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A computationally effective method is developed to study rank-1 saddle transport. In par-
ticular, the lifetime distribution is calculated for the planar, nonzero angular momentum
scattering reaction of H, with H,O. The scattering model uses the approximate potential of
Wiesenfeldet al !4, which has 3 essential degrees of freedom (DOF) and a rotating transition
state (TS) at physically relevant energies. A Monte Carlo sampling of the energy surface on a
transverse cut near the TS provides a representative set of trajectories which are integrated
forward and backward to test for reactivity. Reactive trajectories are then integrated for-
ward into the bound state until they escape the reaction, resulting in orbit/collision data for
each trajectory. This data is collected and binned until the standard deviation of the data
in each bin is within a user defined tolerance, yielding a lifetime distribution with bounded
error terms. To test this method, it is applied to the well studied phenomena of electron
scattering in the Rydberg atom with crossed fields* and compared with the literature.
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1 Introduction

A scattering reaction between two molecules is a chemical reaction in the sense that the
molecules come close enough to interact, transfer momentum, and leave in a different state than
they entered. A scattering reaction has two potential energy wells correspondiogridand
unboundstates which are separated in phase space by a rank-1 'satlaéetransition state (TS)
opens at energies slightly larger than that of the saddle and connects the bound and unbound states.
In this way, the TS is an energetic bottleneck through which reactants pass to become products.

Bound State
Unb d State

Figure 1: Schematic energy surface for a scattering reaction. A surface which separates permissible
configurations from those which are energetically forbidden is knownHil'sregion .

Scattering reactions are typically studied with total angular momentum equal to/zer0,
Experimentally, however, the importance of nonzéiie known in the context of collision-induced
absorption. Polar molecules, such as water, absorb light differently with different rotational veloc-
ities. For example, when water and hydrogen molecules collide and transfer angular momentum,
the absorption spectrum of water changes. Absorption shifts caused by the collision of water and
hydrogen molecules can therefore provide valuable clues about the density and energy distribution
of interstellar gas cloud$#

There are no fixed points in a laboratory frame for a planar scattering reaction with nonzero
angular momentum; therefore, the scattering TS is located near a rank-1 saddéelofedsys-
tem. The reduced system is obtained by using conservation of angular momentum to work on a
~-angular momentum level set. The equations of motion are then written in body frame coordi-
nates$ which neglect internal motions of the molecules and have 3 degrees of freedom (DOF), an

frank-1 saddle - fixed point with spectrum saddbenter - - - xcenter.
tbody frame coordinates - centered on and oriented about one of the molecules.
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improvement over the unreduced 4DOF system. The rank-1 saddle underlying the scattering TS is
thus a fixed point of the reduced system.

1a Non-RRKM Lifetime Distributions

Transition state theory (TST), a workhorse for the chemical community, typically operates
on the simplifying assumption of an unstructured phase spatider this assumption, the re-
action rate for the length of a scattering reaction is reflected by the ratio of flux across the TS to
the phase space volume of the bound state. This estimation leads to a RRKM (Rice-Ramsperger-
Kassel-Marcus) lifetime distribution for the expectation of bound times, characterized by expo-
nential decay. It is well known, however, that even chaotic phase space is structured. Reaction
dynamics through a TS near a rank-1 saddle are mediated by invariant manifold tubes associated
with periodic orbits around the sad&i. These Conley-McGehee tubdmve been used to guide
the Genesis Discovery craft into halo orbit around thesaddle point of the Sun-Earth Restricted
3-Body Problem (R3BP) Tube dynamics have also been merged with invariant set methods and
Monte Carlo methods to exhibit non-RRKM lifetime distributions in the isomerization of the Ry-
dberg atom with crossed fiefd$

Previous efforts to study transport in a structured phase space have involved high order nor-
mal forms or invariant set methods to directly compute transport rates using the volumes of trans-
port tube intersections. Points in the intersection of incoming and outgoing tubes correspond to
reactive trajectories which become bound via the entrance tube, and escape via the exit tube. In
the case of scattering reactions, molecular species are preserved during and after the reaction; the
reaction occurs when molecules enter a bound state and then escape back to the unbound state after
some interaction. The relative volumes of the intersections of the entrance tube reftetutions
with the exit tube in the bound state provides a structured estimate of the lifetime distribution for
the number of revolutions in the bound state.

Instead of computing transport tube intersections directly, this method uses a Monte Carlo
random sampling to find a representative set of reactive trajectories which are evenly distributed
on the energy surface. Each reactive trajectory is flowed forward in time until its escape, after
which the bound time and either the number of nuclear core orbits or core collisions, depending
on the nature of the scattering, are recorded and binned. Because these trajectories are selected at
random, the lifetime distribution obtained from the orbit/collision data not only incorporates the
structure of phase space, but converges with a small number of trajectories as well.

1b Rank-1 Saddle Transport

A rank-1 saddle is a fixed point with eigenvalues), +v/—1wy, - - - , £v/—1w,_1, meaning
itis a saddle in one direction and a center in every other direction. In linearized coordinates around
arank-1 saddle of an n-DOF Hamiltonian vector field, the Hamiltonian may be written in quadratic

tinvariant manifold tubes associated with rank-1 saddles are known as Conley-McGehee tubes.



Center Projections

Figure 2: Projection of rank-1 saddle dynamics onto saddle and center directions.

normal form as:

Wn—1

2

w
Ho(q1, G2, - -+ s Gns D1y D2y -+ 3 P) = Aup1 + —=- (@3 +p3) + ...+ (a2 + 1))

2
where(q;, p1) may be thought of as the reaction coordinate (saddle directionyangd), . . ., (¢n, pn)
are bath modes (center directions). For enérgpove the saddle, fixing# \¢1p; < h leavesh —
Aqip1 = C energy for distribution among the bath modes. The equatien> 7~/ (g2 +p2)
defines a surface that is homeomorphi€to—, the(2n — 3)-sphere. Over the continuum &, p;
between 0 and, these spheres plus the pointatp, = h add to form a surface homeomorphic
to D21, the filled (2n — 3)-sphere. It has been shown that the surfde&s—! associated with
q1,p1 > 0 andq, p; < 0 are thefootprintsof the entrance and exit tubes, respectitely



2 Methods

The method presented here is adapted from the method of Gabakrwhich merges tube
dynamics and Monte Carlo sampling methods to compute non-RRKM lifetime distributions for
electron scattering of the Rydberg atom. This new method addresses a number of issues such as
the numerical difficulty of computing with high order normal forms and the need for error estimates
on lifetime distribution data.

There are three stages to compute the lifetime distribution for a scattering reaction: 1.) find
the TS near a saddle & the Hill’s region (bound and unbound states), 2.) identify a representative
selection of reactive trajectories, and 3.) send them into the bound region and collect data until they
escape the reaction. The previous method utilizes a high order normal form expansion in stage 2
to determine theD* footprint of the entrance tubell* x I), from which reactive trajectories are
randomly sampled. Reactive trajectories are represented by phase space points which integrate
forward along the vector field into the bound region, and backward along the vector field into the
unbound region. This method has been proven to work well for lew3] DOF systems, but
the normal form computation becomes exponentially difficult with higher DOF so that identifying
reactive trajectories soon becomes the limiting computation.

Figure 3: Nonlinear saddle dynamics near the TS for Rydberg scattering reaction.

As mentioned above, the invariant manifold entrance tube for an n-DOF model is homeomor-
phic to D=1 x I, with I parametrizing the reaction coordinate (locally, the saddle direction).
Therefore, the intersection of the tube with a nearby transversesctapologically D21, a
compact surface. Becaug®™ 1) is compact, it may be bounded by a box in phase space.

This method requires a phase space box which tightly bounds the set of all reactive tra-
jectories on a transverse cut. Rather than using the normal form computation to fiRdthé&
footprint, points are selected at random from inside the bounding box and projected onto the energy

ftransverse to the reaction coordinéte



surface. The behavior of these trajectories quickly forms a statistically representative distribution

for the behavior of all such trajectories. If the transverse cut is made in the unbound state, trajec-
tories are tested for reactivity by integration forward until they either intersect a transverse cut in

the bound state (reactive) or a cut farther into the unbound state (unreactive).

2a Bounding Box Methods at Transverse Cut

To avoid trajectories which integrate both forwanad backward into the bound region (cor-
responding to nontransit trajectories), the cy; 3 to be chosen sufficiently far from the saddle.
The algorithm used to obtain a bounding box at;@roceeds as follows: 1.) find a rough box
around reactive trajectories a,(2.) select a handful of trajectories from rough box that integrate
forward into G, and backward into &, ensuring reactivity of the trajectory. The intersection of
these trajectories with & gives a rough box at &. Finally, 3.) refine the rough boxes at each
step, growing them by test sampling in the border region.

an
"

2

Integrate Trajectories
Backwards Until Out Cut

1

3

Refine Bounding Box
Until It Contains All
Reactive Trajectories

Figure 4: Three stages involved in determining the bounding box.at C
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The Monte Carlo sampling method provides an unbiased sample from the bounding box.
This sample of points is then projected, via momentum variables, onto the energy surface; however,
because the bounding box is larger than the energy surface, some sample points project away from
the energy surface in every momentum direction. Therefore, a tighter bounding box results in
more efficient sampling. For example, if a tightly fitting box is expanded%yrbeach of its five
dimensions, then the volume of the new boxi85° ~ 1.28 times larger than necessary. This
means that at Ieasfzﬁ8 ~ 22% of points randomly selected in the box will not project onto the
energy surface. If the box is twice too large in each dimension then a%&ast)?% of randomly
selected points will not project onto the energy surface. The need for a tight-fitting bounding box
becomes more pronounced with higher dimensional energy surfaces.

2b Monte Carlo Sampling for Reactive Trajectories

After obtaining a tight-fitting bounding box at., individual reactive trajectories may be
found and tested as follows: select points at random from inside the box until one projects onto
the relevant energy surface, and continue until one of these trajectories integrates forward into the
cut G,, identifying it as reactive. Once a reactive trajectory is obtained, run it through the bound
region until it escapes, recording its specific behavior (etgf orbits/collisions in bound state).

Because the reactive trajectories are not chosen from a grid, but are randomly distributed on
the energy surface, each trajectory’s contribution to the lifetime distribution is independent from
that of any other trajectory. By binning the data collected, and runnmméleof trajectories (say
100 or 1000 at a time) through the bound state, the average value of a bin for each bundle of data
may be compared with the average value for the entire data set. The standard deviation for each
bin value among the various bundles may be calculated according to the formula:

SD(i) = -/ (Xa(i) — X () + ..+ (Xu(i) ~ X(0))?

where SD(i) is the standard deviation for th® bin, X;(i) is the ;™ bundle’s average value of

thei™ bin, andX (i) is the average value of th& bin for the entire data set. Reactive trajectories

are tested in bundles until the standard deviation of each bin’s data among the bundles is within a
given tolerance. Therefore, no more data is computed than is needed to precisely bound the error
of the lifetime distribution. Finally, since some trajectories will be expected to stay in the bound
region for a very long time, it is possible to obtain a lifetime distribution with a finite number of
bins and lump all lingering trajectories into an error-bounded tail.

2c Key Ingredients Needed to Apply Method

A major strength of this method is the generality of systems to which it may be applied. The
key features needed by a system to apply this method are: a Rill’'s region with a saddle separating
the bound and unbound states, and a nondegenerate Hamiltonian vector field. Distributions ob-
tained from this method may be combined to synthesize reaction rates in multi-channel 3ystems
as long as each channel has a compact intersection with some transverse cut and each reaction state
has a clear phase space volume.
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3 Method Applied to the Rydberg Scattering Reaction

The Hamiltonian for electron scattering in the Rydberg atom with crossed fields is given by

1 1 1 1
H=c @ +p,+02) + 5 (@py—yps) + 5 (¢ +9°) —ex — :
A stark saddle point exists at = ﬁ,y =0,z =0,p, = 0,p, = —%ﬁ,pz = 0 with energy

Es = —2+/e. For energies abovEs, the TS opens and connects the bound and unbound regions
of phase space. For consistency with the literature, the all simulations are performed with energy
h = —1.52 and electric field strengthe (.57765, .60000)].

Figure 5. Reactive & unreactive trajectories in the Rydberg scattering reaction. Trajectories are
either transit orbits entering (green) and exiting (red) the Hill’s region or nontransit orbits (blue).
Green points at g are sent into the bound state, yielding lifetime distribution data. Hill’s regions
for variouse’s are found in Appendix A.

In addition to recording the bound time for each trajectory, the number of orbits it makes
around the nuclear core is also recorded. To determine the number of nuclear orbits, it is sufficient
to have a counter which increases every time the bound trajectory passes a fixed cut transverse to
the bound orbits, say él;ig. To streamline this process, the integrator determines if the trajectory
has passed through the cut as it updates the trajectory.

tHolding energy fixed and varyinghas a similar effect to fixing and varying energy.
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3a Data and Comparison with Literature

Below, the scattering lifetime of electrons in the Rydberg atom is computed using the new
method. To start, | plot the Hill’s region and Hamiltonian energy surfaces to get an idea of where
to place the inside and outside cuts; placingdd G a distance of .1 from the fixed point cut
Cip, works well. Finally, I confirm that the reaction coordinate through the saddle is locally the
x-axis (corresponding to the saddle direction).

£=0.58

LoopsAround Core, e=.58

Electron Scattering Probability (%)

T 12345678 910111213141516171819 2021222324 252627 2829 30 TR g 4 T e 8 TR g g T 1l
Loops Around the Nuclear Core

0.8 -

Loops Around Core, e=.60 €=0.6
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Electron Scattering Probability (%)

12345678 9101112131415161718 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 & 6 ¥
Loops Around the Nuclear Core

Figure 6: Comparison of Lifetime Distributions computed by this method (left) and the method of
Gabernret al. (right). Electric field strengths af = .58 (top) ande = .60 (bottom) are used. This
method required 148,000 trajectories at .58 and 178,000 trajectories at= .60 to compute 30
bins, each with errox .1%. The method of Gaberet al. uses 1,000,000 points for each

The method of Gaberet al. uses 1000k points, takes 2 days, and gives no error estimate on
the data. The new method requireSk points and 3-5 min to compute data with ertor5% per
bin and~150k points and 1 hr to compute data with ertorl% per bin.
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3b Kinetic & Potential Energy Distribution of Entering and Exiting Trajectories

Once a bounding box is obtained, reactive trajectories may be quickly sampled, making it
possible to obtain fast-converging distributions for a number of physically relevant quantities in
addition to the lifetime distribution. Trajectories in a scattering reaction, for example, are likely
to have a different partition of energy into translational and rotational modes before and after the
reaction. The total energy is therefore broken into three mades: % (pi + pi + pg)) (transla-
tional), Ky = 3 (zp, — yp.) + 3 (¢* + y?) (rotational), and/ = H — K, — K, (potential). The
energy partition among these three modes is recorded for a number of reactive trajectories before
and after the scattering reaction. This results in distributions for these quantities at the entrance and
exit. In addition, it is possible to obtain a distribution for how individual trajectories are expected
to shift energy during the reaction by computiads;, AK, andAV for each trajectory.

