Analysis and Design of Protograph based LDPC Codes and
Ensembles.

Thesis by

Jeremy Thorpe

In Partial Fulfillment of the Reqﬁirements
for the Degree of

‘Doctor of Philosophy

California Institute of Teéhnology

Pasadena, California

2005
(Submitted May 25, 2005)

i

© 2005
Jeremy Thorpe
All Rights Reserved

iii

To my family

iv

Acknowledgements

I wish to express my sincere thanks to many people for making this thesis possible. First, 1 would
like to thank my advisor, Dr. Robert McEliece, who has supported my research in so many ways
since the first summer that I arrived at Caltech. Throughout my graduate studies, Dr. McEliece
has patiently helped me to express and clarify my ideas. In so many ways, he has helped me to
put my research into larger contexts, by drawing out similarities and contrasts to other work, and
simply through his knowledge of which problems are important, and where ideas can be applied. In
addition, he has been extremely generous in helping me to have opportunities to work outside of
Caltech. During the summers, I had opportunities to work at JPL, Sony research labs and Microsoft
research, none of which would have been possible without his support and encouragement to apply.
I am grateful beyond words for his enduring support.

At JPL, where much of the work contained in this thesis was done, there are many that I would
like to thank. Fabrizio Pollara and Jon Hainkins, my former and current supervisor, have always
given my work enthusiastic support. Ken Andrews and Sam Dolinar have collaborated with me since
my first summer, sharing their ideas and patiently listening to mine. I would especially like to thank
Sam for the huge amount of support he gave me in writing chapter 2 of this thesis. More recently,
T have had the privilege of collaborating with Dariush Divsalar on code design. I have also enjoyed
many conversations directly and indirectly related to my research with Matt Klimesh, Aaron Kiely,
Bruice Moison, Chris Jones, Shervin Shambayati, Jason Lee, and others.

I would like to sincerely thank my supervisor Masayuki Hattori for generously inviting me to
spend a summer at Sony Information & Network Technologies Lab. While there, I had the oppor-
tunity to interact with and learn from Toshiyuki Miyauchi, Kouhei Yamamoto, and many others.

Spending a summer at Microsoft Research Redmond has also broadened the scope of my research.
T had the opportunity to do with Dimitris Achlioptas, my mentor during an internship in summer
2003. Dimitris has helped me to realize the value of clear scientific writing, which I hope has carried
over into other areas of my own writing.

I would like to thank my lab-mates and the many friends I have made at Caltech for the many
conversations about math and science, as well as for sharing the laughs and enjoyment that made

my experience at Caltech more pleasant. I have valued the conversations with my lab-mates Hui

v

Jin, Aamod Kandekar, Ravi Palanki, Cedric Florens, Jonathan Harel, Radhika Gowaikar, Masoud
Sharif, Amir Farajidana, Yindi Jing, as much as any other aspect of being at Caltech.

Finally, I would like to thank my family for their steadfast support. My dad has enthusiastically
allowed me to explain my ideas, even when my explanations were inadequate, as he always has.
His readiness to always take on new challenges is an inspiration to me. My mom will finish her
Ph.D. this year, virtually sirnultaneously with me, and talking to her about our theses has given me

renewed determination to finish mine more than once.

vi

Abstract

Channel coding is a key component of artificial communication systems, allowing reliable communi-
cation using unreliable channels. In the last decade, iteratively decoded channel codes have become
or clearly will become standards in a wide range of applications where large amounts of information
must be communicated using unreliable media. Of the class of iteratively decoded codes, Low-density
parity check (LDPC) codes are arguably the simplest class to describe, and indeed were described
more than four decades ago in 1963 by Robert Gallager.

The current understanding of LDPC codes has progressed in several significant ways beyond what
had been expressed by 1963 by Gallager. Importantly, irregular LDPC codes, whose parity check
matrices do not have constant row and column sums, have been shown to significantly outperform
their regular counterparts explicitly considered by Gallager.

By 1999, researchers had defined a class of irregular ensembles, each characterized by a pair of
polynomials. Along with this new class of ensemble, they defined an analytical technique, density
evolution, that accurately predicted the channel coding performance of a typical code under iterative
message-passing decoding. The pair of polynomials could be effectively be designed by optimizing
the coefficients of the polyﬁomial for density evolution thréshold threshold.

This thesis concerns a different class of ensembles, namely protograph ensembles. Protograph
ensembles are characterized by a template graph called, intuitively, a protograph. The Tanner-graph
representation of a code in the ensemble is a random lift of the protograph.

Protograph-based codes have significant advantages over unstructured irregular codes in regard
to implementation of their encoders and decoders. In the decoder, this structure can be used in
at least two distinct ways to organize the computations defined by any message-passing algorithm.
If, in addition to the protograph structure, circulant structure is imposed on each ”section” of the
matrix then a quasi-cyclic code results, bestowing even mores advantages, especially in the possible
implementation of the encoder.

A central difficulty in using protograph ensembles is finding a suitable protograph. Since graphs
are discrete objects, there is no obvious correspondence to any optimization model using vectors of
real numbers. Instead, the technique of simulated annealing has been applied with a remarkable

degree of success. For example, on the AWGN channel, given a constraint on the node degrees,

vii
protograph ensembles can be found that achieve a threshold only half as far (measured in dB)
from the Shannon limit as unstructured irregular ensembles. This simultaneously illustrates an
inherent performance advantage of protograph codes over unstructured codes as well as the efficacy
of simulated annealing as an optimization technique.

A persistent problem which appears to be common in all codes optimized for density evolution
threshold is that of error floors. On a superficial level, this is explained by the maxim that ”There’s
no such thing as a free lunch.” In some contexts, such as in codes designed for the erasure channel,
the phenomenon can be explained on a much deeper level, though it is not clear why the phenomenon
should persist so universally.

Still, even without a detailed understanding the cause of this problem, there are techniques that
can mitigate error floors. An important tool toward this end is weight enumerators, which are
discussed in chapter 3. Codeword and stopping set enumerators can be efficiently computed if a
certain (non-concave) function can be efficiently maximized. Protographs that are selected on the

basis of their enumerators have shown some success in reducing error floors.

viii

Contents

Acknowledgements

Abstract

1 Introduction to LDPC Codes

1.1 Natural and Artificial Communication Systems
1.2 The Role of Channel Coding
1.3 Linear Codes it e e e
1.4 Low Density Parity éheck Codes . . . v . o i e
1.5 LDPC Codesas Graphs o o i i i e e e e e e e
1.6 Encoding of LDPC Codes o i
1.7 Decoding Framework L e
1.8 Belief Propagation Decoding o e
1.9 Design Criteria o v v v i it e e e e
LDPC Codes Constructed From Protographs

2.1 Imtroduction o e e
2.2 Protographs and Protograph Codes
2.3 Equivalence among Ensembles oL oo L
2.4 Deterministic Neighborhoods oo o0
2.5 Density Evolution Analysis of Protograph Code Ensembles
2.6 The Reciprocal-Channel Approximation to Density Evolution
Protograph Weight Enumerators

3.1 Imbroduction. Lo e
3.2 Weight Enumerators Defined L oo
3.3 Approach e e
3.4 Numerical Methods for computing F(6)

3.5 Maximization of E(f)

iv

vi

So IR N« NS N S O S

11
12
12
13
14
15
15

3.6 Domain of E{(f)« . . . e
3.6.1 Continuity of E(O)
3.7 Behavior of E(@) Near Zero o v v it e e e
3.7.1 Typesof Zero-crossings e
3.8 Algorithmic Determination of Classof P oo
3.9 Protograph Ensembles as Multi-Edge-Type Ensembles
3.10 DIscussion e e e e e e e
3.10.1 Quasi-Cyclic Ensembles oo

Protograph Optimization

41 Tntroduchion v . v v i i e e e e e e e e e e e
4.2 Optimization via Simulated Annealing oL

4.2.1 Optimization Results L
4.3 Permutation Selectionm e
4.4 Hardware Implementation of the Decoder
4.5 Performance Comparisons v v . o ot i e e e
4.6 Finding Good Protograph Codes oo
4.7 Optimization Results e
4.8 Conclusion oo e e e e e

A Scalable Architecture of a Structured LDPC Decoder

51 Introduction i e e e
5.2 Structured LDPCcodes« o i e e e
5.3 Protograph Construction. L o e
5.3.1 Decoder Architecture o v i it e
5.3.2 Computation Scheduling e
5.3.3 Structured LDPC Implementation Methodology
5.4 Quantized Belief Propagation Algorithm
5.5 PerforMalCe v o v o v i i i e e e e e e e e
551 FPRGA utilization o e
5.5.2 Speed/Throughptit L
5.5.3 Error Correcting Gapability
5.6 Conclusion ot e e e e e e

Meémory-Efficient Quantized Belief Propagation Decoders

6.1 Quantized Belief Propagation o e
6.2 QBP Rules for the (3,6) Regular LDPC Ensemble

28
28
29
30
30
32
33
35
35
36

38
38
38
39
39
40
40
41
42
42
43
44
44

6.3 Simulation Results e
6.4 DISCUSSION - - « .« . v v o e e e e e
6.5 Acknowledgements Lo e
7 LDPC Graph Optimization for Parallel Hardware Implementation
7.1 Introduction.
7.2 Performance and Cost Measures o
7.2.1 Performance Measure o i i v ittt e e e
7.2.2 Cost MEasure . . . v . v v v v v e e e e e e e e e e e e e e
7.3 Optimizing with Simulated Annealing
7.4 Evaluation of Performance Measure.
7.5 Conclusion o e e
A Software License
B LDPCWorkbench Source Code
B.1 Data Structures I (graph.cs) L
B.2 Data Structures IT (Idpc.cs) oo
B.3 Density Evolution (density.cs) o
B.4 Simulated Annealing (optimizer.cs)

Bibliography -

50
50
51
51

.52

52
54
54

55

56
56
62
67
5

81

xi

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1

3.1

4.1
4.2
4.3

4.4

5.1
5.2
5.3

7.1
7.2

An abstraction of a communication system found in tobacco plants 2
A Human Communication System o e 2
The OSI Stack Abstraction i i i 3
An abstract communication system Lo o e 3
Generalized Decoding Framework oo 8
Four representations of the distribution of a binary random variable 9
Classes of ensemble characterized by local neighborhood distribution 14
This weight enurherator has anelbow oo 25
change this figure L e 31
A protograph, and a corresponding hardware decoder block diagram 33

a) Performance of a (n = 64800, k = 32400) Protograph-and-Circulant code; b) Perfor-
mance of a (n = 64800, k = 32400) Protograph-and-Circulant code 34
change this picture o 36
Throughput vs. iteration 43
Full floating point vs. 3-bit L 44
.. 45
Locus of points obtainable by SAo 53
53

graphs optimized primarily for loopiness (left) and wire-length (right)

List of Tables

6.1 Quantized rules I through V

xii

6.2 Quantized rules VI, VITand Ideal

Chapter 1

Introduction to LDPC Codes

The fundamental problem of communication os that of reproducing at one point

. a message selected at another point.

-Claude E. Shannon

1.1 Natural and Artificial Communication Systems

Nature has endowed animals with the ability to communicate with each other in a plethora of ways.
Bees dance to indicate the location of a new food source. Plants use chemical signals to communicate
danger sensed in the environment. Woodpeckers bang on trees to communicate unknown messages
with distant friends. Hufnans transmit even more complex thoughts to each other via vibrations
produced in the throat.

It is not surprising then that one of the great challenges of our day is engineering systems capable
of communication. While perhaps not as diverse as natural biological communication systems,
artificial communication systems have already achieved their own remarkable success. As I am
writing this paragraph, a network of copper and glass threads carries my thoughts halfway around
the world. Browsing the web, I see that one of two twin rovers has just sent back a panoramic
Mars-scape from 300,000,000 kilometers away, through empty space.

Communication, biological or artificial, involves agreements between the two communicating
agents. These agreements can be simple or complex. In simple systems, such those used by some
plants, only a few different messages or even just a single message. To an insect, a particular chemical
may mean ”danger” perhaps, or ”let’s mate.” In this case, the system may be thought of as having
only one level of agreement, a direct mapping from a physical signal to a meaning.

More complex systems are capable of communicating many more messages, and consequently use
more levels of agreement. Spoken human languages are, at a low level, each based on an agreement
to use a certain set of phonemes that the speaker can produce With his throat, and listener can can

distinguish with his ears. At a higher level, a shared vocabulary maps combinations of phonemes to

I
| .
} Message jessasscas Transmitted Word
| ("danger) | Encoding {CyHogOq)
-) -
I (secretionof

4 Cuaf0dl |

il

{ Chamnel

{dispersion of £

4 Decoding
M A (detectionof E N
ossage § o f oy § Received Word
('danger”)] 1872058 E Cyatag0q)

Figure 1.1: An abstraction of a communication system found in tobacco plants

words identifying concise concepts. A shared grammar maps complex thoughts to strings of words.

Mﬁ‘ssitge : o Transmitied Signal
(mig-)—' Grammatical 4 Phonetic {sound wave)

Encoding 4 Encoding

(—

Channel
{dispexsion of
sotad wave)

Grammatical Phonstic
Decoding

Messige | Decoding
{thought)

Received Signal

{sound wave)

Words‘

Figure 1.2: A Human Communication System

This use of abstraction, in which multiple levels of agreement are used, also allows one component
to be replaced with another. Phonemes can be represented by written symbols instead of pressure
waves, making use of the same vocabulary and grammar as in the spoken system. This is the case
in Spanish and other phonetically written languages. Other languages, such as Chinese represent
words directly, rather than phonemes. In either case, one part of the communication system has
been replaced by another. \

In Artificial systems, abstraction is useful because it allows the many problems faced by engineers
to be solved one by one; The Open Systems Interconnect (OSI) framework is a model for a system
to enable communication between any two computers located almost any place on the Earth. Such
a system must make use of a diverse set of physical resources, and solve a host of problems related to

unreliable physical channels, unreliable hardware, unknown location of the recipient, and unknown

demand on the system, and other issues.

Application 4 A

] presentation f- -4 Presentation
Session Session
Transport Transport
Network f— gg;"l‘,’lz:j el Network
Data Link —— Qamaink E—1 pata Link
Physical ————- g‘;‘}ﬁ:sz: —— Physical

Figure 1.3: The OSI Stack Abstraction

1.2 The Role of Channel Coding

In the framework of channel coding, communication is accomplished via a stochastic system called
a channel. The channel allows transmission by taking input from a sender and providing output,
depending stochastically on the input, to a receiver. The goal of channel coding is to provide a more
reliable channel by using the less reliable one.

In the OSI model, channel coding is often used at the physical layer, the lowest layer defined
in that model. At this level, uncertainty can be introduced by physical processes such as thermal
noise, by parameter mis-estimation, or by deliberate jamming [1].

However, channel coding can be applied not only at the physical layer, but also at higher levels
to deal with uncertainty caused by lower layers of the protocol stack. Codes designed to efficiently

handle erasures [2] have been applied at the Network layer to mitigate the effect of dropped packets.

Encoder

bt [

Decoder [

Figure 1.4: An abstract communication system

A channel-coding system, which itself satisfies the definition of a channel, is comprised of an inner
channel, and two systems called an encoder and a decoder, connected as in figure 1.2. Usually, the

inner channel is considered to be given, and the encoder and decoder should be designed. A successful

4
design is such that the decoder can reliably reconstruct any message that might be provided to the
encoder.

In general, a channel can be any system whose output depends stochastically on its input. In fact,
this definition is broad enough to include any possible system useful for communication. Two further
restrictions on this definition add a great deal of tractability: time-invariance and memoryless-ness.

Memoryless-ness implies that the channel can be used at discrete times and that the output y;
at time ¢ depends stochastically only on the input z; at the same time, and is independent of all

other inputs and outputs of the system. Formally, this means that there is a conditional probability

P(y | z) that can be expressed:

Pyl o) =[Pl =) (L)

Given that a channel is memoryless, time-invariance means that the output y; at time ¢ depends

stochastically on z; in a way that is independent of the time ¢. This dependence can be characterized

by a stochastic matrix A = (as) such that:

PYi=ylXi=2) =a,y (1.2)

In reality, most channels are neither memoryless nor time-invariant. Still, there are techniques
that can make a large class of channels fit, or nearly fit, this model. Parameter estimation techniques
such as Kalman filtering can drastically reduce the uncertainty in the receiver’s knowledge in the
parameters of a time-varying channel, provided that the parameters change slowly enough. Signal
processing techniques such as pre- and post- filtering can turn an inter-symbol-interference channel
into an essentially memoryless one. Such practices are the subjects of much study, but from the
perspective of this thesis, we will henceforth ignore them and consider only the narrow class of
channels.

Shannon’s famous Channel Coding theorem [3] gives an upper bound on the amount of infor-
mation (which can be measured in bits) that can be reliably transmitted making use of any time-
invariant memoryless channel n times. This bound is C(4) - n, where C'(4) is a number called the
capacity that depends on the channel. Shannon also gives the converse assurance that it is possible
to transmit information at arbitrarily close to this rate, and with arbitrarily small probability of
error. A coding system which can transmit a fraction arbitrarily close to 1 of C'(4) bits per channel

use with arbitrarily low is said to achieve the capacity of the channel.

1.3 Linear Codes

To define the communication problem fully, we must have a model of the information that should
be transmitted. A standard model is that there are k symbols chosen at random, equiprobably frofn
among the symbols of a particular alphabet.

In practice, messages are much more diverse. Messages representing images, sounds, and text
all have inherent redundancy which reduce the amount of information (or entropy) in the message.
In principle, it is possible that a channel-coding system could use this redundancy to decrease the
number of times the channel must be used.

