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INTRODUCTION

My graduate work at Caltech has centered on the problem of calcu-
lating and understanding potential energy surfaces (PES) for chemical
reactions. In this I have tried to use independent-particle wavefunctions
because they have proven so useful in understanding chemical systems
in the past. The most widely known and used independent-particle wave-
function (IPWF) is the Hartree-Fock (HF) Wavefﬁnction, which has been
very useful in the study of the properties and geometries of bound mole-
cules. It is well known, however, that HF does not describe bond-
breaking very well, and so I looked into other IPWF that might be useful.

At the time I began this work, Bill Goddard had developed a new
method or set of methods collectively called GI. 1 Since these methods
removed the double occupancy restriction (which seemed to be the main
cause of HF's bad description of bond-breaking) but retained the inde-
pendent-particle picture, I undertook a study of the reaction

CH,+H — CH,» +H, (1)

using the GF method. It quickly became apparent that this project was
a bit too ambitious, since I could not afford to vary all of the nuclear
coordinates. By holding the three nonreacting protons in a triangle and
forcing some other restrictions on nuclear motion, however, I was able
to map part of the surface.

As I prepared for my candidacy exam, I was looking for proposi-
tions and Bill Goddard suggested I look into the problem of Li hyperfine
coupling. The G1 approach gave a good energy but a poor value for the

Fermi contact term, while GF gave a much poorer energy but a very
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good value for the contact term. The problem was to find a new IPWF
that would give the good Gl energy and the good GF contact term. This
led to the development of the SOGI method, which did just what was
required (at least for Li).

The energy improvement of SOGI over G1 for Li, however, was
tiny. My new method would be of little worth if it could only give very
small energy corrections for atoms and improve spin-density values.
In fact, when SOGI was applied to larger atoms, the spin densities were
not so good. I was curious to see if there were cases in which optimiz-
ing the spin-coupling would cause a significant improvement in the energy.
The transition state of H, proved to be just such a case. It was then
that I realized that the GF calculations on (1) were probably meaning-
less or nearly so, since the spin-coupling will always change in the
course of a reaction and this was not possible in GF. The development
of the SOGI method and its application to a few systems, including two
reactive ones, is discussed in Chapter 1, which was published in the |

Journal of Chemical Physics, 51, 1073 (1969).

These calculations on H, and H, led me to believe that the SOGI
method was just the independent-particle method I had wanted for treat-
ment of chemical reactions, and I began a more thorough investigation
of linear H, and linear LiH,. The study of H, was to establish how
accurately one could obtain a PES with SOGI, since very accurate CI

3, 4

calculations on H, were available for comparison. The calculations

on LiH, were undertaken to investigate the effect of restricting the spin-

coupling and to see how and how well SOGI would describe a reaction

5

that had an asymmetric transition state* and that was highly exothermic.
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The results of these calculations are given in Chapter II, which should
be published shortly. 6 A shorter, less detailed discussion of these
calculations and of the conclusions drawn has also been published in the

Journal of the American Chemical Society7 but is not included here.

Bill Goddard has taken the orbital picture of these reactions as
well as the calculation of Woody Wilson8 on H, and has produced a very

exciting interpretationg’ 10

that allows him to make predictions about
whole classes of reactions. These predictions are based on SOGI calcu-
lations on H;, H,, LiH,, and some calculations by George Levin on
allyl ions and radical and butadiene. 11 What is needed to extend the
theory are studies of molecules with nonbonded pairs and of excited

states.

The third section of this thesis is a study of the excited states of
H, that could arise from H, 12; + H(n=2) or H, 323 + H(1s). In that
section I examine the results of SOGI and G1 calculations on those
excited states and explain the nature of the states in terms of orbitals
and spin-coupling. I believe that those studies give significant

insight into the processes involved in reactions of excited states.
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ABSTRACT

A new independent-particle method, the spin-coupling optimized
GI (SOGI) method is described. This method removes many of the
restrictions of the Hartree-Fock (HF), valence bond (VB), and GI
methods. This method is applied to the two reactive systems of
linear H, and linear LiH,. The results of the H; calculations are
carefully compared with CI results. The shapes of the potential
energy surfaces (PES’s) are explained in terms of the SOGI orbitals.
Finally, the SOGI method is applied to the excited states of H;, both

linear and nonlinear.
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Improved Quantum Theory of Many-Electron Systems. V. The
: Spin-Coupling Optimized GI Method*

RoserT C. LapNert axp Witntax A, Gooparp mi
Arthur Amos Noyes Laboratory of Chemical Physics,§ Celifornia Institute of Technology, Pascdena, California 91109
(Received 6 February 1969)

The previously developed GI methods have an arbitrary aspect since they are based on a particular
represeatation of the symmetric group. Here we remove this arbitrariness by optimizing the representa-
tion, that is, optimizing the spin-coupling scheme simultaneously with the optimization of the orbitals.
The resulting wavefunctions, called the spin-coupling optimized GI or SOGI wavefunctions, have all of
the general properties of GI wavefunctions including the independent particle interpretation and are found
as the solutions to a set of coupled differential equations which difier from the GI equations only in that the
equations are constructed from a different representation of the symmetric group. We have applied this
method to the ground state and some excited states of Li, to the ground states of Bet and B+ and to
the ground state of Lill. In each of these cases, we found that the SOGI wavefunction was only slightly
different from the G1 wavefunction and led to very similar energies and- other spatial properties. For the
spin density at the nucleus, however, SOGI led to much better results. In order to illustrate the effects
of spatial symmetry on the SOGI orbitals, we examined the lowest 1By, 34x,, and 3E, states of square Hy
and the 2Z,* state of linear symmetirical H;. We find that in three of these cases optimization of the spin
representation is crucial to providing an adequate description of the state, To investigate how the SOGI
method would describe chemical reactions, the SOGI wavefunctions were computed for several other
nuclear configurations of the Hj system along the reaction path. These calculations showed that the spin
coupling changed siznificantly during the reaction Ho-+H=H-+11, and that the varation of the SOGI
orbitals provides a ciear description of the changes in bonding which occur during this reaction.

I INTRODUCTION

In Paper I!' of this serfes, we considered a sct of
operators G having the property that Ge#dy is an
eigenfunction of S? and sztisfics Pauli’s principle for
arbitrary functions @ of the spatial coordinates of the
N electrons and x of the spin coordinates. For a given
value of S and 3/,, we can generally find several, say
J¥, linearly independent spin functions or ways of cou-
pling the individual electren spins. The superscript g
of Gi# is detenmined by the total spin S and the sub-
script ¢ indicates which of the f* coupling schemes is
used. The spin functions used in Papers I! and II? are
constructed with Wigner projection operators® based
on Young’s orthogenal irrcducible representationt of
Sx; the construction of this representation is consider-
ably facilitated through the use of Young tableaux.!4
The quantily g correspends to a Young shape of ore
or two colurns and 7 corresponds to a particular stand-
ard tableau. We will call the spin functions based on
Young’s erthogenal representation standard spin fuac-
tions.

We showed in Paper I that, although the f* different
operators Gi# are Lincarly indenendent, the exac! wave-
function can he vritten in the form G#Qy using any

* Particlly supparied by a grant (GP-6963) from the National
Science Fourd

it Predoctoral Fellow,

T AYred P, &
§ Contributl
’hys. Rev. 157, 73 (1957), herealter
referred to 25 ¥
VW, A, Gt
referred to as }
1R P Wizore
1939), p. 118.
*D. E. Rutherior

versity Fress, Tdi

. Rev. 157, 81 (1957), hereafter

one G# operator and a suitable product of spin functions
in x if the spatial function @ is sufficiently gencral,

\I/exact_____G‘yq)i.exncix. (1)

(The Piexact will be different for different values of 4.)
In Paper 11,2 we considered a function of the form
13 )

o1 = Gratmmduey, @)

where @ipreduct js restricted to be a product of one-elec-
tron spatial crbitals and required that these spatial
orbitals be the bdest possille ones. The result was a
coupled set of integro-differcntial equations,

Arigi=adr  k=1,2, .-+, N (3)
for the best orbitals. (The integro-differential-permuta-
tional cperator 11+ degends on g, 7, and all the orbitals
¢;, except ¢:) Since the orbitals {¢.} optimize the
energy for the wavefunction ¥g, they are referred to
as the GI orbitals, and the equations (3) for these
orbitals are celicd the GI cquations.

Even though the exact wavcefunctions can be written
in the form of (1) for any 4, the constraint implied by
a product & may be more restrictive for some ¢’s than
for others; that is, our approximate wavefunction ¥ar
depends on which of the spin-coupling schemes (de-
noted by 7) we have selected. The standard spin func-
tions are used in the GI method because Young's
orthogonal representation of 8y is easicr to constiuct
than otler equivalent representations. This Imposes
an arbitrary restriction on the wavelunction because
there is nothing physically special about the standard
spin functions and because we coen construct a new
G#ike operator, G#E, which yiclds a wavefunction in

Iincar combination of
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orthogonal transformation to the representative mat-
rices, U*(7), to obtain

Ut (r) =LU*(r) L, (12)

where L is a general orthogenal matrix. We can define
new orthogonal units with these transformed matrices

Opt=(f+/N1) Z Urin*t%

= Z“: erLuOkz“y (13a)
witl=5, (/N) :/: $Urioe
TN
=i [i_} OreLoeLiwii®, (13b)
Now we define a new G#-like operator G#F as
pl= Z ExriOri#ley:FL (14)

Since L is a completely general rotation, the initial
orientation of our spin functicn (specified by ) is of
no consequence, but for the sake of definiteness we will
fix ¢ to be 1. Since 7 is always 1, we will normally omit
it and write GyP as G*L. In discussing a particular
system, we will fix ¢ and omit it thereafter writing

G~ for G,

.

I=( ZLnLlJ(‘I’ [ H | 0:#2)/ Z LinT1a(® | Onnt®)) — E; (o | dn) =\ 2 Lyt

Since the transformed orthogonal units satisfy qu.
(9) and (10), the arguments of Sec. I of Puper I apply
directly to show that G”<I>x is an eigenfunction of S
and satisfies Pauli’s principle. Sumlarly from the argu-
ments of Sec. II of Paper I we have that

E=(G"ox | H| G ox)/ (x| G+ @)

= (@[ I | O™ ®)(x | s/ ix)/ ({® | Our™®) (x| wrix))

=(®| H|Ow'2)/ (P | Ot ®). (15)
At this point we will restrict ® to be a product of one-
electron spatial orbitals and require that the energy
be stationary not only against first-order vatiations in
each orbital but also against first-order variations in L.
That is, we require that the spatial orbitals and the

spin coupling scheme be optimal simultancously.
The energy expression can be rewritten as

E= );f LyLi{(® | H | O"’%)/‘}z? LuLy{® | Oppd).
2
(16)

We must minimize the energy subject to the constraints
that D x Ly?=1 and that (¢>,,, [ ¢ny==1 for all . There-
fore we introduce Laf*ran"c multipliers and minimize
the expression

(17a)

This leads to a set of N—f -f# coupled equations for the best ® and L. The N equations for the best & are integro-
differential cquations and we will call them the sp1t1a1 SOGI equations. They can be written so that the only
permutdtloxnl operator which appears is the transformed orthogonal unit Op#”. The f* equations for the best L
are nonlinear algebraic equations which involve ® only in the intcgmls (@ | 1] 0#2) and (@] 0,#%) and these
occur as coefficients; we will refer to these equations as the spin SOGI equations, since L determines the spin
coupling scheme.

When making variations in ®, we can take the sums over 7 and j of Eq. (17a) back into the intcgral to give

I=({2| H | 0w ®)/{$ | On*®))+ .5_;: e | )N 2 L. (17b)

From this expression we obtain the following set of equations, using exactly the arguments of Sec. T of Paper II:

HE(E) = e k=1,2,.-+ N, (18)
where )
H(E)ér= {DL"}W‘L'F > (| BYDurhg i+ Z (VR BYDwFeA Do (s R D] B)Dysv e,
vk ursiAk
+ > [(/ ¢»~§¢‘) DiFigpiA- U ¢f§¢*) Dv—-"%‘] + 2. (/ qug@) (o] BYD "2,
J =k . ' JateAk

+ 20 (st ENDt ety 20 (st i [ Dyt eu—E 2 (0] k)Dku""l:h} - (19)
sstuk iisturk u, vk
Here we have redefined D, Lo be the coeflicient of ¢7(i)¢;(i) in [@*O# @ (dx/), D;* to be the cocfiicient of
(X ()i d (k) In f(b"”()uﬁ‘b(b(d::ik"), etc. This redefinition of the 1 matrices is the only difference between
the spatial SOGT equations and the GI equations.
1€ we dofine 3= (Db | I | O;#D) and 3= {F | 0}, the spin SOGT equations are

[Z ]1,(3C,p+.ykm)](? LI 90) — (Z Li:Ly ,\,,\[T Ly (90,90, T— 0L (5‘ Lyl ;) = p=1, e,

(20)
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the standard spin functions. The exact wavefunctions
can again be written as

Jrexact =G,J‘L‘IJi'L'exa°tx. (4)

We now consider approximate wavefunctions of the

form )
‘I’GIL—‘:G;"L@"-L'P’M“C‘X (5)

and select ¢, L, and @iLproduct guch that the energy is
the lowest possible, which leads to a new set of coupled
integro-differential equations analogous to (3),

0006, = e k=1,.+-N (6)

for the best orbitals. Since this approach is a generaliza-
tion of the GI method, which eliminates the arbitrari-
ness in choice of spin function and yet retains the
independent particle interpretation, we will refer to it
as the spin-coupling optimized GI or SOGI method.
We will show that the SOGI wavefunction, referrcd
to in (5) as Vg, is the best possible wavefunction
which can be interpreted in terms’of iV spatial orbitals
as if an electron were moving in each orbital in the
self-consistent field duc to the electrons in the N —1
other erbitals. In addition, we will show that the SOGI
wavefunction has all the general properties of GI wave-
functions; e.g., the virial, Hellmann-Ieynman, Bril-
louin, and Koopmans thesrems still apply® (for a fixed
spin function). We also show that the SOGI method
can be considered as the synthesis of the valence bond
and Hartree-Fock methods.

¥VW. A. Goddard na, J. Chem. Phys. 48, 5337 (196%).

LADNER AND W,

A, GODDARD 111

In Sec. II we derive the general equations for deter-
mining the SCGI orbitals and consider some aspects
of spatial symmetry restrictions. In order to demon-
strate various aspects of the SOGI method we report
in Sec. III the results of SOGI calculations on some
three- and four-electron atoms and molecules.

II. THE SPIN-COUPLING OPTIMIZED
GI METHOD

A. The SOGI Equations
The G# operators were defined in Paper I by the

equation
G#= Z ErnOrifwis®, (7N

where O,# and wsi# are orthogonal Wigner projection
operators® based on Young’s orthogonal representation
of 8y, and {y,, is the parity of the permutation A
which changes the ith standard Young tableau S;* into
the rth standard Young tableau S,*. For a spin-inde-
pendent Hamiltonian X the energy is given by Eq.
(15) of Paper I .

E=(Grdx | H|Grox)/{G+Ix | G+Ix)
={(®| I | 0:+3)/(® | 0:22) (8)

which results from the fact that the orthogonal units
obey the following equations!34;

0{;”0k[5=5055jk0,'1", (93,)
i i =8apbmwinP (9b)
and .

(0:#:1 | 2) = (1] 0;¢%2), (102)
(w,;,,;axl I Xz)‘—" (Xl ] wﬁyﬁ&X:t). (IOb)

The orthogonal units are defined by'-34
r#= (/N D0 U7, (11a)

1eSN

wif =00 (/N 20 S Uniers,  (11D)

ceSN

where the U#(7) are orthogonal matrices which yield
the pth irreducible representation cf §y. Picking a set
of representative matrices is equivalent to picking a
set of orthogonal (not nccessarily normalized) basis
vectors in the fe-dimensional space of spin functions.
A convenient way of constructing the U#’s is described
in Paper I and involves the use of Young tableaux.
The arbitrariness in the GI method results from choos-
ing our one spin function to be onc of the arbitrarily
chosen basis vectors in the f“-dimensional space of spin
functions. This arbitrariness can be removed by allow-
ing for a general rotation of the coordinate axes in our

- space of spin functions. We will require thut this rota-

tion give the best single spin function possible. We
now derive the neccessary equations for finding this
optimum spin function.

The rotation is most easily obtained by applying an
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no consedteice, Lut for the sake of defindtences we will
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I= ({2 | 1] O ) /{0 | O

1 the following set

]111 (»]‘l) ‘rl‘ =T r[',‘y_
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HE(E) '
.k 8,07k
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divectly to show that Gliy is an eluenfunction of &
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ments of Sce. I of Paper Twe have that

E= <(1"""<1*X I 1/ { (:"1'11',(,\/((# Ty [ G5

=:¢PI1/l(L#LJO(Xfavﬂﬁx>/(<4‘f0u“¢ Oelen™ )

= (@ LI 079)/ (3 | 07, (15)

At this paint we will restrict € to be a product of one-
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that >~4_. ]'1; :fl and that (() . ] I )»Al for all 2. There-
fore we intreduce Lagrange mulli ipliers and minimize
the czqn‘cssu;\n

>:i; (93 <(.~l’:': I QJ);I)"’A >j: I/lug-
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1
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st @ oare mh -
thet the (,»n‘)
I {he bost L
O{f 1;" an O th
ddmmvc the

Ji (172) back into the integral o give
(171)

.Tof Paper 11:
(18)
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Fic. 2. Energy as a function on representation parameter, =,
for the 225 state of Li.

These equations are simple nonlinear algebraic equa-
tions. Since they involve 3C;; and 90y for all 7 and j,
and since the evaluation of all of these quantitics fre-
quently requires a great deal of effort, it will often be
expedient to find the optimum L by actually calculat-
ing the encrgy for various values of the parameters of
L until 2 minimum is found.

B. The Independent Particle Interpretation and Other
Properties of SOGI Wavefunctions

Each H%(k) operator in (18) is equivalent to the
Hamiltonian of an electron moving in the (nonlocal)
field due to electrons in the N—1 other orbitals. Since
¢ is an eigenfunction of this operator, we can interpret
each ¢ as the eigenstate of an electron moving in the
field due to N —1 other electrons. That is, the SOGI
orbitals can be given an independent particle inter-
pretation (IPI) just as the GI orbitals were.?

In the independent particle interpretation we inter-
pret each spatial orbital of the N-electron wavefunction
as the eigenstate of an electron moving in the average
(seli-consistent) potential due to electrons in the other
N—1 crbitals. The criteria we use for such an inde-
pendent particle interpretation are the following: (i)
There must be no more than A different spatial orbit-
als since there are only A electrons. (ii) Each spatial
orbital must be an eigzenfunction of an operator equiva-
lent to the Yamiltonian for an electron moving in the
field due to the nuclel and in some average field due
to electrons in the other A’—1 orbitals. (ili) This aver-
age field in (i) can be nonlocal but it must be obtained
directly from applying the variational principle to the
encrgy. As discussed elsewhere?® the IHortree-Fock,
UHF, and GI wavefunctions satisfy these criteria and
can be given an indepeadent particle interpretation
(IPI). However configuration-interaction (CI) and

III

multiconfiguration SCF® (MC-SCF) wavefunctions do
not satisfy (it) and usually not (i) and cannot be
given the IPI. In addition extended Hartree-Fock
methods which use spatial projection operators” do
not necessarily satisfy (i) [e.g., for H, such a wave-
function” might involve two o orbitals, four = orbitals
(two = and two =), four & orbitals, etc.] and thus
cannot be given the above IPI. In the valence bond
{(VB) wavefunction,?® (i) is satisfied but the orbitals
are not functionally optimized so that (ii) and (iii)
are not satisfied and the VB wavefunction cannot be
given the IPI. However we have shown® that the Gl
wavefunction corresponds to a generalization of the
VB wavefunction in which all orthogonality and double
occupation constraints are removed and the orbitals
are functionally optimized, and thus the G1 method
is the direct generalization of the VB method which
does lead to the TPI. '

The criteria in (1)-(iil) are sufficient to require that
the many-electron wavefunction be expressible as a
product of & spatial orbitals and a suitable spin func-
tion with this perhaps operated on with an operator
which does not change the form of the orbitals (if they
were changed the space spanned by the orbitals would
in general enlarge to dimensions larger than V). Thus
the operator may involve permutations but not spatial
projection operators. If all the orbitals in @ are allowed
to be different the operator must take care of both the
spin symmetry and Pauli principle. The most general
operator which does this and nothing more is

> aG#,
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F16. 3. Spin density at the nucleus, Q(0), as a function of repre-
sentation paramcter Z for the 225 state of Li.

¢ G. Das and A. C. Wahl, J. Chem. Phys. 44, 87 (1966); A. C.

Wahl, P. J. Bertoncini, G. Das, and T. L. Gilbert, Intern. J.

_Quant. Chem, 1S, 123 (1957).

TE. R. Davidson and L. L. Jones, J. Chom. Phys. 37, 2966
(19362); C. F. Bur Phys. Rev. 154, 70 (1907).

8 H. Eyring, J. Walter, and G. E. Kimball, Querittiom Clemsistry
(John Wilzy & Sons, Inc., New Yorl, 1945, p. 218,

P V. A. Goddard 11, Phys. Rev. 169, 120 (1908).
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where the ¢; are arbitrary. But from Appendix C of
Paper I we have
Ge#dx=falP(wstx) ],

and thus we have

Z G#dx =f“a[‘1>( E c.-w;;‘x) ]

(21a)

(21b)

But Y :ciwsifx is just some arbitrary vector in the f-
dimensional spin space and hence can be written as

Z cw:;“x =wuL‘-'X
i

in terms of the L-transformed representation. Thus

2 cGeax=fa[®(3 i)

=Gy,

and the SOGI wavefunction is the optimum wave-
function yielding the above described independent par-
ticle interpretation.

In the early years of the application of quantum
mechanics, two popular types of wavefunctions were
the MO and valence-bond (VB) or Heitler-London
wavefunctions where the MO wavefunction was just
a special case of HF using a minimum set of basis
functions. Since these methods led to somewhat differ-
ent wayecfunctions, questions concerning which was best
arose. This was partly scttled by Van Vleck and Sher-
man who showed that starting with either function
inclusion of sufficient other configurations would even-
tually lead to the same final wavefunction. For exam-
ple, for H; with 2 minimum basis set, the VB and HF
wavefunctions are both special cases of the Weinbaum!

(21c)

AMPLITUOE

H3 R=1470, 2.984; E/2 2157
DISTANCES IN AU,

F16. 4. SOGT orbitals for Hy: Rar=1.470, Rpc=2.934;2/2=3.5°

b

orbital 1, -« orbital 2, - — - orbital 3.

