
Nonlinear Three-Dimensional Trajectory Following:
Simulation and Application

George Hines
Control and Dynamical Systems

Caltech

Senior Thesis
Advisors: Profs. Richard Murray (Caltech), Jonathan How (MIT)

June 6, 2008



Contents

1 Introduction 1

2 Nonlinear Control with Differential Flatness 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Control Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Zero Parameter Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Nonzero Parameter Uncertainty: System Coupling Parameters . . . . 10
2.5.3 Nonzero Parameter Uncertainty: Decoupled Parameters . . . . . . . . 11

2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Three-Dimensional Nonlinear Guidance: Application 14
3.1 Some Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Proposed Three-Dimensional Guidance . . . . . . . . . . . . . . . . . . . . . 14
3.3 Test Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Test Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Three-Dimensional Nonlinear Guidance: Simulation 21
4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Simulation Results: Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Simulation Results: Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Summary and Future Directions 31
5.1 Nonlinear Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Three-Dimensional Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



5.2.2 Analysis and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 32

ii



List of Figures

1.1 Two views of the generator/follower relationship. . . . . . . . . . . . . . . . 2
1.2 The inherent flaw in trajectory following. Both snapshots are taken at time

t = t1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Simulation results with perfect parameter knowledge and acceptable parame-
ter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Tracking and rate errors in response to an initial position and speed offset
with perfect parameter knowledge. . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Tracking and rate errors in response to an initial position and speed offset
with uncertainty in Cmα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Tracking and rate errors in response to an initial position and speed offset
with calculated value of Cmq = −22. . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Tracking and rate errors in response to an initial position and speed offset
with uncertainty in Cmq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Geometry of two-dimensional guidance law. . . . . . . . . . . . . . . . . . . 15
3.2 Constant |L|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Varying |L|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Step change in reference height. . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 The inherent flaw in trajectory following. Both snapshots are taken at time
t = t1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Trajectory-following response to mild arc offset. . . . . . . . . . . . . . . . . 26
4.3 Trajectory-following response to dramatic arc offset. . . . . . . . . . . . . . . 27
4.4 Control signals in response to dramatic arc offset. . . . . . . . . . . . . . . . 27
4.5 Response to large arc offset: new guidance scheme. . . . . . . . . . . . . . . 28
4.6 Closed, pitched square path: new guidance scheme. . . . . . . . . . . . . . . 29

iii



Abstract

In light of recent military requirements for unmanned and autonomous vehicles, research
into methods of designing arbitrary three-dimensional trajectories and controlling aircraft
along them has become vital. In this report, we explore two methods of nonlinear control
for the purpose of following three-dimensional trajectories and paths. First, prior work on
a dynamic feedback linearization exploiting the differential flatness of the ideal airplane is
adapted with the intent of implementing it on a physical testbed in MIT’s Realtime indoor
Autonomous Vehicle test ENvironment (RAVEN), but poor behavior—both in simulation
and in hardware—under moderate levels of joint parameter uncertainty thwarted attempts
at implementation. Additionally, the differential flatness technique in its pure form follows
trajectories, which are sometimes inferior intuitively and practically to paths. In the context
of unmanned air vehicle (UAV) flight in gusty environments, this motivated the extension
of prior work on two-dimensional path following to three-dimensions, and simulations are
presented in which the fully nonlinear controller derived from differential flatness follows a
trajectory that is generated dynamically from a path. The three-dimensional path-following
logic is actually implemented in RAVEN, and results are presented that demonstrate good
vertical rise time in response to a step input and centimeter accuracy in vertical and lateral
tracking. Future directions are proposed.



Chapter 1

Introduction

The operation of an aircraft at the extreme edges of its performance envelope continues to
require the intervention of a human operator to define critical control inputs. This liabil-
ity becomes more problematic as aircraft become more maneuverable but, paradoxically, is
also more necessary than ever because current trajectory generation schemes cannot keep
pace with the capabilities that higher levels of maneuverability provide. The simplest way
to overcome the human limitation is to make airplanes unmanned, but not necessarily au-
tonomous, retaining the human control capabilities by having the pilot command his aircraft
from a ground station. Passage of the 2001 National Defense Authorization acknowledged
this, requiring one-third of the “operational deep strike force aircraft fleet”1 to be unmanned
by 2010 [1]. The 2007 authorization left this mandate in force, requiring an assessment
of progress toward this goal to be included in a Department of Defense policy concerning
unmanned systems [2].

However, full autonomy is arriving on the scene, specifically in the form of the RQ-4
Global Hawk [3]. The Global Hawk is a dedicated reconnaissance airplane, and therefore is
neither required nor expected to perform drastic maneuvers of the kind that are routine for
tactical aircraft. But it is natural that autonomous—not just unmanned—operation will soon
be desired in the operational deep strike force fleet, which counts in its ranks aircraft that
cannot be sedate flying platforms. Fully operational air defense systems are multifaceted,
so penetration is not guaranteed by pure stealth alone, although this is one example of an
advanced capability. To fully stock the quiver of an advanced capability combat airplane,
maneuverability is necessary, and it is here that autonomy sees its frontiers in cooperation,
task allocation, and path generation/following. In this work we focus on the path following
problem.

In the methods to be discussed, the existence of a high-level planner that defines a
series of goals (in these cases waypoints), which are connected a priori by some curve,
whether a straight line, a circle, a helix, etc. is assumed. Below this level is a module
that determines how the airplane should move to attain that path (this is commonly called
the outer loop), and within that is the low-level feedback (inner loop) that assures that the
aircraft carries out the motion prescribed by the outer loop. In such a system, illustrated
by the nested feedback structure shown in Figure 1.1(a), the outer loop can be considered

1Including the B-2 and F-117 stealth fleet and “at least 30 unmanned advanced capability combat aircraft
that are capable of penetrating fully operational enemy air defense systems.”
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a path generator whose output is tracked by the inner loop, but this makes a distinction
that is erased by the nonlinear methods discussed later, which accept as input the high-level
path and calculate appropriate actuator commands directly using dynamic feedback. This
is visualized in Fig. 1.1(b). It is in the interest of disambiguation that in what follows the
path generator will refer to the high-level planner and the path follower will refer to the
(nested) feedback loops that carry out the generator’s directives. The methods that we will

Tracking
Commands

High-level
Planner

Actuator
Commands

Vehicle
Dynamics

(a) Multi-loop control scheme: motion and actuator commands are separate.

Nonlinear
Guidance

High-level
Planner

Vehicle
Dynamics

(b) Motion and actuator commands are combined.

Figure 1.1: Two views of the generator/follower relationship.

discuss are implementations of the “Tracking Commands” block in Fig. 1.1(a) and of the
“Nonlinear Guidance” block in Fig. 1.1(b).

Differential flatness allows a full account of the nonlinearities under only mildly restrictive
assumptions (such as the neglect of aeroelastic effects). Flatness is well characterized in [4,5],
and its application to flight systems is detailed in [6,7]. However, these papers do not address
the issue of robustness analytically or in simulation. We will present qualitative studies of
the effects of some levels of single parameter uncertainty and joint parameter uncertainty
through a closed-loop simulation of a small remote-control airplane.

By nature this particular nonlinear control scheme tracks trajectories, which are param-
eterized by time, and hence often commands large control signals in reaction to spatial-
temporal error, even if pure spatial error is identically zero. Consider the situation shown
in Figure 1.2. The spatial-temporal and pure spatial errors in 1.2(a) are zero, because the
vehicle is at the desired place at the desired time. The control signal is therefore nominal,
and moves the vehicle along the path toward the goal, which is taken in this case to be the
configuration marked at t = t2. However, the snapshot in 1.2(b) is troublesome. The pure
spatial error is zero, because the vehicle is at the correct place for some time, in this case
t = t1 + τ . However, for τ 6= 0, this is not the correct time, so the spatial-temporal error is
nonzero. The resulting control signal will attempt to move the vehicle back to the correct
location for t = t1, regressing farther from the goal.