However, in general the problem can be split into two processes. The first process that occurs in
the encoding is called source coding, in which the redundancy of the message is essentially removed,
and a shorter representation is derived. This process yields a string of symbols which approximately
conforms to our model of k£ equiprobable symbols. Shannon’s Separation Theorem tells us that this
is possible in general.

A further simplifying assumption is that the alphabet from which our source is chosen is of
arbitrary size. A very common convention is to let the alphabet be the binary alphabet {0,1}, so
that the transmitted messages m is in {0, 1}*.

In the framework of linear codes, we identify the input alphabet with a finite field F'.. In the
binary case, it is possible to let the field F' = F} be the finite field with 2 elements. We identify the
string m € {0,1}* vﬁth a corresponding vector Fy.

For the purpose of linear codes, even the class of memoryless time-invariant channels is not
sufficiently restricted. We need the further restriction that the channel input can be mapped to the
same finite-field to which we map the messages. This implies that the channel input alphabet be
the same size as the message alphabet and to some finite field.

Such a channel can be created from a large class of memoryless channels by the use of a modu-
lation scheme. For example, various modulation schemes such as phase-amplitude modulation can
provide a binary input channel by using a complex-input additive white gaussian noise (AWGN)
channel. Channel modulation represents a large field of study, but from this point, we will assume
that the channel has an input alphabet of a size that is convenient for us, and can be mapped to,

and identified with, the finite field of our choice.

Given the channel which takes as its input elements of a finite field, a common technique is to

use the channel some fixed number n times.
A code C defines a set of valid vector channel inputs. A linear code is a subspace of the vector

space F™ with dimension k. Under the theory of linear algebra, this implies that there exist matrices

H, of dimension n x r, and &, of dimension n X %, such that & +r =n and

Y {H-c=0} (1.3)

The matrix G defines a mapping from message vectors m to channel input vectors given by

x = mG7T.

C={mG"} (1.4)

Since the (scalar) channel is used n times to transmit k symbols of information, the system can

transmit % symbols of information per use of the channel, and this quantity is called the code rate

R.

1.4 Low Density Parity Check Codes

Low-density parity check (LDPC) Codes are a type of linear code in which there is at least one
low-density parity check matrix H. The term low-density is loosely defined, but it usually indicates
that there are a number of non-zero terms is roughly proportional to the number of rows in the
matrix. By contrast, a random code of rate R where O‘ < R < 1 has lowest weight parity check
matrix whose number of non-zero entries grows as O(n?). Formally, the concept of low-weight can

be defined in terms of a growing ensemble of codes, which will be introduced in chapter 2.

1.5 LDPC Codes as Graphs

For many applications, it is useful to define a structure related to LDPC codes called a Tanner

graph[4] which we will call G. This structure represents a particular parity check matrix H.

G = (V,C, E) is constructed as a bipartite graph with a set of nodes V representing each variable
in the code.

And LDPC code is characterized by a bipartite graph G = (C,V, F) , where V,|V| = is a set
of variable nodes C,|C| = n is a set of check nodes, and F is a set of edges that have one endpoint
in C and one endpoint in V. A vector X € F (2)", indexed by the elements of V| is a codeword if
and only ify" X, = 0¥c € C. The notation v|c means any v € V connected to ¢ via an edge e € E.

The im}c)\grtance of G cannot be underestimated. Indeed, there is a fair amount of doubt over
whether an LDPC code ought to be considered equivalent to its the linear subspace it defines, or to
its graph. The traditional view, and the view that most authors are careful to adhere to, is that it
is equivalent to the subspace.

~ Indeed, this view is sufficient to characterize many important aspects such as its minimum

distance, codeword weight enumerator, and performance under maximum likelihood decoding.

7

However, many fundameﬁtal properties associated with LDPC codes are not defined by its sub-
space. Message passing algorithms including belief propagation (BP) algorithm (section 1.8), can
be defined only in terms of G or H and not in terms of subspaces. Stopping sets, which are related
to message-passing decoding algorithms, can only be defined in terms of G or H. The analytical
tool of density evolution (section 2.5) is defined with respect to ensembles of parity-check matrices,
or ensembles of graphs, but not ensembles of subspaces.

Thus, from the perspective of this thesis, we will always take the definition of an LDPC code to

be its graph G or, equivalently, a particular parity check matrix H and not just the subspace defined

by H.

1.6 Encoding of LDPC Codes

Since LDPC codes are defined by their parity check matrices, it is not always a trivial to encode
them, nor is there always a particularly efficient way. The encoding procedure defined by Richardson
and Urbanke [5] works quite well for optimized distributions, in which case the complexity is nearly
linear, but not as well for comparatively high-density check matrices (for example, minimum variable
node degree 3 or more). In the case of circulant based codes 4.3, certain techniques can drastically
reduce hardware complexity.

This section describes what is perhaps the simplest algorithm for encoding LDPC codes, con-

structing an explicit generator matrix. The technique is to first construct a systematic parity check

matrix of the form:

Hsystematic = [Hdense ! Ir} (15>

using Gaussian elimination. The elementary operations are to add one row to another, swap rows,
and swap columns. Since the order of columns is meaningful, if columns are swapped during this

stage, they must be swapped in the original matrix as well. Redundant rows of H must also be

removed.

Given Hgystematic @ systematic encoding matrix Gsystematic can be defined:

Gsystematic = []k il Hgi;nse} <16)

This systematic matrix defines a systematic encoding given by:

T
T = Gsystcmatic tm

1.7 Decoding Framework

This section presents a standard decoding framework, which formalizes the assumptions made by
the belief propagation decoder and defines terms used therein. This framework consists of several
component systems, signals which flow between the systems, and a set of assumptions on the com-
ponent systems and nominal valires on some of the signals. The component systems are an encoder,
a channel, a channel demodulator, a probabilistic decoder, and a de-encoder. All of the systems

are abstract, and each has some degree of freedom, though the flexibility in the code, channel, and

decoder account for the range of possible system performance.

= Demodulaion '

Figure 1.5: Generalized Decoding Framework

Figure 1.7 shows the flow chart defined by this decoding framework. The single input to the
system, a message denoted m, is supposed to come from a uniform source over Ff. The encoder is
an arbitrary 1 : 1 linear mapping from F¥ to C. Since the dimension of the code is %, the same as
that of the message, at least one such mapping always exists. Given that m is uniformly random, it
is immediate that the decoder output is also uniformly random.

The codeword z is input to, or transmitted over the channel. The channel is assumed to be time-
invariant and memoryless. Additionally, it is assumed to take binary input. It is not assumed at
this point that the channel is symmetric, though this assumption will be made later for the purpose
of density evolution analysis (section 2.5). The channel output is y € Y™.

The demodulator-provides an interface from the channel to the probabilistic decoder, observing

the channel output and providing a representation suitable for the probabilistic decoder.

_PlylXi=1)
N PX =) e

The demodulator is assumed to know the channel statistics, as it must in order to evaluate 1.8.

The presence of the demodulator allows the decoder to function without needing to know anything

about the channel itself.

9

The decoder observes the likelihood ratios A and produces an output £ € FJ* whose nominal
value is z, the output of the encoder.

Finally, the de-encoder inverts the operation of the encoder, producing an estimated message
€ FF. If £ = z, then it may be assumed that 1 = m. Any pseudo-inverse of the encoding
mapping has this property and thus is suitable to function as the de-encoder. In the case of a
systematic encoder, the preferred de-encoder is the linear mapping which simply truncates the non-

systematic portion of the codeword.

1.8 Belief Propagation Decoding

This section describes the most standard message-passing decoding algorithm, a specific instance
of & much more general algorithm known as Belief Propagation (BP). This algorithm is due, in its
present generality, to Pearl [6]. Another view of this algorithm, written in terms of a Generalized
Distributive Law, is provided by Aji et. al [7]. However, the derivation of this specific form of BP
from any generalized framework is beyond the scope of this section and this thesis.

The belief-propagation (BP) algorithm estimates X given A. The algorithm functions by passing
messages along the edges of Gfor a series of iterations ¢ € {0,1,2, ..., ¢maz }. Fach iteration is broken
into two parts. In the first part of each iteration i and for each edge e € E, a message A\’ is computed
and passed along e from variable to check. Each such message represents an estimate of a certain

conditional probability on z.. z. is the variable associated with e.

x:’;g:‘g &= Plxr=0)—Plr=1)

Probabiliity
Difference

Likelihood
Ratio

Log
Probability
Difference

Likelihood
Ratio

A= IogP

W;—%) E = log (P(x = 0) ~ P(x = 1))

Figure 1.6: Four representations of the distribution of a binary random variable

1.9 Design Criteria

The primary design criteria for any channel coding system is its effectiveness in providing a reliable

communication channel. The first, and most often cited, measure of this criteria is simply the

10
probability of error at the decoder output. A second measure, also of high importance in many
applications, is probability of an undetected error at the decoder output.

It is customary to make direct comparisons only between codes of the same rate and length.
This is because, for a fixed channel, it is generally easier to design codes that have low probability
of error when the code has longer length (given a fixed rate), or lower rate (given a fixed length).

The channel coding theorem and *** theorem make this precise by bounding output error proba-
bility of a channel coding system as a function of rate and length. Shannon’s channel coding theorem
gives a lower bound on the probability of decoder error as a function of the code rate and the channel
which is asymptotically independent of the length, though this bound is trivial (equal to 0) when
the code rate is below the channel capacity. The error exponent of a channel implies an asymptotic
bound on the probability of error that is exponentially small in the code length. ‘

Since we may use the same coding system on different channels, it is often reasonable to compare
performance on a family of channels. An example of such a family is the additive white Gaussian
noise (AWGN) channel, sometimes referred to as the ”deep-space channel” since almost any other
channel is approximated comparatively badly by the model. The AWGN channel is parameterized
by its signal-to-noise ratio (SNR), and thus a very common way to characterize the channel coding
performance is to plot probability of error at the decoder output versus SNR. Most of the time,
signal to noise ratio is normalized such that the signal power is measured per symbol of information

rather than per channel use, i.e. to characterize SNR by Fj/Ng.

11

Chapter 2

LDPC Codes Constructed From
Protographs

in which we define the class of protograph-based LDPC code ensembles

We introduce a new class of LDPC codes constructed from a template graph called a protograph.
This construction allows the creation of LDPC codes of any natural multiple of the protograph size.
In section 2.1, we define this construction in both its deterministic and randomized form.

The randomized construction defines an ensemble of codes of any particular length. In section
2.3, we discuss the properties of these ensembles. We give an equivalence relation on sequences of
ensembles. We show that under this equivalence relation, there are protograph ensembles that are
equivalent to any unstructured regular ensemble, but none that are equivalent to any unstructured
irregular ensemble.

Some aspects of typical protograph LDPC codes can be inferred from the protograph. In section
2.3 we see that the performance under certain message-passing decoding algorithms can be predicted
by analyzing the protograph via Density Evolution, an indispensable tool developed by Richardson
and Urbanke. Density evolution gives a lower bound on the fidelity of the channel necessary for
reliable communication. Indeed this bound is achievable provided that one is willing to use a large
enough code.

In chapter 3, we see how the asymptotic codeword weight enumerator and asymptotic stopping-
set weight enumerator can be computed for any protograph. Weight enumerators and stopping set
enumerators give bounds on performance under both maximum likelihood decoding and, in certain
cases, under message passing decoding.

Density evolution threshold and asymptotic enumerators reveal a great deal about the suitability
of a typical code (of given size) in the ensemble to an application. In chapter 4, we see one way
to use these properties to select among several possible protographs. The problem of searching for

protographs is more difficult, but simulated annealing can be used to find protographs in a large

class.

12
2.1 Introduction

Recently, more and more sophisticated classes of LDPC codes have been forwarded by members of
the research community, each offering advances in one area or another. .

We have seen in chapter 1 that an LDPC code is described by its (sparse) paritj—check matrix.
Such matrices can be efficiently represented by a bipartite (Tanner) graph. The standard iterative
decoding algorithm, known as Belief Propagation (BP) passes messages along the edges of this graph.
Much research has gone into understanding the properties required of a Tanner graph to produce

an LDPC Code that performs well under this decoding algorithm.

In this paper, we introduce a new class of LDPC codes constructed from a template called
a protograph. The protograph serves as a blueprint for constructing LDPC codes of arbitrary size
whose performance can predicted by analyzing the protograph. We apply standard Density Evolution

techniques to predict the performance of large protograph codes. Finally, we use a randomized search

algorithm to find good protographs.

2.2 Protographs and Protograph Codes

A protograph can be any Tanner graph, typically one with a relatively small number of nodes. A
protograph G = (V, C, E) consists of a set of variable nodes V, a set of check nodes C, and a set of
edges E. Bach edge e = (v,¢) € E connects a variable node v € V' to a check node ¢ € C

Ty oz e Tped

As a simple example, we consider the protograph shown in figure 1. This graph consists of
|V} = 4 variable nodes and |C| = 3 check nodes, connected by |F| = 8 edges. By itself, this graph
may be recognized as the Tanner graph of a (n =4,k = 1) LDPC code, though not necessarily an

interesting one.

caption

We can obtain a larger graph by a ”copy and permute” operation, illustrated in figure 2 and 3.

In figure 2, the protograph has been copied 3 times.

caption

In figure 3, the endpoints of the edges corresponding to each edge in the protograph have been
permuted. We call this the derived graph, which is the Tanner graph of an (n =12,k = 3) LDPC
code.

In general, we can apply the ”copy and permute” operation to any protograph, to obtain derived
graphs of different sizes. This operation consists of making T’ copies of each variable and check

node in the protograph and, for each edge in the protograph, adding T' edges between corresponding

nodes.

Definition 2.2.1 e=mc2

Definition 2.2.2 A protograph code is an LDPC code whose Tanner graph is a derived graph.

The usual mapping of Tanner graphs to LDPC codes makes the implicit assumption that each
variable defined in the code will be transmitted over a channel. However, a useful refinement[8] is
to allow the variable node set V' to contain untransmitted variable nodes. Under this refinement,
each variable v € V' may be designated a transmitted node or an untransmitted node. The number
of transmitted nodes is denoted n, and the number of untransmitted nodes is denoted wu, thus
n-+u = |V]. The number of check nodes is denoted r = |C|. The dimension &k of a code with
untransmitted variables is k = n+4u—r, and the rate is R = ﬁ—n’i_—’f A variable node (v,t) in G’ has
the same transmitted /untransmitted designation as v. The-derived graph contains nT’ transmitted
and uT" untransmitted variable nodes, as well as T check nodes. Thus, any derived graph has the
same rate R as its protograph.

Untransmitted variables can improve the performance of protograph codes. These variables are

decoded by the decoder given the channel had yielded no information about, as in an erasure.

2.3 Equivalence among Ensembles

LDPC code ensembles can be partly characterized by their distribution on local neighborhoods. In
this section, we define an equivalence relation on based on this characterization.

After 7 iterations of the decoding algorithm,

Definition 2.3.1
Ty =1} (2.1)

14

Muld-Edge Typa |

Umsotonred
Irecguar

Figure 2.1: Classes of ensemble characterized by local neighborhood distribution

SN Pty =t)=1 (2.2)

€Ty

Members of the same class have the same density evolution threshold.

2.4 Deterministic Neighborhoods

A property of protograph codes not shared by other classes of irregular codes is that the local
neighborhood of a node (v,t) in G is completely determined by G. The local neighborhood to depth
d consists of all nodes and edges connected to (v, t) by a path of length d or less. This neighborhood
is a tree if there is at most one path of length d or less to any other node. In this tree, each node is

adjacent to the same node types as in the protograph. To illustrate, we expand the neighborhood

of a variable v of type 1 in figure 1 to depth D =3

s ija

graphs optimized primarily for loopiness (left) and wire-length (right)

The local neighborhood tree can be constructed uniquely from the root downward. This leads

to the following property of local neighborhood of derived graphs:
Property if a neighborhood of depth d of a variable node (v, %) in the derived graph G'is tree-like,
its structure is determined by the adjacencies in the protograph GG. Note that v need not be

tree-like within depth d in G.

‘We can expect that the performance of belief propagation on derived graphs should be relatively

insensitive to the choice of {m.} because of the structure imposed by . By contrast, in a Tanner

15

graph generated from a given irregular degree profile, the structure of such a neighborhood is randoim,

and the performance of Belief Propagation may depend more on the particular graph.

2.5 Density Evolution Analysis of Protograph Code Ensem-

bles

We have defined an arbitrary protograph code by applying a "copy and permute” operation to a
protograph . We now define an ensemble of protograph codes by specifying a probability distrib-
ution over the permutations {m.,e € E}. The ensemble that we shall consider is that obtained by
generating mouniformly over all permutations of length 7', and independently for each e € E. For
this ensemble, it can be shown that as T' — oo, the probability that the neighborhood of fixed depth
d of any node (v,t} is tree-like goes to 1, and thus the ensemble meets the criteria for analysis by
Density Evolution.

Deunsity evolution (DE) analysis[9] can be carried out on a protograph to determine whether
or not decoding will yield arbitrarily small bit error probability on a large derived graph. In this
technique, the messages which are defined in the message passing algorithm are treated as randbm
variables, and their distributions are computed.

For the ensemble of codes constructed from a given protograph G, and for a given symmetric
channel C, we compute two distributions ?é and ‘g% on the messages passed in either direction along
edge e at iteration i. Because of the deterministic neighborhood property, the message distributions
g% and ‘g% computed for the protograph edge e in G are valid for any corresponding edge (e, t) in
the derived graph G’ as long as the neighborhood of depth 27 is tree-like. .