® @ is the antisymmetrizer,

a=(i/N) 2 .,

where 7 operates on both spatial and spin coordinates and §, i3
the parity of +.
( “J.)H. Van Vileck and A. Sherman, Rev. Mod. Phys. 7, 167
1935).
25, Weinbaur, J. Chem. Phys. 1, 593 (1933); C. A, Coulson
and 1. Fischer, Phil. Mag. 40, 35¢ (1949).

MANY-ELECTRON SYSTEMS. V

AMPUITUDE
N\ o

H3 R2(609, 2020, E/2=1c.4°

DISTANCES IN AU.

Fic. 5. SOGI orbitals for Hy: Rap=1.609, Rpc=2.020; =/2=
16.4°. —— orbital 1, --- orbital 2, - — - orbital 3.

wavefunction. However the Weinbaum wavefunction
for H, is equivalent to the SOGI wavefunction for a
minimum basis set (also equivalent to G1 and GF).?
In fact for any number of electrons the VB (or Heitler-
London) and HF methods and their natural generaliza-
tions the G1 and GF methods are special cases of the
SOGI method. Hence we can consider the SOGI wave-
function as the generalization and synthesis of the HF
and VB or Heitler-London methods which in addition
still yields an interpretation in terms of independent
particle states.

In addition to the IPI all other general properties of
GI wavefunctions (e.g., the Hellmann-Feynman, Bril-
louin, virial, and Koopmans theorems®) hold also for
the SOGT wavefunction (for fixed L) as can be seen in
Ref. 5. ' '

Wavefunctions of the form

al2(2. a0, (21d)
i

where @; are the orthogonal spin coupling functions
and @ is a product of orbitals that have been dealt
with by several other workers. Lunell® has solved for
the wavefunction of the ground state Li using a form
like (21d) where he optiraized both the C; and one of
the orbitals of @ and Kaldor' has solved for both the
215 and 2°?P states of Li using a wavefunction of
the form (21d) with optimized orbitals. By (21h) and
(21c) Kaldor’s wavefunction can be considered as a
SOGI wavefunction and Luncll’s is a special case in
which the orbitals were not all solved for self-consist-
ency. In addition Musher'® has taken published G1
and GF calculations for Li and calculated the coefli-
cients C; in (21d) without reoptimizing the orbitals,
and Taylor and Harris"® have optimized the cocfficients
C; in (2id) for several systems without functionally
optimizing the orbitals. :

1S, Lurell, Phys. Rev. 173, 85 (1968).

1, Kaldor (private communication).

15 (a) J. Musher (to be published); (b) 1. S. Taylor, J. Chem,
Phys. 39, 3382 (1963); H. S. Taylor and I°. Harris, #bid. 1012
(1963). : )
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AMPLITUDE.

H3 R=1.765, {785, 5/2:2087"

DISTANCES N AU,
(o)

)

AMPLITUDE
o

K

K3
B

)
T
2

M3 R:17E5, 1765, Of
DISTANCES IN AU
(b}

o

FiG. 6. (a) SOGI orbitals for the saddle point of Hi: Rap=
Rpc=1.765, £/2=20.89°. —— orbital 1, ... orbital 2,
orbital 3. (b) Optimum left-right correlated (G1) orbitals for
the saddle point of H;: Ryp=Rpc=1.765, orbital 1, «.-
orbital 2, - - - orbital 3.

C. Spatial Symmetry

Although the SOGI wavefunction has the correct
spin and permutational symmetry, we must also en-
surc that our SOGI many-clectron wavefunction trans-
forms as a basis function for some irreducible repre-
sentation of the group G of spatial transformations
which leave the nuclel unchanged. Just as for GI,2%in
some cases the SOGI orbitals are symmetry functions'®
for G and in some cases they have lower symmetry.
In addition, if the SOGI orbitals are not symmetry
functions for G, there may be some constraints on L
in order that the many-clectron wavefuuctions have
the correct symmetry. '

We will consider only spatially nondegenerate states
for which R¥sogr= == ¥soqr where B is some symmetry
operation. Since /2 is symmetric in the electron coordi-
nates, it commutes with @ and Oy*" and we have that

FE¥socr=GL (0w (R2))x]- (22)
Let R be a gencrator of G for which #¥sogr = +¥socr,
then

QL (0w (129)) x]=al (02 ) x]. (23)

16 By a synmmetry function for G we mean a basis function for an
irreducible representation of G.

11z

This equation can usually be satisfied if ¢ is composed
of symmetry functions, but this is not a necessary
condition. Suppose that @ is constructed from orbitals
which are symmetry functions of the subgroup §’ which
is obtained by deleting the generator £ from G. Further
suppose that @ is such that the effect of R is merely
to interchange the orhitals among themselves; that is,
R®=-+7® where 7g is some permutation. Now if
Ow#Pre =20, Eq. (23) is satisfied despite the fact
that the orbitals of ® are symmetry functions only of
the subgroup §'. If B is such that RV =—V¥, we have
the same results if B® =47 and Oylre=F 0"
To see what condition this imposes on L, we expand
7r in terms of the transformed orthogonal units (letting
Le be the f*-dimensional unit matrix if o>y, and

Lr=1) _
"= Z 021U (1), (24)
(35
then
Owlrr =0 3, Uit (12) 0471
i
= Z OIJ#LUIJ‘“L(TR) . (25) .
- .

Since the O;#L aré linearly independent, we have
that O{;J'Lf[z::f:Ou"I’ only if Ulf’l‘(’r[;-) =6{j, which im-
poses one constraint on L. Under some circumstances
this condition cannot be satisfied, in which case the
SOGI orbitals must be symmetry functions. In many
cases, however, the condition on L can be satisfied
and the use of nonsymmetry orbitals is possible. Some
examples will be considered in the discussion of the Hj
and H: calculations below.

Consider a molecular system such as linear, equi-
distant H; which is stretched or compressed symmet-
rically. For large spacing, it is encrgetically favorable
for orbitals to localize about the various nuclei, and
we expect the SOGI wavefunction to have a spin part
(L) which allows this localization and a spatial part
composed of permutationally related nonsymmetry
functions (an orbital on each H). For small inter-
nuclear distances, delocalization of the orbitals is ener-
getically favorable, and we expect the SOGI wave-
function to have a spatial part composed of symmetry
functions and a completely general spin part. This
means that, for systems which are pulled apart sym-
metrically, there will be a discontinuity in the slope
of the encrgy vs distances curve where we switch from
localized to delocalized bonding. Although this dis-
continuity of slope is not a real effect, it is interesting
to see how the ideas of localized and delocalized inde-
pendent particle states arise naturally and how a choice
can be made for cach system on purcly energetic
grounds. Tn polyatomic systems, the physically inter-
esting processes usually do not involve symumetrical
dissociations sc that the discontinuity of slope is of
little physica! or chemical consequence. However, such
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A. GODDARD 111

Tasre I. SOGI and G1 wavefunctions for the ground state of Li (£/2=0.217°+0.001°).

Function ¢ #SOGI #G1 #:50G1 #:Gl1 #:S0GI #:G1
1 3.0 1.14368 1.14370 0.60987 0.60984 0.02804 0.03189
4s 5.33  —0.10348  —0.10348 0.12715 0.12709  —0.00228  —0.00208
3s 5.40  —~0.07808  —0.07810 0.07854 0.07853 0.00060 0.00069
3s 3.00 0.00542 0.00550 0.27260 0.27246 0.02045 0.02124
3s 1.347 0.01569 0.01549  —0.00398  —0.00362 0.28602 0.28571
3s 0.841  ~—0.00255 —0.00292  —0.00004 0.00063 0.63560 0.63501
4s 0.732 0.03458 0.03446  —0.01551  —0.01531 0.06863 0.06554
3s 0.62  —0.03799  —0.03793 0.01738 0.01731 0.05573 0.05576
¢ —2.84409 —2.8427  —2.46128  —2.4588  —0.19616  —0.19615

(orbital energy) ’

transitions are of theoretical interest and have been
suggested by Mott? to be relevant in the discussion
of conduction and other properties of such solids as
NiO. Since the SOGI wavelunctions dissociate correctly
and can naturally lead directly to either localized
or dclocalized orbitals without requiring additional
Wannier-like localizations as in the HF method, it
would seem that the SOGI wavefunctions would form
a suitable foundation on which to discuss ideas such
as the Mott transition.

I, RESULTS ARD DISCUSSIONS

Since the spatial SOGI equations are of exactly the
same form as the G1 equations, we solve them in the
same way. We expand the unknown orbitals in terms
of a finite basis sct

éi= D x:Cui (26)
I

and solve for the cocfficients iteratively. (The equa-

tions could also be solved numerically.) Existing three-

and four-electron G1 programs were adapted to do

SOGI calculations by changing only the sections which

calculate the D matrices.

A. Threc-Electron Doublet States

First we will consider some three-electron doublet
states. In this case there are two lincarly independent
spin states, f*=2. The standard representation is given
in Paper I (Appendix A) and the gencral transforma-
ticns L to new spin functions is given by

cos(5/2) sin(=/2)
(27)

—sin(E/2) cos(=/2)

Thus in addition to optimizing the three orbitals ¢., ¢,
and ¢, we must optimize the single parameter E, which

7 N. F. Mott, Proc. Phys. Soc. (London} A€2, 416 (1949).

just corresponds to a rotation angle in the two-dimen-
sional space of spin functions. From (21) we have that

GPx =G (Pws P x) (28)
or expanding w o
G putrb.ofo=3R {buprb afa (143 cosE43V3 sinE)
+aoB (=141 cosE—2V3 sing) +Baa(—1—cosZ) J}.
(29)

In (27) we have that L(E-360°) = —L(E); however
in (29) we sce that =, E4120° and E-240° lead to
equivalent wavefunctions if we interchange the orbit-
als appropriately. Thus we need consider only a 120°
range of Z, which we will usually take as —60° to
-+60° If =0 we have

GHldatrdoofa = G patrpetB

and by optimizing the orbitals we get the G1 wave-
function. If =60°

(30a)

G ldudidafa= —Grdubpracy, (30b)

and by optimizing the orbitals we get the GI® wave-
function [note that in (30b) the roles of the second
and third orbitals are interchanged]. If E=—60 we
obtain

G pudueaBa=1Grégubecial (30¢)
and by optimizing the orbitals we again get the G¥
wavefunction (here the roles of the first and third
orbitals have been interchanged). Thus by varying =
we can go continuously frem G1 to GF. We will fird
below that in riost cases the optimum angle X is near

-zero and the G1 wavefunction is nearly as good @s the

SOGI wavefunction. TTowever, for H; near the transi-
tion states the optimum angle % is significantly differ-
ent from zcro.
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Tasre I1. Properties for three-clectron atoms (entries for GF, HF, UHF, CI, and experimental are taken directly from Ref. 19).

Gt SOGI GF HF CI Exptl
A. Energies

2SLi —7.44756038 —7.44756516 —7.432813 —7.432725 —7.4779 —~7.47807
3PS Li —7.32517867 —7.32517894 —7.310216 -~7.310210 oee ~17.35410
2P Li —7.38011191 —7.38011631 —7.365091 —7.363069 —7.40838 —7.41016
3P Li —~7.30819798 —7.3081984 —7.293189 ~7.293186 e ~7.33715
2:S Be*t —14.29162393 —14.29163664 —14.27762 .es eee
25 B+ —23.38990151 —23.38991969 —23.37632 e ees ves

Gl SOGI GF HF UHF

B. Density at the nucleus, (2 5(r:) )
1]

25 Li 13.8646 13.8616 13.8159 13.8160 13.8159
3*SLi 13.7594 13.7594 13.7067 13.7080 13.7067
2*P Li 13.7052 13.7052 13.6534 13.6534 13.6535
3P Li 13.7179 13.7180 13.6661 13.6660 13.6661
22S Bet 35.1392 35.1392 35.111 .es
225 B+ 71.4976 71.4975 71.493

G1 SOGI GF HF UHF CI Exptl

’ C. Spin density at the nucleus, Q(0) =2(2? 8(ri)$.(a) )

225 Li 0.20957 0.22651:0.0001 0.2406 0.1667 o 0.2248 0.2249 0.2313
3§ Li 0.04873 0.0529 0.03622 0.03864 0.05253 oes oee
2P Li 0.0 —0.0172 —0.023041 0.0 —0.01747 —0.02222
3P Li 0.0 —0.005474:0.0001 —0.007318 0.0 —0.005531 .
2:S Bet 0.94671 0.99384:0.0015 1.008 aee .ee
25 B++ 2.4303 2.51640.001 2.521 .es .ee aee

G1 SOGI GF HF UHT CI

D. Orbital dipole constant, (Z [L.(r) /73])

2P 11 0.038693 0.038725 0.05861 0.05848 0.03832 a
3P Li 0.0176467 0.017649 0.01760 0.01739 0.01760 .

G1 SOGI GF HF

E. Sccond moment of 7, (T r?)

2S5 Li 18.6642 18.6626 18.6090 18.6376
3SLi 119.571 119.369 119.4:47 119.480
2P Li 28.690 28.655 28.692 28.716
3P Li 172.203 172.198 172.511 172.530
2°S Bet 6.559 6.559 6.545+
25 B+ 3.4135 3.4135 3.4094

8 (1/r%)or, =0.05974, {1/r3)dip=0.65923.
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Tasre III. Optimum values of X for three-electron atoms.

iy
Li zS 0.4342-0.002
Li 3S 0.098+0.001
Li 2P -0.396-:0.001
Li 3p —0.118+0.002
Bet 22§ 0.626+0.004
B*+ 2§ 0.680:+-0.003

1. Three-Electron Atoms and Tons

Calculations were carried out on the ground states
(22S5) of Li, Bet, and B* + and on the 35, 22P, and
3 2P excited states of Li,

Both G1° and GF ® calculations for the ground states
(225) of Li, Be*, and B+ * have been reported else-
where. GF calculations for the excited states of Li®
have also been reported. Here we use similar but slightly
larger basis sets of 7 to 9 Slater orbitals, chosen so that
the cusp condition is satisfied exactly.® For a given nu-
clear charge, the core orbitals of all states can be
described well by four or five functions. Once the
orbital exponents of these functions have been opti-
mized for one state, they can be transferred to other
states and only the exponcents of functions used in de-
scribing the valence orbital need to be reoptimized.
The orbital exponents of the s functions were optimized
for G1, and, since the G1 and SOGI orbitals were very
similar, the exponents were not reoptimized for the
optimum value of L. We found that the p functions
used in GF calculations were also appropriate for SOGI
calculations,

Calculations and Discussion: The most prominent
result of these calculations is that the spatial proper-
ties of these systems are described in essentially the
same way by both the G1 and SOGI wavefunctions.
In Table I and Iig. 17* we compare the G1 and SOGI
orbitals for the 225 state of Li. For all states con-
sidered the optimum Z was within 1° of zero (which
corresponds to G1) as shown in Table II. As shown
in Table I1I this Ied te similar values of energy, density
at the nucleus, and other measures of the spatial charge
distribution, but for the spin density at the nucleus,
Q(0), this small difierence in spin coupling led to sig-
nificant changes. The G1 wavefunction led to good
values for all these properties except Q(0),° and we

BW. A. Goddard 111, J. Chem. Phys, 48, 1008 (1968).

VW, A, Goddard 111, Phys. Rev. 176, 105 (1958).

# That is we use onc 1s Slater orbital with =27 and 2!l other s
orbitals with >3, one 2p Siater orbital with &= Z/2 and all other
porbitals with # > 1. See C. C. J. Roothaan and . 5. Kelly, Plys.
Rev, 131, 1177 (1953).

¥The expansion ceoflicients for the orbitals of this and all
other systeras discussed in the paper are available upon request.

A. GODDARD 111

see in Table III that the SOGI value of Q(0) is much
improved over the G1 value. For the Li 23S state we
obtain 0.2265 for SOGI which is 2.19, smaller than
the experimental value of 0.2313; for this state the
G1 value is 0.2096, the GF value is 0.2406, and the
HF value is 0.1667. For the Li 22P state we obtain
a Q(0) of —0.0172 as compared to a G1 and HF value
of zero, a GF value of —0.0230, and a CI value of
—0.0222. In this case the experimental value of —0.0182
is obtained indirectly and may not be reliable.1s:22
Lunell¥ has carried out a calculation on the 225 state
Li which is nearly equivalent® to SOGI and which
yields Q(0) =0.2264 and E=—7.447536 as compared
to the SOGIresults of O{0) =0.2265 and E= —7.447565.

We see from Table IT that the optimum angles Z in
the 225 and 2 2P states have nearly the same magni-
tude but opposite sign and similarly for the 325 and
3 *P states. In the case of positive = the spin polariza-
tion (or core polarization) induced in the core is posi-
tive (225 and 325) and for negative Z it is negative
(22P and 3°P). As we go from the n=2 to the =3
states the magnitude of = gets smaller which means
that core is more nearly correctly described as a sin-
glet pair. This is reasonable since in the limit of 7=
we have Lit and the core is exactly singlet coupled
asin Gl. ’

Although only the case of the optimum X is of phys-
ical importance, it is of some interest to compare the
properties and optimum orbitals for various = and
examine how the wavefunctions change as we go from
G1 through SOGI to GF. In Fig. 2 we show Q(0) as
a function of Z. We sce that ncar Z=0 (i.e., G1),
Q(0) varies lincarly but rapidly with . From Fig. 2
we see that except near G1 and GF most wavefunctions
lead to quite poor values of Q(0) [e.g., Q(0) =0.76 at
E=16°] even though they have the correct spin and
interchange symmetry and satisfy a variational princi-
ple on the orbitals. In Fig. 3 we show the variation
of energy with E. The minimum is at % =0.4344-0.004°
and was unchanged by an increase in the size of the
basis set. The difference in Q(0) for E=0 and the
optimum % is due primarily to difierences in the spin
part of the wavefunction. In fact, if we calculate Q(0)
with E=0.431 but use the G1 orbitals, we obtain
0(0) =0.2296 as compared to 0.2265 for the SOGI
orbitals. For X in the region 50° to 60° we experienced
some difficulty in convergence because of near linear

2 K. C. Brog, T. G. Eck, and I. Wieder, Phys. Rev. 153, 91
(1967) ; sce also Ref. 19, :
% Luncll® states that he has used a general form of spin orbital.
His use of only one sputial function for each spin orbital, however,

allows his wavefunction to be reduced to the form

a[:(,‘yc(1)4’;5(2)(’,‘)5(_3)(1)””[‘61,‘3&], (31)

which is equivalent to the SOGT wavelunction (see Sec. II).
Furthermore, Luncll has chosen his core orbitals to be those
appropriate for Li* rather than solving for them sclf-consistently
for 1.i.
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dependence of the orbitals. The point at 60° agrees
with independent GF calculations. However, the wave-
functions near Z=60° do not connect smoothly with
the GF function indicating an instability in the GF
function. It is interesting to note that for all four
states of Li the UIIF value of Q(0) is quite close to
the SOGI value (see Table Ilc).

In summary, these calculations indicate that the G1
description of thc spatial properties of three-electron
atoms is quite good. That is, to a very good approxi-

N o
’d
VN NN S /
\ \ N \\-"/ // 7/ 7/
AY N A -~ / /
\ \\ ~ e - // Vi
K A s -7 i /
N\ N Se_ o - , /

{b)

Fic. & (a) Orbital 1 of the 34., state of square H,. The edge
of the figure is 7.0 2.u. long; shortest distance hetween protons is
2.54 a.u. The lowest contour is 0.01 acd the inter \J between
contours is 0.024; the highest contour iz 0.322. Based on the
Gaussian basis sct (see tcxt\ (b) Orbital 3 of the 3.4, state of
square H:, Scale as in (a). Lowest contour 0.0, highest contour
0.41, interval 0.04.

[
n
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i
F1c. 9. The standard Young tableaux for the shape [3, 2].

mation, the two core electrons are singlet paired (as
in G1); only for spin-dependent properties is it impor-
tant to allow for a more general coupling of the electron
spins. When this more general coupling is introduced,
we obtain a very good value for Q(0) for the 2§
state and perhaps the 2 2P state of Li.

2. The Hy System

Physically it is clear that, for three-electron atoms,
E should be near zero since Z should be determined
primarily by the core electrons (for a two-clectron ion
the ground state is a singlet which corresponds to
Z=0, the addition of valence electrons should not
change this appreciably since they are much further
from the nucleus). In addition, for a system such as
Hell at typical molecular distances, we expect % to
be primarily determined by the pair of orbitals on the
He and hence to be near zero. However, for a system
of three hydrogen atoms the optimum pairing should
be a function of nuclear configuration and should be
significantly different from zero for some configurations.
We have carried out SOGI calculations for scveral
points on the rcaction path of H++D—H--HD with
the primary objectives being to determine (1) how
well the SOGI method will predict potential encrgy
surfaces for chemical reactions, {2) how the SOGI
orbitals change as the systemi moves along the mini-
mum energy reaction path, and (3) how spatial sym-
metry restrictions enter into our descriptions of a chem-
ical reaction.

Basis Sets and Configurations: We used the follow-
ing Nnear nuclear configurations which werc on the
minimum-energy path reported by Shavitt e al*
point 1, Ran=1.40, Ryc=r<o; point 2, R p=1.470,
Rpe= 2.984, point 3, Rap=1.609, Rpc=2.020; point 4,
Ryp=Ryc=1.765. For points 2-4 we used a basis set
of nine Slater orbitals composed of two 1s functions
and a 2po on each center. The orbital exponents for
points 2% and 3% were estimated from data given in
the paper by Shavitt ¢f al.* The orbital exponents {or
point 4% are the same as those used by Shavitt ¢ al*
For point 1, we used seven Slater orbitalz, three on

each of the protons in II. (Is, 2s, 2p<r) and a 1s on
the lone proton.

M7, Shavit‘
Chem. Phys

-

» The integ;

R. ML St(,\cm I°

, _/LV) (196%)

rals for this cnculatitm were carricd out with the

Polke-Pitzer vorsion of the Cambridge Slater integral program.
26 The inteerals for this celeulativn were carricd out with the

3eLYOsH polyatomic Slater integral prograra (QCPI 3 101).

L. Minn, and M. Karplus, J.
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TasLe IV. Gi, SOGI, and CI encrgies for various linear configurations of H.