K1 Entering ol =.5(px2+py2+p22)

1200

1000 -

K1 Exiting

800
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400 -
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018 0.2 0.22 0.24 0.26 028 0.3 0.32 0.34 0.36 0.38 0.4 042 044 0.46

AK1
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Figure 7: Distribution fork; = : (p?c + p} + p2) of entering (green) and exiting (red) trajectories.
AK, for each trajectory is shown in blue.
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Figure 8: Distribution fori, = 3 (zp, — yp.) + 5 (2* + y?) of entering (green) and exiting (red)
trajectories A K, for each trajectory is shown in blue.
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Figure 9: Distribution fol” = H — K, — K, of entering (green) and exiting (red) trajectories/
for each trajectory is shown in blue.

From the previous three figures, it may be concluded that after the reaction, trajectories gain
translational kinetic energy, losing both rotational and potential energy in the process.
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3c Dual Method Test - Lifetime Distribution of Exiting Trajectories Integrated Backward

To further test the method, | construct a dual method which first identifies a boy,at C
bounding those reactive trajectories which are leaving the bound region, and then integrates the
trajectoriesbackwardalong the vector field and back into the bound state. These trajectories are
flowed backward along the vector field until they escape into the unbound region. Trajectories that
escape in this way correspond to forward reactive trajectories that are on their way into the bound
state. Therefore, the dual method takes a reactive trajectory which is exiting the bound region and
flows it backward until the instance when the trajectory first enters the bound state. Because a
trajectory cannot escape the bound state without first entering, the lifetime distributions obtained
using the dual method should precisely match the distribution obtained by regular application of
the method. It is clear from the data below that both the method and its dual produce the same
lifetime distributions.

The dual method test proves useful when there is no known lifetime distribution to compare
results with. For example, a disparity between the two distributions would indicate that either one
or both of the methods are not selecting unbiased trajectories, or there is some integration error.

Forward Integration of Inbound Trajectories (e=.58) Backward Integration of Outbound Trajectories (e=.58)
2000

20000
20000

15000
15000

10000
10000

4
000 S

4 6 8 10

=
=}

2 4 [] 8 10
Orbits Orbits

-
=3

Forward Integration of Inbound Trajectories (e=.58) Backward Integration of Outbound Trajectories (e=.58)

1 1200
1200
1000
1000
500
500

600
600

400 400

200 200

Bound Time Bound Time

Figure 10: Comparison of Lifetime Distributions at= .58 computed by integrating inbound
trajectories forward (left) and outbound trajectories backward (right) along the vector field. The
top two tiles show the number of nuclear core orbits and the bottom tiles show the bound times.
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3d Higher DOF Analog of Rydberg Atom

Because of the simplicity of the Rydberg scattering model, it serves as a base for generalizing
the method to higher DOF systems. The Rydberg atom has three degrees of freedom, and these may
be classified as—like, y—like, andz—like. Computing transport rates for a generalized Rydberg
atom with 4DOF (1z—like variable, 1y—like variable, and 2 —like variables) is theoretically no
more difficult than adding the following terms to the Hamiltonian:

1
V22 + 22 w?

H(z,y,z,w) =

1 1
(P2 + 2y + 24 10) + 5 (opy —ype) + 5 (22 +97) —ex —

DN | —

Lifetime distributions for 3-8DOF systems (each constructed by adding anothi&e variable):

Lifetime Distributionfor 3DOF Rydberg Scattering LifetimeDistributionfor 4DOF Rydberg Scattering Lifetime Distributionfor SDOF Rydberg Scattering

B II |‘II B II I‘II
il [ | ] . IIIIIIIIIII---------
1234 123456

123456789 1011121314151617 18192021 22 23 2425 26 27 2829 30 5678 91011121314151617 181920 21 22 23 24 25 26 27 2829 30 7 & 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 2829 30

Lifetime Distributionfor 6DOF Rydberg Scattering Lifetime Distributionfor 7ZDOF Rydberg Scattering Lifetime Distributionfor 8DOF Rydberg Scattering

T 1234567 891011121314151617 18192021 222324252627 282930 T 1234567809 1011121314151617181920 21 222324252627 2829 30 T 1234567 89101112131415161718192021 222324252627 282930

Figure 11: Lifetime Distributions for core loops of higher dimensional Rydberg scattering analogs.

Each of these lifetime distributions was computed in 5-20 minutes, despite the dimensionality
of the systems. Because solving for the lifetime distribution is a one dimensional problem, it
converges in about the same amount of time for various DOF problems. At 9DOF, however, the
bounding box sampling became a computational bottleneck for the computation. It is worth noting
that this is a simple make-believe system, and that realistic higher DOF models may be more
nonlinearly coupled.

In addition to adding:—like variables, it is possible to add anotherlike degree of free-
dom, resulting in a rank-2 saddle system. Although the set of reactive trajectories no longer has
a compact intersection with a transverse cut near the saddle, the generality of the above method
should be well suited for tackling high rank saddles.
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3e Experimental Verification and Gaussian Energy Sampling

Because this method was developed to compute accurate rate constants in chemical scatter-
ing reactions, it is important to consider how numerical results may be experimentally verified.
Sampling points from a fixed energy level set, for example, is not physically realistic, since any
experiment will have some expected error for the energy of reactive trajectories. Choosing a Gaus-
sian distribution around a target energy is more physically relevant for experimental verification.

When sampling with a Gaussian energy distribution, it is natural to ask whether or not non-
RRKM structure persists. If non-RRKM structure only exists on a fixed energy level set, then the
reaction isffectively RRKMbecause the non-RRKM structure is destroyed with the addition of any
experimental error. The experiment below samples the Rydberg scattering problem with a Gaus-
sian energy distribution around the target eneigy —1.5 (in section 3, this would correspond
roughly toh = —1.52 ande = .60). Notice that the lifetime distribution remains non-RRKM.

Lifetime Distribution ¢=.58 Energy Distributionof SamplePoints

40000
30000
20000

10000

2 4 6 8 10 12 -1.503 -1.502 -1.501 -1.5 —1.492 —1.498 -1.497

Orbits Energy

Figure 12: Lifetime Distribution for fixed = .58 and a sample with a Gaussian energy distribu-
tion.

19



4 Planar, Nonzero Angular Momentum Scattering of HO with H ,
4a Model Hamiltonian and Reduction

The model for the planar scattering of ®&-H, used by Wiesenfeldt al. is given by the 4
DOF system shown in figure 13. The intermolecular radiusay be thought of as the reaction
coordinate along which the scattering reaction takes place, and the angesl x; are the ori-
entations of the KO and H molecules with respect to the axis between them. The fourth variable
0 is the angle between the intermolecular axis and the laboratory frame. The Hamiltonian uses
variablesR, o = x., 3 = X3 — X and is given by

2 2 2 2
PR . P — Do)’ | (Pa—Dp)° | D3
H="rr Doy
2m * 2mR? + 21, + 21, +

whereV is the potential energy function obtained by summing dipole/quadrupole, dispersion,
induction, and Leonard-Jones potentials. Since the potential is invariant under rotations of the
system in the laboratory frame, it is possible to reduce the system from 4DOF to 3DOF by simply
considering the Hamiltonian in the rotating frame. The total angular momentisra conserved
guantity and is therefore fixed to a specific= J. In this way, the total angular momentum

is aparameterfor the reduced system. Reduction from 4DOF to 3DOF provides two immediate
benefits: first, lower DOF systems are much easier to work with both from a computational and
a visualization standpoint. Second, in reduced coordinates, the relative TS becomes an actual TS
located near a saddle of the reduced potential energy surface. The details of this reduction in the
general context of abelian reductfolf are presented in Appendix C.

Body Frame

Lab Frame

Figure 13: Schematic for reduction to rotating frame. See Appendix C for details.
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The reduced system has four saddle points. Two of the saddles are rank-1 which means that
they have the desired energy spectrum saddénter< center. For energies slightly larger than that
of the lowest energy saddle, a TS opens up connecting the bound and unbound states.

Farallel RE (K=0,K=0 Farallel RE (K=1,K=0
- >
3 - | = J
: >
EO =.00315 COMPLEX EO0 =.00298 RANK-1
Ferpendicular RE {k=0,K=1}) Ferpendicular RE {k=1,KK=1})
E0 =.00300 RANK-1 E0 = .00308 COMPLEX

Figure 14: Four Saddle Points Exist for Reduced System.

The two regions are separated in configuration space by a Hill's region, which is simply
the projection of the energy surface specifiediby= FE, onto configuration space. This projec-
tion indicates which configurations are energetically forbidden, and is characterized by a single
opening (located at energies slightly above the TS). Therefore, all reactive trajectories entering
the bound state must pass through the opening of the Hill’s region. It can be seen in figure 15
that for energies much larger than the TS, more scattering channels associated with the other
three saddles open up. It is worth noting that the Hill’s region is viewed in physical coordinates
(x,y,0) = (Rcos(a), Rcos(f), ) where(R, a, 5) = (R, Xa, Xg — Xa) are body-frame coordi-
nates obtained by reducing the system to the coordinate frame which is fixed to and aligned with
the water molecule. A three dimensional Hill's region may be visualized by stagkhsjces; see
Appendix B.

Figure 15: Hill's region at various energies ob®H, potential. The white region represents
energetically forbidden configurations on the slite- 0 (corresponding to Haligning with H,O
dipole). (far left)Ey < Es. (left) Ey = Eg. (right) Ey > Eg. (far right) £y >> Fg.
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4b Potential Pitfall of Model - Collisions

Figure 16: H-H,O Collisions are typical for this potential. (left) A diagram shown in Wiesenfeld
et al, (right) A trajectory computed in body frame coordinates.

Despite providing an illustration for how to reduce a nonzero angular momentum scatter-
ing model in order to identify the saddle underlying a TS, the scattering model,forHd has
a number of potential defects. Instead of reactive trajectories making orbits around the scattering
core (HO), the hydrogen molecule repeatedly collides with the water molecule. Because the prod-
ucts of a scattering reaction do not change molecular combination, the collisions of the hydrogen
molecule with the hydrogens on the water raises suspicion that the system is actually undergo-
ing a non-scattering chemical exchange reaction. Because of the Leonard-Jones potential, these
collisions are modeled as elastic, when in reality the conditions may be right for chemical bonds
to break. In addition to the physical implications of molecular collisions in a scattering reaction,
these collisions are numerically volatile, slowly driving the trajectory off of the relevant energy
surface. Finally, the depth of the potential well results in a large number of average collisions,
making runtimes intractable for a majority of trajectories at low energies.

These difficulties not withstanding, the scattering model still possesses all of the ingredients
needed by the above bounding box and sampling methods. In fact, it may be thought of as a
particularly poorly behaved model system, from which the method is still able to extract structured
data.
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4c Data and Analysis

Collision Distribution for H2O-H2 (<30) Collision Distribution for H20-H2 (<100)
4000 4000
3000 3000
2000 2000
1000 1000
5 10 15 20 25 30 20 40 60 80 100
Collisions Collisions
Collision Distribution for H20—H2 (<1000) Collision Distribution for H2O-H2 (<10000)
14
200 1b
10
150
8
100 6
4
50
200 400 600 800 1000 2000 4000 6000 3000 10000
Collisions Collisions

Figure 17: Lifetime Distribution for the planarJ-H, scattering reaction for various bin sizes
and maximum recorded collisions. Data takesdays to compute.

Forward Integration, he(.005,.1) Forward Integration, he(.01,1) Backward Integration, he(.01,1)

4000
5
0 4000

1250 ]
3000
1000

” 2000
150 2000
500
1000 1000
250

Figure 18: Lifetime Distributions using forward (middle) and backward (right) integration are
compared. LD is also computed using a smaller time step h (left).

The above data was computed for theOHH, scattering potential with energyf =3.e-3
and total angular momentum = 7.6193. It is clear that on a large enough scale, the lifetime
distribution is strongly statistical. Below100 collisions, however, there is definite non-RRKM
structure which is displayed by the above data. These trajectories account for only a small fraction
of total reactive trajectories, yet they illustrate that even in a strongly statistical distribution, there
may still be some types of collisions that are favored locally over others. In fact, one could test any
number of hypotheses such @agjectories are more likely to have an even number of collisions
before escaping.
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5 Conclusions and Future Directions

The method developed here is applied to compute accurate lifetime distributions for two
3DOF scattering reactions. The lifetime distribution for the Rydberg scattering matches the distri-
bution of Gaberret al., confirming the accuracy of the method. Additionally, the method converges
upon the lifetime distribution very quickly, on the order of an hour. Although th@4, model is
numerically more involved, the method is able to compute a lifetime distribution on various scales
with about 2 days of computation. We also address the introduction of nonzero angular momentum
into scattering reactions by reducing the dynamics fo-¢evel set of the total angular momentum
and identifying the TS near a rank-1 saddle of the reduced system.

The next step in order to demonstrate the power and scope of this new method is to apply
it to study a> 3DOF chemical system. In addition to obtaining a lifetime distribution, it will be
important to investigate experimental verification of the data to broaden the range of applicability
of these methods. An ideal system to expand this analysis to is the generalized 90CH, H
scattering model recently developed by Wiesenéldl? 2.

5a Improving the Method

To streamline the method for 3DOF systems, there are two main avenues for improvement.
First, implementing a tighter fitting bounding box, perhaps by utilizing a patchwork of smaller
boxes, will greatly improve the efficiency of stage 2.) sampling for reactive trajectories.

Figure 19: Improved Bounding Box which uses several smaller boxes to obtain a tighter fit (left),
and Current Bounding Box (right).

The second direction to pursue in order to improve the method is the introduction of a vari-
ational integrator to accurately compute reactive trajectories. Variational integrators not only keep
trajectories on the energy surface, which is ideal for long integrations involving sharp collisions,
but also allows for larger time steps which translates to faster run times. Since the bulk of the com-
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putation is currently involved in integration of reactive trajectories, stage 3.), this is an ideal setting
to showcase the power and speed of variational integration. Finally, one can see the numerical
error in using a Runga-Kutta 78 integrator in figure 17, where halving the time step or applying the
dual method test both result in subtly different lifetime distributions.

5b Physically Meaningful Distributions

Although the above method has been designed to quickly compute accurate lifetime distribu-
tions for rank-1 transport phenomena, the bounding box/random sampling tools allow for the fast
computation of distributions for nearly any property of a trajectory that can be quantified. Find-
ing clever physical quantities to compute distributions of, may prove useful in analyzing physical
systems such as chemical reactions or asteroid capture dynamics.

5c Experimental Verification and Half Scattering Reactions

Experiments that involve scattering reactions typically study what is known as a half scat-
tering reaction. Unlike the full scattering reaction, where trajectories start and end in the unbound
state, the reactive trajectories in a half scattering reaction start in the bound state and end in the
unbound state. To obtain experimental verification of the results produced with the above method,
it will be necessary to add half scattering functionality to the lifetime distribution code. This in-
volves determining a box bounding reactive trajectomssde the bound state, transverse to the
bundle of reactive trajectories which are found in the bound state. A good candidate for such a cut
is z;;g in the Rydberg scattering reaction.

