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ABSTRACT

Techniques are developed for the approximate representation of
switched dc-dc converters by time-averaged models. Simple analytical
expressions in terms of the circuit components are derived for the
Vcharacteristic transient and frequency responses of averaged power-stage
‘models for use in designing and understanding the behavior of the actual
switched power stages. High-order systems can be analyzed by the aver-
aging technique without a commensurate increase in complexity.

Two functional blocks are necessary to construct a switched con-
verter: the switch controller, which is relatively well understood, and
the power stage. When concreteness is necessary, a particular pulse-~
width modulator is chosen for the switch controller and is thoroughly
analyzed. The output of representative power stages (buck, boost, and
buck-boost) is a complicated nonlinear function of the switch controller
and source input, and since conventional methods of nonlinear analysis
are shown to be intractable or uninterpretable, attention is focused on
the challenge of obtaining useful design equations.

The difficulty encountered in the nonlinear analysis of switched
power stages is successfully surmounted by the semiheuristic development
of a continuous power-stage model. Since the characteristic response
times of state variables in the switched power stage are invariably large
with respect to the switching period, discontinuous forcing functions
in the equivalent circuits are averaged over a time interval comparable

with the switching period without appreciably affecting the nature of



the response. Consequently, the averaged model is limited to response
times greater than the averaging interval. Equivalent circuits and
analytic expressions for the transient and frequency response of each
power-stage type are then derived from the averaged models. A linear-
ized control-input transfer function, obtained for small amplitude
variations of the averaged control, reveals a dependence of effective
circuit component.values upon the switch duty ratio, and the possible
existence of a positive real zero.

The unusual behavior predicted above is confirmed by an analog
computer simulation of both the switched and averaged power stages. It
is also shown experimentally that closed-loop stability of the switched
power stage is adequately predicted by the averaged model. The averag-
ing technique is thus a powerful analytical tool for exposing inherent

characteristics of switched circuits.
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Chapter 1
INTRODUCTION

Electrical loads often require a dc voltage at some particular
value, even though the only available dc source voltage has a different
value: for example, the mélange of electrical equipment in a space
vehicle is powered by a single dc source. The functional block which
transforms voltage from a dc input value to a different dc output
value is called a dc-dc converter and fulfills the need expreésed above.
The degree of dc-dc conversion should be cgntrollable to adjust for

I |
possible variations in the source voltage or load current; in some

applications another system consideration is conversion efficiency,

which is defined as the ratio of converter output power to input power,
Thus the need emerges for a dc~dc converter with the auxiliary features
of control and high conversion efficiency.
Two dc-dc converters in common usage are shown symbolically in
Fig. 1.1. The variablé resistor exercises continuous conversion control,
either by dropping source voltage with the series configuration shown in
Fig. 1.1(a), or by shunting current from the load as in Fig. 1.1(b). Two
important limitations are a direct consequence of the method used for
conversion and control: output voltage must be less than the input
voltage, and conversion efficiency may be low because conversion and
control functions are obtained at the expense of power dissipation.
Switched dec-dc converters can overcome the limitation onvefficiency

which arises from dissipative conversion methods. The observation that



(a)

(b)

Fig. 1.1 Conventional dc-dc converters: (a) series control,
(b) shunt control.



periodic pulse waveforms have an average value which varies with the
ratio of pulse width to pulse period, as illustrated in Fig. 1.2, is the
basis underlying switched control. Figure 1.3 shows how the average
value of a pulse waveform generated from the source voltage with an
ideal switch can be extracted by a low-pass filter (lossless for high
efficiency) whose cut-off frequency is less than the switching frequency.
Since no power is dissipated in ideal switchesl or lossless filters, the
theoretical conversion efficiency of éwitched dc~-dc converters is 100
percent. A consequence of low filter cut-off frequency is slow filter
response: output variations, with the exception of ripple at the
switching frequency caused by incomplete filter cﬁt—off, occur on a time
scale greater than the switching period. As a practical matter, the use
of a high switching frequency permits a reduction of size and weight of
the passive filter components; however, switch and filter losses which
increase with frequency force the adoption of an upper bound on fre-
quency in order to maintain high conversion efficiency.

Switched dc-dc converters consist of two distinct subblocks: the
basic power stage contains those circuit components, essential for the
conversion operation, through which the power flows; and the controller
determines the degree of dec-dc conversion in the power stage. Typical
characteristics of each subblock are expanded upon in the following

discussion.

Lither the current through.or the voltage across an ideal switch is
always zero.
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Fig. 1.3 Conceptual implementation of a switching dc-dc
converter.



A generalized control mechanism for varying the dc value of the
converter output is the switch duty ratio D, which is defined as the
fraction of time that the switch is closed: the correspondence between
switch state and pulse waveform is evident in Figs. 1.2 and 1.3. A con-
troller determines the switch duty ratio by generating from‘an analog
controller input € a digital (two-level) switch-drive d which uniquely
defines the switch state (open or closed); thus the switch controller
is functionally an analog-to-digital (A/D) converter as depicted in
Fig. 1.4(a). The controller output consists of constant-amplitude
pulses whose duratioq T

input. Without loss of generality one can choose unity and zero

N and spacing TF are determined by the controller
(corresponding to closed and open switch states, respectively) for the
two output levels; consequently, D is numerically equal to the dc
component of d. Typical controller output waveforms are shown in

Figs. 1.4(b) and 1.4(c) for two values U and U' of dc controller input

and are periodic in time, with periods T = T_ + T, and T' =T + T

1 )
N F N F°
respectively.

For a dc controller input U, the duty ratio associated with the
static output waveform may or may not be a linear function of U, depend-
ing on the specific controller; however, the instantaneous controller
output d is always a nonlinear function of the instantaneous input ¢ for
a variety of reasons. If superposition were valid for the controller,
then the output resulting from N inputs could have any integer value

between O and N inclusively, which is contrary to the assumed output

levels of 0 and 1. Also, the Fourier series expansion of the periodic
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Fig. 1.4 Description of a switch controller: (a) functional block
diagram; (b), (c) possible input-output relationships.



output which results from a constant input has an infinite number of
frequencies that were not present in the input. Furthermore, the
instantaneous controller output may depend on the input through samples
only, which again precludes the use of superposition, but for an
independent reason.

Figure 1.5(a) shows the functional relationship between the power-
stage output v and the two inputs: source voltage and digital switch
drive d. Since v isvanalog and d is digital, the power stage appears as
a digital-to-analog (D/A) converter to the control input; however, the
analog source voltage is digitized by switch action within the power
stage, so the power stage effects an analog-to-digital-to-analog (A/D/A)
transformation of the source vdltage. For a particular power stage,
Fig. 1.5(b) shows a possible steady-state output waveform, including the
ripple component with period T, which corresponds to a static digital
control input whose duty ratio is‘D. If driven by a static control input
whose duty ratio is different, the same power stage may producg the
steady-state output waveform illustrated in Fig. 1.5(c).

Though the switching power stage in Fig. 1.3 provides good efficiency,
the output voltage can be only less than the source voltage. Variations
of the switching power-stage configuration have been evolved which not
only retain the inherent efficiency, but also overcome the stated conver-
sion limitation. The operation and circuit diagram for each of three
typical power-stage types will be described briefly in the following
paragraphs. Source voltage VS and load resistance R are included in the

description since they are essential for proper operation of the power
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stage. It is assumed here that the digital control signal causes two
complementary switches, S and S', to operate synchronously but in
opposite states as described by Eq. (1.1),

1; S'closed, S' open

d(t) =
0; S open , S' closed . (1.1)

A buck, or chopper, power stage is used to buck the source‘voltage
down to a lower load voltage. The buck circuit and relevant steady-
state waveforms are shown in Fig. 1,6. The digital switch-drive wave-
form d in Fig. 1.6(b) represents the output of the controller. During
the time interval TN, switch S clamps voltage v to the source voltage
Vs as shown in Fig. 1.6(c). The positive voltage across inductor L
is Vs-v(t) and is nearly constant because the output low-pass filter is
chosen to make the ripple component of v small, so the inductor current
increases approximately linearly with time as shown in Fig. 1.6(d).
During TF’ switch S' makes voltage v, zero, so the voltage across the
inductor is ~-v(t), which is negative and almost constant; thus the
inductor current decreases approximately linearly. Output voitage, shown
in Fig. 1.6(e), is obtained by smoothing the inductor current with a low-
pass RC filter designed to make the switching ripple small.

A boost power stage, shown in Fig. 1.7(a), is capable of boosting
the source voltage to some higher load voltage. The digital switch
drive d again determines the length of TN and TF as illustrated in
Fig. 1.7(b). During TN, Fig. 1.7(c) shows that the voltage v is zero

and the source voltage Vs is applied across the inductor, so inductor
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current increases linearly as seen in Fig. 1.7(d). Throughout TF’ the
switches assume their opposite states. The resultant inductor voltage
VS—V(t) is negative and almost constant so the inductor current
decreases nearly linearly. Only the inductor current that occurs during
TF’ see Fig. 1.7(e), is low-pass RC filtered to produce the smoothed
output voltage shown in Fig. 1.7(f).

The buck-boost, or modified flyback, power stage can produce an out-
put voltage that is either higher or lower than the source voltage,

depending on the relative length of the T, and TF periods. Figure 1.8(a)

N
shows a circuit realization having a single inductor, but whose output
voltage polarity is negative: positive or'floating output voltage can
be obtained by using a transformer in place of the inductor, but the
simpler model of Fig. 1.8(a) will be used exclusively for the compara-
tive purposes at hand. Switch action is governed through Eq. (1.1) by
the beriodic digital switch-driving signal shown in Fig. 1,8(b). During
TN’ inductor voltage, see Fig. 1.8(c), is constant at the positive
source voltage so inductor current increases linearly as in Fig. 1.8(d).
When the switch states reverse during TF’ a nearly constant negative
output voltage appears across the inductor, which causes inductor current
to decrease in an approximately liﬂear fashion. The inductor current
that occurs during TF, shown in Fig. 1.8(e), is averaged by a low-pass RC
filter to produce the smoothed output voltage shown in Fig. 1.8(f).

A properly designed power-stage filter makes the output ripple

negligible with respect to the average output component, so the output

voltage is approximately constant. Values of L and C are chosen to satisfy
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design constraints placed on such quantities as output voltage ripple,
size, weight, and power.

In a practical system the digital switch-driving signals may be
simplified by using one switch in such a way that its state depends on
the state of the other switch; only a single switch-drive signal is
required for such a configuration. Switch labels have been chosen in
the preceding three circuit examples to allow replacement of switch S'
by a diode. The use of a diode will be clarified by using the buck
power stage in Fig, 1.6(a) for an example. If switch S' is replaced by
an ideal diode whose characteristic is illustrated in Fig. 1.9, the
circuit for the buck power stage is as given in Fig. 1.10. When
switch S is closed, the diode voltage Y3 is negative, A7l Vs’ so
there is no diode current. The diode appears as an open circuit, so
inductor current increases almost linearly as explained in the text
accompanying Fig. 1.6(d). Immediately after switch S is opened, the

inductor current i starts decreasing at a rapid rate and induces a nega-

tive voltage across the inductor, as described by Faraday's Law:

VL = La’g (1.2)
However, vy is also constrained by the loop voltage equation VeE Vg Vs

so the diode clamps to zero the voltage v. + v as it starts to go nega-

L
tive. Thereafter the diode appears as a short circuit until either

S is closed or i decreases to zero, whichever occurs first. The

inductor thus plays an important role in forcing the diode to behave as
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Fig., 1.9 Ideal diode characteristic.
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Fig. 1.10 Replacement of switch S' by a diode, buck power
stage.
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a switch in synchronism with the switch S. If inductor current is always
positive, then the action of two switches is duplicated by a single
switch and a diode for all three power-stage types, although, for
simplicity, the use of two ganged switches will be continued in subse-
quent discussions,

Switching converters look very promising at this point for use as
efficient dc-dc converters, so the next logical step is an attempt to
characterize their dynamic behavior. Converter performance can often be
improved by the application of negative feedback in a closed-~loop config-
uration, such as that shown in Fig, 1.11, to form a switching regulator.
The error ¢ between the (possibly compensated) régulator output v and a
reference v, changes the duty ratio as necessary to maintain a constant
output voltage; however, feedback systems always require a careful con-
sideration of stability. |

System stability is, in a broad sense, a description of the feed-
back system's resistance to perturbations. Stability analysis involves
tracing a disturbance signal around the feedback loop to determine whether
the disturbance is reinforced or attenuated. The effects of a disturbance
eventually disappear if the returned signal is attenuated; however, if
successive traversals of the feedback loop make the disturbance larger,
then the final result is system destruction or a self-sustained
oscillation, either of which is undesirable. It seems reasonable then to
use a sinusoidal test signal for stability analysis.

Before one attempts the stability analysis of a switching regulator,

one must know how suitable test signals at the controller input ¢ affect
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Fig. 1,11 Block diagram of a switching converter in a closed-

loop regulator configuration.
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the power~stage output v. One can separate this process into two dis-
tinct transformations which correspond to the controller and power stage.
The transformation of each block must be known independently to permit
the analytical evaluation of various controller and power-stage combina-
tions.

The controller determines the & to d transformation; that is, the
dependence of digital switch drive on controller input. The controller
- input of interest in stability study is a sinusoidal disturbance super-
imposed on a dc signal; however, it is necessary to consider only
sinusoidal frequencies less than the lowest switching frequency because
the inherent low-pass filter characteristic which attenuates switching
ripple in the power stage output also reduces the gain of the feedback
loop at higher frequencies. All digital controllers are nonlinear,
as indicated earlier in the discussion; even so, the output frequency
spectrum of some controllers can be obtained exactly for an input
consisting of dc plus sinusoid.