In the occasions where either (a) this behavior is undesirable or (b) it is not critical
that the vehicle attain specific locations at specific times (as could easily be the case for
a light UAV in a very gusty wind field), this problem motivates the study of trajectory
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spatial-temporal error: 0
pure spatial error: 0
control action: progressive

spatial-temporal error: x(t1)-xd(t1)

pure spatial error: 0
control action: regressive

xd(t1)

u

u

xd(t2) xd(t2)

xd(t1)

(a) Progressive control signal u, moving the
vehicle closer to its goal.

spatial-temporal error: 0
pure spatial error: 0
control action: progressive

spatial-temporal error: x(t1)-xd(t1)

pure spatial error: 0
control action: regressive

xd(t1)

u

u

xd(t2) xd(t2)

xd(t1)

(b) Regressive control signal u, moving the vehicle far-
ther from its goal.

Figure 1.2: The inherent flaw in trajectory following. Both snapshots are taken at time t = t1.

reparameterization, the goal of which is to link the calculation of error to some parameter
other than time, which might allow, for example, the situation shown in Figure 1.2(b) to
lead to a progressive control signal. Put differently, it is beneficial to specify the desired
path so that the controller does not care where on the path the vehicle is, provided it is in
fact on the path. Two very different views of this problem are discussed in [8, 9].

A solid base of work had been laid in MIT’s Aerospace Controls Laboratory (ACL)
concerning a specific type of planar path following method described in [10]: a nonlinear
acceleration command generator that will cause the vehicle to fly circular arcs toward the
desired trajectory. This algorithm has been proven stable for the straight line following task,
and has been experimentally verified to be stable for more general classes of curves, both
on full-size outdoor unmanned aerial vehicles (UAVs) and on the small indoor aircraft flown
in the Real-time indoor Autonomous Vehicle test ENvironment (RAVEN). It is natural to
suppose that a similar algorithm will yield a series of stabilizing acceleration commands in
three dimensions, and one such generator has been proven stable in the three-dimensional
straight-line following case by Gates [11]. Simulation has indicated good tracking of more
general curves, but some steady-state error has been predicted and observed when tracking
linearly ascending or descending curves. In what follows we propose an implementation of
this three-dimensional nonlinear acceleration command generator, and a characterization of
its step response to altitude changes.

Generating acceleration commands can function as a form of trajectory reparameteri-
zation. In the case of the controller arrived at through exploitation of differential flatness,
the position and its first three derivatives must be specified as functions of time in order to
calculate a control signal. Since the path following schemes that I discuss are acceleration
command generators, these commands can be integrated twice to obtain a full trajectory
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as long as a speed reference is provided and zero jerk is assumed (for convenience). I will
attempt to show through simulation that this method of trajectory reparameterization leads
to improved (i.e., acceptable) behavior in the presence of spatial-temporal offsets.

In light of the Congressional directive to unman the combat fleet, the motivating context
for this research is tactical autonomy. Research is currently underway in the ACL to quantify
the highly dynamic air combat environment so that autonomous decisions may be made
and carried out. The two-dimensional acceleration generator described above has already
been successfully implemented in hardware trials of a simplified planar intercept trajectory
generator. As methods of planning combat maneuvers generalize to three dimensions, the
three-dimensional following methods described here will be available to smooth the road to
further implementation and testing.

4



Chapter 2

Nonlinear Control with Differential
Flatness

2.1 Overview

Traditional flight control systems rely on linearization about multiple trim states, with in-
dividual control laws assigned to each through mode switching, gain scheduling, etc. These
methods attempt to account for the fundamental nonlinearities of the system by absorbing
them into the mode-switching behavior, effectively ignoring their underlying dynamics. We
explore instead the property of differential flatness. Several mathematical frameworks have
been used to discuss flatness, but let it suffice that an input/output system is flat if there
exists “a set of outputs (equal in number to the number of inputs) such that all states and
inputs can be determined from these outputs without integration” [4].

The nature of the flat outputs is very sensitive to the formulation of the system. Charlet
et al. showed that the equations of motion for a six-degree-of-freedom rigid body (of which
an airplane is one example) are flat, the outputs being the thrust and the inertial coordinates
of the center of mass [5]. This is not the most physically intuitive set of outputs, but using
a slightly different description of the state of the system Martin confirmed the airplane’s
flatness with a set of outputs composed of the sideslip angle and the inertial coordinates of
the center of mass [6, 7]. The geometric interpretation of the sideslip angle is considerably
more pleasing than that of the thrust, especially when attempting to construct trajectories
in the space of flat outputs.

2.2 Control Architecture

Essentially, we implement the control law described by Martin in [6] and summarized in [7],
to which readers are directed for the derivation. Changes will be noted as necessary, along
with a discussion of applicability to different experimental platforms.

To summarize the main points of Martin’s approach: the aircraft’s state is defined to be

Ξ = (x, y, z, V, α, β, γ, χ, µ)T ,
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where (x, y, z) are the inertial coordinates of the center of mass, (V, α, β) are the speed, angle
of attack and sideslip angle, and (γ, χ, µ) are the Euler angles of the wind axes.

The aircraft response to control input is decomposed into three time scales:

• a slow time scale, which we call the navigation system,

• a fast time scale, which we call the aircraft response,

• a very fast time scale, which we call the actuator response.

The navigation system consists of the equations of motion

ẋ = V cosχ cos γ

ẏ = V sinχ cos γ

ż = −V sin γ

V̇ = −g sin γ +
X

m

α̇ =
g

V cos β
cos γ cosµ− p cosα tan β + q

− r sinα tan β +
Z

mV cos β

β̇ =
g

V
cos γ sinµ+ p sinα− r cosα +

Y

mV

γ̇ = − g
V

cos γ − Y sinµ+ Z cosµ

mV

χ̇ =
Y cosµ− Z sinµ

mV cos γ

µ̇ = − g
V

cos γ cosµ tan β + p
cosα

cos β
+ r

sinα

cos β

+
Y cosµ tan γ

mV
− Z(sinµ tan γ + tan β)

mV
,

where the control inputs are the rotational rates (p, q, r) and the thrust F , which enters
through the body force components (X, Y, Z).

The aircraft response consists of the dynamical system

IΩ̇ =

 L
M
N

− Ω ∧ IΩ,

where the inputs are the actual deflections of the control surfaces δl,m,n,..., which enter through
the moment components (L,M,N). The states are the rotational rates Ω = (p, q, r)T , which
along with the thrust control the navigation system. I denotes the inertia tensor.

While the navigation system is unchanged for different actuator configurations, the air-
craft response has as many inputs as the number of independent control surfaces on the
aircraft in question. A “conventional” airplane is equipped with three: ailerons, elevator,
and rudder. As an alternative example, consider the case of a tailless aircraft equipped
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with elevons: linked flaps that can move opposite each other to induce roll, or in concert
to induce pitch. For the conventional airplane, we observe with some rearrangement and
expansion that the aircraft response system is affine in the control inputs, but in cases where
there are other than three independent control surfaces, care must be taken to assure that
the transformation from control inputs to moment components is invertible. In the case of
elevons (2 independent controls) the transformation is not invertible because the a priori
transition matrix is in R3×2, although it may be possible to augment the dimension of the
control vector so that the transition matrix is in R3×3, and hence invertible for all physical
applications.