Ras Rpc Eg Esoar = Ecp?
1.4 . © —1.651526 —1.651526 0° —1.66959
1.470 2.984 —1.641824 —1.642236 3.5° —1.663036
1.609 2.020 —1.620887 —1.626282 16.4° —1.653359
1.765 1.765 —1.599776% —1.623820 20.9° -—1.652073

8 The CI energy is from Ref. 24 and was calculated with a 15 basis func-
tion set.

Results and Discussion for Hy: Let us first consider
the symmetry properties of the orbitals for the saddle
point, linear equidistant H;. The symmetry group is
D_j and the lowest electrenic state has 2T symmetry.
One way for the many-electron wavefunction ¥ to
have the proper symmetry is to construct & from two
g, orbitals and one o, orbital. In this case, there are
no restrictions on L. Another way for ¥ to have the
proper symmetry is to have @ such that the effect of
i (the mirror plane perpendicular to the molecular
axis) interchange orbitals 1 and 2 while orbital 3 is a
o. function. From Scc. IL.A, we see that the many-
electron wavefunction will have *Z,* symmetry if

Unp'm‘((lz) )21- (31)

Since, for a general =, U UE((12) )=cosZ, the con-
straint (31) is satisfied only if Z=0. Thercfore there
are two possible (spatial symmetry allowed) descrip-
tions of saddle point. We can use symmetry orbitals
(¢, and ¢,) and couple the spins in a general way or we
can have orbitals 1 and 2 be symmetrically related
nonsymmetry functions coupled by the G1 spin func-
tion. For the saddic point found by Shavitt el al*
(Rap=Rpc=1.765 a.u.), we have carried out the cal-
culation both ways and find that the optimum wave-
function using nonsymmetry functions leads to an en-
ergy of —1.59978 a.u., whereas the optimum SOGI
wavefunction using symmetry functions yields an en-
ergy of —1.62332 a.u. Thus at the saddle point the
optimum orbitals are symmetry functions.

Figures 4-6 are plots of the SOGI orbitals for nu-
clear configurations 2—4. The G1, SOGI, and CI ener-
gies, the optimum values of Z, and the SOGT orbital
encrgies are given in Table IV. The barrier height from
the SOGI calculations is ~17 kcal as compared to an
experimental value” of 9.8 kcal and a value from the
CI calculations? of 11 keal. The predicted barrier
height might be slightly Iower if basis functions and
saddle-point configurations appropriate for the SOGI
wavefunction were used rather than those from the

CI calculations. However, the decrease would preb-

ably not be large.
From Figs, 4, 5, and 6 we sce that the best inde-

217, Shavitt, J. Chem. Phys. 49, 4048 (1968).

b This calculation was restricted so that orbitals 1 and 2 were symmetry
related (see Sec. II1.A.2); this is not necessarily the best G1 wavefunction.

pendent particle description of the reaction is as fol-
lows: For large separations between H, and H, the
orbitals 1 and 2 which are localized on Hy (the H
farther from the lone H) and Hp (the H nearer the
lone H) form a bond between Hy and Hp and are
also weakly bonding to ¢ (the lone H). Orbital 3
which is localized on H¢ has a node midway between
H,s and Hp and is weakly bonding to Hgp and anti-
bonding to Hy, with these two effects roughly cancel-
ling. As we move along the minimum-energy path,
orbitals 1 and 2 remain approximately equally bonding
by strengthening the Hp~H¢ bond and weakening the
H.-H; bond. At the saddle point, these two orbitals
are o, functions and the Hs-Hz and Hz-H¢ bonds
are equivalent. In response to these changes in orbitals
1 and 2, the negative lobe of orbital 3 gets larger and
larger until at the saddie point it beeomes the oy or-
bital. Thus, even at the saddle point, this orbital is
roughly nonbonding. As we pass over the saddle point
in the exchange reaction the o, orbital begins to localize
on H4 and the ¢, orbitals begin to localize on Hp and
H¢ and eventually form H-+I:. We sce that through-
out the reaction there are two strongly bonding orbitals
and one nonbonding orbital and that it is not necessary
to break a bond during the chemical reaction. Thus
the SOGI orbitals yield a clear and reasonable descrip-
ion of the H--11, reaction.

An alternate independent-particle description of the
saddie point is for orbitals 1 and 2 to localize the right
and left, but we have shown above that this is possible
only if the G1 spin coupling is used. The best (G1)
localized orbitals are shown in Fig. 6, but, since the
encrgy of this (G1) wavefunction is so much worse
than that of the optimum wavefunction using symme-
try orbitals, we sce that this is not a very good descrip-
tion of the system for this spacing.

B. Four-Electron Systems
1. The Lifl }Molecule

The ground state of Lil is a singlet and the spin
represcntation is two dimensional. In this casc the
representation matrices are just the same as for a
three-electron doublet (four clements of 8§, map onlo
each matrix). Thus Z=0 corresponds to G1 and Z=€0°
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TasLe V. G, SOGI, and CI encrgies for square Hy (length of side=2.54 a.u.). See Sec. 11.A.2 for basis set information.

G1 SOGI = T cI

A. Minimum basis set
1By, —1.96926 —2.057685 62.4°+0.2° oes —2.057685
L. PN —1.983395 —2.036985 70.50° 70.52878° —2.036985
3E, —1.865595 —1.865595 0. wes —1.863595

SOGI E T

B. Ten basis functions
1B, —2.06235 62.5 cer
42, —2.048271 69.2 70.52878°
IE, —1.87863 0.0 : "as

is GF. Here we would expect for the coupling in the
core orbitals on the Li atom to be dominant and hence
the optimum angle should be close to zero. In fact
this is the case, &= ~0.1054-0.002° and the energy de-
creases by about 3X 107 in going from G1% to SOGL®
Thus the Gl wavefunction for LiH has nearly the
optimum spin coupling.

2. The Hy System

We expect the greatest departures from G1 to occur
in a system such as H; for which the spin coupling is
determined by the nuclear configuration. In order to
illustrate verious aspects for the SOGI wavefunctions
for such systems we will consider some low-lying sin-
glet and triplet states of square He.

Basis sets and configurations: All calculations were
for the nuclear configuration with the H’s at the cor-
ners of a square with a side of length 2.544,.% We con-
sidered the lowest two states for this configuration,
1B, and *4,,, and also a higher-lying 3L, state. Two
different basis scts were used. The smaller® was 2 mini-
mum basis set of four Slater orbitals, one centered at
each proton and with an orbital exponent of {=1.05
(this is approximately optimum for the 'By, state®).
A larger basis set based upon four 1s Gaussians and
one 2p Gaussian on each center and contracted tc one
s-like and one p-like orbital on each center was also
used.® For this buasis set the contraction was carricd
out® so that the four Gaussians approximated a Siater
1s orbital with {=1.05.

2\, E. Palke and W. A. Goddard 111, J. Chem. Fhys. 50, 4524
(1969).

3 The integrals for this caleulation were carried out with the
Neshet-Stevens diatomis Slater integral program.

3 This distance was found to b tha optim
1B, state of D7, by minimura basiz st CT caloni

for the

AC. W, Wikon, Jr., and W. A, Goddard 111, J. Chors. Thys.

51, 716 (1909
32 The integrals for this calevlation were carried out with the

Dunning version of the Murray Geller Goussianintoza! v y
¥'S. Huzinaga, J. Cher. Phys. 42, 1295 {(1965).

o progiaon.

Four-Electron Triplet States: The SOGI spin varia-
tion for the four-electron singlet state was considercd
above; here we will discuss the spin variation for triplet
states. In this case f*=3 and the general transforma-
tion L is a function of two parameters Z and T and
is given by :

L(%, 1)
cosE/2 sinE/2sinT/2  sin¥/2 cosT/2
=| —sinZ/2 cosZ/2sinT/2 cosE/2 cosT/2
0 —cosT/2 sinT/2

(32)

In this case E=0 corresponds to G1; E=180° and
T=0 corresponds to GF; and E=180° and T=180"
corresponds to G2.

Spatial Synmelry Restrictions: We will discuss the
symmetry properties of the orbitals for all three states
first, beginning with the 34, and 1By, states, since they
are closely related. Tt is only necessary to consider the
generators of Dy, (the symmetry of the nuclear con-
figuration) and, in each case, we will examine the
effect of the Cy element of Dy and determine if the
orbitals can be related in such a way that they are
symmetry functions only for the subgroup Das. The
orbitals used to construct the 34,, and !By, states have
the same symmetry; the different spatial symmectry
of the many-electron wavefunctions arises through the
difference in the spin coupling. These orbitals are
sketched in Fig. 7(b) . The product function & = ¢
has the following properties:

Cd=—(12)(34)9, (332)
Cd=(12) (31 @, (33b)
iD=, (33¢)
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From (32c) we see that the state must be “g.” From
Sec. II.A, we know that the state will be A, if

Un“L[(IZ) (34)]:— -1
and Bla if )
U™ (12) (34) J=+1.

For a 34,, state, this gives the condition that
UnPPiE((12 (34) )= —cos'lE

+3 sin}E sin®}T— (4v2/3) sin’}= coslr sinlT

—3sin*3E cos?iT=—1. (34)
This condition is satisfied if
— 13 sin®3 T (4v2/3) cosiT sin}T+1 cos’3T=1, (35a)
or
(2v2/3) sinT+1 cosT=1, (35h)
or .
sinT=2v2/3 and cosT=1 (35¢)
or finally
1=70.52878...° (35d)

(there is no condition on Z).

For the 'Bj, state, we have the condition that
UnuPAE((12) (34) )=--1, but this condition is always
satisfied since (12)(34) is an element of the invariant
subgroup and is represented by the unit matrix in this
representation.

We have not discussed the case of a spatially de-
generate state, but an example should make the pro-
cedure clear. Consider the orbitals sketched in Iig.
7(c). The following relations are easily seen:

Ci3.=9,

~

Cid,=—(12) @,
1, =—(12) &, i®,=—(12)d,
Cye, = (12) @, Cud,=—3,, (36)

VVhCI'e (I’z=¢11¢31¢3;¢;z and q’y=¢1y¢3y¢3y¢4y. For thC
many-electron functions ¥, =G+ ®,x and ¥, =GP, x
to form an F, state, it is necessary that

Cov,=v,, Covy=—v,,
0,=—V, W,=—v,
G, =¥, Cv,=—v,. (37)

The relations in (37) are satisfied if Ot (12) =00t
which implies that Uy#L((12) y=+1. For a genceral E,
quz"zl((l,?))zcosfi, so that only G1 allows the vse
of symmetrically related nonsynuactry functions.

In summary we find that: (1) For the 1By, state the
SOGI orbitals nced only have D symmetry rather
than Dy;. (2) For the *4,, state the SOGT orbitals muust
have Dy, symmetry unless the angle T is 70.52378 « -©.
In this casc the orbitals nced only have Dy symmetry
and the restriction on T implies a constant relative
proportion of G2 and GF coupling with an arbitrary

amount of GI coupling. (3) For the 3E, state the or-
bitals must have Dy symmetry unless =0 (Le., GI).
In this latter case the orbitals may have Dy, symme-
try. In none of these cases are the SOGI orbitals Sforced
to have lower than D, symmetry. Rather we have
just catalogued the possible regions where lower sym-
metry orbitals are allowed,

Results and Discussion for Hy: We find from the
calculations with both basis sets that the SOGI orbit-
als for the 1B, and 34, states do 70 have Dy, symmetry
and have symmetries just as outlined above. In fact
we find that the SOGI orbitals for these two states
are nearly indistinguishable; the many-electron wave-
functions differ mainly in the spin coupling used. We
see from the sketches in Fig. 7, and plots in Fig. §,
that in both 1By, and 34,, states there is essentially a
bond and antibond along each diagonal. The presence
of these antibonding orbitals explains why the energy
of Hy is so very much higher than that of H,-+H,. It
is interesting to note here that the SOGI energy for
the minimum basis set is identical with the complete
CI energy™ for the same basis set. Thus while these
wavefunctions are equivalent, the SOGT wavefunction
through the independent particle interpretation allows
a visualization of the wavefunction which might be
completely lost in the CI form.

From Table V we see that the addition of # basis
functions lowered the energies slightly but did not
change the spin representations significantly. The opti-
mum angle for the 1By, state is Z=62.5° which is very
close to the GT value of 60°.

We see that in the lowest singlet state, !By,, for
square H; with R=2.54a, the orbitals are delocalized
over pairs of atoms (along the diagonal). However,
for squares of very large R the lowest state must be
45, for which each orbital is localized on one atom.
In addition for very small R it would scem that the
optimum orbitals would have Dy, symmetry and be
delocalized over all four atoms. Thus if we start at
R=e and retain square symmetry for all R we pass
through regions in which the orbitals are successively
delocalized in what approximates a series of Mott tran-
sitions.” This point will be further developed elsewhere.

C. Considerations for Laiger Numbers of Electrons
&

At this point we will discuss bricfly a set of caleula-
tions which we have not yet carried out in order to
Hustrate simplifications in applying SOGI which are
expected to be appropriate for larger numbers of elec-
trons.

Consider the reaction

Li}i-FHeLi-I. (38)

* The system is a five-electron doublet and the appropri-

ate representation of §; is five dimensional. If we were
to wilow a completely genceral coupling of the electron
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spins, we would have to simultaneously optimize four
parameters controlling the spin coupling as well as the
five spatial orbitals; all of this for each nuclear con-
figuration. However, on physical grounds, and on the
basis of the calculations on Li and LiH, we expect
the core electrons to be very nearly singlet paired for
all nuclear geometries. From this we can se¢ that only
the mixing of the first and third standard spin basis
functions (Fig. 9) is important since all others corre-
spond to breaking the pairing of the Li core. Thus by
introducing only one spin-coupling parameter, We can
expect to obtain an accurate description of this reac-
tion. This approach becomes increasingly more impor-
tant as the system becomes larger. For the reaction
CH,-}H=CH;+H.or CH,--H——=Cll;~-+H., there are
132 different spin-coupling states. Hence to allow for
a general spin-coupling scheme, we would have to in-
troduce 131 ncw nonlinear parameters. If we assume,
however, that the electrons in the unbroken bonds
and in the core of the carbon atom remained paired,
we need introduce only one new parameter to allow a
general coupling among the electrons in the bonds
being broken and formed. -

1IV. CONCLUSIONS

We have devcloped a way of eliminating the arbi-
trariness in the choice of spin function in the GI
method. This method has been applied to three-electron
atoms and three- and four-electron molecules. For three-
electron atoms it was found that the G1 wavefunction
is very nearly optimum and that only the spin-depend-

OF MANY-ELECTRON SYSTEMS. V

ent properties changed significantly when the spin
coupling was optimized. A very good value for the
spin density at the nucleus was obtained for the ground
state of Li, and for the 2*P state the results were
much improved over the Gl values. Similarly for LiH
the G1 wavefunction had nearly the optimum spin
coupling and only a minor improvement occurred in
the energy in going to SOGL. For the unstable molecu-
lar systems H; and Hy, however, we found that optimi-
zation of the spin-coupling was necessary in order to
properly and consistently describe the system.

Thus these calculations indicate that the SOGI
method may allow a proper description of the Fermi
contact portion of the hyperfine interaction of atoms
and molecules. More importantly however is that the
SOGI method may allow a good description of the
changes which occur as bonds are formed, broken,
and distorted during chemical reactions.
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II. The Orbital Description of the H, + D = H + HD

and LiH + H = Li + H, Exchange Reactions
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I. INTRODUCTION

A major goal of theoretical chemistry is to explain the mech-
anisms and rates of chemical reactions. To do this we must determine
the electronic energy of the system as a function of the nuclear
coordinates; that is, we must obtain the potential energy surface (PES)
of the system. However, the determination of potential energy surfaces
of chemical accuracy (i.e., to better than 1 kcal/mole) is costly even

for such simple reactions as

H, +D=H+ HD (1)
and

LiH + H = Li + H,. - (2)

It is currently inordinately expensive to investigate the mechanisms for

more important reactions (such as

O
Z
B,CCO - H,CCO ~ H,C—C
C CH
/ 2
O/

or the addition of fluorinated ethylene to butadiene) at the level of
accuracy attainable for reactions (1) and (2). By using more approxi-
mate methods, we can calculate the energies of such large systems

at a few points on the PES, but even this is frightfully expensive. Thus,
in order to progress toward the consideration of the mechanisms of

the chemically interesting reactions, we want to develop concepts and
principles that will allow us to predict ‘the basic features of the

potential energy surfaces, without detailed calculations. An example
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of significant progress toward this end has been the work of Hoffmann
and Woodward, 1 which allows the qualitative consideration of a vast
variety of reactions through use of simple correlation diagrams and
requiring little or no calculation beyond elementary considerations of
the ordering of energy levels of molecules.

Since a major objective in examining reactions will be to
abstract generally useful concepts and principles, we will employ the
spin~coupling optimized GI (SOGI) method. 2 This method is a self-
consistent generalization of the valence bond method3 and leads to a
simple orbital interpretation of the wavefunction while allowing a proper
description of the process of breaking a bond.

In this paper we repoft Wsz)almcé.lculations for reaétions (1) and
(2) for a large number of linear geometries. Reaction (1) is already
well characterized experimentally and theoretically so that we can
assess the accuracy to be obtained from SOGI wavefunctions. On
the other hand, very little work, either experimental or theoretical,
has been reported for (2), so that this work may add to both our quali-
tative and quantitative understanding of this system. We should note
here that reactions (1) and (2) represent two quite different kinds of
reactions, with (1) being thermoneutral while (2) is quite exothermic
(55 kcal/mole) (or endothermic depending upon direction).

First we discuss some details of the theoretical calculations
(Sec. II). This is followed by a consideration of potential surfaces
for reactions (1) and (2) (Sec. III) and an examination of the orbitals

for these reactions (Sec. IV) and is concluded with a general discussion

of the results (Sec. V).
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II. COMPUTATIONAL METHODS AND DETAILS

A. The Wavefunctions

In the Hartree-Fock method the wavefunction is taken as a

Slater determinant
A (®X), (3)

where A is the N-electron antisymmetrizer, X is a product of one~
electron spin functions, and ® is a product of orbitals (one-electron
spatial functions), each of which is variationally optimized. For

two electrons, (3) becomes
A[¢ (1)¢y,(2)a(1)8 2)] = ¢ ¢>b0lﬁ b0 ,89 (4)

where the total wavefunction (4) is unnormalized and the ordering of

the orbitals and spinfunctions is used to indicate electron number. If

¢, and ¢,, are different, then (4) is a mixture of singlet and triplet
character. In order to obtain a proper description of the spin symmetry,

we must take the orbitals of (4) as doubly occupied

But double occupation of the orbitals as in HF often leads to incorrect
dissociation (i.e., an improper description of the wavefunction for
large internuclear distances) as shown in Fig. la for H,. For the
study of reactions we want both the correct spin symmetry and the
proper dissociation. To accomplish this, we replace the antisym-

metrizer in (3) with the group operator GH L, which simultaneously
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ensures both the proper spin symmetry and the Pauli symmetry. 22
Thus the wavefunction is of the form
v = GHFl@ey). (6)

The superscript p denotes the total spin of the system and L determines
the particular way in which the individual electronic spins are coupled
to give the total spin. This coupling is given by a matrix, L, relating
the optimum coupling to the standard couplings used in Young's ortho-
gonal representation of o, N (the symmetric group). The total wave-

function ¥ in (6) can be written in several alternative forms, two of

which are
f#
¥ = () Cin)éx (7a)
i=1
_ pL
= A[ (05, "2)x], (Tb)

where fﬂ is the number of different couplings that give the total spin
denoted by u (i.e., the number of canonical valence bond structures),

the Ci's are numerical coefficients, the G{l are the standard group
operators defined in terms of the standard Young tableaux, and OﬁL
is a Wigner projection operator deﬁnéd in terms of the optimum
coupling, L,

o
of™ = ¥ LyL;0h. (8)

1731
1 .
1

I
j



22

‘The energy of the wavefunction in (6) is
E = (lic|wy/cx|w = (2|5|/olle)/ (@ |0l Ls). (9)

The SOGI wavefunction is obtained by optimizing E against first-

order variations both in L and in the orbitals of ®.
For two electrons, there is only one singlet coupling and the

SOGI wavefunction is identical to the G1 wavefunction with the form

Gl ,9,28] = ALO}(0,4))e8] = A[ (8,9, + 3,6 8]

= (9,8, + 4,9.) (2B - pav). (10)

The optimum orbitals qba and q‘)b for the ground state of 'H2 are shown

in Fig. 2 as a function of internuclear distance, R. As would be
expected, the orbitals are essentially hydrogen 1s orbitals at large R

but distort (hybridize and delocalize) as R decreases. We will denote

this orbital coupling by the figure

a b . (11)

Similarly, there is only one triplet coupling for two electrons and the

- SOGI or G1 wavefunction is of the form
Gl ¢,9,00] = A[0% (6,4 )a0] = (4,4, - 4 b (12)

this orbital coupling we denote by the figure

a

b (13)
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For three or more electrons, there is usually more than
one coupling scheme that yields a particular total spin. For the
three-electron doublet case, there are two spin couplings and two

standard group operators,

Gilo, 9. aBal - A[O, 4 ¢ ) abel = All(d,4+ 4 &) lasal (14)
G, 4,9, 080 =AL O%4,¢ ¢ )apal
=AL (3,80, + 4,0, 8, - 4.8,8 - 4,6, 4 )aba] (15)
=AL1(0,9,+ B, 8) 0.} el -Al{(o 4 + . 9.)8,}aBa].

The wavefunction (14) is denoted as 4
a b
q . (16)

which indicates symmetric (singlet) coupling of ¢, and ¢b followed by
antisymmetric coupling of ¢, to the [qba, ¢b] pair to obtain the proper

doublet spin symmetry. The wavefunction (15) is denoted as

alb

(17)

c ’

which indicates antisymmetric (triplet) coupling of cba and qbc followed
by symmetric coupling of ¢, to the [qba, ~d)c] pair to obtain the proper
doublet spin symmetry. We see that the spin coupling of (14) is just
that of a simple valence bond wavefunction, and from the last line of
(15) we see that the GF spin coupling can be expressed as a linear com-

bination of two simple valence bond couplings, or symbolically,
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= - . (18)

As we have said, these standard couplings can be combined
to give a more general coupling and this coupling can be optimized. In
some cases, we find that certain standard couplings can be neglected
without significantly affecting either the energy or the shape of the
orbitals. This not only simplifies the mechanics of calculations but
also makes the results more easily interpretable.

The ground state of Lit is a singlet with the orbital coupling
shown in (11). The lowest triplet state of Lit is much higher, so it is
not surprising that the optimum coupling for Li is nearly the G1 coup-
ling shown in (14) and (16). For H,, however, we must use a general
spin coupling because all three orbitals have roughly the same energy.
In this case the general spin coupling corresponds to using linear com-

binations of both valence bond structures.

For a four-electron singlet, there are two coupling schemes.

The G1 coupling is denoted by

a b
(19)
c d
and the GF by
alb
(20)
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For LiH' we need consider only the G1 coupling for the same reason

as in Li. In Fig. 3 we show the two valence orbitals of LiH as a
function of internuclear distance. Here we see that even at R = 8a,

the Li valence orbital has delocalized somewhat onto the H (this amounts
to building in ionic characters). As R decreases further, the Li
valence orbital hybridizes and delocalizes until at R e (3.09a,) it is

quite modified from the atomic form. On the other hand, the H 1s
orbital changes very little in this process. Thus the LiH bond can

be considered essentially as a one-electron bond.