The d to v transformation is governed by the power stage. For the
buck power stage, one observes from Fig. 1.6 that v is a linear function
of the filter input voltage Ve which in turn is a 1inear2 function of
the instantaneous switch-drive d; unfortunately, though, no circuit
variables appear to be linear functions of d for the boost or buck-boost

power stages. The fact that the current waveform smoothed by the RC filter

in the boost and buck-boost power stages depends both on duty ratio and

21f only the values zero and unity are permitted for d(t) as defined in
Eq. (1.1), then vn(t) = v (t) d(t), where v (t) is the instantaneous
source voltage. s s
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on power-stage state variables makes the dynamic analysis of the nonlinear
d to v transformation a very difficult, unsolved problem.

Static analysis of a power stage is much easier to achieve than
dynamic analysis because the inputs are not allowed to vary (the digital
input continues to switch, but the duration and spacing of all pulses
are constant). For static conditions, the analysis of ideal (lossless)
power stages is particularly simple: Faraday's Law, Eq. (1.2), relates
the voltage v, across an inductor to the current i through the inductor,
so the integral of v, over a switching period T is proportional to the
net change in inductor current, which is zero for steady-state operation;

T i(D)
va dt = L di
0 i(0)
L[i(t) - 1(0)]

0, steady state . (1.3)

Applied to the ideal buck power stage in Fig. 1.6(a), Eq. (1.3) yields
VST -VT=0 , buck > (1.4)

where V is the static (dc) output voltage of interest. For each type of

ideal power stage, equations similar to Eq. (1.4) are easily derived and

solved for the static output V:
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TN
vV = T Vs = D VS , buck (1.5)
A
ver v o= 2 , boost (1.6)
F 1 -D
TN DV
vV = T v = S » buck-boost , (1.7)
F ° 1-D

T

where D = ~% is the duty ratio. Equations (1,5) to (1.7) are plotted in
Fig. 1.12 to show the variation of V with respect to D: notice that the
output voltage is a nonlinear function of the digital input for the boost
and buck-boost power stages, even for static analysis. The capability of
boost and buck-boost power stages to provide an output voltage greater
than the source voltage was anticipated, but apparently carries a

penalty of nonlinear complication. Kossov(l) extended the static

analysis to include the parasitic resistance associated with the inductor.

The absence of dynamic analysis of switched power stages presents a
challenging problem. To be useful, any method ﬁroposed for the nonlinear
analysis of switched power stages must be simple enough to lend insight
into system design. Before accepting the above challenges one should
review potentially useful analytic methods and compare their relative
merits.

Computers can simuléte very complex nonlinear systems. The resultant
simulation for any particular system is devoid of insight into such
questions as parameter sensitivity, stability, compensation, and design
if the system is slightly modified; even eﬁtensive numerical and

graphical results often fail to provide a design model. Computer simula-

tion should therefore be limited to the investigation of a particular
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Fig. 1.12 Dc output voltage V versus duty ratio D for
static conditions in ideal power stages.
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system after initial design has been completed.

Few closed-form solutions exist for systems described by nonlinear
differential equations, even when the system is second-order or less,
Most other nonlinear systems in general, and switching regulators in
particular, cannot be forced into any of the standard differential
equation formulations which have known exact solutions.

Stability information for a nonlinear system can occasionally be
obtained from a knowledge of the initial conditions, input, and system
equations, without an actual solution of the system equations.
Lyapunov's Direct Method indicates stability if a scalar positive-
definite function can be found which has a negative time derivative in
the vicinity of the phase space surrounding the initial condition;
however, failure to find such a scalar implies absolutely nothing about
system stability. Since there is no algorithm to provide a suitable
trial function for nonlinear systems, efforts to use the Direct Method
of Lyapunov often go unrewarded.

The system trajectory in state space gives useful dynamic proper-
ties, but methods for obtaining the dynamic path are not feasible unless
the system is second-order or less. The resulting graphical approach,
or phase-plane solution, may give the response for simple input func-
tions but is limited in practice to the low-order system.

Perturbation techniques attempt to express the dynamic response of
a system as a series expansion around an assumed solution in terms of
some, hopefully small, parameter. The dominant issue of such expansions

concerns their convergence, which depends on the assumed solution. Rapid
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convergence occurs only when the solution is nearly that of either an
exact nonlinear system or a linear system, but the nonlinearity is
neither type for the majority of pulse-controlled regulators.

Sampled~data systems can often be treated using the linear theory
of z-transforms. Though switching regulators bear some resemblance to
sampled-data systems, their nonlinear aspects rule out the exclusive
use of linear theory.

Nonlinear systems can often be linearized by assuming that only small
variations occur in the state variables. The operating point must be
known a priori. The resultant linear system can then be studied using
the numerous methods of linear analysis and design. Unless the response
of the linearized model is in the assumed range of small variations, there
may be no correlation between the nonlinear system and its model. The
linearization method breaks down if the operating point is near a dis-
continuity of the nonlinearity response characteristic.

In quasi-linearization, a waveform is assumed for the nonlinearity
input, that part of the output which has the same waveform as the input
is found in some way and is related to the input waveform by an equiva-

lent linear transfer function called the describing function (DF).

Although the describing function itself is linear, the gain and phase of
the describing function may be a nonlinear function of the input wave-
form parameters. The principal advantages of describing functions are
the straightforward design applicability and analytic system insight
which result from a linear transfer function. Valid describing functions

may be derived for arbitrary input variations and discontinuous
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nonlinearity characteristics. Describing functions are not without
their limitations, most of which arise as a consequence of operation

in a feedback loop: restrictions, such as low-pass loop filtering,

are necessary to circumvent the problem created by the interdependence
of model upon input signal and input signal upon model, and there is no
analytic measure of the accuracy of results based on the describing
function. Of course, analytic describing~function conclusions apply
only when the assumed nonlinearity input signal is actually present.

Consideration of the analysis alternatives leads one to conclude
that the describing function is the most suitable choice for nonlinear
design and stability analysis. Since necessary and sufficient stability
criteria can be derived for purely linear feedback systems, it is reason-
able to expect '"almost necessary' stability conditions when nonlinearities
are replaced by a linear transfer function. One is now ready to examine
qualitatively the application of describing-function analysis to
switching dc=-dc converters.

As indicated in a previous discussion, the appropriate control input
to assume for stability analysis is a sinusoidal modulation 'superimposed
on a dc component; for such an input, the describing function DF of a
nonlinearity is evaluated as the ratio of the modulation-frequency
component in the output to the corresponding component in the input, where
both are expressed as complex exponentials. Figure 1.13(a) portrays a
controller input whose dc level is U: the symbols Me and ¢€ represent,
respectively, the sinusoid's peak amplitude and phase with respect to a

time reference which has been chosen arbitrarily to coincide with the
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Fig. 1.13 Representative converter waveforms for a modulated
controller: (a) controller input, (b) controller output,
(c) dc and fundamental components of controller output,
(d) dc and fundamental components of power-stage output.
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leading edge of a controller output pulse. The modulated digital con-
troller output (power-stage input) shown in Fig. 1.13(b) is composed of
a dc component D and modulation-frequency component as shown in Fig.
1.13(c): components whose order or frequency is higher than that of the
modulation are neglected to simplify the picture. The modulation-

frequency component of d, which has a peak amplitude M

4 and phase ¢d with

respect to the same time reference used to determine ¢s’ causes a similar
component to appear in the power-stage output as shown in Fig. 1.13(d):
the higher-order and higher-frequency components are again omitted for
simplicity. The modulation-frequency output component is characterized
by phase ¢V, with respect to the previously established time reference,
and peak amplitude Mv' The describing functions of the controller,
jé

power—-stage, and converter are now given by the expressions Md e d/

i, iby, iy 36, 3¢,
M e H),M e /M,e ),andM e /(M e ), respectively; for

€ v d v 3

stability analysis, the converter is replaced by an equivalent linear gain
M
\Y . .
Me with phase shift ¢v - ¢e .

One ultimately needs separate describing functions for the controller
and power stage in order to optimize or examine the stability of any
combination. Describing functions of switch controllers can be evaluated
approximately without undue difficulty, and the buck power stage is
actually trivial to treat because its output is a linear function of the
switch control signal.

Unfortunately, serious problems arise when one attempts to evaluate

analytically the control-input describing functions for boost and buck-

boost power stages. The principal difficulty is caused by the nonlinear
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discontinuous manner in which the output depends on the switch control:
the modulation-frequency output component is analytically intractable
for the digital switch drive depicted in Fig. 1.13(b); yet, switches
can only be closed or open, so the power-stage switch-control waveform
shown in Fig. 1.13(c) lacks interpretation. Poulo and Greenblatt(z)
derived a continuous nonlinear time-varying differential equation to
characterize power stages, but could not produce simple equivalent
circuits of tractable describing functions. Landsman(3) obtained a

linear equivalent circuit which is useful for source variations of the
boost power stage; however, the equivalent circuit he proposed for con-
trol variations is sadly inadequate, as evidenced by the poor correlation
between his theoretical and experimental results.

The objective of the present endeavor is to extend the static descrip-
tion of power stages by developing a relatively simple, and hence useful,
method which can be used to analyze dynamic responses (e.g., transient
and frequency) caused by variations in either of the two power-stage
inputs; in essence, one must obtain the effective transfer functions
which relate source voltage and digital switch control to the power-stage
output, even though the power stage is switched and may be nonlinear.

Treated as an example in Chap. 2 is one of the few switch controllers
for which an exact spectrum analysis of the modulated output is possible.
The modulation-frequency component of the controller output is extracted
from the spectrum to form an exact describing function. A simpler

derivation of the linearized transfer functions is demonstrated which

should be generally useful when the describing function is relatively
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insensitive to modulation frequency or amplitude. Since the buck power
stage is lineaf, a description of the controller output also characterizes
the power-stage output.

Based on the observation that power-stage response times are
invariably slow with respect to the period of switch operation, continuous
nonlinear power-stage models are developed in Chap. 3 by an averaging
technique. kSince switches are eliminated, power-stage input waveforms
of the type shown in Fig. 1.13(c) can now be interpreted; thus a signifi-
cant contribution to the potential analysis of power stages is contained
in this chapter.

Approximate linear equivalent circuits and simple analytical expres-
sions for the transient and frequency responses of all three power-stage
types are derived in Chap. 4 from the averaged (continuous) models.

Novel conclusions include the modification of effective filter component
values by the switch duty ratio, and the possible existence of a real
positive zero in the linearized control-input transfer function. Based
on open-loop power-stage and controller describing functions, critical
closed-loop stability factors are predicted.

The credence of any hypothesis is immeasurably strengthened if
conclusions drawn from the postulate can be verified by experiment, so
this idea is pursued in Chap. 5 by the experimental simulation of both
averaged and switched power-stage models for each type of power stage.
Excellent correlation is observed between the theoretical expressions
and the exﬁerimental data for the frequency response of averaged power-

stage models; in turn, data from simulations of the averaged power-stage
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models agrees well with that from simulations of the switched power stages.
Finally, the experimental stability of switched power stages in a negative-
feedback configuration supports the analytical prediétions based on the
open—~loop averaged power-stage models.

Deduced from the results summarized in Chap. 6 is the conclusion
that the averaging technique is a powerful analytical tool for the

tractable analysis and useful design of switching power stages.
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Chapter 2

EXACT ANALYSIS OF A BUCK CONVERTER

2.1 Introduction

The purpose of the present chapter is to provide an exact spectrum
analysis of a switching converter with a modulated control input. The
exact analysis will serve as a comparison standard for approximate
procedures which are developed in later chapters.

Chapter 1 discussed qualitatively the significance with respect to
stability of dc plus ac (sinusoidal) modulation input to the switch
controller. Describing functions were acknowledged as likely candidates
for the stability analysis and design of switching converters, so
attention will alsc be focused in Chap. 2 on the extraction of the
describing function from the exact frequency spectrum.

Section 2.2 reviews the characteristics of three power-stage types
and concludes that only the buck power stage is amenable to exact
frequency analysis. A linear transfer function is derived for the buck
power stage to relate the digital switch drive to the converter output;
a knowledge of the controller output spectrum leads directly to the
frequency spectrum of the buck converter output.

A specific controller is analyzed'in Sec. 2.3 for the output spectrum
which results from a modulated input:v The controller specimen has been
chosen because it permits an exact output spectrum analysis for a
modulated input, although in general, exact spectrum analysis of a
switch controller is rarely tractable and invariably difficult.

Describing-function analysis is universally more feasible than exact
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spectrum analysis so first an approach which yields an approximate
describing function of the controller is suggested and demonstrated in
Sec. 2.3.1. The exact frequency spectrum of the controller output is
then given in Sec. 2.3.2 and leads to the exact describing function.
Comparisons between the exact and approximate describing functions show
that the simpler procedure yields a useful transfer function for most
modulation situations.

In Sec., 2.4 the exact controller output spectrum is transformed by
the linear operation in the buck power stage to produce the exact
frequency spectrum of the buck converter.. Finally, the converter
describing function is shown to be the product of controller and
power-stage describing functions.

2.2 Power Stage

Three basic power stages for a switching dc-dc converter were
introduced in Chap. 1; namely, buck, boost, and buck-boost. Description
of the basic power stages and their associated waveforms accompanied
Figs. 1.6 to 1.8. Some of the observations previously.discussed will
be emphasized here because of their relevance to the present considera-
tions.