Finally, the actuator response is governed by

δ̇l,m,n,... = Aδl,m,n,... + δ̃l,m,n,...,

where the inputs are the commanded deflections of the control surfaces δ̃l,m,n,.... The states
are the actual deflections which control the aircraft response. Here A is a negative number
or stable matrix, depending on the number of controls.

The time scale decomposition allows us to compute control rates for the navigation system
and use the analytical solutions to the other two systems to calculate the actuator commands
necessary to attain the desired rates.

Finally, recalling that in this formulation of the equations of motion the differentially flat
outputs are (x, y, z, β), we find that there exists a diffeomorphism

D : (Ξ, F ) 7→ (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈, β)T .

Again, the reader is referred to [6] for details. Further, upon successive differentiation of the
inertial coordinates of the center of mass in the navigation system, we find the relationship

x(3)

y(3)

z(3)

β̇

 = A+ B ·


p
q
r

Ḟ

 . (2.1)

So, given a reference trajectory (x∗, y∗, z∗, β∗)T , we can invert (2.1) to find the desired rates
Ω∗ (provided the determinant of B is nonzero), from which we calculate the desired actuator
deflections. The result for Ḟ ∗ is then integrated to find the thrust command.

2.3 Stabilization

Let the transformed state (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈, β)T be denoted by Ξ′. With the control input

u =
(
x(3), y(3), z(3), β̇

)T
, the system is linear in the transformed state:

Ξ̇′ = AΞ′ +Bu. (2.2)

With full state feedback, it is possible to find a gain matrix K such that the closed-loop
system

Ξ̇′ = (A−BK)Ξ′
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is stable. LQR gains are used in this study, with weights tuned to block high-frequency
actuator commands.

Inverting (2.1), we incorporate this stabilizing gain as an error scaling:
p∗

q∗

r∗

Ḟ ∗

 = B−1




x(3)∗

y(3)∗

z(3)∗

β̇∗

−KeΞ′ −A

 . (2.3)

The error eΞ′ is the deviation in position, speed, acceleration, and sideslip angle from the
time-parameterized reference trajectory:

eΞ′ = Ξ′ − Ξ′∗.

2.4 Parameter Selection

This control architecture depends upon a reasonably good knowledge of the aerodynamic
properties of the vehicle which we seek to control. Specifically, the force and moment coef-
ficients must be known across the applicable flight envelope, which further requires knowl-
edge of the stability derivatives: Martin’s simulations used complete mass properties and
aerodynamic data for the F-4 Phantom. Our physical platform will be a small styrofoam
radio-controlled aircraft for which aero data has not been compiled; we therefore rely on
intuition and estimation to select the process parameters.

The inertia tensor is estimated to be

I =

 0.00235 0 0
0 0.00172 0
0 0 .00353

 .

For the force coefficients, we assume zero sideslip and use

Cx = −0.5α3 + 1.1α2 + 0.03

Cy = 0

Cz =

2πα α < 0.3
0.6π

(0.3−π
2 )

3

(
α− π

2

)3
otherwise

.

The piecewise model for the lift coefficient takes into account stall dyamics. The standard
drag model is a function of the lift coefficient, but this is only valid for small angles of attack;
we use a cubic approximation that has the correct shape for 0 < α < π/2. The null side
force coefficient is a consequence of the zero sideslip assumption.

For the moment coefficients we use the general linear model given in [6]:

Cl = Clββ +
Clpb

2V
p+

Clrb

2V
r + Cllδl + Clnδn

Cm = Cm0 + Cmαα +
Cmα̇a

2V
α̇ +

Cmqa

2V
q + Cmmδm

Cn = Cnββ +
Cnpb

2V
p+

Cnrb

2V
r + Cnlδl + Cnnδn.
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Some of these coefficients may be calculated from the geometric properties of the aircraft,
and a, b are reference lengths; see chapters 6-8 of [12] for a thorough treatment. Others may
only be measured in a wind tunnel, and since that exercise was not carried out, we considered
it sufficient to choose coefficients of the proper order of magnitude for the geometry of our
testbed.

2.5 Simulation Results

Simulations took place in MATLAB using the ode113 solver to propagate the vehicle dy-
namics and integrate the thrust command. The control inputs are updated asynchronously
at 50 Hz. Control surface deflections are saturated at π/4 radians, and the maximum thrust
is set at 6 Newtons (approximately twice the weight of the aircraft). Minimum thrust is
taken to be 0.1 N.

Test trajectories demonstrate various flight regimes and characteristics (STOL, conven-
tional, turning, climbing, etc.), and initial conditions are chosen to investigate “step re-
sponse” behavior.

2.5.1 Zero Parameter Uncertainty

Baseline simulations assume perfect parameter knowledge. Subject only to input saturation
constraints, the zero-uncertainty proportional-gain system is capable of following modestly
complex trajectories in both conventional and STOL flight regimes. However, the saturation
constraints substantially restrict the size of the feasible set of trajectories, notably in speed:
if the airplane is unable to follow a trajectory in time, it responds drastically to the resulting
accumulated error in space. (This is a difficulty inherent in trajectory followers as opposed
to path followers.)

The nominal control signal is proportional, so in certain cases the system admits steady-
state error; however, this is currently thought to be a result of the failure of the time scale
decomposition, discussed later.

The example presented here is a circle of radius 10 m, nominally flown at a height of
5 m and a speed of 10 m/s. The initial offset is -5 m in elevation. Figure 2.1(a) shows
the actual flight path, and it is evident from Figure 2.1(b) that the vehicle does attain the
desired height, with no steady-state error. Figure 2.1(b) does show lateral oscillatory error
on the order of a meter. This is partly the result of a speed lag that enters with the initial
offset. Figure 2.1(c) shows the actual speed, along with the angle of attack, the flight path
elevation angle, and the roll angle. The roll angle is stable at about 45 degrees, and the
flight path elevation angle exhibits the expected transient increase as the airplane climbs to
the desired height. Because of the relatively high speed of this trajectory, the angle of attack
remains very small throughout.

For the remainder of the simulations, the reference trajectory is a straight line along
the x-axis flown at 10 m/s. The initial offsets are -2 m laterally, -2 m vertically, and -2
m/s. Discussion will center on the states of the aircraft response system, as this system’s
stability characteristics dictate the applicability of the time scale decomposition. To establish
a reference, Figure 2.2 shows the navigation system (tracking) error and the aircraft response
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Figure 2.1: Simulation results with perfect parameter knowledge and acceptable parameter values.

system (rate) error for the straight-line trajectory (with initial offsets) with perfect parameter
knowledge and acceptable parameter values. Observe that the aircraft response system
stabilizes quickly relative to the navigation system, and that the navigation system does not
exhibit steady-state error.

(In the subsequent sections, “uncertainty” is modeled as a discrepancy between the pa-
rameter value(s) known to the dynamics simulator and the corresponding value(s) known to
the controller. The allowable level of uncertainty is taken to be the size of this error at the
onset of poor behavior or instability.)

2.5.2 Nonzero Parameter Uncertainty: System Coupling Param-
eters

The navigation system and the aircraft response system are coupled through the angle of
attack and the sideslip angle. Within certain bounds, parameter uncertainty in the coeffi-
cients of these coupling terms manifests itself as steady-state error in the navigation system.
For example, suppose that the actual aircraft has Cmα = −0.1 and the controller uses
C̃mα = −0.08. (All other parameters are identical to those that generated Figure 2.2.) With
this uncertainty, we obtain the responses shown in Figure 2.3. The aircraft response sys-
tem, Figure 2.3(a), does stabilize, and quickly, but there is steady-state error in the pitch
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Figure 2.2: Tracking and rate errors in response to an initial position and speed offset with perfect
parameter knowledge.
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Figure 2.3: Tracking and rate errors in response to an initial position and speed offset with uncer-
tainty in Cmα.

rate. In the navigation system, Figure 2.3(b), this appears as slow convergence in the lateral
coordinates and large steady-state error in height.