DE predicts a probability of decoder error Py) for variable nodes of each type v at each iteration
i, based on the distributions g%, ‘7%, and the channel C. If message densities evolve such that
Py) — 0 as 1 — oo for all v, then DE predicts that decoding will be successful, given T large
enough. For a channel Cy, whose fidelity increases with the parameter § , the DE threshold 8* for

protograph & is the infimum of 8 such that DE predicts successful decoding for G and Cj.

2.6 The Reciprocal-Channel Approximation to Density Evo-

lution

Our algorithm essentially relies on a very fast and accurate approximation to density evolution
originally proposed in chapter 7 of S.Y. Chung’s thesis [10] for regular LDPC codes called the
reciprocal-channel approximation (RCA). Like other apbroximations to density evolution, the recip-

rocal channel approximation makes use of a single (real valued) parameter which approximately

16

characterizes the message distribution. We may suppose that this parameter represents a quantity
which is additive at the check nodes (meaning that the parameter describing an outgoing message
is the sum of those describing the incoming messages).

For the Gaussian channel, the statistic is the signal energy F normalized so that Ny = 1. Let
C(E) deno‘ée the capacity of the binary-input AWGN channel of with input energy E, and C71 its
inverse. We define a reciprocal energy function ® : F — C71 (1 — C(F)), which is self-inverse.
The dual domain statistic B/ = @ (E), which we call “reciprocal energy” is additive at each check
node in the same way that energy is additive at the variable nodes.

In density evolution on a protograph G, we recursively compute the quantity Elg and Eig. for
each edge e in the protograph (representing a class of edges in the derived graph). The quantity EEE,
represents the “energy” corresponding to the message from variable to check along edge e at iteration

i of decoding. The analogous quantity EZ represents the “reciprocal energy” corresponding to the
g g Y Lo gy

message from check to variable along edge e at iteration i.

EL = E + > 0 (B%)
elFe
where the sum is taken over edges ¢’ # e where e and e’ are connected to the same check node.
Epey is the channel signal power given fo the variable node of e. On the 0t* iteration, the energy
P (Q) = 0. If the protograph includes untransmitted variables and the variable adjacent to e is

€
untransmitted, then Egp oy = 0, otherwise Egp(ey = Len, the signal energy of the channel.

4o

e
If, for particular values of E., the energy E% —+ 00 as 1 — co , then the RCA predicts that
message-passing decoding for large codes based on G will be successful for the channel given by Eep,.
The minimum value of E., such that E% — oo is called the RCA threshold of GG. It is reported in
[10], and confirmed by our own observations that the RCA threshold is typically within 0.01 dB of

the true density evolution threshold.

17

Chapter 3

Protograph Weight Enumerators

3.1 Introduction

LDPC codes are becoming a standard in today’s error correcting systems. However, even as the
number of codes investigated by researchers has swelled, it remains difficult to find codes achieving
"near zero” error probability at rates close to Shannon capacity. Instead, codes which are designed
to behave well close to the capacity limit typically exhibit an Error floor.

Error floors are generally attributed to small sets of variables such as low-weight codewords, low-
weight stopping sets [11], pseudocodewords [12] of small pseudo-weight, or, in the case of quantized
decoders, small trapping sets [13]. Often, these sets are discovered only after specific codes have been
designed and simulated. However, it is desirable to be able to predict the existence and frequéncy
of such sets for entire ensembles of codes.

Speaking more formally, we are interested in certain asymptotic weight enumerators of LDPC
code ensembles. Gallager was able to compﬁte agymptotic codeword weight enumerators for regular

LDPC codes at least as early as 1963[14]. Litsyn and Shevelev[15] extended this result to include

unstructured irregular ensembles. More recently, Di[16] has computed weight enumerators and

stopping set enumerators also for unstructured irregular ensembles (in both average and typical
case).

In this paper, we consider the problem of finding average enumerators for the class of protograph
ensembles, which are related in a certain way to quasi-cyclic codes. Our methods, which are neces-
sarily different from those used to compute enumerators for unstructured irregular enéembles, can be

applied to both codeword and stopping set weight enumerators, based on their simple combinatorial

characterizations.
In section 3.2, we define the quantity A(©, G) which is the number of vectors of fractional weight

© having a certain relationship to the graph G (e.g. being a codeword or a stopping set). The
expectation of this quantity with respect to an ensemble is Ay (©). This quantity typically grows

exponentially with V and the enumerator exponent E(O) is:

18

E(O) = J\Ili_inoo@n 7 (0) (3.1)

E(O) = (13}5:% E(8) ‘ (3.2)

We show that

for a certain function E(8) where 8 is a vector fractional weight or partial weight. In section 3.4, we
show how to compute the value of E(#). In section 3.5, we show that E(§) is in general not convex,
and thus is difficult to optimize. Nonetheless, we apply steepest ascent to solve the maximization,
and show that this method gives results that are reasonable.

In section 3.10, we outline some future research directions

3.2 Weight Enumerators Defined

Protograph ensembles are defined and characterized by a bipartite graph P = (V,C, E), where
V' = {v} is a set of variable nodes, C = {c} is a set of check nodes, and E = {e} is a set of
edges each adjacent to one element v(e) € V and one element ¢(e) € C. Formally, a protograph is
equivalent to a Tanner graph, except that multiple edges are allowed.

A protograph P is semantically equivalent to an r X n protomatrix H = (H.,,) where H,, is the

number of edges in E adjacent to ¢ and v.
P can be lifted by a factor of N to generate a graph GAn N-lift of P, which we denote PV =

(VN,CN EN), is constructed from a set of permutations {7, }ocz of length N. We let V¥ = V x[n],
CN = Cx[n], and EN = E x [n], where (e,4) is adjacent to (c,1) and (v, 7. (:)). In the lifted graph,
we refer to v as the type of node (v,%), and to ¢ as its indez, and use a similar convention for check
nodes {c, 1) and edges (e,).

We define the probability measure P(-) to be the uniform measure over N-lifts of P, that is
where {7, }.cr are independent and uniform over all length N permutations. We sometimes refer
to this probability measure as an ensemble of graphs.

The codewords z € G are the assignments of (0,1) to each v € V¥ such that each (c,i) € CV
is adjacent an even number of times to variable nodes assigned the value 1. Similarly, the stopping

sets s of G are assignments such that each (c,1) € CV is adjacent 0 times or at least 2 times to

variable nodes assigned the value 1.

‘We are now ready to define a set Q which generalizes the notions of codeword and stopping set.
For each check ¢ € C in the protograph define a set of allowed vectors 2, < (0, 1)%e e(e)=¢},

For a particular word z and check node (c,i) € CV, define W(e,5) () to be the vector of variables

connected to (¢,7):

19

Wiee,iy (:23) - (mv (e))e:c(e):(c,z’) (33)

Then the set (2 is the set of z such that every vector w4 (z) is in the corresponding allowed set

Q., formally:

Q={z:wey(z) €, ceC,ien} (3.4)

is a set of words = with a certain combinatorial property.

By choosing an appropriate definition of Q,, it is possible make) the set of codewords or the
set of stopping sets. If, for each ¢ € C, Q. is the set of vectors of even weight, then Q is the set of

codewords in G. If Q. is the set of vectors of weight not equal to 1, then Q is the set of stopping

sets.
We are interested in the number of words in of fractional weight ©(z), defined to be the number

of 1’s in z divided by the word length N -n. For a given graph G the number of such words is
denoted A(©, G), and the expectation with respect to the ensemble of graphs of length N is denoted
An(©)This expectation typically grows exponentially with IV, and the exponent E(Q) is defined by

equation (3.1).

3.3 Approach

Our approach to computing E(@) is based on the method of types [17]. For a particular word & (not
necessarily in), denote its type (or partial weight) by t(z) = (8,)yecv, where 0, denotes the fraction

of times that z assigns 1 to variables of type v. The following lemma. says that the probability that

z €) depends only the type 6.

Lemma 3.3.1 if ¢ and y are assignments of (0,1) to each v € VN such that t(z) = t(y) then

PlzeQ)=Plye)

Proof. 8,(z) = 0,(y) implies that there exists a vector of permutations (m,),ev such that for each

U, Ty = Ty (Yy), where z, is the value z assigns to {v,i}.

The permutations (7,),ev define a bijection on elements of the ensemble defined by f{((7.)) =
(e - W(v(e))) such that y € Qs((x.))) if and only if z € Q). Since all lifts in the ensemble are

equiprobable, the conclusion holds. =

Thus the expected number of words of type 8, which we denote Ayx{(6) is just the number of

words of type 8 times the probability that any word of that type is in

An(8) = [{z :t(z) =9} - Pz € Qlt(z) = 9) (3.5)

It is straightforward to see that the number of words of type 6 can be approximated as:

Hz : t(x) = 0}] = eV 20 H%) (3.6)
Define the indicator function that z satisfies all of the constraints
Definition 3.3.2
1, fweylz) e QVien
fo.(@,G) = fep(w) € Qevi € o] (3.7)
0, otherwise
The following lemma says that for any z, the probability of satisfying each type of constraint 2,

is independent over ¢ € C.

Lemma 3.3.3

P(z e Q) =[] P(fo.(z,G) =1) (3.8)
ceC

Proof. for a particular z, fo.(z,G) is a function only of the set of permutations {7, }e.c(e)=c. The
permutations {7, } are mutually independent, and thus independent with respect to the partitioning

{{We}e:c(e)zc}c cor The result follows since functions of independent variablés are independent. m

We define the asymptotic exponent of the probability that all w. ;) € Q. for all checks of type c:

Bo(00) = Jim Wn(P(fo.(z,G) = 1)/N (3.9)
For a particular word z, this probability depends only on the vector of weights 6, associated with
the variables adjacent to check ¢ in the protograph:

‘96 = (Qv(e))e:v(e) (310)

From a computational point of view, it is unfortunate that independence does not factor further.
Although fq, (z, G)is independent from type to type, W(e,5)(z) are generally dependent among values
of 4. Nonetheless, we can apply large deviation theory and Sanov’s theorem to obtain the following

theorem, which shows in principle how to compute the asymptotic probability exponent $.(6,).

Theorem 3.3.4
q§’c(96> = prélﬁ?g% H(p) - Z H(Gv(e)> (3'11)

e:c(e)=c

21

where PR is the set of distributions P over satisfying the marginal constrains:

Z wP(w) =0, (3.12)

WwE[0,1])e5(e)

and having support only on Q, thus satisfying

Plw)=0,Vwé¢Q, (3.13)

Proof. From the definition of the protograph ensemble, the check (¢,) is adjacent to the vector of

variables ((v(e), me(%)))ecBio(e)=c. Consider the matrix whose columns are the set of such vectors,

namely

X =(XZ;), Xy = a(v(e), (i) (3.14)

Because (7.) is a set of independent uniform random permutations X is a random matrix with
uniform probability over all matrices with row sums (N6,). Denote this set Rt]?\: . Furthermore,

z € QX if and only if each column of X¥ & (.

Define a uniform probability measure @ over all m x N [0, 1] matrices. Now

PxY ey =@l |R)) (3.15)

Applying the definition of conditional probability,

iy _ QY NRY)
QOB = = o (3.16)

Since the event QN N Ré\i depends only on the empirical distribution on columns of X2, and Q

is column-wise independent [explanation?], we can apply Sanov’s theorem [17] directly to obtain

o1 .
Jim QO RE) = min D(P|U:) (3.17)
where U, is the uniform distribution over vectors of length deg(c) and P% is the set of distributions
satisfying both (3.13) and (3.12).

Juin, D(P|Ue) = H(Ue) — max H(P) (3.18)

The denominator of the right hand side of (3.16) can be asymptotically estimated in a similar

way

22

1 N
Jim 5 InQ(RY) = min D(PI[UL) (3.19)

where P® is the set of distributions satisfying (3.12)

It can easily be seen that the P which minimizes D(P||U,) is the component-wise independent

distribution with marginals equal to 8., and thus

in D(PIUL) = HU) ~ H,) (3.20)

where H(0,) = ZG:C@):C H(0y(e))-
Applying the asymptotic expressions in equations (3.18) and (3.20), we obtain

S NypNy _ _
Jim —nQENIRY) = max H(P) - H(.) (3.21)

We now apply theorem 3.3.4, to computing E(#). Taking the log of equation (3.5), and substi-

tuting equation (3.6) and (3.9), we have:

veV cel’

In the following section, we show how to numerically compute the value of ®.(8.) and thus how

to compute E(6).

3.4 Numerical Methods for computing F(0)

In the previous section, we have seen that computing each function $.(8,) requires solving a con-

strained entropy maximization problem.
In this section, we describe the computational mathematics used to calculate E(0), for a given

protograph described by an r x n matrix H.

Let.m. be the degree of c. We have seen that (, is a set of m.—vectors. We seek ®.(4.) =
max H (p) — Y, H(0,) where p(w) is the set of all probability mass functions satisfying equation
(3.12)

Applying Euler-Lagrange theory, we will see how this constrained optimization problem can be

transformed info a non-linear system of equations. The Lagrangian corresponding to our constrained

optimization problem can be written

L{p) =~ p(w)(log(p(w)) — s - w) (3.23)

weR

23
The constrained optimum must satisfy 2% = 0, and this condition implies a Boltzmann distribution
Op

on w given by

* . ___:Lﬂews-w
pr(sw) = o) (3.24)

The normalizing constant z(s) takes the value that ensures p is a probability distribution, appropri-

ately summing to 1.

2(s) = Z e v, ‘ (3.25)

we

The Helmholtz free energy can be written in terms of Z(s) :

F(s) = —log(Z(s)) (3.26)

and has the property that its gradient with respect to s is equal to the Lh.s of equation (3.12).

VF(s) = -Zz—s)zu;e'w ‘ (3.27)
we2
= > wp(w) (3.28)
wen

Thus, if we find s* which solves

VF(s*) =6, ‘ (3.29)

then the probability density that leads to the maximum entropy is given by p*(s*,w) and ®.(f.)

can be expressed

Bo(0,) = —F(s*) +s* - VF(s*) (3.30)

The domain of 6., usually denoted K, is the convex hull of all w € Q.. Outside of this domain,
no distribution p can satisfy (3.12). As a side remark, we note that if each Q. is the set of even
weighted vectors, then the feasible region is formally equivalent to the pseudocodeword fundamental
polytope.

The domain of s is the entire space R™ of real vectors. It is shown in a concurrently submitted
paper by Aji et. al[18] that there is a one-to-one correspondence between these two domains. That
result follows from considering the Helmholtz free energy and its Legendre conjugate.

Once we have this non-linear system of equations (3.29), we can numerically solve for s* using
either Broyden’s or Newton’s Method. We found Broyden’s Method [19] to be far faster, and thus use
it whenever possible. However, since Broyden’s Method uses only an approximation to the Jacobian,

it is not always able to find a solution. In practice, this typically happens near the boundary of the

feasible set(where calculations of gradients and Jacobians become more difficult by any method).
The values of 8, on the boundary of K correspond to values of s with infinite norm, and care must

be taken to avoid numerical problems in this region.
In the following section, we will show how to optimize the function E(#) over § to obtain E(8).

3.5 Maximization of £(0)

Since there are only polynomially many types, each having an exponential number of elements, it is
a standard result that the sum is dominated by a single type, as expressed in equation (3.2).

In general, the function E(8) is not convex. For protographs with no check nodes of high degree,
it may be possible to essentially search the whole space {6 : (§) = © for the global maximum of
(3.2), but this is impractical for protographs with any large check nodes. A second approach is to
use a gradient following method such as steepest descent. Unfortunately, this is not guaranteed to
converge to the global minimum. A third approach is to use steepest descent starting from a number
of different starting locations. In practice, this approach is sufficient to compute curves that appear
continuous for protographs that have been investigated.

Still, it is an artifact of certain protographs that there are critical values of © at which the global
minimum of £(f) jumps from one place to another, which is reflected in a discontinuity in the first
derivative of E(O). '

Figure 3.5 shows our evaluation of the weight enumerator for a rate 1/3 protograph defined by
the matrix in equation (3.31). The zoomed section, shown in figure 3.5 shows a discontinuity at

approximately © = 0.13 in which the global maximum of (3.2) jumps from one value of 8 to another.

The dashed lines indicate other local maxima.

3 0 3
(3.31)
0 3 4

H =

For a given matrix, H, and a value of © perhaps only some vectors # have a solution to the
entropy maximization problems for each row of H, as for some problems there are no probability
mass functions which satisfy the constraints. A simple algorithm can be used to determine whether
a vector 0 is feasible. In the steepest ascent code, if we find ourself stepping outside the feasible set,

we just take a smaller step size until either we remain in the feasible set or the step size becomes

effectively zero.

25

Code Word Weight Enumerator
T T

B

004 0.06 008 o1 012 014 018 0.18

Figure 3.1: This weight enumerator has an elbow

3.6 Domain of E(6)

It is important both from an analytical and a computational point of view to know the domain
in which E(8) is well-defined. In this section, we give a genefal characterization of the domain.
We further show that for both stopping set enumerators and weight enumerators, determination of
whether a specific vector # is in the domain can be done by eflicient algorithms.

The domain of E(f) is in general a subset of [0, 1]V, since by definition the fraction of 1’s of any
type v is by definition in [0, 1]. Referring to equation(3.22), the term H(f,) is well defined in this
set and thus does not restrict the domain. However, the term ®.(0.).is defined only where there is
at least one distribution satisfying equation (3.12), which is exactly when 6, is in the convex hull

of Q. If all such constraints are satisfied, then E(f) is well-defined. Thus, in the general case, the

domain of E(#) can be expressed:

" Domain(FE(9)) = {0 : 8, € K(Q.)} (3.32)

Computationally this is feasible to test as long as the degree of the check nodes is small. However,
a direct application of this criterion implies at least an enumeration of all of the elements of {2, for

each ¢. For codewords and stopping sets however, the characterization is even simpler.

