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Abstract

It has been recently proposed that higher-dimensional field theory models in the pres-
ence of extended defects (“branes”) may play a role in addressing the gauge hierarchy
problem. In this thesis we consider several aspects of such field theories. First we
perform the Kaluza-Klein reduction of a bulk scalar field propagating in the scenario
of Randall and Sundrum, which consists of a region of five-dimensional anti-deSitter
space bounded by two three-branes. We then propose a simple mechanism, based on
the dynamics of a bulk scalar field, for stabilizing the modulus field (the “radion”)
corresponding to the size of the compact dimension in the Randall-Sundrum scenario.
Some implications of this stabilization mechanism for low-energy phenomenology are
described. Next, we investigate the one-loop quantum corrections to the radion ef-
fective potential. We show that for large brane separation, the quantum effects are
power suppressed and therefore have a negligible effect on the bulk dynamics once a
classical stabilization mechanism is in place. Finally, we study the ultraviolet diver-
gence structure of field theory in the presence of branes and find that brane-localized
divergences arise both at the classical and quantum level. We show how to interpret
the classical divergences by the usual regularization and renormalization procedure

of quantum field theory.
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Chapter 1 Introduction

1.1 The gauge hierarchy problem

The Standard Model (SM) of particle physics [1], a renormalizable quantum field the-
ory based on the gauge group SU(3) x SU(2) x U(1), is a highly successful description
of nature at small scales. As a scientific theory it has passed an impressive number of
experimental tests, including precision measurements of electroweak and low energy
QED observables that probe the predictions of the theory at the level of radiative
corrections. It is only recently that experiments have begun to see evidence of new
physics beyond the framework of the SM, in the form of neutrino oscillations [2], and
most recently perhaps also in the form of deviations of the value of the muon g-factor
from the predictions of the SM [3].

However, besides these experimental hints, we know that the SM must be an effec-
tive field theory, giving way to a more fundamental description of particle interactions
at high energies. For one, the SM does not incorporate gravitational interactions.
While this is irrelevant for phenomenology at experimentally accessible energies, it is
an indication that the SM ceases to be valid description at energies scales at most as
large as the Planck scale, Mp; ~ 10'? GeV, where gravity becomes strongly coupled
and its quantum mechanical nature must be taken into account.

In fact, we can understand some features of the SM if we make the minimal as-
sumption that there is no new physics (i.e., no new particle content) between the
scale of electroweak symmetry breaking, mwy ~ 250 GeV, and the Planck scale (or
perhaps the scale of gauge coupling unification, Mgyr ~ 10'® GeV). Then starting
with a Lagrangian that includes arbitrarily complicated non-renormalizable interac-
tions at scales just below the cutoff A ~ Mp;, and integrating out high momentum
modes until reaching energies of order my, the theory flows to a model with the

original non-renormalizable operators suppressed by powers of mw /Mp;. All that
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survives are the renormalizable interactions: the gauge and Yukawa couplings probed
by high-energy accelerator experiments. Although this Wilsonian picture cannot ex-
plain why, for example, the SM is a chiral gauge theory, or predict the specific value of
the renormalizable parameters, we can at least understand why nature at low energies
is described by renormalizable quantum field theory. We can also understand other
facts, such as the suppression of neutrino masses and proton decay rates, based solely
on the gauge symmetries of the SM and the existence of an energy “desert” between
the weak scale and the Planck scale.

This picture is minimal and attractive, but it leads to a problem. In the mini-
mal SM, electroweak symmetry breaking is achieved through the Higgs mechanism,
implemented by a weakly coupled scalar field whose mass determines the weak scale
mw. However, it is unnatural to have fundamental scalars with mass much lighter

than the cutoff scale of the theory, since there is generally no symmetry that protects

1 In

a scalar mass term from acquiring quadratically divergent radiative corrections
order to obtain a Higgs scalar mass myg ~ my in the SM, the bare parameters at the
cutoff scale A must be sensitively tuned. The necessity to adjust parameters in such
a way that myg < Mp; is known as the gauge hierarchy problem [4, 5].

To understand this fine-tuning, consider the radiative corrections to the Higgs

mass due to its quartic self-couplings. Schematically, this is given by

—idmy = Q__

, d*k 1
= —Z)\/Wﬁ, (1.1)

where A is the Higgs self-coupling. Imposing a physical cutoff A ~ Mp; on the loop
integral, the physical mass of the Higgs has the form

A
2 2 2
my; ~ mg + A 1.2
H 0 167r2 7 ( )
I'We say that it is not “technically natural,” in the senss introduced by ‘t Hooft [6], to have light
scalars. This should be contrasted with radiative corrections to fermion masses, which due to chiral
symmetry must vanish in the limit of zero bare mass and therefore can only depend logarithmically
on the cutoff scale.
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where mg is the bare mass. If )\ is of order unity, this equation implies that for
A ~ Mp;, the (mo/A)? must be tuned to one part in 1073 to generate a physical
Higgs mass myg ~ 1 TeV. Otherwise my ~ Mp;. While it is certainly possible that
nature is fine-tuned in this sense, the adjustment necessary to maintain my < Mp;
seems rather artificial. It indicates that the SM is only valid up to energies of order
the TeV scale. Past these energies, it must be replaced by a more fundamental theory.
Then the corrections to the Higgs mass are cut off not at A = Mp;, but instead at
A ~ TeV, and consequently myg ~ TeV is natural?.

The hierarchy problem motivates most proposals for new physics at the TeV scale.
One way around the hierarchy problem is to avoid fundamental scalars altogether.
This is the idea behind technicolor models [5, 7]. In such models, electroweak symme-
try is broken dynamically, through strong gauge theory dynamics at the TeV scale.
While technicolor is a beautiful idea, a large number of constraints (for instance,
suppression of potentially large flavor-changing neutral currents) make its implemen-
tation difficult, and no realistic models have yet been built.

Perhaps the most popular extension of the SM is the existence of supersymmetry
(SUSY) broken at the TeV scale [9, 10]. SUSY transforms bosonic fields into fermions,
and therefore implies a doubling of the particle spectrum?®. If SUSY were an exact
symmetry, loop corrections to the Higgs mass from SM fields would cancel against
the Feynman diagrams involving their supersymmetric partners. Because SUSY is
broken at the TeV scale, this exact cancellation does not occur in the supersymmetric
Standard Model. However, if SUSY is broken at the TeV scale by “soft” terms
(operators with mass dimension less than four), then a Higgs mass of order the TeV

scale is technically natural, in much the same way that chiral symmetry makes small

2This still leaves us with another hierarchy problem, involving quantum corrections to the vacuum
energy. No symmetry protects this cosmological constant term from receiving radiative corrections
of order A*. Even if the cutoff is of order the TeV scale, the natural value of (TeV)?* leads to
a cosmological constant which is many orders of magnitude larger than cosmological observations
require. Although it appears here only in a footnote, the cosmological constant problem is one of
the great unsolved problems in particle physics. We will have nothing further to say about it, but
see [8] for a review.

3Actually, besides doubling the particle spectrum, in the supersymmetric extension of the SM one
must also introduce a super multiplet involving an additional Higgs scalar to cancel the anomalies
generated by the chiral fermion superpartners of the SM bosons.



fermion masses natural.

A more recent class of ideas for addressing the hierarchy problem involves bringing
the gravitational scale down to the TeV range [11, 12]. In order to accommodate this,
one also needs to introduce additional compactified dimensions beyond the 3+ 1 that
are observed in nature. The phenomenology of these models is radically different from
that of more conventional extensions of the SM. If these ideas are relevant to nature,
they imply that we may see signatures of quantum gravity at collider experiments at

the TeV scale. We will describe the basic features of these models in the following

section.

1.2 Extra dimensions and the hierarchy problem

The hierarchy problem arises because there are two widely separated fundamental
scales in nature, the electroweak scale my and the Planck scale Mp;. While our
understanding of weak scale physics comes from direct experimental observation at
distances of order 1/my, gravitational interactions have only been probed down to
millimeter scale distances (see [13] for recent experimental results). The Planck scale
represents an extrapolation of this observation across 33 orders of magnitude. This
simple observation lead Arkani-Hamed, Dimopolous and Dvali (ADD) [11] to enter-
tain the possibility that perhaps Mp; is not fundamental, but instead strong gravita-
tional dynamics sets in at a new scale M. If this scale is M ~ 1 TeV, then a Higgs
with mg ~ TeV is natural, since M is the ultraviolet cutoff on the SM.

How can a gravitational scale M in the TeV range be compatible with the observed
strength of gravity Gy ~ Mp? Suppose that spacetime is not four dimensional, but
rather it is the product of a compact n-dimensional manifold with four-dimensional

Minkowski space. At energies below the compactification scale of this internal mani-
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fold, the higher-dimensional gravitational action®

S = 2M™t? / d"*"XVGR+ ..., (1.3)
behaves like a four-dimensional theory described by

S = 2M”+2Vn/d4x\/§R4 +..., (1.4)

where M is the 4 + n dimensional Planck scale, and V,, is the volume of the internal
manifold. Also, g is the determinant of the four-dimensional part of the metric, and
R, is the four-dimensional Ricci scalar. From this we can identify the four-dimensional

Planck mass as a derived quantity, given by
M3, = M™Y. (1.5)

For example, take V, to be a torus with radii ~ R. Then if M ~ 1 TeV (although
for n = 2, astrophysical bounds [14] already exclude M < 30 TeV), we obtain the
correct strength four-dimensional gravitational interactions provided that we set
R~ (@)M (1.6)
M
Ifn =1, R ~ 10% cm, which is clearly ruled out, while for n = 2, R ~ 1 mm. The
problem of understanding the disparity between the weak scale and the Planck scale
has been transformed into the dynamical problem of stabilizing an internal manifold
with radius R hierarchically larger than the fundamental scale of the theory. See [15]
for some early proposals.
While it seems that gravity can be accommodated by this large extra dimensions
picture, the idea as presented so far is not yet consistent with collider experiments.
Clearly the SM fields cannot propagate in a bulk space with millimeter size extra

dimensions. If this were so, at distance scales shorter than the millimeter range, non-

4G unN is the higher-dimensional metric, and G is its determinant. R is the n + 4-dimensional
Riccal scalar.
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gravitational physics would appear higher dimensional: in addition to the ordinary
SM particles, experiments would also see towers of states with the same quantum num-
bers as the SM fields and with masses separated by a gap of order 1 mm™ ~ 107%eV.
To avoid this phenomenological disaster it is necessary to assume that fields charged
under the SM gauge group are confined on a three-dimensional surface embedded in
the higher-dimensional bulk.

It is highly nontrivial to localize a chiral gauge theory like the SM on a three-
dimensional wall, or “brane”. Although no specific mechanism for confining the SM
fields on a 3-brane has been proposed, it is possible that this may be done within
the context of field theoretic models on topological defects [16] or with D-branes [17]
in string theory. However, despite this difficulty, a scenario like ADD, where gravity
propagates in 4 + n-dimensions while SM fields are trapped on a submanifold makes
sense as a low energy effective field theory (with respect to the fundamental scale M)
and we are free to consider its implications without detailed knowledge of a specific
localization mechanism.

A picture such as the one we just described is a radical departure from the usual
ways of thinking about physics beyond the SM, and clearly it has implications not
only for millimeter tests of the gravitational force, but also for collider experiments
near the TeV scale [18, 19, 20, 21], in astrophysical settings [14, 18, 22], as well as
cosmology [18, 23]. For example, in accelerator experiments, a model-independent
signature of the extra dimensions is a large cross section for production of Kaluza-
Klein graviton states as energies approach the TeV scale. Individual Kaluza-Klein
modes are coupled to Standard Model fields with strength Mp;, and are therefore not
detectable. However, there is a large multiplicity of graviton states available in the
production processes, so the total emission rate is observable in the form of missing
energy, for instance, in collider processes such as ete™ — v + Fr or ¢§ — jet + fr.
See [19] for a detailed analysis of these processes. Graviton Kaluza-Klein modes
may also manifest themselves through virtual exchange, modifying reactions involving
external SM states at energies of order M, see [20]. But certainly the most striking

consequence for collider physics is the possibility of probing the quantum theory of
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gravity itself. A specific analysis of such effects is obviously model dependent, however
studies of the effect of TeV scale string theory on collider phenomenology can be found
in [24].

So far we have assumed that the spacetime metric factorizes into a product of the
four-dimensional Minkowski metric and the metric for an internal compact space. We
have also neglected the the backreaction of our 3-brane universe on the bulk metric,
as well as the possibility of a nontrivial spacetime geometry for the bulk 4 4+ n di-
mensional spacetime. Randall and Sundrum [12] considered a five-dimensional brane
scenario where the spacetime metric is no longer factorizable. Their model consists of
a spacetime with a single §'/Z, orbifold extra dimension. Three-branes with opposite
tensions reside at the orbifold fixed points, and together with a finely tuned negative
bulk cosmological constant serve as sources for five-dimensional gravity®. The result-
ing spacetime metric contains a “warp factor” which depends exponentially on the

radius of the compactified dimension:
ds? = e~ 2kreltly  detdz? — r2dé?, (1.7)

where z# are Lorentz coordinates on the four-dimensional surfaces of constant ¢, and
—7 < ¢ < 7 (with (2, ¢) and (z, —¢) identified, and the 3-branes located at ¢ = 0, ).
Here, r. sets the size of the extra dimension, and k is taken to be on the order of the

Planck scale.