It is obvious from Fig. 1.6(a) that for the buck power stage the
instantaneous output voltage v(t) is a linear function of £he
instantaneous switched voltage vn(t). The linear theory of Laplace
transforms can be used to express the Laplace transform of the
instantaneous output voltage V(s) as a superposition of the Laplace

transform of the instantaneous switched voltage Vn(s) and appropriate
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initial conditions, where s is the complex Laplace frequency variable.
The transfer function Gf(s) of the RLC filter is defined in Eq. (2.1) as

the ratio V(s)/Vn(s) when initial conditions are neglected:

Ge(s) = V(s)/Vn(s) » filter transfer function . (2.1)

zero initial conditions

Figures 1.6(b) and 1.6(c) show that for a constant source voltage Vs
the instantaneous switched voltage vn(t) is related to the instanta-

neous digital switch drive d(t) by

vn(t) = VS a(t), if Vs is constant . (2.2)

The overall power-stage transfer function G(s) is defined by Eq. (2.3),

where D(s) is the Laplace transform of d(t)

G(s) = V(s)/D(s) . (2.3)

zero initial conditions
Equation (2.4) shows the overall transfer function of the buck power
stage which results when Eq. (2.2) is Laplace transformed and sub-

stituted with Eq. (2.1) into Eq. (2.3)

G(s) = VS Gf(s) » buck power stage . (2.4)
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Unfortunately, a simple expression, such as Eq. (2.4), for G(s) is
possible only for the buck power stage. Its unique simplicity occurs
because connections between the RLC components do not change when the
switch states reverse; hence the RLC components form a filter whose
characteristics are invariant with respect to instantaneous switch
positions. The boost and buck~boost power stages illustrated in
Figs. 1.7 and 1.8 do not share the feature just mentioned: their RLC
components form a timé—varying filter whose properties depend on the
instantaneous switch states and whose input voltage or current cannot
even be identified. Stated another way, the power-stage transfer
function G(s) is independent of D(s) for the buck but changes with
D(s) for the other types of power stage.

Based on the above comments, the choice of power stage to be used
for exact analysis must be the buck type. The basic buck power stage
is extended in Fig. 2.1 to include in the analysis the parasitic effects
exposed by large currents in physical circuit components. Both
inductors and capacitors are more accurately modeled by the inclusion
of effective resistances RZ and Rc’ respectively, in series with the
ideal components.

The filter transfer function can be written by inspection of the
practical buck power stage shown in Fig. 2.1. The resulting gain is
given in Eq. (2.5), first as a voltage divider ratio and then as a

ratio of polynomials in s:
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Fig. 2.1 Buck power stage with parasitic resistances R, and Rc'
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c
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1+ s[C®R_+ RJR,) + =]+ s2 LC
c % ®R+R)) (R + R.)

)

(2.5)
Parallel vertical lines are used to denote a parallel impedance combin-
ation; for example, the equivalent impedance consisting of an impedance
Z, in paral}el with an impedance z, is symbolized by z, Il Z,-

1f Rz and Rc had been omitted in the buck power stage, the only

significant change in the nature of Eq. (2.3) for typical numerical
values would be the removal of the zero in the numerator of Gf(s). The
magnitude and phase angle of Gf(jw) represent the gain and phase shift
which -an input sinusoid of frequency w undergoes in passing through the

filter; thus, a filter input given by Eq. (2.6) produces the output

described by Eq. (2.7):

A sin(uwt + ¢) . (2.6)

v (t)

v(t) = A|Gf(jw)| sin (wt + {Gf(jw) +9) . (2.7)

The collective display of a transfer function's phase shift and
logarithmic magnitude, as a function of logarithmic frequency, is
called the Bode plot. A typical Bode plot which corresponds to the buck

power-stage transfer function obtained by substitution of Eq. (2.5) into
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Eq. (2.4) is shown in Fig. 2.2. Bode plots provide complete design and
stability information for linear systems. Notice that the amplitude of
the filter transfer function shown in Fig. 2.2(a) does indeed have the
characteristic of a low-pass filter.

The describing function was introduced in Chap. 1 as a tool which
can approximately characterize nonlinearities, but it can also be used
for linear systems. Since superposition holds for linear systems by
definition, a sinusoidal input at a frequency w produces an output
sinusoid at the same frequency which is related to the input sinusoid
by the linear transfer function, regardless of what other input signals
are present. Thus the describing function of a linear system is simply
the linear transfer function and is independent of sinusoidal amplitude.
For example, the describing function DF of the buck power stage is

given by Eq. (2.8)
DF = G(juw) = Vg Gf(jm) . (2.8)

The linearity of the buck power stage gives its transfer function
yet another useful interpretation. The output frequency spectrum is
completely specified when the input frequency spectrum and the linear
transfer function are given. The power-stage input is just the switch-
controller output, so the exact frequency spectrum of the buck converter

can be found once the frequency spectrum of the controller output is

obtained.
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Fig. 2.2 Bode plot of buck power-stage transfer function.
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2.3 Controller

In order to find the exact frequency spectrum of the buck con-
verter, one must be able to compute the frequency spectrum of the
switch controller. A suitable dimensionless control input, from the
viewpoint of stability analysis, consists of a dc and an ac signal

given by Eq. (2.9)
e(t) = U + u sin(wt - ¢) . (2.9)

The modulation amplitude u and frequency w, the phase lag ¢ of the
sinusoid with respect to a time reference, and the dc level U completely
specify the modulated input to the controller.

The immediate objective is to select a possible controller for
whiéh, with an input of the form described by Eq. (2.9), the exact
frequency spectrum of its output can be obtained analytically. Although
. proof is deferred until Sec. 2.3.2, a controller which meets the above
objective will be described here.

The switch controller which will be used exclusively in the
remainder of this thesis is a uniformly-sampled, linear-lead, pulse-
width-modulator (PWM). This controller usés input samples, which are
obtained at uniform time intervals T, to modulate the widths of a
sequence of unity-amplitude pulses. One pulse is positioned at the
leading or initial portion of each interval T; its width TN’ within the

constraint 0 < TN < T, varies linearly with the input sample as shown

in Fig. 2.3.
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Fig. 2.3 Saturation characteristic of PWM.
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Fig. 2.4 PWM response to sinusoidal modulation;
(a) input, (b) output.
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Figure 2.4 illustrates the operation of a PWM for a control input
given by Eq. (2.9). The time origin is chosen for convenience to
coincide with the reference sampling-instant which gives values of
¢/w between 0 and T. The continuous input and the resulting sampled
values are shown in Fig. 2.4(a), whereas Fig. 2.4(b) shows the
rectangular output waveform with unity-amplitude pulses whose leading
edges occur every T seconds and whose trailing edges are modulated, in
accordance with Fig. 2.3, by the sampled input values. Constraints on
u and U are imposed in Eq. (2.10) to avoid additional conceptual
complexity caused by‘saturation effects; Eq. (2.10) also reflects a

restriction on ¢ determined by the choice of time reference

~
0<Uu<1
u < min(U, 1-0) < % ) (2.10)
0 < ¢ < T .

J

" Now that the controller has been specified, one is ready to
find the frequency spectrum of the modulated output shown in Fig. 2.4(b).
The task is admittedly difficult when the modulation frequency w and
switching frequency, ws z 2n/T, are independent. A qualitative discus-
sion of the expected frequencies and their relative amplitudes follows,
and is intended to make plausible the use of a simplified approach
based on the describing function. The statements are presented here
without proof, but will be demonstrated in Sec. 2.3.2.

If the PWM input is ummodulated, the remaining dc input causes a
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square wave of period T to be generated at the controller output. The
frequency spectrum of this output has components at all integer
multiples of the switching frequency w_» as shown in Fig. 2.5(a). The
amplitude of the mth switching harmonic, or multiple, is attenuated,
when compared with the amplitude of the fundamental switching frequency,
by a factor of 1/m.

Consider now the modulated input and output that were shown in Fig.
2.4. Recalling an earlier observation that all switch controllers are
inherently nonlinear, one expects not only the fundamental modulation
frequency w in the output, but also all higher harmonics of w. In
addition, harmonics of w appear as sidebands around all the harmonics,
including the fundamental, of W . If u is the amplitude of a sinusoidal
input to an arbitrary nonlinearity, then the amplitude of the nth
harmonic in the output is of order u". Not only the nth modulation
harmonic, but also the nth sidebands of each switching harmonic in the
output, have amplitudes which are limited to the order of u" for the
modulated PWM under consideration. Figure 2.5(b) illustrates the
amplitude spectrum of the modulated PWM; for the sake of clarity, the
case 1s shown where w is much less than wg - Since the effective cut-off
frequency of the filter in a well-designed converter is less than Wy

one is concerned primarily about modulation frequencies less than ws:
w < w . (2.11)

If the modulation amplitude u is small with respect to U, then the
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(a) unmodulated, (b) modulated, (c) modulated with small
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amplitudes of the higher-order harmonics of w and sidebands of switch-
ing harmonics in the output are negligible with respect to the amplitude
of the fundamental modulation frequency. The remaining frequency
components are shown in Fig. 2.5(¢). Since the PWM output passes
through a low-pass filter whose cutoff frequency is intentionally chosen
less than w,» one can assume that frequencies which are inclusively
higher than W do not contribute to the converter output spectrum as
effectively as frequencies lower than Wy . 0f the two frequencies, w®
and wSFw, that can possess appreciable amplitudes in the converter output,
the first one can be accounted for by the describing function. The
following section treats a special class of modulation in order to
derive a simple describing function for the PWM, although the method is
applicable to general switch controllers,

2,3.1 Linearized Describing-~Function Analysis

The preceding paragraph justified the importance of two frequency
components in the spectrum of the PWM output when its inpﬁt is modulated
at a frequency w. These two frequencies, w and 0 =, are distinct except
for the case w = wS/Z where special care is necessary to evaluate the
net effect of the w and 0 =W components. It should be a foregone
conclusion that a single frequency component of the output should be
easier to compute than the complete output spectrum. The describing
function DF of the PWM defines the output component at frequency w in
terms of the input modulation, so is a logical analytical tool for
obtaining a quantitative description of first-order behavior. Though it

portrays an incomplete picture of the output spectrum, DF analysis is
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generally tractable, whereas the exact spectrum of arbitrary switch
controllers may be analytically impossible to obtain. It is the purpose
of this section to derive the describing function of the PWM,

The modulation input of the PWM is given by Eq. (2.9), subject to
the restrictions in Eq. (2.10) which prohibit saturation of the pulse
widths in the output. Equation (2.12) focuses attention on the output
component at frequency w, where ¢d and Md denote, respectively, its
phase lag with respect to the time origin at one of the sampling

instants, and its magnitude:

d(t) = Md sin(wt - ¢d) + (other frequency components) . (2.12)

Once Md and ¢d have been determined, it is straightforward to evaluate

the DF as shown in Eq. (2.13)

-1
Mye © 3¢
DF = ——— = (G e s (2.13)

where
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The subscript "m" refers to modulator parameters; DFm, Gm, and ¢m are,
respectively, the describing function, equivalent gain, and equivalent

’phase shift of the modulator. One must now find Md and ¢d for the
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given controller.

Recall the fact that a periodic function in time can always be
expanded, either analytically or numerically, into a Fourier series.
For the modulated input given by Eq. (2.9) and illustrated in Fig. 2.4(a),
one can obtain a necessary and sufficient condition which insures that
d(t) is periodic in Fig. 2.4(b). In particular, if the phase shift of
e(t) after some integral number N of sample intervals is an integral
multiple M of 27, then the sequence of sampled input values, and hence
d(t), is periodic. The periodicity condition for d(t) is given by

Eq. (2.14),

WNT - ¢ = 20M - ¢ (2.14)
or, equivalently, since wg = 2n/T, by Eq. (2.15):
w/wS =M/N<1 |, (2.15)

The inequality arises from Eq. (2.11).

Two frequencies are said to be commensurable if both are integral
multiples of a common frequency; otherwise, they are incommensurable.
Suppose Wy and w, were commensurable, as expressed by wy = L W and
Wy = g W s where wx is the common frequency factor and £ and q are
integers which have no common factor. The ratio of commensurable

frequencies wl/w2 is the integer fraction #/q, which is the same form as

Eq. (2.15). Thus d(t) is periodic if and only if the modulation and
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and switching frequencies are commensurable.

If d(t) is periodic, then w and wy are related by Eq. (2.15). Let

W, be the common factor of the commensurable frequencies, and let Tx be

its period, as defined in Eq. (2.16):

w, =T w /N=w/M
x 8 (2.16)
T = 2n/w_ = NT .
x X
The Fourier series expansion of d(t) is given by Eq. (2.17),
- jpw_t '
a(t) = 2, A e x (2.17)

p=_w

where the complex amplitude coefficient Ap is given by the integral

in Eq. (2.18)

H‘H

T
X
—jpth
A.P = d(t) e dat . (2.18)
0

X

Since the amplitude coefficient is evaluated by a finite integral, one
has some hope for a simple analytic result; on the other hand, an infi-
nite integral must be performed to evaluate the frequency spectrum when
d(t) is aperiodic . In the interest of simplicity, only commensurable
modulation of the PWM will be considered in the remainder of this
section,

The describing function concerns only the output component at the

modulation frequency w so one examines Eqs. (2.17) and (2.18) for the
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values p = + M (see Eq. (2.16)). Observe from Eq. (2.18) that since
*
d(t) is real, A—p is the complex conjugate Ap of AD, as shown in

Eq. (2.19):

*
A_p = Ap = complex conjugate of Ap . (2.19)

One feels intuitively that, when w and w, are commensurable, the magni-
tude and phase shift of the describing function are both dependent on
the modulation phase lag ¢ with respect to sampling instants.