5d Color Coding Trajectories at the Bounding Box and Poincaé Cut

To determine the lifetime distribution for a scattering reaction, a large number of reactive
trajectories are sampled at random from the bounding box. These trajectories are sent into the
bound state and every collision/orbit is recorded. The records of how many collisions/orbits each
trajectory makes is stored with the initial condition from the bounding box, and it is a trivial step
to also record the multiple intersections of each individual trajectory with the Péimﬁfl;ig.
Assigning each number of collisions/orbits a color, it is possible to color code the phase space
regions in the bounding box and at the Poigcaunt containing all reactive trajectories. This would
result in a color codetieat mapndicating regions of greater and lesser scattering activity, which
would couple the reactive trajectories at the bounding box to their intersections at the @@ntar
In a similar effort, it would be possible to continuously deform initial conditions corresponding to

m—loops into initial conditions corresponding te-loops, perhaps with intermediate-loops.
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Appendix A Rydberg Scattering Reaction - Energy Surfaces

Figure 20: Hill's region for Rydberg scattering reaction at various energies. The white region
represents energetically forbidden configurations on slice 0. (far left) £y < Epg. (left)
Ey = Erg. (rlght) Ey > Erg. (far rlght) Ey >> Erg.

Figure 21: Hill's region ai& = .58 (blue) and Hamiltonian energy surface with momentum re-
stricted to fixed point momentum (red).
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Appendix B Planar H,O-H, Scattering Reaction - Energy Surfaces

-u

Figure 22: 3D Hill's region constructed by stacking slices for various energies.

Figure 23: Blue Hill's region for HO-H, scattering reaction (left), superimposed with green
Hamiltonian surface for momentum of entering trajectory (middle), and superimposed with red
Hamiltonian surface for momentum of exiting trajectory (right).
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Appendix C Planar H,O-H, Scattering Reaction - Abelian Reduction

The general method of abelian reducfidfis applied to the rigid rotor model for the scat-
tering of H-O-H,.

C1 Equations of Motion

We consider a system comprised of two planar molecule©Hnd H, approximated as
rigid rotors, interacting in the plane via the approximate potential of Wieseetedd Configu-
ration space for this system is SEXS3E(2), determined by afx, y) position and orientatiog
for each body. Reduction via translational symmetry, i.e. conservation of linear momentum, sim-
plifies the configuration space to SEX30(2F SE(2)x S'. The system is also invariant under
rotations in the plane, as seen by theinvariance of the potential of Wiesenfeddl al. Reduction
of these planar rotations further simplifies the configuration space to SE(2), which is expressed in
body-frame coordinates.

Fixing the origin at the center of mass of the®molecule in an inertial frame that translates
with the center of mass of both bodies, we may define the Kinetic Energy as follows

. I, - I, .
T(d,da ) = Sl + 502 + 32 1)

The conjugate momenta are found via the Legendre transformation (with conservative potential
energy).p = 8q =mq, j; = (% = I,¢;. This yields the following Hamiltonian:

||p||2 I ' ji
2m 2[ 21,

(q7 (ba? ¢b) (2)

The potentiall’, given below, does not depend énand we seek to reduce via this rotational
symmetry.

V(R, Xa; Xb) =

4R4 {cosxa (3 cos? Xp — 1) — sin y, sin 2)(;,}

_ ﬁ {3(A=B)cos?xp+ (A+5B)}

*a(3cos® o +1) 40
_H a( C;Z6X + ) R? {COSQXb <3COS Xa+cos?xa) +251n2xasm2xb}

Notice that the potential is written in terms of relative angles= ¢, — 0 andy;, = ¢, —
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C2 Trivializing Rotational Symmetry

We first apply two canonical coordinate transformations that trivialize the action of the sym-
metry groupG = S* on the configuration space. The first change is the introduction of polar
coordinates

gz = Rcos®, qy = Rsind

which makes clear the fact thais the angle to be reduced. The second change is the introduction
of relative coordinates:

Xa:¢a_97 pa:ja
=¢p— 0, Py = Jb

We may now reformulate the Kinetic Energy in terms of these new coordinates:

S : R I, /. N2 L, /. N 2
T(R, 0, Xa: Xp) = %RQ ——0°+ B <Xa + 9) + 52’ (Xb + 9) 3)
: R2 + I+ 1, I, I
=R+ D Y+ (Lxa + IXe) 0+ 232+ 2% (@)
2 2 2 2
We therefore have a Lagrangian in the following form:
a ) o 1 )2 ) s 1 ‘o -3 e
L(q*,0,q%) = 59000" + 90a04% + 5905"¢" = V(q®) (5)
whereg;; is the Kinetic Energy metric,
. 9 R Xa Xb
0 mR*+1,+1, 0 I, I,
9=1|R 0 m 0 0 (6)
X'a ICL 0 Ia O
Xb ]b 0 0 ]b

and the indices are arranged @sq*) whereq¢® = (R, xa, x»)- 0 is a cyclic variable and its
conjugate momentum

oL

Do = (9«9 = 9009 + goaq”

= (mR*+ I, + L) 0 + LXa + InXe
=l+p.+pp=J

is a conserved quantity, namely the total angular momentum.
We may again calculate the conjugate momenta to the variqules(R Xa, X») Via the Leg-

endre transformatiomy = = mR, Do = 6T =1, ()'(a + 9) Jar Db = = I (Xb + 9)
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jb. In these coordinates the HamiltonianAs= 1¢“p;p; + V (R, x4, x») Whereg" is the inverse
of Gij-

2 2 2 2
Ph . (Po — Pa— Do) Pa D

H =R Yo o T L Y(R, v, 7
om  ommz 2L, a1, (R, Xa> Xp) (7)

C3 Body Frame

For body frame coordinates we introdude, o, 5) = (R, x4, X» — Xa)- The kinetic energy
may be written as

.. . . Izz . ) _ L. Ia . I . .
T(R,0,d,3) = %RQ + 0+ (Ld+ D6+ 3)0 + o + Eb(ﬁ +a)?
with an associated metric tensor
mR2+1,+1, 0 I,+1, I
_ 0 m 0 0
9= L+1, 0 L+1, I,
[b O [b [b

The corresponding Hamiltonialf = 1¢%p;p; + V' is

(Po —1a)®  (pa—Ds)? P53 D
ji 26 4 Pr
omR2 o, 2L " om

with conjugate momenta, = p, + p, andps = p.

+V (8)

C4 Body frame - SE(2)

Similarly, we write the kinetic energy in cartesian bodyframe coordinates:

. L\ 2 . . 2 . .

m (rr+yy Los o Io+1, . : N\ o 1 (Y —yx Iy (xy—yzx
T=— —0 — LB )0+ — =

2 (x2+y2) PR Vel ) LR N vy B G

The kinetic energy metric ii, &, ¢, R is

Io+1, Io+1p)x
Ia+]b+m($2+y2) _ﬁ % ]b
_ UatI)y a+Ip)y*+ma?  (—(latlp)+m)zy Ly
:E2+y2 (12+y2)2 ($2+y2)2 12+y2
(Ig+1p)x (—(Ia+1Ip)+m)zy (Io+1p)z2 +my? Iy
12+y2 (IQ_i_Iy2)2 (w2}~_y2)2 12+y2
I _5523_?22 $2ixy2 I

The corresponding Hamiltonian is

g _Ps =P+ pay)® Py v Poups —apy) | PRt + P 1)) g
21, 20,  2m(z2+y?) m(a?+y?) 2m(z? + y?)
Py + 22" + 1) | papy(aty — zy + 2y’ (10)
2m(z? + y?) m(x? 4 y?)
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C5 Reduced Hamiltonian

Because the systemds-invariant, to reduce out this cyclic variable amounts to fixing each
instance ofyy equal toy. This means that in any given instance, we are working orkvel set
of the total angular momentum. The details of this process are explained and worked out in detail
in C8-9.

The reduced Hamiltonian(s) are as follows:

2 2 2 2
pE (Y= pa—m)* D D}
g=Ptr (7P P) | Pa | B,y 11
2m + 2mR?2 + 21, + 21, + (11)
(’Y - pa)2 (pa - pﬁ)2 p% p%%
H= Doy Proy 12
2mR? + 21, + 21, + 2m + (12)

As a sanity check, confirm that Egs. 11 & 12 are equivalent:

2 2 2 2
P (Y =pa—m)’ | P2 | Dy
Eq.7 H=2£ 422 *Ye ) | Za b 4y
g om T omB? 2L, 21,
2 2 2 2 2
Pr , Pa Db 7 V(Pa+pe) | (Pt )
S di3 b - 1%
om 21, 25, " omRE . mR2 | o2mR2
Eq. 13 H— (Lo + 1)y _ pat )y Pt )’ | RE(Iymp + Limp; + Lalypp)
' (2mR?)(1, + I, + mR?) mR? 2mR? 2ml, I, R?
2
g
1%
* 2(mR*+ 1, + 1) *
P B PR vt ) et et htmR)
21, 2, 2m mR? 2mR? (2mR?)(1, + I, + mR?)
2 2 2 2 2
Pe o o Py 0 APatm) Pt )
2m 21, 21, 2mR2 mRR? 2mR2?

Clearly Egs. 11 & 12 are equivalent using the relationghip= p, + p» andpg = ps.
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C6 Canonical Transformations

Now, to check that Eq. 7 is the canonical reduced Hamiltonian, assume a canonical symplec-
tic form dq* A dp; and compute the Hamilton’s equations accordingly. Then compute Hamilton’s
equations for the noncanonical form with Hamiltonian (12) and transform the first set of equations
via the transformation from’s top's. If the equations are the same, then our assumption of the
canonical symplectic form for Eq. 7 was valid and this Hamiltonian is canonical:

-~ DR . OV (v — pa— m)?
= — = —— _— 1
r=" PR="ar T R (13)
. Pa Y — Pa — Db . av
_ Pa b - _ 14
XCL ]a mR2 pa axa ( )
. Py Y —DPa—Dv . ov
=21 £ 2 = 15
Xb I, mR2 Po I (15)

The noncanonical symplectic form may be written locally as

w, = (‘MIBaﬁ _OI) (16)

From this we obtain the Hamilton’s equations for the Hamiltonian in Eq. 12:

S = \2 mRu2 :
—Butpl _ mBc 4 oY 0 -B, -B, -1 0 0\ (R

%; B, 0 0 0 -1 0 Xa

' Lia B, 0 0 0 0 —=1]1]xs

VH =w,2 = i 1 0 o 0 0 0 PR
?:_Z_’_I};LEI;Z) 0 1 0 O O O ]za

1;_:_,_%_21;5 0 0 1 0 0 O Db

Applying the coordinate transformation described in (13)-(15) these equations may be written as
follows
p*mR  (po+pp)> OV 5~ Dr DR

Lo :_.aBa_.B oV R—Pr _ PR 17
PR = PR X XDy + I + k3 R o m (17)
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i :p_+&ﬂﬂdﬁ?:_3V 2umIRE P Pat Dy
o I OXa 2 T LT R
: ov Pa M Patpe  ple+pl
T o R A Sy i ey
__ Da DPa + Db mR2+Ia+[b
T, mR2 " mRL,
Pa Pa + Db — 1%
B I_a i mR?
- . Q/LmIbRR ov 2,Um[bRR ‘ Py P+ Py
PERTTTRE T T e ML R
=V _n i patmy plotply
Ixe I, I. mR? I..mR?
D Pa + Db mR2+Ia+[b
I, mR* mR21,,
_ D i Pa+Po—
I mR2

Substitute intg; the x, andy, values obtained from the reduced Hamilton’s equations:

= v g W“EEIUL2 (ﬁa + ﬁb)Q av
= - aBa - B _ —
Pr X XvDp + 2l + s 5R
. wly o ul,
@ =Pa= by =pp— 7
(o= Do Pat D Dy Pat Dy
“ I, mR?’ X =T TR
_Pa  PatPp— K Py Patp—p
I, mR? I, mR2
2umRI, 2umRI,
R b=
_X B _ X B+ mR/ﬁ _ _mR2M2 _ 2mR2,u2 _ 2ﬂ2([a + Ib) _ QM(pa —|—pb)
ala b Db [zzz R[zzz R[zz
_ mBRp® 27 2p(pa + )
Igz RIzz RIzz
2
(Ba+0)? ((pa + ) — —“”}f’”)
mR3 mR3
_ (patp)® 20+ D) (patpo) | (Lot 1)
mp? ngjzz mRSIZQZ
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(19)
(20)
(21)
(22)
(23)
(24)

(25)



s omBy? 202 2upatpy) ot p)® 20t 1) (patpe) | plla t 1)
PR 2. " RL. RL. mR mR3L, MRS,
(Pa+p5)>  20(pa + ) 5 212 2 2 ov
- - . omRI,. + (I, + I,)?) — 2
mR® mB | mBIL (=" + 2mB°L. + (L + B)°) = 55
(Pa+p6)*  20(Pa + Po) y> 2 2 OV
_ _ R4+ I+ 1) — %
mR? mRE | mBL (mB 4L+ b)) = 57
_(p=pa—m)® OV _
mR? R — "

ov
~ OR
(26)
(27)
(28)

(29)

Hence the Hamiltonian of Eg. 7 is canonical with canonical symplectic form. We also want to
confirm that the Hamiltonian in body frame coordinates is canonical. As before, we assume that

the symplectic form is canonical and compare with Egs. 13-15.

. DR OV (Y —pa)®
=0 PR="gpt R
'__’Y_poz Po — Dp . __a_v

a= mR2 + 1, Pa = Ox
S et N ] .9V

ﬁ— Ia +Ib pﬁ_ aﬁ

(30)
(31)

(32)

Adding the expressions fa@r and 3 we recover the equation fqr,. Since we obtain the cartesian
coordinate (SE(2)) Hamiltonian from a polar transformation, it follows that this Hamiltonian is

also canonical.
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C7 Relative Equilibrium Conditions

First, we will compute the R.E. conditions for the canonical Hamiltonian of Eq. 7. We
must note that by conservation of total angular momenttim, €2 is a constant. Thus the R.E.
conditions become

: OV (v =pa—m)? NV (y—pa—m)? 292

PR="0R m R " T r m R mih (34)

) oV ov

Do = —axa =0 = . =0 (35)
ov

p=—7—=0 - a—vzo (36)
X IXp

. _Pa 7T 7 Pa Db L )

Xa = Ia mR2 — Xa 07 0 Q (37)

P Y —Da— Db . :
= - - — — Q
w=7 " — x=0,0 (38)

We must now compute the relative equilibrium conditions for the momentum shifted Hamiltonian
and reconstruct these conditions from them.

k= % —0 —  jr=0 (39)
2 ~ ~ \2

2 . . M mRiR (pa =+ pb) ov

= —YuBa — b B - 4
PR XaBa — Xo Db + 2 + R BYe) (40)

_ :U/ZmR (ﬁa +ﬁb)2 . a_v — a_v — :usz + (ﬁa +ﬁb)2

2, mR? OR OR  I2 mR?
(41)

. oV 2umI,RR oV 2umI,RR
P o TR ~ .o 0
. oV 2umI,RR oV 2umI,RR

= — — = =0 (43
P X " 2, IXb 2, 43)
. ﬁa ]50, + ﬁb ﬁa + ﬁb ﬁa

== =_1f2 44
Xe =T T LR R I (44)
. Db DatDv Da + Db Db

= = 45
= TR TR I, (45)

From these conditions we immediately recover the conditions

oV oV
-0 ~ =0
Xa

Pr =pr =0,
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and we havé% = %f which impliesp, = p, = 0 (see below). The condition gi; becomes

oV p*mR N mR*p?
OR 1% I2

a

_ pPmR
e
In other words 2%+ = 0. This is summed up as
pr =0, Pa =0, =0 (46)
% 0, 22 ~0, g—;?b‘ -0, (47)

To see thap, = p, = 0, letp, = %ﬁa and substitute into the expression fgr.