As we will discuss in the next chapter, the four-dimensional Planck scale is given

by

M3 -_ TeT
MEy = ——[1 — e77e7], (1.8)

k
so that Mp; is of order M. Also, a field confined to the 3-brane at ¢ = 7 with mass

parameter mg will have a physical mass given by m = mge~*"<". Thus, if kr, is around

12, the weak scale is dynamically generated while all fundamental mass scales are on

5This setup is analogous to the Horava-Witten scenario [26] which arises in M-theory. For a
discussion of how the scenario described above Eq. (1.7) may arise from Type IIB string theory
compactifications, see [27]. Supersymmetric extensions can be found in [28, 29]. For connections
with the AdS/CFT correspondence [30], see [27, 31, 32, 33, 34, 35, 36].
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the order of the Planck scale, i.e., there is no very large hierarchy between M and the
compactification scale 1/r,.

Besides this, it is also found that on account of the exponential warp factor in
Eq. (1.7), Kaluza-Klein gravitational modes in this spacetime have TeV scale mass
splittings and couplings [12, 25]. Although in this scenario the extra dimension will
not be measurable in any foreseeable test of the gravitational force, the strongly cou-
pled graviton Kaluza-Klein modes will manifest themselves as spin-two resonances in
TeV scale collider experiments. Some of the relevant phenomenology can be found
in [37]. This is in sharp contrast to the Kaluza-Klein decomposition in ADD sce-
narios, which as we discussed earlier, gives rise to a high number of light modes
(with splittings of the order of the compactification scale) that are coupled only with
gravitational strength.

In this thesis, we will explore aspects of field theory relevant to the brane models
described in this chapter for addressing the hierarchy problem. In Chapter 2, we will
give a more detailed discussion of the RS scenario. We will also develop the four-
dimensional effective field theory for the massless modes which arise in their minimal
setup, with only gravity propagating in the bulk. It is found that this effective field
theory contains the ordinary four-dimensional graviton, as well as a massless scalar
field, the radion, which is a modulus for the compactification radius r. of the fifth
dimension. The results on the radion effective field theory presented here are based
on [38] (which appeared also in [39]).

In Chapter 3, we will continue the discussion of the RS scenario, by performing
the Kaluza-Klein decomposition of a massive bulk scalar in the nonfactorizable metric
of Eq. (1.7). We will find that even if the bulk field mass and self-interactions are
characterized by parameters of order the Planck scale, its Kaluza-Klein modes have
masses and couplings of order the TeV scale. A similar pattern arises for bulk fields
with spin. This result has important phenomenological consequences, since it implies
that Planck scale bulk physics may be accessible to experiments at the TeV scale.
The results presented in this chapter are based on work that appeared in [40].

As discussed in Chapter 2, in the minimal RS setup the radion potential is flat.
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Since the vacuum expectation value of the radion determines the compactification
scale (and therefore the weak/Planck hierarchy), additional dynamics must be speci-
fied to yield the weak scale dynamically from the spacetime geometry. Furthermore,
for the scenario to be phenomenologically relevant, the radion must acquire a mass.
In Chapter 4, we describe a proposal, first presented in [41], for generating a radion
potential whose minimum yields kr. ~ 12 without fine-tuning of parameters. This
potential arises classically, due to the presence of a bulk scalar field with interaction
terms localized on the two branes (see [42] for a similar mechanism in the context of
ADD models with two extra dimensions). We also discuss some of the phenomenolog-
ical features [38, 39] of the radion stabilized by the mechanism of [41]. It is found that
the radion mass is generically in the TeV range, although it is somewhat lighter if the
large separation between branes arises from a small bulk scalar mass. Consequently,
it may be the first signal of the RS scenario. Four-dimensional general covariance
completely determines the couplings of the modulus to SM fields. The strength of
these couplings is determined by a single parameter which is set by the TeV rather
than the Planck scale.

The radion stabilization picture described in Chapter 4 is purely classical. One
expects quantum corrections to generate a nontrivial potential for the radius mod-
ulus. In Chapter 5 we calculate the one-loop effective radion potential induced by
the quantum fluctuations of fields that propagate in the bulk and on the two branes
(this calculation is based on [43]). We find that the resulting potential cannot natu-
rally stabilize the brane separation at the distance needed to generate the hierarchy.
Consequently, a classical stabilization mechanism, such as that presented in Chap-
ter 4, is required. However, for large brane separation, the quantum effects are power
suppressed and therefore have a negligible impact on the bulk dynamics once such
a mechanism is in place. Our result provides some evidence that, at least at the
one-loop level, the RS scenario is quantum mechanically stable even in the absence
of bulk supersymmetry.

In Chapter 6, we study the structure of ultraviolet divergences for field theory

in the presence of branes. Such field theories encounter localized divergences that
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renormalize brane couplings. The sources of these brane-localized divergences are
understood as arising either from broken translation invariance or from short distance
singularities as the brane thickness vanishes. While the former are generated only
by quantum corrections, the latter can appear even at the classical level. Using
as an example six-dimensional scalar field theory in the background of a 3-brane,
we show how to interpret such classical divergences by the usual regularization and
renormalization procedure of quantum field theory. In our example, the zero thickness
divergences are logarithmic, and lead classically to nontrivial renormalization group
flows for the brane couplings. We construct the tree level renormalization group
equations for these couplings, as well as the one-loop corrections to these flows from
bulk-to-brane renormalization effects. The classical logarithms considered here may
play a role in the mechanism of [42] for stabilizing ADD with two extra dimensions,
as well as the proposal of [44] for obtaining gauge coupling unification. These results
closely follow the presentation in [45].

Finally, in Chapter 7 we present concluding remarks.
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Chapter 2 The Randall-Sundrum

scenario

In this chapter we describe the proposal due to Randall and Sundrum [12] to address
the hierarchy problem via exponential warp factors in the spacetime metric. In Sec-
tion 2.1 we write down a five-dimensional low energy effective theory (with respect to
the five dimensional gravitational scale), including five-dimensional Einstein-Hilbert
gravity with a bulk cosmological constant, as well as world-volume actions for three-
branes. We also solve for the five-dimensional metric generated by the brane tensions
and the cosmological constant, and show how the resulting spacetime geometry can
generate hierarchies between the scale of physics for field theories localized at different
points in the bulk space. In Section 2.2, we describe a low energy four-dimensional
effective action for the massless fields, which in the minimal setup of Section 2.1, are
identified with the four-dimensional graviton and with a scalar modulus, the radion,

that describes fluctuations in the separation between the branes.

2.1 The five-dimensional theory

We assume that spacetime is five-dimensional, with the fifth dimension compactified
on an interval. It will be convenient in what follows to represent this interval as an
S1/Zy orbifold. Choose coordinates (z*, ), where z#, with g = 0... 3, parametrize
the noncompact directions, and —m < ¢ < 7 are coordinates on the circle. Z; acts on
our coordinates as (z*, ) — (z*, —¢), so that after taking into account the periodicity
¢ — ¢+ 27 on the circle, the points (z#,0) and (z*, 7) are fixed points of the orbifold
action. On these fixed points reside three-branes, whose tensions serve as sources
for bulk gravity. An action describing this system at energies low compared to the

five-dimensional Planck scale (where we loose predictability due to poorly understood
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quantum gravity effects) is given by
S =5y+ S, + Sh, (2.1)

where

Sp = /df’x\/é [2M°R — A] + - - (2.2)

is the gravitational action for the bulk spacetime, where M denotes the five dimen-
sional Planck scale, and A is a bulk cosmological constant. ... denotes terms in the
action involving additional bulk fields not present in the minimal setup of [12]. Such
fields will eventually play an important role in the dynamics of the model and will be
discussed in the following chapters. The terms S, denote world-volume actions for

fields trapped on the branes

5, = / o/ =g~ Ve + L], (2.3)
Sy, = /d4:€\/-—gh[—Vh—i—£h], (2.4)

where the subscripts v, h label actions on a visible and and hidden sector branes
respectively!. In these two equations, g, and g, denote the determinants of the

induced metric on each brane, which in our coordinate system are given simply by
gZu(x) = Guu($7¢ = 0)7 gZu(w) = GMV($a¢ = 7T)' (2'5)

Each 3-brane can support four-dimensional field theories with Lagrangians £, 5, and
in particular the SM fields are assumed to be confined to the visible brane at ¢ = =.
Finally, the constants V;,;, represent the tensions of the branes, which together with

the bulk cosmological constant act as sources for five-dimensional gravity.

We will also refer to these as the TeV and Planck brane, since, as we shall see, these are the
characteristic energy scales for the dynamics on these two sectors.
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2.1.1 Classical configuration
We now solve for the vacuum configuration that corresponds to the above action.
This is obtained by solving the classical equations of motion for the five-dimensional

metric Gyn,

1 1 H Ccv
RMN - §GMNR —W [A\/EGMN + Vv\/ _vaMV6N5M5(¢ - 7T) (26)

Vi =0n G 03 8348(6)]

where G is the determinant of Gy, and Rpsp is the five-dimensional Ricci tensor. We
assume that the low energy dynamics respects four-dimensional Poincare invariance.

An ansatz for the metric which is consistent with this assumption is given by
ds* = e“2a(¢)nﬂydx“dx” — r2d¢?, (2.7)

where in this coordinate system, r. is the radius of the fifth-dimension compactified
on a circle, and r.7 is the length of the orbifold. The curvature tensor for this metric

ansatz is (a prime denotes a derivative with respect to ¢)

R = e2(s" _40™), (2.8)
rC
R¢¢ = 4(0‘”—0/2), (29)

with R,; = 0. Then the ¢¢ component of Eq. (2.6) is then simply

6o —A

while the ur components are given by
35" Vi Vv
2 " 8(¢) + 5(¢ — ). (2.11)

r2 - AM3r, 4 M3,

C



14
Eq. (2.10) is trivially solved

[—A
0'(¢) = WTC|¢I = ch|¢|a (212)

where we have imposed ¢ — —¢ symmetry and absorbed an arbitrary constant of
integration into the definition of the four-dimensional coordinates z#. Note that in
order to have a solution we must have A < 0, meaning that away from the branes,
the spacetime geometry is locally five-dimensional anti-deSitter space (AdSs) with

curvature radius 1/k. Taking into account the periodicity in ¢,
o = 2kr.[6(¢) — 8(éd — )], (2.13)
so that comparison with Eq. (2.11) gives the constraints
V, = —Vi = 24M°k. (2.14)

These conditions impose two fine-tunings on the parameters of the theory. Recall
that the original motivation for introducing this setup was to address the hierarchy
problem. In the minimal SM, only one fine-tuning of parameters is required in order
to achieve my < Mp;. It does not seem that progress is being made if we then have
to trade a single constraint among the parameters of the SM for the two conditions
of Fq. (2.14) which are necessary to generate our AdSs solution. In the next section
we will discuss the physical origin of the conditions Eq. (2.14) and we will see that
additional dynamics beyond what we presented here is necessary to get rid of one
of these relations. However, one relation among parameters will remain. We will be
able to match this onto the usual fine-tuning required in the four-dimensional field
theory that is necessary to achieve a suitably small cosmological constant.

The solution for the metric is

ds? = e_2kr°l¢l77ul,d:c“dw” — r2d¢?, (2.15)
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with the radius r, a free parameter, not determined by the physics of Eq. (2.1). Note
that in order for this solution to be valid, we must take k& < M. In this case, terms
with higher powers of the curvature in the bulk action are negligible, and Eq. (2.1)

captures the relevant physics.

2.1.2 Generating the TeV /Planck hierarchy

Imagine that all scales appearing in Eq. (2.1) are comparable, and of the same order
of magnitude? as the fundamental scale M. To see how a hierarchy of scales can be
generated by the solution of Eq. (2.15), consider as an example scalar field h (for
instance, the SM Higgs scalar) confined to the visible brane at ¢ = m. Keeping only

the free action for h,

Sy = %/d‘lx\/—gv (4% 8,h8,h — ph*] + - - -, (2.16)

where g7, is the induced metric on the surface ¢ = 7, and po is a mass parameter
of order M. Substituting the solution for g7, from Eq. (2.15) into this equation, this

becomes

1
S, = E/d‘l;r;e_‘lk“” [errC"n“”aﬂh&,h —pgh® - (2.17)

Now rescale A — ¢7*<"h to obtain a canonically normalized field
Sy = —/d4x [n‘“’ﬁuh&,h — (uge_k”“)2h2] 4 (2.18)

From this we can determine the physical mass of the canonically normalized scalar

to be
= poe ke, (2.19)

Because this mass depends on the exponential of kr,, it is possible to generate a strong
hierarchy between the fundamental scale of the theory and the scale of physics on

the visible brane without having to introduce unnatural values for parameters of the

2Perhaps somewhat smaller, however, so that quantum gravity/string effects are negligible, and
the effective five-dimensional theory is a valid description of the physics.
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theory. Indeed, if we take the fundamental scale M to be of order the four-dimensional
Planck mass, one only needs kr. ~ 12 to get TeV scale mass parameters on the visible
brane. We see that in this scenario, the large hierarchy between the weak scale and
the gravitational scale is a consequence of five-dimensional gravitational dynamics.
The hierarchy problem of the minimal SM then gets translated into the problem of
finding a mechanism that generates the small exponential exp(—kr.m) from a theory
with parameters of order one (in units of the fundamental scale). We will suggest

such a mechanism in Chapter 4.

