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ABSTRACT

The subbarrier fusion process is studied for systems involving oxygen isotopes.
A one-channel incoming wave boundary condition (IWBC) calculation gives an ex-
cellent fit to fusion cross section data for 1°0+1%0. An IWBC coupled channels
calculation for 170+1%0 that includes inelastic excitations as well as one-neutron
transfer with formfactors calculated in a consistent single-particle framework repro-
duces the subbarrier enhancement down to four fifths the barrier height, but not
below that. The calculation does not invoke the adiabatic approximation, which
would create non-unitarity in the coupled channels equations. The measured sub-
barrier fusion cross section for 180410 is well reproduced by an IWBC coupled
channels calculation with two-neutron transfer, but the calculation disagrees with

the above-barrier data.
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CHAPTER 1

Outline

Nuclear subbarrier fusion is an example of quantum tunnelling of a system
through a potential barrier with a height larger than the available kinetic energy.
This process was recognized early in the development of quantum mechanics as
one of the features distinguishing it from classical mechanics and, as such, has
been studied for a long time. However, new developments in condensed matter!
and nuclear physics? have aroused new interest in this old phenomenon, and the
tunnelling of systems more complex than can be described by a simple Schrédinger

equation with one degree of freedom has extended the original problem.

Our focus is exclusively on the problem of nuclear fusion reactions below (and
slightly above) the Coulomb barrier. Here, the outstanding feature is a tremen-
dous underprediction (often some orders of magnitude) of some heavy ion fusion
cross sections by simple theory. In Chapter II, we will give an overview over the
subbarrier “puzzle”. We emphasize and review the proof of the inadequacy of the
simple one-dimensional model, independent of what parametrization for the nuclear
potential is chosen, as well as a plausibility argument on how extra degrees of free-
dom enhance the subbarrier cross section. However, we believe that the only way
to achieve a satisfactory solution of the nuclear subbarrier fusion puzzle is to study
different simple systems in great detail, attempting to extract as much different

information from experiment as possible (elastic, inelastic, and angular distribu-



2

tions, spin observables, etc.) and making detailed, complete theoretical models,
whose implications can be studied numerically, that reproduce all these features in
a consistent way.

In Chapters III through V, we present such a theoretical study for the reactions
involving oxygen isotopes. At first, we argue why we think this to be an especially
worthwhile system to study. The calculations for 1°0+1°0 have been done before
in very similar fashion, but we want to show them for completeness. Chapter IV
deals with 1704160 and contains most of our original work. We present a unified
calculation of the fusion, elastic and inelastic cross sections and obtain good agree-
ment with experiment. 804160 is treated in Chapter V, where a much simpler
model leads to satisfactory results for the fusion cross section. In the concluding

sixth chapter, we summarize our results.

All numerical computations for this work were done on a VAX-750 of the
W. K. Kellogg Radiation Laboratory. This thesis was typeset in D. E. Knuth’s
“TEX,” and the graphs were prepared with the graphics package “Topdrawer” from

the Stanford Linear Accelerator Center.



CHAPTER II

II1.1 Fusion above and below the Coulomb barrier

In the simplest description of nuclear collisions, the target and projectile are
treated as structureless particles interacting through a potential V (r) that depends
only on the distance r between the centers of the two nuclei. V is the sum of the
attractive, short-range strong interaction Vs and the long-range electric repulsion
Ve. Ve determines V' at large r, but at intermediate distances, Vs dominates V.
V thus has the typical barrier shape illustrated in Fig.1.

Fusion can be defined by the transmission probability Ti;(E) of the partial
scattering wave with angular momentum #! and center-of-mass energy E, so that

the fusion cross section oy is:

o (E) = 2’;:; S (L OT(E) (IL1)
=0

m is the reduced mass of the two nuclei. (We will actually derive (IL.1) in the next
chapter.) We will now consider the limiting cases of energies well above and below
the barrier top.

Glas and Mosel®* investigated the above-barrier fusion; we give a simplified
version of their model: Classically, a particle will pass over a potential barrier if and
only if its energy is larger than the barrier height. If we assume the location Rgp of
the barrier top in the combined s-wave plus centrifugal potential to be independent
of I, then the barrier height Vp; of this potential is Vg + h%I(l +1)/(2mR%), where

Vp is the s-wave barrier height (the maximum of V). Classically, the T;(E) in (I.1)
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are 1, if E > Vpy, and O otherwise. Therefore, (II.1) becomes
of(E)=—=)> (20+1) , (11.2)

where [,,, is the largest integer smaller than the real number y given by y(y + 1) =
[2m(E — VB)R%/h?|. Iy is large for large E, so that I, ~ y and Zé’"(Zl + 1)
2 lm(lm +1). Thus,

Ve

o (E) ~ ng(l - E) . (IL3)

For very large energies, {,, becomes too large and (II.2) has to be modified because
the compound nucleus can only be created with ! less than some critical value /..
A critical radius R, and barrier height V. < Vp can be defined so that I.(l. + 1)

= 2m(E — V.)R?/h?, then
o1(E) mR2(1 - %) . (IL4)

(I1.3) is valid for {,, < I, (at lower energies), and (II.4) otherwise. The total reaction
cross section og follows (IL.3) even if I, < I, because there is no maximum angular
momentum beyond which no inelastic reaction can happen. Thus, for energies for
which l,, < l., or = o0y, and for higher energies, or > of. An example of the
success of the Glas-Mosel model is given in Fig.2.

For energies far below the barrier, the lowest order energy dependence of the

5 semiclassical deriva-

fusion cross section can be obtained in analogy with Gamow’s
tion of the nuclear a-decay rate. Clearly, the reaction is energetically forbidden in

classical mechanics and is purely a quantum effect. The s-wave transmission prob-

ability To(E) through a potential that is constant and negative for r < R and pure
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Coulomb (Z;Z3¢?/r) for r > R goes approximately as:

To(E) x e72™ | (IL5)

where 7 is the Sommerfeld parameter:

Z1Z2€2
’r] =

= (IL6)

with v the center-of-mass velocity v = (2E/m)'/2. If all Ti(E) have the same
energy dependence (through v and n) as To(E), or if only the s-wave contributes

appreciably to the fusion cross section, then
1 —27n
— . I1.7
Of X e (IL.7)

The astrophysical S-factor is defined to take out this understood, model independent

energy dependence:

S(E) = of(E)Ee*™ . (IL.8)

For actual systems, the definition (I1.8) normally overcorrects the energy depen-
dence of oy and S falls with rising E, especially for heavy ions. However, all
systems exhibit the exponential dependence of o on E. Therefore, inadequacies in
the models for particular systems may cause little error in the fusion cross section
around and above the barrier, but cause an exponential deviation of the model

calculation from experimental data below the barrier.



6

I1.2 Direct and compound nuclear reactions

A very fruitful concept in nuclear reaction theory is the distinction between
direct and compound nuclear reactions.®” The idea behind this distinction is the
realization that the possible outcomes of nuclear collisions can be separated into
two categories and that both the physical time scale of the processes that lead to a

particular outcome and the physicists’ models to describe them are quite different.

The first category comprises the direct reactions. These are the collisions
“where not much is happening”: the nuclei scatter elastically, or their surfaces
might get modified (simple nuclear excitations), or a small number of nucleons is
transferred between target and projectile. After the reaction, the two nuclei do not
look very different from before the collision. The cross sections are mainly peaked
in the forward direction. The time scales involved are relatively short, of the order
of the Rutherford scattering time, i.e., scattering without the strong interaction.
Accordingly, the cross sections show structure on only a relatively large bombard-
ing energy scale. Theoretical descriptions start with the one-channel Schrédinger
equation and are refined by the addition of other channels for the inelastic and
transfer reactions. These additional channels involve only few nucleons and can be
generally well modelled from the accumulated nuclear structure knowledge. Practi-
cal computational considerations limit the number of channels to maximally a few

tens.

In the other group, the two colliding nuclei form a compound nucleus that has
little in common with the original configuration (except for the overall conserved

quantum numbers: energy, spin, parity, and proton and neutron number). The time



scale for the compound nucleus to decay is relatively long and the cross sections can
vary more rapidly in energy than for the direct nuclear reactions. Cross sections are
typically not forward peaked, but are often isotropic or at least symmetric about
90° in the center-of-mass system. The successful theoretical models for this sort of
reaction are of statistical nature, and the exact low excitation energy structure of
the two original nuclei is quite unimportant for the description of the compound

nucleus.

This is a good point to clarify our jargon: We use the word inelastic always
to mean inelastic scattering, namely scattering into those channels that involve
(simple) target and/or projectile excitation,but not transfer of nucleons. Inelastic
cross section thus does not refer to the whole reaction cross section, but just a part
of it. In the model that we will use for the oxygen isotopes, the reactions are elastic,

inelastic, transfer or fusion.

The fusion reaction clearly falls into the category of compound processes, but
unitarity allows a study of this process by direct reaction theory techniques. One
only has to assume that all lux removed from the direct channels (i.e., the elastic,
inelastic, and few-particle transfer channels that one has designated as such) goes
into fusion. The same theoretical ambiguity in the precise distinction of direct and
compound nuclear reaction occurs also in the precise definition of what a fusion
process is, so that the theorist has the freedom of equating the fusion probability
with the formation probability for the compound nucleus. The only discrepancy
occurs through the compound elastic, compound tnelastic, and compound transfer

reactions, in which a more or less equilibrated compound nucleus is formed, but



decays in one of the modes, e.g., the elastic, that were designated as the direct
reaction channels. However, this decay probability is generally small enough to be
safely neglected, because there are so many other decay channels available. The
experimentalist, if he or she does not observe the recoiling compound nucleus more
directly, has a non-trivial problem in determining and identifying all the decay
products. Despite this conceptual arbitrariness, it is quite obvious in most heavy
ion reactions how to account for the different pieces of the total reaction cross section

and where to draw the line between the direct and compound nuclear reactions.

There is an alternative approach (time-dependent Hartree-Fock, TDHF)® to the
direct reaction theory method for calculating the fusion cross section. In these, the
compound nucleus formation is studied in detail, and one keeps track of all individ-
ual nucleons in the two colliding nuclei. This more microscopic approach certainly
has some advantage over a treatment that incorporates far fewer degrees of free-
dom, but the precise criterion of when fusion occurs is even less clear. Furthermore,
the quantum tunnelling aspect of the problem is lost, and a qualitative analysis of

numerically obtained cross sections quite difficult.

Our approach is that of the direct reaction theory. There exist again two kinds
of approaches in this subfield of subbarrier studies, one that uses optical potentials

and the other that uses an incoming wave boundary condition (IWBC).

I1.3 Optical potentials and the IWBC

From the foregoing discussion, we can in general write the complete scattering
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state |®) as a sum of two parts, one that is a direct reaction state (and may itself be
composed of a sum over channels of the designated inelastic and transfer channels

on top of the elastic channel) and the other the compound nucleus state,
|Q> = |¢d> + [§0n> . (II.Q)

There are now two methods of calculating the fusion probability (in a sense the
magnitude of the compound nuclear wave function) by solving the Schrédinger
equation for the direct wave function only. In the optical potential method the
inter-nuclear potential W is complex and hence non-Hermitian; as a result, unitarity
is violated, and flux is removed from the direct reaction channels. By unitarity of
the complete system this flux must have gone into the compound nuclear wave
function, and by equating the missing direct reaction flux with the fusion flux, one
has a quantitative model for the calculation of the fusion cross section. The optical
potential is fitted to reproduce this and the elastic and inelastic differential cross
sections.

Formally, the character of the approximation is most easily seen in the case,
where direct inelastic and transfer reactions are unimportant and the direct wave
function consists only of the elastic channel |®o). We use the projection operators
P, Q from Feshbach®, with P + Q = 1, P|®) = |®,), and Q|®) = |®.,). By
projecting the Schrédinger equation (H — E)|®) = 0 onto the P and @ subspaces

of the complete Hilbert space, we get the coupled equations

(E — Hpp)|®0) = Hpg|®cn)
(IL.10)
(E — HQq)|®cn) = Hgp|®o)
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where Hpp = PHP, Hgg = QHQ, Hpqg = PHQ, and Hgp = QHP. The second

of the equations (II.10) can be solved formally by a Green’s function method:
l@cn> = [E - HQQ + iE]_lHQP|¢o> s (II_l]_)

where there is no inhomogeneous term on the right hand side, because |®.,) contains

only outgoing waves. The Schrédinger equation for the elastic channel thus becomes
(Ho — E)|®0) =0 , (11.12)

with

Ho = Hpp + Hpg|E — Hgq + ] *Hgp . (I1.13)

If Hpp is written as the sum of the kinetic energy and the diagonal potential,

Hpp =T + V, then the optical potential operator is
W = V+HPQ[.Z’7—HQq+i6]_1HQP . (11.14)

W is non-local and depends on E. However, this is normally neglected and a
phenomenological local, central, and energy independent form for W is used.

The IWBC method makes a different assumption: it separates the direct and
compound nuclear wave functions by space. A radius ry is defined in the interior
of the Coulomb barrier. The scattering state in the interior of the IWBC radius
ro is assumed to be entirely compound nuclear, and outside of ro to be entirely
direct. The potential to determine the wave function for r > rq is real; it is usually
determined phenomenologically (at least in the elastic channel). The fusion flux is

defined as the current of the wave function going inside at ro. No flux is removed
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artificially, since the Hamiltonian is Hermitian, and the net ingoing flux at infinity
equals the net ingoing flux at ro.

We restrict ourselves again to the case where there is only one direct chan-
nel (the elastic channel). We expand the wave function for this channel into
15 xi(r)Pi(cos 8) (where Pi(cos0) is a Legendre polynomial). In the usual ra-
dial Schrédinger equation, there is a requirement of regularity of the wave function
at the origin (or equivalently: x;(0) = 0). This, together with the asymptotic
scattering form at large r, gives sufficient boundary conditions to the mathemat-
ical differential equation. In the IWBC formalism, since the wave function is not
extended to r = 0, a new boundary condition at the inner starting point of inte-
gration, i.e. at ro, has to be found. This is the incoming wave boundary condition,
namely, that the wave function near ro, when expanded into the in- and outgoing
semiclassical solution, has only an ingoing part, and the outgoing part is identical

to zero, i.e.,

xi(r) = N kz(r)'% exp <—i/rrdsz(77)> , (IL.15)

0

with N; some normalization constant and k;(r) the local semiclassical wave number

ki(r) = \/z—m(E -V(r) - W+ : (11.16)

The problem is thus reduced to finding the penetrability (or transmission coeffi-
cient) for given energy and angular momentum of tunnelling through a truly one-
dimensional barrier, i.e., on the whole one-dimensional space from +oo to —oo(from
right to left), when the wave on the right hand side consists of a part going left (the

incoming flux) and a part going right (the elastically scattered or reflected part),
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but to the left of the barrier only a transmitted wave going left exists. The fusion
cross section in this simple case is given in terms of the transmission coefficients

Ty(E) by (IL1).

The motivation for the IWBC is the strong absorption inside the barrier. The
IWBC also works quite well for energies slightly above the barrier and tunnelling
probabilities much larger than 1/; (1/2 is a typical value for the penetrability at the
top of the barrier). In general, the results for the fusion probability are insensitive
to the precise location of ry in the interior of the barrier. This is plausible, because
the truly one-dimensional problem is physically well-posed and any sensitivity to
the precise location of ro of the barrier penetrability is due to the approximate

character of the semiclassical form of the wave function in (I1.15).

We prefer the IWBC method over the phenomenological optical potential for
two reasons. (1) It is much more physical by providing a microscopic derivation and
not just an empirical fitting of the optical potential parameters. Qualitative results
in the IWBC formalism can be interpreted from the pictorial point of view of the
semiclassical action integral between points inside and outside the barrier. (2) All
direct reaction channels are treated on an equal footing, and the flux that goes into
fusion from each of these channels is calculated in the same manner - as opposed to
the optical potential, where the fusion flux is determined from different parameters
in different channels. Especially for the study of different isotopes in the otherwise
identical reaction, it is important to have a mechanism of flux removal from the
additional channels that exist in one system but not another. Very little could be

learned from just fitting different optical potentials to different isotopes.
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I1.4 Subbarrier fusion cross section enhancement

Many subbarrier fusion systems that have been studied are described ade-
quately by the IWBC formalism described in the previous section or by an even
simpler semiclassical calculation, in which the barrier penetrability is computed
with a WKB approximation. These methods work especially well for the light sys-
tems, e.g., all experimentally known 'H and “He cross sections are well reproduced
(with the exception of the statically deformed 233U nucleus), but also fusion of
some heavier systems, such as 2C+4N or *0+27Al causes no problems.!® We
will present another example, 1°0+1%0 (cf. Fig.10), in great detail in the next

chapter.

However, this analysis has failed for most of the heavier and some of the in-
termediate mass systems. By now, examples abound, we cite the systems of 10O
+ different Sm isotopes!!, Ni + Sn!2, 4°Ar + Sm!2. If a different isotope of the
same element is substituted, the fusion probability can change dramatically, e.g.,
Ni + Ni'* and Ca + Ca!® exhibit this behavior. We show the representative results
for 88Ni+58Ni in Fig.3. In all systems investigated so far, if the calculation fails,
then the fusion cross section below the barrier is underpredicted, often by orders of
magnitude. However, all these calculated fusion cross sections depend on the choice
of the nuclear potential, and until the work of Balantekin, Koonin, and Negele
(BKN)!®, the failure of the one-channel calculations might have been attributed to
a very poor parametrization of the nuclear potential. BKN showed that with some
reasonable assumptions, measured fusion cross sections as a function of energy can

be inverted to give the nuclear potential in the barrier region as a function of r.
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The data of systems that can be adequately desribed by a one-channel IWBC model
produce a single-valued potential and a reasonable barrier, but other systems show
a backbending of the potential function, i.e., two values for the potential at one
value for the radius. Such unphysical behavior then proves the inadequacy of the
one-channel model.