The introductory remarks of Sec. 2.3.1 included a warning to treat
with special care the situation w = S% which corresponds to the values
M=1and N= 2 in Eq. (2.15). This case will now be examined in its
entirety for the associated DF and will illustrate the possible
dependence on ¢, The PWM input and output waveforms are shown for two

values of ¢ in Figs. 2.6(a) and 2.6(b). For ¢ = 0, the first figure

shows a complete absence of output component at w; the second figure

shows a large modulation-frequency component in the output for ¢ = %-.

Consider %-=-% and evaluate Eq. (2.18) for p =M = 1. For an input

given by Eq. (2.9) and (2.10), the PWM output is given, in conjunction

with Fig. 2.3, by Eq. (2.20).

1, KT < t < kT + T * e(kT)
d(t) = , k = integer (2.20)

0, KT+ T * e(kT) <t <KkT+T

From Eqs. (2.18) and (2.20), one can evaluate A, as:

1
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e—jWU_ jum sin ¢ -jur sin ¢
= e - e
-j2m
1 -jn(U + 1)
= ;—sin (uw sin ¢) e . (2.21)

Equation (2.19) is used with Eq. (2.21) to obtain A_, in Eq. (2.22)

1

A = sin(ur sin ¢) ej"(U + 1)

-1 T

(2.22)
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One can nov rewrite Eq. (2.17) as Eq. (2.23)

d(t)

jut -jwt jpth
A, e + A—l e + E ; A e

p¥ *1

sin(un sin ¢)

+ e J

[ jlwt - 70 - m) -j(wt - 10 - n{]
e

m
Jpuw_t
+ E A e X
4 P
P¥ +1
2 m jpth
= ;-sin(uﬂ sin ¢) sin(ut - U - E-) + E Ap e . (2.23)

p # 1

which is the same form as Eq. (2.12), so one can identify Md and ¢d:

_2 -
Md.— - sin(ur sin ¢)
w 1
s 'w—s" = 3 . (2.24)
- I
¢d = U0 + 3

Equation (2.24) now allows one to evaluate exactly the amplitude and

phase of the modulator DF in accordance with Eq. (2.13):

2 . .
G = o sin(um sin ¢)

-1
=3 . (2.25)

mE ‘E

o =0 - -3
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Equation (2.25) gives the exact DF of the PWM for the special case

w_

&
S

Notice that u and U influence only Gm and ¢m’ respectively; although

. It shows that both Gm and ¢m are functions of ¢ as expected.

ot

both Gm and ¢m will generally be functions of u. The modulator gain Gm
is strongly dependent on ¢, but is relatively insensitive to the value
of u.

The linearized describing function DFmo is defined in Eq. (2.26) as

the limit of DFm for vanishing modulation amplitude:

DFmo = 1lim DFm = linearized describing function
u>o
j¢
_ mo
= Gmo e ’ (2.26)
where
G = |pF_ |
mo mo

¢mo - DFmo .

The removal of the u parameter from the DF exposes the predominate
effects of other more influential modulation paramters, ¢ and U. Because
DFm is only slightly sensitive to the value of u, the linearized describ~
ing function should yield good DF predictions, yet it is easily derived
analytically. To obtain DFmo’ one needs to determine only the leading
term in the expansion about u = 0 of the controller output components at
the modulation frequency. For simplicity, the leading term in u can be

resolved as soon as it is practical to do so.
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In ant’cipation of more difficult, or impossible, analytical eval-
vation of the exact DF for g—-# %- where the linearized DF may be
advantageous, one should find the linearized DF in the present situation
for comparative purposes. Because ¢m is independent of u, it is straight~

forward to obtain from Eqs. (2.26), (2.13), and (2.25) the linearized

describing function,
3¢ = "0 - 3)

DF
mo

1]

2 sin ¢ e

~-jmu i2¢ ® 1
e 1 -e ) - = 35 > (2.27)
s

which is plotted in Fig. 2.7. Notice the strong dependence of DFmo upon
the modulation phase with respect to the sampling instant which was
chosen as the time origin.

Since exact and linearized describing functions have been found for
the special case,%-=-% » one can now examine other values of M and N
in Eq. (2.15). Foi simplicity, only the linearized DF will be
derived here. From Eq. (2.18), one follows the procedure exemplified by

Eq. (2.21) to obtain the complex Fourier coefficient for the output

component at the modulation frequency:
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Fig. 2.7 Linearized PWM describing function, oo/ouS = 1/2.
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N-~1 kT + Te(kT)

-jMw t
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= T E : j[ e x dt

x - —
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N-1 _ .
) 1 Z ;ijx.T(k +U+u 31n[Mkwa - d>]_ e—JwakT]
-iMw T
J X X k=o [_
N-1 [_; 24 2, _; 2mM
! . I 5 (k + U + u sin| N k ¢])_ . A k
-jM27y
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(2.28)

I
=4
7~
'
Nt

Since the linearized DF is desired, expand AM as a Taylor series in u

2
Ay(u) = A (0) +u AL(O) + S5 AU(O) + ... (2.29)

where a prime indicates the derivative of AM with respect to u. One

finds AM(O) from Eq. (2.28):

- 21 U N~1 -3 2mM K
1 N E : N
AM(O) = -—-———_jMzﬂ <e - 1> e . (2.30)
k=0

As an aside, one can do the summation in Eq. (2.30) by recalling



55

the geometr’c progression:

N-1 1z
k 1=z °» =2zt1
7 25 = (2.31)
i:‘ N R z=1
ijZﬁE
where z is an arbitrary complex variable. let z = e in Eq. (2.31);

observe that z = 1 if and only if %-is an integer, whereas zN = 1 for

any M and N values.

N-1 , 2™

k 0, not an integer

(2.32)

o
i+
L
=
]
2
ZiR 2=

an integer

Continuing the evaluation of AM(O), one concludes, from Eqs. (2.30),
(2.32), and (2.15) that AM(O) = 0. This is a general result and can be
qualitatively justified as follows: if u = 0, then the input is
unmodulated and the outﬁut has no component at w (unless w is some
multiple of(&s).

A comparison of Eqs. (2.12) and (2.17) shows that AM(u) is necessary
to obtain Md(u) and ¢d(u);

jwt -jwt

e + A e
Ay M

jwt -jwt
Ay e + AfM e R (2.33)

Md sin(wt - ¢d)

however, Eq. (2.28) cannot be evaluated in general by a closed form. In

an effort to determine DFmo’ consider expanding Eq. (2.33) as a series in
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u by substituting Eq. (2.29) for AM(u), where AM(O) = 0,

" juwt

2
M (W) sinfot - ¢ ()] = [u 4} (0) +l;T A 0 + ... e

u2 " % -jut
+[u Aﬁ(O) + 37 4, (0) + ...] e

u ZIAI:[(O) | cos [wt + A;I(O)]+ &(u?)

u 2|Aﬁ(0)|sin(mt + {éﬁ(O) + é5 + &(u?)
(2.34)

Thus as u approaches zero

lim Md(u) = Mdo =2 ulAﬁ(O)l
u>o
, (2.35)
lim ¢ (u) = ¢ = - {AQ(O) -3 } .
u->-0

so the linearized describing function defined in Eq. (2.26) is given by

-j¢
Mdo e do
DF o = — =3¢
ued
i¢
_ mo
=G e s (2.36)

where
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[p]
]

o - Z’Aﬁ(On (2.37)

o
1]

mo

6+ [AL(0) + 3 . (2.38)

Equation (2.28) is used to evaluate AQ(O):

N-1 , 2™ . | 2mM
Ahzl(u)= z [-];sin(‘z'@'&‘k—tb)e— T(k+U+US1n[N k_¢])]
N N
k=0 : (2.39)
N-1
2™
-j — (k + 1)
5013 (g
=0
. 2mM N-1
A T TS T -3 2n Bl
= —z—‘N——'—— Ne - e e . (2.40)
] k=0

The summation in Eq. (2.40) is given by Eq. (2.32) and is zero for all

M and N values (0 < M < N) except %-=~%.
. 2™
1-J(¢+;U+%) ML
= e y = o
L0y =) N2 (2.41)
A =3( T+ 7 w1
sin ¢ e s N-3
Substitute Eq. (2.41) into Eqs. (2.37) and (2.38) to get
. 2T™
e 17X v R %~# %
DF = ' (2.42)
mo j(@ - 0 - %-)

2 sin o e

ZiR
1
N

’
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Equation (2.42) is the linearized describing function of the PWM
when w and w, are commensurable. The leading term in the expansion of
AM as a function of u is sufficient to completely specify DFmo; as a
result, DFmo is much easier to evaluate than the exact DFm. Notice the

comforting correlation between Egs. (2.27) and (2.42) which give DFmo

for the special case g—-= %-. For 9—-#-% ’ DFmo is particularly simple:

its magnitude is unity and its phase angle is independent of ¢ and is a
linear function of U. The magnitude and phase of DFmo are shown as a
function of w in Fig. 2.8; any resemblance to a Bode plot is superficial
since the frequency scale is linear, instead of logarithmic. Dots are

used for data points as a mnemonic device for remembering the frequency

w__ M

W N
s
The analysis has considered only commensurable frequencies to this

restrictions

point; the treatment of incommensurable frequencies, g—-# %-, is a
logical extension. One does not expecf the nature of the DF to change
suddenly as w varies continuously through the frequency range

0 <wc< w.s 8O the linearized describing function for incommensurable
frequencies should conceptually fill in the spaces between dots in

Fig. 2.8. When w and w, are incommensurable, the ﬁhase shift in the
modulation sinusoid after any number of sampling periods is never a
multiple of 2w, so there is no periodicity in the output of the PWM. The
DF in this situation should be independent of ¢ regardless of the
sampling instant chosen as time reference. The aperiodicify of the PWM
output makes exact DF evaluation difficult since the straightforward
Fourier series formulation no longer applies. The following section is

concerned with incommensurable frequencies.
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Fig. 2.8 Linearized PWM describing function for commensurable
frequencies, w/wS =M/N # 1/2 (0 < M < N); (a) magnitude,
(b) phase.
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2.3.2 Exact Output Spectrum of Controller

Section 2.3.1 treated special cases of modulation in order to
illustrate analytic procedures which are generally applicable to non-
linear switch controllers. The output spectrum of a PWM was discussed
qualitatively and the approximate first-order output component at fre-
quency w was obtained for an input which results in a periodic output.

A necessary and sufficient condition for a periodic‘PWM output is commen~
surable frequencies, %%-= %-.

Here the DF for incommensurable frequencies is sought. This prob-
lem can be imbedded within a larger problem that seeks the PWM output
spectrum which occurs when w and w, are independent. The solution for
independent frequencies can be examined at will for either commensurable
or incommensurable frequencies, but it is rarely analytically tractable.
Fortunately, the solution can be found for the PWM with an input consist~-
ing of dec¢ plus sinusoid.

The exact frequency spectrum of the PWM output is presented in this
section and then is reduced to show the spectrum corresponding to
incommensurable and commensurable frequencies. Comparisons are drawn
where appropriate between the results of the present section and the

corresponding equations of Sec. 2.3.1, Finally, a linearized transfer

characteristic emerges which is valid for modulation frequencies less than

W

Nlm

The successful derivation of the modulated output spectrum hinges
upon the existence of a bivariate function g which satisfies Egqs. (2.43)

and (2.44)
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s(x,y) = g(x + 2rm, y + 2mn), mand N are arbitrary integers (2.43)
glu t, wt) = d(t) . (2.44)

Since g(x,y) is doubly periodic, it can be written as a double Fourier

series,
g(x,y) = z Z An oJ x + ny) , (2.45)
M=m=o0 M=o
where
27 27 _
1 -jx + ny)
A = g(x,y) e dx dy . (2.46)
m,n (2’rr)2
00

Once An)n is known, then the desired spectrum of d is given by sub-
’

stitution of Eq. (2.45) into Eq. (2.44)

j@nws + nw)t

a(t) = N A e ) (2.47)
ry

m,n

3

Evaluation of a modulated spectrum by means of a two-dimensional

(4)

approach was first suggested by Bennett , and later elucidated by

Black(s) and Rowe(6). Details in the computation of A_mn are presented
s

in Appendix A; the resultant spectrum shows in Eq. (2.48) that d(t) is

composed of a dc term, harmonics of w, harmonics of s and sidebands of

all ws harmonics:
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jmw t
d(t) = U+ ,mi —e °
m?0 37s
_‘;‘ N -in(¢ + 1) J_ [uT(mw_ + nw)] jmw_ + nw)(t - UT)
LT,I‘-J é- e n S e s
) jT(mwS + nw) ’
me + nw #0 (2.48)

where Jn(z) is a Bessel function of the first kind.

The nature of this spectrum was qualitatively depicted in Fig. 2.5(b).
One could, if interested, plot the amplitude of the nth harmonics and
sidebands versus n with u and wT as parameters. It is sufficient here to
observe that, since'Jn(z) is of order zn; these nth—order components
decrease in amplitude as u” so are usually negligible when compared to

the fundamental.

Incommensurable Frequencies. The spectrum in Eq. (2.48) can be re-

written as in Eq, (2.49) to show explicitly the various harmonics and
sidebands which occur at distinct frequencies when w and w, are incommen-
surable. Each subscript pair (m,n) refers to a unique frequency; for

example, no sideband of wg oF its harmonics can coincide in frequency

with a harmonic of w,

-3 2mmU Jmo t
d(t) = U + 25 [1 - e Jo(uZﬂm)] &

j2mm
m#0
=jn(¢ + m) Jow(t - UT)
- j; J (unwT) e e
nf0 " jnwT
D A 3 s, + ) (e-0T)
- e
m#0 o © TpluT(mag + nw)] TG + oy T

(2.49)
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Equation (2.49) is easily arranged into the form of Eq. (2.12) in
order to icentify the amplitude and phase lag, with respect to the time

origin, of the fundamental modulation frequency in the output

=
I

2
4= o7 Jl(uwT)

(2.50)

fl

¢4 = ¢ + UuT .
Substitute Eq. (2.50) into Eq. (2.13) to get the exact DF for incommen-
surable frequencies:

2 =-jwlT
DF_ = —— J_(uwTl) e . (2.51)

m uwl "1
The magnitude Gm and phase ¢m of DFm are plotted in Figs. 2.9(a) and
2.9(b) with dashed lines to represent the restriction to incommensurable

M

w
f i — .
requencies — # N

Observe that both Gm and ¢m are independent of ¢
as anticipated; also, Gm and ¢m can be independently varied as either
u or U is changed.