2.2 The four-dimensional effective theory

In this section we begin to explore some of the physical consequences of the RS
model. At low energies, the physics is best described in terms of a four-dimensional
effective field theory that includes the massless modes about the background solution,
Eq. (2.15). Although not intuitive at this stage, we will see in the next chapter that
this four-dimensional description is valid only up to energies of order the TeV scale.
Past these energies, the Kaluza-Klein modes of bulk fields must be included in the
effective field theory, and a five-dimensional description becomes more appropriate.
Below the TeV scale, the only light degrees of freedom in the minimal setup of the
previous section are massless fields. They arise as gravitational fluctuations about
the background AdSs solution. A convenient ansatz [12] that describes these modes
is
ds? = e 2@y (2)dztdz” — T (z)dg?. (2.20)
In this equation, g¢,,(z) is identified with the four-dimensional massless graviton,
which for our AdSs solution with four-dimensional Poincare invariance satisfies (g,,) =
Nu- The scalar T'(z) is a modulus field (the “radion”) whose vacuum expectation
value (VEV) determines the radius of the compact dimension, 7. = (7). This field
describes fluctuations in the separation between the branes, and must be included in

the theory in order to give a complete description of the gravitational dynamics.
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Note that the Kaluza-Klein gauge field ds* = A,(z)dz*d¢ + . .. corresponding to
the gauge transformation ¢ — ¢+ x(z) is projected out of the spectrum due to the Z,
symmetry of the theory, since it must be Z; odd in order to keep the line element a Z,
invariant. Likewise, our branes cannot be dynamical, since the massless scalar fields
that describe individual transverse fluctuations of the branes are Z, odd and therefore
cannot appear in the setup of [12] with the branes placed at the orbifold fixed points.
This is fortunate, since from Eq. (2.14) we see that the TeV brane tension must be
negative, in which case the field corresponding to its fluctuations is tachyonic, giving
rise to an instability. Although it is difficult to realize a negative tension object from
a more fundamental theory which describes the structure of the brane, at least the
scenario with a negative tension brane is consistent as a low energy effective theory.

To derive a low energy theory for the fields g,,(z) and T'(z), we substitute the
ansatz Eq. (2.20) into Eq. (2.1) and integrate out the compact dimension. First, we
concentrate on the low energy dynamics of g, alone. Assuming that the radion 7' is

frozen at its VEV r., we obtain

S=2M° [ d*a/=q | redpeFreldl [e2hreldl g pig] 4o 2.21
"

where R|[g],., is the four-dimensional Ricci tensor constructed from the metric g,,,, and
-+ - denotes terms not relevant to constructing the effective action for g,,. Performing
the ¢ integration,

_2M?

=

(1 — e 2krem) / d*z\/gRlg] + ... (2.22)

this becomes a four-dimensional Einstein-Hilbert action for the graviton. From this

we can read the four-dimensional Planck scale

3

M - TcT
M}, = —k—[1 — 7 Hhrem], (2.23)

Since to address the hierarchy problem we assumed that M and k were of order the

observed four-dimensional Planck scale, we end up with (for kr, ~ 12) M}, ~ M?/k
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also of order the Planck scale. Thus, the model recovers general relativity with the
correct strength of gravitational interactions at low energies. It is interesting to note
that Mp; is finite even for r. — oo, suggesting that one can obtain a sensible four-
dimensional theory of gravity even if the bulk spacetime is noncompact. As Randall
and Sundrum pointed out [25], and as we will briefly discuss in the next chapter,
this can be attributed to a localization of the bulk graviton zero mode on the Planck
brane (¢ = 0).

Let us now include the radion field in the low energy dynamics. Promoting r. to

the four-dimensional field T'(z), the five-dimensional Ricci scalar becomes

R o= e |27 + M&T@QT + 6k|p|OT — 6k*¢*0,TO*T| (2.24)

T T
80" 2007
- )¢l
+ r.1(z) r? te Elgl

Following the same procedure as we did for the graviton, insert this expression into
Eq. (2.1) and integrate over ¢. In deriving the effective action, it will be instructive
to keep the brane tensions general, not setting them to the values which they must

take in order to obtain the solution of Eq. (2.15). Then,

S = a2M>® / d*z/—g / dpe= 1T 6k | 4|0, TOMT — 6k*$*T0,TO"T)| (2.25)
+2M3/d4$ /__g/ d¢T6_4k|¢[T I:e2k|¢|TR — 20k% + lsj_k(5(¢) —8(p— 71'))]
— / d*z\/—g / dpT e *PITA — / d*z/=ge™ T —Vj, / d'z\/=g,

where we integrated by parts to obtain the first line of this equation. Now substitute
A = —24M°3k? and perform the integral over the fifth dimension. After the ¢ inte-
gration there is a cancellation between the first two terms in Eq. (2.25), and only the

part that depends on the exponential of T' remains:

3 3
s = 55 [deymg (- e Ra 2 [ dey=go, () o ()
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- / d*z/—g(Vi — 24M°k) — / d*z/—ge™* T (V, + 24 M°k) (2.26)

The first term of this equation includes the Einstein-Hilbert term already derived in
Eq. (2.22), and a dilaton-like coupling of the radion to four-dimensional curvature.
The second term is a kinetic term for the radion, while the terms on the second line
give a radion potential. From this action we can understand why the solution of
Eq. (2.15) requires two fine-tunings. For generic values of the brane tensions, the
modulus 7" is not a flat direction, but rather develops a potential. Depending on
the sign of V, 4+ 24M?3k, this potential forces the brane separation to run away to
r. — oo or collapse to zero. Thus for our static ansatz to be consistent, the TeV
brane tension must be tuned exactly to the critical value V, = —24M?3k. Once this
adjustment has been made, there is a constant term remaining. This serves as an
effective cosmological constant for the four-dimensional theory. Since our vacuum
ansatz had g,, = 7, the only consistent choice of four-dimensional cosmological
constant is zero, hence Vj, = 24 M3k.

After tuning the brane tensions to their critical values, the radion-graviton system
is described by [38, 39]

2P

5= %

[davma (= el R+ 5 [ devgooe, (2

where we have introduced the canonically normalized radion, with ¢ = fexp(—knT)
and f = \/2—4_]\—43/—k Unfortunately, this equation has no dynamics built into it that
could generate the radion VEV kr. ~ 12 necessary to account for the TeV/Planck
hierarchy. Furthermore, the physics described by this equation as it stands is phe-
nomenologically unacceptable. It describes a massless scalar which, as we will see in
Chapter 4, couples universally to TeV brane matter. For a brane separation roughly
ten times the curvature scale 1/k, the strength of this coupling is set by the TeV
scale. Clearly, such a long range force is at odds with observation. Thus we see that
the minimal RS setup cannot be considered a satisfactory resolution of the hierar-

chy puzzle unless additional dynamics which stabilizes the radion is specified. As
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was proposed in [41], and as we will see in Chapter 4, the presence of an additional
bulk scalar propagating in the RS background can generate a potential V(¢) that
stabilizes the modulus (see also [29] for a proposal based on supersymmetric gauge
dynamics). The minimum of V(¢) can be arranged to yield the desired value of kr,
without extreme fine-tuning of parameters. Once this mechanism is in place, the TeV
brane tension no longer needs to be tuned to the value given by Eq. (2.14), since

V() counteracts the effects of a noncritical brane tension on the radion dynamics.



21

Chapter 3 Bulk fields in a

nonfactorizable geometry

In the previous chapter, we introduced the RS scenario and described some of its
physical consequences. In particular, we showed how a five-dimensional metric with
a warp factor can generate a hierarchy of scales between separate locations in the bulk
spacetime. We also wrote down a four-dimensional action for the massless modes that
appear in the minimal setup. However, our derivation of this four-dimensional action
is not yet complete. In Chapter 2, we stated that the four-dimensional theory is
valid up to energies of order the TeV scale, but it was not clear in the discussion of
the previous chapter why this had to be so. In order to answer this question, one
must know the characteristic mass scale at which Kaluza-Klein excitations of bulk
fields (for instance, the graviton) must be included. At energies below this scale, the
theory can be treated as four-dimensional. However, as one starts to probe distances
shorter than the Compton wavelength of the low-lying Kaluza-Klein modes, the four-
dimensional description is no longer practical, since one must keep a growing number
of modes in the effective action. In this case, a five-dimensional description is more
adequate.

In order to understand the transition from four to five dimensions, in this chapter
we will carry out the Kaluza-Klein decomposition of a bulk field propagating in the
spacetime corresponding to Eq. (2.15). In Section 3.1, we will consider, for purposes
of illustration, a nongravitational scalar bulk field. Naively, one would expect even
the lightest Kaluza-Klein modes to have masses comparable to the mass of the bulk
scalar and to have self-interactions set by the Planck scale. Instead, we find that the
mass spectrum of the four-dimensional Kaluza-Klein modes is suppressed by a factor
of e * <™ relative to the five-dimensional scalar mass. We also find, in Section 3.2,

that the same exponential factor suppresses the scale that sets the non-renormalizable
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self-couplings of the light modes.

The Kaluza-Klein modes of higher-spin bulk fields have a similar pattern of masses
and interactions as those explicitly discussed here for a scalar (see [25, 37, 46, 47]).
Thus, if the masses and couplings of bulk fields are set by the Planck scale and if
we take kr. to be around 12, the low-lying Kaluza-Klein modes would be character-
ized by a scale which is on the order of a TeV and could therefore have significant
phenomenological implications, which we will briefly comment on in Section 3.3.

Throughout this chapter, we will assume that the radius r, is fixed by some
yet unspecified dynamics in such a way that kr. ~ 12. Also, we will neglect the
backreaction of the bulk matter on the spacetime metric, taking the geometry to be

fixed by Eq. (2.15).

3.1 Kaluza-Klein decomposition of bulk scalars

First consider a free scalar field in the bulk. The action is
1 ™
S = 5/44,@/ dpVG (GAP0,9050 — m*®?), (3.1)

where G4p with A, B = u,¢ is given by Eq. (2.15), and m is of order M. After an

integration by parts, this can be written as

1 Ky
S = §/d4:c/ rede (e"%(mn’“’@u@&,@ + :—2®8¢ (e7*(99,8) — m26'4”(¢)<1>2> )
(3.2)

with o(¢) = kr.|¢|. To perform the Kaluza-Klein decomposition, write ®(z, ¢) as a

sum over modes:

(a,d) =Y wm%if). (3.3)

If the y,(¢) are chosen to satisfy

/_ " dge " Dy ()yn() = b (3.4)

™
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and
1L d ([ aop)Yn 2 ~do(¢), _ .2 ,—20()
2 (e i +m’e Yn = M€ Yn, (3.5)
then Eq. (3.2) simplifies to
1
S = 5 Z / d*z [ 0,00 pn — m2y2Z] . (3.6)

As in usual Kaluza-Klein compactifications, the bulk field ®(z, ¢) manifests itself to
a four-dimensional observer as an infinite “tower” of scalars ¥, (z) with masses m,,
which we find by solving the above eigenvalue problem. After changing variables to

2n = mnpe’@ [k and f, = e 2(®)y, Eq. (3.5) can be written as (for ¢ # 0, +m)

d*f, df, m?
29" Jn 4n 2 m- — .
z, 2.2 + anzn + [zn (4—|— 72 )] fa=0. (3.7)
The solutions of this equation are Bessel functions of order v = /4 + %; We thus
find
620(¢) J mTL a_(d)) b Y mn U(¢) 3 8
4a(9) = Nn{Z’(ke ) +but ()] (3:8)

where N, is a normalization factor. The condition that the differential operator on
the left-hand side of Eq. (3.5) be self-adjoint forces the derivative of y,(¢) to be
continuous at the orbifold fixed points. This gives two relations that can be used to

solve for m,, and b,,, yielding

(3.9)
and

0 = [2J,(2n) + o I (€0 )][2Ys (2nwe ™) + @0, e " (z,,e7Fe™)] (3.10)

_[Qn(mnu) + J/'nI/Y;/I(an)] [QJV(xnye—krcw) + ZCnye_kTCWJ;(ﬂ?nye—krcﬂ)L
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Figure 3.1: Plot of x;, versus m/k in the region where m/k is order unity.

where z,, = mnek””/k. For e*7<™ > 1, this last condition simplifies to
2J,(2ny) + Tppd)(20y) = 0. (3.11)

Figure 3.1 shows the lowest root of Eq. (3.10), z1,, as a function of m/k. Because
the lightest modes have z,, of order unity, we see that their masses are suppressed
exponentially with respect to the scale m appearing in Eq. (3.2). Since we take m of
order the Planck scale and kr. around 12, these light modes have masses in the TeV
range. The exponential suppression can be understood from Eq. (3.8): the modes
Yn(@) are larger near the 3-brane at ¢ = 7, and consequently it is more likely to find
the Kaluza-Klein excitations in that region. Therefore their masses behave in the
same way as masses of fields confined to the brane at ¢ = 7, which are characterized
by the TeV scale.