We will now briefly describe the inversion method of BKN: The total fusion
cross section expressed through the partial wave penetrabilities T;(E) is given by
(II.1) and three assumptions about T}{E) are made: (f) The T;(E) have the same
form for any barrier as they would for an inverted parabola in the semiclassical

approximation (the famed Hill- Wheeler'? formula):
s(e)] !
T\(E) = [1 + €25 )] , (IL.17)

where Si(E) is the “action” integral

Si(E) = / rzdr\/ -’;?(V(r) _p) Y (IL18)

in the WKB approximation (the WKB. approximation is valid for S; >> 1). r, and
ro are the classical turning points of the motion. (i) The penetrability Ti(E)
for non-zero [ is the penetrability with [ = 0 at the shifted energy E — I(l +
1)h?/(2mR?(E)), where R(E) is some radius between the barrier radius and the
classical turning radius in the Coulomb field only; the precise location of R(E) does
not matter much to the end result. (¢i¢) In (IL.1), the sum over I can be approxi-
mated by an integral over ! (this is plausible as a large number of I’s contribute and

the partial wave penetrabilities vary smoothly with /).
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With these three reasonable assurnptions, BKN are able to find the difference
of the r; and r2 of (II.18), and thus the barrier thickness ¢(V') at given V in terms
of the cross section as a function of E. The trick is done by a reduction of the
problem to Abel’s problem in classical mechanics, but the details of the derivation
are unimportant here. With the assumption that the barrier shape for r larger
than the barrier radius is insensitive to the exact form of the nuclear potential,
re, the outer classical turning point, can be taken from the calculation with a
reasonable nuclear potential and r; determined from ¢. The lesson to be learned is
that some measured fusion cross sections, when inverted to a function ¢(V'), show a
non-physical behavior in that ¢ does not decrease fast enough when V approaches
the barrier height, so that the resulting potential V (r) is double-valued for some
r. The interpretation of this behavior is that the one-channel model would fail to

reproduce the fusion cross section no matter what potential V (r) would be used.

It is therefore clear that salvation has to be sought in multi-channel calcu-
lations. A partially successful “pseudo-multi”-channel model is that of zero-point

motion,'8

in which one-dimensional penetrabilities for different surface parameters
in a vibrational model are averaged over. This model can, for example, account for

most of the subbarrier fusion enhancement in the 1°0+Sm experiments. However,

systems such as the Ni+Ni collisions cannot be explained in this way.!°

The tendency of additional channels to enhance the fusion cross section (and
not, for example, to systematically decrease it) is physically intuitive, but not really
understood in detail. The physical intuition comes from the experience in quantum

mechanics that when a system couples to additional degrees of freedom, the new



16

complete system generally has a bound state spectrum which is in part shifted up
and in part shifted down in energy with respect to the bound state spectrum of the
uncoupled system. This phenomenon normally occurs without regard to the sign
of the coupling. Applied to the tunnelling problem this effect translates into the
existence of barriers shifted in height in the different channels, with some of these
channels having barriers lower than the elastic channel. The quasi-eigenstates that
exhibit these shifted barriers will not necessarily be the channels with the simple
degrees of freedom in terms of transfer or inelastic excitations but rather linear
combinations of them, in analogy to the bound spectrum example. Another way in
which lower barriers can occur is through the addition of channels that have a lower
orbital angular momentum and thus a lower centrifugal potential (we will see an ex-
ample of that in Chapter IV) or that have positive Q-value (such as the one-neutron
transfer in 170+170). If barriers of different height are available to the system, it
tends to select dynamically those channels that facilitate compound nucleus forma-
tion or to put it differently, the system falls into the lower-energy channels during
the collision. Because of the exponential dependence of the penetrability on the
barrier height, such an additional channel can enhance the fusion cross section by
orders of magnitude. We will now present a quantitative, yet very simple model for
the barrier splitting and subbarrier fusion probability enhancement.!®

We consider a one-dimensional system with two channels and corresponding

wave functions x1(z) and x2(z). The coupled channels equations are

Tixa(e)+ (B -V (@) = V() 110
A - - 1.19
dii:;EXZ(z) -+ zh—z(E — V(.’E))Xz(z) = 2h_2VcX1(x) ’
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where we have assumed for simplicity that the coupling potential V. is independent
of z (this is not essential for the following argument). If we now form the linear
combinations x+(z) and x—(z), such that

xi(e) = = (o) + x-()

1 (I1.20)
xa(e) = 5 (x+(e) ~ x-(a))
then the system of equations (II.19) decouples into
d? 2m
E;X:t(x) Sz [E - (V(z) + Vc)]xi(z) =0. (I1.21)

Thus, the barrier without coupling, given by V(z), is split into the two barriers
V(z) & V. by the coupling; these two new barriers exist irrespective of the sign of
V.. Classically, the penetrability T is 1 if the kinetic energy is larger than the barrier
height, and zero if the available energy is less than the barrier height. Quantum
mechanically, this rigid step is washed out as is illustrated by the two curves in
Fig.4a. Vp is the barrier height (the maximum) of the potential V' (z). With the
correct boundary conditions for the incoming wave, the transmitted flux of the
coupled system is T = 1/2(T + T_), where T+ are the (one-channel) transmission
coefficients of (II.21). Classically, these are step functions with the step at Vg £V,
so that classically, T is O for £ < Vg - V., 1 for E > Vg + V,, and 1/; in between.
Again, the steps are smoothed in the quantum mechanical treatment (cf. Fig.4b).
In Fig.4c, the two quantal curves are plotted together for comparison; the coupled
calculations show enhancement over the uncoupled one for energies below the barrier
VB, and the reverse is true above Vp. (The curves in Fig.4 are just schematic and
not the result of an actual computation, but the numerical results of Ref.[19] bear

out the same shape.)
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The method of the Feynman path integral also is a valuable tool in the at-
tempts to model multi-dimensional quantum tunnelling. Balantekin and Takiga-
wa?0 present a model in which the Hamiltonian H consists of a one-dimensional
uncoupled piece of kinetic and potential energy associated with the distance R plus
an internal Hamiltonian, Hy, of one internal degree of freedom, ¢, plus an interaction

Hamiltonian, H;n:(g, R):
H = “om B2 +V(R) + Ho(q) + Hint(q, R) . (II'22)

By use of the Feynman path integral, the penetrability in the Hamiltonian H can
be determined exactly if Ho + H;,: can be expressed as a linear combination of the
generators of a mathematical group. Examples studied by Balantekin and Takigawa
include () a harmonic oscillator coupled linearly to the translational motion, i.e.,
Ho = —-2’%6#3(-;3 1/ymw?q? and Hint(q, R) = f(R)q for any real function f(R); (i7)
a harmonic oscillator quadratically coupled to the translational motion, i.e., the
same form for Ho, but f(R)q? for H;in:. The effect of the linear coupling (2) is
to enhance the subbarrier penetrabilities and to hinder above-barrier transmission
irrespective of the sign of the coupling formfactor, while the quadratic coupling (i)
enhances fusion at all energies, if the formfactor is negative, but diminishes fusion
at all energies, if the formfactor is positive.

These model calculations are very valuable for a modelling of the subbarrier
fusion process, but they do not provide any computational ease for the study of
actual nuclear systems. No multi-channel calculations with physically reasonable

potential couplings so far have shown an attenuation of subbarrier fusion compared

with the one-channel calculations, and the experimental findings of relative fusion



19

cross sections are in agreement with an increase in the cross section when additional
degrees of freedom are expected to be important. Nevertheless, the exact condition
that the coupling matrix elements have to obey to produce enhancement remains
an outstanding problem of mathematical physics. In this work, we will attempt
another avenue towards solution of the nuclear tunnelling problem by a detailed
quantitative analysis of one particular system, namely collisions involving the nuclei

of two oxygen isotopes.
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CHAPTER III

II1.1 Oxygen and subbarrier fusion

Systems with two oxygen nuclei play a particularly interesting role in the sub-
barrier fusion field. The *0+1%0 system is crucial in the prevalent theory of stellar
nucleosynthesis of heavy elements; we will briefly outline that theory in Section III.3
. The systems that involve other oxygen isotopes are not fundamental in this theory
as the natural abundance of 180 is only 0.204% , and of 170 just 0.037% . However,
as we will show, a detailed understanding of the 1°0 - !0 fusion reaction is nec-
essary because the cross section data in the experimentally accessible energy region
have to be extrapolated by some theoretical model to the lower, astrophysically
interesting energies. A complete prediction or reproduction of experimental data
for other oxygen isotopes would instill confidence that such an understanding has

been achieved.

The availability of the different isotopes and practicality of experimenting with
them makes oxygen interesting from a nuclear physics point of view as well. Relative
changes from one system to another can be emphasized and the differing features
of the isotopes that are relevant to the fusion process can be isolated. The sta-
ble Oxygen isotopes 1°0, 170, and 30 are particularly attractive in this regard,
because '°0 is a doubly magic nucleus; both protons and neutrons completely fill

the p shell in the nuclear shell model. This makes for a very rigid, strongly bound
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nucleus without low-excitation energy states. As a doubly closed-shell nucleus, 10

has a 0% (spin 0, positive parity) ground state.

The shell model describes 170 as an 60 core with an additional neutron. In
the ground state, this neutron occupies the s — d shell, and the first excited states
of 70 are expected to be single particle excitations of this valence neutron, first
within the s — d shell and then out of it into the p — f shell. It has been found

experimentally that indeed the ground state of 7O has quantum numbers %+ and

that the excited states are a %+ state with 0.871 MeV excitation energy and a %_
and -g-_ state at 3.055 MeV and 3.841 MeV, respectively. All other states lie above
decay threshold into 160+4n. All this is more or less expected from the naive shell
model with spin-orbit coupling (only the ps/; and f7/; states would be expected
to be lower in energy than the p;/; and f5/3, respectively, and there should be a
dg/y state).

180 is an even-even nucleus like !°0 and has a 0% ground state, too, because
the two d5/, valence neutrons couple to total angular momentum 0. The excited
states are determined by the configuration of the valence neutrons, the two first

excitations are (ds/2)? coupled to 2% (with some (s1/2d5/2) admixture) and 4™, the

next one (s1/2)? coupled to 0.

The energy levels of 170 and 80 with respect to their decay threshold into
160 and one or two neutrons, respectively, are shown in Fig.5. There are additional
levels in 120 that we have left out in the diagram.

The most interesting combinations of the oxygen isotopes for fusion studies

are.
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(a) O + !0 : This is the astrophysically important case. The two nuclei are
very rigid and internal degrees of freedom are expected to be largely irrelevant
to the fusion process. Hence, this reaction can provide the calibration of the

core-core potential for all other cases.

(b) 170 + !0 : The relatively clean character of the ground and first excited
state as single particle states in 17O adds clearly defined degrees of freedom.
The coherent addition of direct elastic and transfer elastic (and equivalently
for the inelastic) amplitudes should provide a rich structure in the elastic (and

inelastic) angular distributions.

(c) 80 + 10 : Pair transfer takes over from single nucleon transfer in (b) be-

cause the Q-value for 120+190—*70+170 is large and negative (3.9 MeV).

(d) 80 + 80 : This system might show the onset of a more complicated coupling
scheme with many important degrees of freedom as they occur typically in the

subbarrier fusion of the very heavy ions.

(e) 170 + 70 : The nucleon transfer into 10+ 80 has positive Q-value, i.e.,
is exoergic. A very large enhancement of the low-energy fusion cross section
can be expected when the system falls into this transfer channel and sets free
a considerable amount of energy. The quantitative features of channels with

positive Q-values have been studied very little to date.

We believe that oxygen lies in the golden middle between the light nuclei, whose
nuclear structure is well understood, but whose fusion is adequately described by the
simple one-channel model, and the very heavy ions with interesting fusion behavior,

but relatively poorly understood nuclear structure. Furthermore, we hope that it is
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easier to disentangle structure and dynamics and to isolate the important degrees
of freedom in simpler systems than the very heavy ions. As we have shown in (a)
through (e), all of the interesting features suggested so far are already exhibited in
the O+O system. Another system of similar interest (and at least equal astrophys-
ical importance) consists of the carbon isotopes, but here the supposedly simple
12¢ — 12(C reaction is plagued by resonances in the cross sections and the nucleus
14 is radioactive, which poses some experimental problems. Unfortunately, even
if we succeed in modelling the oxygen system, this will not automatically warrant
that the same methods can be applied to the very heavy ions, because their greater

complexity might render computational methods impractical.

II1.2 Experimental program at Caltech

Because of its astrophysical importance, measurements of the 10 + 160
subbarrier fusion cross section were performed in the W. K. Kellogg Radiation
Laboratory in the seventies.21:22 However, there was a discrepancy at the lowest
energies between the Caltech data and those of Hulke et al.,22 and the extrapolation
to even lower energies remains rather ambiguous. Furthermore, the whole field
of subbarrier fusion had gained considerable attention within the nuclear physics
community since then.2 Therefore, in 1983 a program was initiated at Caltech to

measure the cross sections systematically between different oxygen isotopes.

At the writing of this thesis, data have been taken for the systems !°0+ 10,
1704160, 180+160, and *0+1!80. The measurements for 180 + 180 are not

analyzed yet, as this experiment has proven to be much more difficult than the other
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three. The results for the first two systems have been published,?* and a review of

the experiments for the first three systems has been submitted for publication.?®

In the experiments, total gamma ray yields are measured. This way, fusion,
inelastic, and transfer cross sections are determined simultaneously. Specific v ray
lines correspond to specific transitions in the reaction products and can be identified
experimentally. The « ray yields are converted into fusion cross sections by use of
a statistical model (Hauser-Feshbach formalism) for the formation and decay of the
compound nucleus. The analysis of the 1¥0+80 raw data is so difficult because of
the large number of gamma ray peaks and the necessity to incorporate three-step
decays into the Hauser-Feshbach scheme (one- and two-step decays were sufficient
for the other three systems). Running time considerations limit the measurements
to cross sections of a few ub and above; this sets a lower limit of about 6.5 MeV on

the feasible center-of-momentum energies.

For 1704180 and '80+1!60, the target was chosen to be the 0O nucleus,
because it is much easier to separate beams of mixed isotopes than to maintain high
enrichment of the targets with a rare isotope. For 180+180, target enrichment was
obviously unavoidable and could be achieved. However, the expense and difficulty
in manufacturing 17O targets makes the 170 - 170 experiment the most intricate one
of any of the projectile-target combinations from the set 160, 170, 80, because of

the low natural 17O abundance.

The results from Thomas et al. are shown in Figs.6 and 7. Fig.6 displays the
three measured fusion cross sections and the two total inelastic cross sections. The

inelastic cross sections were determined from just one « ray intensity each, namely
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for 170 the 0.87 MeV transition from the first excited to the ground state and for
180 the 1.98 MeV transition from the first excited to the ground state. Other - ray
lines from the oxygen nuclides could not be found in the spectra. The measured
fusion cross sections were inverted by the BKN method and the resulting potential
barriers are plotted in Fig.7. Whereas the 160+60 and 20+1°0 potentials are
single-valued, that of 170+1%0 is not, and thus, this system cannot be described

successfully in a one-channel model.

I11.3 Oxygen burning in stars

We will now give a short summary of the astrophysical motivation for our work.
It is believed that the nucleosynthesis that produced today’s observed elemental
abundances in the solar system occurs in more or less separate groups of reactions
at different stages in the development of certain types of stars.?® The first such group
is the hydrogen burning that produces *He via the p-p chain or the C-N-O eyele. If
enough helium has accumulated in the core of the star and if the hydrogen burning
in an outside shell has compressed and heated this core sufficiently, then helium
burning with main end products 12C and 0 will occur. For stars with initial mass
of at least about eight times that of the sun, carbon burning (mainly !2C +!2C and
12C +1€0) is the next stage, followed by neon burning (mainly 2°Ne+~ —»% O + a
and °Ne+a —24 Mg ++). If the star had an initial mass of at least about 15 times
that of the sun, static oxygen burning will take over, followed by a short period of

silicon burning.

The temperature of oxygen burning has been calculated to be about 2 x 10°K
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for a star of 25 solar masses.?” The interaction rate is proportional to the veloc-
ity averaged product (ov) of (center-of-mass) cross section and velocity.2® For a
Maxwell-Boltzmann velocity distribution, this product becomes (with the center-

of-momentum energy E as the integration variable):

(ov)=4] 7IM(—:BT—)—§./OOOEU(E) exp(—-kf—T) dE ; (II1.1)

M is the reduced mass of the nuclei, kg is the Boltzmann constant, and T the
temperature. If one assumes the S-factor to be approximately independent of E,

the integral in (III.1) becomes

*° E Eq
S (Eo) /O exp (—}B—T - f) dE (IIL.2)
where E¢ is the Gamow energy
M 2
Ec=(2raZ,2,)? 2“ , (I11.3)

with a = e?/he, the fine structure constant. Eo in (II1.2) is the energy at which the

integrand peaks; i.e., at the minimum of E/(kgT) + \/Eg/E, hence

w

Bo=|LksTEg 2" . (IIL4)

The peak of the integrand has a full width at half height:

1/2

AEo=4[EokpT/3] (11L.5)

For 0 + 0 at 10°K one finds E; = 3.1 MeV and AEy = 1.2 MeV, and at

3 x 10°K, Eg = 6.4 MeV and AE, = 3.0 MeV.?® Any calculation of the rate of
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oxygen burning in such a star would thus require some knowledge of the fusion cross
section down to about 3 MeV or even farther. However, no laboratory data below
6.5 MeV have been taken (the s-wave barrier is at 10.2 MeV). Therefore, an extrap-
olation of the available data to lower energy is necessary. A qualitative theoretical
understanding of the reaction and a good fit to the available data is a prerequisite to
any extrapolation of the quality required for quantitative astrophysical calculations.

Fig.8 gives an impression of the scope of the extrapolation involved.

II1.4 180410 calculation

We use the scattering formalism from Ref.[29] amended to include the IWBC
and the symmetry of the two identical bosons (spin 0) 0. Both nuclei are treated
as elementary, i.e., point-like particles interacting through a potential V' (r), where r
is the magnitude of the separation vector 7 between the two nuclei. The stationary

scattering wave function for distinguishable particles in the center-of-mass frame is

Up () = ilz (2 +1)i gy (1) Py (cos 8) (IIL6)
=0

where k = (2ME/ hz)l/2 is the wave number (M is the reduced mass and E the
center-of-mass energy), and P, is a Legendre polynomial. The 9;(r) are the solutions

of the partial wave Schrodinger equations

oM dr2 ' 2Mr?

[ he h2l(l+1)+V(r)—E]¢l(r)=0 (IIL7)

with the IWBC at an inner radius ro and asymptotic behavior for large r such that

di ~ w7 (kr) — Spexp(2io)ul™) (kr) . (IL8)
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“l(+) (kr) and u,(_) (kr) are the outgoing and incoming spherical Coulomb functions,
i.e., the eigenfunctions of the partial wave Schrédinger equations with potential

(Z1 Z, €?)/r; a1 is the Coulomb phase shift
o =arg(l + 1+ in) . (I11.9)

The IWBC is the reason why the absolute value of S; can be less than unity and
S; cannot be written as exp(2:6;) with real phase shifts §. The deviation of |S]
from one is a measure for the amount of flux removed from the elastic channel and
determines the fusion cross section.