For the five-electron doublet, there are five couplings denoted

by
a b al|b a b alb alb
c d c | d c | d c | d c | d 21)
e e e e e
Gl1 G2 G3 G4 G5 = GF

In the case of LiH,, as with Li and LiH, we need consider only the
coupling schemes that singlet couple the Li core functions, i.e., G1
and G3. Note that if we ignore the Li core electrons and treat this as

a three-electron system, it is completely analogous to the H, system.

Since the SOGI wavefunction is obtained by minimizing the
energy with respect to variations both in the orbitals and the transfor-
mation L, it has the following properties: (i) each orbital is different

(no double occupation) and usually5 cannot be taken as orthogonal to
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any othér orbital; there are as many orbitals as electrons; (ii) each
orbital is an eig‘enfunction of an operator equivalent to the Hamiltonian
of an electron moving in the field due to the nucleus plus some a\;erage
field due to electrons in the N - 1 other orbitals; and (iii) the average
field in (ii), though nonlocal, is obtained directly by applying the
variational principle to the energy. In short, the wavefunction can be

given in an independent particle interpretation (IPI).

The IPI of our wavefunction is very important because it is by
examining changes in the independent-particle states for various
reactions that we would hope to find general concepts and principles

for understanding the mechanisms of chemical reactions..
B. Basis Sets

In the calculations reported herein, we have used nuclear-

centered Gaussian basis sets. On each hydrogen, we placed six s and

two b, primitive function56 that were contracted to three s and one p,

functions as given in Table I. The scale for the s set of functions was

taken as 1. 10 since this led to good results for both the atom and the
H, molecule (near R e)’ as indicated in Table II. The scale of the p
functions and the contraction coefficients for both the s and p functions
were optimized for the H, molecule at (R = 1.40 a,), resulting in a
contraction still adequate for other H-H distances between 1.4 and o,
Thirteen s and three p primitive functions were used on the lithium

atom, with the orbital exponents for the first ten s functions chosen
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from Huzinaga-type fits to the Slater basis functions of a small basis
G1 calculation on Li atom. The orbital exponents of the p's and more
diffuse s functions were optimized for LiH (R = 3.015). This primitive
set was contracted to five s and three p functions, as given in Table I.
The basis sets were chosen in this way so that they would be
flexible enough to treat all nuclear geometries equivalently (without
additional adjustment). Table II compares the énergy of H, obtained
with our basis with the results of using a large basis7; we see that
our hydrogen basis set is adequate for all R. Our basis for Li also
leads to good results for the Li atom and LiH molecule, as shown in
Table II. The only deficiency in the Li basis is the lack of d polari-
zation functions on the Li. We believe that the basis set is adequate
for the entire surface. The potential curves, calculated by various

methods, for H, and LiH are shown in Figure 1.
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III. ENERGY SURFACES

A. H,+D=H+ HD

The potential surface for linear H, has been studied extensively.
The most complete calculation was that of Shavitt, Stevens, Minn, and
Karplus8 (hereafter denoted as SSMK) using configuration interaction
(CI) and considering a number of linear geometries. More limited CI
calculations were reported by Edmiston and Krauss,9 and Conroy and
Bruner10 reported results obtained with correlated wavefunctions
(the energies were extrapolated, leading to approximate energies but
no upper bound on the exact energies). Recently, Liu’11 has carried
out the most accurate calculations for the saddle point (considering
only the symmetric linear configuration). In this section, the empha-
sis will be upon the comparison of the potential surface as obtained

from the best other calculation, the SSMK surface.

In Fig. 4a we show the potential surface of linear H;. In Fig.
4b the axes for the coordinates Rab and Rb c are skewed so as to
diagonalize the kinetic energy (thus the classical motion of the nuclei

12 For comparison,

is the same as the motion of a ball on this surface).
the SSMK surface is shown in Fig. 4c where we see that the shape is

qualitatively similar to the SOGI surface. Figure 5a shows an energy
profile along the reaction coordinate for SOGI and the SSMK paths

I and II, and figure 5b shows the energy profile for SOGI and SSMK II

on a line through the saddle point perpendicular to the reaction coordinate.
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In Table III we compare the saddle point geometries and
barrier height as calculated for H; using various methods. Here we
see that the barrier height is about half way in between the best
Hartree-Fock results and the best CI results. Even so, the remaining
errors are much too large for use in computing reaction rates by
calculations of the dynamics of the collisions. The saddle-point
geometry obtained with SOGI is 1. 807 a,, about 0 03 a, larger than
from the comparable CI calculations by SSMK, whereas the Hartree-

Fock results lead to 1.725 a,, about 0.035 a, less than the comparable

CI calculations by Liu. 1

SSMK have suggested that correlation errors near the H, saddle
point should be about 50% greater than obtained using the comparable
method for H,. This seems to be a reasonable method of estimation
and indeed leads to very similar estimates of the H; barrier height
for a variety of methods and bases as shown in the last column of Table
III. For SOGI the estimate of the barrier is 10.4 kcal/mole, in
reasonable agreement with the estimate of 9.8 + 0.2 kcal/mole obtained
by Shavi’ct13 from a consideration of the empirical data and the SSMK
surface. The consistency of using such a simple approach of
estimation suggests that there may be a way to correct approxi-
mately for correlation errors at other geometries; however, one cannot
just scale the surface since the saddle-point geometry must change.

In this regard it is interesting that the SOGI (sp) wavefunction of H,
leads to a bond length 0.025 a, larger than the experimental value,

while it leads to an H; saddle-point geometry 0. 047 a, larger than the
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best CI result; hence there may well be some way of scaling geometries
while correctihg for correlation.

The curvatures at the saddle point of H, for both the symmetric
and antisymmetric stretch are given in Table III along with the curva-
ture for H,. Here we see that there is good agreement between the CI
and SOGI results.

In considering the motion along the reaction path, the vibra-
tionally adiabatic approximation assumes that the quantum number of
the transverse vibration is conserved. Since the curvature for the
transverse motion is different at the saddle point than at infinity, the
effective reaction barrier is not the same as the barrier height obtained
directly from the potential surface. Correcting for the symmetric
stretch leads to an effective barrier of 14.0 kecal for the zero-vibra-
tional state. However, correcting in addition for the bending zero-
point motion at the saddle point (using the bending force constant from

SSMK) leads to an effective barrier of 16. 8 keal.
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B. LiH+H‘——*Li+Hz

The potential surface for linear LiH, as obtained from the SOGI
calculations is shown in Fig. 6. Considering LiH and H to be the
reactants, the reaction is quite exothermic (55.2 kcal/mole). 14 (The
LiH bond has a strength of 50. 3 kcal). 14 For such an exothermic
reaction, the transition state is expected to have a geometry similar
to that of the reactants (the Hammond pos‘culate)15 if the reaction is
concerted. We see in Fig. 6 that this is indeed the case. The bond
length calculated for LiH is 3.09 a,'® while at the saddle point the
geometry is Ry ..y = 3.20 a; and Ryyyy = 3.10 a,. The LiH bond
length at the saddle point is only slightly longer than for the reactants,
while the HH bond length is over twice that of the products (RHH =
1.425 a,). The calculated barrier height is 5.1 kcal/mole, about
one-~tenth of the energy of the bond to be broken.

We see from Fig. 6 that starting at the LiH end and proceeding
along the reaction path,23 the LiH bond length increases slowly as the H
comes closer. Thus we would not expect vibrational excitation to be
important for overcoming the barrier, translation energy alone should

be sufficient. 17

On the other hand, starting at fhe H, end, the H, bond length
changes only very gradually as the Li approaches and does not lead
naturally to the saddle-point geometry. In this case it would appear
that, if the H, is in a low vibrational state, very few collisions would
lead to a scattering path passing near the saddle point, since the

classical turning point for H, (v =0) is ~1.75 a,. Thus, even for
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total energies well above that required to pass over the barrier, the
reaction cross section might well remain low if the H, is not vibra-
tionally excited.

To give some idea of how much vibrational energy might be
required to drive the reverse of reaction (2), we have calculated the
vibrational structure of H, using the SOGI potential energy curves

18 Energy levels as well as avelrage values of R are

shown in Fig. 1.
given for H,, HD, D,, "LiH, and H, (symmetric stretch only) in Table
IV. If H, is initially in the v = 6 state, the system has ~ 7 kcal/mole
more energy than required to go over the barrier. Furthermore, the
average value of R for this state is 2.196 a, and the classical turning
point is ~ 3.0 a,. It is certainly plausible that the vibrational energy
of H, could be converted to potential energy to drive the reaction. For
v = 6, however, only a small fraction of initial vibrational phases
would lead to reactive collisions. For v = 10, on the other hand, the
system has ~ 31 kcal/mole more than required to go over the barrier
and the average value of R is 3. 082 with the classical turning point
being ~ 4a,, which should give a very large cross-section for reaction.
Since we have not considered non-linear cases and could not
calculate a bending mode for the saddle point, we have made only the
following rough estimate of the stretching vibrational energy. Near
the saddle point, the reactive mode is mostly H~H motion so the
transverse mode is mostly LiH motion. Therefore, we have taken
the energies calculated for Ryy = 3.00 as the potential for the trans-

verse motion; the force constant for this potential is 0,155 a.u. The
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correct reduced mass for the transverse mode could be between
14/9 a.m.u. (ptire "Li vs. H, motion) and 8/9 a.m.u. (pure H vs.
"LiH motion), which puts the zero point energy between 2,31 kcal/
mole and 3.05 kcal/mole. The zero point energy for "LiH is 1. 83
kcal/mole. Thus, the zero point energy is higher at the saddle point
than in LiH, even neglecting the bending mode, and the effective

barrier should be at least 2 kcal higher than the barrier in the

potential surface.
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IV. THE ORBITAL DESCRIPTION
A. The H2 + D = H + HD Reaction

The GI orbitals of H, are given in Fig. 2. From Fig. 7a and
Table Vawe see that as the hydrogens approach each other the
orbitals hybridize and delocalize in such a way as to increase their
overlaps from that of atomic orbitals at the same'distance.19 In this

case the spatial part of the wavefunction has the form

(6,8, + B,,) (22)
and the dominant term in the intermolecular potential has the form20

s T
AE ~ 2 . (23)
1+ Szab
(This discussion holds equally well for the valence orbitals of LiH as

can be seen from Fig.7b and Table Vb.) For three electrons, the

best orbital product wavefunction would have the form

¢a¢b¢c * ¢b¢c¢a * ¢c¢a¢b * ¢a¢c¢b + ¢b¢a¢c + ¢c¢b¢a (24)

with the SCF orbitals having larger overlaps than the frozen orbitals
at the same distance. However, for spin one~half particles there is
no spin function that can be combined with (24) to yield the totally
antisymmetric wavefunction required for Fermions.

For HeH at large distances, the wavefunction has the form in

(8), where </>a and qbb are He atom orbitals and cbc is on the H. The
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intermolecular‘potential is now repulsive and is dominated by terms

proportional to S;b, SEC, and Sacsbc' Thus the self-consistent orbit-
als21 readjust so as to reduce these intermolecular overlaps (over
that for atomic orbitals) as shown in Fig. 8, and Table VI.

For H,H at large separation between the H, and H, the wave-
function is also as in (8) and the orbitals again change as expected
from Fig. 8(some differences occur since d)b now has a much larger
overlap with qbc than does qba). The orbitals for several points along
the reaction path are shown in Fig. 9, where each column refers to
a different orbital and each row corresponds to a different geometry
(the bottom row is for the saddle point). Here we see that the two
bonding orbitals (qba and ¢b) gradually delocalize onto the D but retain
a high overlapat each point. That is, this bonding pair stays highly
bonding during the reaction. At the same time, the nonbonding orbital
¢C builds in nodes in the region of the bonding pair, resulting in
smaller overlaps than would otherwise be expected (see Table VII).
Indeed, at the saddle point the two bonding orbitals are gerade and
the nonbonding orbital is ungerade, so that the nonbonding orbital
is orthogonal to the bonding orbitals.

In order to investigate the importance of the nonbonding orbital
being ungerade at the saddle point, we also carried out calculations
in which this orbital was forced to be symmetric. As shown in Table
VIIL this leads to an energy increase of 6.5 eV. Thus it is very
important for the ¢>c orbital to be ungerade in the transition region.

Another matter that needs to be discussed here is the per-

mutational coupling of the orbitals. From Fig. 9 we see that at the
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saddle point the SOGI orbitals can be described approximately as

b, = X1+ Xs
¢b = Xz (25)
¢C = X1 - X3 ’

where X, X, and X, are s-like basis functions on the three centers
(left to right). For the Gl coupling, substitution of (25) into (8)

results in

G, ¢ 8,280 ] = Al(XuXe + XeXe + XeXa + XeXo) (X1 - Xo)atBer ]

= A[-X1XaXs + XaXeX1 + XoXaXs = XoXaXs + XeXsXas = XeXsXs JaBa (26)

= A{[XaX1Xa + XeXaX1 = 2XiXaXs + XeXiXa — XeXsXs JaBa

and thus leads to a fair amount of ionic character in the wavefunction.

On the other hand, for GF coupling the wavefunction (9) becomes
d
ZA{[Oﬁ(XaX2X1 - X1XaXa) ]aﬁa}
= 24{[XsXaXy + XXX = XiXeXs = XeXiXs ] @B} (27)

= 24 {[XaX1Xe *+ XoXsX1 - 2XuXeXs JBa

which differs from (26) by lacking ionic terms. Thus we would expect
the GF coupling to be important in the transition region, and in fact

it is.
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The orbitals for points along the reaction path of LiH + H =
Li + H, are given in Fig. 10. Here we see changes just as for H, +
D= H + HD. The bonding orbitals of the reactions delocalize over
all three centers in the transition region and relocalize to form the
bond of the product while retaining large overlaps (Table IX).

Now the saddle point is not symmetric in a group theoretical
sense, but it is still symmetric in an energy sense. That is, at the
saddle point the bonding pair is equally bonding in both the LiH and
HH regions and the remaining orbital is equally antibonding in these
regions. Thus topologically the orbitals of LiH, are quite similar to
those of H;.

As can be seen in Table IX, the spin coupling changes in LiH,

are comparable to those of H; even though the orbitals at the saddle

point may not be so well approximated by (25).
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V. DISCUSSION

In both reactions (1) and (2) we found that the bonding pair of
orbitals remain highly overlapping as we proceed from the reactants,
through the saddle point, to the products. Thus, we might view the
bond as flipping or shifting from one pair or nuclei to another during
the reaction. At the same time the bonding pair is shifting, say, from
left to right, we must allow the nonbonding orbital starting on the right
to shift to the left. However, in order to not disrupt the bonding pair
it is necessary for this nonbonding orbital to remain approximately
orthogonal to the bonding pair (this arises essentially frpm the Pauli

Principle). As a result, the nonbonding orbital changes phase during

the reaction. Normally one would not expect the phase of an orbital

to have any consequence (the energy is invariant under a sign change
in any orbital). However, as discussed elsewhere24 the phase becomes
important if the nonbonding orbital is actually bonded to some other |
atom. Indeed we have found using simple considerations of the contin-
uity and changes in orbital phases during reactions, that one can readily
predict selection rules for general classes of reactions.

A more technical application of this research is to indicate
how one might pick basis functions and configurations for CI calcula-
tions on reactive systems. In the case of linear H,, for example, we
might start with the configurations 10°30 and 20°3¢ to sigma correlate
the bonding electrons. The configuration 102030, however, is re-
quired to allow changes in spin c‘ouplin.g. Furthermore, we expect

that at the saddle point both 10 and 20 are g functions while 30 is u.



39

Configurations 17°20 and 17° 3¢ should be included to allow angular
correlation of the bonding pair (where the 17 is selected from a 7-
split SOGI calculation). In addition to these configurations, it should
be sufficient to include only single excitations to the higher orbitals
[e.g., lcrznou, 103cnog, 1020nou (using both spin couplings)].

In conclusion, the SOGI results for H, are in good agreement
with the more exact results of Shavitt et al. 8 and Liu11 and give an
excellent qualitative understanding of the processes involved. This,
together with the very reasonable results for LiH, and the work of
Wilson22 on H,, suggests that SOGI independent particle wavefunctions
form a good conceptual basis for theoreticé.l work on reactions. This
is not to say that the SOGI method is the best for actually calculating
PES's because the accuracy obtained for given cost is not especially
good. Independent particle wavefunctions, however, are easy to think
about and one can use them to develop concepts for predicting about
reactions (without detailed computations). Eventually, it may be
possible to predict what features of molecular structure will make
reactions easier or more difficult, thereby allowing us to predict

which of two competing "allowed' reactions will proceed most readily.
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A. Hydrogen basis functions.
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Contracted Gaussian basis functions.

Ii Ci
S 82.4736 0.00234426
S 12.3983 0.01772734
S 2.83924 0.0862417
S 0.814717 0.261700
S 0.271838 1.0
S ‘Q.099482 1.0
PZ 2.44001 0.0060962
PZ 0.567483 0.0215045
B. Lithium basis functions.
1. S functions
& Ci1 Cia Cis
7935. 625 0.0001198 0.00006451 0.00000334
1176. 8352 0.0009532 0.00050357 0.00002678
262.04646 0.00516471 0.00276280 0.00014165
71.913630 0.02279773 0.01123455 0.0061083
22.913010 0.08311079 0.03405256 0.00187656
8.15271 0.25759311 0.05544363 0.00437338
3.14527 0. 40275427 0.19518164 0.00301758
1,29178 0.26392108 0.48017325 -0.01239931
0. 55079 0.11691635 0.31590126 -0.07573432
0.19366 0.00973744 0.03265028 -0.02091724
0.08511 -0.00099095 -0.00661337 0.43734231
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TABLE I. (continued)

Two uncontracted S functions with £ = 0.03540 and 0. 01460 were added

to these to give five S functions.

2. P functions.

Three uncontracted 2p Gaussians with { = 0. 744321, 0.17628, and
0.054507 were used.
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TABLE II. H, H,, Liand LiH with various basis sets and methods.

A. Basis-set and correlation errors vs R for H,.

E (hartrees) E (hartrees) Correlat;on Basis Set Error?
R , s il Energy
(present work) Gl -2 limit (hartrees) (hartrees) kcal
1.3 -1,14855715 -1.14913320 0.0232127 0.00057605 0.361
1.4 -1,1516073 -1,15214823 0.0223262 0.00054090 0.339
1.425 -1.15172805
1,450 -1.15163334
1.5 -1.15086762 -1.15140136 0.0214523 0. 00053374 0.335
1.6 -1.14744936 -1.14799196 0.0205879 0.00054260 0.340
2.0 -1.12031722 -1.12089613 0.0172351 0.00057891 0.363
3.0 -1.04771581 -1,04809155 0.0092203 0.00037574 0.236
4,0 -1.01280364 -1.01308762 0.0032813 0.00028398 0.178
5.0 -1.00255689 -1,00284659 0.0009160 0.00028970 0.182
0 ~-0.99871738 -1.00000000 0.0 0. 00028262 0.179
B. LiAtom: 2 7S State.
Gl: present basis set = -7.4475332; G1: best basis set® = -7.447560;

HFP =

-7.432727; C1©

-7.4779; ]Eh::perimentald

= ~7.478017,

C. Gl vs CI and experimental for H, and LiH.

atomic units except as noted.)

(All quantities are in hartree

e Force

R, E (Re) (kcal/mole) Constant
Present work SOGI 1.426 -1.151728 95.4 0. 3447
Bowman et al.? SOGI 1.430 -1.152319 95.5 0.3762
SSMK 15BF CI 1.4018 -1.16959 106 0.36
Experimentalc 1.4008 -1.17445 109 0.365
Gl: present work 3.092 -8.0175370 44.0 " 0.05646
Hartree-Fock" 3.034 -7.987315 34,2 e
ctf _ e -8.0035138 4420 e
Experimentall 3.015
8 Bowman, Hirshfelder, and Wahl, J. Chem. Phys. 53, 2743 (1970).
b NN

Taken as Epresent work ~ £G1 - 5 1imit*

c
4 p. E. Cade and W. Huo, J. Chem. Phys. 47, 614 (1967).
€ From quadratic fit to lowest three energies.
f C. Bender and E. Davidson, J. Chem. Phys. 49, 4222 (1968).
g Tue 1:: or uual on Lis was duuux_y UC\,u.lJu_,d for all Conflgdra.t‘xcns, ‘v'v'h:l.Ch adds a

constant correlation error to the energy at all distances.

h For dissociation to Li with doubly-occupied 1s orbital.
i .
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TABLE Va. Total energy (E), Gl-orbital overlap (Si%F )3, Frozen-orbital overlap

(S};‘Eozen )?, orbital energy (ea), and exchange kinetic energy (TC!Z)b for H,. Basis

set shown in Table I. All quantities are shown in hartree atomic units.,

R E Sag Spazen €, ™
0.85 -1.02609065  0.8740997  0.893646  -0.7945906  -0.147433
1,10 -1.12422358  0.8450657  0.833345  -0.7394547  -0.1551423
1.30 -1.148557149  0.8176371  0.780440  -0.7019394  -0.1579785
1.425  -1.151728047  0.7987028  0.746114  -0.6811800  -0.1586881
1.50 -1.150867619  0.7867051 0.725245  -0.6696316  -0.1588028
1.80 -1.135600054  0.7341451  0.641263  -0.6294672  -0.1572006
2.25 -1.099899183 0. 642942 0.519731  -0.5840851  -0.1482257
2.50 -1.080278234  0.5871187  0.457168  -0.5650105  -0.1392930
3. 50 -1.025754664 0. 3568382 0.255934  -0.5197170  -0.0805010
5.00 -1.002556886  0.1249618  0.091760  -0.5019005  -0.0147973
Y06 0 -0.999717383 0.0 0.0 -0. 4998587 0.0

2 gee Ref. 30.

b See Ref. 22.
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TABLE Vb. Total energy (E), Gl-orbital overlap (Si%F ), Frozen-orbital overlap

Frozen
Sap

)a

, orbital energies (ea and eb)

Basis set shown in Table I. All quantities are shown in hartree atomic units,

, and exchange kinetic energy (TCE)b for LiH.

R Eqotal SAB. Sup 2" €9 (L) €9 (H) T
*1.00  -7.3134088  0.700502  0.617533  -0.253127  -0.458434  -0.112124
150  -7.7684049  0.757052  0.596969  -0,202393  -0.518427  -0.256979
2.50  -8.0026939  0.771886  0.524027  -0.201428  -0.494470  -0.408040
3.015 -8.0173619  0.749701  0.473388  -0.280741  -0.473536 -0, 445582
3.09  -8.01753689  0.744929  0.465556  -0.279020  -0.470812  -0.449712
3.20  -8.0172304  0.737324  0.453924  -0.276419  -0.467040  -0.455160
4.00  -8.0038167  0.665000  0.367154  -0.255564  -0.448944 -0, 474281
6.00  -7.9628982  0.390620  0.181200  -0,211816  -0.466262  -0.419405
8.00  -7.9495154  0.141177  0.075406  -0,198231  -0.495020  -0.358214
© -7.9473919 0.0 0.0 -0.196150  -0. 499859 0.0
2 See Ref. 30.
b

See Ref. 22.
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TABLE VI. HeH at R = 3.30, Energies and Orbital Overlaps.