For the massless case, m = 0, there is a mode with y; constant and x5, = 0. It
can be obtained from Eq. (3.8) and Eq. (3.9) by a limiting procedure. When z,, is
small, Eq. (3.10) yields

1y % (%) ekrer. (3.12)

Consequently, 1, increases to near the minimum value shown in Fig. 3.1 over an

exponentially small region of m/k.
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For the low-lying modes, the coefficient b,, is of order e~ ke and we can safely
ignore the Y, (2,) term with respect to J, (z,) when performing integrals involving the

Yn(). Thus, to a good approximation

N, ~ A, 3.13
Vi (313)
where
4 — 2
An = Jo(em)y 1+ — (3.14)

3.2 Scalar self-interactions

We now turn our attention to possible self-interactions of the bulk scalar. From
the four-dimensional point of view, these induce couplings between the Kaluza-Klein
modes. Here, we concentrate on the self-couplings of the light modes. Just as in the
case of the mass spectrum, we find that the exponential factor in Eq. (2.15) plays a
crucial role in determining the effective scale of the couplings. If the Planck scale sets
the scale of the five-dimensional couplings, the low-lying Kaluza-Klein modes have

TeV range self-interactions. First consider a term in the action which is of the form:

i A
Sint = / d'z / dpV'G s (3.15)

where A is of order unity. Expanding in modes, the self-interactions of the light

Kaluza-Klein states are given by

T A 2m
R 4 —4o(¢ 2m Yn
Sint = /d :v/_w redge™ )M3m—5¢" (ﬁ) : (3.16)

Thus, the effective four-dimensional coupling constants for the ¥>™ interactions are

2)\ Frem —40  2m
Aeff = (M?“C)m‘lM2m_4(krc)/0 doe " y™, (3.17)
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which in the large kr. limit become

k m —krem\4—2m ! 4m—-5 J,,(il?nu’l") m
Aeff = 2 (Z\_/f> (Me ) /0 r dr [——An ] . (3.18)

Such couplings can also be induced by derivative self-interactions of the bulk field.

For example, the term

(-G*P9,0050)" (3.19)

Sy = / Iy /_ dov'G i

has a piece which contains only derivatives with respect to ¢ :

™ A 2\ ™
Simt = / d'z / redge™ "7 oty (———(a¢y”) ) : (3.20)

3
T

From the point of view of four-dimensional observers, this yields a 2™ interaction

with a coupling constant

2)\(]{/,7. )Qm—l krem ~ dy 2m
Aoss = c doe ™ | == . :
1f (Mr,)m—1)[2m—1 /0 oe do (3:21)

For large kr., this becomes

k 3m—1 1 d J (w r) 2m
)\e ~ —krem\4—2m 2m—5 2 Ju\Lny . '
£~ 20 (—M) (Me ) /0 r dr [—dr (r —a )} (3.22)

In either case, we see that the scale relevant to four-dimensional physics is not M,
but rather v = Me #<". The Kaluza-Klein reduction has lead to an exponential

enhancement of irrelevant couplings from Planck scale to only TeV scale suppression.

3.3 Physical consequences

Because the results for bulk fields with higher spin are qualitatively similar to those
for scalars [37, 47], we can use the conclusions of the previous sections to understand
some important phenomenological consequences of the RS scenario. First, since bulk

fields have excitations that are characterized by the TeV scale, it is natural to ask [40]
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whether it is possible that the SM itself is a bulk field theory. Much work has been
dedicated to this issue [48, 49]. Unfortunately, the actual implementation of the SM
as five-dimensional theory has not led to promising results. For example, it has been
noticed [49] that unless the Higgs boson is confined to the TeV brane, the theory must
be sensitively fine-tuned in order to yield masses for the W and Z bosons which are
below the TeV range (this can be understood essentially from Figure 3.1). A scenario
in which some of the SM fields reside in the bulk, while others must be confined to
the TeV brane does not seem well motivated, however.

As a second application of the dimensional reduction of bulk fields, consider the
bulk graviton. Our presentation follows that of [25]. To study massive spin-2 excita-
tions of the bulk metric, we expand the metric about the background AdS solution.
We can choose a gauge in which only the uv components of the metric perturbation

are nonvanishing. Writing

Gz, P) = e~ 2hrel?l (mw + hu (2, 9)) , (3.23)
and
haw(,8) = ;hm%‘?, (3.24)

one finds, after imposing the further gauge-fixing conditions n*?9,hs, = 0 and
n“”h;w =0
(n*" 9205 + m2)A) = 0. (3.25)

This is true provided that the y,(¢) satisfy Eq. (3.5) with the bulk mass set to zero,
and the m, are given by Eq. (3.10) with v = 2. These eigenfunctions are identical
to those of a bulk scalar, so one finds the same pattern of TeV scale Kaluza-Klein
masses and self-couplings for the graviton as we did for a bulk scalar. We can also
compute the coupling of these linearized modes to the SM fields. Assuming that the

SM resides on the TeV brane, this is given by

1

Sint ~ M—3/2'

/d‘ixﬁw(x, T (z)+ -, (3.26)
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where T}, is the stress tensor for the SM, written in terms of canonical fields and
rescaled masses, kb is the canonically normalized graviton, and tensor indices are
contracted with the Minkowski metric 7,,. Using Eq. (3.13) and Eq. (3.14), as well
as the relation M2, ~ M?/k from the previous chapter, the coupling of the SM to

the massive modes is

Sint ™ MPlel—krc" ; Jz(lxn) /d%ﬁfﬁ)(a})TW(;”) e (3.27)
Since Jz(z,) is order one, this equation implies that massive Kaluza-Klein graviton
states couple to ordinary matter with TeV rather than Planck suppression. Since
their masses are also of order the TeV scale, they may therefore be accessible to
collider experiments. The observation of massive spin-2 resonances which decay into
SM modes would be a strong signal® of the scenario of [12]. See [37] for more details
on the graviton phenomenology of the RS model.

So far in this discussion, we have ignored the zero mode component of the bulk
graviton. While the massive mode eigenfunctions of bulk fields are peaked towards the
vicinity of the TeV brane, leading to behavior similar to that of fields confined to ¢ =
7, the zero mode eigenfunction yp is a constant (if the bulk mass is zero). Because the
zero-mode graviton has a profile which from Eq. (3.23) is given by exp(—2kr.|$|)yo,
it is actually dominated by the region near the Planck brane, at ¢ = 0. This leads
to another understanding of why, from a four-dimensional perspective, gravitational
interactions are still suppressed by the Planck scale.

The fact that the zero mode graviton is localized on the Planck brane led [25]
to consider a variant of the two-brane scenario in which the TeV brane is taken
to infinity, and SM matter resides on the Planck brane. In this case, the Kaluza-
Klein spectrum for gravitons becomes a continuum without a mass gap above the
zero mode. However, as the analysis of [25] shows, for observers located on the

Planck brane the continuum modes decouple in such a way that at long distances,

! Another distinctive signature is the appearance of a TeV scale mass scalar with universal cou-
plings, the stabilized radion. We will discuss this in the next chapter.
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gravity appears four-dimensional despite the fact that the bulk space is noncompact.
Because the bulk space has infinite volume, this effective four-dimensional theory
cannot be derived by the usual dimensional reduction techniques (such as the ones
we used in the last chapter). Perhaps one way to interpret the low-energy effective
field theory is holographically, via the AdS/CFT correspondence [30]. In the version
of this correspondence that is pertinent to the RS model [31], one replaces the bulk
spacetime with a dual four-dimensional conformal field theory (CFT), which couples
to the matter fields on the Planck brane purely through four-dimensional gravity.
Several checks of this equivalence [33, 34, 35, 36, 50| give agreement between the two
pictures. The most convincing result so far [33, 34, 35] is the agreement between the
corrections to the gravitational potential due to Kaluza-Klein graviton exchange in
the five-dimensional theory with the corrections to the zero-mode graviton propagator

due to CFT loops in the dual four-dimensional theory.
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Chapter 4 Radion stabilization

We have seen that in the scenario presented in [12], r. is associated with the vacuum
expectation value of a massless four-dimensional scalar field, the radion. If the brane
tensions are properly tuned, the radion has zero potential and, consequently, r. is
not determined by the dynamics of the model. For this scenario to be relevant, it is
necessary to find a mechanism for generating a potential to stabilize the value of r..
In Section 4.1 we show that such a potential can arise classically from the presence
of a bulk scalar with interaction terms that are localized to the two branes [41]. The
minimum of this potential can be arranged to yield a value of kr. ~ 12 without
fine-tuning of parameters. In Section 4.2, we explore some of the phenomenological
features of the radion coupled to a stabilizing potential, such as that generated by

the scalar of Section 4.1.

4.1 Modulus stabilization with bulk fields

To stabilize the radion, we add to the model a scalar field ®. We will consider the

free bulk action
1 yis
Sy = §/d4a:/ dpV/ G (GAP0420p® — m?®7) (41)

where G g with A, B = u, ¢ is given by Eq. (2.15). We also include interaction terms
on the TeV and Planck branes given by

Sh = —/d433\/_gh/\h (@2 - Uz)z, (42)

and

S, = — / d* T/ =Gy (@2 - v3)2, (4.3)
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where g, and g, are the determinants of the induced metric on the hidden and visible
branes respectively. Note that ® and v, 5 have mass dimension 3/2, while A, have
mass dimension —2. Kinetic terms for the scalar field can be added to the brane
actions without changing our results. The terms on the branes cause ® to develop
a ¢-dependent vacuum expectation value ®(¢) which is determined classically by

solving the differential equation

0 = —:—264, (679,0) + m?e=4® + 4e~ 2, (@7 — v7) A7)

Te

+4e™ N, @ (9% — v}) 6(¢), (4.4)

Te

where o(¢) = kr.|¢|. Away from the boundaries at ¢ = 0,7, this equation has the

general solution

®(¢) = *[Ae” + Be™], (4.5)

with v = /4 + m?/k%. Putting this solution back into the scalar field action and

integrating over ¢ yields an effective four-dimensional potential for r. which has the

form

Va(re) = k(v +2)A%M 1) + k(v = 2)B*(1 — ™ #7T)
+ /\U€—4krc7r (@(7[_)2 _ Uz)Z + )\h (¢(0)2 . U]ZL)2 . (46)

The unknown coeflicients A and B are determined by imposing appropriate bound-
ary conditions on the 3-branes. We obtain these boundary conditions by inserting

Eq. (4.5) into the equations of motion and matching the delta functions:

El(24+ v)A+ (2 —v)B] —20,9(0) [0(0)* —v;] =0,  (4.7)
ke rem [(2 4+ v)e T A+ (2 —v)e T B] 42X, @(m) [®(r)* —vl] =0.  (4.8)

Rather than solve these equations in general, we consider the simplified case in

which the parameters )\, and A, are large. It is evident from Eq. (4.6) that in this
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limit, it is energetically favorable! to have ®(0) = v, and ®(7) = v,. Thus, from

Eq. (4.5) we get for large kr,

A = vve—(2+u)krc7r _ Uhe——Zukrcr (49)

?

= (1 4 e7 ATy vye~ (FFVkrer (4.10)

where subleading powers of exp(—kr.m) have been neglected. Now suppose that
m/k < 1 so that v = 2 + ¢, with € ~ m?/4k* a small quantity. In the large kr. limit,

the potential becomes
Va(re) = dke™ <™ (v, — vje”7e7)2, (4.11)

where terms of order ¢ and higher are dropped (but ekr. is not treated as small),
since such terms are of the same order as the effects of the backreaction of the scalar
field on the background geometry (sec below). Because we are not solving for this
backreaction, we have no right to keep such terms in Vg(r.). A formalism for finding
exact solutions of the gravity plus bulk scalar system including the effects of the
gravitational backreaction can be found in [51].

This potential has a minimum at

4 k2 Vh

With In(vy,/v,) of order unity, we only need m?/k* of order 1/10 to get kr. ~ 12.
Clearly, no extreme fine-tuning of parameters is required to get the right magnitude
for kr.. For instance, taking vy /v, = 1.5 and m/k = 0.2 yields kr, ~ 12.

The stress tensor for the scalar field can be written as TAZ = TAP + TAB where

for large kr.:

T}f(ﬁ ~ [(4 + 6)(UU N Uhe—ekrcw)e—(4+e)(krc7r—cr) _ €Uh6_w]2, (4.13)

1The configuration that has both VEVs of the same sign has lower energy than the one with
alternating signs and therefore corresponds to the ground state. Clearly, the overall sign is irrelevant.
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k,?
T;éw ~ _ezanuu [(4 + 6)(’0U _ ,Uhe—ekrur)e—(4+e)(krc7r—<f) _ 6Uhe_w]27 (4.14)

2
and
2k2 —ERT T i € TeT—0 —€ag 2
T ~ — 2 € [(vy — vpe kremyg=(4te)(krem=o) L 4e 1%, (4.15)
T#Lu ~ _2k2620nuu6 [(Uv _ ,Uhe—ekrﬂr)e—(4+€)(krc7r—0) + vhe—ea]2 ) (416)

As long as v2/M?3 v2/M?3 and € are small, TAP can be neglected in comparison to the
stress tensor induced by the bulk cosmological constant. It is therefore safe to ignore
the influence of the scalar field on the background geometry for the computation
of V(r.). A similar criterion ensures that the stress tensor induced by the bulk
cosmological constant is dominant for kr, ~ 1.