3.6.1 Continuity of F(O)

It is shown by Aji et al. [18] that ®.(f.) is a smooth function of

3.7 Behavior of F(0) Near Zero

An important feature of average weight enumerators is their behavior near @ = 0. For some

protographs, there is a region (0, ©*) for which the codeword weight enumerator E(©) < 0. For

26
such ensembles, we will see that the majority of the codes have minimum distance growing like

N . O

3.7.1 Types of Zero-crossings

Informally speaking, there are three essential ways in which E(0) can behave near zero. We have
seen that for stopping set enumerators and codeword enumerators E(0) = 0 for every protograph.
Above zero, E(O) may become strictly negative. Another way is for E(©) to be exactly zero for
some finite stretch, and the third is to become immediately positive. In this section, we will formalize
these notions, and prove constructively that each case is possible.

For a given enumerator E(6), define:

e! = inf B(©)>0
>0

0% = inf E(©)>0
©>0

Clearly ©2 > ©1 since {0 : E(©) > 0} ¢ {6 : F(6) > 0}. Having made this observation, we

can divide

IfO! =02 =0, then

From a point of view of performance of the code under ML decoding, the most desirable way
is the first, in which E(©) becomes strictly negative. In this case it is possible to argue that with
high probability the minimum distance of the code grows linearly with N. In the second case, it is

impossible to directly argue whether the minimum distance does or does not grow linearly with N.

Spielman ***

3.8 Algorithmic Determination of Class of P

It is desirable to be able to quickly determine the class of a protograph. It is possible to determine

the class of P

3.9 Protograph Ensembles as Multi-Edge-Type Ensembles

Multi-edge-type ensembles [13]

27

3.10 Discussion

A primary motivation for computing enumerators has been to use them to design ensembles of codes
with low error floors. The general idea is to use a combination of enumerator properties, such as the
asymptotic expected minimum weight, and density evolution threshold. Preliminary experiments

in which such codés have been designed and*simulated have suggested that this approach can be

effective.

3.10.1 Quasi-Cyclic Ensembles

Quasi-cyclic codes [4] have become a popular choice for many applications for many reasons including
a relatively efficient encoding algorithm. It would therefore also be desirable to know something
about their average weight enumerators.

Ensembles of quasi-cyclic codes can defined for protograph P by altering the definition so that
the permutations {7, }.cp are chosen among only cyclic permutations. Unfortunately, the approach
of this paper cannot easily be extended to compute enumerators for this kind of ensemble. One
reason for this is that lemma (3.3.3) does not hold for this ensemble.

The conjecture that average weight enumerators of quasi-cyclic ensembles are the same as those
of full ensembles is false. One graph in the quasi-cyclic ensemble is that in which each permutation
being the identity permutation. This gréph is disconnected into N pieces, each identical to the
protograph. As long as each one of these pieces admits at least one non-zero assignment, the whole
code has exponentially many codewords of any weight IV - ©, where 0 < © < 1. Since the quasi-
cyclic ensemble has only a polynomial number N1E| of graphs in the ensemble, this implies that the
average weight enumerator E(0) is positive. This contrasts with our results for specific protographs

whose full-ensemble codeword weight enumerators we have shown to be negative for certain values

of O.

o
(0]

Chapter 4

Protograph Optimization

In this chapter, we look at some basic ways in which protograph ensembles can be optimized. Since
a protograph is characterized by its

A method is presented for constructing LDPC codes with excellent performance, simple hardware
implementation, low encoder complexity, and which can be concisely documented. The simple code
structure is achieved by using a base graph, expanded with circulants. The base graph is chosen
by computer search using simulated annealing, driven by density evolution’s decoding threshold as
determined by the reciprocal channel approximation. To build a full parity check matrix, each edge
of the base graph is replaced by a circulant, chosen to maximize loop length by using a Viterbi-like
algorithm. One hardware decoder implementation performs belief propagation sequentially on copies

of the base graph, and in parallel on the edges within the base graph.

4.1 Introduction

Since the rediscovery of low-density parity-check (LDPC) codes in the 1990’s, many researchers
have discovered ways to improve the decoding performance of Gallager’s codes. In a landmark 2001
paper [9] Richardson and Urbanke defined a class of ensembles of irregular LDPC codes, and listed
an extensive collection of optimized degree distributions.

More recent research has been directed toward designing good LDPC codes with additional struc-
tural constraints imposed. One such construction that appears to have been developed concurrently
by several different researchers is to generate a Tanner graph based on many copies of a smaller
graph. This is described in [20] in terms of a protograph, and is closely related to the base graph
of Lin [21], the seed graph of Tanner [4], and the more general Multi-Edge-Type construction of
Richardson [8] [13]. ‘

This construction offers several advantages. Significantly, it is possible to lower the theoretical
iterative decoding threshold compared to that of randomly connected codes, subject to the same

constraint on maximum variable node degree. The imposed structure can also facilitate analysis and

29

design of the code, as well as offer a convenient way to document and store the code. Finally, this
structure can be exploited in the creation of simple and efficient hardware decoder designs.

The construction of [20] begins with a small {n,r) base graph G called a protograph, containing
n variable nodes and r check nodes, no more than a few dozen in total. The protograph is then
expanded by making T" copies, at which point each edge becomes a bundle of T parallel edges. Then,
the endpoints of the bundle corresponding to edge e is rearranged by a permutation m,. We call the
the new T times larger graph the derived graph.

The derived graph inherits many important properties from the protograph including the degree
distribution. If T is large enough, and each permutation 7, is chosen at random, then the per-
formance of the resulting LDPC code can be determined by density evolution on &, as discussed
in section 4.2. On the other hand, if 7" is not very large or the 7.’s are highly constrained, then
important graph characteristics like loop lengths and stopping set sizes can depend more strongly
on the choice of 7.’s. These issues can sharply affect code performance.

One apprdach to generating the mw.’s is to use an algorithm such as Progressive Edge Growth
(PEG)[22] which places one edge at a time, attempting at each step to avoid creating short loops.
However, there is in general no efficient way to document and store the output of such an algorithm,
which is necessary since both the encoder and decoder must be aware of the specific values of 7.’s.
Random selection of w.’s suffers from the same problem.

A good alternative which has been pioneered by Tanner [4] and Lin [21] is to restrict 7.’s to a
much smaller class of permutations such as circulant permutations Iy , the T x T identity matrix

right circularly shifted by ¢.. We contribute in this area in Section 4.3 by adapting the PEG

algorithm to the specific task of circulant selection.

4.2 Optimization via Simulated Annealing

A technique that seems to be popular is to “hand pick” a protograph (or base graph or base matrix)
to approximately match published optimal irregular degree distributions, or by simple trial and error.
This technique can be used to approximately match the performance achievable with homogeneous
(single edge-type) irregular LDPC codes. However, using an exploratory algorithm, we can design
protograph based LDPC codes which achieve performance superior to what is achievable by single
edge-type codes under certain constraints.

We make use of the RCA threshold to search for good protographs that perform well under BP on
the AWGN channel. This search uses a randomized iterative algorithm called Simulated Annealing
(SA), and is directed by our estimate of how the DE threshold changes as an underlying protograph

is perturbed.
In our application, we search over protographs G with fixed numbers n of transmitted nodes, u

30
of untransmitted nodes and r of check nodes. Since the code rate is determined by these parameters,
it is constant throughout the optimization space, and we can design good codes for any desired rate
by our choice of n, v and r.

We define an energy F (G) associated with graph G, to be minimized in SA. A natural quantity
to choose is the SNR corresponding to the RCA. threshold. However, we define it to be the channel
SNR at which the average bit error probability is less than e after I decoder iterations.

At each stage j of the SA algorithm, we select one of three types of perturbations on G;: removing
an edge, adding an edge, and swapping the endpoints of two edges in G to generate a new graph
G%. If the energy E(G’;) < E(Gy) then Gj11 = G%. Otherwise, G411 = G} with probability
exp (%}E(S;)) and G; with the remaining probability, where ¢; is the temperature at time j.
The algorithm returns the solution Gy at the final J** iteration.

If € is chosen small enough and I is chosen large enough, then this corresponds well with
RCA threshold. On the other hand, choosing smaller values of I can improve the performance of
the resultant codes under small numbers of iterations. More surprisingly, preliminary experiments

indicate that optimizing graphs under smaller values of I may effectively lower the error floor for

small block length codes (n < 10000).

4.2.1 Optimization Results

An interesting comparison that can be made is between the thresholds of optimized protographs
with a certain maximum degree and 6ptimized irregular codes. A protograph has been found with
Density Evolution threshold within 0.08 dB of channel capacity with maximum degree 8. To achieve

such performance with irregular codes published in [23], a maximum degree of 50 is required.

4.3 Permutation Selection

Consider a protograph with check nodes ¢ € C and variable nodes v € V, connected by edges
e € E. Given a protograph and an expansion factor 7" (the dimension of each permutation matrix),
the algorithm’s task is to choose a circulant phase ¢, 0 < ¢, < T — 1, for each edge e in the
protograph, such that small loops are avoided in the derived graph. Our protograph-and-circulant

graph construction method implies two obvious relationships between loops in the protograph and

corresponding loops'in the derived graph.
Theorem 4.3.1

Theorem 4.3.2

While Theorem 4.3.1 holds for any set of edge permutations {=.}, not necessarily circulants,

Theorem 4.3.2 gives a simple criterion for selecting sets of circulant permutations to avoid small

31

loops in the derived graph. Note that the signs of the terms in this summation alternate for edges
traversed from variable node to check node, and for edges traversed in the reverse direction.

Our algorithm begins with a blank slate, and builds one edge of the protograph at a time. If this
edge e does not complete a loop in the protograph, it is assigned a circulant phase ¢, at random. If
it does, then the phase ¢, that maximizes the minimum loop length in the derived graph is selected.
Computationally, this involves trying each of the T possible phases in turn, and finding the smallest
loop that includes this edge, and satisfies the condition in Theorem 4.3.2.

Finding the smallest loop in a graph containing a particular edge is readily done with a Viterbi-
like algorithm. When the edges are labeled with circulant phases, this problem becomes modestly
more difficult, but can still be done in a Viterbi-like way. We convert the protograph into a directed
graph by duplicating each edge, and labeling the edges leaving variable nodes with ¢, and those
entering variable nodes with —¢. This graph does not eliminate the possibility of retracing an edge,
but this can be resolved by transforming this State Transition Graph (STG) to a Finite State Machine
[24], and deleting edges corresponding to direction reversals. Finally, we convert this back to an

STG by labeling the outgoing edges with the phases, rather than the nodes they come from. This

transformation is illustrated for a small protograph in Figure 4.3. We run a Viterbi-like algorithm

on this graph.

Figure 4.1: change this figure

Each edge in the graph (or trellis) is labeled with the monomial z#, and the Viterbi-like algorithm
is initialized by putting 1 at the node corresponding to the circulant of interest, and 0’s at all other
nodes. The Viterbi algorithm proceeds with an unusual commutative semiring [7]: polynomials
are multiplied and added in the usual way, but coefficient addition is replaced by the logical OR
operation, and polynomials are reduced according to z7 = z° = 1. In this way, the non-zero terms
in the polynomial assignea to a node indicate the accumulated phases of each path to that node.

We halt the Viterbi iteration when the node corresponding to the circulant of interest is assigned a

polynomial with nonzero constant term, thus closing a loop satisfying the condition in Theorem 4.3.2. -

32
A corollary of Theorem 4.3.2 can be used to identify some types of protographs whose expansions

by circulants are necessarily doomed to contain small loops.

Corollary 4.3.3 If the protograph contains three parallel edges {ei, es,es}, and the derived groph

is constructed from circulants, then the shortest loop in the derived graph cannot be made longer

than 6.

This result is proved by traversing the edges in the order ey, e, e3, €1, €2, e3: each edge is traversed
once in each direction, so the circulant phases always sum to zero. A generalization of this corollary

applies whenever there are three disjoint paths between any two nodes in the protograph.

4.4 Hardware Implementation of the Decoder

The protograph-and-circulant structure of the derived graph is particularly suitable to belief propa-
gation (BP) decoder implementation in hardware. A brief summary is given here; a more complete
development is given in [25]. Conceptually, a BP decoder simultaneously performs a simple compu-
tation at each variable node, generating one message (a number quantized to a few bits) for each
outgoing edge, from the messages arriving on the incoming edges. Then another simple computation
is performed simultaneously at each check node, returning updated messages to the variable nodes.
The process is repeated until some stopping condition is satisfied.

For codes of interest and practical ASIC or FPGA sizes, one typically cannot implement a fully
parallel decoder, with independent logic for every variable node and every check node. However,
one can typically implement enough logic for several variable nodes and several check nodes. For
arbitrary derived graphs, message interconnection and scheduling become intractable problems when
more than a few nodes are implemented.

For derived graphs built with the protograph-and-circulant construction, it is natural to imple-
ment a decoder that can simultaneously process all the variable nodes, or all the check nodes, in
the protograph, and which processes copies of the protograph serially. To do this, two memories of
size T messages (times some small number of bits per message) are implemented for each edge of
the protograph, one for variable-to-check messages, and one for check-to-variable messages. When
performing variable node computations, in each clock cycle, one message is read from each variable-
to-check memory, and one message is written to each check-to-variable memory, and the memories
are addressed sequentially. When performing check node computations, the opposite memories are
read and written. To capture the circulant permutations, the memory addresses for each bank are

offset (modulo T) by the appropriate circulant phase. Figure 4.4 shows a small protograph and the

block diagram of a corresponding hardware decoder.

Figure 4.2: A protograph, and a corresponding hardware decoder block diagram

4.5 Performance Comparisons

Using the protograph optimization tools described in Section 4.2, we have consistently been able to
find protograph designs that yield (asymptotic) iterative decoding thresholds within approximately
0.1 dB of the capacity limit. This indicates that the protograph design constraint does not limit
achievable code performance to any appreciable degree; Figure 4.5(a) shows a good code. As shown
in the example of Figure 5 of [20], however, a high error floor can result when a near-optimum
protograph is expanded to finite size. In that example, the protograph was expanded using ordi-
nary PEG, but a similar error floor results when circulant-constrained PEG is used. It is an open
question whether the close approach to the capacity limit necessarily entails a sacrifice in error floor
performance, or whether both the asymptotic threshold and the error floor can be lowered by more
careful joint design of the protograph and edge permutations.

In this paper we confine our attention to a simpler question: Given the protograph construction
method, does our use of circulant permutations instead of unconstrained permutations cause any
significant degradations in achievable performance? As an illustration, we constructed a series
of small rate-1/2 codes, and the simulated decoder performance for a few of these are shown in
Figure 4.5(b). This figure compares four code constructions of size (n = 612,k = 306). Two codes
are regular (3,6) constructions, with an asymptotic threshold of 1.10 dB. Two codes are derived from
an irregular protograph with three variable nodes of degree 2, two of degree 3, and one of degree 9,
and three check nodes of degree 7. These codes have a better asymptotic threshold of 0.65 dB. All
three protographs were expanded using ordinary PEG and circulant PEG.

We see from Figure 4.5 that the codes are differentiated from each other roughly by the differences
in their asymptotic decoding thresholds down to a codeword error rate (WER) of roughly 1073,
Below that point the error floor starts to rear its ugly head, less notably for the codes with the

poorer asymptotic threshold. However, we see that, for both of the protographs, the code built from

34

Error Rate

-
e

1
@

-&- Codeword Error Rate
—&- Symbol Error Rate

L ¢

02 025 03 035 04 045 05 055 06

2

—
<

)
@

|
~

Codeword Error Rate
) S

-&- Reg(3,6)+PEG
10 "¢} -6~ Reg(3,6)+Circulant PEG -
.~ lrreg{2,3,9+PEG

~&- lrreg(2,3,9)+Circulant PEG

L 1 1

0 05 1 1.5 2
E /N, (dB)

Figure 4.3: a) Performance of a (n = 64800, k = 32400) Protograph-and-Circulant code; b) Perfor-
mance of a (n = 64800, k = 32400) Protograph-and-Circulant code

35

its protograph by circulant-constrained PEG achieved the lower WER at the highest tested value

of Ey/Ny. This gives a preliminary indication that our method of selecting circulant permutations

does not inherently cause higher error floors.

4.6 Finding Good Protograph Codes

We have devised an algorithm that searches for protograph codes that perform well under BP on the
AWGN channel. This search uses a randomized iterative algorithm called Simulated Annealing (SA),
and is directed by our estimate of how the the DE threshold changes as an underlying protograph
is perturbed.

SA approximately minimizes over a search space S an energy function E : § — R. If requires a
random perturbation function p : S — S, and a decreasing temperature profile Temp (5). It begins
with an arbitrary solution sy € S, and at each iteration j, applies the random perturbation p to
generate a new solution s; = p(s;). If E (s_;) < E(s;) then 5541 = s;. If E (sj) = E(s;), then

(B(s)= ()

sj4+1 = s; with probability e T and s; otherwise. The algorithm returns the solution s; at

the final iteration.

In our application, we search over protographs G with a fixed n, v and r. Since the code rate I
is determined by these parameters, it is constant throughout the optimization space. Thus we can
design good codes for any desired rate by a judicious choice of n, v and 7.