Increasing the uncertainty in this parameter quickly leads to divergence, and similar be-
havior is observed in the coefficient relating yawing moment to sideslip angle. The coefficient
relating the rolling moment to the sideslip angle does not exhibit this sensitivity.

2.5.3 Nonzero Parameter Uncertainty: Decoupled Parameters

The aircraft response system’s internal states are scaled by another set of coefficients. The
stability of this system is affected relatively little by uncertainty in most of these parame-
ters or their values, provided they are in a reasonable range; the rate derivative Cmq is a
notable exception. Standard aerodynamic calculations (chapter 7 of [12]) give an approxi-
mate value for our platform of Cmq = −22, but with this value—even with no parameter
uncertainty—the aircraft response and navigation systems are unstable. Figure 2.4 shows
that the instability in the aircraft response system is slow, but that it is amplified in the
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Figure 2.4: Tracking and rate errors in response to an initial position and speed offset with calcu-
lated value of Cmq = −22.
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Figure 2.5: Tracking and rate errors in response to an initial position and speed offset with uncer-
tainty in Cmq.

navigation system.
In order to get reasonable stability behavior in simulation the absolute value must be

reduced by at least an order of magnitude. The previous simulations used the artificial
value Cmq = −0.1, and in order to assess the sensitivity of this parameter to uncertainty,

we return to this value and set the controller’s knowledge of the parameter to C̃mq = −0.14.
Figure 2.5 shows this case. The slowly-decaying oscillation in the aircraft response system,
Figure 2.5(a), invalidates the singular perturbation assumption of fast stability relative to
the navigation system, and the result is shown in Figure 2.5(b), with slow stabilization
in the lateral coordinates and persistent large-amplitude oscillations in height. Increased
uncertainty leads to instability.
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2.6 Experimental Results

Implementation of the control law on a physical platform took place in RAVEN, housed
at the ACL. Full-state feedback is available from a Vicon MX motion capture system, and
multiple vehicles (and vehicle types) may be operated simultaneously.

The platform itself is a styrofoam radio-control airplane built by Ikarus, modeled on the
Yak 54 aerobatic monoplane. The wingspan is approximately 0.8 meters, and the nominal
thrust-to-weight ratio is close to 2.

Because of the small size of the room, flight testing proved prohibitively dangerous and
costly (in terms of demolished airplanes), so initial testing was restricted to taxiing in a tight
circle. The airplane exhibited large temporal errors, pausing regularly along the constant-
speed trajectory. These temporal errors caused significant spatial errors, which eventually
caused the airplane to depart from the desired path.

2.7 Conclusions and Future Work

Simulation has shown that for an airplane with geometric and aerodynamic parameters simi-
lar to those of our testbed, this control architecture is fragile with respect to certain parameter
values, and is intolerant of parameter uncertainty. Specifically, an assumption of the singu-
lar perturbation method is that the aircraft response system is asymptotically stable (see
chapter 7 of [13] for a complete discussion), but for certain parameter values and for even
modest parameter uncertainty, this is not true: the origin is slowly stable or even unstable.
Failure of the singular perturbation assumptions invalidates the time-scale decomposition.

It will be instructive to quantify the robustness of this architecture, and this is per-
haps best considered alongside the application of adaptive control techniques and system
identification to perform online parameter estimation.

In order to apply this control scheme to other projects ongoing both in this lab and
elsewhere, it will be convenient to formulate it as a path follower rather than a trajectory
follower. Several different methods for trajectory reparameterization have been proposed (for
instance [8], which presents a general algorithm), but current focus is on a three-dimensional
construction of the guidance logic presented in [10].

Finally, when the architecture is considered functional, it will be natural to extend all
results to the multi-vehicle case.
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Chapter 3

Three-Dimensional Nonlinear
Guidance: Application

3.1 Some Preliminaries

During UAV rendezvous testing at the ACL, a replacement guidance scheme was sought
for the existing PD loop closed around the heading angles of the testbed aircraft. The PD
controller did not diminish the effects of a steady wind field, and the PID controller designed
for that purpose converged more slowly than was desirable. As a solution Park, Deyst, and
How proposed the following acceleration command generator in [10]:

acmd =
2v2

l
sin η. (3.1)

The angle η is the angle between the vehicle’s velocity and the desired track. The vehicle’s
speed is v, and the parameter l tunes the scheme’s aggresiveness inversely (larger l corre-
sponds to less aggressive behavior). These measures and their geometric relationships are
shown in Figure 3.1. Assuming level flight, the acceleration command thus calculated maps
to a unique bank angle, which is subsequently maintained by a PID inner loop. This guid-
ance law is superior to PID control on heading in the particular case of a steady wind field.
Further, the linearization of this guidance law yields a simple PD controller, and the classi-
cal second-order system parameters (bandwidth and natural frequency) can be determined.
Finally, [10] presents a Lyapunov function for the guidance law tracking a straight-line path,
completing the analysis of this control scheme in the case of zero-order vehicle dynamics and
simple flight regimes. Current work is ongoing to characterize behavior in the presence of
first-order dynamics.

3.2 Proposed Three-Dimensional Guidance

Rather than take up the problem of higher-order dynamics, we will focus on extending the
guidance law from two spatial dimensions to three. The geometric intuition is identical, but
many of the previously scalar quantities must now be considered more generally as vectors.
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There are several terminal phase guidance laws for short-range tactical missiles that can be used to do
trajectory following by using an imaginary point moving along the desired flight path as a pseudo target. Of
these, proportional navigation generally provides the best performance, with less control effort, in constant-
velocity intercepts, and it is widely accepted as the preferred method of guidance [5–7]. The trajectory
following guidance logic presented in this paper was motivated by this proportional navigation method. An
important element in the proportional navigation is the use of the change in the line-of-sight between a
missile and a target. A similar feature is also found in the trajectory following guidance logic between a
vehicle and a pseudo target on a desired path.An important difference between the two methods is that,
unlike the proportional navigation, the speed of the pseudo target is not taken into account in the trajectory
tracking guidance logic. A detailed discussion on the relationship of the trajectory following guidance logic
to proportional navigation is provided in Section II-B.

Section II introduces the guidance logic and describes related properties. While the guidance logic
developed here is simple and easy to apply, it is shown to have a number of benefits over linear approaches
for curved paths. First, it contains proportional and derivative controls on cross-track error. Second, it has
an element of anticipation for the upcoming local desired flight path. This property enables tight tracking on
curved flight trajectories. Third, it uses instantaneous vehicle speed in the algorithm. This kinematic factor
adds an adaptive feature with respect to changes in vehicle inertial speed caused by external disturbances
such as wind.

The algorithm is easily implemented, and flight test results showing excellent tracking performance are
given in Section III. The proposed guidance logic was implemented in two unmanned air vehicles (UAVs) in
the Parent Child Unmanned Air Vehicle (PCUAV) Project [8, 9] at MIT, under the sponsorship of Draper
Laboratory.

II. The New Guidance Logic

The guidance logic presented in this paper selects a reference point on the desired trajectory, and gener-
ates a lateral acceleration command using the reference point.

Selection of Reference Point – The reference point is on the desired path at a distance (L1) forward of the
vehicle, as shown in Figure 1.