(All quantities in hartree atomic units.)

Frozen Orbitals Gl - SCF GlatR =
E -3.3689079 -3.3705143 -3.3773274
Sab 0.8790347 0.8787471 0.8790347
Sac 0.0953190 0.0727359 0.0

Sbc 0.1915120 0.1629936 0.0
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TABLE VIII. Comparison of Lowest g and u States of Linear Symmetric

H,2
HS H3+

R, = R, = 1.70 3,

1’z " (ru) Gl -1.59790824 1lzg+ (¢r) | -1.2489326
1’z " (gg’v) SOGI -1.62046861 112g+ (gg’)| -1.2261434
122g+ (erg) Gl -1.3783697

R, = R, = 1.55a,

122u+ (lru) Gl -1.5912390 112g+ (er) | -1.2527228
122u+(gg'u) SOGI -1.6096592 1lzg+ (gg’) | -1.2312538
1’z g““ (erg) Gl -1. 3847354

1"‘zg+ (gg’g") SOGI -1. 3632507

2 Al quantities in hartree atomic units.
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FIG. 1la.
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Potential curves of H,. The zero of energy for each
curve is two neutral hydrogen atoms as calculated with
the same basis set. Hartree-Fock energies from 8.
Fraga and B. Ransil [J. Chem. Phys. 35, 1967 (1961)]

and CI energies from W. Kolos and L. Wolniewicz [J.

. Chem. Phys. 41, 3663 (1964)].

R (A.U.)
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FIG. 1b. Potential curves of LiH. The zero of energy for each

curve is the energy for the neutral atoms as calculated

by the same method. Hartree-Fock energies from P.

E. Cade and W. Huo [J. Chem. Phys. 47, 614 (1967)];

CI energies from C. Bender and E. Davidson [J. Chem.

Phys. .49, 4222 (1968)]; G1 energies calculated with

basis set of Table I.
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FIG.

o8

G1 orbitals for H, as a function of R. The upper box at
each distance is a contour map of the left-hand orbital (qba)
and the lower box is a line-plot of the amplitude of each
orbital plotted along the internuclear axis. For all contour
plots in this paper, the interval between contours (A) is
0.06 a.u. unless otherwise noted. Atom locations are
marked by crosses (+) on contour plots and by triangles

(A) on line-plots. Notice that the orbitals are not sym-
metrical about the center of symmetry but go into each

other under inversion.
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FIG. 3. G1 valence orbitals for LiH as a function of R. In each
case, the Li is on the left and the H on the right. The
upper box is the tight, hydrogen-like orbital plotted with
a contour interval of 0.06 a.u. The center box is a line-
plot of both orbitals (to the same scale) along the molecular
axis. The lower box is the diffuse, Li 2s-like orbital

plotted with an interval of 0.01 a.u.
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SOGI potential-energy surface for linear Hy,. X= RHl-HZ’

Y=R We have subtracted 0. 0281 hartrees from

H2-H3®
all our total energies so that the energy of the SOGI surface
as its saddle point will be the same as the energy of the
SSMK surface (Fig. 4c) at its saddle point. The saddle
point is taken as 11. 35 kcal/mole. Contour A is at 5 kcal/

mole and L is at 16 kcal/mole, with the contours in between

differing by 1kcal/mole. M is at 25 kcal/mole.
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SOGI potential energy surface for linear H;. The coordi-
nates that diagonalize T are shown orthogonal. The spacing
between contours is 1 kecal/ mole; the lowest contour is

11 kcal/mole above H, + H, the highest is 25 kcal/mole

and the saddle point is 17. 3 kcal/mole.
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RBC(O.U.)
1.875

1.25
1.25 1.875 250
R,g (a.u)
(b)

FIG. 4c.  CI potential energy surface for linear H; from SSMK
(Ref. 8).
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\ SOGI (PRESENT WORK)

'.\ SSMK-I (1s,1s’)

KN SSMK-II (1s,15, 2p)
Si- " O
..o'\
o] ] | l
0 1.0 2.0 3.0
R (A.U.)

Energy profile along reaction path of linear H; for SOGI,
SSMK-I, and SSMK-II (Ref. 8).
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-1.0

Energy profile for linear H, perpendicular to the reaction

path at the saddle point and SSMK (Ref. 8).



FIG. 6a.

3.0

2.0

\

LiHy
SOG I

Ry (a.u.)

SOGI potential-energy surface for Linear LiHH. Contour

level C is at -8.51125

hartrees, and B is at -8. 505 hartrees.

hartrees, level A is at -8.510

Between A and B,

contours are 0.0005 hartree apart. Below A, the contours

are 0.0025 hartree apart. At the upper edge we have

indicated where the contours C, A, and B occur at the LiH +

H limit by tick marks identified by curved lines from the

labels "C", "A", and "B'. The dashed line indicates an

approximate reaction path (see Ref. 23).
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FIG. Ta. Overlaps of self-consistent G1 orbitals and frozen atomic

orbitals for H,.
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ROb (G. U.)

FIG. ™. Overlaps of self-consistent G1 orbitals and frozen atomic

orbitals for LiH.
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FIG. 9.

SOGI orbitals for linear H,. Each row refers to a
particular geometry, each column to a particular orbital.
The letters A through E refer to the "Geometry' column
of Table VIIIa. The contour interval is 0.06 a.u. and each
plot is 12.0 a, by 7.0 a,. ¢1a and ¢1b are the bonding

pair and ¢2b is the nonbonding pair.
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SOGI valence orbitals near the reaction path for linear
LiH,. The large rows correspond to different geometries
(denoted by the letters A, B, etc., which refer to Table
IXa) and the columns to different orbitals. Each large row
is composed of a row of contour plots above a row of line
plots of the same orbitals. The columns are all 15 a,
wide. The contour plots are 10 a, high and the contour
interval is 0.06 a.u. except as noted. The line plots all

run from -0.20 a.u. to 0.70 a.u.
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FIG. 10b. SOGI valence orbitals near the reaction path for linear

LiH,. See Fig. 10a.
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III. Potential Energy Surfaces for Reactions

Involving Excited Atoms and Molecules.



7

INTRODUCTION

The SOGI calculations on H, + D and LiH + H discussed in Chapter
II illustrate how the SOGI method provides an accurate but easily under-
stood description of chemical reactions and therefore provides an excel-
lent basis for making predictions about whole classes of reactions with-
out detailed calculations. Unfortunately, the results of Chapter II are
limited to the lowest electronic state for each geometry. In the final
chapter of this thesis we discuss the extension of the SOGI method to
reactions involving electronically excited atoms and molecules.

Although there have been several studies with a variety of methods
of potential-energy surfaces (PES for ground-state systems, there have
been very few accurate, detailed studies of surfaces for excited states.
Conroy1 has calculated PES's for excited states of H;”L and H;L in Cop,
geometry, but then only for the lowest state of each symmetry. Further-
more, Conroy's wavefunction does not lead to an independent-particle
interpretation so that the changes in the wavefunction that cause the
PES's to have structure are not easily visualized.

We have carried out SOGI, G1, and CI calculations on several
geometries of H; and obtained the first four or five states at each
geometry. The aim of this study was not to provide detailed excited-
state PES's, but rather to discover if the SOGI method gives a good
description of excited states for arbitrary geometries and to find out
if the SOGI or G1 orbitals for these excited states leads to a meaning-
ful interpretation of these states.

Section I contains the technical details of solving for excited

states. Section II contains the energy results of the SOGI and CI
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calculations. Section III is a discussion of the orbitals, and the con-

clusions are reported in Section IV.

I. TECHNIQUES

A. Excited States

Calculation of self-consistent SOGI wavefunctions has been
approached in two ways. The first method is the one described in
Chapter I, which we call the Hamiltonian method in which one forms
and diagonalizes N (the number of electrons) Hamiltonian matrices (%).
These Hamiltonians are formed from trial orbitals (qbi); the ith Hamil-
tonian (iC_’ i) depends on all the orbitals except ¢i and one of the eigen-
functions of ’C}VC.I is taken as the new ¢i in the iterative procedure. When
one is solving for the ground state, one always selects the lowest
eigenvector of each Hamiltonian. However, as has been pointed out

2 and Melius and Goddard3, one can obtain excited states

by Goddard
by consistently selecting a higher root of one or more Hamiltonians.
When this procedure converges to a stationary state, we obtain an
upper bound to one of the excited states of the system. Exactly which
excited state one obtains is not clear in general since multiple orbital
excitation may lead to low-lying excited states, which would not appear
unless one suspected their existence and specifically looked for them.
Thus, picking the nth solution of some ;Ck insures that we obtain an
upper bound on the nth state, but we may in reality obtain a good
approximation to a higher state. This method has been applied to the

2

excited states of Li, © and the results are quite satisfactory, however,

one must scrutinize the results carefully.
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The method used in this research is based on the Hamiltonian-
Supermatrix method described in Appendix I. In this method, one

constructs a supermatrix (B ) and a vector X such that

->

BS = X, (1)

where § is the change in the wavefunction and X measures how far

the trial function is from a stationary point. We must solve (1) for

5 , given B and }-E; that is, we must invert B . Unfortunately, B

is singular because it is the matrix of second derivatives of the energy
with respect to variations in the wavefunction, and there are variations
that do not change the energy (such as renormalizing). Therefore, we
resort to the following procedure.

Consider a nonsingular real symmetric matrix A and the orthog-

onal matrix y such that

<l

AY=a, (2)

where a is the diagonal matrix of eigenvalues of A. Inverting a is

trivial;
-1 -1
(i )1] = (aij) Gij (3)
(where & ij is a Kronecker delta). Once we have '31\-1, é'l is easy,
At =yal'y . ()

When we diagonalize B, however, we find several zero eigenvalues
(indicating that the matrix is singular). Our procedure is to set the
inverse of these zero eigenvalues to zero; this is called deleting the
eigenvalue. The remaining eigenvalues of B can be either positive or
negative. We have given the following interpretation to the eigenvalues

s; the eigenvalues are modes of change in the wave-
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function and the eigenvalue indicates which way the change will affect
the energy. Positive eigenvalues appear for modes that will lower
the energy (as seen from the trial function) and negative eigenvalues
for ways of raising the energy. When solving for the ground state,
there are normally no negative eigenvalues, meaning that every change
made will lower the‘ energy. When the nth exci’ced-s’cate4 SOGI wave-
function is used to form B, we find n negative eigenvalues. Thus, to
find the nth excited state of a system (starting from some trial func-
tion), we retain n negative eigenvalues of B. g This procedure has
some of the same problems as the Hamiltonian method since retaining
n negative eigenvalues only insures that we are at least as high as the
n excited state. Carl Melius3 has used this procedure on excited
states of LiH and has obtained very satisfactory results. David
Huestis6 has used this same method in his projected-G1 study of the

excited states of H,.

One problem remains and that is picking the spin coupling.
When solving for the ground state, the procedure is to do one iteration
of adjusting the spatial orbitals and then to find the best spin coupling
for the new orbitals. When solving for excited states, this procedure
will not work. This is because the orbitals that form the nth excited
state for one spin coupling may produce an approximation to the ground
state for some other spin coupling. Indeed, the spin-coupling optim-
ization tries to do just this and the iterative procedure breaks down.
Therefore, we solve for the nth excited state at each of a series of
fixed spin couplings and select the spin coupling that gives the lowest

energy for that state.
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One method of computing wavefunctions for excited states that
does not suffer from so much ambiguity is the CI method. When
enough configurations of the right form, constructed from a suitable
basis set, are used, one only has to solve for the first n eigenvalues
of the CI matrix to obtain (n - 1) excited states plus the ground state.
Obtaining accurate energies and wavefunctions for arbitrary excited
states with CI is not trivial, since one must select the suitable basis
set and pick the right configurations; this process is an area of active
research. The close agreement between energies and main config-
urations of SOGI and CI excited states, for the cases we have consid-

ered, indicates that the SOGI results are essentially correct.

B. Basis Sets for SOGI and G1

SOGI and G1 calculations were carried out for six linear and three
nonlinear geometries shown in Table I. For the linear geometries, only
/fsulr%(lz?ii)ns \%/ere used since pi and higher functions would not enter into
the wavefunction. Similarly, for the nonlinear cases, only functions
symmetric with respect to the molecular plane were included. Three
geometries (called A, B, and C in Table 1) of Dooh symmetry were
chosen near the minimum found by Conroy1 in the linear symmetric
H: potential curve. For these, as well as two asymmetric geometries
called D and E, we chose a basis of three contracted S-type Gaussians
and two contracted p-type Gaussians on each center; this basis is
shown in Table Ila. The basis was chosen to give good values of the

1S and 28 energy of hydrogen at infinity. The basis was supposed to

give a similarly good value for the 2p state, but a clerical error
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spoiled this. This error should not affect our results too much. For
the nonlinear cases and the remaining linear cases, a similar set of S-
type functions were used, but only a single contracted p-function in
each direction was used. This p~function would give a good value for

the energy of the 2p state of H as shown in Table IIb.

C. Basis Sets for CI

The SOGI orbitals were used to reorganize the atomic basis set
for CI calculations. For any geometry of H, where all the atoms are
reasonably close together, the excited state wavefunctions can be

approximated by8
A a6, 00, + @y bopn + s (Dy8, bon) s (5)

where the ¢'s are orthogonal, qba and d)b are the first two natural
orbitals for H'S", cn is an orbital appropriate for the nth state,
(qbad)bgbcn) stands for both the doublet open-shell functions that we can
make from these three orbitals, and q,;, q,, and q; are numerical
coefficients. [The two parts of (¢a¢b¢c n) really have separate coeffi-
cients. ] Therefore we chose the first two orbitals of the ground state of
H, as ¢, and ¢,; the orbitals ¢ were taken as the third orbital of the
nth SOGI state. Additional functions (Xi) were introduced until there were
as many orbitals as atomic basis functions. These orbitals were then
orthogonalized and normalized by a Gram-Schmidt procedure beginning
with qba. The integrals over atomic basis functions were then trans-

formed to give integrals over the orthonormal orbitals.
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The CI calculations using these basis functions were doné with a
CI program that does configuration interaction over spin eigenfunctions
and that is described in Appendix II. All configurations of the form
$aPcn PoPens Papbons PC1%ar 1%y and Go1dey, as well as
all single excitations to the Xi's were included, giving ~ 210 spin
eigenfunctions in most cases. The results of these calculations are

given in the next section.
II,_ENERGY RESULTS

Because of the formal ambiguity of calculating excited states with
G1 or SOGI, the comparison of SOGI energies and wavefunctions with CI
energies and wavefunctions is especially important since such a com-
parison will tell us if we have missedrany Sta‘?e,% P},Eh?,50,91,,,,9%}9}1,1&’5",Ons',_
Table III contains G1, SOGI, and CI energies for geometries A, E, F,
G, J, and K (see Table I). The most important result for this compari-
son is that, with one exception, the SOGI levels are correctly assigned.
The evidence is twofold; first, the energy spacing of the two methods is
nearly the same, the changes in spacing (on going from SOGI to CI) is
small compared with the spacings themselves. The second point is that,
in the CI wavefunction for the excited states, the dominant configura-
tions are completely consistent with our SOGI description of the states.
We will elaborate on this when the states are discussed individually.
The one exception is for geometry F in which the second CI solution is
missing from the SOGI spectrum. The nature of this state is clear

from the CI coefficients. We have tried to obtain a corresponding SOGI

solution, but in vain; the reason for this is not clear.
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- A second important point is that spin-coupling optimization is
important only for the first two states of each geometry and then only
when all the nucleii are close together. Indeed, for the highly symmet-
ric cases, lowering of orbital symmetry is sometimes more important
than a general spin coupling. For the third and higher states, G1 is
within 1 kcal/mole of SOGI (except for the fourth state of geometry A,
which is ~ 4 kcal/mole higher). |

The geometries A, B, and C were chosen to bracket the minimum
in the linear symmetric H: curve found by Conroy. 1 Table IV shows
the SOGI and G1 energies of linear symmetric and linear asymmetric
H; and H: The letters in parentheses following the molecular term
symbol indicate the symmetry of the orbitals used. For H,, the states
described as (Lru) or (Lrg) have G1 coupling and those labeled (ggg) or
(ggu) have a general (SOGI) spin coupling. For all the excited states,
(£rg) or (Lru) give the best description, as is the case with H. For
H: in geometry D, I found two solutions, one by distorting the (£r) solu-
tion of geometry C and the other by distorting the (gg) solution.

Table V shows the predicted minimum (Re), the energy at Re’ and
the curvature at R e for several states of linear, symmetric H: and H;.
The predicted R, of the ground state, 1 22;; (gg’u) is too small because
the points do not bracket the minimum for this state. It should be noted
that R o and the curvature at R, for the excited states of H, are very
much like those of HJ.

Figure 1 shows the SOGI energies of the states we have calculated
at each geometry (Table I). The dotted lines represent states inferred

from the CI calculations, their energies are uncertain by ~0.02 hartree.
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The level at the top of each column marked "ion" is the SOGI energy of
H: at that geometry.

Geometries A, B, C, G, and J all have a mirror plane, and I have
denoted the symmetry of the state by G or U preceded by 1, 2, etc.,
indicating which G or U level. The column at the right labeled © has

three levels marked a, b, and ¢. a is the SOGI energy of

H, ‘z; (R = 1.40) + H(1s) , (6a)
level b is the SOGI energy of - "

H, ‘zg (R = 1.40) + H(n=2), (6b)
which is nearly degenerate with

H, 27 (R = 1.40) + H(ls) , (6¢c)

and level c is the SOGI energy of
H, ‘zg (R =1.40) + H" . (6d)

We note that most of the excited levels are lower in energy than
the limit (6b). For geometry F, however, the fourth and fifth states
are higher than the energy (6b), while the corresponding levels for
geometry E are lower, indicating a hump in those PES's. The existence
of similar humps for the nonlinear approach is likely, but I have not
done cases in which a hump appeared or would be expected. Such a
hump would only be expected when one hydrogen is far from the other
two, as in geometry F.

Table VI shows the SOGI ionization potentials of each state at
several geometries in eV. These indicate that most states are more

easily ionized than the corresponding state at infinity.
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The energy of H: for geometry J is nearly the same as the limit
(6b) or (6c), indicating that associative ionization is possible.

From Tables III, IV, V, and IX, we see that the excited states of H:
are well described by Gl and have energy curves similar to H: If the
excited states are well described as H: plus an electron, we can use
the frozen H;r bonding orbitals to form a Hamiltonian that, when diago-
nalized, will give the spectrum of excited states. In Table VIII we give
a comparisbn of these sor—called virtﬁal eﬁérgiéé Wlth the ”selfv-cronsistent

(SCF) G1 energies.

III. ORBITAL DESCRIPTION

A. Contour Plots

Figures 2 through 44 are contour plots for various orbitals of
states of H, and H: The location of each atom is indicated by a cross
(+). These plots differ significantly from the contour plots in Chapters
I and II in that they are logarithmic plots; each contour level is a con-
stant factor higher than the previous level. This is necessary since
many of the orbitals have important diffuse components that would not
show up on linear plots unless a very fine scaLe were used which wodld
make the nondiffuse part become black blobs. The lowest contour (on
all plots ) is + 0.01 a, and the ratio between contours is 2.0 (giving
levels + 0.02, + 0.4, etc.). Dashed lines are nodes and dotted lines
are negative contours. All the plots on any page are the same size
(except as noted). The geometries refer to Table I. The figures are

not in order of first reference in the text; rather, all the H; orbitals
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are first in alphabetical geometry order followed by H, orbitals. The
H, orbitals are grouped according to geometry first and then according
to state. For each state the SOGI orbitals are first, the G1 orbitals
next, and the G1 Natural Orbitals (vide infra) last.

+
B. H;

In the following discussion, we will consider H, and H, as the two
hydrogens originally close together; H, is the more distant hydrogen
and will be closer to H, than to H,. ¢>a, gbb , and <,bc will be the orbit-
als that began on H,, H,, and H,;, respectively.

For two electrons, there is only one singlet spin coupling that I
will call G1.2 Plots of the GI orbitals of HY for geometries A, F, G, J,
and K are shown in Figs. 2-6.

For those geometries in which there is a plane of reflection (A,
B, C, G, and J), we can pick our orbitals as gg’ or (g+u)(g-u) =rd. 10
For the linear cases (shown in Fig. 2), the latter choice is best for
normal distances (> ~ 1a,) and gg’ is better for very short distances,
since it allows the orbitals to split radially. For the equilateral tri-

angle (geometry J, Fig. 5), the two descriptions are degenerate because

one can write the gg’ orbitals as

g
g

a-+y

(7)

’

1

a-y,
where a is invariant under all the symmetry operations and y is the part
of an E pair that is invariant under f (the mirror plane we are using).

Thus we have
te'g+ggy=a" -y . (8)
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The other choice,r{,can be written as

r =a+Xx

(9)

£=a-x |,

where x is that part of the E pair that changes sign under fi. Clearly,
rf (= a® -x?) is equivalent to gg’ (=a® - y°); toget a pure A,many-electron
state we should use a’ - (x* +y*), but we can not do this with a Gl wave-
function. For isosceles triangles with base less than 2.5 a,, 11 the
right/left orbitals (one of which is shown in the lower part of Fig. 4)
are better and correspond to the orbitals of H, delocalizing somewhat
onto a distant proton. The other description, gg’, corresponds to an
H: plus a hydrogen atom, as can be seen in the upper part of Fig. 4.
This description would be better for triangles with large bases.

In Fig. 3, for geometry F, we see that the H, orbitals have not
delocalized much onto the incoming proton because it is too far away.
In Fig. 5, geometry K, the incoming proton is much closer and the two
orbitals correspond to two one-electron bonds, one between H, (see

Table I) and H,, and the other between H, and H,.

C. H,

1. The Ground State

The SOGI description of the ground state is given in detail in
Chapter II and will not be repeated here except to note that the nonlinear
cases (geometries G, J, and K) confirm the orbital phase changes al-
ready observed for linear cases. The orbitals are shown, as they will

enter into the discussion of other states.
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In the CI calculations the three configurations ¢Z.¢c’ qbi)d)c, and
¢>a¢b¢ c always dominate the ground state. ¢ 2’ qbb, and qbc are the

orthogonalized SOGI orbitals of the SOGI ground state.