The plot of Gm versus u is the same shape as Fig. 2.9(a) since u
and wT appear as a product in Gm; thus, Gm is relatively insensitive to
the value of u for u << %-. This condition is necessary for the linear-

ized describing function to be meaningful. Equations (2.51) and (2.26)

yield DFmo

(2.52)

mo >
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Fig. 2.9 Exact PWM describing function for incommensurable frequencies,
m/ws # M/N; (a) magnitude, (b) phase.
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which is sketched in Fig. 2.10.

Comparison of Figs. 2.8 and 2,10 reveals the gratifying conclusion
that DFmo is a continuous function of w, except for the special case
%%—= %-, regardless of whether w and ws are incommensurable or commen-
szrable. This observation substantiates the intuitive expectation stated
in the final paragraph of Sec. 2.3.1 concerning the continuous nature of
the DF. Attention will be turned now to the exact treatment of commen-

surable frequencies.

Commensurable Frequencies. Secfion 2.3.1 derived the linearized

describing function of the PWM when w and w, are commensurable. The
present analysis attempts to formulate the exact DF for the same situa-
tion in an effort to remove the restrictions on u which result from
linearization.

Suppose that W is the common factor in the commensurable frequencies,

as defined in Eq. (2.16). The frequency factor,

mo + nw = (mN + nM)wX =T, (2.53)

in the general series expansion of the modulator output, Eq. (2.48), shows
that commensurable frequencies result in the interaction or superposition
of many orders of harmonics and sidebands. Thus, there are an infinite
number of m and n values which produce an output component at ra . In
particular, if the indices (mr, nr) produce a component at Tw then so

do the indices (mr - qM, n_+ gN) for any integer q. The components at

frequency rux can be grouped by summing over the index q; the resulting
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Fig. 2.10 Linearized PWM describing function for incommensurable
frequencies, u)/wS # M/N; (a) magnitude, (b) phase.
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specialization of Eq. (2.48) for commensurable frequencies is given by

Eq. (2.54)

jmw t
_ 1 s
d(t) = U + i Tomm e
jart

SICHER O TCIED

jrw_ (t-UT)
-Z;JYNe J (ur—glr-)e X
Y

pay j2mr n_ + gqN N
q r

The components of d(t) which occur at frequency rw = *w =t Mo
determine the amplitude and phase of the sinusoid defined in Eq. (2.12).
Equation (2.55) shows the r = + M terms of Eq. (2,54); observe from

Eq. (2.53) that the appropriate m and n indices are (mr, nr)r - =

+ M
(0, £ 1),
N 2wM . 2™
L sin(wt - ¢d) = - EE pev IR qN(u 5 ) sin(wt - = U - (1 + gqN)(¢+m))

q (2.55)

Unfortunately, Eq. (2.55) shares the same fate as an earlier analysis
of commensurable frequencies which culminated in Eqs. (2.28) and (2.33);
namely, a summation has been encountered that cannot be summed analyt-
ically in a closed form. Equation (2.28) was derived from a simple
Fourier series expansion whereas Eq. (2.55) is based on a double Fourier

series expansion in two independent variables and arises when the two
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variables are linearly related; however, it can be shown that both

methods lead to precisely the same result for commensurable frequencies,

as follows.

Substitute into Eq. (2.28) the expansion (see Ref. (7), Eq. 9.1.41):

o t jz sin 6 _ 25 (e + je)m 1) . (2.56)

The second exponential in the square bracket of Eq. (2.28) sums to zero

by virtue of Eq. (2.32) so the remaining terms in AM become

N-1
_ 1 2 -jng(kHJ) -j-z-ll\;-h-d-usin(-z-gy-k—w
AM ~iM27 e e
=0
N-1 2mM 2mM
LY E ey e e
" Twor L © 2 © LG W
k=0 m
2™
_ e-J _Tf-lj n Jmd 27 N-1 -j 2%& (L +m) k
= T> e J ( L2 ) :E: e
jam e m N
m =0
2m™
-3 ==U . N-1 . 2mM '
Lt N g e oy N G mk
Tim L C WO L e
m k=0

(2.57)
The k summation is the geometric progression evaluated in Eq. (2.31)
and has the value N for 1 - m = pN, p any integer; otherwise it is zero.
By summing over p, all values of m = 1 -~ pN which contribute to the

series are accounted for:
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s 2™ U
- IR =3(1 = pN) (¢ + m)
PSR e
Ay -3iM2m 1 - pN\M T
P
. 2™
iU -3 + pN) (¢ + )
=-Ne - z e . J (.Z.Tln_l)
M2 1+ pNY N .
P
(2.58)

When Eq. (2.58) is substituted into Eq. (2.33), the result is identical
with Eq. (2.55).

It has been shown for commensurable frequencies that two methods
give equivalent expressions for the describing function, but that these
expressions cannot be evaluated in closed form. When the exact DF is
linearized by restricting u, an analytic approximation DFmo results, as
given by Eq. (2.42). At the other extreme, incommensurable frequencies
can only be»analyzed by the method that assumes the frequencies are
independent. The linearized DF is continuous as w varies through both
commensurable and incommensurable frequencies, except for the special
w =

1 . s
case E—whlch can be accounted for by restricting w to the range

€

s
0 <wc< ws/Z; thus , one should use the simplest possible derivation

(one~-dimensional Fourier series for commensurable frequencies) when
seeking DFmO. The frequency restrictién on w is not unrealistic since if
w were in the range ws/Z < w < W then an output component of comparable
amplitude would lie in the lower half-band at o, - and would not be
accounted for by the describing function,

The (linearized)_deécribing function of the PWM which emerges from
two restrictions is given by Eq. (2.52). It is valid to first-order

approximation for both commensurable and incommensurable modulation
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frequencies in the range

0 <wc«< ws/2 s (2.59)
and for sufficiently small modulation amplitude,

0 < u << %- . (2.60)
The simple form of DFmo makes it particularly useful for analytic

insight into complex switching systems.

2.4 Converter

Since the buck power stage and PWM SWitCh controller have been
individually analyzed, one can now consider the converter which results
from their interconnection. The exact frequency spectrum of the PWM
output d is given by Eq. (2.48) and consists of a superposition of
sinusoids and dc. Since the buck power stage is linear, Eqs. (2.2),

(2.6), and (2.7) show that the power-stage output v is given by,

G.(Gmw ) jmw t
v‘gt);= Gf(O) U+ zz §mw Ts e 8
m#0 s

s
; -jn(¢+w)_Jn[uTmes+nw)] j(mws+nw)(t—UT)
- 25 ji e jT(mms+nw) Gf[J(mws+nw)] e

s
m n

my  + nw # 0 (2.61)
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which again is a superposition of sinusoids and dc. The filter transfer
function Gf(jm), given by Eq. (2.5), is a complex variable whose
characteristics are independent of modulation parameters. Thus Eq. (2.61)
shows that the converter DF is the product of the PWM and power-stage
describing functions for either incommensurable frequencies or first-
order linearization of the modulation amplitude.

The exact analysis of the control path for a specific dec~dec converter
has thus been completed. By no means can these results be generalized
to other converters, since the buck power stage was the only type for
which the transfer function was known. A method which is capable of
obtaining the DF for boost and buck~boost power stages will be
developed in the following chapter, The results of the present chapter

can be used as a comparison standard for evaluating proposed methods of

analysis.
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Chapter 3

DEVELOPMENT OF AVERAGING METHOD AND AVERAGED POWER-STAGE MODELS

3.1 1Introduction

In view of the absence of simple circuit models for the boost and
buck-boost power stages, attention is directed now to the establishment
of suitable models. Unlike the buck power stage, the circuit topology
of the filter components in the boost and buck-boost power stages is
changed when the switch states reverse. Filter characteristics of the
basic power stages have tﬁus been obscﬁred by lack of a model which
could account for the change in circuit topology, and yet lead to useful
transfer functions.

A major part of the original contributions in this theis is
presented in the present chapter., Section 3.2 provides a plausible
basis for the concept of slowly-varying time averages, from which an
averaging procedure is developed. Next, an appropriate model which
includes typical parasitic components is developéd for a representative
(boost) converter power stage as an example of the averaging method, and
illustrates inherent assumptions and limitations. Finally, circuit

models are presented in Sec. 3.3 for the two femaining power~stage

types.

3.2 Example Treatment of Boost Power Stage

Because it is sufficiently general to elucidate the procedure which
applies for other circuit configurations, the boost power stage 1s con=-

sidered here in detail to illustrate the method that is developed in this
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chapter. Consider the slightly modified version shown in Fig. 3.1 of
the boost power stage which was originally introduced in Fig. 1.7(a).
The equivalent series resistances of the capacitor and the inductor are
included since these small, but unavoidable, parasitic parameters may
influence both efficiency and frequency response. Since practical
switches have nonzero "on"-resistance, R2 represents not only the
inductor resistance, but also the source output resistance in series
with weighted averages of the switch resistances. 1In general, the
switch model may also include an "offset" voltage when the switch is
in the "on" state. More accurate switch models were disregarded, in the
interest of simplicity, after it was discovered through simulation that
typical component values in the switch models cause only second-order
effects,

Equations (3.1) and (3.2) describe the exact circuit of Fig. 3.1.
The right-hand side of the circuit equations are identified as driving

functions,

L -d—i—d({—l + R, 1(6) = v (6) = v_(8) : (3.1)
dvc(t) R R
S T R vt =373 R O (3.2)

Subsid{ary equations are:
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i(t) 1 (t)
— v (t) s' — v(t)
AN—JT0 0’[} O—
R, L
I
| R
vs(t)<+> S \ g — d(t)
- ' v ()

Fig. 3.1 Boost power stage with parasitic resistances Rl and RC.
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R R ';RC
v(t) = R+ R Vc(t) + TR 1n(t) (3.3)
c c
0; S closed, S' open
vn(t) = (3.4)
v(t); S open , S' closed
0; S closed, S' open
in(t) = (3.5)

i(t); S open , S' closed
Notice that v and in can be expressed, in view of Eq. (1.1), as a

function of the switch-drive signal d, so that Eqs. (3.4) and (3.5) can

be replaced by:
v (£) = [1 - d(©)] v(t) (3.6)
1 () = [1-d()] i(e) . (3.7)

Equations (3.6) and (3.7), together with the following definitions,

L

T, T =— (3.8)
i~ R

T, = (R + RC)C R (3.9)

allow Egqs. (3.1)

(3.3) to be rewritten as:
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i%{l + -i-: i(t)= % v (D) = [1 - d®)] v©)} , (3.10)
dv (t) .

c 1 - R - .
— -+¢E;vc(c)- T [1-4d(t)] i(t) , (3.11)
v(t) = = E R v (t) + RIR [1 - d(D)] i(t) . (3.12)

It is evident from the above equations that Fig. 3.2 is an exact
equivalent circuit for the power stage shown in Fig. 3.1. The notational
convention adopted here used circles for independent sources, squares for
dependent sources, and rectangles for impedances. The factor l-d(t)'is a
time-variable gain of the dependent current and voltage generators and
is the principal cause of analytic difficulty.

The following discussion is intended to demonstrate the converter
-insensitivity to fast variations of the driving functions in Eqs. (3.10)
and (3.11). Consider the time interval TN when switch S is closed and
s!? is open and assume vs(t) is a constant Vs' The exact solutions are

easily derived,

VS VS -t/Ti
1(t) = 'ﬁ;‘ - [E;: - i(O)] e (3.13)
0<t«<T
=t/1 - - N
vc(t) = VC(O) e v ‘ s (3.14)

and can be used to determine typical design restrictions on the time

constants T, and Ty Intolerable power dissipation would occur 1f the
v
inductor current were allowed to approach the value = 50 a limitation,

Ry,
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i(t)
q
RQ L

I+

[1-d(e)] v(t)

v (£) (_‘f>

[1-d(t)] i(®)

Fig. 3.2 Equivalent boost power stage.




78

R2 i(TN) << L g%~ » on the instantaneous resistive power requires the
T
N

restriction T, > TN. Output voltage ripple can be constrained by

imposing the condition VC(O) - Vc(TN) << VC(O), which results in the
requirement TV >> TN. Since TN varies between 0 and T, the constraints

on power dissipation and ripple are always satisfied if
T,, T_ > T . (3.15)

Useful converters invariably satisfy Eq. (3.15) or suffer the con-
sequences of large output ripple and poor efficiency. Because the time
constants of i and v, in Egqs. (3.10) aﬁd (3.11) are much greater than
the switching period, variations in the driving functions which occur
during a time interval T are effectively averaged by the power stage.
This very important observation is the underlying basis for ensuing
assumptions which engender a tractable analytic method.