For the case of identical bosons, instead of ¥ p ('), the symmetric wave function
¥ (') = ¥p (7)+¥p (—7) has to be used. Since P, (cos(r—0)) = (—)'P;(cos 8),

¥ (A = % S (20 +1)i*1g (1) Pi(cos 6) . (IIL10)

leven

From (III.10),with the asymptotic behavior (IIL.8), we find for the nuclear scattering

amplitude

fx (8) = i S (2 + 1) (S~ 1)P (cos 8) . (TIL11)

leven

The elastic cross section is the square of the sum of fy and the symmetric Coulomb

amplitude f2&,
do

=IO +EOF . (L.12)

The symmetric Coulomb amplitude is the sum of the usual Rutherford amplitudes
at angles 6 and (7 — 9):

f60) =~ ¢ |

exp(—in In (sin® 8/2)+2i00) exp(—in In (cos? 0/2)+2i00)]
sin? (9/2) cos? (6/2)
(ITL.13)
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(II1.12) can be rewritten as
d "
o=lINO £ 1550) P+ 22 [(fn(0)" f6(0)] (1IL.14)

and | f&(8) |2 is easily evaluated as the symmetric Rutherford cross section:

doo 8 . i 2
=10 = (5)
2

* Lin‘* (0/2)  cost (8/2) | cos? (9/2) sin® (8/2)

cos (n In(tan? (0/2))) }
(IIL15)

The total elastic cross section [df2(do/d(l) diverges, because we do not cut off the
Coulomb potential in V' (r) for large r. The scattering cross section do is defined as
the probability per unit time that the projectile will pass through a surface element
r2dQ) divided by the incoming current density. In analogy, the total fusion cross
section in the IWBC formalism is the integral over the spherical surface at the IWBC
radius ro of the probability per unit tirne that the particle passes through a surface
element on the sphere divided by the incoming current density. The expression for
the scattering cross section as the square of f(8) (if the outgoing wave is written as
V(8,r) = f(0) exp(ikr)/r ) follows from the calculation of the local radial current
density per surface element r2d(}, namely j = % (\11‘7\11* - \11*6\11), dotted into the
surface element. This product is the probability dw, per unit time that the particle

passes through r2dQ). Thus,

hk

dw, = J - Ar?dQ = v f(o)2da (I11.16)

where 7 is the unit vector perpendicular to df) and pointing outwards. (dw,/df1)

divided by the incoming current density hk/M gives the cross section do/dl =
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|£(8))%. Analogously, we find for the total fusion probability wy per unit time

2 th a _. . 0
— hdad) — A7
wf = — / dQZM(\IIa ¥ -9 Br\l’> s (ITI.1 )

where the integral is over the spherical surface at ro, and the minus sign in front of
the integral stems from the fact that we are now considering an ingoing instead of
an outgoing flux. If we insert (IIL.6) into (II1.17), and use the IWBC for the ¢, we
find after integration over d) (using [ dQ2P;(cos @) Py (cos§) = 4réy /(20 + 1) ) for
the total fusion cross section for distinguishable particles (cf. (IL.1)):

Muw
ofp = ——f- o “Se+yn (IIL.18)
alll

where

kl!ro)

T = [%i(ro)|? (IIL19)

is the transmission coefficient. For identical bosons we find (cf. (I1.6))

of = Z—Z C@+yn (I11.20)

leven

the factor 2 is a product of a 4 from the squared wave function (cf. (III.8) and
(II1.13)) times a factor 3 that must be included to compensate for double-counting
in the same way that a total (finite-range potential) scattering cross section of
identical particles is half the integral over all solid angle of the differential cross
section. If the penetrability coefficients vary slowly in ! (and if thus lots of partial
waves contribute), then oy approximately equals o5p in accordance with the corre-
spondence principle of quantum mechanics. Because of unitarity (and more about
that in the next chapter)

Ti=1-|5)7* . (I11.21)
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According to (II.7) we numerically integrate the t; outwards from the IWBC ra-
dius ro to some radius r; far outside the range of the nuclear potential, but still
inside the range of the centrifugal and necessarily the Coulomb potential. At rg,
the logarithmic derivative of 1; is fixed by the IWBC, and near ry, 9; is matched to
u,(—)(kr) and u,(+)(kr) and then normalized so that its coefficient of ul(_) (kr) equals
unity (cf. (IIL.8)).

Results of the calculation are shown in Figs.9-12. We used a Woods-Saxon
potential Viy(r) = —Vo/[1 + exp((r — R)/a)] plus a point-point Coulomb potential
for V. This potential has the following relationship of the maximum of the s-wave

barrier Rp, the potential range R, the diffuseness a, and the depth Vj:

R=Rp— aln<fc -1+ VK2 - 21«:) ) (I11.22)

with
RV,
K = 0
ZZ]_ Zzeza,

(I11.23)
Thomas et al.2® have fitted the Woods-Saxon parameters to their measured fusion
cross section with a least-x? approach. Since the fusion cross section is sensitive only
to the barrier region of the potential and not to the interior region, equally good
x? fits were obtained from widely different depths V. Therefore, Thomas et al.
fixed Vi at 50 MeV and fitted the potential range R and diffuseness a. They find
the lowest x? per degree of freedom to be 1.66 at R =6.51 fm and a =0.46 fm. The
s-wave potential V(r) is plotted in Fig.9, and the calculated fusion cross section in

Fig.10. R =6.51 fm is equivalent to an Ry =1.29 fm in the usual parametrization

L 1
R = Ro(A? + AZ), where A; and A; are the mass numbers of the two nuclei, i.e., 16
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for both in our case. The values for V; and Ry are typical for the real part of optical
potentials that are used for heavy ions in this region of the periodic table. How-
ever, the diffuseness is rather small; typically optical potentials have a larger than
0.6 fm. Thomas’s potential also reproduces the elastic scattering cross section at
90° (cf. Fig.11) measured by Spinka and Winkler.?! Christensen and Switkowski%°
claimed that such a simultaneous fit to fusion and elastic data is impossible with
a simple Woods-Saxon form of the potential. Apparently, they restricted their pa-
rameter search to the region of larger diffuseness. Recently, it was discovered for
the system !0+ 2°8Pb that a simultaneous fit to fusion and scattering data in
the IWBC formalism requires a much steeper potential than used before in optical
model calculations.?! Fig.12 shows the elastic angular distribution for 1°0+1°0 at
13 MeV together with the simple symmetric Rutherford cross section (dog/df1); the
data are from an old paper by Bromley et al.,?? and it is very difficult to read the
data points from their published figure. In any case, there is reasonable agreement
between the calculation and experiment. Most of the cross section is just doo/df2,
but also the deviations of the data from doo/df) are at least qualitatively repro-
duced. For E = 10 MeV, the cross section is practically identical to the symmetric

Rutherford cross section.

Instead of a point-point Coulomb potential, a more sophisticated version can
be used that will model the extended charge densities of the colliding nuclei (e.g., as
two uniformly charged spheres) and modify the potential at short range, when the
charge densities overlap, accordingly. However, because of the insensitivity of the

calculated cross section to the interior of the potential, any such modification will
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have negligible effect. We believe that Thomas et al. used a point-point Coulomb
force when they fitted their parameters, and so we also keep this simple form.

The results of the calculation are also insensitive to the location of the IWBC
radius ro. We found a change of less than about 1% in both the fusion and 90°
elastic cross sections when rg is varied from 5.0 to 5.5 fm. Convergence in the
angular momentum is satisfactory when partial waves up to ! = 16 are taken into
account; for E = 14 MeV, a lower maximum / would cause a noticeable error. For
the integration of the wave function we use the Numerov algorithm®? whose local
numerical error goes as the sixth power of the step size. A step size of 0.01 fm
proved more than sufficient. As a numerical check, we calculated T} directly from
(II1.19) and also from (II1.21); the resulting values can be made as close to each
other as one might desire by decreasing the step size and are in excellent agreement
for our choice. An outside matching radius of 12 fm is far enough from the range
of the Woods-Saxon potential.

In summary, the 120410 fusion cross section can be well reproduced by a
one-channel IWBC calculation. When the potential is adjusted to give a best fit
to these data, the 90° elastic cross section is also reproduced. Our expectation of
the stiffness of the 10 nuclei in a subbarrier collision is thus confirmed; internal

degrees of freedom do not seem to play an important role.
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CHAPTER IV

We will now develop an unified model for 70 + 180 and simultaneously cal-

culate the fusion, elastic, and inelastic cross sections.

IV.1 The Hamiltonian

We will treat the reaction as a 3-body problem, where the three bodies are the
neutron outside the closed shell in 17O and two ®0 nuclei, which we treat as inert
cores (or “elementary” particles) without the possibility of internal excitations. This
assumption is reasonable, because the first excited state in 160 is 6.04 MeV above
the ground state, compared with 0.87 MeV for 170. However, for small inter-nuclear
distances the Pauli principle between nucleons of the different cores (or between the
extra neutron and an 1®0 core) becomes important. We will neglect this, as we will
consider only bombarding energies at which the two nuclei do not strongly overlap
in the direct reactions and we will treat the fusion reaction and thus the compound
nucleus with an IWBC, in which the details of the compound nuclear wave function
are lost anyhow. We will treat the symmetry between the two identical bosons 160

exactly, though.

We denote the two cores as “1” and “2” and the extra neutron as “n” and use

ff, 7, and ¥ — R for the relative position vectors, as in Fig.13. The Hamiltonian ¥
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for the system is

)(:T1+T2+TVL+V1+V2+VC , (IV.l)

where T is the kinetic energy for particle i, V; the potential between “n” and ¢, and
V. the potential between the cores “1” and “2”. We will neglect the recoil correction
that stems from the change in masses and hence in the center-of-mass coordinates
in a rearrangement collision. These corrections are of order My, /My = 1—16-, where
M; is the mass of particle <. In this approximation no differentiation between R
and the position vector between 170 (the center-of-mass of one °0 and “n”) and
the other 180 exists. While an expansion of the recoil in M, /M; is possible,®* the
complete neglect of terms of order M,,/M; makes the expressions more tractable
and greatly reduces the magnitude of the numerical computations.

The Hamiltonian thus becomes
H=Tem+H , (IV.2)
where T.,, is the total center-of-mass kinetic energy and
H=T+T,+Vi+Va+V, , (IV.3)

where T is the kinetic energy of the relative motion between “1” and “2”.

IV.2 The wave function

The stationary scattering state is

9(R)) = d_¢i(R)|7) (Iv.4)

1
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the sum over the products of a radial wave function @; of the inter-nuclear distance
R = |R| and an internal state |¢) of 170 and *°O containing also the wave function
of the angles of the vector R. The label i characterizes (1) the partition v (whether
the neutron belongs to particle “1” or “2”; these partitions are called « and S,
respectively), (2) the eigenstate of 170, and (3) the eigenstate of orbital angular
momentum L associated with the vector R. The internal spin of the 170 nucleus
and the orbital angular momentum are coupled so that |¢) is an eigenstate of total
angular momentum J and its component J, along some fixed axis. If the sum
in (IV.4) is to be taken over a complete set of eigenstates of 170 and all angular
momenta L, then |®(R)) is the exact scattering state within our model, i.e., when
we consider only single particle excitations of the extra neutron in 170 and one-
neutron transfer. Of course, we will truncate the series (IV.4) quite severely and
thus restrict the subspace of possible wave functions.

The eigenstates |i) of the single particle Hamiltonian have the property that

for states with the 17O on the left (o states)

(Tn + V1) li(@)) = & li(a)) (Iv.5)
and for the 170 on the right

(Tn +V2) [i(8)) = e [i(8)) (IV.6)

where ¢; is the single particle energy of the neutron in the 7O nucleus in the
state 7. a and 3 states are not orthogonal because of the different origin for the

single particle wave function.
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IV.3 The adiabatic approximation

The Schrédinger equation
(H-E)|®(R)) =0 (IV.7)

is transformed into a set of coupled equations by multiplication by each of the |7},
ie.,

G|H—E|®R)) =0 foralli. (IV.8)

The adiabatic (or Born-Oppenheimer) approximation consists of letting T' operate
only on the explicit dependence of |®(R)) = Y ¢;(R)|s) upon R (namely upon the
radial wave function ¢;(R)) and the orbital angular momentum part of |5), but
not on the intrinsic structure of |5). Thus, when the Laplacian that occurs in the

kinetic energy operator is expanded into radial and angular parts,

1 9* L?
V2= —-_—-R- :
ROR*" #*R* (1V:9)

then

. . h: d? BAL;(L; +1 o
T8,(R)15) = i) (- g agr R ke ) &R = )T (R)

(IV.10)

where m is the reduced mass, and L, gives the angular momentum of the state |},
L2 l5) = R2L;(L; + 1) |5). (IV.10) is only an approximation, because the states |j)
are functions of R. Combining (IV.3), (IV.5),(IV.6),(IV.8), and (IV.10), and letting
T, + V3 operate on the right yields

[l (6= B+ T +Ve)os(R) + GV liestm)] =0 . v

c g
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Here, V(;) = V1, if |5) = |57(B)) is a right (a f) state and Vj = V; for an o state. If
we define g;; = (i|7), fi; = ({|V(i)ls), and ¥;(R) = (¢; — E + T7 +V,)¢;(R), then
we can interpret g and f as matrices and ¢ and 3 as column vectors and write the
set of equations (IV.11) as

g+ fé=0 (IV.12)

or equivalently

v=-g"'f¢ . (IV.13)

In more explicit notation, (IV.13) can be brought into the form

( —E+T +Ve+ Y (g7 G IVild) ) ==Y (g7 IViwlk)br(R)

J k#: j

(Iv.14)
for all i. The set of coupled channels equations (IV.14) is very typical in direct
nuclear reaction theory (cf. (IL.19)), the left hand side of each equation is the usual
one-channel Schrédinger equation, and the right hand side is an inhomogeneous term
that couples the wave function on the left hand side to all others. However, (IV.14) is
a homogeneous system of differential equations for the total wave function (the sum
over all channel wave functions). A set of equations like (IV.14) is used in almost
all multi-channel subbarrier fusion calculations that include transfer. However, the

explicit set (IV.14) does not admit a conserved current, as we will show next.

IV.4 Violation of unitarity in the adiabatic approximation
Flux non-conservation is already exhibited by a one-dimensional model, so,

to avoid the obfuscating aspects of the angular momenta, we will treat the one-
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dimensional case in this and the next section. It will become clear how to extend
this proof to the full three-dimensional case when we derive the full matrix elements
between the states [i). If we use R as the Cartesian coordinate, then the equations
look very similar to the above if we substitute the one-dimensional wave function
x(R) for the product R¢(R). The simplifying feature is that the kinetic energy
operator does not include a centrifugal potential and is thus the same in all channels.

The generalized radial flux in the case of non-orthogonal states is proportional

to the quantity
anf x @ d
F= ; [MJ) (Xi TRXI TN Eﬁxi)] : (IV.15)
if the (i|j) are real. We will show later that this choice of phase is indeed possible

(and that the (i|V(;)|s) then become real, too), and we will restrict our analysis to

this convention. We will now prove that neither F nor an “orthogonal” substitute

F=Y(xiox - xigexd) (V.16

1

is conserved by the adiabatic equations. If we insert (IV.10) into (IV.11), the
adiabatic equations in terms of the x; become:
o h? d? :
Z [(zl]) (_Z_mm +e¢—E+ Vc)Xj(R) + <'|V(j)|1)XJ'(R)] =0. (IV.17)
j
We will at first calculate the radial derivative of F, then that of F:

dF anf . d® d? « d d .\ d ..

5= 2 {(le) <Xi TREXI X ER_E)G)"' <Xi EEXJ'—XJ'JEM)E<J|’>] - (Iv.18)
4

We proceed from (IV.17) in a similar fashion to the proof of flux conservation for

the simple one-channel Schrédinger equation, we multiply (IV.17) by x} and sum
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over all ¢, the result is

W . hP d? i \
Z[wm (-5 27 + & — B+ VelR))xs +{ilVlidxing | =0 (IV.19)
]

Instead of (IV.17), we could derive an analogous equation for the complex conjugate
wave function if we let T+ V; operate on the bra state and interchange the indices
7 and j, i.e.
s h* 4 \ s : N
) (13 (5~ B = gz + V) (B) + Vol ®)|=0. v
We multiply (IV.20) by x;, sum over all j and subtract the resulting equation from
(IV.19), hence

K2 . d? d? . ) ;
- <zij><X:ij — Xj mxf) =Y [('U)(fj - &)+ ¢V - V(i)|.7>] XiXj -

1,J t,J
(IV.21)

Hermiticity (or, by our choice of phase: symmetry) of the sum of operators V1, V2,

and T, requires that
(3] (V1 Vot Tn|j)) ((i|Vl + Vot Tn) 5y, (IV.22)

or, equivalently,

(@) e — &) + (V) =Vl =0 . (Iv.23)

Therefore, in the adiabatic approximation,

i . 2
Z(zlﬁ(xi JpEXi ~ x];ﬁ,;x,-) =0 (IV.24)
1,
and if we insert (IV.24) into (IV.18)
ar - ( X *)i(l') V.25
dR 2 \XigpXe T XiggpXiJygVl" - (Iv-25)

1)
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Although the terms involving - (i|j) were neglected in the derivation of (IV.11)
from the general Hamiltonian and wave function, the (¢|5) that are inserted into
(IV.11) are not constant in R (precisely herein lies the inconsistency), and, by
(IV.25), F is not conserved.

This is perhaps not surprising, but it is surprising that F is also not conserved.

(IV.11) can be abbreviated to the following equations for the x;:

d2

g2 Xi T aiXi™ Z hijx; =0 (IV.26)
7

where h is the matrix product of the inverse of the overlap and, for symmetry let us
say €;6i; + (§|Vi;j)ls) = €bij + (7|V(5)lt). If h were Hermitian, (IV.24) would prove
the conservation of F' as follows: Multiply (IV.24) by x; and sum over all ¢, then
form the complex conjugate of (IV.24), multiply by x; and again sum over all ¢, the
difference of the two resulting equations - by Hermiticity of A - has just dF/dR on
_ the left hand side and zero on the right hand side. However, h as the product of two
Hermitian matrices does not have to be Hermitian itself. If one forms Hermitian
matrices A;; and Bj; as inner products of self-adjoint operators A and B in an
orthonormal basis, the matrix product Y ; A;; Bji is Hermitian if and only if A and
B commute. However, this is not true for non-orthogonal basis states such as those
we are dealing with here. Therefore, dF'/dR # 0 if (i|7) # 6;;.