2. Anti-Resonant State

Consider three ground state hydrogen atoms far apart. There are
two linearly independent doublet wavefunctions, G1 and GF, which are
degenerate at infinity. If we bring two of the H's together, the two

; + H (1s) and has

lower energy than the GF wavefunction, which goes to H, 32); + H(ls).

wavefunctions split; the G1 wavefunction goes to H, >
If RHz =1,40 a,, the 32; is ~10 eV above the IZ)g ground state, which
is the same as the n = 1 to n = 2 excitation energy of the hydrogen atom.
The 32:; is strongly repulsive for H,. When we bring a third H up to
this system, the energy goes down rapidly because of the favorable
interaction of the incoming H 1s with both the other orbitals. In the
valence bond view, we can form two linearly independent bonds from

hydrogen 1s functions; one is between the two close hydrogens (H, and H,)

0H3
(10)

H, H

@ r—

and the other is the sum of bonds from H, to H, and H; to H,

L4 <
L ’ (11)
Hl H2 Hl Hz
In the ground state we take the favorable combination of these two
structures, leaving the bad combination as the excited state. In the
ground state, solving self-consistently for the orbitals led to the bond-

ing orbitals (q’)a and ¢, ) delocalizing onto center 3, while the nonbond-

T ’
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ing orbital (¢ c) built in a node to keep small overlap betwee’r{&sélf and
the bonding orbitals. In the excited state the nonbonding orbital does
not build in a node, thereby interfering with the bond and raising the
energy very significantly (see Figs. 12, 13, 37, and 38).

I have been unable to find a SOGI state of this form for geometry
F, but the state certainly exists as shown by the CI calculations. The
second solution of the CI matrix for geometry F is dominated (coeffi-
cient = 0. 746) by the second spin eigenfunction formed from b0 PpPe
(all taken from the ground state, Fig. 19). In this spin eigenfunction,
¢, and ¢, (which resemble the bonding orbitals on H, and H, ) are coup-
led into a triplet and then ¢ c is coupled on to make a doublet. This
state has exactly the form of the anti-resonant state we expect. There
are completely analogous CI solutions for geometries E and K where we
have orbital solutions and the picture is clear. The problem in finding
the SOGI wavefunction for this state may be in finding the proper trial
function or it may be that the iterative procedure is not stable for such
a state. The proper spin coupling for such an anti-resonant state is the
GF coupling. For GF coupling, all the orbitals of the same spin can be
taken as orthogonal and indeed must be to obtain a unique set of orbitals.
Since the SOGI program deals with general spin couplings, the simplifi-
cations arising from orthogonal orbitals have not and cannot be used.
This has led to many problems when using GF or GF-like spin couplings
and may be the cause of our problem here.

Such an anti-resonant state is stabilized only for intermediate
distances, for as soon as we push all ’Ehree protons into the same region

of space, the exclusion effect pushes the energy of any wavefunction
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constructed of only three H 1s's up very high. We cannot even build one
Fermion wavefunction for the united atom, since 1s® is not allowed.
Thus the nonbonding orbital must start building in diffuse character.
For geometries E and K we clearly see (Figs. 12, 13, 37, and 38) anti-
resonant states in which the orbitals could be formed from 1s functions
on each center. For geometries G and J, there are states for which the
orbitals are basically made from ls-functions but have significant dif-
fuseness built in. Since the second state for geometries G or J has
different symmetry from the ground state, the two valence-bond struc-
tures do not mix and these states do not appear as the worst spin~-coup-

long for those orbitals, as is the case for the second state of geometries

E and K. Ng)te th.;stt, if" vvrermé.irrlta’in Cy, symmetry (which becomes D, h)
by spreading H, and H, apart and bring H; in along the mirror plane,
the second state of G or J goes into the 1 22); ground state of linear H,
while the ground state goes to the 2IIg state. Ii, on the other hand, we
rotate H, and H, to obtain the linear system (H,H,H,), the ground state
of geometry G or J becomes the ground state of the linear system and

the second state becomes a II state.

3. Rydberg States

In the case of geometry A, there is no longer any question of
building our second state wavefunction from hydrogen 1s functions, and
so the second state of the system is 1 22; with two orbitals forming the
bond of H: and the third orbital forming a diffuse s orbital on the whole
system (Fig. 9); this is a Rydberg state.

All the remaining states of H, are also best described as Rydberg

states; two orbitals delocalize over the three protons forming a bonding
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pair, while a third nonbonding orbital builds in nodal structure to give
the various excited states of the system. The CI wavefunctions of these
states confirm their Rydberg nature. The third, fourth, and fifth states
at each geometry are dominated by the configurations qbagbbqbcn, ¢;¢Cn,
and ¢;¢Cn’ where qba and (Pb are the orthogonalized bonding orbitals of
the SOGI ground state and ¢Cn stands for the orthogonalized third orbit-
als of the SOGI states up to the one under consideration (k). Because
the orbitals have been orthogonalized, we must include all the lower
orbitals to rebuild parts of qbggGI that have been orthogonalized away.
Even so, the configurations directly involving the orthogonalized ¢Ck
are the most important for the kth state, indicating that the parts of
¢g2GI which really determined the energy were orthogonal to the ¢ c's
of lower states.

Here we come to a significant problem in interpreting the orbitals.
Look, for example, at the SOGI orbitals of the fourth state of geometry
K (Fig. 41); all three orbitals look basically like H; bonding orbitals.
True, ¢C does seem a bit mashed outward in the plus-y direction, but
it is very hard to satisfactorily connect the states of geometry K to those
of geometry E (linear) or geometry G (isosceles triangle). In particu-
lar, it is very difficult to see which of the K states becomes 2 pi state
for linear geometry, although it is almost certain that one or more of
them does because there are five K states and only four E 257 states in
the same energy range.

The solution to this problem is to note that most of the tight 1s
character of ¢C gets projected away by the (}dL operator. Also note

that because this state is like H: plus an electron in a diffuse orbital,
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one could restrict the coupling to G1. The G1 orbitals for the fourth
state of geometry K are in the upper part of Fig. 42; note that ¢>a and
¢b have hardly changed, but ¢ ° has developed some slight negative
amplitude on the minus y side of the node. ¢ c still does not have any
very striking structure, though. To obtain the really important struc-
ture, we do the following, which was originally suggested by Musher. 12

The spatial part of the G1 wavefunction is

(8,9 * Dp0)8, = [(L 500+ (1 -8, % 19, (12)

where x, = (¢>a + ¢b)/x/2 +2sab and x, = (qba - ¢b)/‘/2 +2Sab (and
X = 0 if S;p =1). Thus

G?[qbac/)bqbc aBal = (1 +Sab)/2 d[xiqﬁc apa ] + (1-Sab)/2

(13)
x Z[x;¢,apo]
If we set Sab =1, we obtain the Hartree-Fock wavefunction.
We can rewrite (13) as
G2 [¢,0p0.08a] = (1+8,,)/24T+5 -28  2[xix;08a]
(14)

+(1-8,,)/2 VT+8,, - 255, A[x2x,apal,

where

Xs = (¢c - SICX1)/‘[1+SIC '2§?c

Xe = (¢c B Sch2)/‘f1+Szc - 285,
Slc = (X1,¢C>

Soc = <X2’qﬁc)‘ :

Xs is the part of ¢ c orthogonal to x,, and X, is the part of ¢ c orthogonal
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Xz- We will refer to this set of orbitals as G1 Natural Orbitals. (In the
figures they are labeled ”qba” through ”qbd” instead of "x," through "x".)

The lower part of Fig. 42 shows the G1 Natural Orbitals for the
fourth state of geometry K. We see that the small negative amplitude
seen in the regular G1 qbc has now become the dominant part of the non-
bonding orbital. Clearly this is the state that becomes a pi state when
we linearize the system. The G1 Natural Orbital (G1-NO) X4 (qbd in
Fig. 42) is almost identical to the regular G1 orbital (G10) b

We find that the Rydberg states for geometries E, F, and K are
best described in terms of the first and third G1-NO's. Neglecting the
part of G10 qbc, which is orthogonal to x,, requires some justification.
To measure the effect of orthogonalizing ¢ to the first two natural
orbitals, we have computed the energy of the following wavefunctions

for geometry K, all five states,
~ 2
a/[X1 X3a501] =Y,
o 2
(U xExsa8a] =y,
d
G, [¢a¢bX3 apal = Vs
d
G, [¢a¢bX4 aﬁa] = Yy
These energies are given in Table VIII.

For the ground state, the energies of i, and Y, are very bad, which
is understandable if one looks at the G1-NO's ¢, and qbd. G1-NO ¢b is
antibonding between H, and H,, but G1O gbc already has a node there, so
G1-NO ¢ g has to build in a node between H, and H, making it doubly non-
bonding. E(y,) is fairly good and E(,) is nearly as good as the G1

energy, indicating the error in E(y,) is due mostly to double occupation
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of G1-NO ¢, rather than to our modification of G10 ¢,.

For the ground state, any modification of a variational wavefunc-
tion will cause the energy to go up. For excited states, however, taking
away part of a variational wavefunction can cause the energy to go down.
This is particularly true of valence excited states where the orbitals
have a great deal of ground state character but arranged in the wrong
way. This is true of the second state of K where E(y,) is below the G1
energy. Another symptom that state 2 is a valence state is that the
difference between E(y,) and E(y,) is less than the difference between
either of these and the Gl energy, indicating that both terms of (14) con-
tribute strongly to the true wavefunction. .

Altering a Rydberg orbital, on the other hand, should only raise
the energy, particularly alterations that increase the number of nodes
in the Rydberg orbital. For states three, four, and five of K, we observe
that E(y,), E(y,), and E(y,) are all slightly higher than the G1 energy,
while E(y,) is slightly lower. This is expected since in Y, we have |
removed antibonding character from G10 qbc. E(y,) is no more than 4
or 5kcal/mole above the Gl energy, indicating that the energetically

important parts of G10 ¢, are still present in G1-NO be-

4, Connection of States

I will now describe each state of the equilateral triangle (geom-
etry J, Figs. 30 to 34) and then describe how the states change as we
proceed to the isosceles triangle (geometry G, Figs. 27-29), and thence
to the bent triangle (geometry K, Figs. 35-44), then to the linear geom-~
etry E (Figs. 11-18), then from E outward to F (Figs. 19-26), and in-
ward to A (Figs. 7-10). Returning to J, we make the connection to A.



96

a) Jto G

The equilateral triangle states can be viewed as states of a dis-
torted lithium atom. The ground state is a degenerate E state composed
of a core of A; symmetry and either of two molecular p orbitals. We can
treat the two bonding orbitals as gg’ or right/left as in H: As we saw
in the discussion of H:, the gg’ orbitals are equivalent to (a®-y”®) while
left/right orbitals are equivalent to (a2 -x?). Neither of these is of
exactly A, symmetry so that (a® - y?)y and (a® - x®)y are not equivalent.
The best combinations are gg’px and rﬁpy. On going to the isosceles
triangle (geometry G), these two states split strongly. The E v goes

down toward H, 12); + H(1s), while the Ex goes up. The Ex could con-

+
g
the latter since the u orbital remains on H, and H, while qba becomes a

nect to H, ‘=7 + H(2p,) or H, 32); + H(1s), the orbitals in Fig. 27 suggest
hydrogen 1s on H;.

The next state of J (Fig. 32) is a beautiful molecular 2s that very
clearly connects to the third state of G (Fig. 28). For this state, gg’
(2s) and r ¢ (2s) are equivalent. What happens to this state as we move
H, to infinity is not definite, but the linear case (vide infra) suggests
that the right/left/g description will become better and that ¢a and qbb
will localize on H,; and H, while gbc will become polarized away from H,
and H,. Eventually, this state will become a combination of 2s and 2p
on H,, polarized in the plus-x direction.

The third level (fourth and fifth states) of J is a second degenerate
E state composed of a core of approximate A, symmetry and molecular
3p orbitals (Figs. 33 and 34). They éomponent of this set is connected

to the fourth state of G (Fig. 29) while the x component connects to the
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fifth state of G, for which I have not solved. This ordering is also given
by the CI calculations.

b) Gto K

When we rotate H, about the fixed H, and H, to obtain
geometry K, the 2p's mix, the 2s remains rather pure, and the 3p's mix
with each other.

The connection of the ground states of G and K (Figs. 27 and 35)
is evident; the node that ran parallel to the H,-H, axis in G cuts between
H, and H; in K. The connection of the second states of G and K (Figs.
27, 37, and 38) is less obvious until one looks at the third G1-NO of
Fig. 38; this orbital can readily be made into a u orbital since it has a
node running through H, and bisecting the H;-H, line. It is also clear
from x, (Natural Orbital ¢ c in Fig. 38) that this state has some hydro-
gen 2p character since the node of qbc runs through H,, but the orbital
has noticeable amplitude on either side of H;. This 2p character is not
very large because the plus-y side of H, qsc never gets above 0.04 in
amplitude while it reaches nearly 0. 16 near H, and H, .

The connection of the 2s states (Figs. 28, 39 and 40) is very clear.
The diffuseness and general shape of the orbitals are very similar but
in K the third orbital, qbc » has gained some p character.

The fourth and fifth states of geometries G and K are close in
energy and are both molecular 3p functions polarized in different direc~
tions. In geometry G, the 3p functions have g and u symmetry. By
inspecting G1-NO ¢, of Figs. 42 and 44, we see that these two functions
have mixed to give 3p's of x +y and x -‘y polarization. In the fourth state

of K (Fig. 42), the internal or radial nodes of a 3p are not fully formed
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but the-function is much more diffuse than the valence 2p functions of
states 1 and 2 (Figs. 36 and 38).

Even though the two 3p states of G mix, one can see that the fourth
state of K is more closely related to the x-polarized 3p of G, while the
fifth state of K is related to the y-polarized 3p of G, because the fourth
state of K has a node between H, and H, while the fifth state has them
surrounded by a node. Figure 45 shows a sketch of how the nodal sur-
faces will move in going from K back to G.

c) KtoE

As we continue the rotation of H,-H, to give the linear geometry E,
the connection of the ground state is again patent. The connection of the
second state is also clear upon comparing Figs. 13 with‘37 and 14 with
38. The important point is that the nonbonding SOGI orbital (gbc) is in
both cases nodeless in contrast to the ground state and that the SOGI
spin-coupling is close to GF in both cases, as shown in Table IX.

¢c of the third state of E (Fig. 15) has some 2s character but is
not so diffuse as qbc of the third state of K (Fig. 39). On inspection of
the G1-NO's, we see that the important part of G10 d)c is a diffuse s-p
hybrid polarized in the plus-x direction, away from H, and H, .

The fourth state of K goes into a pi state for linear geometries,
for which we have not solved. |

The fifth state of K (Figs. 43 and 44) is a molecular 3p that con-
nects to the 3p of geometry E (Figs. 17 and 18). We infer this from the
diffuseness and nodal structure of G1-NO's.

d) EtoF

Once again, the ground state connection is obvious.
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Not having a second solution for F, it is a bit difficult to discuss
the connection of these states. The orbitals at F should look like a g and
u orbital13 on H, and H, coupled into a triplet with the third orbital look-
ing very much like a 1s on H,.

The third state of E (Figs. 15 and 16) connects to the third state of
F (Figs. 21 and 22). At E, this state was called a molecular 2s with 2p
character; at F it is a 2p with some 2s character and is definitely polar-
ized away from the hydrogen molecule. As we noted for H:, the bonding
pair is delocalized over the three protons at E but not at F. At F, then,
the outer electron sees a plus-one charge on H, and the repulsive closed-
shell hydrogen-molecule electrons. In order to minimize this repulsive
interaction, it must polarize away from the hydrogen molecule.

The fourth states of E (Figs. 17 and 18) and F (Figs. 23 and 24)
also connect. At E, this state was mostly an H, 2p since most of the
H; 2s had been used in the third state. At F, the third state, to avoid
unfavorable overlaps with the hydrogen molecule orbitals, polarized
away. Thus the fourth state at F polarizes toward the molecule giving
rise to bad overlaps and the hump we noted in Sec. II.

The {fifth state at F may not be well described in this basis. It has
the appearance of an ionic state; a molecular 3p based on H;---H which
is higher than H,---H".

e) Eto A

Yet again, the ground states connect very smoothly.

The second state of A is 1 zzg (Fig. 9), which is a molecular 2s
that connects to the third state of E (Fi'gs. 15 and 16). The second state

of E (Figs. 13 and 14) was a valence excited state, and as we push the



100

protons close together it goes up in energy. The 2 22; of A (Fig. 10) is
the fourth state (counting the u states) and has a nodal structure resemb-
ling the second state of E (Fig. 14). The second state of E was a valence
state in which G1-NO ¢>C was composed of a hydrogen 1s on H, minus a
hydrogen 1s on H, with a little 2p character on H;. As we bring H,
closer, the bonding orbitals delocalize more, the valence character of
the nonbonding orbital becomes very favorable (from exclusion effects),
and the new, more diffuse nonbonding orbital sees all three protons
more or less equivalently. In the limit of equally spaced hydrogens,
this state becomes a molecular 3d—sigrﬁa composed mostly of a hydrogen
2p on H; minus a hydrogen 2p on H, with some contribution from s func-
tions on the hydrogens. |

The nonbonding orbital (qbc) of the 2 Z):; of A (Fig. 8) is the related
molecular 3pX composed of a hydrogen 2p on H, plus a hydrogen 2p on H,
with contributions from s functions on H, and H; and the H 2p on H,.
This state could have some valence character, but the nonbonding orbit-
al is diffuse and Rydberg-like. In addition, in the CI wavefunction for
this state, the coefficients of valence configurations are very small
(< 107%),

The orbitals of the 3 22{; are shown in Fig. 8. The third orbital
has much the same structure as ¢ e of the 2 22)3 (shown above it). This
state looks something like a 4p, and is probably badly described in this

basis set; hydrogen 3p's would be required on each center.

f) Jto A

The connections here are very s'imple and require only a glance at

the orbitals for the lower states at least. The x component of the J
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ground state (Fig. 30) goes to the sigma ground state of A. The y com-
ponent (Fig. 31) goes to a Hu state of A (not solved for); another example
of a valence state becoming Rydberg-like., The nondegenerate second
level of J (Fig. 32) becomes the 1 22; of A (Fig. 9). The x component
of the second E state of J (Fig. 33) becomes the 2 ZE: of A (Fig. 8).

The y component of this E state is most strongly related to the 3p pi
state of A. There are two low-lying states of E, as shown in Table I1I,
states 6 and 7 which should be 3d's. One of these, the(x” - y* ),will con-
nect to the 3d-sigma 2 22; of A and the other,(xy),to a 3d pi that should

be fairly high in energy. The 3py and the 3dxz_yz will mix somewhat.
IV. CONCLUSIONS

We have seen that the excited valence states of the reactants led
at first to valence states in the interaction region and then to Rydberg
states when all the atoms were close together, while the ground state
remained a valence state for all distances considered. This was
expected because of the exclusion principle and was easily seen in the
orbitals. The Rydberg states of the reactants led to Rydberg states in
the interaction region where they could be classified fairly well as S,

P, or D.

The number of states at each geometry was easily rationalized and
the hump in the fourth sigma state of linear cases explained. This hump
for the fourth state and the absence of a hump in the third state is due to
the degeneracy of the hydrogen 2s and 2p that allows the third state to
polarize away from the hydrogen mole.cule until it has approached close

enough for the bonding orbitals to delocalize over all the protons. This
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should be a general feature of the interaction of excited hydrogen with
closed-shell sjrstems. For atoms such as K or Na or Li, the behavior
should be different because the ns and np are no longer degenerate and
there may be humps in all the excited-state PES's.

The CI calculations show that, even though there are significant
absolute errors in the SOGI and G1 energies, the barrier of the ground
state and humps and valleys of the excited states are reproduced by

SOGI with semi-quantitative accuracy.

Thus the SOGI and G1 independent-particle methods give accurate
and understandable pictures of the PES's of reaction for excited states
as well as ground states and form a valuable basis for theories about

the potential energy surfaces of chemical reactions.
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13. By g and u here I mean g and u with respect to the mirror plane

between H, and H, ignoring the presence of H,.
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Basis Set for Linear H, Excited States.

A. S Functions - Contracted 1s Gaussians

Exponent First Contraction

Second Contraction

to 6 Functions 1s 2s tight S
82.4736 0.00234426
12,3983 0.01772734 0.90078363 -0.34970777 1.0
2.83924 0.08624170
0.814717 0.2617
0.271838 1.0 0. 48859394 -0.26999524 0.0
0.099482 1.0 0.30411215 -0.26192246 0.0
0.033161 1.0 0.02403873 0.76068717 0.0
0.011054 1.0 -0. 00377805 0.51888897 0.0
0.0036847 1.0 0.00100811 -0.04977112 0.0
Energy (hartree) -0.4999069 -0.12488

B. P Functions - Contracted 2p Gaussians

First Contraction

Second Contraction

Exponent
to 5 Functions 2 tight p

2. 44001 0.00360092  0.00360092 1.0
0. 567483 0. 02859015

0.18916 1.0 0.02859015 0.0
0. 063053 1.0 0.13982444 0.0
0.0210176 1.0 0.51561382 0.0
0.00700589 1.0 0.47038677 0.0




109

TABLE IIb. Basis set for nonlinear H; excited states.

A. S functions - Contracted 1s Gaussians

First contraction Second Contraction

Exponent to 5 functions 1s 2s tight S
82.4736 0.00234426

12,3983 0.01772734 0.90083785 ;0.35088348 1.0
2.83924 0.0862417

0.814717 0.2617

0.271838 1.0 0.48844587 -0.26712944 0.0
0.099482 1.0 0. 30457130 -0. 217362876 0.0
0.033161 1.0 0.02307810 0.79343767 0.0
0.011054 1.0 -0.00237320 0.45889333 0.0

Energy (hartree ) -0. 4999068 -0. 12483 -

B. 2p function - Contracted 2p Gaussians?®

Exponent Coefficient
0.733825 0.02639
0.174211 0.18295
0.055713 0.53151
0.020185 0.41444
Energy -0. 124952

“From S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).
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TABLE III. (continued)

a Energy of Gl wavefunction with orbitals optimized for G1 coupling.

b SOGI energy, orbitals and spin coupling optimized together as

explained in text.

¢ Energy obtained by applying G1 operator to SOGI orbitals.

d Energy obtained by applying GF operator to SOGI orbitals.

© Lowest root of {(GI|H|GJ) matrix; see Appendix I.

f Highest root of (GI|H|GJ) matrix.

g Energy improvement from diagonalizing {GI [H ]GJ ).

h CI energy obtained with SOGI orbitals as basis functlons
Improvement of CI over SOGI or GI1.

] The symbols ""(fru)" and ""(frg)" indicate the form of the orbitals.

For consistency, we report the G1 energy of the first state with £ru

orbitals; the gg’u~-G1 wavefunction has a lower energy for the first state.

k The SOGI wavefunctions for this geometry all have orbitals gg'x,

where x can be g” or u.

2 Orbitals and states are classified g if symmetric with respect to the

mirror plane and u if antisymmetric.

M we ignore the threefold axis and classify state only with respect to

one of the mirror planes.

% The ground state should be a doubly-degenerate E state. The SOGI

and G1 methods do not give the two orthogonal components as equivalent.