The foregoing comments suggest that an averaging method of some
kind is'a suitable operational procedure for analyzing the approximate
low-frequency response of a switched power stage. The precise
algorithm chosen for the averaging process is not important as long as
it is reasonably defined. Equation (3.16) describes a moving time-
average of a function g over a time interval T and is one possible

algorithm:

t
1
<g>(t) = f/g(r) dr . (3.16)

t-T
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One should inquire into the question of how the averaging opera-

tion defined by Eq. (3.16) affects the signal components of g. Suppose

jwt

g is a sinusoid represented by the exponential phasor e ; then, the

average of g

jwt 1 jwt i t-T
¢ty = T [edWt _ Ju )]

ejw(t_%) sin(wT/2)

o T/2 R (3.17)

is simply g with an amplitude attenuation of sin(wT/2)/(wT/2) and a
phase delay of wT/2. The averaging operator is, in essence, a low-pass
filter with cut-off frquency W, = 2n/T; thus, <g> is an acceptable
approximation of g only for quasi-static frequencies, i.e., w § W
Notice that sinusoidal components of g at harmonic frequencies of 1/T do
not appear in <g> ; also, <g> is continuous, even though g may be dis-
continuous. .
It is easily shown from Eq. (3.16) that the average of th;

derivative equals the derivative of the average;

d d{g> .
(> ) = 3820 , (3.18)

hence, the result of applying the averaging operator to Egs. (3.10) -

(3.11) is a new set of filtered state variables with no ripple components,

+ ;;—<i> = %~(<VS> - <(1 - d)v>) (3.19)
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d<VC> 1

— ¢ = B—— -— i
Franiis \.vc> . <@ - did> , (3.20)
v v
where
<> = R _ <v > + RIJIR <1 - d)i> (3.21)
R + RC c c : :

The equivalent circuit corresponding to Eqs. (3.19) - (3.21) is shown
in Fig. 3.3.

Interpretation is now clouded by the product averages, <id> and
<vd>, which hinder the quést for a simple equivalent system in terms
of <i> and <v>. One would like to find the conditions necessary in order
to make assertions of the form <vd> = <v> <d>, etc. The average
product

t
wd> = 2 / v(w) d(w) dw , (3.22)
t-T
can be simplified if one of the factoré is quasi~continuous over the

integration interval; e.g.,

lv(t) —VEZ;(t) | << 1 . (3.23)

A possible variation of v, which satisfies Eq. (3.23), is shown in
Fig. 3.4. Let F be the difference between the instantaneous voltage
over an interval T and the average voltage associated with that

interval:
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<i> <y>

i' <(1~d)v>

R
c
Wo R
5 <(1l-d)i> 1 Ve
1

Fig. 3.3 Intermediate averaged model of the boost power stage.

v(w)

$ |
ﬁ <v>(t)

Fig. 3.4 Example of a quasi-continuous time-dependent variation.
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F(w) = v(w) = <v>(t) , (3.24)

where t~T < w < t, Substitute Eq. (3.24) into Eq. (3.22) to get

<vd>

t
%‘_'/‘[<v>(t) + F(w)] d(w) dw
t-T

<v><d> + <Fd> s (3.25)

which, because the averaging operator is linear, can be rearranged as:

<v><d> = <(v - F)d> . (3.26)

Since IF(t)|<<|v(t)| by virtue of Eq. (3.23), Eq. (3.26) becomes

<¥><d>  =.<vd> , (3.27)
which, to a good approximation, is the anticipated result.

The sole requirement necessary for an approximation such as that in
Eq. (3.27) is that one of the parameters be quasi-continuous, as
expressed by Eq. (3.23). Strict continuity is not demanded; for example,
a discontinuity Av does not invalidate Eq. (3.27) if |Av|<<|v[ . A

similar approximation results for the average of id

<id> = <i><d> N (3.28)
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if 1 is quasi-continuous:

BTG Rl A - (3.29)

When the approximations exhibited in Eqs. (3.27) and (3.28) can

be utilized in Egs. (3.19) - (3.21), the averaged model is described by:

d<i> 1 .. 1 - -
——+ -T—l. <i> = § [<vs> <l = d><v> ] (3.30)
d<v >
c 1 _R .
T + ?—-<vc> == <1 - d> <i> (3.31)
v v
W == 5 z vt RIR, <1 -d> <i> . (3.32)

o]

The equivalent circuit of the boost power stage for these conditions is
shown in Fig. 3.5. The interpretation of effects caused by the switch-
drive d is now readily apparent: even though the factor <1 - d> is a
time-variable gain for both the dependent voltage and current generators,
the averaged generator gains, in contrast with the switched gains in

Fig. 3.2,are continuous variables and any changes must occur slowly with
respect to the switching frequency. As a consequence of quasi-static
driving functions V> and <d>, the state variables <i> and <v> have no
switching ripple; thus, the relationship expected between a switched
state variable and its analog in the a&eraged model is as shown in

Fig. 3.6.

It may be well at this point to state an assertion invoked in the
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<i> <y>

<l=d><v> Rc
>
<Vs> i-.> < > 3 R
<1-d><i> ? Ve
.:I:.C

I+

Fig. 3.5 'Averaged model of the boost power stage.

x(t) x(t)

(a) (b)

Fig. 3.6 Corresponding state variables in (a) the switched
power-stage model, and (b) the averaged power-stage
model.
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usage of the averaged models. Given a switching power stage whose
output voltage, induétor current, and source voltage are quasi-
continuous, one merely asserts without proof that quasi-static transfer
functions and responses are acceptably simulated by the averaged power-
stage model., Figure 3.7(a) illustrates a switching power stage whose
transfer function G(jw) is unknown; however, the transfer function
G*(jw) of the averaged power stage in Fig. 3.7(b) is alleged to be
analytically tractable and representative of G(jw) for quasi-static
power-stage inputs and quasi-continuous state variables.

The principal achievement of this section has been the development
of an approximate averaged model of the boost power stage. The model,
illustrated in Fig. 3.5, is subject to certain restrictions which,
although unavoidable, do not seriously limit the usefulness of results.
The quasi-static restriction, which arises from the use of averages,
means that analysis of sinusoidal variations must be confined to those
frequencies which are small with respect to the switching frequency.
Since the response times associated with filters inherent in
properly-designed power stages are much greater than the switching
period, the quasi-static constraint is not unduly restricfive. If the
state variables v and i satisfy Eqs. (3.23) and (3.29), then they are
quasi-continuous in the sense that instantaneous values are comparable
with averages; when such is the case, the averaged power-stage models
should adequately represent the approximate low-frequency behavior of
switched power stages. Small discontinuities are admissible. For

example, the step of v in Fig. 3.4, which occurs with the switched
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D(ju) — > G@Gw) > V(w)

(a)

D (ju) — ¢*Gu) p——— v (W

(b)

Transfer function of (a) a switched power stage,

approximated by that of (b) an averaged power
stage.
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current (1 - d)i for nonzero Rc’ is small if ‘RC i(t)|<<|vc(t)|, and
consequently v may be quasi-continuous; however, the switch-drive d is

never quasi-continuous,

3.3 Models for the Buck and Buck-Boost Power Stages

The boost power stage exemplified in Sec., 3.2 the development of an
approximate averaged model which is suitable for meaningful analytic
manipulations. The method used for deriving the model is quite general
and can readily be extended to other circuit configurations. The
corresponding models for the bﬁck and buck-boost power stages are
presented in this section.

Because the details in the development of these averaged models
so closely follow the example in Sec. 3.2, only the final power-stage
models will be presented here. For generality, the parasitic components
R2 and Rc are included as before.

The approximate averaged model of the buck power stage with parasitic
resistances is shown in Fig. 3.8, As usual, the quasi-static restriction
in the averaging procedure limits the frequencies associated with the
model to those less than the switching frequency-%; in addition, the

source voltage must be quasi-continuous:

v (t) = <v_>(t)
vs(t)

<< 1

. (3.33)

The dependent generators in the model of Fig. 3.8 can be eliminated by

the equivalent rearrangement as shown in Fig. 3.9. Interpretation of
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Fig. 3.8 Averaged model of the buck power stage.

<d><v >
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<i>
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<v
c
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+

<v>
R
c
> R

Fig. 3.9 Equivalent averaged model of the buck power stage.
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the model in Fig. 3.9 is gratifyingly simple; the average output voltage
is related to the product of the switch~drive and source averages by a
linear transfer function. This result was anticipated in Chap. 1, and
occurs because the circuit components in the buck power stage can be
identified as a separate linear filter, As an alternative procedure, one
could have applied the averaging method directly to Fig. 2.1 to arrive

at Fig. 3.9 and thus bypassed the intermediate stage of Fig. 3.8;
howeyer, equivalent circuits similar to Fig. 3.2 are necessary in the
formulation of boost and buck-boost average models.

Figure 3.10 shows the approximate averaged model of the buck-boost
power stage with parasitic resistances. The model is valid only for fre-
quencies less than the switching frequency, and the quantities Ver Vs
and i must be quasi-continuous.,

One should compare Figs. 3.5, 3,8, .and 3.10 to appreciate the
similarity of the averaged models for all types of sQitching power
stages. The resultant equivalent circuits are not only developed from a
unified averaging technique, but are also believed to be the first useful
models of boost or buck-boost power stages from which frequency charac-
teristics can be easily derived. The following chapter investigates the
models derived here to determine such quantities as source step
response, control step response, source-input describing function, and

control-input describing function.
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Fig., 3.10 Averaged model of the buck-boost power stage.
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Chapter 4

ANALYTICAL RESULTS

4.1 Introduction

The analysis and design, in the time or frequency domain, of
switching converters has long been neglected because the appropriate
power-stage models have been nonexistent. Even the relatively simple
theory of describing functions has not been directly applicable to
6ther than buck power stages. In an attempt to alleviate pre-existing
analytical deficiencies, averaged power-stage models have been developed
in Chap. 3.

Behavior of both linear and nonlinear circuits is typically
characterized by two types of responses: the transient response relates
step changes of input to the corresponding time response of the output,
whereas the frequency response links a sinusoidal input component to a
corresponding output sinusoid. Furthermore, two separate inputs have
been identified in switching power stages: source voltage and switch
control. Since the mere existence of continuous power-stage models is
not an end in itself, another contribution of this work with potential
impact is the extraction, demonstrated in this chapter, of original
analytical expressions for transient and frequency response from the
averaged power-stage models.

Section 4.2 deals with the situation when the source voltage is
variable and the switch drive is static; the converse possibility is

treated in Sec. 4.3, A small-amplitude restriction on the time-variable
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component of d is necessary in order to obtain the control-input fre-
quency response. One of the salient results in these sections is the
emergence of effective filter comﬁonents whose values depend on the
switch duty ratio. Results are summarized in Sec. 4.4.

Section 4,5 compares the analytical transfer functions of the
.averaged power-stage models with the corresponding transfer functions, if
tractable, of the actual switched power stages. Since the precipitating
factor in this study was the absence of such analytical transfer func-
tions for most power-stage types, this section is, of necessity, brief.
Finally, critical gains are computed iﬁ Sec., 4.6 for the various types

of switching converters in a closed-loop configuration.

4,2 Source Variations

In this section, an investigation is conducted into the relation-
ships between variations of the source voltage and the resultant changes
in output voltage for various power stages. A static switch drive is
assumed whose average value is a constant D. As repeatedly emphasized,
the buck power stage is more amenable to analysis than the boost or buck-
boost types; thus, analysis shall begin with the buck power stage.

Figure 3.9 shows the simplified equivalent circuit for the averaged
buck power stage, and has been redrawn in Fig. 4.1(a) to show explicitly

the assumption

<d>(t) = D = constant 4.1)

which is appropriate for the study of source variations. Several
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(a)
I (s) v (s)
—p
sL
R R,
DV (s) Ci) R
1
-;I;—SC
(b)

Fig. 4.1 Equivalent:circuit for source variations in the
averaged buck power stage, <d>(t) = D; (a) time
domain, (b) Laplace transformed equivalent.
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conclusions are immediately obvious upon inspection of Fig. 4.1(a). The
effective values of the circuit components are constants independent of
any source or switch-control variations. ' While this observation may
seem trivial, it will shortly assume importance as a comparative distinc-
tion between buck and other power stages. The second observation concerns
the linearity of the equivalent circuit; thus, an impressive array of
techniques is available to resolve in detail the various desired responses.
The output of a linear system can be expressed as a superposition
of the responses due to the input and the initiai conditions; however,
the steady-state frequency response must be independent of initial con-
ditions, and initial conditions can be readily introduced at any time
into transiént analysis, so initial conditions will henceforth be
neglected (assumed zero) for the sake of simplicity. The frequency and
transient responses of linear systems can conveniently be described by
the system transfer function, which is defined as the ratio in the
Laplace transform domain of output to input with zero initial conditions.
Cumbersome analytical expressions obtained for the transient response by
the inversion of Laplage transforms will be omitted in favor of the
appropriate (possibly transformed) equivalent circuits.
Figure 4.1(b) shows the Laplace transformed version of the averaged

buck pbwer stage in Fig. 4.1(a), where

V*(8) = Laplace transform of <v>(t) (4.2)
and

V;(s) = Laplace transform of <vs>(t) . (4.3)
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Throughout this chapter, the superscript asterisk is used to associate
quantities with the averaged power-stage models. The subscript "s"
refers to the source voltage as the variable input: "c" will be used

for inputs from the duty-ratio controller. The describing function of a

linear system

*
DFS = source-input describing function of averaged power stage ,

(4.8)
is given simply by the system transfer function
*
Gs(s) Z source-~to-output transfer function
* *
=V (s)/V_(s) . (4.5)

zero initial conditions
evaluated at s = jw. Inspection of Fig. 4.1(b) shows that the source-
to-output transfer function for the averaged buck power stage is given by
c¥(s) = A G_(s) (4.6)
s(s) T Bgo Ug\S ’ '

where ASo is an effective amplifier gain

=D , buck

5o , 4.7)

and Gf(s) is the filter transfer function previously encountered in

Eq. (2.5). The filter transfer function can be expressed in a normalized

form as



1 + sCR
G.(s) = R c
£ R + R CRR. + L Y
Y1 4 s[eR 4+ 2 ] + s2LC <
c R +R R + R
2 )
1+ =
=G Lz , (4.8)
f S (S 2
1+ +[ 3
(Qu ) wo)
where
R
C. = ———
fo R+ Rl W
W =—.._]-'.—
z CR
. g buck (4.9)
R + R
=‘/_.___.L__
Y LC(R + R )
CRR, + L
1 %
q " Y R+
b4 ~

The frequency W is commonly referred to as the natural frequency and
the parameter Q is a quality factor,

Since the transfer function of the averaged buck power stage is
given by Eq. (4.6), one can now seek the corresponding expression for
the averaged boost model illustrated in Fig. 3.5. Given Eq. (4.1) and

the definition

D' =1 - D = constant . (4.10)
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one finds that the dependent generator gains in the model are constants
<l =-d>(t) =1 -=<d>(t) = 1 -D=0D' s (4.11)

as shown explicitly in Fig. 4.2(a). The gains of the dependent genera-
tors have been normalized to unity in the equivalent circuit model of
Fig. 4,2(b). Notice that the 2~port network enclosed by the dotted line
is equivalent to a pair of wires internally connecting the two ports;
thus, the model can be further simplified to that in Fig. 4.2(c).