Do Do + D N 1 1 I
Do Pu pa<—+ >+pa '

1, mR? I, mR? I,mR?
o~ mR2+Ia+Ib o Izzﬁa _O
— Pa I,mR? ~ LmR?
. . . ~ . V., _ 0V, __ .
Since .. is non-zero, it follows thap, = 0. The expressmngz = 0 = 0andpr = 0

reconstruct exactly the expressiog% = g—; = pr = 0. Attempting to reconstruct the remaining

conditions, we come across the foﬁlowing equalities:

Y —Pa — Db 1%
R CRN ol
mRR? 1.,

Itis clear that? = =L+, so only the second equality must be checked.
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C8 Abelian Reduction - Lagrangian Side

¢ Infinitesimal generator: The infinitesimal generator corresponding to the cyclic action of
0 e Sis

folb.d) = G| (5 (0.07) = (.07).6.0)

e Lagrangian momentum map: The momentum map associated to this infinitesimal genera-
torisd;, : TQ — g*
JL((Qa Q)) ' fQ = GFL(q’ Q)7 gQ(q» = <(90jqj7 gijqj)a (57 0)> - ngqjg
= oot + goaq”
= (mB? + Ly + 1) 0 + LoXa + IhXo
e Locked inertia tensor: This is the instantaneous tensor of inertia calculated when the rel-
ative motion of the bodies is fixed. We introdugg, -)) as the inner product induced from
gi;- Using this we may writé(¢, ¢*) : g — g* (locally) as:
<H(07 qa)na §> - <<((97 qa)v (777 O))a ((07 qa)’ (57 0))>> - 900775'
so thatl(6, ¢*) = goo(q®) = mR? + I, + .
e Mechanical connection:We may write the connectiad : T'Q) — g (locally) asA(f, ¢*)(0, ¢~, 0, =
I7LI(FL(0, q%, 0, 4%)) = goo 90;¢’ - This simplifies as
A(6.47)(8,4%,6,4%) = 6 + gog' 90"

[aXa + IbXb
mRR? + [a + [b

From.A we can obtain the one forrd (6, ¢*) = df + A.dq®, whereA, = gy, goa:

I
+ b de

0.0%) = do gy,
AWO4°) =0+ e T T et R T

The curvatureé3 = dA = B,sdq® A d¢® has local component8,,; = (%;‘g — g%@) which
may be written in( R, x., x») coordinates as the following matrix:

0 _0A, __ 04, 2mRI, 2mRI,

OR oR 0 (MR2+1a+1p)°  (mR2+1a+1y)2
_ | o4 0 04s _ %) | ___2mni, 0 0
Bog = | or OXp  OXa = (mR2+Io+1)
94y _ [ 9Aa _ 04 0 —_ 2mRI, 0 0
R Xy  OXa (mR2+4T,+1p)*

For a giveni, € g* = R, the mechanical connection on the filsgr— Q /G is

au(0,q%) = pdd + pAndg”

:u[a /I'Ib
dys d
ey I SR R\ Cl ey - Sy Sy AU

= udf +
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e Amended potential: For i € g*, the amended potential is defined as

Vila) =V(g) + %(m I (q)u) = V(g) + %go‘oﬂf
_ w2
=Via) + 3 TSN

e Routhian: The Routhian is a function of( defined as
7 1 AP
R = S |[Hor(g. ¢)|I" — V.

where Hofq, ¢) = (—go5 g0ad®, ¢*) is the horizontal component @f, ¢) and the norm is
induced fromg,;. We may write this locally as:

1 1

R = 2 (gaﬁ - g(i)lgoozgw) qaqﬁ - 59&)1#2 - V(g%)
1 112
= —has®d® — —V(g®
2 T Y R+ I, + 1) (¢")
whereh,s is as follows
m 0 0 1 0 0 0
has = Gap — Gog Joagos = | 0 I, 0] — 5 0 I LI,
0 0 1,) ™EFHLEL\g g p
m 0 0
1o IomR2 41,0, Iy
- mR2+1,+1, mR2+I,+1,
0 I 1y IymR2 41,1,

C mR2HIg+H,  mR2HIL

Working these calculations out explicitly we find the following Routhian:

Ao Xalaly + LmB?) N X2(II, + IymR?) N mR*  XaXelaly
B 21 21 2 i
from which we obtain the Lagrange-Routh equations:

(Xa[a + XbIb)ZmR Ql’LmR(XQIa + Xblb) avu

VM(Ra Xas Xb) (48)

mR — 2 + e = - R

(49)

(Vo — X0)Laly + XalamR* + 2mRI X R 2mRE((%a — X)Ll + ptla + XalemR?) _
I I2 OXa

(50)

(Xo = Xa)Taly + Xolom B> + 2mRIyxp R 2mRR((Xy — Xa)Ialy + ply + XoTymR?) 0V,
I I2 )

(51)
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C9 Abelian Reduction - Hamiltonian Side

We have a Hamiltonian which is written locally as

1 1
H(q" po, 1) = 59" + 9" Popa + 59 "Paps + V(¢")

e Momentum map: The momentum map corresponds to the angular momentum of the sys-
tem:J:T*Q) — g*

<‘]<07qa7p97p?)7£> = <(p97pa>7 (570>> :p9£
so thatd(6,¢%, pe, p%) =po =l + pa + pp = J.

e Momentum shifting: We shift the momenta frord*(z) to J-*(0), both in the full space
and in reduced space. The momentum shifting is given by

po =10

PR = PR

_ wl,
Po=Pa= o T
- wly
pb:pb_mR2+la+lb

e Reduced Hamiltonian: InJ~'(0)/G, we have,,, = 1||5|/*+V,, where the norm is induced
from the metric and/, is the amended potential. Singg = 0 we have the following
Hamiltonian in the reduced spage’(0)/G:

o 1 afl~ ~ o MQ —
H,(q%pa) = 59 PBabs + V(¢®) + 79001

Written explicitly, the reduced Hamiltonian is as follows:

_Ph o Pa Py (Bt D)

Da Dy
g — £ 4 fa o Fb + V,(R, Xa, 52
Bom 21, 21 2mR? wlF Xa X0) (52)

_ (Lo + I)p* _ ot i (patpe) | B(Iympy + Lmp, + L) |,
(2mR?) (I, + I, + mR?) mR? 2mR? 2ml, I, R? a
(53)

e Reduced symplectic form: In general, in the reduced space, the symplectic form is not
canonical. The projection is given by the map:

_
((T*Q)ua Qu>Pu<(T*(Q/G)7 W — Bu)
where the reduced symplectic form is
0A
B — e A dE a g B a
Wy, =w — B, = dq“ N\ dpa ,uaqﬂdq A dg
2umR

IR A dy, + LdR A d
CT A Xa 0 x»)

:dR/\dﬁR—f—an/\dﬁa—l—de/\dﬁb—f-
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Appendix D Lifetime Distribution Code

The code to compute lifetime distributions for the Rydberg scattering reaction and planar
H,0O-H, scattering reaction is written in C++ and compiled using gcc version 3.4.5 on a PC running
Redhat Linux. The software is broken into five major components, contained in five separate files:
fullscatter.cc, newt.cc, rk78.cc, moduls.h, and makefile.

fullscatter.cc - This contains the main loop which computes lifetime distributions for varying
system parameters, such as endffgyotal angular momentumi, and electric field strength

newt.cc - All supporting functions, except the integrator, are contained in this file. Sup-
porting functions include the Hamiltonian and Hamiltonian vector fields, bounding box functions,
sampling code and functions used to project sampled points onto the energy surface.

rk78.cc - Runga Kutta 78 integrator that | inherited from Frederic Gabern during his Post-
doctoral work at Caltech.

moduls.h - This file contains static system parameters, such asoments of inertia of KD
and H,, among others.

makefile - The makefile tells the compiler how to combine code from the previous four files
to create an executable binary.

The code for the dual method test is very similar to fullscatter.cc, except that the order of all
integration is reversed, along with the necessary conditions for testing reactivity. The file is not
included in this appendix, however the code may be obtained by contacting the author.
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D1 fullscatter.cc - Main Scattering Code

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "newt.h" //Methods, Hamiltonian, Vector Field, etc.
#include "rk78.h"  //Integrator Code
#include "moduls.h" //System Parameters
#if !defined(DATA)
#define DATA ""
#endif
/*-Lifetime Distribution Parameters-+*/
#define BINS 30
#define CHUNKSIZE 1000
#define MAXCHUNKS 1000
#define SDTOL .001
/*-Epsilon Parameters-*/
#define epsMIN .58
#define epsSTEP .005
#define STEPS 5
/*-——0ORGANIZATION OF CODE---see section 2 of thesis for details on method----- //
* STEP O - INITIALIZE VARIABLES, INTEGRATOR, & MAIN LOOP 1
* MAIN LOOP 1 (COMPUTES LDs FOR DIFFERENT VALUES OF EPSILON) {
* SET EPSILON & FILE POINTERS
* STEP I - IDENTIFY FIXED POINT AND CUTS
* STEP IIa - DETERMINE BOUNDING BOX AT OUTCUT (NAMED '"cut")
* MAIN LOOP 2 (COMPUTES LD DATA UNTIL SD OF EACH BIN IS < SDIOL) {
* MAIN LOOP 3 (COMPUTES LD DATA IN CHUNKS OF SIZE CHUNKSIZE) {
* STEP IIb - SELECT REACTIVE TRAJECTORIES
* STEP III - INTEGRATE INTO BOUND STATE UNTIL ESCAPE
} CONTINUE ML3 UNTIL CHUNKSIZE TRAJECTORIES HAVE BEEN TESTED
* STEP 4 - WRITE DATA CHUNK TO FILES
* STEP 5a - COMPUTE SD OF EACH BIN CHUNKWISE
* STEP 5b - FIND THE LARGEST SD OF ALL BINS (CALL IT SDMAX)
} CONTINUE ML2 UNTIL SDMAX < SDTOL OR UNTIL #CHUNKS EXCEEDS MAXCHUNKS
* STEP 6 — WRITE LIFETIME DISTRIBUTION FOR SPECIFIC EPSILON
} CONTINUE ML1 UNTIL LDs ARE COMPUTED FOR ALL SELECTED VALUES OF EPSILON

# STEP 7 - UNINITIALIZE INTEGRATOR




D1 fullscatter.cc - Main Scattering Code

int main(void)
{
/7’:
STEP O - INITIALIZING VARIABLES, INTEGRATOR, & MAIN LOOP 1
7’:/
int i,j,k,outs,rpoints,letters,epscount; //counters
double epsilon; //field strength or total angular momentum parameter.
double t,h,hmin,hmax; //integrator parameters
double inincut,incut, fpcut,cut,outcut,cutdiff; //cuts
double min[5],max[5],omin[5],omax[5]; //bounding box dimensions
double saddle[6],randx[6],randxs[6]; //phase space vectors
double pic[CHUNKSIZE][6],0pic[CHUNKSIZE][6]; //image of reactive trajectories
double picsave[CHUNKSIZE][6],opicsave[CHUNKSIZE][6],timesave[CHUNKSIZE]; //" "
int orbit,orbitsave[CHUNKSIZE]; //saves orbit data for entire chunk of data
char strOCI [50],strIFO [50],strLD [50],strSC [50], strFP [50]; //strings holding
file names
FILE *0CI,*IFO,*LD,*SC,*FP; //file pointers
/*-bin variables-*/
int binLD[BINS]; //combined bin data (cummulative count)
int bin[MAXCHUNKS][BINS]; //bin data for each data chunk
int chunk; //keeps track of which data chunk we are on
int intraj; //whether or not trajectory is reactive
double maxsd; //largest SD of all bins
double meanLD[BINS]; //average of binLD over all points
double stdevLD[BINS]; //SD of each bin chunkwise
/*-random number generator-*/
srand((unsigned) time(NULL) );
testrand();
/*-integrator-(rk78.cc)-*/
ini_rk78(6);

MAIN LOOP 1 (COMPUTES LDs FOR DIFFERENT VALUES OF EPSILON)
7’:/

for(epscount = 0;epscount < STEPS; epscount++) {

epsilon = epsMIN + epscount*epsSTEP;
letters = sprintf(strOCI,"./fullscatter/0CI/OUTScomingIN_%e.oci.001",epsilon);
letters = sprintf(strIF0,"./fullscatter/IF0/INSfromOUT_%e.ifo.001",epsilon);
letters = sprintf(strlD,"./fullscatter/LD/distribution_%e.1d.001",epsilon);
letters = sprintf(strSC,"./fullscatter/scatter_%e.sc.001",epsilon);
letters = sprintf(strFP,"./fullscatter/fixedpoint.dad");

/:’:

STEP 1 - IDENTIFY FIXED POINT AND CUTS
:’:/
FP=fopen(strFP,"r");
if (FP==NULL) {printf("fullscatter: Can't open %s\n'",strFP);exit(1);}
for(i=0;i<6;i++) fscanf(FP,"%le ", 6 &saddle[i]);
fclose(FP);
cutdiff = .1;
fpcut = saddle[0];
if(saddle[0]<0) cutdiff = -1.*cutdiff;
inincut = fpcut - 1.2*cutdiff;
incut = fpcut - cutdiff;
cut = fpcut + cutdiff;
outcut = fpcut + 1.2*cutdiff;
/*-alternate code for H20-H2 scattering-*/
/7’:
R = Req();
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D1 fullscatter.cc - Main Scattering Code

Om = Omeq(R);
1 = leq(R);
gam = 1+0m*(Ia+Ib);
saddle[0] = R, saddle[1] = PI, saddle[2] = 0,saddle[3] = 0,saddle[4] =
Om*(Ia+Ib),saddle[5] = Om*Ib;
epsilon = gam - epscount*epsSTEP;
//CALCULATING CUTS
cutdiff = 2.5;
fpcut = saddle[0];
if(saddle[0]<0) {
inincut = fpcut + 1.2%cutdiff;
incut = fpcut + cutdiff;
cut = fpcut - cutdiff;
outcut = fpcut - 2*cutdiff;
}
else {
inincut = fpcut - 1.2%cutdiff;
incut = fpcut - cutdiff;
cut = fpcut + cutdiff;
outcut = fpcut + 2*cutdiff;

}
7’:/
/7’:
STEP 2a - DETERMINE BOUNDING BOX AT OUTCUT (NAMED "cut')
7’:/
/*-Determining Rough Bounding Box @ fpcut-+*/
roughbox(saddle,min,max,1.e-5,1.e+0,24,20,5,epsilon);
/*-Refining Rough Box @ fpcut-*/
refinebox(min,max,incut, fpcut,cut,epsilon);
/*-Computing Rough Bounding Box @ cut by Integrating Outs Backwards-*/
newcutbox(omin,omax,min,max, fpcut,cut,incut, 500, epsilon);
/*-Refining Rough Box @ cut-*/
refinebox(omin,omax,incut,cut,outcut,epsilon);
/*-Cleaning Bin Variables Before New Run-+*/
maxsd = 1.;
chunk = 0;
for(i=0;i<BINS;i++) {
binID[i] = 0;
for(j=0; j<MAXCHUNKS; j++) {
bin[j][i] = O;
}
meanlD[i] = O.;
stdevlD[i] = 1.;
}
/7’:
MAIN LOOP 2 (COMPUTES LD DATA UNTIL SD OF EACH BIN IS < SDTOL)
7’:/
while( (chunk<MAXCHUNKS)&&(maxsd>SDTOL)) {
i=0;
outs = 0;
/7’:

MAIN LOOP 3 (COMPUTES LD DATA IN CHUNKS OF SIZE CHUNKSIZE)
7’:/
while(i<CHUNKSIZE) {
intraj = 0;
t=0.e0;
h=1.e-2;
hmin=1.e-3;
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D1 fullscatter.cc - Main Scattering Code

hmax = 1.e+1;
rpoints = 0;
/7’:
STEP 2b - SELECT REACTIVE TRAJECTORIES
7’:/
/*-Select Point @ Random from BB-%*/
while(rpoints==0) {
randompoint (randx,omin,omax,cut);
rpoints = energyfit3(randx,l.e-15,omin,omax,epsilon);
}
/*-Test Point for Reactivity-*/
for(j=0;3j<6;j++) randxs[j] = randx[j];
while((randx[0]<outcut)&&(randx[0]>incut))
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,ffield,epsilon);
if(randx[0]>=outcut) outs++;
if(randx[0]<=incut) {
for(k=0;k<6;k++) {
pic[i][k] = randxs[k];
opic[i][k] = randx[k];
picsave[i][k] = randxs[k];
opicsave[i][k] = randx[k];
}
intraj = 1;
}
/*-If Point is Reactive, Run Through Bound State-+*/
if((intraj==1)&&(fabs(ham(pic[i],epsilon)+1.52)<.0001)) {

/7’:
STEP 3 - INTEGRATE INTO BOUND STATE UNTIL ESCAPE
7’:/
orbit = 0;
t=0.e0;
h=1.e-2;
hmin=1.e-4;

hmax=1.e+1;
/*-Integrate Point until it Leaves Bound State-*/
while((orbit<BINS)&&(fabs(pic[i][0])<2)) {

orbit += rk78(&t,pic[i],&h,1.e-15,hmin,hmax,6,ffield,epsilon);
}

/*-Record Number of Orbits-*/
orbitsave[i] = orbit;
timesave[i] = t;
if (orbit<BINS) {
binlD[orbit]++;
bin[chunk][orbit]++;
}
else {
binLD[BINS-1]++;
bin[chunk] [BINS-1]++;

¥
1++;
¥
}Y//MAIN LOOP 3 - CONTINUE UNTIL CHUNKSIZE TRAJECTORIES HAVE BEEN TESTED
/7’:
STEP 4 - WRITE DATA CHUNK TO FILES
7’:/

OCI = fopen(strOCI,"a");
if(OCI == NULL) {printf("cannot open %s\n",strOCI); exit(1l);}
for(i=0;i<CHUNKSIZE;i++) {
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D1 fullscatter.cc - Main Scattering Code

fprintf(0CI,"%d ",chunk*CHUNKSIZE+i);
for(j=0;3j<6;j++) fprintf(OCI,"%24.16e ",picsavel[i]l[j]);
fprintf(0OCI, "%24.16e\n",ham(picsave[i],epsilon));
}
fclose(0CI);
IFO = fopen(strIFO,"a");
if(IFO == NULL) {printf("cannot open %s\n",strIF0); exit(1l);}
for(i=0;i<CHUNKSIZE;i++) {
fprintf(IF0,"%d ", chunk*CHUNKSIZE+i);
for(j=0;3j<6;j++) fprintf(IFO,"%24.16e ",opicsavel[i][j]);
fprintf(IFO, "%24.16e\n" ,ham(opicsave[i],epsilon));
}
fclose(IF0);
SC = fopen(strSC,"a");
if(SC == NULL) {printf("cannot open %s\n",strSC); exit(1l);}
for(i=0;i<CHUNKSIZE;i++) {
fprintf(SC,"%d %24.16e ",chunk*CHUNKSIZE+i,ham(pic[i],epsilon));
fprintf(SC, "%24.16e %d\n",timesave[i],orbitsave[i]);

}
fclose(SC);
/7’:
STEP 5a - COMPUTE SD OF EACH BIN CHUNKWISE
7’:/

for(i=0;i<BINS;i++) {
meanlD[i] = 1.*binLD[i]/(CHUNKSIZE*(chunk+1));
stdevLD[i] = O;
for(j=0;j<chunk;j++) {
stdevlD[i] +=
(meanLD[i]-1.*bin[j][i]/CHUNKSIZE)*(meanLD[i]-1.*bin[j][i]/CHUNKSIZE);
}
stdevlD[i] = 1.*sqgrt(stdevLD[i])/(chunk+1.);

}
if(chunk>0) maxsd = 0;
/7’:
STEP 5b - FIND THE LARGEST SD OF ALL BINS (CALL IT SDMAX)
7’:/

for(i=0;i<BINS;i++) {
if(stdevLD[i]>maxsd) maxsd = stdevLD[i];
}
printf("chunk = %d, sd = %e\n",chunk,maxsd);
chunk++;
}//MAIN LOOP 2 - CONTINUE UNTIL SDMAX < SDTOL OR UNTIL #CHUNKS EXCEEDS MAXCHUNKS

/
STEP 6 - WRITE LIFETIME DISTRIBUTION FOR SPECIFIC EPSILON

7’:/

LD = fopen(strlD,"w");

for(i=0;i<12;i++) printf("%le\n",meanlLD[i]);

if (LD == NULL) {printf("cannot open %s\n",strLD); exit(1l);}

for(i=0;i<BINS;i++) fprintf(LD,"%d %24.16e %24.16e\n",i,meanlD[i],stdevlD[i]);
}//MAIN LOOP 1 - CONTINUE UNTIL LDs ARE COMPUTED FOR ALL SELECTED VALUES OF EPSILON

/7

STEP 7 - UNINITIALIZE INTEGRATOR
7’:/

end_rk78(6);

return(0);

}
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D2 newt.cc - Supporting Functions

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "rk78.h"
#include "moduls.h"

-NOTES: 1. If using H20-H2 model, change ffieldH20H2->ffield, bfieldH20H2->bfield
and hamH20H2->ham. Also, roughbox will need to be modified to use pRmax,
pamin, pamax, pbmin, and pbmax

2. Any function whose name ends in B is the backward integration version of
another function, and is used for the dual method test

3. Code is arranged in 4 major blocks:

RYDBERG SPECIFIC FUNCTIONS
H20-H2 SPECIFIC FUNCTIONS
TEST/DIAGNOSTIC FUNCTIONS
FUNCTIONS THAT REMAIN UNCHANGED WITH NEW MODELS

N WN R
|

// RYDBERG SPECIFIC FUNCTIONS:

// FUNCTIONS:

// V(x,v,z,eps) - Potential Energy

// ham(x[6],eps) - Hamiltonian

// ffield(t,x[6],n,xdot[6],eps) - Forward Hamiltonian Vector Field
// bfield(t,x[6],n,xdot[6],eps) - Backward Hamiltonian Vector Field
// VARIABLES:

// x[6] - phase space vector

// xdot[6] - value of vector field at x[6]

// eps - system parameter (angular momentum, field strength, etc.)
// t,n - (unused) variables for time (t) or condition (n) dependant vector fields

/7’: _______________________________________ /

double V(double x,double y,double z,double epsilon)
{
/7’:
V: Evaluates the Potential Energy at (x,y,z) with system parameter epsilon.
7’:/
double r,v_eps;
r = sqrt(xX*x+y*y+z*z);
v_eps = -1./r-epsilon*x;
return(v_eps);

}

double ham(double x[6],double epsilon)
{
/7’:

ham: Evaluates the Hamiltonian at point x[6] with system parameter epsilon.
/)

double V(double x, double y, double z,double epsilon);
double H;
H = (x[3]*x[3]+x[4]*x[4]+x[5]*x[5]1)/2 + (x[0]*x[4]-x[1]*x[3])/2 +
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D2 newt.cc - Supporting Functions

(x[0]*x[0]+x[1]*x[1])/8;
H += V(x[0],x[1],x[2],epsilon);
return(H);

}

void ffield(double t,double *x,int n,double *f,double epsilon)
{

/7’:
ffield: Evaluates the Ham. Vector Field at point x[6],
parameter epsilon, time t, & condition n
7’:/
double r,r3;
r = sqrt(x[O] *x[0]+x[1]*x[1]+x[2]*x[2]);
r3 = pow(r,3);
f{o] = x[3]1-x[11/2;
f[1] = x[4]1+x[0]/2;
f[2] = x[5];
f[3] = -x[4]1/2 - x[0]/4 - x[0]/r3 + epsilon;
f[4] = x[3]1/2 - x[1]/4 - x[1]/r3;
f[5] = -x[2]/1r3;
}

void bfield(double t, double *x,int n,double *f,double epsilon)
{

/7’:
bfield: Evaluates the Neg. Ham. Vector Field at point x[6], etc.
7’:/
double r,r3;
r = Sqrt(X[O] *x[0]+x[1]*x[1]+x[2]*x[2]);
r3 = pow(r,3);
f[0] = -x[3]1+x[1]1/2;
f[1] = -x[4]1-x[0]1/2;
f[2] = -x[5];
f[3] = x[4]/2 + x[0]/4 + x[0]/r3 - epsilon;
f[4] = -x[3]1/2 + x[1]/4 + x[1]/r3;
f[5] = x[2]/r3;
}
/,( ______________________________________ /

// H20-H2 SPECIFIC FUNCTIONS:

//  FUNCTIONS:

// Req() - Equilibrium radius (of saddle)

// Omeq(req) - Equilibrium Omega (at saddle)

// leq(req) - Equilibrium 1 (at saddle)

//  h2oh2(r,a,b) - Potential Energy

//  hamH20H2(x[6],eps) - Hamiltonian

//  ffieldH20H2(t,x[6],n,xdot[6],eps) - Forward Hamiltonian Vector Field
//  bfieldH20H2(t,x[6],n,xdot[6],eps) - Backward Hamiltonian Vector Field
//  DbRmax(x[6],eps) - Computes max pR can drift from fp and hit energy surface
// pamin(x[6],eps) "" min pa ""

// pamax(x[6],eps) - "" max pa ""
// pbmin(x[6],eps) - "" min pb ""
//  pbmax(x[6],eps) - "" max pb ""

// VARIABLES:
// req - equilibrium radius
// x[6] - phase space vector
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// xdot[6] - value of vector field at x[6]
// eps - system parameter (angular momentum, field strength, etc.)
// t,n - (unused) variables for time (t) or condition (n) dependant vector fields

/7': _______________________________________ /

double Req()

{
/ *

Req: Solves for Req using the bi-quartic expression of Wiesenfeld.
The quartic is in depressed form:
RA8+(C1/EO0)R*4+(2/EQ)*((Ia+Ib)C1l/m-D1)RA2-3(Ia+Ib)D1/mE0=0.
The solution comes from http://en.wikipedia.org/wiki/Quartic_equation

* /
double r2,c0,cl,c2;
double p,q,r,u,y;
double t1,t2;
tl = (Ia+Ib);
tl = tl/mass;
t2 = 1/E0;
c0 = -3.*D1*t1*t2;
cl = (2.%C1l*t1-2.*D1)*t2;
c2 = C1/E0;
p = —-c2*%c2/12-c0;
q = -c2%c2*c2/108+c2*c0/3-cl*cl/8;
r = q/2+sqrt(q*q/4+p*p*p/27);
if(r<0) u = -1.*pow(-1.*r,1./3);
else u = pow(r,1./3);
y = =-5%c2/6-u+p/(3*u);
r2 = (sqrt(c2+2*y)+sqrt(-(3*c2+2*y+2*cl/(sqrt(c2+2*y)))))/2;
return(sqrt(r2));
}
double Omeq(double req)
{
/ *
Omeq: Solves for Omega_eq given Req
/

double t1,t2;

tl = 6*D1/(pow(req,8));

t2 = 4*Cl/(pow(req,6));
return(sqrt((tl-t2)/mass));

}
double leq(double req)
{
/ %
leq: Solves for 1=m*Omega*Req’2 given Req
*/

double t1,t2;

tl = 6*D1/(pow(req,7));

t2 = 4*Cl/(pow(req,5));
return(sqrt((tl-t2)*req*req*req*mass));

}
double h20h2(double r,double a,double b)
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{

J*
h20h2: Evaluates the Potential Energy at (r,a,b)
*/
double tQUAD,tDISP,tIND,tLJ;
double tINDa,tINDDb;
double cb2,ca,s2b,r6;

cb2 = pow(cos(a-b),2);
ca = cos(a);

s2b = sin(2*(a-b));

r6 = pow(r,6);

tQUAD
tDISP

kvl*(ca*(3*cb2-1)-sin(a)*s2b)/pow(r,4);
-1*(kv2*cb2+kv3)/r6;

tINDa -1*kv4*(3*ca*ca+l)/r6;

tINDb -1*kv5*(cos(2*(a-b))*(3*ca*ca+cos(2*a))+2*sin(2*a)*s2b)/r6;
tIND = tINDa+tINDb;

tLJ = CLJ/(r6*r6);

return(tQUAD+tDISP+tIND+tL]);

}

double hamH20H2(double x[6], double epsilon)
{
/7!‘
ham: Evaluates the Hamiltonian at point x[6].