The CI energies are much nearer; here the difference is due to slightly

inequivalent lists of configurations.

P The SOGI excited E state is much more nearly degenerate than was
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TABLE V.
Predicted Energy at Curvature
State Minimum Minimum at Minimum
(bohr) (hartree) (hartree /bohr?)
Linear Symmetric H;
1lzg(zr) 1.5547 -1.2527268 0.359487
1. 52806 -1.2313384 0.351445

15" (g0’
Eg(gg)

Linear Symmetric H,

1 zz; (£ru)
2+ ’,

172 (gg'w)
2+

2 Z, (fru)

3 22‘,; (£ru)

1%p%
Eg(hg)

1.7056 -1.597917 0.55114
1.7582 -1. 6213841 0.5414
1.5576 -1.3341304 0.37394
1.5595 -1.2814602 0.36803
1.50005 -1. 3851591 0.339638
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TABLE VI. Ionization Potentials of Various States and Geometries
of H, (energies in eV).

State No. B geometry K 5
1 9.71 11.98 13.36 10. 86 11.81 6.04
2 3.59 4,31 - 4,58 4.11 5.76
3 2.22 3.08 3.27 3.27 3.12 3.63
4 1.53 2.22 2.38 2.78 2.79 1.74
5 0.78 =0 1.82 -- 2.10 1.72




116

TABLE VII. Linear H,. Gl (£rg) and (fru) (energy in hartree).
Stat R; =R, =1.50 Geometry A
ate
Energy from virtuals SCF energy
1 22:; -1.5770980 -1.5862602
1 zg -1. 3851360 -1.3851591
2 z; -1.3334797 -1. 3335100
2 22;“ -1. 3079049 -1. 3078759
3 z:; -1.280798 -1.2808095
R, =R, = 1.550 Geometry B
z;: -1.5821322 -1.5912390
1 zzg ~1. 3847105 ~1.3847354
z; -1. 3340903 -1.3341196
zfg‘ -1.3089194 -1.3090145
3 Zz;; -1.2814323 -1.2814437
R, =R, =1.700 Geometry C
z;; -1.5890667 -1.5979082
zg -1.3783366 -1.3983697
2 "‘z;; -1.3303112 -1.3303393
2 2zg -1. 3074950
3 223 -1.2798147 -1.2778260
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TABLE VII. (continued)

R;=1.50 R, = 1.70 Geometry D

1%z* -1.5851244

2 2x* ~1. 3811264 -1.3811695
32x7 -1.3318770 -1.3319106
4 2x* -1.3070794 -1.3072711

52yt -1. 2792240 -1.2792369
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APPENDIX I: The SOGI Program

In the SOGI method we take our wavefunction as
¥ = ),CGY(8x) , (1)
i

where the Ci's are numerical coefficients, the G'.:,'s are standard GI
operators, & is a product of one-electron spatial functions, and x is a
product of one-electron spin functions (@ or g8). In the usual spin function

one puts alternate a's and 8's until he runs out of 8's and then finishes with

an unmitigated string of a's. The G?l"s are defined by

'y .
G = %,z:)\oyl. o (2)

(Note that this definition differs from that in Chapter I in that w’%l is
used rather than w:l'i » which only changes the normalization.)

For a given set of orbitals, we want to find the optimum Ci's for
(1). After finding the best Ci's, we find the best orbitals for those Ci's

and alternate finding C.l's and orbitals until the process converges.

I. Orbital Variation

The approximate solution of the spatial GI equations has been
approached in several ways. This Appendix will be concerned only with
methods in which the unknown orbitals are expanded in terms of some
known basis functions and the coefficients of the expansion are solved
for iteratively. (As far as I know, no one has tried to solve the GI
equations numerically.)

Historically, the first approach was to take the equation

H ¢, = ¢, k=1,NX

L
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and to expand in terms of basis functions to give

k -
Hqu“_k = eksvu.cvk .

The Hamiltonian matrices (leu) were evaluated with the trial function.
After transforming to an orthogonal basis set, the Hamiltonians were
diagonalized to give a new set of occupied and virtual orbitals and the
orbital energies. This approach involved the formation and diagonaliza-
tion of NX (number of electrons) different NBF by NBF matrices (NBF
is the number of basis functions).

The problem with this method was that the new kth orbital was
determined using the field due to the old NX -1 other orbitals. Nothing
was done to adjust ¢>k for changes that were simultaﬁeously being made
in all the other ¢'s. This often led to oscillation that caused slow con-
vergence or divergence.

A second approach was developed by Dick Blint and Bill Goddard
in which the kinetic energy terms were evaluated using the new orbitals.
Let Hy = H_- Ty, then

(Ty + )¢ = H oy
which is valid for the self-consistent gbk's. The iterative procedure
here was to evaluate the right side with the trial function and then multi-
ply by the inverse of (Tk + ek) to give a new ¢k This approach was
called the inhomogeneous method.

At first it was believed that this method had overcome the con-
vergence problems of the homogeneous method, since SQCDIF's on the
order of 107% were easily obtainéd even for systems that had diverged

when treated by the homogeneous method. More careful investigation
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on the part of Dick Blint revealed, however, that these wavefunctions
had not actually converged but would continue to change slowly if the
iterative procedure were continued. This problem is even more serious
than divergence of the SCF scheme, since one would have to examine
the wavefunction very closely after several different cycles of the SCF
scheme to see if the wavefunction is changing in some systematic way
pr oscillating or just bouncing about. This approach is not completely
useless since it does generate fairly good approximations to the actual
wavefunction beginning with even very crude guesses. As we shall see
below, good initial guesses are necessary for the new approach that we

have just developed.

'A.  Derivation of the Supermatrix'

For fixed Ci's in (1), it is advantageous to rewrite the energy as

follows:
_(¥]H|®) 3
C¥| %) (3a)

J
= (3b)

()€, GY(2x)| L C GL@x))
r S

(2:¢;G](@x) [H] 2 ¢;6 (@x))
. d j
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(o |H| ), Ct, O LS 0% .wZ (Bx))
irjs Ari S] S) sl (3c)

(same stuff with H = 1)

f7(<1>lel(Z§ €;C;0y; )<I>-v——x>
) ij - (3d)

(same stuff with H = 1)

(@ [H[(ZSA clc]ol])@

= (3e)
(@]iZj g, Jclc]olylcm
(®|H|07, @)
’ (3f)
()01, @)

where we define OIJL = Z,Ck C. C O
j "ij

Now to find a better set of orbitals we write each orbital qb.l in @
as ¢; = ¢? + 6¢;, where the gb{"s are the trial functions. By substituting
the ¢i into the energy expression, we develop equations for the &'s.

We can rewrite (3f) as

N, + N, + N, + 0(5%)

E - : )
F, +F, +F, +0(5°)

where
= (2" [H|0},3°) (5)
N, = Z{<1>'6¢ |H|0f @) + (2| |0y ® 69, ) } (6)
N, = Z{(cb" 6;09; lH|0% 2°%) +(&° ]H]onp" 69;6¢;) }

i<j

+ (@00, IHIOH 160;) (7)
i,j
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and the F's are of the same form with H=1, &%= ¢2¢, « -~ ¢10\I is the
trial function, fb{(éd)k is ° with gbl‘; replaced by & ¢>k and <I>’ p 6¢k6¢£
is ° with gbﬁ replaced by 6¢k and ¢>; replaced by 6¢£. Write

F, F,
F0+F1+F —-F(1+F;+F—o') (8)
or
1 1 Fl FZ F
= [1- = -2 4 (=) +06Y)]. (9)

Fo+F,+F, Fo Fo Fo F,

Now E in (4) becomes

N, + N, + N, F, F, F,
E = 1-'— - == +(==)%] . 10
- )] (10)
Let E° = N, /F,, then
0.2
E°F2  N,F
= [F,E® + N, + N, - E°F, - E°F, + —— - —— + 0(6%)]1/F, (11)
Fo Fo .
or dropping things of O(6°)
(N, - E°F)F |
Fo(E - E° = (N, - E°F,) + (N, - E°F,) - — L (12

F,
At convergence, E = E° so we set the left side of (12) to zero and solve

for the 6's.
/\
Let O, = (H - E®)0Y,, then

F, A Lo 0
1 - ﬁ)?{@jwjlopl@ Y +{® ’Op!fbj6¢>j)}

+ ), {(®}09,00;[0,2%) + (2°[0 |2(: 56,59, ) }

i<j

+ 2 {(2)69, IO g:@'w >} (13)
i,]

If we assume the orbitals are real, this becomes
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22(1’35%!01,,? ) +2), (2 69:66]0]2°) + J (cp{wi[opy@jwj)

j>i i,j

- & 7 {<2pp6;|050°) (2] 09,10 |27 } = 0. (19)
° ‘-,J '

Collecting factors of by we obtain
Z 22} 00, |0 I<I>>+2Z (0009, o, |2”)
+2§<@{5¢k|op]¢;5¢.l>

i Fi Z{<@'a¢kl0§i'®°><@fa¢ilo 2%

+ (@59, |05 2°)(®; 1 0%, 10, !@)}}-o - (15)
Now expand qbl'; and 6¢k in a basis set, |
NBF
¢ = L X €k (16a)
NBF
0y = levAvk - (6p)
iy .

v 0 . 0 o .
Let <I)k be 3 with qbk replaced by Xy and 'Dll{"ﬂv be P with qbl‘; replaced

0
by x”and ¢, replaced by Xy
Define "
Q= - (% lop]<1>0> (17a)
and
- 4 o pH »Y
By, po = (B (0,12 >(1-6kg)+<¢’kiopl%>
(17p)
2 i 0 _2_ sl O\ /5 V C,o
- -F—; <I> ,O d >(‘1> ’O Fo<1’kl0pli’ ><1)£l011¢’
The (15) becomes
ZA k{Z_Buk I,QA ,ﬁ} =/ Aquuk (18)
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but the equality must be true for each Au,k independently, so we have

VZ}QBuk’ va8,g = Qe for all k. (19)
Bis called the supermatrix.

B. Agglication to Basis Set Exgansion

Now to expand Qu.k and Bp.k ) in terms of molecular integrals.
s _

Latin letters will be used for orbitals and Greek letters for basis func-

tions.

Define
v, =L, uthe (20)
= —-— 4 — s
12 Ty, (NX - 1) _

where hi = -3 V? + Vnuclear(i)' We then need only the quantities
AMAM(pj|2k) = [x (1x, @V 9] ()¢ (2)dr,dT, (21)
AAMM(pv[ik) = [x (16 )V x (1) ()T, dT, (22)
AMMM(un [jk) = [x ()¢5 @)V ¢y (1) (2)dT,dT, (23)
XMMM(mn |jk) = f¢>;’n(1)¢>j°(2)v12 ¢ (1)¢1‘;(2)d71d72 . (24)

The D matrices are defined in Chapter I and their indexing is discussed
in Sec. D.

First we define

R, =2 ) L {AMMM(uc|bd)D5D

b=k ¢ d#c
(25)

+ ) ) XMMM(at|bd)s D}
pccid
a<b {#c

where Snk = fle7(1)q_'>k(1)d*r1 . Now E° becomes
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0
= ( }‘;Rulcul)/r‘o (26)

and

ZE s pf). @)

Qp.k pec
B was defined in (17b); we will expand each term separately.

ZJ > {[Au%hdhd;;v'as

1. (a!|o |8}y = -E
k'pi ‘“’ﬂ axk s= 8

+ (AMAM(us|wa) - E°S S )DS2 ]

pus-va
+ ) L [aMMM(us|bt)s,  + AMMM(Va]bt)s JD k'ﬁ
b#a t#s va s
b=k t= 4
) abe |
+ c%lb uét XMMM(bt |cu) SvaSuleéltu (28)
C#3a U#=Ss
- cFku=l -
where S = [x, 1)x (1)d7'1
2. (fork=1)
uwv o] _ o ) k0
(q)kl loplé )= %:a;ﬁz‘ls {amaM(us |a) - B Sussva)Dsa
kﬁb
+ ) [(aMMM(ps |bt)s,,, + AMMM( ualbt)s Dot
b=k t=s S
b= £ t=a
k fbc
’ c}>:b u;sXNHVHVI(IOt |cu) SussvaDsatu 1} (29)
cZk u#a
cz{ u#t

3. (cbk“]o?@"x@z;op]@% Lsukk . (30)
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C. Indexing of Molecular Integrals

There is symmetry in the indices of the quantities AAMM, AMAM,
AMMM, and XMMM that is used to reduce the number of integrals to be
calculated or stored. Here is how they are addressed.

1, AAMM's
AAMM(pv|k4)

i

AAMM(vu [k2)
AAMM(uv|fk) = AAMM(vp|2k) .

Thus we can order both (v, u) and (k, £). Let i be the larger of k
and £ and j be the smaller, then the kf-pair number is i(i-1)/2+j;

similarly for y and v. For convenience, define the function PN

n,;(n,-1) .
— + 1, ifn, # n,
PN(n,n,) = (32)
n, (n, - 1) .
— ifn, < n,

The AAMM's are stored in a linear array; the index of AAMM(,uu[k!)
s Ty aMM
1
IAAMM = [PN(ﬂ-, v) - 1][M%X;F_L] + PN(k: 2)’

where NX is the number of electrons.
2. AMAM's
AMAM(uk|v2) = AMAM(v£]|pk), thus we can order p and v but

not k and ¢. The index is IAMAM

Lyvan = [PN(s, ») - 1INX + (G- 1)*NX + i,

wherej=kandi=2if p=v

but j=fandi=kif p<v.
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3. AMMM's
AMMM(um |np) = AMMM(um |pn):
Ly = (8 - DINX®+NXF)/2 + (m - 1)(NX” +NX)/2 + PN(n, p).

4, XMMM's
XMMM(mn [pg) = XMMM(nm |pq) = XMMM(nm |qp)

LyoninvaM = [PN(m, n) - 1J(NX® +NX)/2 + PN(p, q).

All the quantities AAMM, AMAM, AMMM, and XMMM are pro-

duced by an efficient transformation program written by David Huestis.
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D. Indexing of D-Matrices
/VW\/M\/\.‘V-NW\/\’VV\NV\WV\

The quantity

(33)
Jisday = ]
is defined as the coefficient of
* (s * 3 e s 0 * i i i e o o i
¢i1 (11 )¢i2 (12 ). ¢in(1n) ¢j1(11)¢j2(12 ) ¢jn(ln) . (34)
in the integral
fcb*o Bdxf feeet (35)
1 12 ln .

where & = ¢,(1)$,(2) + -+ - 9 (N, for- °dx{1{2 {3 . { indicates that the
n

integration extends.over all coordinates except i,,i,++ - ian and N is the

number of electrons. Efficient handling of these quantities is essential

in doing SOGI calculations since the ]

matrix-SOGI equations contain explicit reference to D (called D-ones),
ijk ijke

Duvab (called D-twos), D L vabe (called D- -threes), and Du.vabcd (called

D-fours). These in turn depend 1mp11c1t1y on the higher D's through the

relationship,

_iuiz;"'in iniz:""inv:k
- D D, Sca (36)

uV' 3 e sed . V' 3 e e
J15]25 In a%,,dp " iy I1s)2, 2

where k is any index (k < N, the number of electrons) not already used in
the set (i,,i,, <+ in) and S, is the overlap of orbitals k and a (Ska =
Jéx (¢, (1) ax,).

If n is the number of electrons, then we haven't integrated over any
coordinatein (35) and the resuiting D's (called D-N's) are just the coefficients
of the different orbital products, ¢¥(1)¢.(2)-- N(N)gf) 1)¢ (@0 ()

IN
in the expression @*Ouyd). Since Oll = ZU AT)7, the D N's
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(D‘w?l, Tz cee TN) are just the U“ V(-,—) matrices where 7 is the permutation
J15)2° "IN

which takes i, into j,, i, into j,, etec. Only the correspondence of i's and

j's matters, so we will rearrange the i's to be 1,2, ---N, which puts the

j's in the order where jk is in the ikth position. Since the i's (superscripts)

are always the set (1,2, - -+ N), we can ignore them and designate only the

subscripts (j's). The D-N's can be ordered by taking the set of j's as an

N digit number with radix N. Consider the case of four electrons. The

permutations of 1, 2, 3, 4, in ascending order are

7 (in cycle notation)

Index Permuted Set 35 7[1234] = Permuted set

1 1234 €

2 1243 (34)

3 1324 (23)

4 1342 (234)

5 1423 (243)

6 1432 (24)

7 2134 (12)

8 2143 (12)(34)

9 2314 - (123)
10 2341 (1234)
11 2413 (1243)
12 2431 (124)
13 3124 (132)
14 3142 (1342)
15 3214 (13)

16 3241 - (134)
17 3412 (13)(24)
18 3421 (1324)
19 4123 (1432)
20 4132 (142)
21

4213 (143)
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22 4231 (14)

23 4312 (1423)

24 4321 (14)(23)
1342

Suppose we want Du

. 134 . ‘
order Dui/ 2:132% = Dy.V ;g?i By inspecting the table, we see that 2314

y 2143+ First we put the superscripts in proper

is the ninth entry. The next problem is to find an algorithm for calculating
the index rather than finding it by searching a table.

Using the subscripts as an N-digit number with radix N was adequate
for ordering the permutations but this gives an index NN which grows much
more rapidly than N. This would leave us with a few numbers scattered
through core and all the remaining space empty and wasted.

Notice that the entries in column two naturally break up into four
blocks of six; the elements of each block all have the same first number,
Further note that each block can be broken into three sub-blocks, each
sub-block having a common second index. We can calcuuléte the beginning
of each block by the formula I, = (j,- 1) x6+1 (I, ranges from 1 to 19 by

sixes). Calculating the position within a block, however, is coraplicated

by the fact that the remaining three |
indices are not generally adjacent; e.g., the last three indices in the 3-
block are 1,2, and 4 in some order, since 3 has already appeared. The
permutations of the symbols 1, 2, and 4, however, are isomorphous with
fhe permutations of 1, 2, and 3; all we need do is replace 4 everywhere by
3. Similarly, the last three indices of the 1-block can be converted to
permutations of 1, 2, 3 by subtracting 1 from each index; in the 2-block we

replace 3 by 2 and 4 by 3. The 4-block already has the desired form.
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Now we can easily calculate the beginning of each sub-block by the
formula I, = 2 % (j; - 1) where jj} = j, if j, <j, but j} = (2= if j, >j, (I,
ranges from 0 to 4 by twos). Similarly, we compute I, = (j7 - 1) where
J5=Js U <jabut j§ = (g- 1) if 35> §;; then j§ = §} if §5 <3} but §2 =} - 1)
if j3 >J; (I;is either 0 or 1). Now the total index is I, +I,+I,. Notice
that j, never entered the calculation; this is as it should be, j, carries no
information since its value can be inferred from the values of j,, j,, and ige

Thus we have the following algorithm (due to E. Kent Gordon) for N

electrons.
. Setj}'{=jkfork=1to(N-1)
. Set£=1
>} - ¥4 - . 27 Iy 4 - - -
Set j; = (]k 1) if iy >, for k =(£+1) up to (N-1)

1
2
3

4, Set £to £+1
5.  Go back to (3) if £ < (N-2)
6

INDEX = (j; - 1(N-1)! + (G ~1)(N-2)! + (j5-1(N-3)! + RS 4

INDEX runs from 1 to N!

The index j{ is the ordinal nuuber of the subscript that does occur in
the ith position, counting only the possible subscripts that can occur at that
position, given the values of the preceding subscripts. For example, in the
permutation 136524, j; = 4 because 6 is the fourth possible subscript in
position 3, given that j, = 1 and j, = 3; ji = 1 because 2 is the first possible
Asubscript in that location, given the previous subscripts. This finishes
the case of the D-N's.

Now consider the case where n < N, We can no longer assume that
the superscripts form the set (123-++N) since some of the numbers are
missing. We can, however, take the superscripts as ordered. For each

set of superscripts, we can pick the subscripts without any restrictions
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except that no two can be equal. If we group all the D's with common
superscript together, we obtain NB blocks of NE elements. NB is the
number of ordered sets of n numbers that can be selected from the set

(1,2, -+ N).

——n factors
NB___N:o:(N-1)=0<(N'-2)---(N-(n-1))= ' N '=C(N).
n! (n!)(N-n)! n

NE is the number of ways we can select n numbers from (1,2,3,+++N)

without respect to order

NE = N#(N-1)%++++(N-(n-1)) = N
(N -n)!
Yo : N! S |
Thus the total number of D-n's is —_—
(N -n)! n!

Since the possible set of subscripts does not depend on the superscripts,
we will split the indexing into two parts and compute a block index from the
superscripts and an index within the block from the subscripts. It seems
convenient to have the block index formula depend only on n and not on N.
This is done by grouping sets first by their largest index; each set
with a common largest index is broken into subgroups based on
second largest index, and so on. As an example, consider the D-3 super-

scripts for six electrons. The order is

1 123 11 126
2 124 12 136
3 134 13 236
4 234 14 146
5 125 15 246
6 135 16 346
7 235 17 156
8 145 18 256
9 245 19 | 356
i0 345 20 456
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The superlscript index function for D-3's is

IIS)‘;P = (o~ Dlis~2)(i5- 3)/6 + (i, - (i, - 2)/2 + 1, |
and for D,'s the superscript index function is

IIS)‘;’P - I]S:‘)EP + (ig= (i - 2)(i, - 3)(i, - 4)/24.
For Dn's the superscript index function is

(SUP _ SUP (i, - Dip-2) -+ (i -n)
D. “p + :
n (n-1) n!

Note that the block number does not depend on the number of electrons but

that the block size does,

The subscript index is calculated in a fashion similar to that used

for the D-N's.

1 Setjl'{=jk for k=1ton

2. Set £ =1
3. Setji{:(jl’{-l) if j1’<>ji for all k from (£ + 1) ton
4, Set £=10+1
5. Go back to 3if £ < (n - 1)
6. n-1 (N-n+p)
woex™® = Y G -) m@  }oe g
p=1 a=(N-n+1)

Therefore the total index of a Dn is

n-1 (N-n+g)

SUP_ |, _ N Yoy ) y
(IDn )(N-n)! i} uz—l{(J“ )a=(N—n+1)} “n
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During solution of the spatial SOGI equations, p=1and v = 1 and
the index given above is all that is needed. When doing spin-coupling
variations, all u and v are needed. i and j are used as normal square-
array indices and the index described above determines which square

array.

E. Solution of Equations

The B matrix is constructed according to the formulae in (170),
(29), (30), and (31) in terms of the original basis functions. Since the
original basis set is not orthonormal, we find a transformation that

gives an orthonormal basis set
ysy =1, (37

where V and S are NBF by NBF matrices. Now we transform B to this
space by transforming each of the NBF by NBF subblocks that corre-

spond to a givenk and £,

NBF NBF
0 _ N
Bpk, v GZJ—I 72-1 BO’k, ‘rﬁvuovv T ? (38)

Q is transformed as a string of vectors; i.e.,
NBF
0

Qy = El iV, r for each k. (39)
Now we wish to solve Eq. (19) in this new basis set, i.e., invert EO.
Unfortunately l§° is singular. The order of singularity is the number of
ways in which the wavefunction can be changed without changing the
energy. It is clear that each orbital can be renormalized without
changing E, giving rise to N (the number of electrons) singularities.