One might worry that the validity of Eq. (4.11) and Eq. (4.12) requires unnaturally
large values of A, and A,. We will check that this is not the case by computing
the leading 1/A correction to the potential. To obtain this correction, we linearize
Eq. (4.7) and Eq. (4.8) about the large A solution. Neglecting terms of order ¢, the
VEVs are then shifted by

§0(0) = X—Uie_(‘l"'e)k““(vy—Uhe_d”‘”), (4.17)
hUp
k

6b(m) = -3 2(vv—vhe_5k”7r), (4.18)
WUy

and thus (neglecting subleading exponentials of kr.m)

k

6A = e e"(4+5)kr°”(vv — vy e kreT), (4.19)
k k
_ —(44¢€)krem —ckrem
§B = (419 (v, — vpe ) {m + WJ . (4.20)

Hence, the correction to the potential is

4k*?

Ay v2

—4kr¢7r(

Va(r,) = — v, — vhe—ﬁk”")z. (4.21)
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This has the same form as the leading ¢ — 0 behavior of Eq. (4.11) and therefore
does not significantly affect the location of the minimum. See [52] for a variant of
the model of [41] that leads to a stabilized radion, but that has boundary potentials
for which the boundary conditions can be treated exactly. Also, see [51] for exact
solutions for a wide class of bulk and boundary potentials for the bulk scalar .
Note that the forms of the potentials in Eq. (4.11) and Eq. (4.21) are only valid

for large kr.. For small kr., the potential becomes

Va(ry) = (22— (4.22)

T,

when terms of order ¢ and 1/ are neglected. The singularity as r. — 0 is removed

by finite A corrections which become large for small r., and yield

ARy

o (v2 —v})”. (4.23)

Vi (0) =

We saw in Chapter 2 that for Eq. (2.15) to be a solution of the field equations
that follow from Eq. (2.1), one must arrange V, = —V, = 24M?>k. This amounts
to having a vanishing four-dimensional cosmological constant plus an additional fine
tuning which causes the r. potential to vanish. However, imagine perturbing the

3-brane tensions by small amounts 2

Vi = Vi + 8V, (4.24)
Vy =V, +46V,. (4.25)

As long as |6V;,| and |6V, | are small compared to —A/k, these shifts in the brane

tensions induce the following potential for r.

Va(re) = V4 + 8V,e ™, (4.26)

2It has been noted that given the action in Eq. (2.1), changes in the relation between the brane
tensions and the bulk cosmological constant result in bent brane solutions [53]. It is possible that
there are higher dimension induced curvature terms in the brane actions that make it energetically
favorable for them to stay flat. For Vj, = —V, = 24M3k, Eq. (2.15) remains a solution to the field
equations in the presence of such terms.
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For 6V, small, the sum of potentials Vg(r.)+ Va(r.) has a minimum for large kr.. The
effective four-dimensional cosmological constant can be tuned to zero by adjusting
the value of 6V},

Finally, we note that in the minimal RS setup without stabilization mechanism,
an analysis of the cosmology below the TeV scale with matter on the branes [54],
leading to time evolution of the Hubble constant in contradiction with Friedmann
cosmology. This arises because no dynamics is present to set the radion VEV to a
fixed value. Since the brane matter acts as a source for the radion potential (in a
similar manner as the brane tensions did in Chapter 2), it is not surprising that it
is necessary to impose unnatural constraints on the relation between the expansion
rate and the densities of the brane localized fluids. Indeed, once r. is stabilized, this
constraint is not required and the cosmology associated with the model has been
shown to be standard for temperatures below the weak scale [39] (see also [55] for
related work). However, for temperatures above this scale, it will be different from
the usual Friedmann cosmology, since bulk degrees of freedom, as well as the motion

of the radion, must be taken into account.

4.2 Phenomenology of the stabilized radion

In this section, we point out a few of the basic phenomenological features [38, 39] of
a radion that is stabilized by a bulk scalar such as that of the previous section®. The
radion potential generated in [41] is nearly flat near its minimum for values of the
modulus VEV that solve the hierarchy problem in the manner of [12]. Consequently,
the radion is likely to be lighter than the Kaluza-Klein modes of any bulk field, and
may be the first experimental signal for a scenario such as the Randall-Sundrum
model. In addition, its couplings to fields confined to the visible brane are suppressed
by the TeV scale and are completely fixed by four-dimensional general covariance on
the brane. This leads to a well-defined set of predictions that can be compared with

experiment.

30ther aspects of radion phenomenology are found in [56, 57, 58]
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In terms of the canonical radion ¢ that we introduced in Chapter 2,
Vg) = s (o v/ )Y (4.27
PI= Taappe® \v TP ’ '

where terms of order € are dropped, since they are of the same order as uncomputed

backreaction effects. The mass of ¢ excitations about the minimum of this potential,

(9)/f = (vo/va)"/%, is given by

:_ OV

k‘2?)3 —2krcem
” &Pz((@)) = — U2 2hrem (4.28)

- 3M3

Note that the exponential factor rescales m,, from a quantity of order the Planck scale
down to the TeV scale. As we discussed in the previous chapter, low-lying Kaluza-
Klein excitations of bulk fields in the RS model have masses which are typically
slightly larger than the TeV scale. (This also includes the lowest excitation of the
scalar ®. Although it has a bulk mass which is smaller than the Planck mass, its lowest
Kaluza-Klein mode still has a mass which is on the order of a few TeV, see Figure
1.) However, if the large value of kr. (i.e, kr. ~ 12) arises from a small bulk scalar
mass, then in addition to the factor exp(—2kr.7) in Eq. (4.28) there is suppression
by the small quantity e. Consequently, m,, is somewhat smaller than the TeV scale,
and therefore lighter than the Kaluza-Klein excitations of bulk fields. It would be the
first clear signal of the scenario of [12].

Because the modulus arises as a gravitational degree of freedom, its couplings to
brane matter are constrained by four-dimensional general covariance. These couplings
arise from the induced metric on the brane. On the ¢ = 0 brane, the induced metric
obtained from Eq. (2.20) is simply g,,: the modulus does not couple directly to hidden
brane matter. It can, however, couple to the Planck brane through the mixing term
with the graviton in Eq. (2.27). The induced metric on the visible brane is given

by (¢/f)*9. and consequently, ¢ interacts directly with SM fields. For example,
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consider a scalar h(z) confined to the visible brane:

S = % / d*zy/=g(/ ) ¢/ 1) 9" 0uhO,h — ugh?]. (4.29)

Rescaling A — (f/{¢))h to obtain a canonically normalized field, this becomes
1
5 =3 [ Favdlie/ @) e duhdh - oD, (430)

where

_ @ — e—krcw
1= po5" = flo : (4.31)

For o of order the Planck scale and kr. ~ 10, the physical mass p is of order the
weak scale. This result can be generalized to any operator appearing in the visible
brane Lagrangian: a parameter with mass dimension d is rescaled by d powers of
exp (—kr.m). Also, any operator with n powers of the inverse metric is multiplied
by 4 — 2n powers of @/{) (for fermions, a power of the inverse vierbein counts as
n = 1/2). Note that the non-renormalizable couplings of the modulus ¢ to visible
brane fields are characterized by the scale {(¢), which is in the TeV range. Expanding
@ about its VEV, ¢ = () + dp, we see that d¢ couples to ordinary matter through

the trace of the SM energy-momentum tensor 7,

Lins = %T“u. (4.32)
Neglecting the quark masses, the energy momentum tensor for QCD is traceless at
tree level. This suppresses some production mechanisms for §¢ at high energy hadron
colliders.

If the almost complete cancellation of the ¢ integral of the first two terms in the
square brackets of Eq. (2.25) did not occur, the canonically normalized modulus field
would have couplings suppressed by the Planck scale instead of the weak scale, as
well as a much lighter mass, of order (TeV)?/Mp;. It would be interesting to use the

methods of [51] to examine precisely how deviations from the pure anti-deSitter metric
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of Eq. (2.15) which arise due to classical ¢ configuration influence the kinetic term
for T'. When the backreaction of the classical @ configuration is included, the induced
metric will have a more complicated dependence on ¢ than (¢/ f)?g,,. Consequently,
Eq. (4.30) is not general. Nevertheless, expanding the induced metric to linear order

in dp gives Eq. (4.32) multiplied by the additional coupling constant

0

= % [cp%ln F(go)] (4.33)

?

{@)

where the induced metric on the visible brane is now F(p)g,..

There are several factors that could affect our result for the mass of the radion.
For example, the radion ¢ mixes with the Kaluza-Klein modes of ®. However, the
part of this mixing that is not Planck suppressed is generated by the same mechanism
as the potential V' (¢), so it seems reasonable that it will also be suppressed by ¢ and
not drive m, up to the TeV scale. In [51] other regions of parameter space which
generate a large value of kr. were explored. For example, kr. ~ 10 can be obtained if
the bulk scalar has negative mass squared and its VEV on the visible brane is large
compared with that on the hidden brane. It seems plausible that even in these cases,
¢ will be light for large kr, since a natural way to get a large VEV for T (i.e., a large
value of kr.) is to have its potential be broad. There are also potential corrections
to Eq. (4.28) due to gravitational backreaction effects. Finally, there is the issue
of whether the lightness of ¢ will survive quantum corrections. We will consider a
restricted class of quantum effects in the next chapter and show that these are under
control.

Given the number of effects that are missing in our calculation of the radion mass,
it is remarkable that Eq. (4.28) in fact agrees ezactly (in the limit of small €) with the
more thorough treatment of [56]. Ref. [56] preformed the calculation of the radion
mass not in the four-dimensional effective field theory framework that we presented
here, but rather considered the radion from a five-dimensional perspective. They
computed the mass spectrum of the coupled radion and bulk scalar system by solving

the linearized equations of motion, using the exact solution of [51] for the metric and
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bulk scalar profile as a background, and found that the radion mass is indeed of order
the TeV scale, but lighter in the limit of small backreaction. Furthermore, after taking
into account the mixing between the bulk scalar modes and the radion, they found
that the bulk scalar can couple to the SM fields, providing an experimental probe of
the stabilization mechanism of [41]. It would be interesting to check explicitly why
our four-dimensional calculation of the radion mass agrees with this more detailed
analysis. In order to do this, one would need to be able to compute in the effective
theory the backreaction and mixing effects as a power series in the small parameter

€. This computation is beyond the scope of this thesis.
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Chapter 5 Quantum corrections to the

radion potential

So far, our analysis of the radion dynamics has been purely classical. However,
quantum fluctuations of fields which propagate in the bulk or on the TeV brane
will also generate contributions to the effective radion potentiall. In this chapter,
we explore the possibility that it is these quantum corrections which stabilize the
radion [43]. We calculate the effective potential arising from bulk fields as well as
fields confined to the TeV brane. For the confined fields we calculate using three
different regulators and show clearly that the effective cutoff on the brane is indeed of
order TeV. After proper regularization, the sole effect of the brane field fluctuations
is the renormalization of the brane tension. The physical contribution to the effective
potential from integrating out bulk fields is suppressed by large powers of exp (—kr.7)
in the large r, limit. As a consequence, the resulting vacuum energy cannot be used to
stabilize the branes at the separation required to generate the TeV /Planck hierarchy.
Furthermore, the quantum effects do not spoil the classical mechanism of [40]. Our

results resolve a discrepancy between two previous results in the literature [59, 60].

5.1 Vacuum energy from brane localized fields

First, we consider the contribution to the radion potential coming from a field on the
TeV brane. We will show that the fluctuations of fields on the brane serve only to
renormalize the brane tension. Given the subtlety in the regularization procedure we
will calculate using three different regulators.

For concreteness, we will take a scalar field theory confined to the TeV brane.

!Fields on the Planck brane, at ¢ = 0, do not couple directly to the radion. We expect that
their contribution to the one-loop effective potential is suppressed relative to the sources mentioned
above.
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First we shall compute the effective potential using dimensional regularization. In
n = 4 — e dimensions, the action is given by

5= % / &"za” (%(8/1)2 - mgh2> , (5.1)

where mg is of order the Planck scale, and the powers of a multiplying the kinetic
and mass terms come from the induced metric on the brane. To compute the radion
potential, take a constant and rescale h — ah. The rescaled field has a canonically
normalized kinetic term and an effective mass m = moa. The effective potential
obtained from integrating out ~ can be trivially expressed as the zero point energy in

the presence of a constant ¢ field configuration:

_ 1 ) dn_lk 2 2002
V=gt [ Gk e, 52)

with p an arbitrary mass scale which has been introduced to keep V a four-dimensional

energy density. The resulting expression,

n n
contains a divergent piece that must be absorbed into a local counterterm. Such a

counterterm is provided by the brane tension on the TeV brane
S = —/d”:can5V/1”—4, (5.4)

which is generally covariant in n dimensions. Comparing this with our result, we see
that V is in fact pure counterterm: the effect of the scalar A is simply to renormalize
the brane tension. Given a bare mass of order the Planck scale (this is the appropriate
choice for our set of coordinates), there are no large logs for y ~ Mp;.