Lateral Acceleration Command – The lateral acceleration command is determined by

ascmd
= 2

V 2

L1
sin η (1)

R

η
V

R

L1

desired path  reference point

2η

a
S

cmd

aircraft  

Figure 1. Diagram for Guidance Logic

Two properties of the guidance equation are significant.

2 of 16
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Figure 3.1: The acceleration command acmd is shown here as ascmd , and will cause the vehicle to
follow a circular path of radius R. The vehicle speed, denoted v elsewhere in this
paper, is labeled V , and the parameter which this paper refers to as l is called L1 in
this diagram. Taken from [10].

In the three-dimensional formulation, the controller parameter is the same scalar l, but
once this parameter is fixed a vector L is constructed from the vehicle’s current position to
a point on the desired path such that |L| = l and the angle between L and V, the vehicle’s
vector velocity, is less than π/2. The existence of such a unique L is a necessary assumption
to apply this guidance strategy.

As in the two-dimensional case, the intuition behind the acceleration command calcula-
tion is that we desire an acceleration that will cause a zero-order vehicle to follow a circular
course that will nominally intersect the desired path at the endpoint of L. This leads directly
to the definition of the acceleration command in vector form:

acmd =
2

|L|2
(V × L)×V. (3.2)

The analog to the angle η is implicit in the product V × L. The second cross product
rotates the acceleration vector into the plane defined by V and L such that it is normal to
the vehicle’s velocity. This fulfills the intuitive goal: the circular path resulting from the
application of this acceleration command will lie in the VL plane, so it will intersect the
desired path at the endpoint of L.

3.3 Test Trajectories

The preliminary test objective was to compare the constant-altitude behavior of the three-
dimensional guidance scheme to the behavior of the two-dimensional scheme (which is only
concerned intrinsically with the constant-altitude case). Therefore the first test trajectory
consisted of 16 waypoints approximating a circle at a constant altitude. The waypoints were
spaced equally on a circle of radius 2.25 m and connected by straight line segments. (The
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problem of calculating three-dimensional accelerations for circular path segments online has
not yet been undertaken. The bandwidth of the guidance logic is such that when attempting
to follow a 16-edged path inscribed in a circle the resulting flight path is nearly circular.)

Because in the constant-altitude case the tested three-dimensional logic reduces to the
two-dimensional method, similar performance is expected. Performance is primarily influ-
enced by the lookahead length: as the lookahead length decreased, the controller aggres-
siveness increases, and in [10] it is shown that for small deviations from a straight-line
path the bandwidth is simply related to the lookahead length. A similar relationship is
expected, but has not been verified, for the three-dimensional case. Because performance is
tied to the lookahead length parameter, direct comparison of the two-dimensional scheme to
the constant-altitude three-dimensional scheme is meaningless unless the effective lookahead
lengths are the same.

Due to an implementation detail, making the three-dimensional lookahead length equal
to that used in flight tests of the two-dimensional logic was not trivial. The detail is that the
test vehicle was started from rest on the ground, and in order to attain the baseline height
of the test trajectory, the three-dimensional logic was started at the initial time with a large
enough parameter to induce a climb to the desired height. This parameter was necessarily
larger than that tested for the two-dimensional case, because in the two-dimensional tests
the vehicle was started with an open-loop control sequence to attain the proper height, and
then switched to accept commands from the acceleration generator.

As we will soon see, the larger controller parameter significantly impairs tracking, but
decreasing the parameter in realtime improves it.

3.4 Test Platform

The vehicle used for flight tests was a small high-wing monoplane constructed of balsa sticks
with mylar covering. Its light weight of approximately 20 grams allowed slow level flight,
necessary for safety both of the vehicle itself and of the test operators. Instead of the
conventional actuator set of ailerons, elevators, and a rudder, this test aircraft was equipped
with only elevators and a rudder (roll/yaw coupling induced a deterministic bank angle along
with a heading change when the rudder deflected).

Before application, the calculated acceleration command was split into lateral and ver-
tical components, and the simplifying assumption was made that the two components of
acceleration were decoupled, with the lateral component executed by a roll maneuver at
constant height, and the vertical component executed purely by pitch changes.

3.5 Test Results

For the first flight test the controller parameter was set to 2.5 m. This was suitable to take
the vehicle off the ground and up to the desired altitude, but the lateral tracking offsets were
on the order of 1 m, which are much larger than those demonstrated by the two-dimensional
guidance law. The difference is expected, though, because the available data for the two-
dimensional version was captured with a controller parameter of 1.5 m, which leads to much
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Figure 3.2: Following a “circle” of radius 2.25 m at 1 m altitude with a 2.5 m lookahead length.
Altitude tracking is within ±10 cm, but lateral tracking exhibits up to 1 m error. The
nominal plan of the flight path is displayed in red on the xy position plot.

more aggressive tracking. The altitude tracking is generally oscillatory within ±10 cm of the
reference value.

To resolve this discrepancy while still allowing the vehicle to take off, subsequent test
rubrics called for decreasing the controller parameter online after the vehicle had attained
the reference height. In the subsequent set of flight tests the lookahead length was decreased
incrementally from 2.5 m to 1.5 m after the airplane had taken off and become established on
the desired path. The results of this flight are shown in Figure 3.3. Significant improvements
are clear in lateral tracking. After the reduction of the lookahead distance, the lateral errors
are under 0.5 m, as opposed to consistently approximately 1 m for the previous test. Vertical
tracking is essentially unchanged.

The final set of test focused on characterizing the response of the three-dimensional
guidance logic to vertical offsets. The commanded path in this case had the same lateral
plan (16 waypoints distributed on a circle), but at timestep 1500 a 0.5 m altitude increase
was commanded. Because the motor on the test airplane was not sufficiently strong to
execute an aggressive climb, it was necessary to leave the lookahead length at 2.5 m when
executing flight paths that incorporated altitude variation, so lateral tracking resembles the
poorer 1-m bound observed in the first constant-altitude test. The vehicle track is shown in
Figure 3.4.

The oscillations about both reference heights are again within about ±10 cm, but there
is about 20 cm of overshoot at height changes. Settling time (to normal oscillatory error
bounds) is approximately 5 seconds. The oscillatory height errors do not seem to be lessened
by decreasing the controller parameter. This may be the result of the somewhat anemic
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Figure 3.3: Following a “circle” of radius 2.25 m with the lookahead decreasing real-time from 2.5
m to 1.5 m. Lateral tracking is improved.
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Figure 3.4: Following a “circle” of radius 2.5 m with |L| = 2.5 m. At timestep 1500, a 0.5 m step
change in altitude is commanded and later reversed.
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motor, as it is not capable of the power necessary for quick height changes, and the oscillation
may be an artifact of the resulting delay in height response.

3.6 Analysis

The frequency response characteristics of the linearized two-dimensional logic are derived
in [10] for small sinusoidal perturbations of a straight-line path at constant altitude; the
damping constant is found to be ζ = 1/

√
2 and the bandwidth is ω0 =

√
2v/l, where v is

the vehicle speed and l is the lookahead length.
Given a physical system, it is also possible to determine these values empirically (if

the system is presumed to be linear and second-order) by measuring the properties of the
system’s step response. Observing that Figure 3.4 contains such a step response (to the step
change in altitude commanded at timestep T = 1500), it is possible to deduce the damping
constant and bandwidth of the corresponding linear second-order system based on rules laid
out in, for instance, [14].