We define 3 types of perturbations on a protograph G in the search space: removing an edge in
G, adding an edge to G, and swapping the endpoints of two edges in G. The random perturbation
p chooses one of these types at random; and chooses uniformly randomly among all possibilities for
that type.

We would ideally like to use the DE threshold as om; Energy Function E. However, it is quite
impractical to run full DE at each iteration. Instead, we use the reciprocal-channel approximation
introduced in [10], a single-parameter approximation to DE for the AWGN channel. Further, instead
of running approximate DE several times per SA iteration (j) to determine the threshold (under
approximate DE) accurately, we run approximate DE just once at an operating point above the
threshold for the current solution G;. We let our energy function E be the number of decoding
iterations (1) required to drive the output error probability below some small constant e. Empirically,

we have observed that this quantity varies approximately menotonically with the threshold.

4.7 Optimization Results

Figure 5 shows an example of a simple rate % protograph found by the SA search method. This

optimized protograph has n =8transmitted variables, u = 1 untransmitted variable, r = 5 checks,

36

Tpel Tie2 Tied Tied

TieA TipeB Tipel

Figure 4.4: change this picture

and a total of |E| = 29 edges, including 5 pairs of parallel edges. The untransmitted variable
node has degree 9, the transmitted variable nodes have degrees 2,2,2,2,3,3,3,3, and the check
nodes have degrees 4,5,6,6,8. The approximate DE threshold on the AWGN channel for long
codes constructed from this protograph is Eb/N0Q = 0.283dB, which is about 0.10dB better than
the exact DE threshold of 0.4090dB found by Richardson and Urbanke [23] for optimized irregular
LDPC codes with maximum variable node degree 9. The irregular LDPC codes in [23] are connected
according to a random ensemble constrained only by the distribution of node degrees, not by the
additional structure built into the protograph.

We constructed a large (n = 8192, k = 4096) protograph code by interconnecting 1" = 1024 copies
of the protograph in Fig. 4.7. The interconnections are determined by 29 separate permutations
of 1,...,1024, selected using a variation of the progressive edge growth (PEG) algorithm [21] to
avoid short loops in the derived graph. The decoding performance of this code is shown in Fig.
6 and compared to that of a multi-edge-type LDPC code that we designed using the principles
discussed in [8]. The performance of the protograph code is perhaps 0.1 dB better than that of the
multi-edge-type code in the threshold region, but it suffers from the appearance of a true error floor
due to low-weight codewords above a word-error rate of 107%. Our current criterion for selecting
a good protograph minimizes the protograph code’s (asymptotic) threshold but does not penalize
code structures that might yield high error floors. Future work will investigate how to eliminate the

error floor or to trade it off versus a small sacrifice in the optimized threshold.

4.8 Conclusion

The teaming of an underlying protograph structure with circulant edge permutations lends micro-
scopic regularity to the large derived graph. It simplifies the analysis of iterative decoding per-

formance and yields hierarchically parallelizable decoder designs suitable for high-speed FPGA im-

37

plementations that are scalable according to the available silicon area. Just as importantly, there
does not appear to be any fundamental limitation on code performance imposed by constraining
the design to have the protograph-and-circulant structure. More research is needed to jointly select
a protograph and a corresponding set of circulant permutations to simultaneously lower the code’s

asymptotic iterative decoding threshold and its error floor.

38

Chapter 5

A Scalable Architecture of a
Structured LDPC Decoder

We present a scalable decoding architecture for a certain class of structured LDPC codes. The
codes are designed using a small (n,7) protograph that is replicated Z times to produce a decoding
graph for a (Z x n,Z x r) code. Using this architecture, we have implementated a decoder for a
(4096, 2048) LDPC code on a Xilinx Virtex-II 2000 FPGA, and achieved decoding speeds of 31
Mbps with 10 fixed iterations. The implemented message-passing alogrithm uses an optimized 3-bit

non-uniform quantizer that operates with 0.2dB implementation loss relative to a floating point

decoder.

5.1 Introduction

Low-Density-Parity-Check (LDPC) codes[14] have recently received a lot of attention because of
their excellent error-correcting capability. LDPC codes have been shown to be able to perform close
to the Shannon limit [10]. They also can achieve very high throughput because of the parallel nature
of their decoding algorithms. In the past decade or so, much of the research on LDPC codes has
focused on the analysis and improvement of codes under decoding algorithms with floating point

precision. However, to make LDPC codes practical in the real world, the design of an efficient

hardware architecture is crucial.

5.2 Structured LDPC codes

Given unlimited hardware resources, a well-understood strategy is to allocate one processing element
to each check and variable node in the Tanner graph[26] of an LDPC code. However, for the sake
of error-correcting capability, it may be desirable to use a code with many more nodes than can be

instantiated with limited hardware resources. To this end, we have developed an architecture for

39

decoding structured LDPC codes in which computations are scheduled in space and time.

5.3 Protograph Construction

By ”structured”, it is meant that the code is constructed via a specific construction called a
"protograph” [20]. The protograph is typically a small (n,r) graph that is used as a template for a
large (Z x n, Z x r) code graph.

The code graph is constructed from the protograph by making Z copies of each variable and
check node. Each edge in the small protograph represents a set of edges in the larger code graph
which connect Z copies of a variable node with Z copies of a check node via an arbitrary permutation
(see figure 1).

As a matter of terminology, although we use the protograph formalism in [20], other researchers

have referred to a "projected graph” [27] or ”base graph”[28], which are mostly functionally equiv-

alent.

5.3.1 Decoder Architecture

The basic computation performed in message-passing decoding is a message-update, in which a
node computes its set of outgoing messages from its set of incoming messages. In our hardware
architecture, the processing elements are variable node units and check node units, each of which
compufes its respective message updates. These processing elements can be highly decentralized
and distributed across the available area. Our strategy is to instantiate hardware units for each
of the n variable nodes and r check nodes in the small LDPC protograph. All n variables node
units or all 7 check node units decode synchronously and in parallel. The Z copies of the identical
small protograph share this hardware and are operated on serially. The fundamental unit of time is
called a ”computation cycle”, in which a processing element can read the incoming messages from
a memory and compute and store outgoing messages. Messages are stored in memory modules,
which each correspond to an edge in the small protograph. Each memory module consists of two
memory banks capable of storing Z messages and a permutation table. One memory bank stores
variable-to-check messages, and is writable by an associated variable node unit and readable by an
associated check node unit. The other memory bank stores the check-to-variable messages and is
writable by an associated check node unit and readable by an associated variable node unit. The
permutation table specifies a permutation n, : {1,2,...,Z} — {1,2,..., Z} such that if 7, (i) = 7,

then the i** variable node is connected to the 5** check node.

40
5.3.2 Computation Scheduling

The cornerstone of our hardware architecture is the scheduling of message-updates in space and time.
One iteration consists of a check node phase, followed by a variable node phase. In each phase, there
are Z computation cycles. In the check node phase, all check node modules read messages from:
the edge memory in ascending order, update the messages, and write their results back to the edge
memory in ascending order. This computation across all r check node units occurs in parallel.

In the variable node phase, all variable node modules read messages from the edge memory in
permuted order, update the messages, and write back the edge memory in permuted order. The
computation across all n variable node units also occurs in parallel. The decoding stops at the
maximum iteration number, or when a stopping rule is satisfied.

Although this work was underway before the Flarion decoder patent was published, we can
now make a useful comparison to that architecture. Flarion’s design operates on all Z copies of
the template LDPC graph in parallel and processes the individual nodes serially. In this manner,
memory and processing can be centralized and a Single-Tnstruction-stream-Multiple-Data-stream
(SIMD) instruction is used to access all Z messages[27].

In contrast, our system has multiple decentralized processing elements with multiple separate

memories (see figure 2). All nodes in the template LDPC graph are operated on simultaneously in

parallel and each of the Z copies are processed serially (see figure 3).

5.3.3 Structured LDPC Implementation Methodology
1. Choose a small (n,r) protograph by some methods (e.g. [20]).

2. Replicate the protograph Z times and apply a ”girth conditioning” algorithm such as Progressive-
Edge-Growth (PEG)[29] to permute the end points of each set of edges to obtain a large

(Z x n,Z x r) code graph that does not contain short cycles.

3. Generate a decoder design by applying the protograph and the chosen permutations to para-

meterized Verilog HDL

4. Automatically synthesize, place and route design using Xilinx XST

Particular attention is given to the degree distribution of the small protograph chosen, as the

larger code graph will have the same degree distribution. For all our protographs implemented,

regular (3,6) protograph was used.

41
5.4 Quantized Belief Propagation Algorithm

We use the non-uniform quantization scheme proposed in [30], which applies to regular (3,6) LDPC

codes.
Initially, variable nodes read the channel memory, compute initial variable-to-check messages

v;—;(0),-and directly deposit into corresponding edge memory according to the permutation tables:

vi—; (0) = Qcn (channel;) ,i € {1..Zn} (5.1)
where Q.n, (channel;) is the quantization rule for the channel.

At the t" iteration, the parity check phase occurs first. All r check node units read the variable-
to-check messages v;_,; from edge memory connecting the it* variable node to the j** check node in
the large code graph, update the message by equation (2), then write the check-to-variable messages

uj—; back to the edge memory according to the permutation tables. r check node units are running

in parallel, while Z copies of messages are being updated serially.

uji () = QC(Z pe(vy—j(t—1))), j € {1..2r} (5.2)

where i’ ranges over all edges connected connected to the j** check node excluding i, Q. is the
quantization rule for the check-to-variable message u;_.;, and ¢, is the reconstruction function for

the variable-to-check message v;_.;.

Next, the variable phase occurs. n variable node units read the check-to-variable messages u;_.;
from edge memory, update the message by equation (3), then write the variable-to-check messages

v;—; back to edge memory according to the permutation tables.

Viesj (8) = Qu | Peh (Qen (channels)) + > by (ujr—i(t)) |, i € {1..2n} (5.3)
J'#i '

where j' ranges over all edges connected connected to the it* variable node excluding 7, @, is

the quantization rule for the variable-to-check message v;_.;, ¢, is the reconstruction function for

the check-to-variable message u;_.;, and @c is the reconstruction function for the channel message

Qcn (channel;).

At the final K iteration, hard decisions X; are made in variable nodes following:

O, Zj ’LL]._,1<K) >0 (54)

X =
1, Zj uj(K) <0

42

z | en(e) | u(2) | e(2)

—4 | =21 —20 -1

-3 -15 —12 -2

-2 -9 —6 —6

-1 -3 —2 —26

0 3 2 26

1 9 6 6

2 15 12 2

3 21 20 1

Qen (ch)/ Qv | ch v c

(v)/ Qe ()

—4 ch < —-3.3 v < 18 —~5<e<0
-3 —33<ch<—22| -18<v <12 —9<c< -3
—2 —22<ch<—-11] -12<v<-6] —26<c<—9
-1 -11<ch <0 —6<v<0 c<—26

0 0<ch <11 0<v<6 c> 26

1 11<ch <22 6<v<12 9<c<L26
2 22<ch<3.3 12<v <18 S5<e<g9

3 ch > 3.3 v> 18 0<c<5

5.5 Performance

5.5.1 FPGA utilization

The performance of decoder can always be improved by increasing the block length. However, the
block length of the LDPC code is limited by the area constraints on the FPGA chip. The LDPC
decoder consists of processing units and edge memory. The area consumed by the processing units
is proportional to the size of (n,r) protograph, which is proportional to the throughput. The area
consumed by the edge memory is proportional to the size of (n x Z,r x Z)} code graph, which is
proportional to the error-correcting capability. We implemented several size of LDPC codes, and

measured the utilization of the decoder on a Xilinx Virtex-II 2000 FPGA.

43

LDPC template (n,7) | Copies Z | Block length (n x Z,7 x Z) | Slice Utilization %
(64,32) 16 (1024, 512) 85
(64,32) 32 (2048, 1024) 99
(32,16) 32 (1024, 512) 53
(32,16) 64 (2048, 1024) 66
(32,16) 128 (4096, 2048) 97

5.5.2 Speed/Throughput

We measured the real decoding throughput by the FPGA decoder of a (128 x 32,128 x 16) LDPC

code at fixed iteration numbers without stopping rules.

iteration | Throughput Throﬁghput .
without with com-
commu- munication
nication overhead
overhead (Mbps)
(Mbps)

1 314.47 10.01

10 31.45 7.74

20 15.72 6.20

50 6.29 3.91

100 3.14 2.41

150 2.10 1.74

200 1.57 1.37

250 1.26 1.12

R e

1
numbsr of iteration

Figure 5.1: Throughput vs. iteration

44

The measured delay consists of communication overhead and decoder latency, in which decoder
latency is proportional to the number of iterations. The decoder latency is 3.18 ns/bit/iteration.
The communication overhead is 97.1 ns/bit in our tests. Communication overhead includes the

buffer delay outside decoder module, and the time delay writing to and reading from the FPGA

board.

5.5.3 Error Correcting Capability

We implemented several codes of different block lengths, and ran performance tests to compare
their performance differences. The largest block length code we can implement to fit info a Xilinx
Virtex-II 2000 FPGA chip is a (32,16) x 128 copies = (4096, 2048) code. The results demonstrate
that doubling the block length can improve the performance by about 0.5 dB.

The performance of 3-bit non-uniform quantization is another interesting topic to investigate.
Compared to the full floating point simulation done in software, hardware 3-bit non-uniform quan-
tization is only off about 0.2 dB, with drastically smaller hardware implement requirements. The
speed advantage of the FPGA over software simulation allows the detection of errors down to 107°

BER. The error floor at 10~° BER is resulted from the quantization error.

ha{l]dnware performance test on (32, 16)" different copies protograph

(1024,512)
53% jlice utilizatiol

Bit Error Rate
i

whE (4096,2048)
97% slice utilization

66% stice

o N
1 2 14 16 1B 2 22 24 26 28

E/MN, (dB)

Figure 5.2: Full floating point vs. 3-bit

5.6 Conclusion

‘We have presented a scalable decoding architecture for a certain class of structured LDPC codes
protograph,/and demonstrated a FPGA implementation of a (4096, 2048) regular (3, 6) structured
LDPC code. Partially parallel structure allows high throughput, while the serial processing of
multiple copies of the protograph allows a large block length in implementation to improve the
performance. Qur use of three-bit non-uniform quantization allows near floating point performance

in the waterfall region. As demonstrated by this work, an FPGA implementation of LDPC codes can

¥
§ ot
§ 9 toating poineBER
g 3-bit quantization

w3 b S codeword enor

“

- Nyt
¢ 10t ok W e
@ floating point -

codeword emar

107 b \
w0 .
3-bit quantization SER \ N

w0 b e,

o] X L L .
1 15 2 25 3 35

E,N, (08)

Figure 5.3:

have excellent performance, high throughput, low hardware complexity and easy reconfigurability;

FPGA implementation of LDPC codes are expected to be employed for many applications in next-

generation communication systems.

46

Chapter 6

Memory-Efficient Quantized Belief
Propagation Decoders

The standard belief propagation algorithm 1.8 that is used to decode Low-Density-Parity-Check
codes defines real-valued messages that are passed along edges in a graph. The standard way to
simulate this algorithm is to use a very accurate representation of the real numbers, such as floating-
point numbers, to store the value of each message. However, for very high-speed decoders, it is clear
that the high complexity associated with computing and storing such numbers is to be avoided if
possible. Indeed, Gallager’s Algorithm A [14] can be seen as a single bit approximation to belief-
propagation algorithm. This paper explores some of the ground which lies between the two extremes.
In this chapter, we investigate analytically (via density evolution) and through simulation several
rules having message size between 1 and 4 bits.

This work was extended by Jason Lee [31] to use slightly different parameters and with new

hardware simulations.

6.1 Quantized Belief Propagation

We define a new algorithm which approximates BP, quantized belief propagation (QBP). QBP
essentially approximates the BP algorithm as it is stated chapter 1. It operates in each of the
additive domains 1.8.

Whereas the BP algorithm is defined by a set of messages m, QBP will be defined in terms of
messages m’. While in the standard BP algorithm defines messages m, € R, in QBP we define
messages m, € My, = {1, £2,...,4%}. For simplicity, we formulate QBP for

We first give an abstract quantization rule @, : X = {il, 42, . i%ﬁ} where 7 = {7‘1, vey T%ml},

7; € RT is a set of thresholds with 7; 7341

47

-%,z< T3 1
—argmin; {r; > -z}, —721 <z <0
Q- (z) = .
argmin; {7y > —z}, 0 <z <721
q
L) T_%___]_ <z

The reconstruction function ¢ : {il, +2, ..., i%ﬁ} — N is an anti-symmetric function which is

characterized by its values on {1, 2, %}

¢ (—1) =—¢ (1)
The input to the QBP decoder are defined in terms of the input to the ideal BP decoder and the

parameter T.p:

m:) = ~Q"'ch (mv}

At iteration 0, the message passed along each edge (v, ¢) is equal to v's input message:

mi} = Qr, (¢ (My))

Each message mglz, are calculated with respect to several of the messages ml(,l,)’c as:

m,c(,lzJ) = Qr, Z Pu (mél’;l))
v’ el

After a sufficient number L of iterations, we estimate the symbol X, as:

O, ¢ch (mv) -+ Zdlv ¢'U (rng/ljz,) >0

X, =
1, otherwise

Note that if ¢, and ¢, are such that the sum in the previous equation can be exactly 0, then

the algorithm cannot be both symmetric. A simple way to avoid this is for ¢ (¢) to be odd for all

t and ¢, (¢) to be even for all 4.