7(‘/
double h20h2(double R, double a, double b);

double H,denom;

H =
x[3]*x[3]*x[0]*x[0]*Ia*Ib+(epsilon-x[4])*(epsilon-x[4])*Ia*Ib+(x[4]-x[5])*(x[4]-x[5])*x[0]
*x[0]*mass*Ib+x[5]*x[5]*x[0]*x[0]*mass*Ia;

denom = 2*mass*x[0]*x[0]*Ia*Ib;

H = H/denom;

H += h20h2(x[0],x[1],x[2]);

return(H);

}

void ffieldH20H2(double t, double *x, int n, double *f,double epsilon)
{

/7’:
ffield: evaluates ham. vector field
7’:/
double ca,ca2?,c2a,cb,cb2,c2b,sa,sa2,s2a,sb,sb2,s2b,r,pr,pa,pb,r2,r3,r4,r5,r6,r7;
ca = cos(x[1]);

ca2 = ca*ca;

c2a = cos(2*x[1]);

cb = cos(x[1]-x[2]);

cb2 = cb*cb;

c2b = cos(2*(x[1]1-x[21));
sa = sin(x[1]);

sa2 = sa*sa;

s2a = sin(2*x[1]);

sb = sin(x[1]-x[2]);

sb2 = sb*sb;

s2b = sin(2*(x[1]1-x[21));
r = x[0];

r2 = pow(r,2);
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r4 = pow(r2,2);

r6 = pow(r2,3);

r3 = r*r2;

r5 = r*r4;

r7 = r*ro6;

pr = x[3];

pa = x[4];

pb = x[5];

f[0] = pr/mass;

f[1] = (pa-pb)/Ia-(epsilon-pa)/(mass*r*r);
f[2] = -(pa-pb)/Ia+pb/Ib;
f[3] =

12*CLJ/pow(r,13)+pow(epsilon-pa,2)/(mass*r3)-6*(kv3+kv2*cb2) /r7-6*kv4*(1+3*ca2) /r7+3*Q*mu*
(ca*(-1+3*cb2)-sa*s2b) /r5-6*kv5*((3*ca2+c2a)*c2b+2*s2a*s2b) /r7;

f[4] =
-6*kv4*ca*sa/r6-2*kv2*cb*sb/r6-(kvl*((1-3*cb2)*sa-2*c2b*sa-6*ca*cb*sb-ca*s2b))/r4+kv5*(c2b
*(-6*ca*sa-2*s2a)+4*c2b*s2a+4*c2a*s2b-2*(3*ca2+c2a)*s2b) /r6;

f[5] =
2*kv2*cb*sb/r6-kvl*(2*c2b*sa+6*ca*cb*sb) /r4+kv5*(-4*c2b*s2a+2*(3*ca2+c2a)*s2b)/r6;

}

void bfieldH20H2(double t, double *x,int n,double *f,double epsilon)
{
/7(‘
bfield: Evaluates the negative ham. vector field
*/

double ca,ca2,c2a,cb,cb2,c2b,sa,sa?,s2a,sb,sb2,s2b,r,pr,pa,pb,r2,r3,r4,r5,1r6,r7;

ca = cos(x[1]);

ca2 ca*ca;

c2a cos(2*x[1]);

cb = cos(x[1]-x[2]);

cb2 cb*chb;

c2b = cos(2*(x[1]-x[21));

sa sin(x[1]);

sa2 sa*sa;

s2a sin(2*x[1]);

sb = sin(x[1]-x[2]);

sb2 sb*sb;

s2b sin(2*(x[1]1-x[2]1));

r = x[0];

r2 pow(r,2);

r4 pow(r2,2);

r6 pow(r2,3);

r3 r*r2;

rS5 r*r4;

r7

pr

pa

pb

f[0]

fl1]

f[2]

f[3]
-1*(12*CLJ/pow(r,13)+pow(epsilon-pa,2)/(mass*r3)-6*(kv3+kv2*cb2)/r7-6*kv4*(1+3*ca2)/r7+3*Q
*mu* (ca*(-1+3*cb2)-sa*s2b) /r5-6*kv5*((3*ca2+c2a)*c2b+2*s2a*s2b) /r7);

f[4] =
-1*(-6*kv4*ca*sa/r6-2*kv2*cb*sb/r6-(kvl*((1-3*cb2)*sa-2*c2b*sa-6*ca*cb*sb-ca*s2b))/r4+kv5*
(c2b*(-6*ca*sa-2*s2a)+4*c2b*s2a+4*c2a*s2b-2*(3*ca2+c2a)*s2b)/r6);

-1*(pr/mass);
-1*((pa-pb)/Ia-(epsilon-pa)/(mass*r*r));
-1*(-(pa-pb)/Ia+pb/Ib);
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f[5] =
-1*(2*kv2*cb*sb/r6-kvl*(2*c2b*sa+6*ca*cb*sb)/r4+kv5*(-4*c2b*s2a+2*(3*ca2+c2a)*s2b)/r6);
}

double pRmax(double x0[6], double gam)

{
J*
initial guess for how far from fixed point var pR must be varied to hit e-surface
7!‘/
double ham(double x[6],double gamma);
double h;
h = fabs(ham(x0,gam)-heng)+fabs(x0[3]*x0[3]/(2*mass));
return(sqrt(2*mass*h));

}

double pamin(double x0[6],double gam)
{
/71‘

initial guess for how far from fixed point var pa must be varied to hit e-surface
7!‘/
double ham(double x[6],double gamma);

double h,b,c,discrim, bnum, cnum,denom;

h = fabs(ham(x0,gam)-heng)+fabs((((gam-x0[4])*(gam-x0[4]))/(2*mass*x0[0]*x0[0])) +
((x0[4]-x0[5]1)*(x0[4]1*x0[5])/(2*Ia)));

bnum = -2*%(Ia*gam+mass*x0[0]*x0[0]*x0[5]);

cnum = Ia*gam*gam+mass*x0[0]*x0[0]*(x0[5]*x0[5]-2*Ia*h);

denom = Ia+mass*x0[0]*x0[0];

b = bnum/denom;

¢ = cnum/denom;

discrim = b*b-4*c;

if(discrim<0) return(0);

else return((-b-sqrt(discrim))/2);

}
double pamax(double x0[6],double gam)
{

/7’:

initial guess for how far from fixed point var pa must be varied to hit e-surface
7’:/
double ham(double x[6],double gamma);

double h,b,c,discrim,bnum,cnum,denom;

h = fabs(ham(x0,gam)-heng)+fabs((((gam-x0[4])*(gam-x0[4]))/(2*mass*x0[0]*x0[0])) +
((x0[4]1-x0[5])*(x0[4]1*x0[5])/(2*Ia)));

bnum = -2%(Ia*gam+mass*x0[0]*x0[0]*x0[5]);

cnum = Ia*gam*gam+mass*x0[0]*x0[0]*(x0[5]*x0[5]-2*Ia*h);

denom = Ia+mass*x0[0]*x0[0];

b = bnum/denom;

¢ = cnum/denom;

discrim = b*b-4*c;

if(discrim<0) return(0);

else return((-b+sqrt(discrim))/2);

}
double pbmin(double x0[6],double gam)
{

/7’:

initial guess for how far from fixed point var pb must be varied to hit e-surface

7’:/
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double ham(double x[6],double gamma);

double h,b,c,discrim,bnum, cnum,denom;

h = fabs(ham(x0,gam)-heng)+ fabs((x0[5]*x0[5]/(2*Ib)) +
((x0[4]-x0[5])*(x0[4]*x0[5])/(2*Ia)));

bnum = -2*Ib*x0[4];

cnum = Ib*(x0[4]*x0[4]-2*Ia*h);

denom = Ia+Ib;

b = bnum/denom;

¢ = cnum/denom;

discrim = b*b-4*c;

if(discrim<0) return(0);

else return((-b-sqrt(discrim))/2);

}

double pbmax(double x0[6],double gam)
{
/7’:
initial guess for how far from fixed point var pb must be varied to hit e-surface
7’:/
double ham(double x[6],double gamma);
double h,b,c,discrim,bnum,cnum,denom;
h = fabs(ham(x0,gam)-heng)+ fabs((x0[5]*x0[5]/(2*Ib)) +
((x0[4]-x0[5])*(x0[4]*x0[5])/(2*Ia)));
bnum = -2*Ib*x0[4];
cnum = Ib*(x0[4]*x0[4]-2*Ia*h);
denom = Ia+Ib;
b = bnum/denom;
¢ = cnum/denom;
discrim = b*b-4*c;
if(discrim<0) return(0);
else return((-b+sqrt(discrim))/2);

}

// TEST/DIAGNOSTIC FUNCTIONS:

//  FUNCTIONS:

// oscillator(t,x[6],n,xdot[6]) - Vector Field for Harmonic Oscillator

// testrand() - Tests the random number generator for mean and variance

//  VARIABLES:

// x[6] - phase space point

// xdot[6] - value of vector field at x[6]

// freq[3] - frequencies of harmonic oscillator test system

// t,n - (unused) variables for time (t) or condition (n) dependant vector fields

/7’: _______________________________________ /

void oscillator(double t,double *x,int n,double *xdot,double freq[3])

/7’:
oscillator: Evaluates the Ham. VF for a harmonic oscillator with frequencies
freq (for use testing integrator, etc.)

7’:/

xdot[0] = freq[0]*x[3];
xdot[1] = freq[1]*x[4];
xdot[2] = freq[2]*x[5];
xdot[3] = -freq[0]*x[0];
xdot[4] = -freq[1]*x[1];
xdot[5] = -freq[2]*x[2];
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void testrand()
{
/7’:
testrand: Tests random number generator mean & variance for 999,999 points
7’:/
int i;
float r,mean=0,variance=0;
for(i=0;i<999999;i++){
r = rand();
= (r/RAND_MAX);
mean = mean+r;
variance = variance+(r-.5)*(r-.5);
+
printf("MEAN: %4.4f  VARIANCE: %4.4f\n",mean/i,variance/i);

// FUNCTIONS THAT REMAIN UNCHANGED WITH NEW MODELS:
//  FUNCTIONS:
//  roughbox(x0[6],min[5],max[5],stepmin,stepmax,intervals,resmax,resmin,epsilon)

// - Determines rough bounding box at fixed point cut (fpcut)

//  refinebox(min[5],max[5],incut,cut,outcut,epsilon)

// - Refines rough bounding box

//  refineboxB(min[5],max[5],incut,cut,outcut,epsilon)

// - Refines rough bounding box for backward integrated LD

//
newcutbox(omin[5],omax[5],min[5],max[5],originalcut,newcut,opposingcut,points,epsilon)
// - takes bounding box at originalcut and moves it to newcut through reverse
integration

//
newcutboxB(omin[5],omax[5],min[5],max[5],originalcut,newcut,opposingcut,points,epsilon)
// - takes bounding box at originalcut and moves it to newcut through integration
//  randompoint(x[6],min[5],max[5],cut)

// - Selects a point at random from box [min,max] with x[0] = cut

//  randomboundpoint (x[5],min[5],minT[5],max[5],maxT[5], cut)

// - Finds point at random from boundary [minT-min,max-maxT]

// energyfit(x[6],tol,e_0,pos,res,bound,epsilon)

// - Projects x[6] onto e-surface e_0 using pos as dir. to proj.

// energyfit3(x[6],min[5],max[5],epsilon)

// - Attempts to proj. x[6] onto e-surface using any momentum direction needed
// energyfitdown(x[6],min[5],max[5],fit,epsilon)

// - currently unused projection function

// VARIABLES:
// x[6] - phase space point

// min[5] - Minimum dimensions for bounding box (i.e., box dimensions are [min,max][5])
// max[5] - Maximum dimensions for bounding box (i.e., box dimensions are [min,max][5])

// minT[5] - Min. dimensions for test box surrounding bounding box

// maxT[5] - Max. dimensions for test box surrounding bounding box

// cut - the value of x[0]

// tol - how close to energy surface projected point must be

// e_0 - Energy surface to project to

// pos - variable being projected

// ~res - How many steps to take between x[pos] and bound

//  bound - the upper or lower bound opposite x[pos]

// fit - Indicates whether energyfitdown successfully fit x[6] to energy surface
// eps - system parameter (angular momentum, field strength, etc.)
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void roughbox(double x0[6],double min[5],double max[5], double stepmin,double stepmax,
int intervals, int resmax,int resmin, double epsilon)
{
/7':
roughbox estimates the min & max dimensions of a box bounding incoming trajectories
by
varying each parameter from the fixed point x0 until they pass the desired energy
level.
7':/
double ham(double x[6],double epsilon);
int energyfit(double x[6],double tol,double e_0,int pos,int res,double bound,double
epsilon);
int var,i,up;
double h,hO,step,stepscale,bound,fit_tol,x[6];
hO = ham(x0,epsilon);
h = heng - h0; //free energy of incoming trajectories
if(h/resmax<l.e-5) fit_tol = h/resmax;
else fit_tol = 1.e-5;
//vary every coordinate that is not fixed; i.e., not x[0]=fpcut
for(var=1;var<6;var++) {
//vary every coordinate up & down from fixed point
for(up=0;up<2;up++) {
stepscale = pow(stepmax/stepmin,l./intervals); //each step is bigger than last
for(i=0;i<6;i++) x[1i] = xO0[1i];
step = stepmin;
if(up==0) step = -1*step;
while(((ham(x,epsilon)-h0)<(h/resmax)) || ((ham(x,epsilon)-h0)>(h/resmin))) {
if((ham(x,epsilon)-h0)>(h/resmin)) {
step = step/stepscale;
stepscale = (1l+stepscale)/2;
}
step = step*stepscale;
x[var] = x0O[var] + step;
} //stepping sequence stops short of energy surface in (h/resmin,h/resmax)
i=1;
//keep stepping with step until we cross energy surface
while((ham(x,epsilon)-heng)<0) {
x[var] = x0[var] + step*i;

i++;
}
//use energyfit to project onto energy surface as usual
if(up==0) {

x[var] = x0[var] + step*i;

bound = x0[var] + step*(i-1);
}
else {

x[var] = x0[var] + step*(i-1);

bound = x0[var] + step*i;
}
energyfit(x,1.e-15,heng,var,5,bound,epsilon);
if(up==0) min[var-1] = x[var];
if(up==1) max[var-1] = x[var];

}

void refinebox(double min[5],double max[5],double incut,double cut,double outcut,double
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epsilon) {

/7':
refinebox expands the roughbox & newcutbox estimates until they minimally contain
the entire compact intersection of the energy surface.

Refinement is achieved by increasing the existing box by a factor %grow% and testing
points in the boundary between the new and old box. If the point projects onto
the energy surface and has the desired properties, then we expand the original box
to contain this point. Repeat until 500 consecutive points are sample without the
desired properties. Also, use a number of factors %grow% to speed up process.
7':/
void randompoint(double x[6],double min[5],double max[5],double cut);
int randomboundpoint(double x[6],double min[5],double minT[5],double max[5],double
maxT[5],double cut);
int energyfit3(double x[6],double tol,double min[5],double max[5],double epsilon);
double minT[5],maxT[5],diff[5],mintemp[5],maxtemp[5];
int i,j,k;
int firstrun,firstcount,firstflag;
int badpoints,rpoints,fit,var,plus;
double randx[6],randxs[6],grow;
double t,h,hmin,hmax;
FILE *ferror;
//giving original box a 10% border
for(j=0;j<5;j++) {

diff[j] = max[j]-min[j];

minT[j] = min[j]-.05*diff[j];

maxT[j] = max[j]+.05*diff[j];
}
//Growing box around reactive trajectories
grow = 0;

firstrun = 1;
firstcount = 1;
firstflag = 0;
for(i=0;i<10;i++) {

if(i==0) grow = .20;
if(i==1) grow = .16;
if(i==2) grow = .12;
if(i==3) grow = .08;
if(i==4) grow = .07;
if(i==5) grow = .06;
if(i==6) grow = .05;
if(i==7) grow = .04;
if(i==8) grow = .03;

if(i==9) grow .02;
printf (" (%24.16e)i = %d\n",epsilon,i);
badpoints = 0;
fit = 1;
if(i==9) {
for(j=0;j<5;j++) {
diff[j] = fabs(max[j] - min[j]);
if(diff[jl<=1.e-6) firstflag = 1;
}
}

//sample in boundary until 500 bad points are consecutively sampled
while(badpoints<500) {
if((badpoints==0)&&(firstrun!=1)) {
for(j=0;3j<5;j++) {
diff[j] = max[j] - min[j];
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minT[j]
maxT[j]
3

min[j]-grow*diff[j];
max[j]+grow*diff[j];

}
//sample in boundary
var = randomboundpoint(randx,min,minT,max,maxT,cut);
if(var<0) {
var = -l1*var;
plus = 0;
3
else plus = 1;
for(j=0;j<5;j++) {
maxtemp[j] = maxT[j];
mintemp[j] = minT[j];
}
if(plus==0) {
mintemp[var-1]
maxtemp[var-1]
}
if(plus==1) {
mintemp[var-1]
maxtemp[var-1]
}
//project in boundary using mintemp and maxtemp
fit = energyfit3(randx,l.e-12,mintemp,maxtemp,epsilon);
if(firstrun==1) {
firstcount++;
rpoints = 0;
while(rpoints==0) {
randompoint (randx,minT,maxT,cut);
rpoints = energyfit3(randx,l.e-12,minT,maxT,epsilon);

minT[var-1];
min[var-1];

max[var-1];
maxT[var-1];

}
fit = rpoints;
if(firstcount>=2000) {
badpoints = 1000;
i = 10;
firstflag = 1;
ferror=fopen("./fullscatter/ERROR","a");
if(ferror==NULL) {printf("refinebox: cannot open file
%s!\n","./fullscatter/ERROR"); exit(1);}
fprintf(ferror, "ERROR: epsilon = %e, Still on firstcount at INS,
CUT!\n",epsilon);
fclose(ferror);
}
}
if(fit==0) badpoints++;
//integrate point to see if it is reactive
if(fit!=0) {
t=0.e0;
h=1.e-1;
hmin=1.e-3;
hmax = 1.e+1;
for(k=0;k<6;k++) randxs[k] = randx[k];
while((randx[0]<outcut)&&(randx[0]>incut))
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,ffield,epsilon);
if(randx[0]>=outcut) {
badpoints++;

}
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if(randx[0]<=incut) {
if(firstrun==1) firstrun = 0;
badpoints = 0;
for(k=1;k<6;k++) {
if(randxs[k]<min[k-1]) min[k-1]
if(randxs[k]>max[k-1]) max[k-1]

randxs[k];
randxs[k];

}
}
//EXPANDING BOX BY 1 PERCENT (JUST TO BE SAFE)
for(i=0;i<5;i++) {
diff[i] = max[i]-min[i];
min[i] = min[i]-.01*diff[i];
max[i] = max[1i]+.01*diff[i];
printf (" (eps=%le)min = %le max = %le\n",epsilon,min[i],max[i]);

}

void refineboxB(double min[5],double max[5],double incut,double cut,double outcut,double
epsilon) {
/7’:
refineboxB expands the roughbox & newcutboxB estimates until they minimally contain
the entire compact intersection of the energy surface.