We consider the failure of the adiabatic equations to conserve flux to be a
very serious deficiency. The principle of the IWBC equates the flux at the inner
radius with the fusion flux, but if the model equations are not unitary, the fusion
flux defined in this way will not equal the total flux removed from the explicit

reaction channels. This inequality would bring our whole program into question,
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as we intend to calculate fusion, elastic, and inelastic cross section in a consistent
way. Therefore, our original equations (IV.8) have to be solved without neglect of
the non-centrifugal terms of (¢|T'|7), i.e., without using the approximation (IV.10).
Not only will this restore unitarity, but it will mean one approximation less, always
a desirable effect. However, the price to be paid is not only a cluttering of analytic
expressions, but also considerable complications in the numerical work that we will

encounter.

IV.5 Unitarity of the non-adiabatic equations

We will now show that the non-adiabatic equations conserve flux, as they
should, because our original Hamiltonian (IV.3) is self-adjoint. Again, we restrict
ourselves to the one-dimensional case; the result does not change in three dimen-
sions, but the expressions are less lucid.

We now measure the position of “n” from the center between “1” and “2”. If
we denote the corresponding position vector by 7, the single particle wave function

of a states will then be x(r + R/2), of 3 states x(r — R/2). Our set of equations is:

- [ am ({0 ‘aR2J>X"+2< ‘aR ) Jg)

(IV.27)
- h? d? . :
+ <Z|J>(E]‘ - F— _2—72—(-1—}—2_2 —+ Vc)Xj + <l|V(j)|]>Xj] =0,

where
2

(1 25) = [arxie R Tt =R, v
and

<z"%j> = /dr Xi(r £ R/2)b%xj(r + R/2) (IV.29)
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produce the new terms that are not in the adiabatic equations. The sign in the
argument of the wave function depends on the partition of the wave function, plus

and minus for o« and 3 states, respectively. The complex conjugate to (IV.27) is

[ 2 (el + (i) 25)

B 4 : :
+ (el7) (Cz‘ —-FE- om dR? + Vc) Xi + (ZIV(i)U)X:"] =0 . (Iv.30)

We multiply (IV.27) by x and sum over all ¢, and analogously multiply (IV.30) by

x; and sum over all j; the difference between the two resulting equations becomes

e S| () b+ 2((il ) G
& (IV.31)

0 .|.\dx;] qnf o EXG d2x} _
- (am) amo) + ) (xi Gt~ o x)| =0,
when we use (IV.23). Partial integration on (IV.27) proves that <i‘§%j> =
2 .
(e

but opposite parity of the single particle wave function; and, for equal parity of x;

j>. Also, (IV.27) and (IV.28) do not connect states with equal partition,

and x;, (Zgtls) = (i|#5J) = 0. Therefore, we only need to consider the case of
opposite partition for the terms (5‘%2' |7) and (2 |a%i J), and again these amplitudes

are equal by proof of partial integration on (IV.28). Thus,

Ja .. a2 . | a . | a . a .
ortli = (gg'li) + (lagr) = 2(ilag) =2(b) . avan
so that the expression in (IV.31) becomes just the derivative of the flux (IV.15),

since the radial derivative of R times the three-dimensional wave function is precisely
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equivalent to the one-dimensional wave function (and hence using the same notation

for them justified). Therefore, F/OR vanishes, or F' is conserved.

IV.6 Formfactors

The matrix elements of various operators between the states |¢) are needed
as input into the coupled channels equations. These matrix elements are called
formfactors, they are functions of R and depend on the single particle eigenstate
and the coupled angular momenta. We will now derive the analytic form of these
matrix elements for three dimensions.

For the derivation of the formfactors, the starting point is the Hamiltonian
(IV.3) and the scattering state |®) = % Y_ x;(R)|s); we multiply (IV.8) by R and
gain

32
ZM( — RV?E FV(R) + e~ E+Vi(R))x(B)5) =0, (1V.33)
j
In (IV.33), V2 operates both on x;/R and on |j). By the product rule for deriva-
tives, this will produce (x;/R)V?2|5) + |7)V2(x;/R) + 2(V|7))-(V(x;/R)). Since in
the last term the gradient operates on a radial function only, and since the gradient
in spherical polar coordinates is ﬁ% plus parts perpendicular to R (the unit vector

Jo

in the direction of R) that do not involve 3% , only the radial component of the
)

dot product of the two gradients, i.e., "(%l )('QE(XJ /R)), contributes.
Another method of treating the term involving (i|RVZ£x;|j) exists and might

a priori look even simpler: By (IV.9), the above matrix element of the Laplacian is

simply (¢| aa—;z'Xj l7) — xj/(thz)(i|L42|j), and the product rule of differentiation can
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now be applied to x;|j) in % instead of the gradient. However, this second method
of evaluating the Laplacian turns out to be no easier, because we will expand the
state |7) in the sum of products of an internal state times an angular wave function,
and it is easier to use the product rule on these products for the Laplacian than for
L? and 6—61;5. In the end, as both methods will require roughly the same amount of
algebra, neither one is a neat step towards a simple formalism. We choose the first

method.

Thus, the required operators between the states (7| and |j) are: The Laplacian
V2 and radial gradient 5‘%, the potential V(;), and the unit operator (for the over-
lap). The bra and ket states of the matrix elements can have either the same or
opposite partition, the first case produces the inelastic excitations, the second the

transfer reactions.

A new choice of coordinates facilitates the derivation; in fact, two coordinate
systems are needed: an external fixed system (z,y,2) and - rotated with respect
to it - an intrinsic system (Z,§,z). The angles in spherical polar coordinates of
any vector ¥ are denoted @, ©, and 8,, P, in the external and intrinsic system,
respectively. Particle “1” lies at the origin, particle “2” is separated by ff, the
neutron by 7, as in Fig.13. The intrinsic frame has the z-axis parallel to R and the
g-axis in the z-y plane so that the angle between the positive y-axis and positive
g-axis is less than or equal to 7/2. The components of R and 7 serve as independent
coordinates. With our choice of the origin, the single particle wave function (of the
neutron) takes argument 7 in an « state and argument (¥ — E) in B states. This

independence of R of the o states makes this particular representation useful for
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the derivation of the formfactors. Unfortunately, a more symmetric representation
between o and § states is needed below; the transformation is described in Section
Iv.7.

For convenience, we will often abbreviate the pair 8,, ©, by {2, and f02 " dpy
f_l_l d(cos 8,) by [dQ,. Whenever the notation (a1|Olaz) is ambiguous for some
operator O, we will always mean O to operate on the right. We can write for our
states:

17} = [(IL)Jpry) = Z (IMpLMp|Jp)Yim, (Qr) | IM17) . (IV.34)
M;,M;,

~ is either a or 3, depending on the partition. The Y ar(f1r) are the usual spherical
harmonics defined by L2Ya(Qr) = A2L(L+1)Yiar, L.YLm(Qr) = MAY LM (QR),
and [dOQrY} 1 (Qr)YrMm(0r) = 1. I is the spin of the 170 nucleus, L the relative
angular momentum between the 17O and '°O nuclei, My, ML the corresponding
projections onto the z-axis. In the state |j), I and L are coupled to total angular
momentum J with projection u. Instead of keeping an extra index on these labels
to differentiate between the quantum numbers of |j) and (7|, we mark those of the
bra state by a / symbol.

The matrix element of the operator X is thus:

((I'L)J'w' A1 X|(IL) T pv) g Z Y (MM
L M Mo (IV.35)

X <IMILML|J,U,) /dﬂRYL;Mr (QR)<II IX|IMI'7) YLML (QR) .
The amplitude on the left hand side depends only on the magnitude of the vector R ,
whereas the amplitude under the integral sign depends also on 0. The operator

X can be any of the following:
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(i) The radial gradient 3%, or
(i) the Laplacian V2, or
(15i) the unit operator 1 (for the overlap), or
(tv) Vi =v(r) or Vp = v(|F' - R|), where v is the potential function between “n”
and 180: V; if y = 8 and V; for v = a.
If X contains derivatives, (IV.35) has to be interpreted such that the derivative
acts both on |IM;~) and on Y, (Qr), and it acts on the right only. At first, we
will investigate the effect of the derivative operators on the spherical harmonics.

Case (i) is trivial, as the radial derivative of a function of the angles vanishes,

2=Yrm(r) = 0. Thus,

%‘IMI’7>’YLML(QR)

/ d0RY S pp (2R) <I’M}7’

(IV.36)
= /dQRY£,M£ (QR)YLML (ﬂR)<I'M}")”

)

Case (11) becomes tractable after the Laplacian is split into radial and angular
components by (IV.9). Clearly, only the angular momentum operator contributes
on the Yza’s. If v = a in (IV.35), then the Laplacian acts only on the Yras's
because of the independence of |IM;a) on R. Hence,

_LiL+1)

(L)' WA |V (IL)Tpe) = ~ =5

((I'LYJ'W~'|(IL)Tpa) . (IV.37)

For any two functions f and g of 0, [d0f(V2g) = [dQg(V?f). (This is most
easily seen by expanding f and g in the eigenfunctions of the angular Laplacian,
the spherical harmonics.) Then, (IV.35) can be evaluated for 4/ = a by letting the

Laplacian operate on the left:

L'(L' +1)

(LYW | VI L) T py) = == ((I'L) ' w'e|(IL)Jpy) . (IV.38)
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(IV.37) and (IV.38) do not contradict each other for v’ = v = a, because

(I'L")J'u' a|(IL)Juar) vanishes for L' # L (cf. below). For 4" =~ = § in (IV.35),
the Laplacian on the product |[IM[8)Yra, (r) must be evaluated by the product
rule; of the three terms that are created thus, the one containing (I'M;3 |6|I M;3)

vanishes because of parity conservation, the remaining two terms give:

[ 408V ing, (ORI MBIV IMIS) Vi, ()

_ __Lﬂgi) / dQRY1rg, (V) Viaa, (Ur) (T MBI M ) (1V.39)

[ a8 100y (0)Vire, (R) 1 MGBIV M)

The first summand in (IV.39), when inserted into (IV.35), will give —L(L + 1)/R?
((I'L")J'w!'B|(IL)JuB). We have thus successfully treated the effect of the operators
on the angular wave function in é, what remains is to calculate the amplitudes
(I'M}~'| X |IM[~) as functions of R for the four choices of X,

We will calculate these amplitudes in the expansion
("M | X IM) g = Y saw(R)Yau(QR) (IV .40)
A,

where indices to show the dependence of z on I’, I, etc. are omitted. After insertion
of (IV.40) into (IV.35) (or of (IV.38) into (IV.36) or(IV.37) and then into (IV.35)
in cases (i) and (i1), respectively), the integrand in (IV.35) is a product of three

spherical harmonics, whose integral is easily evaluated:

/dﬂRYL*,M,L(ﬂR)YLML(ﬂR)YA,,(ﬂR)

:(__)ML[(2L’+1)(2z:1)(2A+1)]%(ﬁ' g g)(—-ﬁ[i AZ; ﬁ)
(IV.41)
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where

<7Q1 1{122 r]rfs) = (=)™ (255 + 1) F (fymajamaliz — mg)  (IV.42)
is the usual Wigner 3-j symbol. We begin the calculations of (I'M}~'|X|IMr~)
with the case of 7' = 4 = « (an inelastic excitation of the 7O nucleus on the left).

In our representation, a states do not depend explicitly on fi, hence, 6|I Mja)
= 0, and V2|IMja) = 0. The |[IM;a) are also orthonormal, i.e. (I'Mie|IMra) =
611'6p, 017 Thus, only F(R) = (I'M}a|v(|F — R|) |IM;a) remains. Sometimes it is
just f(ﬁ) and not the complete amplitude on the left hand side of (IV.35) that is

referred to as the formfactor. In order to calculate f (ﬁ) we need to disentangle the
state |[IMv):

[IMv) = ¢I(r)y£§lzl/z,l(ﬂr) ’ (IV.43)
where 1 is the single particle radial wave function of the neutron in 170 with a

phase convention so that the i are real; with this choice of phase all formfactors

are real, too. Y™ is the usual spin spherical harmonic
? ls] p

ymo= Y (imsma|im)Yim0sm, (IV .44)

my,Me

o being the spin matrix (not a Pauli matrix). The spin s = 1 of the neutron and
the angular momentum [ of the single particle wave function couple to the total
spin I of the 170 nucleus. ! is determined by I. This coupling is only possible and
(IV.42) is only valid if m; and m, are good quantum numbers in the potential v(r),

in particular, v(r) must not contain a spin-orbit coupling term. Now,

FRY = D2 D (tmuVoma IMi)(I'm) Y faml, | I' M)

mip,ms m; ,m"

x [P (0r(r) [ 1,07 = BV () ¥im ()]

1 ’
2m

(TV.45)
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The argument of v is the distance between “n” and “2”, namely |7 — R|= [r? +

R? — 2rRcos 9,]'/2. The angular integral in (IV.45) is most easily evaluated by
expressing the product of two spherical harmonics as the sum over the products of

one spherical harmonic times Wigner 3-j symbols, i.e.
. ! S +1)(20+1)(2A+ 1)z
Yyt () ¥im () = (0)™ D_(-)* = |
Av (IV.46)

1A 1A
(0 0 0><—m; my —u)YA”(n')’

and rotating the ¥,,((2,) to the intrinsic frame by

Ya, (Q ZDL,, (0,08, 0r)Ya (1) . (IV .47)

The DY)  are the rotation matrices as defined in Edmonds®® (i.e., p8) (a,8,7)
= (jm/|exp(iaJ, /) exp(sBJy/ k) exp(ivJ./h)|m)); ¥ = pRr, B = Or, and a = 0

are the Euler angles associated with a rotation from the external to the intrinsic

frame. Now the integral over dp, can be performed:

27
/ dp,Ya, (0r, Br) = /(24 4 1) Py ( cos ;) (IV.48)
0

The remaining rotation matrix is proportional to a spherical harmonic,

4T
05D(0,0r,0R) = Vors sa 1 av0r,oR) - (IV.49)

.I.

By combining (IV.45)-(IV.49) and summing over the m’s using o, _, ‘01, = 6mim,
we find
F(R) = /m(=)/2= My "2l + 1) (21’ + 1) (2 + 1)(20 + 1)(24 + 1)] 2

Av

I I A I' T A ' T A
(—M} M; _V>(0 0 0){11 I 1/2}YAu(0R,‘PR)JI'IA(R),

(IV.50)
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where

Join(R) = /0 " e (r) e (1) / 11 d(cos8,)v(|7 — Bl)Palcosdy),  (IV.51)
and the curly bracket is a Wigner 6-j symbol. We can now insert (IV.50) as the
amplitude in the right hand side of (IV.35) for X = V; and perform the integral over
df1, of three spherical harmonics and more tedious sums over angular momentum

projections, the net result is:
(I'L")J'w' a|Va|(IL)J pe)

= 8506, (=)? Y2y [(21 + 1)(21' + 1) (2L + 1) (2L' + 1) (2 + 1) (2!’ + 1)]%
I' 1 A\/L L A\[I I Ir
seraen(§ 5 (55 DT AHE L 3
(IV.52)

The 3-j symbols ensure parity conservation, because (a b c) =0ifa+b+e

0 0O
is odd. As a check, we can substitute the constant 1 for the function v in (IV.51),

then Jpra(R) = 261176x0 and in (IV.52) we find indeed after insertion of the an-
alytic expression for the Wigner 6-j symbols with A = 0 and some albegra that

(I'Mya|IMro) = 611/6MM; and
((I'L')J'u'a|(IL)J,ua> = 65710 brpbrL (IV.53)

as expected.

If we consider g instead of a states, the overlap does not change,
(I'L')J'We|(IL)Jpe) = (I'L')J'WBI(IL)Juf) (IV.54)

the same is true for the potential matrix element if we consider the potential from

the other 0 nucleus:

(I'L)J' W a|Va|(IL) T ua) = (I'L)J' W' BIVA|(IL) JuB) . (IV.55)
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(IV.54) and (IV.55) become evident if one performs the change of integration vari-
ables R — —E, i.e., g — m — 0 and pgr — T + g under the integral over d(1p
and substitutes 7+ R for ¥ and 7 for #— R under the integral over d{}z. Therefore,
we have now derived all inelastic formfactors with the exception of the derivatives
between 3 states and we will now continue with the transfer formfactors.

Whereas o states are described by (IV.43), for (8 states (,_r and | — R|
must be substituted for 1, and r. Consequently, |IM8) depends on ﬁ, so that
VZ|IM;B) and §|IM1ﬁ) do not vanish; furthermore, the [IMf) are not orthogonal
to the |I’M}a). We have to calculate the right hand side of (IV.35) for v’ # ~ and
the four different choices of X listed below (IV.35).

Starting with the radial integral, we find for the radial derivative formfactor
that the integral in (IV.35) becomes 61,1+6p, 2 (I’M}7'|5%|IMI’7>, this expression
vanishes for v = «; and for v = § and 4’ = « the derivative can be taken in front
of the matrix element and even in front of the whole expression on the right hand

side of (IV.35), thus

<(I'L’)J’u'ﬁ b%l(IL)Jua> =0, (IV.56)
and
((rey'ua —a%’(IL)Juﬂ> - 5%<(I'L’)J'u’a (IL)Juﬂ> . (IV.57)

So the case (1) gets reduced to the case (i). It is partly for this reason, why we

chose this representation.

(I'M3B|V|IM1B) =0 (IV.58)
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by reason of parity. (Formally, (I' M}3|V|IM[B) ~ [ d*rpyp (17 — R)) Y (Qr—r)
Vr(IF — R|) Yim (Q—r), but the gradient with respect to 7 equals minus the
gradient with respect to (¥ — ff), under a substitution of variables, the integral
transforms to [ d2 ¢ () Yﬁm{(ﬂz) V2 ¥1(z) Yim (), and evidently, if the two

states have equal parity, the integral vanishes.)

In case (i1%), i.e., if X = V?, the integral for 4’ = v =  becomes

(I'MiB|V?|IM1B) = brbpene T (IV.59)
where
I R 19* l(l + 1)
Ty —/o zdzy; (z)(maxzx )d};( ) . (IV.60)

T is a constant independent of R. Obviously, as the «a state is independent of ff,
(I'M}B|V?|IMo) =0 . (IV.61)

For the same reason,
(I'M}o|V3|IMB) = VX{(I'Mia|IM8) . (IV.62)

For cases (i11) and (iv), we have to calculate (I'Mjo|X|IMB) with X either 1
or V;. The expression of the amplitude in terms of the single particle wave function
is:

(Mo X|IMiB) = Y Y (imylfom,|IMp)(I'm} 1 fom| I'M7)

m,ms m; tm!