6.2 QBP Rules for the (3,6) Regular LDPC Ensemble

There are a number of ways to test the goodness of different QBP algorithm. A simple and direct
way is to simulate the algorithm on particular codes for a given channel. Another way is density
evolution, by which we calculate the fractions of edges transmitting each message, assuming infinite

block-length. This method essentially calculates the asymptotic performance of the code as the

48

Name |1 II IIT I\ V?

géh 2 4 4 8 8

Qv 2 4 4 4 8

Qe 2 4 4 4 8

Teh 0 176 | 14 1.4 1.4

qsch" (1) (11 3) (37 15) (1> 3,9, 7) (3a 9,15, 21)

o 0 @ | (2) (6,12,18)

¢v (1) (1" 3) '(3: 11) (17 3) (2’ 67 87 12)

Te 0 (5) (5) (1,3) (7,11,24)

g | |0 [ELY (LD [(1,262D

SNR* | 4.896 | 2.248 | 1.955 1.689 1.443

E 0 0 3.-1073%] 7-107° 5.107%

Table 6.1: Quantized rules I through V

Name | VI VII Ideal
Qch 8 16 0
@ 8 16 00
dc 8 16 [o's)
Tch 1.1 .66 ‘&
Peh (3,9,15,21) | (15,45,75,105,135,163,193,245) | R
To (6,12, 18) (30, 60, 90, 120, 150, 180, 210) R
o (2,6,12,20) | (9,23,37,53,71,97,125, 167) R
Te (5,9, 26) (8,15,28,45,135,163, 193, 245) R
e (1,2,6,26) | (8,15,28,45, %, %, %,) R
SNR* | 1.409 1.199 1.09
E 0 3-107° 0

Table 6.2: Quantized rules VI, VII and Ideal

code length n approaches inﬁnity. This has the advantage of being quite fast to compute, but the
disadvantage that it may fail to predict performance when there are loops in the graph, as will be
seen in section 5. |

In this section, density evolution is used to predict the performance of QBP for the class of regular
(3,6) LDPC codes. The resulﬁsvare characterized by a value SINR* for which if SNR < SNR* we
have bad performance, and for which if SNR > SNR*, we have bit error given by E, which may
or may not be equal to 0. if £ = 0, we say the algorithm has no error floor, otherwise it has an
error floor. It is not necessarily true that algorithms with higher values of gon, ¢, and ¢, have no
error floor if the same holds for an algérithrﬁ with lower values. error floor, while more complex

algorithms do have error floors.

The following table summarizes the best known QBP rules for a range of interesting values of

- ehy Quy and dc- . . .)
Rule V corresponds precisely to the rule suggested by Richardson, as do the threshold and

error-floor predictions, though this is not trivial to see.

49

6.3 Simulation Results

The following two figure shows the performance of several of the QBP algorithms applied to a regular
(3,6) LDPC code.

In the waterfall region, the performance of each rule is predicted quite well from density evolution.
In addition, in each instance where an error floor appears in density evolution, it appears in the
simulation. However, the is in fact an error floor on rule Il which is not predicted from density
evolution. Preliminary analysis strongly suggests that this error floor is in fact due to loops iﬁ the

graph, as opposed to tree-like configurations as in the other error floors.

6.4 Discussion

Optimization techniques

Error Floors

In general, the error floors inherent in all of the above rules can be understood to be caused by
the inability of the strongest internal messages to completely overcome the strongest messages from
the channel. This suggests increasing the reliability values and thresholds 7, and ¢, on the internal
messages, effectively trading resolution at low reliability levels for range of expression, which would
likely decrease the error floor at the expense of a threshold further from capacity. Other methods
have also been suggested [9] to mitigate or eliminate error floors, such as artificially lowering [14]

the channel messages at a sufficiently late iteration. More work is needed to explore this tradeoff

(and should be completed by the time of this presentation)

6.5 Acknowledgements

Kenneth Andrews and Gill Chinn provided the simulation results for several of the decoding rules.

50

Chapter 7

LDPC Graph Optimization for
Parallel Hardware Implementation

rch for LDPC code graphs that can be suitably laid out in space so that the graph

in which we search for
neighbors are spatially close, for the purpose of decoder implementation

A methodology for generating bipartite graphs for LDPC codes which both exhibit good per-
formance under message passing decoding and are particularly amenable to direct hardware imple-
mentation is described. Performance depends nontrivially on the graph, which in many analyses [9]
is assumed to be random. Since imposing geometric constraints reduces the graph’s randomness, it
is possible that the error-correcting performance will degrade. One specific mechanism which can
cause performance to degrade is that

To this end, we define an apparently novel quantitative measure of the “loopiness” of a graph,
as well as a quantitative measure of the cost of direct hardware implementation, and use the well-
known simulated annealing algorithm to simultaneously minimize both quantities. [Finally, we

simulate the decoding of several rather short codes to show that the performance is indeed predicted

by our loopiness measure.]

7.1 Introduction

Recently, researchers have used large ensembles of very long block-length Low-density-parity-check
(LDPC) codes [14] to demonstrate very nearly capacity achieving performance (23], [32] with low
encoding and decoding complexity. Less explored, however, is the problem of designing good graphs
for short block-length codes. Recently, Mao and Banihashemi have proposed selection of graphs
based on the “average girth distribution” [33] with apparent success. MacKay [34] has also used
another set of heuristics to modify a random graph into a better one.

In this paper, we [will] make a systematic attempt to find criteria which accurately predict code

performance, and use powerful optimization algorithms (é,s opposed to just selection) to find good

51

graphs by such criteria. This should help to answer the question of how much the performance of
short block-length LDPC’s vary over different graphs. Further, we use such optimization algorithms

to design codes which not only should have good performance, but will be amenable to easy hardware

design.

7.2 Performance and Cost Measures

Regular LDPC’s are characterized by a bipartite graph g = (V, C, £, where any edge in E connects
a vertex in V with a vertex in C. The vertices in V' represent symbols to be transmitted over a
channel, while the vertices in ¢ represent parity-check equations of the adjacent edges. In addition,
there are \ edges incident with each node in V' and p edges incident with each node in C.

In this section, we introduce two quantities which can be efficiently calculated and which have
to do with the performance and implementation cost, respectively. These quantities are minimized

using the Simulated Annealing algorithm, which we discuss in the following section.

7.2.1 Performance Measure

It is well known that the Message-passing algorithm [9], run for ¢ iterations, calculates exactly the
a posteriori probability of each code symbol z; (corresponding to the node vj)given the received
symbols corresponding to nodes in a certain neighborhood of nodes reachable from v; in 27 steps,
but only as long as the that neighborhbod is tree-like, meaning that it has 1o cycles. In order to
preserve the exactness of the message-passing algorithm for as many iterations as possible, many
have suggested maximizing the girth of a graph, the length of it’s smallest cycle.

In this, we define a measure of loopiness which counts all of the loops in a graph, weighted by

an exponential of its length:

L(g,a) = Y o'} (7.1)

1=2,4..
where N; represents the number of loops of length ¢ in the graph. A loop is defined as a sequence
1, C2, V3, --¢; such that an edge exists between vo; and cgj4q for all §, and vg; # vojp2 and cp5-1 #
caj+1 for all j. All indexes are taken modulo 4. It can be shown that this sum converges, and

therefore that the measure is defined, only for a? < (A —1)(p — 1) for regular LDPC’s. For values

of o smaller than this threshold, there exist algorithms to efficiently estimate this expression for

loopiness of a graph.

7.2.2 Cost Measure

Since the aim of this research is to generate codes whose quantized message-passing algorithms are
easily implementable in direct-form on a microchip, we must consider the cost of such an implemen-
tation. direct-form realization refers to the method of instantiating many logic units, each dedicated
to making the calculations associated with a particular vertex (in V' or) operating simultaneously
to perform the decoding. The messages are passed along wires which are instantiated for each edge
in the graph.

It is not difficult to see that if the graph is chosen at random and the vertices of the graph of
places at random in a square area, the average length of wire increases like O(n%), and thus the
wiring complexity grows like O(N %) while the complexity of the logic grows like O(n). It is therefore
natural to relate the implementation cost to the total length of wires needed to instantiate all of the
edges in the graph. For simplicity, we take the cost measure W {(g) to be the sum of the Manhattan

distance between the endpoints of all edges in the graph, where the nodes occupy fixed positions.

W(g) = ZeeEIength(e) (7.2)

7.3 Optimizing with Simulated Annealing

~ The simulated annealing algorithm is a probabilistic, iterative algorithm designed to approximately
solve energy minimization problems, and can be successfully applied to a broad class of such prob-

lems. For this problem, we search for a minimum of:

E(g) =Cr-L(g,a) + Cw - W(g) (7.3)

for some pre-selected o and coefficients C. and Cyy.

In addition to an energy function, a set of transformations T(g) = ¢’ must also be defined which
take a solution into another solution. Such a transformation should have the property that the
transformed solution has an energy somewhat similar to the original solution. We take the set of
transformation to be those by which two edges, say v1 — ¢1 and va — ¢y are replaced with the edges
vy — Co and vy — ¢1.-

Finally, we define a positive profile 7°(z) which defines the “temperature” of the system at each
iteration i. Conservatively, T'(¢) can start at a very high temperature decay exponentially with ¢ to
end at a very low temperature. The simulated annealing begins with an arbitrary solution go. For

each 4, the simulated annealing algorithm selects a transformation T(g;) and selects

53

simulated annealing, LOPG(3.6), 1216

w[-
o
18- o
14
o
g2t
i
L o
g
g0 o
&
8
3 8f
o
5
g o
2 s
o o
<)
2k o
° o a o o o
) L .) . . . L)
2 3 4 5 6 9 10 11

7
average wire-length

Figure 7.1: Locus of points obtainable by SA

graph of LDPC code optmized forfoops. ‘graph of LDPG cade optimized for wirelength and loops

[T A N WIS ,A Q' V,‘
: NYA) S% "ﬁ 4;:\‘7 Y
k 4 QR NIL—FKETTRA
g ‘ h'g.. z,'e:?i; .-'.

Figure 7.2: graphs optimized primarily for loopiness (left) and wire-length (right)

o w peEm)/T(z')

T g A

gt‘f‘l - g/ wpeE(gé)/T(i) (74)
t - A

where A is chosen to make this a valid probability distribution, namely A4 = eZ(9:)/T(®) 4 ¥ (9:)/T(2)

The algorithm terminates at a pre-determined time, and the output of the algorithm is the graph
9final. Roughly, the reason for a non-zero temperature that-sometimes allows the higher-energy
solution to be selected is to avoid local (but not global) minima.

Because there is flexibility in selecting the coefficients Cr, and Cyy (in fact, only the ratio matters),
we can generate a locus of points achievable by the algorithm in terms of L(g, @) and W(g). In the
following'chart, we plot L(g,a)/Lo vs. W(g)/n, where Ly is the smallest L(g) obtained by the
algorithm.

The chart shows that average wirelength can be reduced substantially with extremely little

increase in loopiness. However, at very short wirelengths, the graph must inevitably admit shorter

loops. The following two layouts show the extrema of the previous chart.

54

7.4 Evaluation of Performance Measure

In this section, we will give comparisons of the performance achieved by various codes in order to
verify (or refute) that our loopiness measure predicts the performance of actual codes. The results

of Mao [33] give strong preliminary indication that such a prediction property will hold.

7.5 Conclusion

We have demonstrated an application of the Simulated Annealing algorithm to the problem of design-
ing graphs for LDPC’s which can substantially reduce the loopiness of a graph. We have preliminary
evidence that this will improve the performance of a code under message-passing decoding.
Additionally, we have shown that the same algorithm allows a very favorable tradeoff in terms
of the wiring complexity of the direct implementation. Further decoding simulations will quantify

the extent to which loopiness is related to codec performance.

55

Appendix A

Software License

Copyright (c) 2005 Jeremy Thorpe All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3. The
name of the author may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS? AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

56

Appendix B

LDPCWorkbench Source Code

B.1 Data Structures I (graph.cs)

using System;

using System.IO0;

using System.Collections;
using System.Threading;

using System.Text; .
namespace LDPC {
public class Graph {

// elements

public Edge[] edge;
public VNode[] var;
public CNode[] check;

// Auxilary variables

protected Random random;
// Constructors

public Graph() {
random = new Random();
var = new VNode[0];
check = new CNode[0];
edge = new Edge[0];

public Graph(Graph graph){

random = new Random();

graph.CheckIntegrity();
graph.Renumber () ;

// copy graph
int[,] matrix = new int[graph.check.Length, graph.var.Length];

foreach (Edge e in graph.edge)

57

matrix[e.check.index, e.var.index]++;
bool{] transmitted = new boollgraph.var.Length];
for(int i=0; i<graph.var.Length; i++) transmitted{i] = graph.var(i] .transmitted;

ConstructFromMatrix(matrix, transmitted);

// Constructor Helpers

protected void ConstructFromMatrix(int[,] matrix, bool[] transmitted){
ConstructFromMatrix(matrix);
int n = matrix.GetLength(1);
for (int i=0; i<nj; i++)

var[i].transmitted = transmitted[i];

protected void ConstructFromMatrix (int[,] matrix){

// get parameters

int n = matrix.GetLength(1l);
int r = matrix.GetLength(0);
int ne = 0;

foreach (int i in matrix) ne += i;

// get degrees
int[] varDegree = new int[n];
int[] checkDegree = new int[r];
for (int i=0; i<n; i++)
for (int j=0; j<r; j++){
varDegree[i] += matrix[j,il;

checkDegree[j] += matrix[j,il;

// create structures
edge = new Edge[nel;
var = new VNode([n];
for (int i=0; i<n; i++){
var[i] = new VNode(i);
var[i] .edge = new Edge[varDegree[il];
¥
check = new CNode[r];
for (int i=0; i<r; i++){
check[i] = new CNode(i);
check[i].edge = new Edge[checkDegree[il];

// place edges
int edgelndex = 0;
int[] varEdgeIndex = new int[n];
int[] checkEdgeIndex = new int[x];
for (int i=0; i<n; i++)

for (int j=0; j<r; j++){

for (int k=0; k<matrix[j,i]; k++){
Edge e = new Edge(var[il], check[jl);

edge[edgeIndex++] = e;

58

var[i].edge [varEdgeIndex[il++] = e;
check[j].edge [checkEdgeIndex[jl++] = e;

// check the integrity of this graph
// this function is useful when debugging graph modifying functions
public void CheckIntegrity(O{

ArrayList edgeAL = new ArrayList();

// make sure each edge is valid and connected to valid check and variable nodes

foreach (Edge e in edge){
if (e == null)
throw new Exception("Graph edge list contains null edge.");
if (edgeAL.Contains(e))
throw new Exception("Duplicate edges in graph edge list");
else
edgelL.Add(e);
int vTimes = O;
foreach (Edge ee in e.var.edge)
if (e == ee)
vTimes++;
if (vTimes == 0)
throw new Exception("e.var == v, but v.edge does not contain 2.");
int cTimes = 0;
foreach (Edge ee in e.check.edge)
if (e == ee)
cTimes++;
if (cTimes == 0)
throw new Exception("e.check == ¢, but ¢.edge does not contain e.");

e.c2vMessage = e.v2cMessage = 0;

// make sure each variable has a valid edge list
foreach (VNode v in var){
foreach (Edge e in v.edge){
if (e == null)
throw new Exception("Variable edge list contains null edge.");
if (e.c2vMessage == 1)
throw new Exception("Edge contained in multiple variable nodes.");
if (edgeAL.Contains(e))
e.c2vMessage = 1;

else
throw new Exception("Variable edge list contains edge not in graph edge list.");

// make sure each check has a valid edge list
foreach (CNode ¢ in check){
foreach (Edge e in c.edge){
if (e == pull)
throw new Exception("Check edge list contains null edge.");

if (e.v2cMessage == 1)

59

throw new Exception(“Edge contained in multiple check nodes.");
if (edgeAL.Contains(e))
e.v2cMessage = 1;

else
throw new Exception("Check edge list comtains edge not in graph edge list.");

// sparse graph representation
public override string ToString(){ '
StringBuilder sb = new StringBuilder();
sb. Append (string.Format ("{0} {1} {2N\n", var.length, check.Length, edge.Length));
foreach (VNode v in var)
sb. Append (string.Format ("{0} {1} {2F\n", v.index, v.edge.Length, v.transmitted 7 1 : 0));
foreach (CNode c¢ in check) ‘
sb. Append (string.Format ("{0} {1}\n", c.index, c.edge.Length));
foreach (Edge e in edge)
sb.Append{string.Format ("{0} {i}\a", e.var.index, a.check.index));

return sb.ToString();

// Graph Modifying functions

public void Renumber(){
for (int i=0; i<var.Length; i++)
var{i].index = i;
for (int i=0; i<check.Length; i++)

check[i].index = i;

public Edge AddEdge(int v, int c){
return AddEdge(var[v], checklcl);

}

public Edge AddEdge(VNode v, CNode c){
Edge e = new Edge(v, c);
AddEdge(e);

return e;

public void AddEdge (Edge e){
edge = AddEdge (edge, e);
e.var.edge = AddEdge(e.var.edge, e);
e.check.edge = AddEdge(e.check.edge, e);

Edge[] AddEdge(Edge[l edge, Edge e){
Edge[] edge_ = new Edge[edge.Length + 1];
for (int i=0; i<edge.Length; it++)

edge_[i] = edgelil;
edge_[edge_.Length - 1] = e;

return edge_;

public void RemoveEdge(Edge e){
edge = RemoveEdge(edge, e);
e.var.edge = RemoveEdge(e.var.edge, e);

e.check.edge = RemoveEdge (e.check.edge, e);