An alternative way of understanding this result is to regulate the divergent integral

using a physical (coordinate invariant) cutoff A. The vacuum energy for h is then,
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for A > myg
1 2 Bk
V= 5] g/ ren
4
_ ¢ 4 2.2 4 Mo }
- [2/\ +Am0+moln(2A) : (5.5)

which simply induces a shift in the brane tension. Note that the coordinate cutoff on
the momentum integral is rescaled by a factor of a with respect to the physical cutoff.
Had we used an a-independent cutoff on the momentum integral, we would have
generated terms in the effective action proportional to (Amga)?. On the other hand,
the rescaled cutoff yields results that are consistent with four-dimensional general
covariance on the brane, and which are in agreement with dimensional regularization.

The same conclusion can be reached by using a Pauli-Villars regulator. To get
a consistent result, the regulator fields must couple to the induced metric on the
TeV brane in the same way as our scalar field. Performing the calculations in two

dimensions for simplicity, we make the subtraction

1 d*k ) ) 3 ;
V — V—Q(Mf—MZZ)/(QW)Z [(m — M)/ k? + M;

F(ME—mE Mg} . (5.6)

Where all the masses, including the regulator masses get rescaled by the warp factor.
Performing the momentum integral, it is easily seen that all logarithmic dependence
on a cancels from the regulated expression. The remaining dependence on a is a pure

counterterm.

5.2 Vacuum energy from bulk fields

The quantum fluctuations of bulk fields also contribute to the radion effective po-

tential. Decomposing the bulk field into four-dimensional Kaluza-Klein modes, the
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potential can again be expressed as a sum over zero point energies
V:(—l)FgufZ/—dg—_i /52 + m2 (5.7)
20~ (2m)3—¢ i )

where F' = 0,1 for bosons and fermions respectively, and ¢ is the number of physical

polarizations of the Kaluza-Klein modes. In this equation, the dependence on a enters

through the Kaluza-Klein masses m,. Defining m, = kz,a, the above expression
becomes p
Kla* [ k?a®\ ™"
= (-1)*lg— [(—2+¢/2 A 5.8
i CORLAEOE S

We now evaluate Eq. (5.8) for a bulk scalar field with action

Sy = —;—/d‘lx /: AV G (GABaACI)BB(I) - <m2 + aZ—;) <I>2> , (5.9)
where G 4p with A, B = p, ¢ is given by Eq. (2.15). Because 0" = 2kr.[6(¢)—0(p—7)],
the parameter a controls a possible mass term on the boundaries of the space. Such
mass terms arise if the field ® is a component of a supermultiplet on AdS5 with one
dimension compactified on an S'/Z; orbifold (see [46]). It is found in [46] that the
roots x, satisfy

Ju(a)yu(azn) = ju(azn)yy (zn) = 0, (5.10)

where v = \/4+m?/k?, 5,(2) = (2 — a)J.(2) + 2J)(2), and y, is given by the
same expression with Y, replacing J,. The a dependence from the sum over z, in
Eq. (5.8) can be calculated by zeta function regularization techniques [61], which we
NOW review.

First, convert the sum into a contour integral

Z z;° = % g dzz7*" n[5,(2)y.(az) — j.(a2)y.(2)], (5.11)

which is valid for Res > 1. In this equation, C is a closed contour bounded by arcs of

radius & (chosen to avoid a possible pole at z = 0) and R — oo which circles the roots
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Z, in a counterclockwise manner. Our goal is to perform the analytic continuation of
the RHS of Eq. (5.11) to a neighborhood of s = —4. To do this, split the contour into
C, and C_, its portions above and below the real axis respectively. On each contour,

the asymptotic expansion of the argument of the logarithm is
Zu20) = 5u(2)y02) — u(az)uul(2) ~ FoaVaeF UL O (1)) (5.12)

We now add and subtract the logarithm of the RHS of this expression to the contour

integral above, which yields

Z = QMZ/C dzz™°" 1ln[ Z:/T_ etFi-a 7 (2, a)]
+

— o Z/ dzz"*"'In {:1: Z:;_ ei=(1- “>J (5.13)
71'7/ Cy

The first line is now defined for Res > —1, while the second is still only defined
for Res > 1. However, for the second term in Eq. (5.13), we are free to deform the
contour C' into a straight line running parallel to the imaginary axis from z = 700 + §

to 2 = —100 + 4. The result is

-5 __ s—1 i :i:iz(l—a)
Zn::tn = 5 Z/oi dzz~ ln[ \/_ Z,(z,a)

s [2(1—a) m
- = 87 570 5.14

[ (1—3) 23 J (5-14)
Since the second line of this equation provides its own analytic continuation, we can
now extend the definition of the sum on the LHS to —1 < Res < 0. In this region, it
is safe to take the limit 6 — 0. Then the second term above vanishes. To evaluate the

piece left over, we can take the straight line contour along the imaginary axis. The

result, valid for —1 < Res < 0, is

Zx — sin (7;5) /000 dtt™*"'In [%e—t(l_a) {k,(t)i,(at) — ku(at)iu(f)}] 5
(5.15)
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where 1, (t) = (2 — )L (t) + tI.(¢), and k,(t) is defined in the same way with K, (t)
instead of 1,(t).
Eq. (5.15) still needs to be extended to a neighborhood of s = —4. For s = —4 +¢,

it can be written as

Zx;s = —2¢ / dt t**¢In 1—M +/ dtt3+<In g-736-%;(15)
. o k(at)i, ()] ) Vi

+ ! /oodtt?’“ln —,/36% (?) (5.16)
a*=c f, mt ) ’

Because of the overall factor of a*~¢ in Eq. (5.8), the second two terms in this expres-

sion yield contributions that go as a*~¢ or independent of a respectively. The term
that is independent of a can be absorbed into the renormalization of the Planck brane
tension. As we discussed in the case of TeV brane fields, a*~¢ can also be cancelled by
a local counterterm. The first term in the brackets is well defined at s = —4. Taking

the limit ¢ — 0, we end up with

kat [ ko, (2)i,(at)
= 4 3 1 - z - M
V= Vit Voo + /0 dtt m[ oIk (5.17)

where V}, , are shifts in the brane tensions. For @ < 1, the a dependence in the above

equation 1s

[rornh -t e () @7 [ et

if a + v # 2 (terms of order a®**? and higher are neglected). For o + v = 2

/OOO dt 3 In [1 . ZEZ’)Z(‘ZH - 2}”(;)21) (%)QH /Ooo dtti’”“%%) oL, (5.19)

with terms of order a?” for v # 2 and a*lna for v = 2 not shown. Incidentally, the
eigenvalues z,, for bulk fields of higher integer spin satisfy equations that are identical
to that of the bulk scalar except for the values of v and « [46]. It follows immediately

that in those cases the a dependence is similar to that in Eq. (5.17). Furthermore,
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we can use the scalar result to calculate the effective potential in these cases as well.
For instance, the contribution from a bulk U(1) gauge field can be obtained by taking
v = 1 and a = 1. To calculate the effective potential due to transverse traceless metric
fluctuations (corresponding to Kaluza-Klein modes of the graviton), use Eq. (5.17)

with ¥ = 2 and o = 0 for each of the five graviton polarization states.

5.3 One-loop radion effects

In addition to contributions from fields in the bulk and on the TeV brane, the vacuum
energy receives corrections from loops of the radion itself. First, we compute this for

the following radion effective Lagrangian,
S ’

where §V, is a small classical shift in the TeV brane tension relative to the value
which generates the background metric. The one-loop effective potential generated

by the radion is

1 [ &Pk _
V = = Vk? 4+ m2a?

2 (2m)3
4 A
— [2A4 + AZR? +tln (ﬁ” : (5.21)

32m2 2A

where m? = 126V, /f*. Note that as in the case of TeV brane fields, we have used
an a-dependent cutoff on the momentum integral. It is not immediately clear that
this is the correct cutoff to use in the dimensionally reduced theory, which provides
an effective description of the physics at energy scales for which the fifth dimension
cannot be resolved?. However, had we not used the rescaled cutoff, we would have

obtained cutoff-dependent terms that are proportional to a? in the effective potential.

2 Although perhaps this is not so surprising, since as we saw in the previous chapter, the radion
has mass and couplings in the TeV range and therefore behaves similarly to a TeV brane field. It
makes sense that we have to regulate loops involving the radion in the same way that we regulate
loop effects of fields on the TeV brane.
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No counterterm exists to absorb such terms. On the other hand, the rescaled cutoff

yields V o a*, which is a pure counterterm that can be absorbed into the TeV brane

tension.

We can also see this result using dimensional regularization. The dimensionally

reduced theory becomes

n—2
n

o

9a"T g SVyu"*a", (5.22)
(00°7)

where f, has dimensions of mass. Introducing a canonically normalized radion field

¢ = (fna)*=2/2 the vacuum energy scales as

SV, n/2 . SV, =4 n/2 .
Y e e

which simply renormalizes the TeV brane tension. One could also use a Pauli-Villars
regulator. To avoid cutoff-dependent terms that cannot be absorbed into countert-
erms, the regulator masses should scale with ¢ in the same way as masses on the
TeV brane. In this case, the resulting effective potential is proportional to ¢* in
agreement with the two other methods described here. Finally, if we repeat the cal-
culation of Eq. (5.23) using the stabilizing potential of the previous chapter as the
classical background, we generate terms at the one-loop level that either renormalize

the parameters of the classical potential or that do not affect its qualitative behavior.
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Chapter 6 Renormalization group flows

for brane couplings

In this chapter, we consider the structure of ultraviolet divergences for field theories
in the presence of branes, such as the brane scenarios motivated by the hierarchy
problem that we discussed in Chapter 1. The computation of loop corrections to
the effective action for such theories has been studied in [62, 63], where it has been
noted that quantum effects generate localized ultraviolet divergences that must be
renormalized by field theory operators on the branes (other work on renormalization
of field theory on singular spaces can be found in [64]). These ultraviolet divergences
arise because, in the limit of large tension, the branes break translation invariance
and, therefore, lead to nonconservation of transverse momentum.

We now consider another source of brane localized short distance divergences
which come up in the renormalization of brane models. These divergences, which
arise in the limit of zero brane thickness, require renormalization even at the classical
level. They signify a breakdown of the field theory at scales at which the finite
thickness of the brane cannot be neglected, and are analogous to the singularities of
classical field theory, such as the ones that are found in classical electrodynamics with
point sources. While these singularities appear on brane backgrounds of codimension
greater than one, they lead to particularly interesting classical effects for codimension
two, since in this case the divergences are logarithmic, and therefore give rise to
nontrivial renormalization group (RG) flows.

To illustrate these effects, we consider a specific toy model in six dimensions
in the vicinity of a 3-brane. Within the context of this model, we show how to
systematically account for the zero thickness classical divergences by using the usual
regularization and renormalization procedure of quantum field theory (the necessity

for renormalization of classical field theories with singular sources has been pointed
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out in [65]). We also construct the tree level RG equations for the brane localized
couplings, as well as the one-loop corrections induced by the same type of bulk-to-

brane renormalization effects considered in [62, 63, 64].

6.1 The Model

We consider Euclidean scalar field theory in a six-dimensional flat space with a 3-

brane. The metric is taken to have a conical singularity:
ds* = §,,dz"dz” + dr® + r*df?, (6.1)

where the brane is located at r = 0, 0 < 0 < 27a, with @ < 1, and 2*, with
u = 0,...3 are flat space coordinates parallel to the brane. If gravity is included,

then « is related to the brane tension [66]. Our scalar field theory is given by

(oo}

4 4 )‘ n n
$= [ [j00r + g+ o]+ [ a3 62

where - - - denotes a series of ¢*" bulk couplings and the second term includes brane
localized interactions, such as a brane tension Ag and a brane mass ;. As discussed
in [63], such terms must be included as counterterms for bulk-to-brane ultraviolet
divergences that arise in the computation of loops with insertion of bulk interactions.

If the brane is dynamical, the scalar ¢ will also couple to a set of Goldstone fields
localized at r = 0 that arise due to the breaking of translation invariance by the
presence of the brane. For simplicity, we will consider only the limit of large brane
tension. In this limit, the brane is rigid, so the backreaction on the fluctuations of the
brane can be neglected, and the couplings of our scalar to the Goldstone modes are
suppressed. Note that for a cone deficit angle of 7, (o = 1/2), the conical singularity
can be interpreted as a Z, orbifold fixed point. On the orbifold, the fluctuations of
the brane are projected out due to the Zy symmetry.