The damping constant can be found directly from the maximum overshoot percentage

using the relation Mp = e−πζ/
√

1−ζ2 . The maximum percentage overshoot is measured from
Figure 3.4 to be close to 16.2%, which gives a damping constant ζ ≈ 0.5. With this, there
are two possible calculations to determine the bandwidth frequency, involving either the
10%-90% rise time or the 2% settling time. Using the settling time as a metric is not viable
in this case because of the oscillatory error present in the altitude tracking. The rise time
is much more reliably measured, and is about Tr = 2.12 s. With this, we use the relation
Tr = 1.8/ω0, valid for ζ = 0.5, to find the bandwidth ω0 ≈ 0.85.

When the vehicle is following a path with no lateral variation, the vertical acceleration
command will follow the same theory as the two-dimensional guidance law. It is, after all, the
two-dimensional guidance turned on its side in the case of zero-order dynamics. Therefore,
with the results of [10], it is possible to use the vehicle’s speed of 3 m/s and lookahead length
of 2.5 m to find a predicted bandwidth of ω0 ≈ 1.7 for the situation in which the vehicle is
following a path with no lateral variation.

The obvious factor of 2 discrepancy between these values requires some discussion, al-
though we do not have to look far for an explanation. In the case shown in Figure 3.4,
the step response in altitude is commanded while the vehicle is flying an approximately
circular path, and since the same lookahead vector is used to calculate both lateral and
vertical acceleration commands, the aggressiveness of the controller is “split” between these
two directions of motion. It comes as no surprise, then, that the bandwidth of the controller
in each direction (lateral and vertical) will be less when the controller is excited in both
directions simultaneously than when only one direction is perturbed. It is the latter case
(perturbation in one direction at a time) that is considered by the analysis in [10].

3.7 Summary

When compared side by side on similar test paths, we have seen that the three-dimensional
guidance law does in fact mimic the behavior of the two-dimensional acceleration command
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generator, as predicted by the mathematical reduction of the former to the latter in the case
of level flight or straight flight. We have also seen that provided the controller parameter
is properly matched to the actuator capabilities of the vehicle, good tracking is obtained in
response to an altitude step, although empirically the bandwidth is substantially reduced
when the vehicle is carrying out lateral and vertical maneuvers simultaneously.

Motivated by the success of this guidance scheme for simple paths and recollection that
the nonlinear control scheme presented in the previous chapter requires an acceleration ref-
erence as part of its trajectory definition, we now explore the possibility of combining the
two techniques by using the acceleration command generator as a seed for the trajectory
following capabilities of the controller obtained through feedback linearization.
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Chapter 4

Three-Dimensional Nonlinear
Guidance: Simulation

In this section the fully nonlinear control scheme discussed in chapter 2 will be combined
with the three-dimensional acceleration command generator. A new form of trajectory repa-
rameterization will be demonstrated based on this acceleration command generator that is
suitable to guide a vehicle, using the controller designed with differential flatness, along paths
made up of straight line segments.

Trajectory reparameterization is widely studied as a method of meeting actuator con-
straints. Pappas dealt with this problem extensively in [8]. The motivating problem in his
study is an aircraft instructed to be at a specific point in space at a specific time, and in the
case that the nominal trajectory requests performance that exceeds the capabilities of the
actuator(s), his approach rescales the nominal time evolution until it is within the actuator
limits.

An alternative problem is to consider shifting the system’s time evolution rather than
scaling it; consider the situation described in the introduction. (For convenience, the illustra-
tion from Chapter 1 is reproduced below.) A formal trajectory is provided which completely
specifies the desired time evolution of the vehicle’s state at some initial time. However,
suppose that it is not necessary for the vehicle to reach the end of that trajectory exactly
at the associated terminal time, but rather it is required that the vehicle follow the spatial
path described by the formal trajectory.

In the presence of initial temporal offset such as that shown in Figure 4.1(b), the control
signal commanded by a pure trajectory-following controller will be regressive. In the patho-
logical case when the desired path is a straight line and the vehicle has a positive temporal
offset, the control signal might also be dynamically infeasible; for example, an aircraft may
be commanded to slow so drastically that it stalls. Physically, such temporal offsets could
occur because of gusting. If a light UAV is flying in a gusty environment, it is conceivable
that the UAV could be removed substantially from its nominal trajectory by large gusts, and
for the controller to plan dynamically infeasible recovery maneuvers would be unacceptable.

With this alternative goal (good, progressive spatial tracking), the following form of the
trajectory reparameterization problem can be posed: given a formal trajectory, guarantee
progressive convergence to and following of the spatial path described by the formal trajec-
tory from any initial offset. (The reader is referred to [9] for another view of this problem.)
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(a) Progressive control signal, moving the ve-
hicle closer to its goal.

spatial-temporal error: 0
pure spatial error: 0
control action: progressive

spatial-temporal error: x(t1)-xd(t1)

pure spatial error: 0
control action: regressive

xd(t1)

u

u

xd(t2) xd(t2)

xd(t1)

(b) Regressive control signal, moving the vehicle far-
ther from its goal.

Figure 4.1: The inherent flaw in trajectory following. Both snapshots are taken at time t = t1.

The requirement of convergence from any initial offset will be relaxed somewhat as the
study progresses to requiring convergence from any initial offset that lies within a tube of
specified radius around the desired path.

4.1 Formulation

To begin, consider the dynamic feedback compensator derived using differential flatness.
Its reference is a trajectory specifying the time evolution of the position and its first three
derivatives, and the sideslip angle with its derivative. Denote this trajectory as a continuous
function of a reference time τ :

xr(τ) = fx(τ)

βr(τ) = fβ(τ)

ẋr(τ) = f ′x(τ) (4.1)

β̇r(τ) = f ′β(τ)

ẍr(τ) = f ′′x (τ)

x(3)
r (τ) = f ′′′x (τ).

The position xr is a vector position, and the sideslip βr is a scalar angle. Assume that zero
sideslip is desired, and for convenience that zero jerk is imposed. This latter requirement is
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easily relaxed. What remains when these components are ignored is the reduced trajectory

xr(τ) = f(τ)

ẋr(τ) = f ′(τ) (4.2)

ẍr(τ) = f ′′(τ).

Now recall the proposed three-dimensional guidance logic, which generates the lateral accel-
eration command

acmd =
2

|L|2
(V × L)× V (4.3)

as described in the previous chapter. In order to satisfy the convergence and following
constraints, the following set of discrete-time updates is proposed:

xr(tn+1) = x(tn) + ẋr(tn+1)δt

ẋr(tn+1) = V̂ (tn)vr + ẍr(tn+1)δt (4.4)

ẍr(tn+1) =
2

|L|2
[V (tn)× L]× V (tn),

where x(tn) is the current position of the vehicle, V (tn) is the current vector velocity of the
vehicle, V̂ (tn) is a unit vector in the direction of V (tn), vr is a scalar speed reference, and δt =
tn+1− tn. Note that even though the formal trajectory is specified as a continuous function,
in practice it will be discretized at the controller update rate. The continuous specification
is convenient for the present analysis; with it, the issue of asynchronous timesteps when
comparing the two specifications does not come up as it would if both were conceived to
operate in discrete time.

For the purposes of analysis, assume that the vehicle is a point with zero-order dynamics.
It will be shown that over time, the discrete-time reparameterization (4.4) with a suitable
speed reference converges to exact tracking of the formal trajectory (4.2) at a shifted time.
The demonstration involves two steps. First, invariance is proven: if the vehicle is anywhere
on the formal trajectory, the proposed discrete reparameterization will keep the vehicle
on the formal trajectory for all future time. Next, a lemma is invoked that demonstrates
convergence to an arbitrary straight-line path if the proposed acceleration commands are
executed.