Edge[] RemoveEdge(Edge[]l edge, Edge e){
Edge[] edge_ = new Edge[edge.Length - 1];
int index = 0;
for (int i=0; i<edge.Length; i++)

if (edgeli] != e)
edge_[index++] = edgel[il;

return edge_;

VNode[] RemoveVNode (VNode[] list, VNode v){
VNode[] list_ = new VNode[list.Length - 1];
int index = 0;
foreach (VNode vv in list)

if (vv !'=v)
list_[index++] = vv;

return list_;

CNode[] RemoveCNode (CNode[] list, CNode c){
CNode[] list_ = new CNode[list.Length - 11;
int index = 0;
foreach (CNode cc in list)

if (cc = ¢)
list_[index++] = cc;

return list_;

protected void RemoveVNode(VNode n){
foreach (Edge e in n.edge){
edge = RemoveEdge(edge, e);
e.check.edge = RemoveEdge(e.check.edge, e);
}
var = RemoveVNode(var, n);
}
protected void RemoveCNode(CNode n){
foreach (Edge e in n.edge){
edge = RemoveEdge(edge, e);
e.var.edge = RemoveEdge(e.var.edge, e);
¥
check = RemoveCNode(check, n);

public void SwapEdges(Edge e0, Edge el){
CNode c0 = e0.check;
CNode cl = el.check;
e0.check = ci;

el.check = c0;

60

61

for (int i=0; i<cO.edge.length; i++)
if (cO.edgeli] == e0)
c0.edgeli] = el;
for (int i=0; i<cl.edge.Length; i++)
if (cl.edgeli]l == el)
cl.edgel[i] = e0;

public void Sort(){
Array.Sort(var);
Array.Sort(check) ;
Array.Sort(edge);
for (int i=0; i<var.Length; i++){
var[i] .index = i;
}
for (int i=0; i<check.Length; i++){

check{i].index = i;

public void SwapVNodes(int v0, int vi1){
VNode t = var[v0]l;
var[v0] = var{vi];
var[vi] = t;
var[v0] .index = vO0;

var[vl].index = vi;

public class Edge : IComparable{
public VNode var;
public CNode check;
public double v2cMessage;

public double c2vMessage;

public Edge O{
}
public Edge(VNode v, CNode c¢) {
this.var = v;
this.check = ¢;
}
public int CompareTo(object o){
if (o0.GetType() != typeof(Edge)) return -1;

Edge e = (Edge)o;
if (var.edge.Length != e.var.edge.Length) return (var.edge.lLength - e.var.edge.Length);

if (var.index != e.var.index) return (var.index - e.var.index);

return (check.index — e.check.index);

public class VNode : Node{
public VNode(int index) : base(index){}

¥

62

public class CNode : Node{
public CNode(int index) : base(index){}

}

public abstract class Node : IComparabled{
public int index;
public Edgel[] edge;
public double val;

public bool transmitted;

public bool zero;

public int degree{
getd{
return edge.Length;

public Node(int index) {

this.index = index;

public int CompareTo(object o){

if (o.GetType() != typeof (Node))
return 1;

Node n = (Node)o;

if (transmitted != n.transmitted)
return transmitted 7 -1 : 1;

if (edge.Length == n.edge.Length)
return (index -~ n.index);

return edge.Length - n.edge.Length;

B.2 Data Structures II (Idpc.cs)

using System;

using System.IO;

using System.Collections;
using System.Xml;

using System.Reflection;

namespace LDPC {

///<summary>

///LDPC implements all of the basic functionality associated with LDPC codes.

///The encoding is based on a systematic generator matrix. Decoding is via
///the well-known message-passing or belief-propagation algorithm. In additionm,
///this class provides a method based on simulated annealing to remove short
///loops from the graphs in order to improve the performance of short block
///length codes, as well as edge-length constrained codes.

///</summary>

63

public abstract class Code {
public int n;
public int k;

public int r;

public virtual double rate{get{return (double)k/(double)n;}}
public abstract BitArray Encode(BitArray m);
public abstract BitArray Decode(double[] 11lr);

public abstract void Display();

public class LDPC : Code {

// The unique name of this code

public string name;

// LDPC parity graph
public AnnctatedGraph graph;

// the generator and parity check matrices
public BitArray[l genMatrix;
public BitArray[] checkMatrix;

// circulant generator and parity check matrices
public BitArray{,] circulantGenMatrix;

public BitArray[,] circulantCheckMatrix;

// decoding parameters.

int maxIter = 100;
public LDPCO{}

public LDPC(string filename) {
graph = new AnnotatedGraph(filename) ;
ReadGraphParameters();
string[] fileTokens = filename.Split(’/’);
this.name = fileTokens[fileTokens.Length ~ 11.Split(’.*)[0];

public void ReadGraphParameters(O{
this.n = graph.nt + graph.nu;
this.r = graph.nr;

this.k = this.n - this.r;

public override double rate{
get{

return graph.rate;

public LDPC(AnnotatedGraph g){
graph = g;

64

ReadGraphParameters(};

public bool IsWord(BitArray cw){

// check whether the word has the right length
if (cw.Length != graph.var.lLength) return false;

// check whether the word satisfies all checks
foreach (CNode ¢ in graph.checic)‘{
bool okay = true;
foreach (Edge e in c.edge)
okay "= cwle.var.index];
if (lokay)
return false;
}

return true;

public void GenMatrices(){

Console.Write("Generating matrices...");
checkMatrix = new BitArray[graph.check.Length];
for (int i=0; i<graph.check.Length; i++)

chec};Matrix [i] = new BitArray(graph.var.Length);
foreach (Edge e in graph.edge)

checkMatrix[e.check.index] [e.var.index] ~= true;

// systematize parity matrix by Gauss elimination (row operations)
for (int i=0; i<r; i++){
bocl good = false;
int j;
for (j=0; j<m; j++){
if {checkMatrix[i][j] == true){
good = true;
SwapColumns (j, i+k);
break;

¥
if (igood) {
throw new Exception("parity matrix is singular.");
¥
if (!checkMatrix[i] [i+k]) {

throw new Exception(i+":"+j+":"+k);

// eliminate all 1’s in (i+k)th column after ith row
for (int 1=0; 1<r; 1++)
if (1 !'= i & checkMatrix[1][i+k] == true)
checkMatrix[1] .Xor (checkMatrix[il]);

// generate systematic generator matrix from systematic parity matrix

genMatrix = new BitArray(k];

65

for (int i=0; i<k; i++){
genMatrix[i] = new BitArray(graph.var.Length);
genMatrix[i][i] = true;
for (int j=k; j<graph.var.Length; j++)
genMatrix[i] (3] = checkMatrix {j-k] [i];

// renumber vertices

graph.Renunbex () ;

Console.WriteLine("done.");

void SwapColumns{int a, int b){
if (a == b) return;
graph.SwapVNodes (a,b) ;

for (int i=0; i<r; i++){

checkMatrix[i] [b] ~= checkMatrix[il[a];
checkMatrix[il[a] ~= checkMatrix{i]{b];
checkMatrix[i] {b]" ~= checkMatrix[il{al;

void SwapRows{int a, int b){
if (a == b) return;

for (int i=0; i<m; i++){

checkMatrix[b] [i] ~= checkMatrix[al[il;

checkMatrix[a] [i] ~= checkMatrix[b][i];

checkMatrix[b][i] ~= checkMatrixla][il;
¥

override public void Display() {

Console.WriteLine(" n:"+n);
Console.WriteLine (" etk
Console.WriteLine{(" r:"+r);

public void Save (string filename){

StreamWriter sw = new StreamWriter(filename);
sw.Write(graph.Annotation(});
sw.Write(graph.ToString());

sw.Close();

public void SaveTxt(string filename){
StreamWriter sw = new StreamWriter(filename);
graph.Renumber (3 ;
foreach (VNode v in graph.var)

foreach (Edge e in v.edge)
sw.WriteLine(@"{0} {1} 1", e.check.index + 1, e.var.index + 1);

sw.WriteLine(@"{0} {1} 0", graph.check.Length, graph.var.Length);
P gt P gt

sw.Close();

66

// code functions Encode() and Decode()

override public BitArray Encode(BitArray m)<{
BitArray cw = new BitArray{graph.var.Length);
for (int i=0; i<k; i++)
it (m{iD)
cw = cw.Xor{genMatrix[il);

return cw;

override public BitArray Decode(double[] 11r){
int jter;

return (Decode(llr, maxIter, out iter));

// this implementation of the message-passing algorithm is in the multiplicative

// domains, which are related by the bilinear tramsform.
public BitArray Decode{double{] 1lr, int maxIter, out int iter){

// add very small noise to the exactly zero llr’s
Random random = new Random();
for (int i=0; i<llr.Length; i++)
if (1ir[i] == 0)
11r[i] = (random.NextDouble() - .5) * .0000001;

doublel] Ir = new doublel[llr.Lengthl;
for (int i=0; i<llr.Length; i++)

1rfi] = Math.BExp(11rlil);

BitArray dMsg = new BitArray(graph.var.Length);
foreach (Fdge e in graph.edge)
e.c2vMessage = 1;
for (iter=0; iter<maxIter; iter++){
foreach (VNode v in graph.var)
v.val = Ir[v.index];
foreach (Edge e in graph.edge)
e.var.val *= e.c2vMessage;
foreach (Edge e in graph.edge)
e.v2cMessage = Bilin(e.var.val / e.c2vMessage) * .999999;
foreach (CNode ¢ in graph.check) '
c.val = 1;
foreach (Edge e in graph.edge)
e.check.val *= e.v2cMessage;
foreach (Edge e in graph.edge)

e.c2vMessage = Bilin(e.check.val / e.vZcMessage);

// check if we’re at a codeword
ciMsg = new BitArray(graph.var.Length);
for (int i=0; i<n; it++)
dMsgli] = graph.var[il.val > 1;
if (IsWord(dMsg))

67

break;
}
return (dMsg);

double Bilin(double x){

return {(1-x)/(1+x);

B.3 Density Evolution (density.cs)

using Systenm;

using System.Collections;
namespace LDPGC {
public class DE {

// graph we’re operating on

public AnnotatedGraph graph;

// Chung DE parameters

static int[,] uTable;

static int[,] rTable;

static int nlevels;

static double reliabilityRange;
static double unreliabilityRange;
static double reliabilityQuant;

static double unreliabilityQuant;

public DE(AnnotatedGraph graph) {
this.graph = graph;

public double Predict(double xi, double x2, double x3){
double yi = EvolveDensity(xi, 1000);
double y2 = EvolveDensity(x2, 10007 ;
double y3 = EvolveDensity(x3, 1000);

double dx = (x2 - x3) / (xi - x3);
(y2 - y1) / (y3 - y1);

]

double dy

double t = dx * dy / (1 - dx - dy);
double x0 = x3 - t * (x1 - x3);

return x0;

public double DEThreshold(int accuracy){

int maxIter = 500;

68

return DEThreshold(accuracy, maxIter);

public double DEThreshold(int accuracy, int maxIter){

double delta = le-3;
return DEThreshold(accuracy, maxIter, delta);

¥

public double DEThreshold(int accuracy, int maxIter, double delta){

double targetError = le-12;
return DEThreshold{accuracy, maxIter, delta, targetError);

T

public double DEThreshold(int accuracy, int maxIter, double delta, double targetError){

SetDEParams (accuracy);

// if the threshold is above 10.0 dB, assume infinite threshold

EvolveDensity(10.0, maxIter) == maxIter)

o
Fh
o~

return double.PositiveInfinity;
double rcaThreshold = RCAThreshold();

double snrMax = rcaThreshold + .1;
double snrMin = rcaThreshold - .1;

// increase the bounds until proper

while (EvolveDensity(snrMax, maxIter) == maxIter)
snrMax = 2 * snrMax - snrMim;

while (EvolveDensity(snrMin, maxIter) != maxIter)
snrMin = 2 * snrMin ~ snrMax;

double snr = (snxMax + snrMin) / 2;

// decrease the bounds until interval is smaller than delta
while (snrMax - snrMin > delta * 2){
spr = {snrMax + snrMin) / 2;
if (EvolveDensity(snr, maxIter) == maxIter)
snrMin = snr;
else
snrMax = snr;
}

// debug
return (Predict(snrMax, 2 * snrMax ~ snrMin, 3 * snrMax - 2 * snr¥in));

public double ECThreshold(){
int maxIter = 500;
return ECThreshold (maxItex);

public double ECThreshold(int maxIter){
double delta = le~3;
return ECThreshold(maxIter, delta);

69

public double ECThreshold(int maxIter, double delta){
double targetError = le-12;
return ECThreshold(maxIter, delta, targetError);

public double ECThreshold(int maxIter, double delta, double targetErroxr){

il
O e

double pMax

double pMin

// decrease the bounds until interval is smaller than delta
while (pMax - pMin > delta){
double p = (pMax + pMin) / 2;
if (EvolveDensityEC(p, maxIter, targetError) == maxIter)
pHax = p;

else

]

PMin = p;
¥

return pMin;

public double EvolveDensityEC(double p, int maxlter, double targetError){

double targetSuzError = targetError # graph.var.Length;

double lastSumError = 0;

foreach (Edge e in graph.edge){
e.c2vMessage = 0;

}

for (int iter=0; iter<maxIter; iter++){
foreach (VNode v in graph.var)
v.val = v.transmitted ? p : 1-1e-10;
foreach (Edge e in graph.edge)
e.var.val *= 1 - e.c2vMessage;
foreach (Edge e in graph.edge)
e.v2cMessage = e.var.val / (1 ~ e.c2vMessage);
foreach (CNede ¢ in graph.check)
c.val = 1;
foreach (Edge e in graph.edge)
e.check.val *= (1 - e.v2cMessage);
foreach {(Edge e in graph.edge)
e.c2vMessage = e.check.val / (1 ~ e.v2cMessage);

// check if the sum bit error probability is less than the target.
double sumBrror = 0;
foreach (VNode v in graph.var){

sumError += v,val;

}
if (sumError < targetSumError)
return iter - (targetSumError - sumError) / (lastSumError - sumError);

lastSumError = sumError;

70

return maxIter;

public double RCAThreshold () {
int maxIter = 500;
return RCAThreshold(maxIter);

public double RCAThreshold(int maxIter){
double delta = le-3;
return RCAThreshold(maxIter, delta);

public double RCAThreshold(int maxIter, double delta){
// debug change positive to negative infinity

// if the threshold is above 10.0 dB, assume infinite threshold
if (EvolveDensityRCA(10.0, maxIter) == maxIter)

return double.NegativeInfinity;

double snrMax = 2.0;

_double snrMin = 0.0;

// increase the bounds until proper

while (EvolveDensityRCA(snrMax, maxIter) == maxIter)
snrMax = 2 * snrMax - snrMin;

vhile (EvolveDensityRCA(snrMin, maxIter) != maxIter)
snrMin = 2 * snrMin - sarMax;

double snr = (snrMax + snrMin) / 2;

// decrease the bounds until interval is smaller than delta
vhile (snrMax - sarMin > delta * 2){
snr = (sarMax + snrMin) / 2;
if (EvolveDensityRCA(snr, maxIter) == maxIter)
snrMin = snr;
else
snrMax = snr;

¥

return snrMax;

public double EvolveDensityRCA(double snr, int maxIter){
// debug change target from le-12 to le-8

double targetError = le-8;

return EvolveDensityRCA(snr, maxIter, targetError);

public double EvolvebensityRCA(double snr, int maxIter, double targetError){

//return (Math.Sign(snr));

71

double rate = graph.rate;

double sigma = Util.SNR2Sigma(snr, rate);

double power = Math.Pow(sigma,-2);

double targetSumError = targetError * graph.var.Length;
int iter;

double lastSumError = 1;

foreach (Edge e in graph.edgel){
e.c2vMessage = 0;
¥
for (iter=0; iter<maxlter; iter++){
foreach (VNode v in graph.var)
v.val = v.zero 7 double.PositiveInfinity : (v.transmitted 7 power : 0);
foreach (Edge e in graph.edge)
e.var.val += e.c2vMessage;
foreach (Edge e in graph.edge){
double p = &.var.val - e.c2vMessage;
e.v2cMessage = Util.Reciprocal(p); // debug
s
foreach (CNode ¢ in graph.check)
c.val = 03
foreach (Edge e in graph.edge)
e.check.val += e.v2cMessage;

foreach (Edge e in graph.edge)
e.c2vMessage = Util.Reciprocal(e.check.val - e.v2cMessage);

// check if the sum bit error probability is less then the target.
double sumError = 0;
foreach (VNode v in graph.var){
double t = Math.Exp(v.val);
sumError += 1 / (1 + t);
T

if (sumError < targetSumError)
return iter ~ (Math.Log(sumError) - Math.Log(targetError)) / (Math.Log{sumError) - Math.Log(lastSumError));

lastSumError = sumError;

}

return iter;

public double EvolveDensity(double snr, int maxIter){
double targetError = le-5;

return EvelveDensity(snr, maxIter, targetError);

public double EvolveDensity(double snr, int maxIter, double targetError){

double targetSumError = targetError ¥ graph.var.Length;

double lastSumFrror = 0;

// let all densities be passed in reliability range
Hashtable v2cDensity = new Hashtable();
Hashtable c2vDensity = new Hashtable();

72

// initialization
foreach (Edge e in graph.edge){
v2cDensitylel = (e.var.transmitted) ? ChannelDensity(snr) : NullRDemsity();