We will treat the bulk mass as well as the brane localized coupling A; as small



50

z z 2

:c-——.——-y:x-————-y—}-a:-—o—-y+a;-—o—o—-y+

Figure 6.1: Brane mass corrections to the scalar propagator. A e denotes an insertion
of the coupling As.

perturbations. Then the scalar propagator is given by the solution of

O.D(z,2") = —8*(z* — x'“)é(r —r)o(6 = 0,). (6.3)

r

Using standard techniques, one finds

st dk o0 C]d(] ethu(@t —z'™*) gin(6-0") /o
D(z,2) = ) / (27r)4/0 ora k2 + ¢ Sinsal(qr)insai(qr’),  (6.4)

where k3 is shorthand for ¢,,k*k", and J, is a Bessel function of the first kind. It is
easy to check that for vanishing deficit angle (o = 1), this formula recovers the usual

scalar propagator in six dimensions (see Appendix A).

6.2 Classical RG equations

Consider now the renormalization of the brane-localized couplings appearing in Eq. (6.2).
Besides the loop bulk-to-brane ultraviolet divergences of [63, 64], there are also di-
vergences at the classical level. This can be seen by computing the tree level Green’s
functions for this theory. For example, let us compute the corrections to the scalar

propagator from inclusion of the brane mass term. Summing the diagrams of Fig. (1)

yields

GP(z,y) = D(z,y) — X / d®zD(x,2)64(Z)D(z,y) (6.5)

428 [ @02 Dla, )52 D0 )PP ) + -
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where we denote coordinates transverse to the brane by a two-dimensional vector.
We will find it convenient to work in four-dimensional momentum space. Introducing

the Fourier transform of Eq. (6.4) along four-dimensional momentum,

o X% gdg ein(0-0)/a
D ") = nfa Jinja ' ’ .
@)= 3 [ S el ) (6.6
Eq. (6.5) becomes
Gl(f)(fag = Dk(fyﬁ —/\ZDk(fvo)Dk(Oﬂj)+/\ng(fao)Dk(()?O)Dk(Oag‘)_"
Lo A » .
= Di(7,9) - s Dy(%,0)Dx(0,9). (6.7)

1+ A.Dx(0,0)

In this representation for the Green’s functions, momentum parallel to the brane
is conserved at each vertex for a brane localized interaction. However, due to the
delta function at r = 0, momentum transverse to the brane is not conserved and
must be integrated over each internal line for the graphs in Fig. (1). In Eq. (6.7), this
integration over two-dimensional momentum appears first at O(A3) and leads to the
factor of D(0,0), which is ultraviolet divergent. We emphasize that this tree level
divergence is not an artifact of our large tension limit, in which momentum appears
not to be conserved due to the resistance of the brane to changes in its configuration.
Rather, it arises because we have also taken the limit in which our brane is represented
by a delta function, i.e., it is infinitely thin. In reality, the brane has internal structure
at short distance, and the divergence we encounter simply reflects the fact that the
field theory we wrote down in Eq. (6.2) is not a valid description of the physics at
these scales.

These divergences are no different than the types of singularities that arise, for
instance, in classical electrodynamics with point sources. They can be dealt with in
the same manner as the ultraviolet divergences that appear in quantum field theory,
by introducing a regulator and absorbing the regulator dependence into renormalized
couplings in such a way that physical quantities are regulator independent. While the

divergences described here appear on spaces with branes of codimension greater than
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one, they are particularly interesting for field theories on codimension two branes,
such as the scalar model that we are considering here. For codimension two, the
divergences are logarithmic, leading to running couplings and RG flow even at the
classical level. To see this, regulate Dy(0,0) with a momentum cutoff* A and interpret
the coupling A, appearing in the above series as a cutoff-dependent bare coupling
A2(A). Introducing a renormalized coupling Aa(u) = A2(A)/Z, that depends on a
subtraction point y, and using?

Dy(0,0) = ——In (A2> , (6.8)

droy g
we find

)z, 7) = Dp(Z, ) — Ao (1) Z,0)Dx (0,7
Gk ( 7y) Dk( 7y) 1—(z\g(lu)/47ra)ln(kz/,u2)Dk( 70)D (O’y) (69)

provided that we adjust

1

= T Oa)/2ma) (A ) (6:10)

Zy

which corresponds to a scheme in which only powers of In(A/y) are subtracted. There-

fore, at O(k%) we have

dry A2
Wi = ama (6.11)
with solution
A2(po)
A = . 6.12
) = T o) 2me) () (612)

In six dimensions [¢] = 2 and, therefore, A, is a dimensionless coupling. Eq. (6.12)
indicates that for positive A, this coupling increases in the ultraviolet, reaching a
Landau singularity at p = pgexp(2ma/As(po)). A derivation of Eq. (6.11) based on

regulating the solution of the classical field equations derived from Eq. (6.2) can be

1t is straightforward to use dimensional regularization instead of a momentum cutoff. This
would be necessary in a more realistic theory in which gauge fields or gravity are included.

?Because Jo(0) = 1 and J,(0) = 0 for v > 0, only one term in the sum of Eq. (6.6) contributes
to Dy (0,0). Terms suppressed by inverse powers of A have been neglected.
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found in Appendix B. A similar RG equation for a scalar mass term localized on a

singular surface has been obtained in [67].
The short distance divergences that arise in the computation of the tree level two-
point function also appear at tree level in other Green’s functions. For example, the

tree-level four-point function, which can be evaluated to all orders in ), is given by

4 T2, k? 53) k3
GO (F - T) = }{ b (6.13)
fla kl 57’47 k4

- 4 A B AZ(/L)Dki(OaO)
= —A(A)(27)*0%( Zk HDk i, 0 { 1_()\2(N)/47ra)ln(ki2//$2):|

=1

— —4 4¢4 . - Dki(fiﬁ)
= —M(A)Z74(2n)%8 (; kz)Hl_()\2(/;)/47Ta)ln(kii//$2).

i=1

We define the renormalized coupling Ay(p) by As(A) = Z4A4(p) and adjust (in the

same scheme used to renormalize the two-point function) Z4; = Z7. Then the four-

point function is cutofl independent and

dAs  Adads
'ud,u  2ma

(6.14)

Similarly, the six-point function is given by

3 4 3 4
G 4 (Fr o) = 2‘}{_5 " 2—}_._{'5 + oS4 (6.15)
1 6 1 6

_ 6 4 D x“O)
- & Zk‘)nl_ (el ;47roz)1n(k h/n?)

, Z5'D,(0,0)
X [—/\G(A) + Aa(A) Z 1 — (A2(p)/4rme) ln(qf/,tﬂ):,

6

B 4 cd Dk '77270)
= (2m)*0 (Zk Hl (Aa(p)/4ma) In(k;2 ) )

=1




o4

, In(gi/p?*) [4ma
X | —=Xe(pr) — Aa(p) Z 1 — (Aa(p)/4ma) In(qi/u?) |’

q

where ¢ is the four-momentum going through the internal line in the second graph in
the figure, which is fixed in terms of the external momenta. The sum over g is over
the momentum in this graph as well as the other nine permutations not shown in
the figure. In this expression, the renormalized coupling Ae(y) is related to the bare
coupling by Ae(A) = ZsAs(p), with

Zo =78 + (;’) 2—%2; In (%) , (6.16)

leading to the RG equation for Ag

ddeé B2 5\ A3
— = P 6.17
H du 2ro i <2> 2ra (6.17)

In this and the previous examples, the beta functions, computed to all orders in
Aq, coincide with those that would have been obtained by keeping only terms with
two vertex insertions in the expansions for the Green’s functions. This is because
such graphs are the only sources of tree level divergences that are single powers of
InA. Knowledge of the exact O(R®) coefficient of this log then determines the tree
level beta functions to all orders [68]. We can also immediately write the full tree
level beta functions for the other brane couplings appearing in Eq. (6.2). Keeping

only terms with divergences that are single powers of In A, the Green’s functions are:

k
Ak \ AajAan—2; A
4R~ X (A Azjdk—2iyz g (AN 1
G Ak )+;<2j_1> oma () (619)
k
4k + 2\ Agjhapz; A
(4k+2) ~ 25 \4k—27+4 A
G Aer2(A) + ; (2j N 1) S (#) (6.19)

4k + 2\ Adits A
In{Z=
+(2k+1) dra o T

where in the first line k£ runs over k£ = 1,2, - - - and in the second equation k = 0,1, ---.
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The combinatoric factors count the number of distinct ways of assigning momentum
labels to the external lines in the graphs. Note that for Ag.2, the combinatorics is
slightly different due to the possibility of having a graph with two factors of Aypiz.
Introducing the renormalized couplings A2, (A) = ZanA2n(p), and choosing Z,, to

cancel the logs of A, we find

ko

dAar 4k \ AgjAak—2;42
_ 2j+2 6.2
M du - <2j - 1) o (6:20)
ddapy2 Ny + 2\ AgjAak—2j44 4k + 2\ X342 (6.21)
= = < \2j-1) 2ra %+ 1) dma '

Because the equation for Ay, only involves the couplings Az, with m < n, it can
be easily solved by iteration. Given the solution for Ay(u) we construct the RG flow

for As(x) by noting from Eq. (6.14) that Ay(u)Az(e)™* is an RG invariant. Then the

equation for Ag can be written as

so that

el = NPl +10 (THE) Qo) = daGu), (629

and similarly for larger n.

6.3 Omne-Loop Corrections

Besides the tree level RG flows just considered, there are other corrections to the
brane beta functions due to loop effects involving insertions of both the bulk and
brane couplings. Loop diagrams with only brane couplings cannot give rise to any
further logarithmic divergences than those obtained already at tree level. To see this,
note that an L loop diagram contributing to the renormalization of the A,, vertex

with N, insertions of Ay, vertices (m = 1...00) is proportional to a product of
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coupling constants that has mass dimension
d=> Nop[Azml, (6.24)

where [A2,] =4 — 4m. Using the relations

L = I=) Nyn+1, (6.25)

21 = ) 2mNy, — E, (6.26)

with [ the number of internal lines and £ = 2n the number of external lines, we see
that d = 4 —4n — 4L. To get a contribution to the beta function, this diagram needs
to be logarithmically divergent. This occurs when d = [A3,] = 4 — 4n, which happens
precisely at tree level. Thus to obtain loop corrections to the RG equations one must
include insertions of the bulk couplings in loops. We now turn to the calculation of
some of these bulk-to-brane renormalization effects.

For simplicity, we will consider the field theory on a space with deficit angle® =,
i.e., @ = 1/2. Then the scalar propagator simplifies to a sum of two terms, the usual

scalar propagator and an image charge contribution (see Appendix A)

D(x, o) :/ A8 ieiku(z—z')l‘ (eil}'.(a‘c’—a‘:”) +eiE.(f+f’)>. (6.27)
(2m)6 k2
In order to see what types of divergences arise from loops with insertions of bulk
couplings, we compute one-loop quantum corrections to the effective action. We will
consider only the effects of the bulk ¢? and ¢* couplings. Inclusion of the higher powers
of ¢ is straightforward. For a term in the effective action to give a logarithmically
divergent contribution to the renormalization of A,,, it must be constructed from
insertions of bulk couplings whose product has mass dimension [Ay,]. Then at one-

loop, the relevant terms (i.e., the terms that diverge like a single power of In A and

3This space can also be thought of as a Z orbifold.
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therefore contribute to the RG equations) are

y
Setr = Sa—{ ) —Q— >O<y+ (6.28)
X

4 1 g4m2

= S4-— %/dexdeD(:vyy)Q— 513 dad®yD(z,y)*¢(z)?

—i%/cﬁ Eyd(2)2D (e, y)*$(y)* + -+,

where an external line going into a vertex at  denotes an insertion of ¢(z). In this

expression, the second, third, and fourth terms contribute to the brane tension Mg,

the brane mass Ay and the coupling )4, respectively. Since we are only after the

counterterms for the brane ¢*" couplings, we can take ¢(z) = constant. Then all the

integrals in Eq. (6.28) are identical

/d6xd6yD(x,y)2 = /d4 / ;ijr]; d6q6 klz 1( 2m)* 8 (k — q) (6.29)
X / d*Zd*§ [el (#=9) 4 efk-(fw)] [0 4 T @+D)]

_ /d4 / ik 2k d2"’ 1 1
= (2m)* (2m)2 (27)2 k2+gzkf+cj?

[ (2m)28%( k—{—(f)/dz (27) 52(k—l~(i)(27r) 8k —q)|,

where the factor of 1/4 in the second line reflects the fact that both integrals over two-
dimensional position run over only the half-plane. Regulating the four-dimensional

and two-dimensional momentum integrals with an ultraviolet cutoff* A,

1 A In2
/d6$d6yD(x,y)2 = /d4$647r2 (;) /d6 7 3/\ , (6.30)

where we have introduced a subtraction scale u. Note that the brane-localized ultra-

violet divergences encountered here are different in nature than the classical singu-

“Here, we choose the same cutoff A that we used in the previous section to regulate Dy (0,0).
This choice reflects the assumption that both the zero thickness and the large tension divergences
are resolved by physics at similar scales, of order the ultraviolet cutoff A.
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larities discussed in the previous section. In this case, the divergence proportional to
four-dimensional volume arises because the brane at r = 0 induces a spacetime geom-
etry that breaks translation invariance and leads to nonconservation of momentum
transverse to the brane. This is taken into account in the above calculation by the
inclusion of the image term in the scalar propagator. It is the cross term between
the ordinary scalar propagator and the image term in the second line of Eq. (6.29),
which leads to the brane localized logarithm in Eq. (6.30).
Using Eq. (6.30), the effective action becomes

m4 A 4 1 g4m2 A 4 n 2
Seff = Sa— 5562 In (;) /d T — 511982 In (;) /d zd(z*,0)" (6.31)

1 392 A / 4 4
_ = o d w
112872 (u z¢(z", 0)" +

The logarithmic divergences in this expression can be absorbed into counterterms

appearing in S.. Using our prescription in which only powers of A and In(A/u) are

subtracted, the RG equations for the brane couplings become

d)\() m4
/0 - = 32
W 25672’ (6:32)
dAz . )\g m2g4
MW = - + 198,72 (6.33)
dA4 4)\4)\2 392
— = . 34
a du i + 12872 (6:34)

There are also corrections from one-loop diagrams with insertions of both brane
and bulk couplings. First, consider the renormalization of the tension. At linear order

in Ay this is given by

GO = et )+  (6.35)
1 e

= “ha(h) = 5h(0) [ D00+
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where we have included the effects of the bulk mass in the propagator

Dk(o,0)=i1n< A ) (6.36)

27 k2 +m?