4.2 Invariance

Let the formal trajectory be completely specified by

f(τ) = l0 + l1τ.

Then l0 is the nominal position at time τ = 0 and l1 is the desired vector velocity. Now
suppose that a vehicle with zero-order dynamics is moving on the trajectory at time τ1; its
position is l0 + l1τ1, its velocity is l1, and its acceleration is 0. At this time τ1, the reference
specification is switched from (4.2) to (4.4), with the lookahead vector L referenced to the
line f(τ) and the speed reference vr = |l1|.
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Because the vehicle is traveling with the desired velocity and the path is a straight line,
V (tn)× L = 0; moreover, V̂ (tn) = l̂1. It is therefore immediately clear that

ẋr(tn+1) = l1

ẍr(tn+1) = 0.

Now introduce a specific controller time sequence in which the continuous reference time τ1

corresponds to controller timestep tN ; then x(tN) = f(τ1). Since the discrete-time velocity
and acceleration commands are constant, for every future timestep n ≥ N the discrete-time
reparameterized position reference will be

xr(tn+1) = x(tn) + l1δt

= f(τ1) + l1(tn − tN) + l1δt

= l0 + l1(τ1 + tn+1 − tN)

= f(τ1 + tn+1 − tN).

This is exactly a discretized, timeshifted representation of the formal trajectory reference.
In fact, for the straight-line case, (4.4) may be rewritten as

xr(tn+1) = f(τ1 + tn+1 − tN)

ẋr(tn+1) = f ′(τ1 + tn+1 − tN) (4.5)

ẍr(tn+1) = f ′′(τ1 + tn+1 − tN)

for n ≥ N , provided the state (x(tN), ẋ(tN), ẍ(tN)) is on the formal trajectory. This demon-
strates the spatial invariance of the formal trajectory under the proposed reparameterization
scheme.

4.3 Convergence

Gates, in [11], has demonstrated the existence of a positive definite Lyapunov function for
the proposed acceleration command generator referenced to an arbitrary straight-line path
in three dimensions. So if a vehicle with zero-order dynamics carries out the acceleration
commands referenced to some straight line, it will converge asymptotically to that line.
(Subject to the requirement that the initial offset cannot be more than |L|, in which case
the acceleration command is undefined.)

Because of the specification chosen in (4.4), for a given velocity following these commands
is equivalent to following the acceleration commands alone and controlling the velocity inde-
pendently. Therefore using the guidance commands of (4.4), a straight-line formal trajctory
is spatially invariant and attracting.

4.4 Simulation Results: Comparison

The motivation for this study was not without practical foundation. While conducting
simulations of the dynamic feedback linearization control scheme in response to various
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initial offsets, it was observed that offsets along the desired direction of flight resulted in
larger control signals and poor dynamic behavior when compared to offsets transverse to the
desired direction of flight. It was after realizing that this was due to the time-sensitivity
of the formal trajectory that work was begun to smooth the convergence properties so that
acceptable forward progress would be maintained regardless of the initial offset.

Consider the case when the vehicle’s initial condition is on the path described by the
formal trajectory at a farther point than that associated with time τ = 0. In the case of the
feedback linearized flight controller, the control action will be to slow the aircraft, allowing
the trajectory to “catch up” to it, and then speed the aircraft up to bring it to spatio-
temporal synchronization. This is demonstrated in Figure 4.2 for a straight-line trajectory
along the x-axis to be flown at constant speed 8 m/s, with the aircraft’s initial position set
at 3 m along the trajectory and initial speed set in the proper direction at the desired speed
of 8 m/s. (The relatively short distances and low speeds are a consequence of the nature of
the simulated platform, a styrofoam aerobatic remote-control airplane with a wingspan of
under 1 m.) To put this in the context of the motivational discussion, it is easy to imagine
a situation in which a gusty tailwind displaces a small UAV along its flight path, causing a
trajectory-tracking controller to react by slowing the aircraft.

For three meters offset, this behavior is not wholly unacceptable; the vehicle does not
approach stall speed, and good control is maintained throughout. However, the larger the
arc offset becomes, the poorer the recovering performance. At a 9-m arc offset the vehicle
stabilizes extremely slowly, and at a 10-m arc offset the vehicle stabilizes slowly upside down.
Meanwhile the actuator signals grow in magnitude and frequency. The evolution of an initial
condition with 11 meters of arc offset is shown in Figure 4.3. In this case, the commands are
nearly dynamically infeasible, and the moment actuator control signals (shown in Figure 4.4)
are either saturated or infeasible. The infeasibility arises from the high-frequency oscillation
of the signals, and the elevator signal is also saturated during its ringing pulses.

Now consider the same initial condition, but with the control commands generated using
(4.4) referenced to the same straight line described by the trajectory used in the previous two
examples. The cross-track (y and z) error is on the order of centimeters, Figure 4.5(a), so the
vehicle is kept on the desired path without altitude loss as a result of speed reduction as in
the previous two examples. The slow oscillations in the z error and the thrust command are
both a result of the controller’s attempt to maintain a constant speed of 8 m/s. A decrease in
thrust command requires a descent if the vehicle is to maintain speed, and correspondingly
an increase in thrust must be paired with a climb. Since this trajectory representation does
not contain a notion of arc error, it is meaningless to discuss initial arc offset.

4.5 Simulation Results: Capabilities

A more intriguing capability of this reparameterized representation is brought to light when
attempting to follow an infeasible path. Figure 4.6 shows the simulation results of following a
closed, steeply pitched square path at a commanded speed of 8 m/s. Because of the pitch of
the descending segment of the path, this speed command is infeasible; even with the engine
producing minimum thrust, the glide angle necessary to follow the commanded straight line
will produce a speed greater than 8 m/s. The entire circuit is infeasible in another sense
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(b) Speed and commanded thrust.

Figure 4.2: The vehicle is started from a point 3 m along the desired trajectory. Its error is
referenced to the current time, so although the vehicle is exactly on the desired path
(the x-axis), its x error is still nonzero because it is too far along the path (a). The
controller’s response is to slow from the nominal speed, which is clearly demonstrated
in (b) as the speed decreases approximately linearly with the throttle at its lower
saturation bound. This speed decrease causes the expected altitude loss, and in (a) it
is clear that the z error increases for a time. Around t = 1.3 seconds, the trajectory
catches up to the slowed vehicle, and the controller begins increasing the vehicle’s speed,
which brings the vehicle back to the nominal trajectory in both arc position and height.

as well: it is dynamically impossible for a non-holonomic vehicle to negotiate sharp corners.
With a pure trajectory follower (which does not incorporate lookahead), a sharp corner will
induce overshoot after the vehicle passes it, because only then will error be introduced.
With a lookahead control design such as the proposed reparameterization, the vehicle will
lead each corner, and the overshoot is expected to be small.

There is a trade between tracking performance and acceptable aggressiveness as the
controller parameter |L| is varied. For small values of |L| (less than about 5 for the simulated
vehicle geometry), tracking is tighter, but the control signals are much larger; short-period
oscillations develop as the vehicle reacts to its own drastic actions. For larger values of |L|,
convergence is slower, but the control signals are much smaller, and long-time tracking is
smoother. In Figure 4.6 the controller parameter has been chosen to be |L| = 10, which is
one quarter the length of each level segment of the path.
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(b) Speed and commanded thrust.

Figure 4.3: Here the initial offset of the vehicle is 11 m along the arc of the trajectory. The
immediate response of the controller is the same: it cuts the thrust command and waits
for the trajectory to “catch up.” Here, however, this takes so long that the vehicle loses
substantial altitude (which accounts for the increase in speed with no throttle input).
Then it must apply maximum thrust to overcome this altitude and speed loss.
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Figure 4.4: During the ringing pulses, the elevator control signal is saturated at π/4 rad.