Since the equivalent circu;t of the averaged boost model is linear
for static switch drive, the comments made in conjunction with the buck
power stage apply here as well. The transfer function from source to
output is again sufficient to characterize both frequency and transient
response; however, in contrast with the buck model, the effective source
voltage and circuit components of the boost model are modified by the
factor D'. Considering the analogy between Fig. 4.2(c) and 4.1(a),

one can obtain the source-input transfer function of the boost model by
inspection .

G:(s) = A__G(s) : (4.12)

where the effective filter transfer function has the same form as for

the buck power stage
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b e e e J
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(c)

Fig. 4.2 Reduction of the averaged boost power stage to an equivalent
circuit for source variations, where <d>(t) =D =1 - D',
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1+ 2=
Gels) = G z : , (4.13)
s S
1+ - +<-—')
(Qwo) w
but the parameters are now expressed as
1
Aso = 3T s, boost , (4.14)
and
o (DR b
fo
(D)2 R + R,
w = l
z ¢ Rc > boost . (4.15)
t\ 2
. i 1 RQ + (D'")° R
o '-fé' Rc + R
CRR. + L
. w [CR + lv ]
Q o /
R, + M™% R

The transfer function of the remaining (buck-boost) power stage can
be obtained by a simple extension of the boost result. Comparing
Figs. 3.5 and 3.10, one observes that the averaged boost equivalent
circuit is identical with the averaged buck-boost model if, in the
boost model, one replaces v by <d> v > The indicated replacement

in the boost model of Fig. 4.2(c) leads directly to the simplified
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equivalent circuit, shown in Fig. 4.3, for the averaged buck-boost
power stage. The appropriate transfer function can again be expressed

by Egs. (4.12) and (4.13), where now

D
Aso = Fv , buck boost, (4.16)
and
¢ -_—(MD%R A
fo ®H2 R+ R,
- 1
Wy CR,
g buck-boost .
R + (DY)* R 4.17)
w =
o) V—-‘ R +R
CRR, + 1,
Loy o+ —2tt
R, + ()2 R <

Equivalent circuits and analytic transfer functions which describe
the behavior of power stages with a static control input have been
derived here from the averaged power-stage models. Interpretation of
these results is postponed until Sec. 4.4 to facilitate comparisons

there with similar results which are obtained in Sec. 4.3 for variations



Fig. 4.3 Equivalent circuit for source variations
in the averaged buck~boost power stage,
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)
L

where <d>(t) =D =1 - D',
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of control input when the source voltage is constant.

4.3 - Control Variations

The manner in which output voltage changes in response to switch-
drive variations will be examined in this section. One assumes here
that the averaged source voltage is a constant for the various power-

stage models

<vs>(t) = VS = constant (4.18)

and investigates the control-input transfer function:

*

Gc(s) = control-to-output transfer function

V* /D* ,

(s) (s) zero initial conditions

(4.19)
where
*

D (s) = Laplace transform of <d>(t) |, (4.20)

*
and V (s) was previously defined in Eq. (4.2). The control-input

describing function is given by

*
DFc = control-input describing function of averaged power
stage (4.21)

One can begin the analysis by considering the buck model shown in
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Fig. 3.9. By virtue of Eq. 4.18, that circuit can be redrawn as in

Fig. 4.4, Precisely the same interpretative comments concerning model
linearity and invariance of effective component values with respect to
input signals, drawn in Sec. 4.2 regarding source variations, apply here
for control variations. Since the equivalent circuit in Fig. 4.4 is
linear for arbitrary excursions of <d> , a single transfer function is
characteristic of both transient and frequency response. By comparing

Fig. 4.4 with Fig. 4.1(a), one can easily evaluate the control-input

transfer function as
G s = A G s 4 22
C( ) co f( ) ? ( ' )

where Gf is given by Eqs. (4.8) and (4.9), and where

g
1]

A

eo = Vg 5 buck . (4.23)

The analysis of control variations has thus far closely paralleled
that of source variations in Sec. 4.2; however, an aéparent dilemma
appears as one approaches analysis of the boost and buck-boost models.
The defivation of linear equivalent circuits for the boost and buck-
boost models in Sec. 4f2 was based upon the constant value of the depen-
dent generator gains; for time variations in <d> , a linear model no
longer occurs. Since the form of the reduced equivalent circuits depends
on the nature of the control variation, two specific control varia;ions,

which correspond to transient and frequency response, will be separately
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Fig. 4.4 Equivalent circuit for control variations in
the averaged buck power stage, where
<VS>(t) = V..
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examined.

Consider first the transient initiated at time to by a sudden

change in control from one static value to another static value D:

<d>(t) =D, ¢t > t0 . (4.24)

The contfol»value preceding to can be accounted for by choosing the
appropriate initial conditions. Equation (4.24) was just the condition
used to simplify the averaged boost and buck-boost models to the
linear equivalent circuits shown in Fig. 4.2(c) and 4.3; therefore, by
simply invoking Eq. (4.18) in these models, the equivalent circuits
appropriate for control transient response emerge as seen in Figs.
4.5 and 4.6, Comparing Figs. 4.2(c) and 4.3 with Figs. 4.5 and 4.6,
respectively, one reaches the unexpected conclusion that the averaged
equivalent circuits are identical, except for possible differences in
the corresponding initial conditions, for either source or control
transients.

Since the transient response is now characterized, one can shift
attention to the frequency response of the boost and buck-boost averaged
models. Assume for the moment that the averaged power-stage control

input can be expressed in the form

<d>(t) = D + &(t) s (4.25)

-

where d is a control variation or disturbance and D is a constant
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Fig. 4.5 Equivalent circuit for transient response from
step control variations in the averaged boost
power stage, where <vs>(t) = Vs'
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Fig. 4.6 Equilvalent circuit for transient response from
step control variations in the averaged buck-
boost power stage, where <vs>(t) = VS.
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steady-state control. The instantaneous values of <d> should be limited
between zero and unity to be physically meaningful, so d is consequently

restricted in amplitude. Equation (4.25), together with Eq. (4.10),

shows that

<1 = d>(t) = 1 - <d>(t) = D' - ém . (4.26)

The control variation causes related variations in each state variable

<i>(t) = I + i(t) (4.27)

V + v(t) , (4.28)

il

<v>(t)

~ A

where I and V are steady-state values, and i1 and v are perturbations, To
obtain the frequency response, one must relate ; to 5 when the control
disturbance is sinusoidal.

Consider the averaged boost power-stage model shown.in Fig. 3.5.
Substitution of Eq. (4.18) and Eqs. (4.26) to (4.28) for the appropriate
quantities in Fig. 3.5 produces the model displayed in Fig. 4.7(a). The
dependent generators have both dc and perturbation components which, in
turn, support dc and perturbation components, respectively, of the
inductor current and output voltage. These dc and perturbation signals
are separately determined by the equivalent circuits shown in Figs. 4.7(b)

and 4.7(c), respectively. The presence of second-order variations in the

dependent generators makes the perturbation equivalent circuit nonlinear,
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Fig. 4.7 Reduction of the averaged boost power stage to a
linearized equivalent circuit for control vatiations;
() = V_, <d>(t) =D + d(r).
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~ ~

so if d were a sinusoid with frequency w, the output perturbation v

would contain components with frequencies at all harmonics of w. Even
analysis of the describing function would be difficult for such a situa-
tion; however, by restricting the amplitude of 3 small enough to assure
that second-order terms in the generator driving functions are negligible
‘with respect to the remaining first-order terms, the perturbation circuit
can be linearized. Subsequent manipulations of the linearized perturba-
tion equivalent circuit are equally valid in the time or frequency
domain and no longer depend on the assumed form of the control variation.

After one imposes the linearizing restriction

>

for small-amplitude d , (4.29)

>

[
A
A

o}

the voltage generator is composed of two terms: D'; is proportional to a
circuit-dependent perturbation, whereas &vaaries directly with the
independent control perturbation. Since similar comments apply to the
current generator, the dependent and independent generator terms are
explicitly separated, as shown in Fig. 4,7(d), in the hope of eliminating
the dependent generators., The factors D' which modify the effective
values ofbcircuit components result from normalization to unity of the
dependent generator gains, a technique first encountered in Fig. 4.2(b).
Once again, the section of Fig, 4.7(d) which is enclosed by dotted lines

is equivalent to a pair of wires connectihg the two ports, as shown in

Fig. 4.7(e).
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Since Fig. 4.7(e) is a linear equivalent circuit, one is now in a

A A ~

position to find v in terms of d; however, the presence of d in two sep-
arate generators obscures the relationship between d and v. After the
Laplace transform is applied to Fig. 4.7(e), Norton and Thevenin

equivalents are used to combine the two independent generators into the

one shown in Fig. 4.7(f), where

V(s)

Laplace transform of v(t) s (4.30)

and

D(s) = Laplace transform of d(t) . (4.31)

The linearized control-input transfer function

Gc(s) linearized control-input transfer function

i

V(s)/D(s)

zero initial conditions , (4.32)

]

of the averaged boost power stage can be evaluated from Fig. 4.7(f) and

expressed in the form

éc(s) = 4_(8) G, (s) , (4.33)

where Ac(s) is the transfer function of the equivalent amplifier shown
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in Fig, 4.7(g)

\
R, + sL
1 R
AC(S) = B.'— [V - D" I]

> boost ,

v_/(d")?

= [(D")2 R - Rl - sL]
R, + (®")? R )

(4.34)

and where Gf(s) is the same function encountered in Eqs. (4.13) and (4.15).

The values of I and V in Eq. (4.34) are obtained from the dc model in

Fig. 4.7(b).

be written as
A(s) =A (- E_.)
co

where

12 -
VS (db")“ R RQ

A =
€O mH2 @OH2 R+ R,

12 -
(DY R RQ
w =

L

Notice that the effective amplifier transfer function can

s (4.35)

$ , boost. (4.36)

Since the averaged boost model is nonlinear, it is important to bear in

mind the fact that éc ig the linearized transfer function and relates

only the small-amplitude perturbations of control and output. The
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describing function provides the long-sought frequency response and is

given by

* ~
DF_ = G_(ju) (4.37)

Frequency analysis of the averaged buck-boost power stage follows
precisely the procedure just demonstrated for the boost model; hence,
only the results will be discussed here. The initial buck-boost equiva-
lent circuit is shown in Fig. 4.8(a). Figure 4.8(b) is used to evaluate
the dc components I and V. The perturbation circuit is again linearized
by assuming that & is small in amplitude., Laplace transformation of the
approximate perturbation circuit, followed by rearrangement to combine
the indépendent sources, leads to Fig. 4.8(c). An equivalent amplifier

can again be associated with the transfer function

1 Rg + sl ~w
AC(S) =BT[V+VS--——5','—— 1]
>buck—boost,
v /o’
= -8 [(D'YR - (D - D')R, - sDL]
R, + 'Y R

(4.38)

as shown in Fig. 4.8(d). 1If Ac(s) is expressed in the form of Eq. (4.35),

its parameters are:
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Fig. 4.8 Linearized equivalent circuit for control variations
in the averaged buck-boost power stage; <v >(t) =V
<d>(t) = D + d(t).
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2 W
X - Vs (D.) R~ (O-~-D" R2
€ (@92 (D')?‘R+R9v
> buck-boost .
2
MO'YR-((D@-D" RQ
w —
a DL _) (4.39)

The linearized transfer function is evaluated from Fig. 4.8(d) as
Gc(s) = Ac(s) Gf(s) , (4.40)

where Ac(s) is given above and Gf(s) is the same filter transfer function
characterized by Eqs. (4.13) and (4.17).

The results expressed in this section are interpreted in Sec. 4.4.

4,4 Summary and Interpretations

Based on averaged models, linearized equivalent circuits and trans-
fer functions were derived in Secs. 4.2 and 4.3 for the transient and
frequency response of all basic switched power stages. These results
are summarized, interpreted, énd compared in this section.