To extract the RG equation for the tension, we need the coefficient of In A in the

tension counterterm. We shall use

& mt (A
R NGO T i BT _
/ i D0.0) = (/ﬂ) . (6.37)

where finite terms, as well as terms proportional to powers of the cutoff or more

powers of In A have been suppressed. Hence

4/\ AZ
G = ~Zdafp) ~ 22 1n (?> T (6.38)

Therefore, the one-loop beta function for the tension at O(A;) becomes

d/\o m4 m4/\2

Wy = 256n2 ~ 64ms (6.39)

We can also include brane couplings in the one-loop renormalization of ), itself.

A similar calculation to the one above gives

dr; A3 m'h  mlgy

Hdy =7 " 64 " 12872

(6.40)

where for the one-loop part, we only included terms linear order in the couplings Ay,
and g4. The pattern is similar for the other Az, couplings.

Finally, to complete the discussion of the RG flows in this theory, one should
also calculate the beta functions for the bulk couplings. Clearly, the brane couplings
cannot generate bulk divergences, so these do not contribute. Then the calculation

is a standard field theory exercise, which we will not repeat here.
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Chapter 7 Conclusions

In this thesis, we have studied some applications of field theory to higher-dimensional
brane scenarios motivated by the gauge hierarchy problem. In Chapter 2, we gave
a detailed presentation of the proposal of [12] to address the hierarchy problem
with a nonfactorizable five-dimensional geometry. We discussed the low energy four-
dimensional gravitational dynamics of the model, which includes the ordinary gravi-
ton and an additional massless scalar, the radion. The radion plays a crucial role
in generating the hierarchy between the Planck scale and the weak scale. However,
because in this minimal model the radion has no potential, additional dynamics must
be specified in order to stabilize the weak scale.

In Chapter 3, we showed that in the RS model, bulk scalars have low-lying
Kaluza-Klein modes with four-dimensional masses of order the weak scale and four-
dimensional non-renormalizable interactions suppressed by powers of the weak scale,
even though from a five-dimensional perspective their masses and interactions are
characterized by the Planck scale. This is similar to what occurs for the fields localized
on the 3-brane at ¢ = 7. Bulk fields of higher spin exhibit similar patterns. The struc-
ture of the Kaluza-Klein reduction for bulk fields leads to interesting phenomenology,
including the possibility of observing strongly coupled graviton resonances at collider
experiments near the TeV scale.

In Chapter 4, we argued that a bulk scalar with a ¢-dependent VEV can generate
a potential to stabilize the radion without having to fine-tune the parameters of the
model (there is still one fine tuning associated with the four-dimensional cosmological
constant, however). We also explored some of the physical properties of the modulus
field which arises in the Randall-Sundrum scenario. An important feature is that it
couples to visible brane matter with TeV rather than Planck scale strength. In the
absence of a mechanism that generates a radion mass, this is unacceptable: radion

exchange gives rise to a long-range universal attractive force which is 32 orders of
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magnitude stronger than gravity. On the other hand, this is not a problem if the
radion is stabilized by a mechanism such as that of [41]. In addition, the stabilized
radion has a very distinctive phenomenology. It has a mass which is likely to be
lighter than Kaluza-Klein modes of bulk fields, making it the first direct signal of
the extra dimension. Also, the couplings of the radion to the Standard Model fields
are fixed by general covariance and depend on the single parameter (p). We expect
similar phenomenology to arise in other scenarios, such as that of [69].

In Chapter 5, we have calculated the quantum effective potential for the radion
in compactified AdSs. By explicitly performing the computation using three different
regulators, we have shown that fields confined to the TeV brane give no nontrivial
contributions to the potential. In particular, we find that in dimensional regular-
ization, the disappearance of any contribution that scales as a*lna is not due to a
rescaling of the regulator mass p by a factor of a. Instead, it can be traced to the
fact that the proper generally covariant counterterm in n = 4 — ¢ dimensions includes
this term. Likewise, general covariance requires that within a cutoff regularization
procedure, one should use the rescaled cutoff Aa, leading to V o a.

The contribution due to bulk fields yields a nontrivial dependence on the warp
factor a. However, as in the case of confined fields, no terms of the form a*lna
are generated. Beyond the pure counterterm a*, bulk fields generate terms that are
suppressed in the large r. regime. For instance, a massless bulk field yields terms of
the form a® as well as the finite log term «®Ina. This a dependence is too weak to
generate an exponentially small value of @ without having to choose unnatural values
of the brane tensions. Because of this, a classical stabilization mechanism is needed.

Finally, we have also included the quantum effects of the radion field itself. We
found that as in the case of TeV brane fields, the correct momentum space cutoff
should be rescaled by a factor of a. While this is quite natural for brane fields, it
is not obvious that this had to be so for the radion field, since in the dimensionally
reduced theory we have integrated over the fifth dimension, and there is no single
preferred “scale” exp(—kr.9).

In Chapter 6, we have analyzed the types of ultraviolet divergences that appear in
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field theories with branes. Nondynamical branes break translation invariance, leading
to localized divergences at the quantum level. Short distance divergences appear also
in the limit of vanishing brane thickness. Such divergences signify a failure of the
theory to describe finite thickness effects, and manifest themselves already at the
classical level. By looking at a toy model with a 3-brane in six dimensions, we showed
how to regulate and renormalize these classical singularities into the parameters of
the theory, and derived RG equations (which are only generated in backgrounds
with codimension-two branes) for the brane localized couplings. We also computed
corrections to these flows from one-loop bulk-to-brane effects. Although we have
worked with two noncompact extra dimensions, the divergences we encountered are
only sensitive to short distance effects, and hence the RG equations we have derived
remain valid if the space is compactified.

The brane-localized divergences considered here may have implications in the con-
text of brane-world scenarios. For example, models with two compact extra dimen-
sions may address the hierarchy problem if the compact space is large [11]. A mech-
anism for naturally generating a volume exponentially larger than the fundamental
scale of the theory in such codimension-two models has been proposed by [42]. This
mechanism relies on large logarithms of the ratio of the size of the space over brane
thickness induced by the bulk profile of a massless scalar that couples to 3-branes.
For a scalar field that is massless and noninteracting in the bulk, our classical RG
flows could also play a role in this scenario, since they too generate such logarithms
in the infrared.

It may be interesting to see what happens when the brane is taken to be dynamical.
One should be able to do this by including the contribution of the localized Goldstone
modes associated with the brane in loop corrections to the effective action. Also, it
may be worthwhile to examine how a more fundamental description of the brane
which includes finite thickness effects resolves the singularities and leads, at long
wavelengths, to the classical running couplings described here.

Brane scenarios provide an interesting approach to tackling the hierarchy prob-

lem. However, they also have features that are less appealing than the SM with
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minimal particle content. In brane scenarios, higher dimension operators are sup-
pressed by the weak scale and unlike the Standard Model, where the suppression can
be by powers of the GUT scale, there is no explanation for the smallness of neutrino
masses and the long proton lifetime based simply on dimensional analysis (although
extra-dimensional mechanisms for suppressing phenomenologically dangerous opera-
tors have been proposed in [70]). Hopefully, experiments at the LHC will soon tell
whether nature employs extra dimensions at the TeV scale, low energy supersymme-
try, or perhaps something completely unexpected to solve the puzzle of why gravity

is so much weaker than the other forces.
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Appendix A The scalar propagator on R’
and R* x R*/Z,

A.1 The Scalar Propagator on R’ and R* x R?/Z,

In this appendix we show the equivalence of the scalar propagator on cones of deficit
angle 0 (o = 1) and 7 (o = 1/2) from Eq. (6.4) with the scalar propagator in flat
six-dimensional space, and on the orbifold (given in Eq. (6.27) as a sum over images),

respectively. We will need the Bessel function identities

o d@ zzcos€
Jo(2) ~/0 5, (A.1)
JolqR) = > e (qr)dulqr), (A.2)

with R = +/r2 + 12 — 2rr’ cos . For a = 1, Eq. (6.4) gives

d*k o0 qdq ethu(a!—z'") (0!
D(z,z") = / A 5}———];—2—:—(—]3—26 ©=8 1. (qr) T (gr")  (A.3)

B / dik / qdq /2# 4o ezk#(w“—x“) ig|l&—&'| cos §
N ki + ¢ ’

4 d20 eikulah o) i (E~)
Do) = [ ot [ 5 LS , (A4)
(2m)* | (2m)? k2 + ¢?

or

which is precisely the six-dimensional scalar propagator. For a = 1/2, Eq. (6.4) gives

B[ qdg e =) in0=)
@)= 2, / / B 21 Jn(qr)Jn(ar’). (A.5)

neven
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We now write

Tl hlar <Z+ZJM”UQWMW (A.6)

> O g Tular') =
nodd

( > - Z) "0 (qr) ()
neven nodd
1 in(9—6’ ’ 1 in{f—0"+m) I

n n

- ﬁh@m_fo+ %mu+ 0).

DN |

Then Eq. (A.5) becomes

d2(']" eiku(z“—z'“)

D(z,z') = Ak / (e"q*'(f—f’)+eiq"'(f+f’)), (A7)
’ @2m)*t ) (2m)* Ki+ ¢

which reproduces Eq. (6.27).
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Appendix B Brane mass renormalization

from classical field equations

In the Chapter 6, we obtained the RG equation for the brane mass Ay by renormalizing
divergences in the diagrammatic expansion for the two-point function. We now obtain
the same beta function by solving the classical field equations for a free, massless bulk
scalar with a brane localized mass terms. This classical problem is also singular and
must therefore be regularized. The regulator dependence in the classical solution
can be absorbed into a renormalized brane mass, which leads to the same result as
Eq. (6.11).

The full two-point function in the mixed representation is given by

G?(7,7) 999 _ 4 &
=3 [ @@ (B.1)

where ¢, , are a set of orthonormal functions which satisfy
(= V& + 2:6%(Z)) $no(E) = ¢ Png (7). (B.2)

In polar coordinates, away from r = 0 the solutions are,

=2

O0ld) o g, (), (B3)

2o

¢n,q(f) =

where N, (q) is determined by normalization and R, ,(r) are linear combinations of

Bessel functions

R (r) = Jjnja(qr) + ca(q)Yinsa(gr), (B.4)

We obtain ¢, by applying the boundary conditions at r = 0, which follow from
integrating Eq. (B.2) over the interior of the surface r = €. For the n # 0 modes, this
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integral vanishes due to rotational invariance. Thus A; has no effect on these modes

and we conclude that ¢, = 0 for n # 0. For the n = 0 mode, we get from Eq. (B.2)

+ Az /drd(r)Rg,q(r)—qZ/ rdrRy,(r) =0, (B.5)
0 0

. 2ra

) dRy
dr

r=

where we used §*(Z) = é(r)/2mar. The second term in this equation is singular as
e — 0, due to the singularity of Y5 at the origin. We will handle this singularity by

regulating the delta function:

é(r) = % [1 —8(r—4)], (B.6)

with 6 — 0. Using the asymptotic form for the Bessel functions near r = 0,

Rog(r) ~ 1+ 26(;(‘1) {7 +1n (225)] : (B.7)

we find that the third term in Eq. (B.5) vanishes as € — 0. On the other hand,

dR,
e —9

2c0(q)
2 = (B.8)

v

r=c

and using the regulated form for the delta function (with ¢ > §),

€ )
/dr5(r)Ro(r) = %/0 drRo(r) (B.9)

° L [ (8],

2¢0(q) _ A2/ (2mar)
71— (X/2na)In(q/A)’ (B-10)

Then Eq. (B.5) gives

where 1/A = €7716/2. As in the text, the dependence of cg(q) on the regulator can be

removed by interpreting Ay as a bare coupling A2(A) and introducing a renormalized
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parameter Ay(p) = A2(A)/Z2. In terms of Az(p),

2c0(q) _ Aa(p)/(2ma)
m 1 —(Xz(p)/2me) In(q/p)’

provided that 1/Z; = 1 — (A2(p)/27ma) In(A/p). This gives

FAVDY.

”—dﬁ_ - 27’

in agreement with the diagrammatic approach.

(B.11)

(B.12)
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