The initial condition in this example is offset 3 m vertically and horizontally from the
desired path, which begins as a straight line along the x-axis. This diagonally offset initial
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(b) Speed and commanded thrust.

Figure 4.5: When the guidance commands are generated by the acceleration-based reparameteri-
zation, the cross-track y error is kept near zero at all times, and the cross-track z error
quickly decays to the order of millimeters (a). Since the reparameterized representation
does not carry any notion of arc error and since the desired path is along the x-axis, er-
ror in the x direction is irrelavent. The speed is not decreased at any point by command
(b), because the reparameterized trajectory is always progressive: it always moves the
vehicle toward the end of the path.

condition highlights the convergence properties of the acceleration guidance method. The
second path segment is a steep descent during which the glide speed of the vehicle exceeds
the commanded speed. It is clear, however, from the good spatial tracking that this combina-
tion of reparameterized guidance commands and the nonlinear controller prioritizes position
tracking over speed tracking when the speed command is infeasible. When the vehicle turns
into the third path segment, the speed bleeds quickly as the vehicle pulls out of its glide,
resulting in a dramatic increase in the thrust command which is quickly damped. As the ve-
hicle turns upward into the fourth segment, the thrust command must increase dramatically
to maintain the commanded speed, but this thrust is quickly reduced as the vehicle turns
into the upper flat section again, and very little time elapses at this lower thrust setting
before the descending section is again reached, the thrust command is cut, and the cycle
begins to repeat.
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(c) Flight path; the commanded path is shown in red, the flight
path is shown in black.

Figure 4.6: The vehicle is simulated flying along a pitched, cornered, closed circuit. In (a) are
shown the control signals commanded in response to this technically infeasible path.
There is one high-frequency pulse in the thrust command, but it is damped quickly.
Each pulse in the moment actuator commands corresponds to the start of a cornering
turn, and their even spacing implies roughly constant speed throughout. The four most
instructive state traces are shown in (b). The hiccup in the speed corresponds to the
second turn, from the descending segment into the lower level segment. Each increase
in bank angle is a successive right turn. In (c) the vehicle’s simulated flight path is
overlaid on the nominal path. As expected, the lookahead guidance logic leads the
turns with small overshoot of around two meters on a 40 meter path segment. The
trajectory ends after completing a full circuit and turning into the descending segment
a second time; until the simulation ends, the simulated path through the final turn in
the second circuit is within centimeters of the same path in the first circuit.

4.6 Summary

Motivated by consideration of the perils of a light UAV in a gusty wind field, a simple
guidance method has been presented to compute control commands at each timestep that
are suitable to follow straight-line paths in three spatial dimensions. The benefits of this
approach over traditional pure trajectory following are that
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• it maintains forward progress regardless of initial arc offset,

• its lookahead action mitigates overshoot at corners,

• it overcomes certain path infeasibilities.

Of course, when the benefits of pure trajectory following are vital (if it is critical that a vehicle
be at a certain place at a certain time), it is not appropriate to implement this representation.
But in many cases it is acceptable to minimize cross-track error without concern for arc
error, and in those cases it is computationally cheap and intuitive to implement the scheme
discussed here.

It remains to extend the claims proven here for straight lines to circular paths. If con-
vergence and invariance can be shown for circular paths, then it will be possible to connect
any sequence of waypoints in three dimensions with a continuous and differentiable path
made up of straight lines and circular arcs, and asymptotic convergence will be guaranteed
for each segment.
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Chapter 5

Summary and Future Directions

Several aspects of nonlinear flight control and trajectory reparameterization have been dis-
cussed, simulated, and implemented on a hardware platform. Within the motivating context
of a small autonomous air vehicle in a gusty environment, the stage is set for implementing
the methods described previously as the inner loop to a higher-level decision-making planner.
There is an extensive foundation that needs to be laid before this integrated architecture can
be realized; here we present some avenues of future work that will hasten progress to that
end.

5.1 Nonlinear Simulation

The failure of attempts to implement the feedback linearization control scheme on a hardware
platform for even the most basic of maneuvers indicates that the method is highly sensitive
to parameter uncertainty. A first step in obtaining a metric of this sensitivity is to simulate
various levels of single- and joint-parameter uncertainty to obtain a quantitative sketch of
the allowable parameter space. However, since the space is high-dimensional this manual
brute-force approach is undesirable.

Ideally, a robust control theory for highly nonlinear systems can be developed to analyze
such problems rigorously. While this may be years away from becoming a reality, it is
possible that parameter cutting techniques can be applied alongside system identification
tools to find good enough parameter estimates for practical purposes.

5.2 Three-Dimensional Guidance

Further analysis and testing are necessary before the proposed three-dimensional acceleration-
based guidance logic is properly understood. Two important issues are provable stability
to arbitrary circular arcs (rather than just arbitrary straight lines) and characterization of
performance in the presence of perturbations. The latter performance study would need
to characterize the decoupled response (vertical response in straight-line flight or lateral re-
sponse at constant altitude) as well as the trade that occurs when the vehicle responds to
perturbations in both directions simultaneously (the case studied in this report).

31



5.2.1 Application

It is easy to construct flight test rubrics that isolate the vertical response in straight-line
flight from the lateral response in level flight. It is difficult to find test spaces that easily
accommodate such tests, because they require relatively long straight-line flights which re-
quire a space that is large in at least one direction. An alternative to a large test space is a
slow vehicle, and it is very possible that testing with helicopters is more viable than testing
with aircraft.

The test trajectories that were flown in these tests are very basic. Steps and straight lines
are of course necessary building blocks, but the purpose of designing an intrinsically three-
dimensional guidance scheme is to follow more complicated and realistic three-dimensional
paths. Because any points in three-dimensional space can be connected by a C1 path com-
posed of straight lines and circular arcs, the immediate next step is to formulate the guidance
law such that it can follow arbitrary circular arcs. This is essentially the problem of finding
the vector of specified norm from a point to a circular arc, assuming such a vector exists.

Subsequently it remains to test tracking of more and more complicated paths, specifically
in the vicinity of the classical sigularity at 90 degrees pitch and in the situation where the
aircraft may need to fly upside down. (Inverted flight carries with it a whole class of problems
specific to the state feedback system in the ACL’s RAVEN. Solutions are currently being
implemented.) The prototype problem is a circular loop flown with a continuous control
architecture. Note that for a vehicle with true zero-order dynamics the proposed three-
dimensional scheme will generate acceleration commands suitable to follow a vertical circle.
It is the presence of real vehicle dynamics that complicates the problem.

5.2.2 Analysis and Simulation

The mating of the acceleration command generator and the nonlinear trajectory follower
may hold the key to the inverted flight problem (given proper state feedback), although
flight in the vicinity of the singularity is still difficult and will require more careful analysis.

There are two open issues that are direct extensions of the work presented here. First, we
conjecture that for zero-order dynamics any circular arc in three dimensions is an attractor
for the proposed three-dimensional guidance law referenced to that arc. This is intuitively
the case given the geometric motivation of the scheme, but it remains to explore and ideally
prove this fact. Second, the ideas of trajectory time-shifting presented in chapter 4 need
to be extended to the case of circular arcs. This proposed problem is characterized by a
steady-state acceleration command in order to follow a circle.

Finally, it is natural to study the effects of higher-order dynamics on the response of
a vehicle to the guidance law in three dimensions. This will be an extension of the work
currently ongoing to characterize the two-dimensional guidance scheme in the presence of
time delays.
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