[ 1 (VY g ()2 011 (7 = B (2r-r)
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with z(r) = v(r) or z(r) = 1. We rotate to the intrinsic frame by the transformation

(IV.49), i.e
.le;km; (0T,(p1") - Z[Dm'm’ (0 aR,(PR)] }/l;‘ﬁl; (0_7',@7') 9 (IV.64)
m
and
Yim (0r-R,0r—R) = Z D,(,fl)ml (0,0r,0r)Yim, (0, ~r,®r) , (IV.65)
My

since ¢, = @,_r by choice of R as the z-axis. Also, |F'— ﬁl does not depend on B,

This allows us to perform the integral over d@, (cf. (IV.48)):

2
/ dSOle' (01‘3307')}/!"11 (07‘ Raﬁor) =27 5mzm' le’ (ono)Y'lﬁl[ (0T—R)0) . (IV66)
0 ‘

If m; = m), the product of the rotation matrices in (IV.64) and (IV.65) can be

written as a sum over spherical harmonics,

[Dmlm (0 Y ,‘PR)] Dr(m)m, 0 0R,(PR Z\/‘lﬂ' 2A + 1 m‘_m;+’/

l ! AN/ l U A
< _ _ > ( / )YAV(0R790R) )

m; —m; O my —m; -V

(IV.67)

so that the integral in (IV.63) becomes:

m; —m; —V

3 v—m! { l, A z
IO =472 Z(—) b/ 2A+1 ( ’ ) YAV(aRa(PR)II(’I)A(R) ; (IV68)
Av

where

II('zI)A( R) = Z(—)ﬁ" ( _l l,_ A\) /oorzdr/1 d(cosd,)
- m —my O -1 (IV .69)
Y1 (r)z(r)yr (|7 — B|)Yii, (8r,0)Yim, (8--r,0) ,
with |[F— R| = [r?+ R —2rR cos §,]% and cos(f,_g) = (rRcosd, — R?)/(|F— R|R).

kA is the angular momentum that is transferred between the two nuclei. Now,
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(IV.68) and (IV.69) enable us to evaluate the Laplacian of Io:

, !
V2, = 4rx 2 Y ()AL < Lo . Ay) Yo (0r, PR)

my _‘ml -

Av (IV.70)
19 _ A+,
<—_§8R2R— R2 >‘1['IA( ) .

Thus, the expansion (IV.40) is found, and after integration of the three spherical
harmonics and some angular momentum algebra, just as for the inelastic case, we

finally obtain:

(') J'W' | X|(IL) T uB)

W=

=27r(—)J_ 1/26JJ,5W [(21 + 1)(2I" + 1) (2L + 1)(2L' +1)]
L' L AN[I I A I I' A\ ;(2

(IV.71)

We can check this formula for z = 1 by letting R approach 0, where we find I(,II) +(0)

= 2l +1/(27)611:6n0, and thus 655+ 6, 61 6pp+ for the complete matrix element

in (IV.35) for X = 1 and R = 0. Also, we find that the “small” matrix element

(I'M;a]E2/h2|IM1,B) produces the following “complete” matrix element that will
be useful later:

((I'L)J' W' | D|(IL) T uB)

=

=27 (=)~ 285 516, [(21 + 1) (2" + 1)(2L + 1)(2L' + 1)]

2(—)AA(A+1)(2A+1)(15' I(; g){jf, g ;}z}{l{ 6’ ?} 1% (R) .
(IV.72)

We can prove that

(L)W BI(IL) I uo) = (I'L')J'w'a|(IL)Tup) | (1v.73)
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and

(I'LYJ' W' B|Ve|(IL)Jpe) = {(I'L")J' W' a|V1|(IL) T uB) (IV.74)

from (IV.69) and (IV.72) by switching primed and unprimed variables and substi-

tuting z(|F — E|) for z(r). (IV.69) can be rewritten by expressing the spherical

harmonics through associated Legendre functions of the first kind,

=

2L + 1.‘ (L — | M) plM|
4 (L +|M|)! L

|V (6,0)] = (cos 6) , (IV.75)

the sign of Yrar is (=)™, if M is positive, and + otherwise. Since either m,; or
—ny is non-positive, there will be exactly one factor (—)™ from the two Y’s, hence

(IV.69) is equivalent to:
I (R)

: ! — ) (I -
:%[(21+1)(21’+1)]E Z;(rl ‘_ A)[(l |_z|)f(l i

ni —m; O

3
=
g

.

w
——
oo 1 _ . _ _ = ~
/ r? dr/ d(cos 8, )¢ (r)z(r); (7 — R!)Pllm"(cos 0,)Pl',m'[(cos 0.—r) .
0 —1
(IV.76)
Thus, I(,Q})A(R) is proportional to a sum over m; of the Wigner 3-j symbol times a

function that depends on the absolute value of m; only; by the symmetry property

! !
of the 3-j symbol, i.e., ( _l l_ g) = (—)I‘H +A < : : A), the sum

m; —my —m; m; O

reduces to the summand for A = O plus, in the case that [ +{’ + A is even, twice the

sum from 1 to {:

i
LU A _ I A
2 (mz —my 0>K(|m’|):<0 0 0>K(0)
= l (IV.77)
) ' A
+ 2614147 even Z (fnz o 0) K(m) .

mp=1
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(IV.77) also proves parity conservation, when applied to (IV.76), by showing that
I vanishes, if [ +1' + A is odd. The recoil corrections would allow non-normal
parity transfer with [ + I’ + A odd. Most interesting from our point of view is the
consequence of (IV.76) and (IV.77) that II(,ZI)A(R) = IE-?A(R), if z(r) is transformed
to z(|r — ﬁ[) under the integral sign. (IV.73) and (IV.74) follow, because the 3-j
and 6-j symbols in (IV.72) and hence the whole expression on the right hand side

are invariant under an exchange of primed and unprimed variables.

IV.7 Even and odd states

There is an additonal symmetry in the problem, of which we have not taken
advantage yet: the indistinguishability of the two 1°O cores. The best method of
using this is to change the basis from left and right states o) and |3) to the even

and odd linear combinations

"+") = —=(|a) + |6)) (Iv.78)

Sl

and

noom _]:_ a) —
| - >— v/ﬁ(' > |ﬁ>) . (IV79)

The quotation marks on the + and - shall indicate that this is not our final definition
of the |+) and |—) states. In this section and unless stated otherwise, we will omit
the indices of angular momenta, it is always to be understood that bra states carry
indices I'M} and ket states carry indices IMj. Later on, we treat the effects of the
basis change on the complete state, we will use an accumulative label A’ or A to

denote its angular momentum quantum numbers.
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We want the even and odd states to decouple, i.e., we want
<II+II|X|II_II> _ ‘<II_II'XI/I_+_II> -0 : (IV.SO)

for our four choices of X. If this is achieved, the number of channels that are
coupled to each other is cut in half. This will make the numerical computations
much easier, because the computing time grows much faster than linearly with the

number of coupled channels. Necessary and sufficient for (IV.80) to hold is that
(a]X|8) = (B|X|a) (IV.81)

and

(| X|a) = (6] X]8) (Iv.82)

However, as it stands now, (IV.81) and (IV.82) are fulfilled neither for X equalling
Vi or Vy nor for X equalling VZ or V. This inequality can be remedied for V; and
V, by considering the complete neutron operator U = V; + V2 + T, instead of V; and
V., separately, (IV.81) and (IV.82) certainly hold for X = U. To restore (IV.81) and
(IV.82) for the derivative operators we need to return from the representation of the
previous section, where the single particle wave functions of « states have argument
7 and those of 3 states argument r — I;’:, to a more symmetric representation (cf.
Section IV.5), where left states (let us call them |&)) take argument 7+ R/2 and
right states (|ﬂ~)) F— }i/z Clearly, this change of the origin has no effect on the

matrix elements of 1 and U,

(@l8) = (al) (IV.83)
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and

(a|U|0) = (aU|B) . (IV.84)

However, because not only ﬂ~, but also & states depend explicitly on ﬁ, the corre-
sponding equations to (IV.83) and (IV.84) for the gradient and the Laplacian do
not hold.

To derive the correct relations between derivative formfactors of left/right and
even/odd states, we can safely ignore the neutron spin, because the operators are
spin-independent, and write

&) = o (F+ R/2)
B) = a7~ RJ2)
(IV.85)
(&l =vi(r+R/2)
(B} = i (7~ R/2)
Then, for the transfer
(@I(918)) = [drui 7+ £/2) [Tl = Bp2)
= [@F(Fui(+ B2t~ B2) = (819)16) = 169 (@13) = Yal(oI¥13))
(IV.886)

similarly
GI(V48) = [ @i+ B2 (TPual- F2)
= [erTuitr+ Bi)] - (Vual - B12)] = [ @040+ Ri2)oatr - Br2)

= ((&|V?)|8) = 1L.V*((&l5)) = Ya({a]V?(B)) |
(IV.87)

are found by applying the definition of the states, integration by parts, and use of

the relation 6@ = - FrE/2 We find for the inelastic formfactors
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in the same way

GI(F18)) = [ @it B2 [Fualr+ R/2)
= /d"’m;(ﬂ R/2)[Vipo(F — R/2)] (IV.88)

= —(B|(V18)) = —12(8/(VI8)) = 0.

and

(@1(91a)) = [ dri(+ Bf2) [V hsels + B/2)
= / dPrp; (F - B(2)[VP(F — R/2)] = Ya(BI(V?15)) (IV.89)

= v [ @i () [V - B)] = 1(3I(7)8))

The relations (&|V|8) = (3V]a), <&(|ﬁ$&>) = ((&6)\&) and analogously for the

Laplacian follow trivially, too.

Thus, (IV.81) and(IV.82) are proven for X = 1,U,V?, or V for & and 3 states;
moreover, (IV.86)-(IV.89) allow us to express the matrix elements in the new basis

through those in the old basis as presented in Section IV.6.

The above relations also hold for the complete states |(IL)Juy) for X = 1
and X 4+ U by linearity; e.g., from (IV.83), i.e., <I'M}&\IMIB> = (I'MjalIM;3),
follows immediately (I'L')J'u' &{{(IL)JuB) = ((I'L")J'w' o|(IL)J u8). The same is

-5%5, because this operator does not affect the

true for the radial derivative, X =
spherical harmonics in (IV.35). However, X = V? requires some more work. We

use a cumulative index A to abbreviate the set {ILJu} and analogously A4’ for
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{I'L'J'w'}. (A& V2|AB) is a sum over terms that contain
/anYg,M,L (QR) {YLM(QR)u’M;a}v?uMIB) (I My&|IMB) V¥Y a1, (QR)
+2 (Vs () - (I'M;7&|V]/01)|
= [@00¥ing, () Ve (0m) Yl Myl V210415

+ (' Myl IM18) V¥ g, (Qr) + (VYo (Qr)) - (I'MjalVIIM8)| .
(IV.90)

(The equality follows from (IV.86) and (IV.87).) The first two amplitudes on the
right hand side are calculated in Section IV.6, the third we get from expanding the
integrals over dQ1g in the known (A’a:V2|AB) (cf. (IV.38)), in the same way as we
have done here, the result is the same as (IV.90) except that no factor 1/4 appears
in front of the amplitude involving the Laplacian, and the factor 2 remains in front
of the amplitude with the gradient. We can extend by linearity from the integrals

over d{lg to the full matrix elements and find:

. 92
(A'&|V|4B) = + [ s R(A'a| AB) + 3 (A'a|D|46)]
L(L+1)+L(L'+1) '

- 2 R2 <A'OélAﬂ> .

The amplitude with & and B reversed can be calculated in the same manner, and
indeed

(A'B|V?|AG) = (A'&|VEAB) . (IV.92)

The derivation of the inelastic formfactors is simpler, because in the expansion
that corresponds to (IV.90) (I'M}3|V|IM;3) is zero by parity, so that the result is
simply:

L(L +1)

(A'&|V? Ad) = (A'B|VEAB) = | 1Ty — =

]5JJ'5]['5LL’5HFJ . (IV.93)
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In the following, we summarize the matrix elements between complete states

in the new representation

At) = %( |AG) + | AB))
7 ~ (IV.04)
142 = 2 (1a8) - 4y

The following relations can be derived rather trivially from the definitions (IV.94),
the expressions of the matrix elements with the tilde through those without, and
the results for these matrix elements in the old representation that were derived in
Section IV.6. We define a label p to stand for either + or - in the ket state, and a
corresponding label p’ for the bra state, (—)? or (——)p’ is the eigenvalue of the parity
operator, i.e., (—)? = 1,if p=+, and (-)? = —1, if p = —. Then,

((I'L")J'u'p"| X|(IL)J up)

B _ (IV.95)
= Sy ({1 L)' &I X|(LL)T ) + ()P (L)W BIXI(IE)T ) )

Thus,

. ~ = a
() R (A9 4p) = (=) Gy -

(A'alAB)

(17)
(A'p'|V*|Ap)
L{(L+1
= bpp! [*_(‘122—)(5JJ'5W'5H'5LL' + (=) (A a|AB)) + /a6y 518uwbrp6rr Tt

2
+ 1/4(~)”(581¥(A'a|Aﬂ) + %%(A’a]Aﬂ) - %(A'alD}Aﬁ))] ,

(545) (A'D'|Ap) = bppr (85186181 + ()7 (A 0] AB)]

(iv) (A'p'|U|Ap) = bpp [€1(65 18 brr:6LLr + (—)F (A’ AB))
+ (A'a|Va|Aa) + ()P (A’ a|V1]|AB)] .
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Ty is given by (IV.60), (A’a|AB) by (1V.69) and (IV.71) with X = 1, (A'a|V]|AB)

by the same equations with X = V;, and (4’a|V,|Aa) by (IV.51) and (IV.52).

1V.8 The coupled channels equations

We are now able to write out (IV.33) with all formfactors (¢)-(¢v) inserted. We
utilize the even and odd states |p), and again use the cumulative indices A and A’
for 7 and ¢, respectively. It is possible to combine the term with 2/R %(A’a]Aﬂ)

in (1), which is multipied by x 4(R) in (IV.33), with the first term that arises, when

dd (xa(R)/R) is expanded into 112 dxg}zR) X“}Z(ZR) , this last expression is multiplied

by %(A’alAﬁ) in (IV.33). Much more simplification is not possible, and the net

result is:
5 {A'plAp) Sz xa ) + (-1 (3 (Al A8) Jxa(R)
3 ,
n [_L(L + 1)2—25’(1;’ + 1) <A'p|/lp) + 1/45AA'TI + 1/4(_) aa}:Z (A’alAﬂ)
() o (Aal4B) + ()P (4'a|DlAg) — 27 ({A'alVa] Ac)
F P a8 + (V) + - B)(a'plan) xa(®) | 0.
(Iv.96)

(IV.96) is a set of coupled equations, A’ labels the equation number. (IV.96) is valid
for p even and odd, but the two parities do not couple to each other. The two terms
containing derivatives of x 4 (R) can be brought into a form that is reminiscent of a

Sturm-Liouville equation: 53;( A’plAp/ 7X4). (IV.96) can be abbreviated to

S [(faaxa) +ganxal =0 (IV.97)
A

where the / denotes differentiation with respect to R. Since f and g are both real
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and symmetric, unitarity follows from the difference of the two derived equations

> X (fanxXs) +gaarxoxa] =0,
A,A!

N (1V.98)
Y [xalfaarxia') +9aaxaxi] =0
Wy
this difference is
0= [xa(FanxXa + Faaxh) = xa(faax' + faaxa")]
Wy
; (IV.99)
x !
=z Y fan (XX — Xa'xa)
W

proportional to the derivative of the flux.

As a final note we mention that all matrix elements of the complete states are
functions of R only, we have used the notation of the partial derivative in (IV.96)
and above for convenience in the transition from the equations of Section IV.6; and
also all formfactors are independent of ﬁhe spin projection p (provided that bra and

ket state have the same spin projection, otherwise the formfactors are zero).

IV.9 Renormalization of energies
The experimental energy E., i.e., the kinetic energy that target and projec-
tile (in the center-of-momentum frame) have when they are far apart long before
the collision, determines the asymptotic wave number k of the incoming channel ¢
(precisely: Ii, Li,Ji, pi, Vi)
lam

k=25 (IV.100)

For large distances R, the equations (IV.96) decouple into

d? 2m
qraXa(B) & [YaTa + S5 (B~ ca)|xa(R) = 0, (IV.101)
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so that the channel A has asymptotic wave number

[0

2
kO = [1/Ty + -h—T(E —e4)] , (IV.102)

(this wave number is the same for all channels A with the same spin I, we will

)

use the notation k; for kl(,fo , if A includes I, later on, but this must be clearly
distinguished from the local wave number k4(R)). From (IV.100) and (IV.101) we

find

hZ
E,=F—¢+ —T; , (IV.103)
8m

and

2m.

k) = [Vy(Ta - T) + 3 (B~ (ea - )] . (IV.104)

But now the definition of the @Q-value becomes ambiguous, on the one hand it is

the (negative) excitation energy in 170, i.e.
Qa = ¢ —€a ; (IV.105)

on the other hand it is the difference in experimental collision energy for different

channels,
hZ

:2m

Qa ()2 - k2] . (IV.106)

From (IV.104) it follows that Q4 # Q 4, if Ta # Ti. The reason for this discrepancy
lies in the neglect of recoil corrections. We choose to make (IV.106) the physical
Q-value in order to give the right asymptotic behavior to the wave functions and

thus treat the dynamical effects of the Q-values correctly.
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IV.10 IWBC

The incoming wave boundary condition cannot be formulated as unambigu-
ously in the multi-channel case as in the one-channel case. In order to preserve
linearity of the boundary condition of each channel individually, we keep only the

diagonal contributions to the local wave number. Then,

4
dR

((AplAp}%%) +k2(R)xa(R)=0 . (IV.107)

k2 (R) includes all the diagonal contributions from (IV.96). As a further approx-
imation we neglect %(Ap|Ap) and choose as boundary condition that near the

boundary Ro

xa(R) = —;Z(—Rjexp(—z‘/;: /cA(R)dR) : (IV.108)

where N is an arbitrary normalization constant (so that we really stipulate only

the logarithmic derivative of x4 at Rg), and

wa(R) = —AB)
V{Ap|Ap)r

(IV.109)

IV.11 Cross sections

We assume that the initial configuration before the collision is an « state, i.e., in
Fig.13 the 170 impinges from the left onto the 1°0 that comes from the right. Then
the boundary condition for large R stipulates that asymptotically the wave function
consists of (1) a Coulomb function (i.e., a plane wave modified by the infinite-range
Coulomb potential) in an o state with spin I = I;,, and spin projection y along

the direction % of the wave vector of the Coulomb wave function (u is also the spin
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projection of the total angular momentum J, because the Coulomb wave function
does not carry an angular momentum component in the direction of its motion),

and (2) of an outgoing spherical wave in all other channels.