Refinement is essentially the same as in refinebox, except this uses a backward

integration to determine if point is /reverse/ reactive
7’:/

void randompoint(double x[6],double min[5],double max[5],double cut);

int randomboundpoint(double x[6],double min[5],double minT[5],double max[5],double
maxT[5],double cut);

int energyfit3(double x[6],double tol,double min[5],double max[5],double epsilon);

double minT[5],maxT[5],diff[5],mintemp[5],maxtemp[5];

int i,j,k;

int firstrun,firstcount,firstflag;

int badpoints,rpoints,fit,var,plus;

double randx[6],randxs[6],grow;

double t,h,hmin,hmax;

FILE *ferror;

for(j=0;j<5;j++) {

diff[j] = max[j]-min[j];
minT[j] = min[j]-.05*diff[j];
maxT[j] = max[j]+.05*diff[j];
}
//GROWING BOX AROUND INCOMING TRAJECTORIES
grow = 0;
firstrun = 1;
firstcount = 1;

firstflag = 0;
for(i=0;i<10;i++) {

if(i==0) grow = .20;
if(i==1) grow = .16;
if(i==2) grow = .12;
if(i==3) grow = .08;
if(i==4) grow = .07;
if(i==5) grow = .06;
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if(i==6) grow = .05;
if(i==7) grow = .04;
if(i==8) grow = .03;
if(i==9) grow = .02;

printf (" (%24.16e)i = %d\n",epsilon,i);
badpoints = 0;
fit = 1;
if(i==9) {
for(j=0;j<5;j++) {
diff[j] = fabs(max[j] - min[j]);
if(diff[jl<=1.e-6) firstflag = 1;
}
}
while(badpoints<500) {
if((badpoints==0)&&(firstrun!=1)) {
for(j=0;j<5;j++) {

diff[j] = max[j] - min[j];
minT[j] = min[j]-grow*diff[j];
maxT[j] = max[j]+grow*diff[j];

}
}
var = randomboundpoint(randx,min,minT,max,maxT,cut);
if(var<0) {
var = -1*var;
plus = 0;
¥
else plus = 1;
for(j=0;j<5;j++) {
maxtemp[j] = maxT[j];
mintemp[j] = minT[j];
¥
if(plus==0) {
mintemp[var-1]
maxtemp[var-1]

minT[var-1];
min[var-1];

}
if(plus==1) {
mintemp[var-1]
maxtemp[var-1]
}
fit = energyfit3(randx,l.e-12,mintemp,maxtemp,epsilon);
if(firstrun==1) {
firstcount++;
rpoints = 0;
while(rpoints==0) {
randompoint (randx,minT,maxT,cut);
rpoints = energyfit3(randx,l.e-12,minT,maxT,epsilon);

max[var-1];
maxT[var-1];

}
fit = rpoints;
if(firstcount>=2000) {
badpoints = 1000;
i = 10;
firstflag = 1;
ferror=fopen("./fullscatter/ERROR","a");
if(ferror==NULL) {printf("refinebox: cannot open file
%s!\n","./fullscatter/ERROR"); exit(1);}
fprintf(ferror, "ERROR: epsilon = %e, Still on firstcount at INS,
CUT!\n",epsilon);
fclose(ferror);
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}
}
if(fit==0) badpoints++;
if(fit!=0) {
t=0.€e0;
h=1.e-1;
hmin=1.e-3;
hmax = 1.e+1;
for(k=0;k<6;k++) randxs[k] = randx[k];
while((randx[0]<outcut)&&(randx[0]>incut))
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,bfield,epsilon);
if(randx[0]>=outcut) {
badpoints++;
}
if(randx[0]<=incut) {
if(firstrun==1) firstrun = 0;
badpoints = 0;
for(k=1;k<6;k++) {
if(randxs[k]<min[k-1]) min[k-1]
if(randxs[k]>max[k-1]) max[k-1]

randxs([k];
randxs([k];

}
}
//EXPANDING BOX BY 1 PERCENT
for(i=0;i<5;i++) {
diff[i] = max[i]-min[i];
min[i] = min[i]-.01*diff[i];
max[i] = max[i]+.01*diff[i];
printf (" (eps=%le)min = %le max = %le\n",epsilon,min[i],max[i]);
}
}

void newcutbox(double omin[5],double omax[5],double min[5],double max[5],double

originalcut, double newcut, double opposingcut,int points,double epsilon) {

/7’:
newcutbox takes a bounding box at original cut, samples points from the box, and
integrates them either forward or backward to newcut to obtain a rough bounding
box at newcut.

forward and backward integration is chosen by whether or not newcut-opposingcut < 0
points that integrate to opposingcut are discarded

void randompoint(double x[6],double min[5],double max[5],double cut);

int energyfit3(double x[6],double tol,double min[5],double max[5],double epsilon);
int i, j,ins,outs,rpoints,newdir;

double t,h,hmin,hmax;

double randx[6],randxs[6];

//chooses direction of integration
if((newcut-opposingcut)>0) newdir = 1;
else if((newcut-opposingcut)<0) newdir = -1;
outs = 0;
for(i=0;i<5;i++) {

omin[i] = 1.e+10;
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omax[i] = -1.e+10;
¥
while(outs<points) {
t=0.e0;
h=1.e-2;
hmin=1.e-3;
hmax = 1.e-1;
rpoints = 0;
//select points on e-surface from roughbox
while(rpoints==0) {
randompoint (randx,min,max,originalcut);
rpoints = energyfit3(randx,l.e-15,min,max,epsilon);
}
for(j=0;3j<6;j++) randxs[j] = randx[j];
if(newdir==1) {
while((randx[0]<newcut)&&(randx[0]>opposingcut))
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,bfield,epsilon);
if(randx[0]>=newcut) {
for(j=1;j<6;j++) {
//expand box at newcut to contain new trajectory

if(randx[jl<omin[j-1]) omin[j-1] = randx[j];
if(randx[jl>omax[j-1]) omax[j-1] = randx[j];
}
outs++;
¥
if(randx[0]<=opposingcut) ins++;

}
if(newdir==-1) {
while((randx[0]>newcut)&&(randx[0]<opposingcut))
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,ffield,epsilon);
if(randx[0]<=newcut) ins++;
if(randx[0]>=opposingcut) {
for(j=1;j<6;j++) {
//expand box at newcut to contain new trajectory

if(randx[jl<omin[j-1]) omin[j-1] = randx[j];
if(randx[j]l>omax[j-1]) omax[j-1] = randx[j];
}
outs++;

}
}

}

void newcutboxB(double omin[5],double omax[5],double min[5],double max[5],double
originalcut, double newcut, double opposingcut,int points,double epsilon) {
/7’.‘

newcutboxB is the same as newcutbox, except the direction of integration is reversed
7’.‘/

void randompoint(double x[6],double min[5],double max[5],double cut);

int energyfit3(double x[6],double tol,double min[5],double max[5],double epsilon);

int i, j,ins,outs,rpoints,newdir;

double t,h,hmin,hmax;

double randx[6],randxs[6];

if((newcut-opposingcut)>0) newdir = 1;

else if((newcut-opposingcut)<0) newdir = -1;
outs = 0;

for(i=0;i<5;i++) {
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omin[i] = 1.e+10;
omax[i] = -1.e+10;
}
while(outs<points) {
t=0.e0;
h=1.e-2;
hmin=1.e-3;
hmax = 1.e-1;

rpoints = 0;
while(rpoints==0) {
randompoint (randx,min,max,originalcut);
rpoints = energyfit3(randx,l.e-15,min,max,epsilon);
}
for(j=0;3j<6;j++) randxs[j] = randx[j];
if(newdir==1) {
while((randx[0]<newcut)&&(randx[0]>opposingcut))
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,ffield,epsilon);
if(randx[0]>=newcut) {
for(j=1;j<6;j++) {

if(randx[jl<omin[j-1]) omin[j-1] = randx[j];
if(randx[j]l>omax[j-1]) omax[j-1] = randx[j];
}
outs++;
by
if(randx[0]<=opposingcut) ins++;
}

if(newdir==-1) {
while((randx[0]>newcut)&&(randx[0]<opposingcut))
rk78(&t,randx,&h,1.e-10,hmin,hmax,6,ffield,epsilon);
if(randx[0]<=newcut) ins++;
if(randx[0]>=opposingcut) {
for(j=1;j<6;j++) {

if(randx[jl<omin[j-1]) omin[j-1] = randx[j];
if(randx[j]l>omax[j-1]) omax[j-1] = randx[j];
}
outs++;
}
}

}

void randompoint(double x[6],double min[5],double max[5],double cut)
{

/:!‘

:!‘/

x[6]: point randomly selected in box [min,max] with x[0] = cut.

int i;
double r;
x[0] = cut;
for(i=1;i<6;i++)
{
r=rand();
r=r/RAND_MAX;
x[1] = min[i-1]+r*(max[i-1]-min[i-1]);
}
}

int randomboundpoint(double x[6],double min[5],double minT[5],double max[5],double
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maxT[5],double cut)
{
/7’:
x[6]: point between box [min,max] and box [minT,maxT]
step 1 - x[0] = cut
step 2 - One of x[1]-x[5] is chosen at random, call it %x%
step 3 - %x% is set either between (minT,min) or between (max,maxT)
step 4 - The remaining four coordinates are chosen at random between (minT,maxT)

Return var, the boundary coordinate.

int i,dim = 6,var;

double r;

//step 1

x[0] = cut;

//step 2

r = rand();

r = (dim-1)*r/RAND_MAX;

var = 0;

for(i=0;i<dim-1;i++) {
if((r>i)&&(r<i+l)) var = i+l;

}

//step 3
r = rand();
r = r/RAND_MAX;
if(r<.5) var = -1*var; //x[var] will be in max_boundary
if(r>=.5) var = var; //x[var] will be in min_boundary
//step 4
for(i=1;i<dim;i++) {
r = rand();
r = r/RAND_MAX;
if(i!=fabs(var))
if(i==fabs(var))
if(var<0) x[i]
if(var>0) x[i]
}

[i] = minT[i-1]+r*(maxT[i-1]-minT[i-1]);

minT[i-1]+r*(min[i-1]-minT[i-1]);
maxT[i-1]+r*(max[i-1]-maxT[i-1]);

I~ %

}

return(var);

int energyfit(double x[6],double tol,double e_0,int pos,int res,double bound,double

epsilon)

{

/7’:
x[6] : Point projected onto energy surface H=e_0 via momentum variable x[pos].
tol : Tolerance for how close the energy of point *x must be to the surface e_0.
res : How many steps to take between x[pos] and bound.

bound: Bound is the upper (or lower) bound for energyfit.
x[pos] should be the lower (or upper) bound.
bound and x[pos] should be determined before calling energyfit.
Essentially, I take /res/ steps from x[pos] to bound and wait for the point to cross
the
energy surface. If the point doesn't cross the surface, then energyfit returns 0,
indicating that it failed to fit a point to the surface. If the point does cross,
then T
set res=2 and repeat until I refine the crossing point so that the energy of *x 1is
within
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7':/

}

tolerance of e_0.

double ham(double x[6],double epsilon);
int i,j,fit,exitval,firstrun;
double error,y[6],range;
fit = 0;
error = 1.;
range = bound-x[pos];
exitval=0;
firstrun = 1;
while((error>tol)&&(fit!=-1))
{
if(firstrun==0) res = 2;
exitval = 0;
i=0;
while(exitval==0)
{
for(j=0;3<6;j++) v[jl = x[j1;
x[pos] = x[pos]+(range/res);
if((ham(x,epsilon)>e_0)&&(ham(y,epsilon)<e_0)) {exitval
if((ham(x,epsilon)<e_0)&&(ham(y,epsilon)>e_0)) {exitval
if((i==res)&&(exitval==0)) {exitval = 1; fit = -1;}
i++;

}

firstrun = 0;

range = x[pos]-y[pos];

error = fabs(ham(x,epsilon)-e_0);
, for(j=0;j<6;j++) x[j1 = v[jl;
if(fit!=1) fit=0;
return(fit);

1; fit
1; fit

e

int energyfit3(double x[6],double tol,double min[5],double max[5],double epsilon)

{
/7’:

x[6]: A point fit on the energy surface between [min,max].

min-max: Must be chosen ahead of time to reflect which variable is on the boundary.
energyfit3 attempts to project point onto energy surface in [min,max] using

all momentum variables, projecting up or down, if need be.
energyfit3 returns 0 if fit is unsuccessful

int i,j,exit;
int code[3],swapc,up;
double r[3],rnd,swapr,bound;
double x0[6];
bound = 0; //so bound is not "possibly uninitialized"
//step 1 - Decide whether to project up or down
rnd = rand();
rnd = rnd/RAND_MAX;
if(rnd<.5) up = 0;
else up = 1;
//step 2 - Choose order of momentum variables to try projecting with
for(i=0;i<3;i++) {
code[i] = 1i;
r[i] = rand();
r[i] = r[i]/RAND_MAX;
}
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for(i=0;i<2;i++) {
for(j=i+1;3<3;j++) {
if(r[il<r[j]) {

swapc = j;
swapr = r[j]l;
r[j] = r[il;
r[i] = swapr;
code[j] = code[i];
code[i] = swapc;
¥
}
}
//step 3a - Try projecting using mom. vars. decided in step 2
// with up or down decided in step 1.
exit=0;
i=0;

while((exit!=1)&&(i<3)) {
for(j=0;j<6;j++) x0[j] = x[j1;
if(up==0) {
bound = min[code[i]+2];
x0[1+3] = max[code[i]+2];
}
if(up==1) {
bound = max[code[i]+2];
xX0[1+3] = min[code[i]+2];
}
exit=energyfit(x0,tol,heng,code[i]+3,5,bound,epsilon);
i++;