¥

// iteration

for (int iter=0; iter<maxIter; itex++){

// check node update
foreach (CNode ¢ in graph.check){

int n = c.edge.Length;

double[][] fCunConvolution = new double[n]({];
fCumConvolution[0] = NullUDemsity();
for(int i=1; i<n; i++){
fCumConvolution[il = ConvolveUnreliability (fCumConvolutien[i-1], (double[])v2cDensitylc.edgeli -~ 1]11);
}
double[1{] bCumConvolution = new double[nl][];
bCumConvolutionn-11 = NullUDensity();
for (int i=n-1; i>0; i-~){

bCumConvolution{i~1] = ConvolveUnreliability (bCumConvolution([i], (double[])vZcDensitylc.edgelill);

*
for (int i=0; i<n; i++){
c2vDensity[c.edge[il] = ConvolveUnreliability (fCumGonvolution{i], bCumConvolution[il);

// variable node update
foreach (VNode v in graph.vai‘){
int n = v.edge.length;
double[] {1 edgeReliability = new double[n](];
for (int i=0; i<n; i++)
edgeReliability[i] = (doublell)c2vDensity[v.edge[ill;
double[][] fCumConvolution = new double{n]{J];
fCumConvolution{0] = (v.transmitted) ? ChannelDensity{snr) : NullRDensity();
for(int i=1; i<n; i++)
fCumConvolution[i] = ConvolveReliability(fCumConvolution{i-1], edgeReliability[i-11);
double[][] bCumConvolution = new double[n][];
bCumConvélution[n~1] = NullRDensity();
for (int i=p~1; i>0; i—-)
bCumConvolution{i~1] = ConvolveReliability(bCumConvolution{il, edgeReliability[il);
for {int i=0; i<n; i++){
v2cDensitylv.edgel[il] = ConvolveReliability(fCumConvolution{i], bCumConvolutionlil);

// renormalize all densities every iteration
foreach (Edge e in graph.edgelq{
Normalize ((double[])v2cDensitylel);

// check for comvergence every iteration
double sumError = 0;
foreach (VNode v in graph.var){

73

double[] vDensity = v.transmitted 7 ChannelDemsity(snr) : NullRDensity();
foreach (Edge e in v.edge)

vDensity = ConvolveReliability(vDensity, (doublel[l)c2vDensitylel);
double goodDensity = 0;
for (int i=0; i<vDensity.Length/2; i++)

goodDensity += vDensitylil;

sumError += 1 - goodDensity;

¥
if (sumError < targetSumBrror)
return iter — (Math.Log{sumError) - Math.Log(targetError}) / (Math.Log(sumError) - Math.Log(lastSumError));

lastSumError = sumError;

return maxlter;

double[] ConvolveReliability(double[] r0, doublel] ridx{
double[] ret = new double[nlLevels];
for (int i=0; i<nlevels; i++){
for (int j=0; j<nLevels; j++){
ret[xTableli,j1] += r0[1] * r1l[jl;

¥

return ret;

double[] ConvolveUnreliability(double[] r0, double[l ri){
double[] ret = new double[nLevels];
for (int i=0; i<nLevels; i++){
for (int j=0; j<nlevels; j++){

ret[uTable[i,j11 += ro[il * ri[jl;

}

return ret;

public double[] ChannelDemsity(double snr){
double[] channelDensity = Util.ChannelDensity(snr, reliabilityQuant, nlLevels, graph.rate);

return channelDensity;

double[] NuliRDensity(){
double[] nullRDensity = new double[nLevels];

nullRDensity[nLevels / 2] = 1.0;

return nullRDensity;

double[] NullUDemsity(){
double[] nullRDensity = new double[nLevels];
nullRDensity[0] = 1.0;

return nullRDensity;

74

void Normalize(double[] density){

double sum = O

foreach (double d in density)
sum += d;

for (int i=0; i<density.lLength; i++)
density[i] /= sum;

if (sum == 0)
throw new Exception(“divide by 0");

public void SetDEParams(int accuracy){
nlLevels = 1<<accuracy;
reliabilityRange = 12.0;
unreliabilityRange = 2.5;
reliabilityQuant = (2 * reliabilityRange) / nLevels;

unreliabilityQuant = (2 * unreliabilityRange) / nLevels;

ConstructTables();

void ConstructTables(){
rTable = new int[nLevels, nlLevels];
uTable = new int[nLevels, nLevels];

for (int i=0; i<nlevels; i++){

double r0 = (i - (nLevels / 2)) * reliabilityQuant;

bool sign0 = (x0 > 0);
double ub = (xr0 == 0) ? double.PositiveInfinity : -Math.Log(-Bilin(Math.Exp(Math.Abs(r0))));

for (int j=0; j<nLevels; j++){

double r1 = (j - (nLevels / 2)) * reliabilityQuant;
bool signl = (rl > 0);

double ul = (ri == 0) 7 double.PositiveInfinity : -Math.Log(-Bilin(Math.Exp(Math.Abs(r1))));
double u = u0 + ul;

bool sign = sign0 ~ signi;

double r = -Math.Log(-Bilin(Math.Exp(Math.Abs(u)))});

int rq = (int)(r / reliabilityQuant + 0.5);

int k = sign ? (nlevels / 2) + rq : (nLevels / 2) - rg;

k = Math.Max(k, 1);

k = Math.Min(k, nLevels - 1);

uTablel[i,jl = k;

if (i ==0)
uTable[i,jl = j;
if (§ == 0)

uTable(i,j] = i;

int kk = 1 + j - nLevels / 2;
kk = Math.Max(kk, 1);
¥k = Math.Min(kk, nLevels - 1);

75

rTable[i,j1 = kk;
}

double Bilin(double x){

return (1 - x) / (1 + x);

B.4 Simulated Annealing (optimizer.cs)

using System;
using System.Collections;

using System.Threading;

namespace LDPC {
public class Optimizer {

// debug objects
Workbench.Workbench workbench;

// instance variables
public AnnotatedGraph graph;
public DE de;

Random random;

// Anneal variables;
double energy;
int maxPerturbationType;

GraphType targetGraphType;

public Optimizer() {

random = new Random();

public Optimizer(AnnotatedGraph graph) : this(){
this.graph = graph;
de = new DE(graph);

maxPerturbationType = 5;

public void SetWorkbench(Workbench.Workbench workbench){

this.workbench = workbench;

public void SetMaxPerturbationType(int maxPerturbationType){

this.maxPerturbationlype = maxPerturbationType;

76

int anmeallter;

int maxIter;

int minVarDegree;
int maxVarDegree;
int minCheckDegree;

int maxCheckDegree;

public void Anneal(
int anneallter,
int maxIter, ‘
int maxVarDegree,
int maxCheckDegree

{

this.anneallter = anneallter;
this.maxIter = maxlter;
this.maxVarDegree = maxVarDegree;
this.maxCheckDegree = maxCheckDegree;

Anneal();

public void Anneal(){

// degrees less than these de not make semse.
minVarDegree = 1;

minCheckDegree = 3;

// parameters

double startTemperature = .01;

double endTemperature = .00001;
targetGraphlype = GraphType.Linear;

double temperature = startTemperature;
energy = de.RCAThreshold(maxIter, temperature * .01);

for (int i=0; i<anneallter; i++) {

Lock(typeof (Thread)){

temperature = Math.Exp(Math.Log(startTemperature) - Math.Log(startTemperature / endTemperature) * i / anneallter);

Perturbation p = GetPerturbation();

// Make sure the constraints on degrees are not violated

if (CheckDegrees(p) == false) continue;

// Make sure the graph has the correct asymptotic type
if (GraphTypeGood(p) == false) continue;

// see if the energy is low enough

double maxDiff = temperature * -Math.Log(random.NextDouble());

if (IsGood(p, maxDiff) == false) continue;

77

// commit the change

ComnitPerturbation(p);

energy = de.RCAThreshold(maxIter, temperature * 0.01);

Write(string.Format("{0} RCAThresh : {1:N4} backbone nodes : {2} iter : {3}\r\n", p.Re resentation(), energy, 0, i));
g P.rep: gy

¥
graph.Annotate () ;

bool IsGood(Perturbation p, double maxDiff){
double thresh = energy;
bool isGood = trme;
CommitPerturbation(p);
if (de.EvolveDensityRCA(thresh + maxDiff, maxIter) == maxIter)

isGood = false;

UndoPerturbation(p);

return isGood;

bool GraphTypeGood(Perturbation p){
graph.CheckIntegrity();
bool isGood = true;
CommitPerturbation(p);

GraphType graphType = new TypedGraph(graph).DestructivelyGetGraphType();
if (graphType < targetGraphType)
isGood = false;

UndoPerturbation (p);

return isGood;

public bool ﬁasMultipleEdge(int m{
return HasMultipleEdge(graph, m);

public bool HasMultipleEdge(Graph graph, int m){
int[,] connection = new int[graph.var.Length, graph.check.Length];
foreach (Edge e in graph.edge){
connection[e.var,index, e.check.index]++;
if (connection[e.var.index, e.check.index] >= m)
return true;
¥

return false;

78

public Perturbation GetPerturbation(){
Perturbation p = new Perturbation();

while (true){

p-type = (PerturbationType) (int) (random.NextDouble() * maxPerturbationType);

if (p.type == 0){

// swap two edges

int j = 0;

int k = 0;

vhile (j==k){
j = random.Next (graph.edge.Length);
k

}

p.edged = graph.edgel[jl;

il

random.Next (graph.edge .Length) ;

p.edgel = graph.edgelk];

if (p.edge0.var == p. edge‘i .var) continue;

if (p.edgel.check == p.edgel.check) continue;
break;

if (p.type == PerturbationType.ChangeEdgeVar){
p.edge0 = graph.edge[random.Next (graph.edge.Length)];
p.edgel = new Edge(graph.var[random.Next(graph.var.Length)], p.edge0.check);
if (p.edge0.var == p.edgel.var) continue;

break;

if (p.type == PerturbationType.ChangeEdgeCheck){
p.edge0 = graph.edge[random.Next(graph.edge.Length)];
p.edgel = new Edge(p.edge0.var, graph.check{random.Next(graph.check.Length)1);

if (p.edge0.check == p.edgel.check) continue;
break;

if (p.type == PerturbationType.RemoveEdge){
p.edge0 = graph.edgelrandom.Next (graph.edge.Length)];
break;

if (p.type == PerturbationType.AddEdge){
p.edge0 = new Edge(graph.var[random.Next (graph.var.Length)], graph.check[random.Next (graph.check.Length)]);

break;
return p;

public void CommitPerturbation(Perturbation p){
if (p.type == PerturbationType.SwapEdges){
graph.SwapEdges (p.edge0, p.edgel);

!

79

if (p.type == PerturbationType.ChangeEdgeVar){

graph.AddEdge (p.edgel);

graph.RemoveEdge (p.edge0);

}

if (p.type == PerturbationType.ChangeEdgeCheck){

graph.AddEdge (p.edgel);
graph.RemoveEdge (p.edge0) ;

}

if (p.type == PerturbationType.RemoveEdge){

graph.RemoveEdge (p.edge0) ;

¥

if (p.type == PerturbationType.AddEdge){

graph.AddEdge (p.edge0) ;

¥

p.committed =

true;

public void UndoPerturbation(Perturbation p){

if (p.committed == false)

throw new Exception("exception not committed");

if (p.type ==

PerturbationType.SwapEdges)

graph.SwapEdges (p.edgel, p.edgel);

if (p.type ==

PerturbationType.ChangeEdgeVar){

graph.RemoveEdge (p.edgel);
graph.AddEdge (p.edge0) ;

}
if (p.type ==

PerturbationType.ChangeEdgeCheck){

graph.RemoveEdge (p.edgel);

graph.AddEdge (p.edge0) ;

}
if (p.type ==

PerturbationType.RemoveEdge)

graph.AddEdge (p.edge0l);

if (p.type ==

PerturbationType.AddEdge)

graph.RemoveEdge (p.edgel);

p.committed =

false;

public bool CheckDegrees(Perturbation p){

if (p.type ==
if (p.edgel.
if (p.edge0.

}

if (p.type ==
if (p.edgel.
if (p.edge0.

¥

if (p.type ==
if (p.edgeO.
if (p.edge0.

>

if (p.type ==
if (p.edgeO.

PerturbationType.ChangeEdgeVar){
var.degree >= maxVarDegree) return false;

var.degree <= minVarDegree) return false;

PerturbationType.ChangeEdgeCheck){
check.degree >= maxCheckDegree) return false;

check.degree <= minCheckDegree) return false;

PerturbationType.RemoveEdge){
var.edge.Length <= minVarDegree) return false;

check.edge.Length <= minCheckDegree) return false;

PerturbationType.AddEdge){

var.edge.Length >= maxVarDegree) return false;

80

if (p.edge0.check.edge.Length >= maxCheckDegree) return false;

¥

return true;

public void Write(string format, params object[] o){

workbench.Write(format, 0);

public class Perturbation{
public bool committed;
public PerturbationType type;
public Edge edgeO;
public Edge edgel;

public Perturbation(){

}

public string Representation(){
return new string[]{"*","\\","/", "+","-"}[(int)typel;

public enum PerturbationType : int{
SwapEdges = 0,
ChangeEdgeVar = 1,
ChangeEdgeCheck = 2,
AddEdge = 3,
RemoveEdge = 4,

81

Bibliography

1]

[12]

[13]

M. Klimesh, Optimal Strategies for Communicator-Jammer Problems. PhD thesis, University

of Michigan, Ann Arbor, 1995.

M. Luby, “LT codes,” 43rd Annual IEEE Symposium on the Foundations of Computer Science.

C. Shannon, “A mathematical theory of communication,” Bell System Technical Jouwrnal,

vol. 27, pp. 379-423 and 623-656, July and October 1948.

R. M. Tanner, “On graph constructions for ldpc codes by quasi-cyclic extension,” Information,

Coding and Mathematics, pp. 209-220, 2002.

T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE
Transactions on Information Theory, pp. 638-656, feb 2001.

J. Pearl, Probabilistic Reasoning in Intelligent Systems. Kaufmann, 1988.

S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Transactions on Infor-
mation Theory, pp. 325-343, mar 2000.

T. Richardson, “Multi-edge type ldpc codes.” Presented at the workshop in honor of Prof. Bob
McEliece’s 60th birthday (not in proceedings), California Insitute of Technology, Pasadena, CA,

may 2002.

T. Richardson and R. Urbanke, “The capacity of low-density parity check codes under message-
passing decoding,” IEEE Transactions on Information Theory, vol. 47, pp. 599618, Feb 2001.

S.Y. Chung, On the Construction of Some Capacity-Approaching Coding Schemes. PhD thesis,
Massachusetts Institute of Technology, sep 2000.

C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite length analysis of low-
density parity-check codes.” Submitted to IEEE Transactions on Information Theory, 2001.

B. J. Frey, R. Koetter, and A. Vardy, “Skewness and pseudocodewords in iterative decoding,”

T. Richardson, “Multi-edge-type ldpc codes.”.

82

[14] R. Gallager, “Low density parity check codes,” Research Monograph Series, no. 21, 1963.

[15] S. Litsyn and V. Shevelev, “On ensembles of low-density parity-check codes: Asymptotic dis-
tance distributions,” vol. 48, no. 4, pp. 887-908, 2002.

[16] C. Di, Asymptotic and Finite-Length Analysis of Low-Density Parity-Check Codes. PhD thesis,
Ecole Polytechnique Fdrale de Lausanne, 2004.

[17] T. Cover and J. Thomas, Elements of Information Theory. Wiley Interscience, 1991.

[18] S. Aji, S. Fogal, R. McEliece, and B. Wang, “Constrained entropy, free energy, and the legendre

transform,” 2005. Submitted to International Symposium on Information Theory.
[19] J. Nocedal and S. J. Wright, Numerical Optimization. Springer-Verlag, 1999.

[20] J. Thorpe, “Low-density parity-check (ldpc) codes constructed from protographs,” IPN Progress
Report 42-154, JPL, aug 2003.
[21] J. Xu and S. Lin, “A combinatoric superposition method for constructing low density parity

check codes,” in IEEFE International Symposium on Information Theory, p. 30, jun 2003.

[22] X. Hu, E. Eleftheriou, and D. Arnold, “Irregular progressive edge-growth (peg) tanner graphs,”
in IEEE International Symposium on Information Theory, p. 480, jun 2002.

[23] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular
low-density parity-check codes,” IEEF Transactions on Information Theory, pp. 619-637, feb

2001.

[24] J. Hartmanis and H. Stearns, Algebraic Structure Theory of Sequential Machines. Prentice-Hall,
1966.

[25] J. Lee, B. Lee, J. Thorpe, S. Dolinar, and J. Hamkins, “A scalable architecture of a structured

Idpc decoder,” ISIT, jun 2004.
(26] R. M. Tanner, “A recursive approach to low complexity codes,”
[27]

[28] H. Zhong and T. Zhong, “Design of vlsi implementation-oriented ldpc codes,” IEEE Semiannual

Vehicular Technology Conference, oct 2003.

[29] E. E. X. Hu and D. Arnold, “Progressive edge-growth tanner graphs,” in Global Telecommuni-
cations Conference, vol. 2, pp. 25-29, nov 2001.

[30] J. Thorpe, “Low-complexity approximations to belief propagation for Idpc codes.”.

83
[31] J. Lee and J. Thorpe

[32] S. Chung, D. Forney, T. Richardson, and R. Urbanke, “On the design of low-density parity-
check codes within 0.0045 db of the shannon limit,” IFEE Communications Letters, pp. 58-60,

Feb 2001.
[33] Y. Mao and A. Banihashemi, “A heuristic search for good low-density parity-check codes at

short block lengths,” IEEE Internationl Conference on Communications, 2001.

[34] D. MacKay, “Good error correcting codes based on very sparse matrices,” vol. 45, pp. 399-431,
March 1999.