Thus, the wave function can be written as

S

— T ,

|®,(R)) = S ; V2L + LiEt V(L0 L p| T 1) ;I xi?L,I,)(R) (I'L")Juy)
) '7, I, !

(IV.110)

where asymptotically for large R

Xtz (R) ~ w7 (b R) 8101, 1.1 6ya — Syl e el (knR) . (IV.111)

(+)

We use the same notation as in Chapter III, u;"’ and u$)

are the spherical Coulomb
functions, and o is the Coulomb phase shift. Chapter III’s Sg becomes here a
SZE’L, 1y’ L' and I’ are the labels of the actual channel, to which the coefficient S
belongs, while L denotes the orbital angular momentum of the incoming channel in
the set of equations, from which S is determined (the incoming spin is always I;n,
so an extra index is superfluous, similarly, -y is the partition of the actual channel,
whereas an index for the partition of the incoming channel, i.e. «, is superfluous,
too). J and u are constants of motion of (IV.96). Then the construction on the
right hand side of (IV.110) produces exactly the required asymptotic form for ®,.

The radial wave functions x do not carry an index u, because the formfactors in

(IV.96) are independent of u as shown in Section IV.6.

When the incoming flux is 1, the fusion flux of one set of channels for given J
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and L is

Z > { LYJuy'|(I"L") T un")

Ll II ILII III 1H

il 3

* / « d "
X Xormyggp (XL(L'I’)) (Xi(L’I’)) it }

dR XL(LIIIII)
(IV.112)

The complete fusion cross section is obtained from multiplying by the appropriate
coefficients from (IV.110). Also, besides a double summation as in (IV.112), there
will be a sum over J and L and additionally one over, say J , IZJ; this comes from
expanding |®,) once as a ket and once as a bra state and calculating the expectation
value of the flux operator between these. However, because the |(IL)Ju~) do not
mix for different J, the double sum over J and J collapses to one sum. Also, as we
will see, if we average over incoming spin projection u, the Clebsch-Gordan coeffi-
cient in (IV.110) and its counterpart from the complex conjugate give a Kronecker-6

in L and L under the sum over y, i.e.

2J +1

S (LTl T (EOLinp| T =
n

Therefore, different L’s in (IV.110) do not mix either. When all the coefficients are

sorted out, the complete (unpolarized) fusion flux becomes:

T 1

M, 712 (2J +1)F] . (IV.114)

Ofus =
Because solving the coupled channels equatlons is easier in the even/odd than in

the left/right basis, we will express cross sections in this representation. (IV.110)

becomes

— 1 Jm . ,
1®,(R)) = ﬁ\g j[Z V2L + 1YY L0Lau|Tu) Y x7ip (R I(I'L)Jup)

p, L', I!
(IV.115)
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by the definition
Xiz()L'I’)(R) = Xi?L',r')(R) + ()P XifL,p)(R) , (IV.116)
and the boundary condition for large R becomes:
Xi’(’L,,,)(R) ~ u(L kpR)bp1,, 61 — ngL,I,)ezw“u(J)(kpR) . (IV.117)

Hence,

SJ(L'I') = S7twm + (=) Sz{(ﬂm') (Iv.118)
In (IV.117), unlike in (IV.111), there is no Kronecker-é symbol for the partitions,
so that the boundary condition for the ingoing flux is the same for even and odd
states. Because of the additional factor \/% in (IV.115), there will be a new factor
1/o, when Fyj is expressed by xi’(’ Ly’

Z Z { IILI J/J,pl( "L")J;l,p)

L’ I'p L'",I"p
X [X‘II,[()L"I")E% (XL(L'I'))* - (X‘I],;()L’I’))* d(jQXL(LHI")] }

(IV.119)

Now, also p is a constant of the motion. In the formalism of this section, no use has

been made of the conservation of parity of the radial motion (i.e., L’s of different

parity do not couple). An insertion of this constraint into the notation would just

make the expressions longer. The equations as stated are perfectly correct, the

radial wave functions xi’(’ L) and thus the coefficients ng’ 1) are simply identical

to zero if L and L' have different parity.

The elastic and inelastic cross section follow from the asymptotic form of the

wave function |®,) for large R. We have to extend the formalism of Chapter III to
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the multi-channel case to extract a scattering amplitude f(6, p) from the scattering
state. An additional complication arises from the different application of the Pauli
principle: An elastic (inelastic) scattering into a solid angle given by 8 and ¢ is in
principle undistiguishable from a transfer reaction into the ground state (excited
state) at angles (7 — @) and (7 + @). Therefore, the amplitudes for these processes
have to be added coherently. Hence, for the inelastic cross section from spin I;y

into spin I’ and spin z-component from u into p':

do o 2
E(I"‘ = I = ') =[5 (8,0) + fh p(r— 8,7+ 0)|” . (IV.120)

Ioi and f Ip, ur are the scattering amplitudes extracted from the o and 3 components
with appropriate spin labels of |®,) and we dropped the index R on # and ¢.
In the formalism of Messiah?® for matching the asymptotic wave function to in-
and outgoing spherical Coulomb funci;ion, the amplitude fc of the pure Coulomb

scattering solution must be added to the elastic amplitude:

99 (Lin = Tinots = 1) = |75, Or10) + o7 = 0,7+ ) + By fo 8,10) |
(IV.121)
Why fc is added only to the elastic channel with ' = g, can be explained both
formally and physically: Formally, by choosing the form (IV.110) with asymptote
(IV.111) for |®,), a Coulomb scattering wave function has been subtracted in the
incoming channel, therefore the corresponding amplitude has to be added back on
in (IV.121) in that channel only and not at all in (IV.120). Physically, if there were
no nuclear potential, the Rutherford scattering alone could not produce inelastic

excitation, transfer, or spin flip, therefore, the cross section would be the Coulomb

cross section in the incoming channel and zero everywhere else.
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(IV.110) becomes asymptotically (cf. (IV.111)):
1@, (R) Z\/2L+ 155 (LOT, ] T 1)

Z [u(;)(k,mR)&Lyamsm,.n ~ S{tumer w6 R)]  (1v.122)
v, L' 1!

S (LW = W)W | T ) Ve ey
u .

when the definition (IV.34) of |(I'L')J'uv) is applied. The parity transformation

property of the spherical harmonics is
Yim(r — 8,0 +7) = (=)'Yim(6,) . (IV.123)

The scattering amplitudes ffi, and f'f, w can now be had from (IV.122), we find

for the sum

fi(0,0) + fﬁ“,(w —0,mr+¢) = iﬁ Z\/2L + 1{LOL;pp|J )

1k 1
Z(Si’EXL’I’) + (_)L' Sg(ﬂL:I:) - 5LL’6I’I.-n)82iaL’ (LI(” - .u")I’ullJ/l'>YL'(p;—p,') (0, 90)-

L'
(IV.124)

The sum or difference of the S’s is just the even or odd coefficient ng’ L11vy» €ven if

Jp(L")

L' is even, odd otherwise. We will denote this quantity as S L(L' 1"

An unpolarized cross section from spin I, to I' # I;, is the average over

incoming spin projections u and sum over u’ of the cross section (IV.121):

do 2
E_zI,’n-{-lzlfIl ’ +f[l I( —0,7r+t,0)| . (IV125)

(IV.125) is evaluated from (IV.124) by expanding the product of two spherical

harmonics as the sum over spherical harmonics, and after somewhat lengthy algebra
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of the angular momenta coupling matrix elements, the result is:

do , , 1 1 N T z
o) =5 lzEEZZ(quL]L)(zJju 1)\/(2L+ 1)(2L +1)

J,L
Z[Sfpﬂiﬁ)] 5P g2ilons- "n')\/zL' 1)(2L' +1)
L(L'I") L(L'I'
Ll’f/
L' " AN(L L A\[L L' A\fL L A
Z(2A+1)(0 0 0)(0 0 (J){.f J I’}{j J Iin}PA(wsa)'

A
(IV.126)

d—g depends only on # and not ¢, because for the unpolarized cross section no
azimuthal direction is singled out. (IV.126) can be integrated over dfl to form the

total inelastic cross section with 170 spin I':

o(I') = /dﬂ—— )

IV.127)
- m Jp(L') |2 (
R
J,L,L'

The unpolarized elastic angular distribution is (from (IV.120)):
do . 1 N2 2 Ny+
2@ =5 ;(Z,uw +lfcl? +2R[(7Y) " fo)])

g (IV.128)

= |fel® +

z,mlﬂ(z,umm_ () e])

where the nuclear scattering amplitude , is given by the sum of direct elastic and

ground state transfer amplitude with appropriate argument:

fN00) = f7 w(0.0) + f], wlr =07+ ) . (IV.129)

The Coulomb scattering amplitude f¢ is given by (cf. (IIL.13)):

n_exp(~-in In(sin® 8/2) + 2i00)
2k sin?(8/2)

fc(0) = - (IV.130)
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The first summand in (IV.128) is the same as (IV.126) with I' = I;» and the
Coulomb wave subtracted, the second is just the Rutherford cross section, and the

third can be had from (IV.124) via:

S

SR 80) + L= 8w ) = V5 D D VEL+ H{L0LnulJu)

H J,L,pu
Z(SZfJErLI'.-),,) — bppr)e¥ 7 (L'0Linpu|Ju)Y1r0(6,0)
: (IV.131)
The sum over p of the two Clebsch-Gordan coefficients equals 6/ (2J+ 1)/(2L+1),

and if the spherical harmonic is rewritten as a Legendre polynomial and the sum

over L' performed, (IV.131) becomes

S (2 w00+ fE(r— 8,1 +0))

g (IV.132)

1 J L .
= ik 227 + (S5 — 1) Prlcost) .
J,L
The total elastic cross section (the integral over d{l of (IV.132)) does not exist

because of the infinite range of the Coulomb force.

IV.12 170 levels, potential, and wave function

The energy level scheme of 17O that was described in Section IIL.1 is unattain-
able from just a central potential without spin-orbit coupling (because the 1s and
1p states will always lie lower in energy than the 1d state), but this is exactly what
is needed for the formalism of the previous sections. A solution to this dilemma is
to create a spectrum with 1d and 2s level at the physical energies of 7O and to
ignore the lower 1s and 1p state (they have much lower energy now). We ignore the

high-lying 1/2~ and 5/2~ states of the 17O spectrum because of their high Q-value
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and their opposite parity to the ground state, we expect very little cross section in
these channels compared with the 1/z* channel in the 170-1°0 subbarrier reaction.

Our potential is the sum of a Woods-Saxon and a Gaussian potential:

v(r) = - -~ t Vi eXP(—;z—) ’ (IV.133)

with parameters Vo = 60.827 MeV, rq = 3.034 fm, ¢ = 0.66 fm, V; = 27.3 MeV,
and r; = 1.0 fm. v(r) is plotted in Fig.14. The two energy levels certainly do not ﬁx
all five parameters Vo, Vi, a, 7o, r1, but we want the diffuseness a and radius ro of
our Woods-Saxon potential to be as similar as possible to that of the Copenhagen
group.®® However, their potential includes a spin-orbit part, so that we have to add
a Gaussian to reproduce the energy levels. Thus, a and ro were taken from the
Copenhagen potential, r; was fixed at 1 fm, and V; and V; were varied. With these
parameters, we find the eigenstates of the Hamiltonian at -4.147 MeV for I = 2 (the
ds /2 ground state) and -3.276 MeV for / = 0 (the sy1/2 excited state). It is the large r
behavior of the 10-n bound state wave functions that determines the formfactors,
because the integrands of (IV.51) and (IV.76) peak for large r and |7'— R | if the two
nuclei are not too close (and R does not become smaller than the IWBC radius).
Therefore, the formfactors are insensitive to the exact shape of v(r) for small r as
long as the eigenenergies and the tails of the wave functions are correct.
Numerically, the eigenvalue problem of the bound state radial wave function of
a particle in a given nuclear plus centrifugal (with angular momentum /%) potential
is solved by an iterative method. The eigenvalue, i.e., the bound state energy,
is guessed, a solution that is regular at the origin integrated outwards to some

matching radius rps, and then a solution is integrated inwards from some large
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radius outside the range of the nuclear potential to rps. The boundary condition
for the inwards solution is that it behaves as the exponentially decaying Hankel

function of order [, i.e.,

pi(r) ~ Nlrh,((l ,))(i'czr) , (IV.134)

/2
i ”;':’ | (IV.135)

and Ny, the asymptotic coefficient, is some normalization constant. This Hankel

where

function is a solution to the Schrédinger equation with the centrifugal potential
only (there is no Coulomb potential, because the neutron does not carry electric
charge). The ingoing and outgoing wave functionc match logarithmic derivatives at
ru if an eigenvalue was used for the energy in the Hamiltonian and in the boundary
condition for large r; thus, a zero in the difference of the logarithmic derivatives
must be found as a function of trial energy by some standard numerical method
such as a half-point algorithm. The integration cannot be integrated outwards
to large distances or inwards to small distances, because of an exponential rise of
numerical accuracy errors due to the inadvertent small admixture of the unwanted
other solution of the second order differential equation.

The potential parameters are found by simple trial and error. When the po-
tential and its eigenfunctions are found, the two-dimensional integrals J I(,I;)I’ A(R),
I I(,'j?,’ A(R), and Jp 1,a(R) can be computed by numerical integration. The integral

over the angle is performed with the Simpson algorithm, the infinite integration over

dr proves to be much more accurate by a simple summing up of the integrand at a
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few hundred mesh points (there is good convergence due to the exponential decay
of the wave functions) than by a Gaussian integration at tens of points. There are
six sets of labels {I’, I, A} for which I{*) has to be calculated, namely { /2, 1/2,0},
{12, 52,2}, {5%2, Y2, 2}, {52, 52,0}, {5z, %/2,2}, and {5/2, 5/2,4}. For I!) and J
there are only five sets, because {5/2, /2,2} and {1/, 5/2,2} give the same result.

The symmetry property (IV.23) provides an additional constraint on the integrals:

(v) (v) _
Ty 50~ 5,15, = (€1 = €55) 1p,55,2 5 (IV.136)

this is used as a numerical check.

The sixteen integrals are needed as functions of R from about 5 fm to about
25 fm, with small step size, about 0.01 fm. Calculating these sixteen integrals for
that many points would require hundreds of hours of CPU time on a VAX 750.
Luckily, the integrals vary slowly over the small step size and fall off exponentially
for large R. Therefore, we calculate the integrals at R from 5.5 fm to 13.5 fm with a
step size of 0.1 fm and at R = 19.5 fm. An exponential function is fit to the values
at 13.5 fm and 19.5 fm and this exponential function is taken as the integral for
all R larger than 13.5 fm. Quadratic extrapolation is used to refine the mesh to a
step size of 0.01 fm. (IV.136) is imposed exactly, because any violation of it would
destroy unitarity in the coupled channels equations, and the unitarity condition is
used as a check of numerical accuracy in the integration of these equations. The
integrals J, 7(1), and I () are plotted in Figs.15-17.

In summary, we estimate the numerical error in the calculation of the formfac-
tors to a few percent within our model and for given potential, the error is thus less

than that resulting from the neglect of recoil. Energies and formfactors are consis-
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tent in such a way that, when they are inserted into the discretized coupled channels
equations, make them a practically exactly Hermitian finite difference system, and
all flux non-conservation will stem from numerical inaccuracy in the integration of

these equations.

IV.13 Numerical solution of the coupled channels equations

Whereas the adiabatic system of equations

X!(R) + k2 (R)x:(R) = > _ ui;(R)x;j(R) (IV.137)
J#

can be solved rather efficiently for most systems, the numerical integration of the
non-adiabatic equations (IV.96) is rather cumbersome. For systems with not too
large coupling terms u;(R) and a non{trivial number of channels (say: more than
one or two), (IV.137) is best solved in a Born series:37 As a first step, the elastic
channel is integrated with the wave function in all other channels set to zero; then,
in each subsequent steo, the wave function in some channel [ is integrated by using
the solutions so far obtained for the other channels, ¢ is chosen by cyclically going
through all channels. The set of wave functions converges for small enough u;;
(sometimes at least in an asymptotic way), but often a Padé resumming accelerates
the convergence. The integration of a wave function x; can be done very efficiently
with the Numerov algorithm.®? This efficiency stems from the asymptotic shrinking
of the local error in the integration with the sixth power of the step size. Unfor-
tunately, in this algorithm, calculation of x; at a mesh point requires knowledge of

the value of the right hand side of (IV.137), and hence of all other channel wave
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functions, at this point. This is the reason for the somewhat awkward sequential

calculation of the channels.

The functions x; that we are after correspond to continuum (scattering) states,
the numerically stable direction of integration is outwards. Thus, the IWBC is
easily incorporated by choosing an arbitrary value for x; at the IWBC radius and
fixing x; at the next mesh point so that the (discretized two-point) logarithmic
derivative of x; is —tk;, where k; can be taken at the IWBC radius, at the next mesh
point, or - most accurately - at the half-point between these two possibilities. The
other boundary condition, namely that x; at large distances goes asymptotically
as u(t)(k;R)6;c + A;ul~)(k;R), where e denotes the ingoing (elastic) cha,nnel,l is
incorporated as follows: In step one, the calculated elastic wave function x. is
matched to u(~) and u(*) at large R, then x. is scaled so that it has coefficient of
u{*) equal to 1. In subsequent steps, ¥; is calculated twice, with different starting
value (at the IWBC radius). Since the coefficient of u(*) is a linear function of the
starting value, these two solutions determine the starting value that produces the
appropriate coefficient (i.e., 1 for ¢ = ¢, and 0 otherwise). The x; is then once more

integrated, this time with the correct starting value.

Despite this triple integration of each step in the algorithm and possibly a large
number of steps before convergence (maybe ten steps per channel), this method is in
most cases much more efficient than conceptually easier methods that require matrix
inversion at each mesh point or that do not have as good convergence properties in

the local integration error as the Numerov algorithm.