}

//step 3b - If the "up" projection doesnt work, then try
// "lup" projection so as not to be biased.
if(exit!=1) {
i=0;
while((exit!=1)&&(i<3)) {
for(j=0;j<6;j++) x0[j] = x[j];
if(up==0) {
bound = max[code[i]+2];
x0[i+3] = min[code[i]+2];
}
if(up==1) {
bound = min[code[i]+2];
x0[i+3] = max[code[i]+2];
}
exit=energyfit(x0,tol,heng,code[i]+3,5,bound,epsilon);
i++;
}
}
if(exit==1) {
exit=i+2;
for(i=0;i<6;i++) x[1i] = x0[1i];
}
return(exit);

}

int energyfitdown(double x[6],double min[5],double max[5],int fit,double epsilon)

{
/7’.‘
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x[6]: A point projected onto energy surface between [min,max]

min-max: Must be chosen ahead of time to reflect which variable is on the boundary.
fit: coordinate being fit

energyfitdown returns 0 if fit is unsuccsesful

int exit;
int up;
double rnd,bound;
rnd = rand();
rnd = rnd/RAND_MAX;
/*-choose randomly whether to project down or up-*/
if(rnd<.5) up = 0;
else up = 1;
if(up==0) {
bound = min[fit-1];
x[fit] = max[fit-1];
}
if(up==1) {
bound = max[fit-1];
x[fit] = min[fit-1];
¥
/*-project onto energy surface using /fit/-*/
exit=energyfit(x,1.e-13,heng,fit,5,bound,epsilon);
return(exit);

}
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/7’:

this is a general purpose package to integrate ordinary differential
equations. the method used is based on two Runge-Kutta

algorithms of order 7 and 8 with automatic stepsize control.

NOTE: I inherited this code during my work with Dr. Frederic Gabern
7’:/

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

static double alfa[13]={

0.e0, 2.e0/27.e0, 1.e0/9.e0, 1.e0/6.e0,
5.e0/12.e0, 0.5e0, 5.e0/6.e0, 1.e0/6.e0,
2.e0/3.e0, 1.e0/3.e0, 1.e0, 0.e0,
1.e0};
static double beta[79]={
0.e0, 2.e0/27.e0, 1.e0/36.€0, 1.e0/12.e0,
1.e0/24.e0, 0.e0, 1.e0/8.e0, 5.e0/12.e0,
0.e0, -25.e0/16.e0, 25.e0/16.e0, .5e-1,
0.e0, 0.e0, .25e0, .2e0,
-25.e0/108.e0, 0.e0, 0.e0, 125.e0/108.e0,
-65.e0/27.e0, 125.e0/54.e0, 31.e0/300.e0, 0.e0,
0.e0, 0.e0, 61.e0/225.¢e0, -2.e0/9.e0,
13.e0/900.e0, 2.e0, 0.e0, 0.e0,
-53.e0/6.e0, 704.e0/45.e0, -107.e0/9.e0, 67.e0/90.e0,
3.e0, -91.e0/108.e0, 0.e0, 0.e0,
23.e0/108.e0, -976.e0/135.e0, 311.e0/54.¢e0, -19.e0/60.e0,
17.e0/6.€0, -1.e0/12.e0, 2383.e0/4100.¢€0, 0.e0,
0.e0, -341.e0/164.e0, 4496.e0/1025.e0, -301.e0/82.€0,
2133.e0/4100.e0, 45.e0/82.¢e0, 45.e0/164.e0, 18.e0/41.€e0,
3.e0/205.e0, 0.e0, 0.e0, 0.e0,
0.e0, -6.e0/41.e0, -3.e0/205.e0, -3.e0/41.e0,
3.e0/41.¢e0, 6.e0/41.e0, 0.e0, -1777.e0/4100.e0,
0.e0, 0.e0, -341.e0/164.e0, 4496.e0/1025.e0,
-289.e0/82.e0, 2193.e0/4100.€0, 51.e0/82.e0, 33.e0/164.e0,
12.e0/41.€0, 0.e0, 1.e0};
static double c7[11]={
41.e0/840.e0, 0.e0, 0.e0, 0.e0,
0.e0, 34.e0/105.e0, 9.e0/35.e0, 9.e0/35.e0,
9.e0/280.e0, 9.e0/280.e0, 41.e0/840.e0};
static double c¢8[13]={
0.e0, 0.e0, 0.e0, 0.e0,
0.e0, 34.e0/105.e0, 9.e0/35.e0, 9.e0/35.e0,
9.e0/280.¢€0, 9.e0/280.¢€0, 0.e0, 41.e0/840.e0,

41.e0/840.e0};

static double *x7,*x8,*xpon,*dx,*k[13];
static int neqg=0;

#define MAX(a,b) (((a)<(b)) ? (b) : (a))

#define SGN(a) (((a)<0) ? -1 : 1)

#define NEG(a) (((a)<0) ? 1 : 0)

#define SGNCHG(vy1l,v2,x) (SGN(y1)*SGN(y2)>0 ? 0 : SGN(y2)*NEG(x))
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void ini_rk78(int n)

/7’:

this is to allocate space for the package. it must be called before
calling the rk78 routine.

parameters:
n: dimension of the system to be integrated.
7’:/
{ . .
int j;
if (n < 1) {puts("ini_rk78: n must be at least 1"); exit(1l);}
if (neq != 0)
{
free(x7);
free(x8);
free(xpon);
free(dx);
for (j=0; j<13; j++) free(k[j]);
}
neqg=n;
x7=(double*)malloc(n*sizeof(double));
if (x7 == NULL) {puts("ini_rk78: out of memory (1)"); exit(1);}
x8=(double*)malloc(n*sizeof(double));
if (x8 == NULL) {puts("ini_rk78: out of memory (2)"); exit(1);}
xpon=(double*)malloc(n*sizeof(double));
if (xpon == NULL) {puts("ini_rk78: out of memory (3)"); exit(1l);}
dx=(double*)malloc(n*sizeof(double));
if (dx == NULL) {puts("ini_rk78: out of memory (4)"); exit(1);}
for (j=0; j<13; j++)

{
k[j]=(double*)malloc(n*sizeof(double));
if (k[j] == NULL) {puts("ini_rk78: out of memory (5)"); exit(1l);}
}
return;
}
void end_rk78(int n)
/7’:

this is to free the memory previously allocated by ini_rk78.

parameter:
n: dimension of the systems of odes. it should coincide with the value
previously used by ini_rk78.
7’:/
{ . .
int j;
if (n != neq) puts("end_rk78 warning: dimensions do not coincide!");
free(x7);
free(x8);
free(xpon);
free(dx);
for (j=0; j<13; j++) free(k[jD]);
return;
}
int rk78(double *at, double x[], double *ah, double tol,
double hmin, double hmax, int n,
void (*deriv)(double, double *, int, double *,double),double epsilon)
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this routine performs one step of the integration procedure.

the initial condition (at,x) is changed by a new one corresponding
to the same orbit. the error is controlled by the threshold tol,

and an estimate of the error produced in the actual step is returned
as the value of the function.

parameters:

at: time. input: time corresponding to the actual initial condition.
output: new value corresponding to the new initial condition.

X: position. same remarks as at.

ah: time step (it can be modified by the routine according to the

given threshold).
tol: threshold to control the integration error.
hmin: minimun time step allowed.
hmax: maximum time step allowed.
n: dimension of the system of odes.
deriv: function that returns the value of the vectorfield.

returned value: WHETHER OR NOT THE SIGN CHANGES!!! IN TERMS OF 0,+1,-1 !!!

an estimate of the error produced in the actual step of
integration.
7’:/
{
double tpon,toll,err,nor,kh,beth,hl;
int i,j,1,m;
if (n > neq) {printf("rk78: wrong dimension (%d and %d)\n",n,neq); exit(1l);}
do {

J*
this is to compute the values of k
*/
m=0;
for (i=0; i<13; i++)
{
tpon=*at+alfa[i]*(*ah);
for (j=0; j<n; j++ ) xpon[jl=x[j];
for ( 1=0; 1<i; 1++ )
{
++m;
beth=*ah*beta[m];
for (j=0; j<n; j++) xpon[j] += beth*k[1][]j];
}
(*deriv) (tpon,xpon,n,dx,epsilon);
, for (j=0; j<n; j++ ) k[i][j] = dx[j];
J*
this is to compute the rk7 and rk8 predictions
*/

err=nor=0.e0;
for (j=0; j<n; j++)
{
x7[J1=x8[j1=x[]1;
for (1=0; 1<11; 1++)
{
kh=*ah*k[1][]];
x7[j] += kh*c7[1];
x8[j] += kh*c8[1];
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}

x8[j] += *ah*(c8[11]1*k[11][j]+c8[12]1*k[12][j]);
err += fabs(x8[j]1-x7[j1);

nor += fabs(x8[j1);

}
err /= n;
/:’:
next lines compute the new time step h
:’:/
toll=tol*(1+nor/100);
if (err < toll) err=MAX(err,toll/256);
hl=*ah;
*ah*=0.9*pow(toll/err,0.125);
if (fabs(*ah) < hmin ) *ah=hmin*SGN(*ah);
if (fabs(*ah) > hmax ) *ah=hmax*SGN(*ah);
} while ((err >= toll) && (fabs (*ah) > hmin));
*at += hl;
/:’:
the next line determines whether the trajectory has made an
:’:/
1=SGNCHG(x[1],x8[1],x[0]);
for (j=0; j<n; j++) x[j1=x8[j];
return (i);
}

orbit
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Vi

File where we define the system constants

7’:/

#define max(a,b) ((a)<(b) ? (b) :
#define min(a,b) ((a)>(b) ? (b) :

//RYDBERG CONSTANTS:
#define PI
#define heng

//H20-H2 CONSTANTS:
/7’:

static double mu
static double Q
#define Ia

#define Ib

static double IPa
static double IPb
static double IP
static double abarH20
static double alphpl
static double alphpp
static double dalph
static double A
static double B
static double abarH2?
//static double (I
//static double DI
static double (I
static double DI

#define CLJ
#define mass
#define EO

//static double gamma

(2))
(2))

3.1415926535897932
(-1.52000000)

0.730;

0.710;

(PI*2414)

(PI*576)

0.464;

0.567;
(IPa*IPb/(IPa+IPb));
9.830;

6.803;

4.845;
(alphpl-alphpp);
(abarH20*alphpl*IP/4);
(abarH20*alphpp*IP/4);
((alphpl+alphpp)/2);

(_37’:mu 7’:0/4)
(A+5*B+2*mu*mu*alphpp)

8.0

//TO0 MAKE POTENTIAL FASTER

static double kvl
static double kvZ2
static double kv3
static double kv4
static double kv5
7’:/

(-3*mu*Q/2);
(4*A+2*B+2*mu*mu*alphpl) ;
100.

1.8

(3.e-3)

(3*mu*Q/4) ;
(3%(A-B));
(A+5*B);
(mu*mu*abarH2/2) ;
(mu*mu*dalph/4) ;

70



D5 makefile - Compiler Code

Makefile to build up the several programs of the package.

NOTE: I inherited this code during my work with Dr. Frederic Gabern

in the next lines you have to choose the right parameters for your
system. I've put as default values the ones corresponding to the GNU
C/C++ compiler, but you should change them if you want to use a
different compiler. I've added (in commented lines) the corresponding
values for the compiler that comes with HP UX 10.20.

Ansi C compiler

R RO R R B R R RHR®

CC=gcc

# CC=cc (this is for HP UX 10.20)

#

# C++ compiler

#

CP=g++

CF=g77

# CP=CC (this is for HP UX 10.20)

#

# compilation flags for the C compiler
#

CFLAGS=-03 -Wall

# CFLAGS=-0 -Aa (this is for HP UX 10.20)
#

# compilation flags for the C++ compiler
#

CPPFLAGS=-03 -Wall

# CPPFLAGS=-0 (this is for HP UX 10.20)

#

# linking flags

#

LFLAGS=-1g2c -1m -s
#

# directories to store the binaries and to find/store data files resp.
# I've used relative pathnames, but it is better to use absolute ones
# (with the relative pathnames, you have to execute the programs from
# the BIN directory, otherwise they could not find the DATA directory).
#

BIN=./bin/

DAT=. /data/

#

# directory to put working files (they will be erased at the end of

# the execution).

#

TMP=. /

#

#

# you shouldn't need to modify anything beyond this line
#

#

HARB AR RH AR AR AR AR SRR AR AR AR AR ARRRRA
# to build up the normal form program #
HARB AR RH AR AR AR AR SRR AR AR AR AR ARRRRA
RYD=newt.o main-ryd.o rk78.o
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D5 makefile - Compiler Code

ryd: $(RYD)
$(CP) $(CPPFLAGS) $(RYD) -o $(BIN)ryd $(LFLAGS)
rm -f *.0

FS=newt.o fullscatter.o rk78.o

fs: $(FS)
$(CP) $(CPPFLAGS) $(FS) -o $(BIN)fs $(LFLAGS)
rm -f *.o0

FSB=newt.o fullscatterB.o rk78.o

fsb: $(FSB)
$(CP) $(CPPFLAGS) $(FSB) -o $(BIN)fsb $(LFLAGS)
rm -f *.o0

FSKEPE_COMPARE=newt.o fullscatterKEPE_COMPARE.o rk78.0

fskepe_compare: $(FSKEPE_COMPARE)
$(CP) $(CPPFLAGS) $(FSKEPE_COMPARE) -o $(BIN)fskepe_compare $(LFLAGS)
rm -f *.o0

# how to make the .o files #

main-ryd.o: main-ryd.cc

$(CP) -c $(CPPFLAGS) -DDATA=\"$(DAT)\" -DTEMP=\"$(TMP)\" main-rvyd.cc
fullscatter.o: fullscatter.cc

$(CP) -c $(CPPFLAGS) -DDATA=\"$(DAT)\" -DTEMP=\"$(TMP)\" fullscatter.cc
fullscatterB.o: fullscatterB.cc

$(CP) -c $(CPPFLAGS) -DDATA=\"$(DAT)\" -DTEMP=\"$(TMP)\" fullscatterB.cc
fullscatterKEPE_COMPARE.o: fullscatterKEPE_COMPARE.cc

$(CP) -c $(CPPFLAGS) -DDATA=\"$(DAT)\" -DTEMP=\"$(TMP)\"
fullscatterKEPE_COMPARE.cc
rk78.0: rk78.cc

$(CP) -c $(CPPFLAGS) rk78.cc
newt.o: newt.cc

$(CP) -c $(CFLAGS) newt.cc

HHHHHHAHH
# clean #
HHHHHHAHH
clean:
rm -f *.0
rm -f $(BIN)*
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