If there are n orbitals in an orthogonal set [W. A. Goddard 1II, Phys.
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Rev., '157, 81 (1967)], there are n® transformations within the set that
do not change the energy; these include the renormalization of those n
orbitals. Thus the number of singularities (NS) of §° is Zn‘?, where n,
is the size of the ith orthogonal set. If an orbital cannot ble taken orthog-
onal to any other orbitals, it constitutes an orthogonal set of its own of
size 1.

If ]§° were not singular, we could invert it as follows: find an

orthogonal matrix, U, such that

UB'U=b , (40)

~

where b is diagonal. The inverse of b is very simple
07)y = /by | (41)

and the inverse of §° is

B =upT'y . (42)

Since §° is singular, NS of the elements of b are near zero. The
NS corresponding eigenvectors are linear combinations of the trial
orbitals and do not contribute to first-order corrections in the energy.
To prevent these functions from being added (in large arbitrary amount)
to the corrects (6's), we set the inverse of the nearly-zero eigenvalues
to zero. Inverting the other elements of b gives p\”, which we treat
just as if it were the true inverse of b.

After inverting §°, we multiply (§°)'l times Qo to give the 5°'s
(6 in terms of orthonormal basis functions). To get 6 in terms of the
original basis set, we take the elements for each orbital separately
and transform

— Y o
8k = %Vunénk’ | (43)



183

The new ¢'s are now calculated by adding the 6's and renormaliz-
ing; we had not required the orbitals to remain normalized during varia-
tion since that would have made the formulation even more complicated.

We deem the process converged when

N§F Ni( NBF NZ}I( 2
SQRDLT(= (6°.)*) or SQCDIF(= )
u=1 k=1 MK u=1 k-1 4

become less than some preset criterion, e.g., 107° The 6Zk's are in
terms of orthonormal basis functions and the di's are the coefficients of
the trial functions at the ith iteration, also in terms of orthonormal
basis functions,

at. =Y v_ s _ct - (44)
k o ouw-on gk’

F. Remarks on GI-SCF

This new approach is analogous to the generalized Newton-
Raphson technique of solving for the zeros of a polynomial and thus we

refer to the new method as the Newton Raphson 1terat1ve approach to

solving the GI-SCF equations (sometimes denoted as NRIAS-GI-SCF). In
the region of convergence this method should converge quadrically (i.e.,
the norm of 0 is squared with each iteration. In fact this does occur so
that a typical sequence of SQCDIF (that is Z} Iﬁilz) might be 10'4, 1077,
10"13, and 107, This type of approach haii been previously suggested
for MC-SCF and HF calculations by Hinze and Roothaan [Prog. Theor.
Phys. (Kyoto) 40, 37 (1967)].

The problem with NRIAS-GI-SCF is that each iteration takes
much longer than for the corresponding homogeneous calculation since

we must now form a NBF*NX square array and then invert it every
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iteratio'n. However, the procedure seems to converge within three or
four iteration for almost every system as opposed to the hundreds of
iterations sometimes required by other approaches. Furthermore there
are no doubts about whether a given wave function is self-consistent or
not. If the norm of 0 is 1072, one can be certain that an additional
iteration would give a 8 with a norm no large than 107®® which means

that no coefficient would change by as much as 107",

II. VARIATION OF SPIN COUPLING
MVWVVM/MWW/WVWM

For spin-coupling variation, it is expedient to think of G?l’(<I>x) as

a fixed function, called ., so that (1) becomes

v = Zciz//i . (45)
1

i runs from one to Nt (the number of linearly independent spin functions
also equal to the number of Young tableaux for this case).

Firse we take linear combinations of the ;bi to obtain an orthonorm-
al set z//io, then form the Hamiltonian between zp{”s (GC{’J. = <w,b§ ’Hfz//]?)),
and diagonalize to give the eigenfunctions. By transforming back to the
original space of z,bi's, we obtain the Ci's that are used to construct the
OS needed in (3f). One can fix certain parts of the spin-coupling by
transforming Hij to small dimension before diagonalization. If spin=-
coupling variation is not desired, oﬁ may be formed with a fixed set of
C's.

If each of the yl/i many-electron functions is orthonormalized and
the C-vector is normalized, then all of'the numerators of Eq.(3) are 1

and can be dropped.
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Thus we first form
= <<I>|H[oi’j’q>)  (46)

=00 00 XMMM(ab |cd)D, 20
a b c<ad=b ]

in the nonorthogonal space. The overlap matrix is

g = (Wlyy)
LES) (47)

- 11
=22 51251bPijab

0
)
O

We find an orthogonal matrix, Y, such that
YLY =9. (48)

where )g is diagonal. The columns of Y are the linear combinations of
zpi's which are orthogonal. To normalize the combinations, we divide

each column of Y by the square root of its eigenvalue to give Z,

zij = Yij /\w.u. for all i and j. (49)

Now we transform g\c,

$° =757 . (50)

Diagonalizing Q\CO gives the proper linear combinations of W;’ 's and the
eﬁergies of these combinations. In most cases, the lowest energy and
its eigenvector are all that are of interest, but some real excited states
arise from the higher roots of QCJO. To obtain the C.l's, we must trans-

form back to the L//i'S. If e{’k is the kth eigenvector of 5¢° that we want
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to use, then the proper C's are given by
Ci = % Zi9® 0k ° (51)

which are used to form the O7;'s of (3f).

In Eqgs. (46) and (47) we have D matrices that have subscripts i
and j in addition to the normal sub- and superscripts. As pointed out
at the end of Section I.D, these D-matrices are handled as multidimen-
sional arrays in which the i and j are handled as normal square-array
indices while the other sub- and superscripts are used to compute

which square array is involved.
NI. FLOW CHART

The following two flow charts show how the current SOGI program
handles the fomulae described in Sections I and II. In these flow charts

the following abbreviations are used.

ITERNO: an integer indicating the number of the iterations now
in progress.

CALC: calculate.

TRANSF: transform.

DN'S: transformed U,,'s; see Section I.D.

SCF: Self Consistent Field, refers to orbital variation.

ICONV, JCONV, KCONV: integers used as flags to indicate whether
certain processes have converged. ICONYV is for
orbital variation, KCONV is for sp'm-cougling varia-
tion, and JCONYV is for entire process. means not
converged but proceeding normally; 1 means abnorm-
al condition, stop; 2 means normal convergence.

ITRMAX: maximum allowed nimber of iterations.

ONBS: Orthonormal Basis Set.
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Do(=(fI>IOStI>>), Dl's, D2's, D3's, and D4's.
Energy.

Atomic Basis Set, not necessarily the basis set for an
atom. In this sense it refers to the original basis set
for which we have the molecular integrals and in which
the trial functions are given. The functions are only
required to be linearly independent.
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WRITE ‘LHEA'DIMEE{ FLOW CHART 1
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INTEGRALS oN

l Disk

START _NEw CASE

¥
JTERNO= 1 j
— ¥
NORMAL|ZE 14 Lo
ORBITALS &
CALC. OVERLAPS
_ T
“TRANSF. 15
MOLECULAR A
INTEGRALS .

A

SPIN —
COUPLING TO BE NTEo] OPTIMIZE
& SPIN-COUPLING,

OPTIMIZED

Y

Nol ,

\!
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\LENTRY
GET C's iU
O.N.B.S.
v_ T Yes | SET FLags LS
— {,E 3] |CALC. SQEDIF & SQDLTA d?‘

o
. LN_ORMAL:ZE 'g*?lE[ :
¢

I MODIFY Gui 12
Rl

(GET 801N |11
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iy |
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SYMMETRIZE B L&
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| VIRTUALS & RETURN

RETURN

v

WRITE MESsSAGE, 122
JET FLAG ¥




190

APPENDIX II: The CI Program

The CI calculations reported in this thesis were carried out with
a program written in FORTRAN IV for the Caltech IBM 370/155. All
floating-point numbers were carried in double precision (8 bytes).

In this program, the wavefunction for the ith state of the system

is taken as
NSPCF n

Z Z anﬂ[‘ﬁnxnﬂ] (1)

where NSPCF is the number of spatial configurations (SPCF's), f

the number of spin eigenfunctions for the nth spatial configuration, tI)n
is the nth spatial configuration, and Xg is a spin eigenfunction. The
spatial configurations are products of orthonormal orbitals (also called

basis functions), e.g.,

B = ¢l 0sP5Ps b (2)
assuming seven electrons; 8 is the number of this specific SPCF. The
spin eigenfunctions (SEF's) X, ¢ are those formed by using Young's
orthogonal irreducible representation of e n (the symmetric group on
n objects) where n is the number of singly-occupied (also called open-
shell) orbitals in <I>n. One need worry about only the singly-occupied
orbitals, since ¢a(1)¢a(2)a(1)3(2) is a singlet without further ado. If
NBF is the number of orbitals (or Number of Basis Functions), then an
SPCF is determined by a string of NBF 0's, 1's, and 2's, indicating
how often each available orbital was used; this string of numbers will

be called an SPCF. In the case of &, in (2), the SPCF is

2012000110 (3)



191

assuming NBF = 10.

Xno depends on n only in that n determines how many open-shell
orbitals there are in the nth SPCF. The x's are sums of permuted
products of o's and 8's (Pauli spin functions). The number of a's (NA)
and 8's (NB) is input to the program. The difference, NSPIN = (NA - NB)
determines the spin; the program always builds a wavefunction with
S=MS=NSPIN/ 2. Currently the program allows for singlets, doublets,
and triplets. The maximum number of open-shell orbitals for each of
these cases is singlets - six, doublets - five, and triplets - six. These
could be increased by adding the appropriate code for forming determi-
nants and SEF's.

The SEF's are constructed by taking linear combiﬁations of Slater
determinants that are specified by a list of NA orbitals with ¢ spinand a
list df NB orbitals with 8 spin. The determinants are generated by the
following method. The SPCF is parsed to give a list of doubly-~occupied
orbitals and a list of singly-occupied orbitals. The numbers of the
doubly-occupied orbitals are entered in both the alpha and beta lists for
each of the determinants being built. Suppose there were KDBL doubly-
occupied orbitals and NSNGL=(NA+NB)-2KDBL singly -occupied orbitals,
of these, NAS=NA-KDBL must go into the alpha list of some determinant,
and NBS=NB-KDBL must go to the beta list of that determinant. The
program generates all distinct partitions of the NSNGL singly-occupied
orbitals into two groups of size NAS and NBS and attaches them to the
appropriate alpha and beta lists., When these determinants are combined

with proper coefficients, we obtain the desired SEF's.
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The program will read in SPCF's but also contains an option for
generating SPCF's. Associated with each SPCF is an integer called an
excitation number (EN). The generation of SPCF's begins by reading
in one or more SPCF's with associated excitation number. New SPCF's
are generated by moving an electron from an occupied orbital in the
source SPCF to a different orbital in the object SPCF. KSOURCE is
the number of the SPCF currently being used as source and KOUT is the
number of the new object SPCF. the EN of an object SPCF is set to one
less than its source SPCF. An SPCF with EN=0 is not used for source,
thereby terminating SPCF production. Each SPCF is checked to see
that it has the proper number of electrons and a suitable number of
open-shell orbitals and for uniqueness.

The check for uniqueness of SPCFk uses a hash table technique
to avoid a linear search of all previous SPCF's. Before checking any
SPCF's, a table of 4200 four-byte integers (JTABLE) is set to zero.
(4200 is picked to be larger than our hash number, 4007, which is prifne.)
SPCFk is treated as a ternary number, e.g., for SPCFgq in (2), the

ternary number is

Ig=2x3 +1x37+2x3%+1x3%+1x3. (4)
Ik is taken modulo the hash number (vis. 4007) which gives a result

between 0 and 4007. Call this result INDEXk

INDEX, = I, MOD 4007 . (5)

Now the INDEXk location of JTABLE is examined. IfJ TABLE(INDEXk)
= 0, we know that SPCF,_is unique so we store I, in JTABLE(INDEX, )

and go on. If JTABLE(INDEX

k) # 0, we check to see if the number
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stored there is Ik or some other number. IfJ TABLE(INDEXk) already
equals Ik, we already have SPCFk in our list, so we discard the copy
currently in hand and go on. If J TABLE(INDEXk) is not equal to Ik, we

increase INDEXk by one and check that location continuing until we either

find an empty location meaning SPCFk is new or find Ik already in the

table meaning SPCFk is old. For convenience, the end of the table is

connected to the head; the table can never get full since we will never
use 4200 SPCF's.
The algorithm for generating SPCF's is as follows:

1. Read basic SPCF's and EN's. NBASF is number of basic SPCF's.

2. Set KSOURCE=1, KOUT=1. '

3. Check each basic SPCF for number of electrons, bpen-shell
orbitals, and uniqueness. Each acceptable, unique SPCF is
copied into a new list of SPCF's along with its EN. KOUT is
incremented by 1 for each new SPCF. KOUT always points to
first empty location in list of SPCF's (SPCFTBL).

4. If ENKSOURCE # 0, generate new SPCF's from SPCFKSOURCE‘
EN of new SPCF is ENKSOURCE - 1. Each new SPCF is checked
for uniqueness and number of open shells. KOUT is incremented
by one for each new SPCF.

5. When SPCFKSOURCE is exhausted, set KSOURCE to KSOURCE +1.

6. If KSOURCE < KOUT, go to 4.

After the SPCF's have been generated, they can be checked for
symmetry if a multiplication table has been supplied. This is done as

in the CIT Hartree-Fock program as i‘mplemented by Bill Hunt and is

limited to Abelian groups.
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After symmetry checking, the SPCF's can be checked for orbital
occupations. All SPCF's in which the sum of the number of electrons
in some specified set of orbitals is not within certain limits are dis-
carded. As many as 10 orbitals are allowed in each set and up to ten
sets are allowed. This is necessary since the SPCF generation algo-
rithm can generate a very large number of SPCF's and this provides a
way of weeding out ones that are probably unimportant.

The CI matrix is generated one block at a time and written on
disk. During formation of the CI matrix, all the integrals over orbitals
are kept in core. When the CI matrix has been formed, it is read back
in and reconstructed, in lower triangular form in the space previously
used for integral storage. After the desired number of eigenvectors
and eigenvalues of the CI matrix have been found and printed, the pro-
gram goes on to the next data set; there is currently no provision for
finding natural orbitals or computing properties.

The blocks of the CI matrix are those corresponding to two
SPCF's. Let NDi and NDj be the number of determinants derived from
SPCF.l and SPCFj , while NSEFi and NSEFJ. are the number of spin
eigenfunctions for those SPCF's. First we construct an NDi by ND].
Hamiltonian matrix between the determinants of i and j. Then we take
linear combinations of the rows to give a Hamiltonian matrix between
SEF's of i and determinants of j. Then we add columns to give the
Hamiltonian between SEF's of i and j.

The coefficients of the linear combinations of determinants are

most easily obtained by building up from the spin functions of fewer

electrons in the following way. Consider the Young tableau for the
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spin function we are building, if it is of the form

~ . ]
/////('\ (6)

then we take the spin function for N -1 electrons obtained from this
tableau with N deleted, and just multiply by a@. If the tableau is of the

form

Z// @C_/] - )

we take the spin function for N -1 electrons obtained from this tableau
with N deleted, call the function fN-l' Our spin function is, aside

from normalization
A
Iy = C1liN18) +CoBy 1 in-1@) (8)

where gI:I-l is the spin-lowering operator for N -1 electrons. To fix
the coefficients Cy and 02 , we demand that our function give zero

under the raising operator

Ate _ At A+ AR
Syfn = Sn(Cqin-18) +SglCoSy - i - D] - (9)
Write
A A ’ A
Sy = Sq.1+ 0T, (10)
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where :S\I’:I is the N-electron raising operator, gItI-l is the N - 1-electron
operator, and D *(N) is the one-electron raising operator of the Nth
electron.

Since

A+ _ A+ o+ _
C 8%ty 18 = Cq[S{_ 1fy.18 + Iy 10 WB] = Cyfy je  (11)

and
cz'éﬁ[(éﬁ_lfN_l)a] = Cz(éf\r:-lgf\r-lfN-l)"’ (12)
= Cyflsy.16y.q + DI - Sy + SN-1)fN-19
we have
C; +2C,8 4 = 0 | (13)
or Cy = 'C1/(2SN-1)'

Table I gives the spin functions for two, three, and four electrons,
while Tables II, III and IV give the spin functions for five-electron
doublets, six-electron singlets, and six-electron triplets. These func-
tions are given for permuted products of a's and B's. The signs pre-
ceding the various terms have the following significance. The determi-
nants are formed from the product of orbitals ¢a(1)¢b(2) <o -qu(n) with
a spin function like a(1)a(2)3(3)p(4)a(5) - - --a(n). It is more convenient
to have all the a's first and the g's last, so we tape the ¢'s to their «
or B and reorder them so that the a's are first and the 8's second. All
the @ orbitals are in ascending order and so are the B's. This reorder-
ing may change the sign of the determinant. The +'s and -'s before or
above the spin products show whether the determinant does or does not

change phase on reordering.
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TABLE I.

Two-electron singlet

f ((E) é—))
= —(«a a
V2

Two-electron triplet

f = ox

Three-electron doublet

. L () B(+) )
1 = —\apa -
7 Ba ao

(€I G B €

f2={—€(2aa[3 aja - Baa)

Four -electron singlet

(-) (-) (+) (+)

f, = —(aB Ba)(aB - Ba) = —(aBaB + Bapa - a8Ba - Baap)
f, = %3—[2(&&63 + BRaa) - (af + Ba)(aB + Ba)]

(+) (+) (=) (+) (=) (+)
(2aaBB+ZBBaa aBfalB - apfa - BaBa - Baap)

Four-electron triplet

(
%_(a{j’ Ba)aa = r(aﬁza fogza)
f, = ‘,—GE(Za(a,%a agcza - Bo(ula)
-) -
fy = ‘%3_(3a51+c18 - ouiﬁoz - a(BQa - B(ia)za)
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TABLE II.

Orthonormal Spin Functions for Five-Electron Doublets

-1, f, f, -1, f,
+aaaff (123) 0 0 0 0 ¥2/2
-aafep  (124) 0 0 0 2/3 +V2/6
+aéaaﬁ (134) 0 ] v3/3 +1/3 -v2/6
-Baaaf (234) 0 0 +v3/3 -1/3 +J2/6
+oaffa (125) 0 - J3/3 0 +1/3 -v2/6
~-afofa (135) 1/2 +v3/6 +V3/6 1/6 +V2/6
+Baofa (235) +1/2 -¥3/6 vy3/6 -1/6 -Jv2/6
+effae  (145)  +1/2 -V3/86 -V3/6 +1/6 v2/6
-BaBaa (245) 1/2 +V3/6 -J3/6 -1/6 -V2/6
+gpaca - (345) O J3/3 0 ~1/3 JZ/6
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TABLE III. Orthonormal Spin Functions for Six-Electron Singlets
-1, i, f, -f, f,
+oaapsB (123) 0 0 0 0 1/2
-aaBafB (124) 0 0 0 V2/3 -1/6
+ofanfp (134) 0 0 v6/6 +V2/6 -1/6
-Baaofs (234) 0 0 +V6/6 -V2/6 -1/6
+aapBap (125) 0 V6/6 0o - +/2/6 -1/6
- aBapap (135) v2/4 +V6/12 +V6/12 v2/12 -1/6
+Baafap (235) +V2/4 -V6/12 V6/12 -v2/12 -1/6
+apBaas +(145) +V2/4 -V6/12 -V6/12 +V2/12 1/6
-BaBacp (245) v2/4 +V6/12 -V6/12 -vy2/12 1/6
+BBaaaf (345) 0 V6/6 0 -V2/6 1/6
-aaBpBa (126) 0 +/6/6 0 -V2/6 -1/6
+aBapBa (136) +2/4 v6/12 -v6/12 -v2/12 -1/6
-BaapBa (236) v2/4 -V6/12 -V6/12 V2/12 -1/6
- ofBaBo (146) v2/4 -v6/12 +/6/12 -v2/12 1/6
+Bafafa (246) +2/4 v6/12 V6/12 +/2/12 1/6
-BBaofa (346) 0 +V6/6 0 v2/6 1/6
+afpfan (156) 0 0 v6/6 -V2/6 1/6
- Bappac (256) 0 0 +/6/6 v2/6 1/6
+BBafao (356) 0 0 0 +V2/3 1/6
-BBRaaw (456) 0 0 0 0 -1/2
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0e/g1p 9/1-~ 9/2p 0 9/2 e/1- 0 g/gp 0  (9s¥g) oooLYY+
0€/S1A-  9/1  gI/ep+ 2r/9p 9/2r-  9/1-  9/8r-  9/ep+ 21 (9svz) woOYDY -
0g/S1p 9/1- 21/gr- gr/9r+  9/2h 9/1+ 9/ 9/~ 2/1- (9sp1) OO+
0g/Ss1p 9/1+ 21/2p q1/94 - 9/gp- 9/1~ 9/ep 9/ep- g/1- (96eg)  PogOOY+
0g/S1/ - 9/1-  21/3r- CI/9r- 9/er+  9/T1+  9/gp+ 9/sr+  T/T (9ge1)  PodOgD -
0g/SIA 9/1+  9/gr- 0 9/gr- g/1t 0 g/gp 0  (9s21) owgdoo+
02/SIM+  21/1 AV 21/90 9/gp+ e/1- e/eM+ 0 0 (9ve2) ogooog-
0¢/S1r-  21/1-  21/20 er/9r+ 9/2p g/1+  g/gp 0 0  (9pe1) wgowgo+
0%/S1A+  21/1 9/gp+ 0 9/8r+ g/z 0 0 0 (9v21) wdogon -
02/S1r-  ¥/1+ 0 0 g/ 0 0 0 0 (9s21) wddoomo+
02/S1rM-  ¥/1+ ¥/2p- v/9r+ 0 0 0 0 0  (spe) doovog+
03/SIM+ v/1- v/gp+ v/9) 0 0 0 0 0  (s¥er) doowogo-
02/SIp- v/1+ g/} 0 0 0 0 0 0 (¢¥21) dongoo+
0Z/S1A+  ¥/¢ 0 0 0 0 0 0 0 (geer) dogoon-

S/S1p 0 0 0 0 0 0 0 0 (vezr) ddoooo+

o1 8- 4 °3 1 3~ ’3 4 3-

s391d1aL, UOIIOSIH~XIS J0F suooun g uldg [RWIOUOYIO

Al HIdV.L