However, the non-adiabatic equations (IV.96) cannot be integrated by the Nu-
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merov algorithm because of the occurrence of a first-order derivative in them. We
adopt a simpler three-point finite difference formula for the second-order deriva-
tive and a two-point formula for the first-order derivative, namely (x:.“H - 2x7 +
x* ') /h? and (! - x?~1)/(2h), respectively, where the upper index on the wave
function denotes the mesh point and h is the step size. The local error of this dis-
cretization approaches zero as the fourth power of the step size. In practice, this
difference of fourth and sixth power hehavior makes a considerable change in the
acceptable step size in our system (the simpler formula requires a step size of the
order one tenth that of the Numerov algorithm for comparable accuracy).

Whereas in the Numerov algorithra knowledge of the inhomogeneous term (and
thus of all other wave functions) at mesh points number n — 1, n, and n + 1 is nec-
essary for the computation of the wave function at mesh point with number n + 1,
the inhomogeneous term is only needed at the n-th point for the simpler algorithm.
" Therefore, the sequential Born series is no longer advantageous over a direct inte-
gration, where at each mesh point all channels are calculated simultaneously.

The boundary conditions for large R are imposed by choosing the right lin-
ear combination of a complete set of solutions (each of which consists of one wave
function in each channel). Determination of this linear combination involves (nu-
merically costly) matrix inversion, but only at one point.

Before integration, the equations are brought into the discretized form

= (EG +GRgTY (1V-158)

J
It does take matrix inversion at each point to transform (IV.96) into (IV.138), but

the matrix inversion is independent of the value of the energy, and thus needs to
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be performed only once for the wave function determinaton at different energies.
Also, the number of channels involved in each integration is only four (or even 2 or
3 for J = /5 and J + 3/2, respectively), namely the s/ channel with some L = Lo,
and ds/ channels with L = Ly — 2, L = Lo, and L = Lo + 2. Matrix inversion of
a 4 X 4 matrix is not too CPU time consuming, but this method would become

unacceptable for a large number of channels.

We use a step size of 0.01 fm and integrate from ro = 5.5 fm to between
r1 = 22 fm and r; = 24 fm, the highest total angular momentum taken into account
varies from J = 161/; to J = 181/;, depending on the energy. The convergence
in angular momentum is good for the fusion cross section, but for the inelastic
cross section at the highest energies a somewhat larger J would have improved the
precision. The IWBC, however, allows only a certain orbital angular momentum
L, because otherwise the centrifugal potential will fill in the attractive pocket of
the nuclear plus Coulomb potential, and instead of incoming and outgoing wave
the exponentially increasing and decreasing waves become the eigenfunctions of the

Hamiltonian.

Unitarity is achieved to better than 1% in all channels, and the error in the
sum of fluxes is always much smaller than the fusion flux. This is not true if the
equations are integrated without the non-adiabatic terms, in that case the total
unitarity can be violated up to 1% in the cases we tested, but the error can be

larger than the fusion flux by more than an order of magnitude.
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IV.14 Results and comparison with experiment

The results of the calculation together with the available experimental data are

plotted in Figs.18 to 21.

Fig.18 shows the measured fusion cross section from Thomas et al. together
with our results for 170O+1%0, for comparison, the calculated curve for 1°0-+160 is
also presented. The s-wave barrier height is at about 10 MeV. Above this energy,
the data are well reproduced, in this region, the channel coupling is largely irrele-
vant for the fusion process, and the 170-180 cross section is proportional to that
for 180-16Q. This trend would hold for all energies in a one-channel calculation.
However, the experimental data clearly show the typical subbarrier enhancement.
Our calculation reproduces this enhancement down to 8 MeV, i.e., 4/s the barrier
height. Around 9 MeV, our model even overpredicts the data slightly, however, this
error is within two (experimental statiétical) standard deviations. Also, Thomas et
al. have shifted down their raw data normalized to their best measurement of beam
current so that the data agree with the scaled °0+!%0 values at above-barrier
energies. For the measurements at the lowest energies, i.e., between 6.5 MeV and
8 MeV, theory and experiment deviate and cannot be said to be in quantitative
agreement any more. If we accept the experimental data as right, then the chan-
nels of our model do not provide enough entry into the compound nucleus. We
conjecture that the constraint of inert 'O cores causes the underprediction. In an
improved model this constraint could be eased by allowing a certain shell model
admixture of particle-hole excitations of the 60 core in the 170 excited state (or

perhaps even the ground state). However, it might well be that the Hilbert sub-
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space thus spanned is insufficient, too, and that the shape of the two-nucleus system
shortly before it reaches the compound nucleus stage must be taken into account in
a much more sophisticated way at the lowest energies. It is possible that a correct
antisymmetrization between all nuclecns or at least all surface nucleons becomes
necessary, too. Here, this unusual and very interesting feature of the subbarrier
process shows itself clearly: that the more complicated, interior and usually higher
energy nuclear structure effects reveal themselves at the lower energies. However,
there remains the gratifying result that for quite some region below the barrier,
the IWBC model with addition of the obvious channels in simple parametrization
proves to be successful, when all implications of the model are taken into account

very carefully.

The excitation function of the 1/;;:+ state in 17O as measured by Thomas et
al. and calculated here is plotted in Fig.19. The data lie consistently below the
theory, from 25% at the lowest to 70% at the highest energies. This is not surprising
because of the neglect of spectroscopic factors for ground and excited state. The
spectroscopic factor S is a measure for how much a given physical state is made up of
a theoretical single-particle state. S is defined operationally for a specific reaction,
e.g. S has been measured for 170 by the stripping reaction °0(d,p)!70. Here S
is defined as the measured cross section into the specified state of 170 divided by
the DWBA (distorted wave Born approzimation) prediction using the model wave
function of the state. Cooper et al.®® thus find spectroscopic factors of S5/2 = 0.81
for the 8/2% ground state and S,/ = 0.78 for the 12" excited state at their lowest

bombarding energy of E; = 25.4 MeV with a decreasing tendency of S for decreasing
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energy. In a pure DWBA calculation, the 10+170 inelastic cross section would be
multiplied by the product S5/, times S;/5. Gelbke et al.®® measured an inelastic
differential cross section for 170(*¢0,1°0)170* at Eiro = 22 MeV, corresponding
to 11.3 MeV in the center-of-momentum frame. They can reproduce their data
reasonably well, when they scale their DWBA results by S,/385/2 = 0.7. This is
also the value by which our calculated total inelastic cross section has to be scaled
at that energy to coincide with the measurement by Thomas et al.. However,
this agreement in the product of spectroscopic factors comes only from an almost
coincidentally good agreement in the asymptotic bound state wave function. The
inelastic cross section in this energy range depends mainly on the asymptotic large
r behavior and not the interior of the single particle bound state wave function in
170, Indeed, Gelbke et al. find a reasonable fit to their data by using only the
asymptotic strength N; and no other information from the radial wave function
in their calculation. The N; are given by the asymptotic behavior of the ¢;(R)
(cf. (IV.134)). The values N; depend very strongly on the parametrization of
the single particle potential and can vary widely for different reasonable potentials
with the same bound state spectrum. Gelbke et al. cite N5/ = 0.363 fm=3/2
and Ny/; = 1.133 fm~3/2, whereas our potential gives N5/, = 0.362 fm—3/2 and
Nyj2 = 1.172 fm=3/Z. To get the same product S;/355/2N1/2Ns/2 = 0.288 fm~3,
we would need S;/;55/2 = 0.68. We have plotted the inelastic angular distribution
at E.,, = 11.3 MeV, we graphed both the unscaled results (no spectroscopic factor)
and the results scaled by 0.7 to bring the total inelastic cross section in agreement

with the measurement by Thomas et al. . It should be stressed that in our exact
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formalism (no DWBA), the cross section depends only approximately linearly on
the product S;/3S5/3- Nevertheless, a reasonably good agreement exists between

the data and our numbers, when they are scaled by 0.7.

Similar arguments apply to the elastic differential cross section, but here a
failure of fine-tuning of the ground state spectroscopic factor leads to large errors
in the ratio of complete to Rutherford cross section, because of the intereference
of the nuclear amplitude with the Rutherford amplitude. We present our results
without incorporation of a spectroscopic factor in Fig.21 for E., = 10.65 MeV.
This energy corresponds to 22 MeV in the lab for 1°0(}70,170)1€0, for which
measurements were done by Burzynski et al..4° The dashed curve in Fig.21 is a
simple one-channel calculation without transfer or inelastic excitation that uses
just the °0-1%0 potential. (Plotted is the ratio of the total cross section over
~ the Rutherford cross section.) This curve is in good agreement with an optical
potential calculation without transfer by Burzynski et al.. However, by fitting
their ground state spectroscopic factor and treating the transfer elastic amplitude
in DWBA, they achieve a very good fit to their data. Their final curve shows
small oscillations about the one-channel curve. Our calculation shows the same
oscillations (solid curve in Fig.21), but too pronounced for the large angles. The
reason for this is that these oscillations come from the interference of the nuclear
with the Rutherford amplitude (cf. (IV.128)), a small scaling error (i.e., a wrong
spectroscopic factor) will cause a large error in the cross section ratio, when |fc|?
is comparable to -2—;%3:19?[ [ fc]. This effect makes this reaction so valuable in the

determination of the spectroscopic factor and allows a precision in the extraction
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of this factor comparable only to magnetic electron scattering. We do not attempt
to fit a spectroscopic factor to achieve a good reproduction of the data a posteriori,
as our main goal is the fusion cross section. In the above notation, Burzynski et al.
use an asymptotic strength Ng,; of 0.354 fm~—3/2 and find 1.06 for the mean of .5'52/2.
In order to get the same product S§/2N52 /2 (which determines the cross section in

DWBA) we would need S5/, = 1.01.

IV.15 Coulomb excitation

In the formalism that we developed so far, the single particle excitations in 17O
are entirely due to the nuclear and not the Coulomb force, because the neutron does
not carry an electric charge, so that the neutron-nucleus potential has no Coulomb
component. If the recoil were taken into account, a small Coulomb excitation would
result from pushing the 160 core of the 17O nucleus away from the neutron by the
16.160 electric repulsion. However, it is well known that the recoil effect cannot

nearly account for the magnitude of the empirical Coulomb excitation in 170O.

There exists a well-developed semiclassical theory of Coulomb excitations, in
which the relative nucleus-nucleus motion is treated classically (Rutherford trajecto-
ries) and the probability of excitation is related to the dominant electric or magnetic
multipole reduced matrix elements between the ground and the excited state. The
reduced matrix element is determined from the experimentally known life-time of
the excited state. In the case of 170, the transition from the 1/2+ excited to the

5/a* ground state is dominated by the electric transition E2 of multipolarity two.
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The total cross section for Coulomb excitation is4!:

Z1€

%)2 B(E2) fual6) (IV.139)

—

where a = (Z;Z2¢2)/(Mwv?) is half the distance of closest approach of the two nuclei,
¢ = (a|Q|)/(hv) is the ratio of the collision time scale to the nuclear excitation time
scale, and B(E2) is the usual square of the reduced matrix element divided by
(2I;n + 1), where I, is the spin of the initial state. The B(E2) for the excitation
from the ground state is thus (21'+1)/(21;n+1) times the B(E2) of the deexcitation
(which is known from the life-time measurements of 70), where I’ is the spin of
the excited state. fga2(¢) is tabulated in Ref.[41]. (IV.139) is a good approximation
for |Q|/E << 1 (for our case |Q| = 0.871 MeV, and E ranges from 6 to 14 MeV),
the Sommerfeld parameter n >> 1 (here n > 8), and for the suddenness condition
£ << 1 (here ¢ < 0.86 for E > 6.5 MeV). What we call the sudden approximation is
mostly referred to as the non-adiabatic approximation. However, we want to restrict
use of the word “non-adiabatic” to the meaning “in general, without invoking the
adiabatic approximation”. A violation of the suddenness condition will cause an
overprediction of the cross section, because there is not enough time during the
actual collision for the excitation to happen. The og; calculated from (IV.139) are
plotted together with the experimental data in Fig.19. Evidently, neglecting the
Coulomb excitation in our model is & good approximation for 17O in the energy

region of interest.
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CHAPTER V

V.1 The two-channel model

In the analysis of the 1¥20-160 subbarrier scattering, we let ourselves be guided
by the experimental findings to construct a suitable model. The data are presented
in Fig.5. In comparison to 1704160, at first glance it is striking how small the
inelastic cross section is and how little the fusion cross section far below the barrier
is enhanced over that for 1604160, However, the relatively small size of the inelastic
cross section can be explained by comparing the 1.98 MeV excitation energy of the
first excited state in 80 with the corresponding 0.87 MeV for 170. It is therefore
energetically relatively difficult to excite the 80 in a collision of under or little
more than 10 MeV. Only the ~v ray f:rbm the 2% to the ground state is observed
experimentally. In principle, higher excitations could cascade through the 21 state
into the ground state, but then a major contribution would be expected from the
second excited, the 4% state, but no line corresponding to the 4% to 2¥ transition
is recognizable in the gamma spectra. The smallness of the inelastic cross section
in turn explains the small enhancement of the fusion probability, because only the

ground state channel of 20 is energetically effectively accessible.

In a semiclassical calculation of the Coulomb excitation (as in Chapter IV), we
find that this theory can account for the total experimental inelastic cross section
already at E.,, = 10 MeV and below (cf. Fig.22). The slight overprediction of

the calculation should be attributed most likely to a violation of the suddenness
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conditon £ << 1. The ratio ¢ of the two time scales involved in the problem
(cf. Chapter IV) actually crosses the value 1 between 10 and 11 MeV, with £ =
2.6 for E., = 6 MeV. It is clear that any theory without Coulomb excitation
must fail to describe the inelastic cross section accurately. The incorporation of
the electromagnetic excitation into the coupled channels framework is numerically
difficult, but not impossible. However, as our main object under study is the fusion
cross section, which is very little affected by the small inelastic excitation, we will

not pursue this process here.

Q-value considerations immediately rule out the one-neutron (or, for that mat-
ter, the one-proton) transfer process as responsible for the small fusion enhance-
ment. Because of the pairing of the two s — d shell nucleons in 20, the binding
energy in 180 with respect to the 16O:—I—Zn threshold is 12.191 MeV, which has to

be compared to 8.287 MeV, which is twice the dissociation energy of 170—160+n.

Therefore, only one channel in addition to the direct elastic remains: the two-
neutron transfer into the ground state of 180. Two-neutron transfer into excited
states are excluded by the same energy considerations that apply to the direct in-
elastic excitations. We will now analytically derive a simple model that incorporates

the two-neutron transfer.

We start by writing down the Hamiltonian and wave function just as we did
for 170. In the next section, we will reduce the formfactors to those of 170 in a
reasonable approximation, then we will derive the actual equations that have to be
solved numerically. In the last section, we will present the results of our numerical

computations.
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In the center-of-momentum frame, the Hamiltonian can be written as

H=T+Tp +Tn, +Vin, + Van, + Vin, + Von, + Vayng + Viz (V.1)

" and “ny” the two

where the indices “1” and “2” denote the 10 cores and “n;’
extra neutrons. Again, we neglect all recoil, so that T is the kinetic energy between
the two cores. The neglect of recoil corrections is half as good (or twice as bad)
an approximation as it is for '7O+!%0Q, because now the corrections are of order

of twice the neutron over the 10 mass (or 1/s). We can summarize seven of the

operators in (V.1) as the two-neutron Hamiltonian U:
U=Tn, +Tny +Vin, +Von, +Vin, + Van, + Vo, : (V.2)

The two-channel wave function is

(7)) = dalf)a) + $5(7)IB) , (V.3)

where |@) and |3) are the states with 130 on the left and on the right, respectively,
and ¢, and ¢ are the channel wave functions with the core-core separation vector
# as argument. As the ground state of 80 has zero spin like the 0O ground state,
no coupling scheme of spin to orbital angular momentum is needed at this stage (it
becomes necessary for the synthesis of the |a) and |B) out of single particle states).

|o) and |3) are eigenstates of the left and right '®0 Hamiltonian, so that
Ula) = €|} + (Van, + Van,)l) (V.4)

and

U|IB> = E'ﬂ> + (:Vlnl + Vln2)|ﬂ> ’ (VS)
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with € (minus) the separation threshold for 1#0—'°0O+n+4-n. We can normalize |a)
and |B) to unity, but (a|8) # 0 because of the different partition. The coupled
channels equations in the left/right representation follow from left multiplication of
(c| on the Schrédinger equation (H — E)|®(F)) = O:
0 =(a|T|)$a(F) + (a|T|8)¢p(r)
+(Via — E + €)¢a(r) + (Viz — E + €)(|B)¢5(7) (V.6)
+{Van, + Van,[)@a(F) + (a|Vin, + Vin,[8)dp(7) ,

and the analog for (f| instead of (a|. 7in (V.6) operates in general on both the kets
and the radial wave functions, the restriction of T onto the radial wave functions is
the adiabatic approximation, of which we will make no use.
V.2 Formfactors

In order to calculate the formfactors (a|8), (a|Van, + Van,|@), and (a|Vi,, +
Vin,|B), we need to choose a form for the potentials and to express the states
|a) and |B) through single particle wave functions. We use the same neutron-1°0
potential as in Chapter IV. The Schrédinger equation for the three-body system 180
is solved by perturbation theory in the potential V,, ,,. We treat the perturbation
to zeroeth order in the eigenfunctions and first order in the energy (if we did the
analysis to higher order, additional integration of formfactors other than the ones
done in Chapter IV would become necessary). The two-neutron wave function is
thus a linear combination of the product of 170 single particle ground state wave
functions, where the coefficients in the linear combination couple the total angular
momenta J; and j of the single particle states (with spin 5/3) to the total angular

=

momentum J of the 180 nucleus (with expectation value (J) = 0). Thus, for 7 = a
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or 3:

1) =D _(3/2m /2 —m|00) [m) | —m) . (V.7)

m
|m~) | —m~) is the direct product of the state of angular momentum 5/2 and pro-
jection m of the first neutron and 5/2, —m for the second neutron. It is perhaps
surprising that, as we will show, (V.7) is the correctly antisymmetrized and normal-
ized 180 wave function. Not normalized is the state 271/2 )" _(5/2m5/2 —m|00)
(|lm~) | —m~) — | — m~)|m~)), which would be written in second quantization as
Y m(5/2m5/2 —m|00) a:rn(fy)atm('y)IO), with |0) the single particle vacuum (here
the 10 core plus the other 1°0 nucleus) and ai (7) the particle creation operator for
spin projection n. The antisymmetry property of |v) is inherent in the form (V.7),

because (ymj —m|00) changes sign under exchange of m and —m for half-integer .

