A-B));
static double kv3        =        (A+5*B);
static double kv4        =        (mu*mu*abarH2/2);
static double kv5        =        (mu*mu*dalph/4);
*/
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#
# Makefile to build up the several programs of the package. 
#
# NOTE: I inherited this code during my work with Dr. Frederic Gabern
#
#
# in the next lines you have to choose the right parameters for your
# system. I've put as default values the ones corresponding to the GNU
# C/C++ compiler, but you should change them if you want to use a
# different compiler. I've added (in commented lines) the corresponding
# values for the compiler that comes with HP UX 10.20.
#
# Ansi C compiler
#
CC=gcc
# CC=cc (this is for HP UX 10.20)
#
# C++ compiler
#
CP=g++
CF=g77
# CP=CC (this is for HP UX 10.20)
#
# compilation flags for the C compiler
#
CFLAGS=-O3 -Wall
# CFLAGS=-O -Aa (this is for HP UX 10.20)
#
# compilation flags for the C++ compiler
#
CPPFLAGS=-O3 -Wall
# CPPFLAGS=-O (this is for HP UX 10.20)
#
# linking flags
#
LFLAGS=-lg2c -lm -s
#
# directories to store the binaries and to find/store data files resp.
# I've used relative pathnames, but it is better to use absolute ones
# (with the relative pathnames, you have to execute the programs from
# the BIN directory, otherwise they could not find the DATA directory).
#
BIN=./bin/
DAT=./data/
#
# directory to put working files (they will be erased at the end of
# the execution).
#
TMP=./
#
# ========================================================
#  you shouldn't need to modify anything beyond this line
# ========================================================
#
#######################################
# to build up the normal form program #
#######################################
RYD=newt.o main-ryd.o rk78.o
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ryd: $(RYD)
        $(CP) $(CPPFLAGS) $(RYD) -o $(BIN)ryd $(LFLAGS)
        rm -f *.o

FS=newt.o fullscatter.o rk78.o

fs: $(FS)
        $(CP) $(CPPFLAGS) $(FS) -o $(BIN)fs $(LFLAGS)
        rm -f *.o

FSB=newt.o fullscatterB.o rk78.o

fsb: $(FSB)
        $(CP) $(CPPFLAGS) $(FSB) -o $(BIN)fsb $(LFLAGS)
        rm -f *.o

FSKEPE_COMPARE=newt.o fullscatterKEPE_COMPARE.o rk78.o

fskepe_compare: $(FSKEPE_COMPARE)
        $(CP) $(CPPFLAGS) $(FSKEPE_COMPARE) -o $(BIN)fskepe_compare $(LFLAGS)
        rm -f *.o

############################
# how to make the .o files #
############################
main-ryd.o: main-ryd.cc
        $(CP) -c $(CPPFLAGS) -DDATA=\"$(DAT)\" -DTEMP=\"$(TMP)\" main-ryd.cc
fullscatter.o: fullscatter.cc
        $(CP) -c $(CPPFLAGS) -DDATA=\"$(DAT)\" -DTEMP=\"$(TMP)\" fullscatter.cc
fullscatterB.o: fullscatterB.cc
        $(CP) -c $(CPPFLAGS) -DDATA=\"$(DAT)\" -DTEMP=\"$(TMP)\" fullscatterB.cc
fullscatterKEPE_COMPARE.o: fullscatterKEPE_COMPARE.cc
        $(CP) -c $(CPPFLAGS) -DDATA=\"$(DAT)\" -DTEMP=\"$(TMP)\" 
fullscatterKEPE_COMPARE.cc
rk78.o: rk78.cc
        $(CP) -c $(CPPFLAGS) rk78.cc
newt.o: newt.cc
        $(CP) -c $(CFLAGS) newt.cc
#########
# clean #
#########
clean:
        rm -f *.o
        rm -f $(BIN)*
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