In first-order perturbation theory, the energy e of the 120 Hamiltonian becomes
(alTnx + Tnz + Vlnl + Vlnz + ‘/"-171-2 '(1) = 26(170) + <a|vn1 ne |a) ? (VS)

where €(170) is the eigenenergy of the 7O Hamiltonian. We choose V,,, ., in such a
way that 2¢(170) + (@|Vp,n, |@) equals ¢, the experimental 180 eigenenergy. We do
not really need to specify V,, », as a function of the inter-neutron distance, because
only the matrix element (a|Vy, n,|) (or the identical (8|V,,n,|8)) enter into the
calculation.

At first, we calculate the “inelastic” formfactor (a|X|e), where we let X equal
1 to test the normalization in (V.7) or equal Va,, or Va,,. All three operators can
be expressed as direct products of a single particle operator on neutron “n;” and a

single particle operator on “ny”, viz. 1 =1®1, V,,, =V, ®1, and Von, = 1@ Vs,
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where V5 is the potential between the 0 nucleus on the right and a neutron. For
an operator of the form z ® 1, we find from (V.7):
(alz® 1]a) = Z<5/2m5/2 — m|00)(5/zn 5/2 — n|00) (ma|zina)(—ma| — na) . (V.9)
m,n
(—ma| — nea) is the overlap of single particle states with spin projections —m and
—n, and hence equals 6,,,, so that
2
(a]z @ 1]e) = Z ((5/2m5/2 — m|00)> (ma|z|ma) . (V.10)
m

The (ma|z|ma) were derived in Chapter IV for z = 1, they equal unity, and for

z =V, (cf. (IV.50)),

m O

2 2 A 5 5 A
(0 0 0){ 2/2 42 }YAu(nr)J5/2,5/2,A(r)as

/o

(maV |ma) =y/m(-) V2~ zso\/ﬂ"ﬁ(j{; s A)
by (V.11)

where J5 /5 5/2,(r) is given by (IV.51). (V.10) can thus be evaluated, when = = 1,
the sum over the square of the Clebsch-Gordan coefficients equals unity, and indeed
(a|/1 ® 1|a) = 1. When (V.11) is inserted into (V.10), the sum over the square
of the Clebsch-Gordan coefficients and Wigner 3-j symbol that contain m can be
performed, the result vanishes for A # 0 and the left-over Wigner symbols in (V.11)

are easily evaluated for A = 0, the net result is:
<a|V ® lla) = 1/2.75/2,5/2,0(7') . (V].Z)

As a check for (V.12), we note that J5/55/2,0(r) = 2, if instead of the potential

function v(r) the unit function is inserted under the integral in (IV.51), so that
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again we recover the normalization. The amplitude (V.12) is obviously the same

for 1 ® V instead of V ® 1, thus

<C¥|Vzn1 + V2n2!a> = -75/2,5/2,0(7‘) . (V-13)

This formfactor is isotropic, i.e., does not depend on 1,, as expected for spin 0
states.
Next, we calculate the transfer amplitude (o X|8) for X equalling 1®1, V; ®1,
and 1 ® V,. For £ ® 1 we find
(alz®118) = 3 (5famS/a— ml00)(5/2n 52 — n|00) (mala|nB) (~mal — nf) . (V.14)
We extract the single particle matrix elements (mal|z|ng8) from Chapter IV, and

perform all the angular momentum algebra, the end result is:

, 2
(alz ®1]8) = 2477 ) | m({ 542 542 11>2 }) If>(72),5/2,1\(r)]5(/12),5/2,1\(r) -

i | (V.15)

(V.15) can be checked by letting z = 1 and considering the case of »r = 0, when

o and B states are identical, with Is(/lz“i,:,s/z,z\(o) = v/5/(27)6n0, we find indeed that

(a]1®1|f) =1forr =0. (|1 ® V2|[§) = (a|V; ® 1/8), so that the total transfer

potential formfactor (a|Vzn, +Van,|6) equals twice the expression (V.15) for z = v.
V.3 The “coupled” channels equations

In order to use the symmetry of the two identical 10 cores, we construct the

even and odd states as in Chapter IV. We have to transform to the “representation of

section 1V.7, so that that the derivative operators that come from the kinetic energy

term in the Hamiltonian do not couple even and odd states. The transformation
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is much simpler here than for 170 because of the spinlessness of the 20 ground
state and the resulting isotropy of the formfactors. Thus, when the Laplacian and
gradient are split into radial and angular momentum part, only the radial part will

operate on the formfactors.

We define
— = {1 _\?|3
B =5 (18 +(1B) (V.16)
The |&) and |) differ from the |e) and |8) by their choice of origin for 7 (cf. Section
IV.7). Overlap and potential matrix elements are not affected by the change in the

representation, but only the derivative matrix elements are. Therefore,

o) =t [+ (2t VeI ({ T i 0) ]
! (V.17)

and

(plU]p") = &pp [-75/2,5/2,0(?') + (—)P48m?

5 52 A v 1
)
A
(V.18)
The radial derivatives of the |p) in terms of the |a) and |3) are evaluated by the

same integration tricks as in section IV.7, the results are
(Pl - l9') = Yoo (pl8') = b (-) Yoo (alB) (v.19)
or " PP or ’
and
no__ 1 p1 a
(pl5= 10" = /4 <plp> pr (=) ag 5 (alB) . (V.20)

Because of the isotropy of the |p), it is clear that it is easiest to first split the

Laplacian into its radial part 1 3 *r and angular part —L"’/(h2 2) and then to let
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the two parts separately act on the product of the ket state and the wave function.
If we expand the channel wave function ¢,(F) = @a(7) + (—)Péa(F) into partial

waves,
8(7) = = 3 arxt(r)Pu(cost) (v.21)
L

where we used the azimuthal symmetry already, and the ar are as yet unspecified

complex constants, then the Schrédinger equation (V.6) becomes for the even and

odd states:
dzx’i 3] dx’ljl 0? P
(p|p) Jr? + 2<P|'a—r|P) I + <P|E§|P>XL

| (V.22)
D i + 22 (5 - Via) ol ~ (lU10)] =0

(V.22) holds for p both even and odd, but the two channels are not coupled. (V.22)
is thus a single equation for each L, F, and p and no longer a system of coupled
channels equations. The adiabatic approximation has the same equation as (V.22)
without the second and third term, and after division by (p|p), this is just the usual
one-channel partial wave Schrédinger equation.

The non-adiabatic equations conserve the flux

~

Fp= Yo 2 0) () L xh)] (v.23)

expressed in units such that the incoming flux is unity. The adiabatic equations for

the two-channel case also conserve a flux-like quantity, namely 2_—,: >, [XE 4 (xP) -

In order to extract the fusion cross section from the partial wave integrations,

we have to specify the ay in (V.21) to provide the right boundary condition for a
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scattering state; since we describe the even and odd states, there is an extra factor

271/2 when compared with the left, i.e. the incoming state, thus:

1, :
ar = 2_%5(% +1)ftt (V.24)

The fusion cross section thus becomes
Vi3 -
L

We use the non-adiabatic “coupled” channels equations and the non-adiabatic form
(V.23) for Fy,.
V.4 Results

We present our results for the fusion cross section in Fig.23. Obviously, our
model does not permit the calculation of inelastic excitations. The behavior for
the elastic angular distribution is similar to that for 17O+160: For subbarrier
energies, the Rutherford scattering dominates completely, and for higher energies
the coherent addition of the transfer nuclear amplitude provides small oscillations
about the curve of the simple one-channel (direct nuclear plus Coulomb) calculation.
In Fig.24, we present an angular distribution at E.,, = 12.7 MeV together with data
from Gelbke et al.*? The agreement of the calculation with the data is even worse
than for 170 on !°0, because of the simplicity of our transfer model and the high
sensitivity to the exact size of the transfer formfactor.

The fusion cross section shows the right enhancement in the subbarrier region
and reproduces the data quite well. However, the above-barrier region, where the
fit should be good, causes problems. Surprisingly, the measured cross section for

1804160 does not exceed that of 160+1°0 and 170+160 at these energies, as one
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would expect from simple scaling. Thomas et al. state that they normalized their
data to the above-barrier region in order to correct for systematic errors in the
integration of the beam current and shifted the 180-1°0 cross section up. Perhaps,
the data should be shifted even more, in order to achieve congruence with the scaled
160-160 and !70-170 curves (if this is done systematically, however, the shifted
points would agree with our calculation above the barrier, but would deviate from
our points below the barrier). The experimental data show a certain “ditch” above
the barrier, deviating from a smooth behavior. If this is significant and not just a
statistical or experimental aberration, it would be a very interesting feature. Such a
ditch would most likely not be produced by a large number of contributing channels,
but more likely by the destructive interference of the dominant elastic channel
with one single additional channel. Our calculation seems to rule out that the
ground state transfer constitutes this extra channel. Also, from the semi-classical
calculation, it is clear that Coulomb excitation at this energy does not provide
enough strength for this process. The fusion cross section at the highest energies
is affected relatively little by the channel coupling, so that the relative differences
between 10, 170, and 20 in our calculation come mainly from the effect of the
additional neutrons on the diagonal potential. The bigger size of the heavier isotopes
will push the barrier farther out, where the Coulomb force is weaker and will thus
decrease the barrier height. In our model for 1820, we overestimate the increase in
nuclear size over 190, because we use the more loosely bound 17O wave functions
instead of the correct ¥0 wave functions that are more tightly bound. This effect

should lead to a slight overestimate of the cross section above the barrier, but not



98

to such an extent as the discrepancy between our calculation and the data. The
180 diagonal potential, i. e., Vi2(r) + J5/2,5/2’0(r), is plotted in Fig.9 together with
the 0 potential V5 for comparison.

Another calculation?? attempts to model the 120+1°0 enhancement by a cou-
pled channels calculation that takes the inelastic excitation of the lowest 271 state,
but no particle transfer into account. The result of the calculation is very similar
to ours with good agreement below but overprediction above the barrier. Unfortu-
nately, no results for the total inelastic cross section are presented that would allow
comparison with the data and check the chosen strength in the inelastic channel.
Also, the model does not take any Coulomb excitation into account; as we have
shown, this is highly dubious for the lower energies.

In summary, our model reproduces the subbarrier enhancement down to the
lowest energies, but has problems in t.ﬁhe above-barrier domain, where the calcula-
tion, but not the data are proportional to the 1°0-10 and 170-180 curves. The
data do not allow a decision, whether there is an interesting and surprising above-

barrier structure in the fusion cross section.
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CHAPTER VI

Conclusion

The subbarrier fusion cross sections for 1704160 and 180+1%0 show relatively
little enhancement over that for 1°0+1%0 when compared with isotope differences
for heavier systems. We were able to reproduce these enhancements except for
the very low energy region in the 17() system. We found that it is necessary for
internal consistency of the IWBC metHod in models that include transfer and hence
non-orthogonal basis states to avoid the adiabatic approximation; however, the full
equations are difficult to integrate n‘limerically. It remains to be seen what the
practical limitations in the number of channels are for the non-adiabatic equations,
but without further approximations they do not seem to be the best tool for very

‘ complicated heavy systems.

As we see it, the lesson from the three studied oxygen systems is that a careful
multi-channel calculation can reprodu.ée the subbarrier fusion data to some extent,
with the low energy behavior of the 1‘?0-160 and the high energy behavior of the
180160 systems as limitations. We do not think that the low energy deviation
could be remedied by an improvement in the description of the chosen single par-
ticle channels, but that a more complicated scheme that incorporates some kind of
core excitation is necessary. The high energy deviation for 80 remains puzzling.
The advantage of the consistent incorporation of realistic inelastic and transfer chan-

nels allows for the calculation of various differential cross sections. A fine-tuning of
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spectroscopic factors is necessary in order to accurately reproduce these features.
We have not carefully done this in this work, but we believe that we have demon-
strated the feasibility of doing so. The subbarrier reaction might thus become an
important spectroscopic tool to check nuclear structure models. Above the barrier,
DWBA calculations are adequate for this undertaking and because of their smaller
numerical scope preferable, because, for example, for the least-square determination
of a spectroscopic factor, a large number of full calculations has to be performed.
However, below the barrier, a coupled channels calculation is necessary, because of
the higher-order effects and non-linearity of the cross section in the coupling poten-
tials. This way, the spectroscopic tool might be extended to testing in a different
energy region. It would be desirable for the theoretician if the experimental fusion
studies would include as many measurements of elastic, inelastic, and transfer cross
sections as possible, in order that free parameters in the model can be clamped
down or inadequacies of the model be singled out.

For the oxygen isotopes, the 120-130 system is an interesting challenge in order
to see how complicated reactions can be treated in a similar fashion to the other
oxygen systems. This reaction might provide the bridge to the heavier systems from
a computational point of view. For nuclear physics, the 170-170 system is the most
interesting of the remaining oxygen systems because of the positive Q-value of the

one-neutron transfer.
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Figure 1

Typical Coulomb (dashed line), nuclear (dot-dashed line) and total inter-nuclear
(solid line) potential as a function of the inter-nuclear distance r. (In arbitrary

units.)
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Figure 2

Above-barrier fusion cross section for *60+27Al as a function of energy compared
with the Glas-Mosel formulas (solid lines). o rises linearly as a function of the
inverse energy up to the point where /,,, = . ((I1.4) with a negative V;) and then
falls linearly according to (IL.3). Also plotted are some total reaction cross section

values. (From Ref.[4].)
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Figure 3

Measured subbarrier fusion cross section for 58 Ni+%8Ni compared to the results of

a one-dimensional calculation. (From Ref.[14].)
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Figure 4

Transmission probabilities in the Dasso, Landowne, Winther model. (a) Uncoupled
system, classical (solid line) and quantum mechanical result (dashed line). (b) Same
for coupled system. (c) Comparison of (a) (dashed) and (b) (solid). The quantum

mechanical curves are schematic and not the result of an actual computation.
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Figure 5

Energy levels of 170 and '30 with decay thresholds into !°0 and neutron(s) as zero
energy. Additional bound states and resonances of 80 above the second 07 state

are omitted. (All energies in MeV.)
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Figure 6

Complete results from Thomas et al. for fusion and total inelastic cross sections for

the treated oxygen systems. (From Ref. [25].)
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Figure 7

Effective potential barriers from the BKN inversion of the fusion cross sections

measured by Thomas et al.. (From Ref.[25].)
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Figure 8

Measured astrophysical S-factor from Thomas et al. compared to the results of the
IWBC calculation with Thomas’s potential. The astrophysically important energy

region extends down to about 3 MeV.
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Figure 9

Diagonal potential for 120+60 (solid line) and 0+°0 (dashed line) as a func-
tion of the inter-nuclear distance r. The diagonal 20+160 potential is that of

160160 plus the term Js5/5 5/2.0(7)-
/2,5/2,
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Figure 10

Calculated fusion cross section for 1°(0+1%0 and data by Thomas et al..
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Figure 11

Calculated elastic differential cross section at 90° for %0410 and data by Spinka
and Winkler. Plotted is the cross section divided by the symmetric Rutherford

cross section.
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Figure 12

1604160 elastic angular distribution at E., = 13 MeV and data from Bromley
et al.. The data points were read off a plot in Ref. [32], slight deviations from there

actual locations are possible.
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Figure 13

Coordinates for the 170+1%0 model. “1” and “2” refer to the two 0O cores and

“n” refers to the extra neutron.
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Figure 14

160-n potential (and single particle potential in 170) as a function of the core-

neutron separation r.
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Figure 15

Integral J,p c(r) for the inelastic formfactor of the 1704+180 reaction given by
(IV.51). The different lines correspond to different index sets: {1,1,0} solid;

2} widely spaced dots; {2, 2,0} dashes;

23, 2} dot-dashes; {2,5,4} nar-

2’2’ 252a

rowly spaced dots. (J in MeV.)
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Figure 16

Integral I (1) (r) for the overlap formfactor of the 170+!°0 reaction given by

a,b,c
(IV.69). The different lines correspond to different index sets: {%,%,O} solid;

2, 3,2} widely spaced dots; {2,2,0} dashes; {2,%,2} dot-dashes; {5,2,4} nar-

rowly spaced dots. (I (1) is dimensionless.)
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Figure 17

Integral I ;:Z), .(r) for the inelastic formfactor of the 170+1°0O reaction given by

(IV.69). The different lines correspond to different index sets: %, %, 0} solid (nega-
tive values); {—g—, %, 2} widely spaced dots; {%, %, 2} solid (positive values); {%, %, 0}

dashes; {%, %,2} dot-dashes; {%, g,4} narrowly spaced dots. (I(*) in MeV.)
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Figure 18

Calculated fusion cross section for 7O+!%0 as a function of the center-of-mass
energy and data by Thomas et al. with the same scale as Fig.10 (solid line). The

dashed curve is the fusion cross section for 1°0+160Q.
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Figure 19

Total nuclear inelastic cross section for 17O+160 (solid line), data by Thomas et al.,

and semiclassical Coulomb excitation cross section (dashed line) with the same scale

as Fig.10.
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Figure 20

Calculated inelastic differential cross section for 170+10 at E,,, = 11.3 MeV and
data by Gelbke et al.. The dashed curve is the result of a calculation without
spectroscopic factors, the solid curve is scaled by the product Si /25 5 = 0.7. The
data points were read off a plot in Ref.[39], slight deviations from there actual

locations are possible.
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Figure 21

Calculated elastic differential cross section (solid curve) for 70+1°0 at E.,, =
10.67 MeV and data by Burzynski et al.. The data points were read off a plot
in Ref.[40], slight deviations from there actual locations are possible. The dashed
curve is the result of a one-channel calculation with the 1°0+1°0 potential. Plotted

are the cross sections divided by the Rutherford cross section.
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Figure 22

Semiclassical Coulomb excitation function of the lowest 27 state in 2O for the

reaction '¥0+1%0 and data by Thomas et al. with the same scale as Fig.10.
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Figure 23

Calculated fusion cross section for ¥0+1°0 and data by Thomas et al. with the

same scale as Fig.10. The dashed curve is the fusion cross section for 160+160.
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Figure 24
Calculated elastic differential cross section for 180+1°0 at E,,, = 12.7 MeV and
data by Gelbke et al.. The data points were read off a plot in Ref.[42]; slight
deviations from there actual locations are possible. Plotted is the cross section

divided by the Rutherford cross section.
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