In summary of Sec; 4,2, if the averaged power-stage models are sub-
jected to source variations while simultaneously the averaged switch
control is a comstant D, the equivalent circuits for all power-stage
types are linear and topologically identical. Source-input transfer
functions were derived for all the various power stages from their
corresponding equivalent circuits and are represen;ed by the common

block diagram shown in Fig. 4.9(a); the transfer function is identified
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Fig. 4.9 Generalized block diagram of (a) the source~input transfer
function, and (b) the linearized control-input transfer
function.
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as that of an amplifier in cascade with a filter. Analytic expressions
for the various filter and amplifier parameters are presented for con-
venient reference in Table 4.1,

It is shown in Sec. 4.3 that the equivalent circuits for all types
of averaged power stages with control variations and a constant source
voltage Vs can be linearized by restricting the amplitude of control
variations, The block diagram of the linearized control-input transfer
function derived for each power-stage type is shown in Fig. 4.9(b) and
can again be identified as an amplifier in series with a filter. Refer
to Table 4.1 for the appropriate analytical parameters in the amplifier
and filter expressions. |

One may observe from Fig. 4.9 and Table 4.1 that each type of
power stage has the same filter for either source or control variations.
Whereas the buck filter is completely independent of the static duty
ratio D, the effective filter component values, and hence the natural
frequency 0, and qﬁality factor Q associdted with the dgnominator quad-~
ratic of the transfer function, in the bbost and buck-boost power stages
are modified by the complementary duty~ratio factor D' ; 1 -D. The
effect of D on the shape of the filter frequency response is investigated
in Chap. 5.

Figure 4.9 and Table 4.1 show that in contrast with the effective
amplifier factor of the source-input transfer function, which is
independent of frequency and varies only with D, the effective amplifier
for control variations is novel in a number of ways. Not only is the

effective control-input amplifier a function of frequency, but the



117

*SuoTlouny I9ysueil afeils-asmod Ul si9lsuweABd DTIATRPUER JO AIvuwng

T'% @2T9el

d 1
Y, a-a) - 4O Ty - GO 00
2 ) 2
q0 ite] R:1)
1 T 1
Ya+uz (@) - % +y AU ‘o Ya+y o %
_— o + 4D |H| + ¥ IM.II
-] 1+ T I- T +%080 1-| 1 +%%a0
2 MMH\ ) HH\ 2 M.IH\
4+ q+d qa+14
Y+ 9,0 T Y+ 9,0 T Y9 +u T
GO /Py (GO a+ Yy + ¥
q q q
s v _ - s A
A 1(,a-a@) - ¥, (D) A Uy - 4, (@)
,a/a WA/t a
1so00g-yong 31s00g yong

o3

09

oS8



118

"corner" frequency and scale factor of the amplifier transfer function
vary with D for the boost and buck-boost power stages; however, the prin-
cipal uniqueness concerns the nature of the frequency response. The
control-input amplifier transfer function has a single real zero, which

is positive for D' > Dé, where

R
¢ E& » boost
= (4.41)

R R
2 R
J(l +7 ) g - \J -.—RZ » buck-boost

D'
(o]

o

R
Since —% , and consequently Dé, is normally very small, the zero in Ac(s)

is usually positive, so for high frequencies the phase of Ac(jw) is
asymptotic to EiEEi'% » even though the amplitude of Ac(jw) increases with
frequency.

The analytical results summarized in this section are unique in
their own right; furthermore, their utility is enhanced by the resultant
capability for critical comparisons between various types of power stages.
For example, one can predict that the phase lag of the effective
amplifier Ac(s) makes boost and buck-boost power stages less stable in
a control feedback configuration than is the buck; Sec. 4.6 investigates
this premise after the correlations between known switched responses and

the corresponding predictions of averaged models are compared in Sec. 4.5.

4.5 Analytical Verification

Rather startling analytical results have been derived from the
averaged power-stage models. In order to establish a meagure of confi-

dence in the averaged models and their associated responses, one should
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investigate the switched power stages for special situations which have
known solutions. Admittedly, exact analysis of switched power stages is
limited; to the author's knowledge, no analysis of transient or frequency
response has appeared in the literature for boost or buck-boost power
stages. However, Kossov(l) has performed an exact static analysis of

the source—to—outpuf gain for the three basic power stages, so for
comparison the corresponding gains will be derived from the averaged

power-stage models.

For static conditions

<d>(t) =Db=1-1D'
<vs>(£) = VS , (4.42)
<v>(t) = V

the averaged power-stage models are particularly simple since there is
no capacitor current or inductor voltage in the steady state. Figure
4.10 shows for various power-stage configurations the simplified equiva-
lent circuits, from which the static source-to-output gains are easily

obtained as:

%- = E = , buck (4.43)
s 2

y . p'

e , boost (4.44)

s R, + (02 R
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Fig. 4.10 Equivalent circuit for static conditions in each power
stage: (a) buck, (b) boost, and (c) buck-boost.
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\J
%_ = DD R »  buck-boost . (4.45)
s R, + ®"?2 R

It is indeed comforting to observe that with corresponding notation
Eqs. (4.43) to (4.45) agree precisely with Kossov's Eqs. (6a), (6b), and

(6c). Notice how the presence of R, has dramatically altered, with

2
respect to the ideal static characteristics in Egqs. (1.5) to (1.7), the
nature of the static gain as D' approaches zero.

The exact analysis in Chap. 2 is possible because the buck power
stage is linear. The equivalent circuit of the averaged buck model shown
in Fig. 3.9 is not oﬁly linear; it is also identical to the filter circuit
of the switched buck power stage. Thus, it is not surprising to find that
the transfer functions of the switched and averaged buck power stages are
identical; howevér, the absence of theoretical transfer functions for
switched boost and buck-boost power stages make further analytical
comparisons impossible,

Though not analytically founded, a ﬁypothesis was postulated by
Wells et al.(s) which states that the lowest corner frequency in the
open-loop boost control-input describing function varies proportionally
with D'. Wells' hypothesis was reportedly supported by experimental
observations of a particular boost configuration with additional input
and output filtering. The averaged model of the boost power stage under

consideration here has a quadratic pole with a break frequency

1 /R2+(D')2R
w - V , boost , (4.46)

(o} dl—-'-c- RC+R
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which does, in fact, vary approximately with D' for typical circuit

values and operating conditions:

P R
. D' R . "z
w, = T+ R for D' >> R boost. (4.47)
\,LC

c

To the extent that the effective source impedance (source impedance,
input filter, and boosting inductor) is inductive and the effective
load impedance (output filter plus load) is cépacitive, Wells' hypothesis
may be a general résult. While Eq. (4.47) ﬁeither proves nor disproves
Wells' hypothesis, it dbes show that appropriate analysis of the
averaged model correlates Qell with published empirical observations.
The conclusion to be drawn from this section is that analysis of
the averaged power-stage models agrees with exact or observed behavior

of switched power stages for the few special situations which have

"exact" solutions.

4.6 Closed-loop Stability

Since the ultimate goal of frequency analysis is to deduce informa-
tion concerning closed-loop stability, the '"loop gain'", or "return
ratio", r(w) will be computed here for various power-stage models in a
typical negative~feedback configuration. The closed-loop system may3

be unstable if Ir(wc)lgni,where the crossover frequency v  is defined

by {r(wc) = - m; thus, the gain magnitude at w, is indicative of relative

3'Syst:ems exist that are conditionally stable even though Ir(wc)|> 1.
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system stability. The computation in this section of crossover fre~
quency and gain magnitude from averaged models permits one to assess the
validity of averaging techniques by comparison with simple experimental
measurements of switched converters in Chap. 5; however, one must first
digress to establish some typical component values for use in quantita-

tive stability predictions.

4.6.i Numerical Component Values

Two restrictions én the circuit component values were previously
noted in Eq. (3.15); namely, the time constants T, and Ty defined in
Egs. (3.8) and (3.9) must both be large with respect to the period T.
A third restriction arises from the requirement that i(t) > 0 in order
to force the diode, which is interchangeable with switch S', to behave
like a switch. For each switched power stage, the steady-state devia-
tion Ai of the inductor current which occurs during a switching cycle
can be computed by assuming the output voltage is well filtered by the
caﬁacitor; the averaged (dc) inductor current <i> is also computed for
the same duty ratio. The requirement i(t) > O is equivalent to the

restriction <i> - A% > 0, which is satisfied for all power stages if

Lo . (4.48)

Henceforth, the following component values
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T = lO._4 seconds W

R = 60 ohms

L= 6102 henry = 6 mh

C = 1/24°107> farad = 41.7 uf $ , (4.49)
R2 = 3 ohms
R =1 ohm

c
VS = 60 volts J

will be used for numerical computations. The above numbers not only
represent typical design figures, but also satisfy Eqs. (3.15) and (4.48)
by moderate safety factors. The same components will be used for all

power-stage types to extract meaningful comparisons.

4.6.2 Computations

The feedback configuration uséd for subsequent analysis is shown
in Fig. 4.11 and provides two notable characteristics: when K = 0 (no
feedback), the static PWM output D, and thus the averaged power-stage
model, is determined solely by the dc controller input U; and, if Vr is
chosen as the static output voltage V which results for K = 0, then the
dc output voltage remains approximately constant as K increases. The
feedback configuration was designed to make the dc controller output D
independent of the value of K.

The return ratio can be written in terms of describing functions as
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Fig. 4.11 Closed-loop configuration of a switching converter,

+» v(t)
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control-input

r =K - describing function . describing function
of PWM
of power stage

*
K DF_ DF . (4.50)
mc

Since DFm is a function of the modulator sinusoidal input amplitude
u, the loop gain also varies with u. This vicious cycle can be broken
for analysis by using the linearized PWM describing function DFm

defined in.Eq. (2.26) and evaluated for %%— < L by Eq. (2.523.

2
Equation (2.48) shows that the dc component of the modulated PWM output

equals U so, to simplify the number of independent parameters, replace

U by D in DF
mo

-jwDT © 1
DFm = DFmo = e ’ ZT'< 5 . (4.51)
s

One can combine Eq. (4.51) with the relevant equations in Secs. 4.2

and 4.3 to express Eq. (4.50) in the form:

2 DFmo(w) DF:(w)

A+ ju/w) - ju/w) -jwdT
co %o Z & o , (4.52)
1- (w/wo)2 + J'w/(Qwo)

= A

where the parameters are given analytically in Table 4.1. Equation
(4.52) relates the frequency response of the loop gain to circuit
components and the static duty ratio D, thus forming a powerful tool for

the design and analysis of switched converters.
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To proceed with an analytic measure of stability, one must find the
frequency at which the phase of r is minus 7. Given D and the component
values, one can compute the constants (Aco’ Gfo’ O qQ, W, wa) in
Eq. (4.52) from Table 4.1: numerical values are shown in Table 4.2. The

phase crossover frequency is then determined by graphical means or by

digital computer techniques (the method used here) from the transcendental

equation:
r(wc) = -7 s (4.53)
where
w
- Qu -
r(w) = - wDT - tan 1 ————fL——h + tan e _ tan L
= T
0 (4.54)

Having found w,» one knows that the system stability is just marginal
if the magnitude of the return ratio is unity at w,s SO a critical

amplifier gain Kc can be determined from
1=K |DF (u) DF ()] (4.55)
c mo - ¢ c e ' )

Thus, the closed-loop feedback system will be unstable for K > Kc’

where
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tal
i

[DFmo(wC) DF:(wc)l -1

2 2
- 2 2
_ 1 Q-w, lo 2y + (v /%))
ACO Gfo 2 2 2 2
a1 + W, /wa Y(1 + w, /wz )
= critical amplifier gain . (4.56)

The value of KC expressed in decibels is appropriately referred to as
"gain margin'.

Figure 4,12 shows pictorially the role of w, and Kc in the Bode
plot of a typical4 converter open-loop frequency response, Values of
W, and KC, as computed by Eqs. (4.53) and (4.56), are given in Table 4.2
for various power stages and duty ratios, and offer objective measures
of relative converter stability; for éxample, if two competitive
systems are potentially capable of meeting all design specifications
and have identical crossover frequencies, then one should choose the
system with the largest gain margin.

Some important qualitative conclusions can be drawn from Tables
4.1 and 4.2. Since Aco is directly proportional to VS for all basic
power stages, then systems which must be designéd for a range of VS will
be least stable when VS has its maximum value. Notice that for all

power stages both w, and KC decrease as D Increases. Graphical

4Specifically, Fig. 4.12 was computed from Eq. (4.52) for an averaged
boost power stage with D = 0.5.
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presentation of frequency response characteristics for each power
stage is deferred until Chap. 5 in order to make convenient comparisons

there between experimental and theoretical results.
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Chapter 5

EXPERIMENTAL VERIFICATION

5.1 Introduction

The purpose of this chapter is to verify the analytical expressions
derived in Chap. 4 and, consequently, to provide confidence in the use
of averaging techniques and resulting power-stage models. Substantiation
is necessary for two reasons: the averaged model and associated analyti-
cal results are original, and the control-input frequency response of
power stages capable of boosting the output voltage higher thamn the
source voltage is given by unusual transfer functions with a real
positive zero.

Consider the alternative methods one could conceivably employ to
examine converter behavior. Theoretical confirmation is not possible
because comparable analytical foundations have been lacking, so one
immediately contemplates an experimental verification of results.

Direct physical implementation of the switched converters investigated
herein is an attractive possibility that permits measurement cof transient
and frequency response using ordinary laboratory instruments (i.e.,
oscilloscope, wave-analyzer); however, this technique was not used
because unavoidable parasitics in the circuit components not only
contaminatemeasufeddata in an unpredictable manner, but also jeopardize
the experimental repeatability.

On the other hand, digital computers can perform a numerical analysis

of equations which describe arbitrarily complex component models.
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The modulation-frequency component of the output is necessary for frequency
analysis of switched converters; howevef, the nature of the analysis used
t§ evaluate that component depends on whether the modulation and switching
frequencies are commensurable or incommensurable, as discussed in Chap. 2.
This difference in technique of analysis is undesirable.

The analog computer is yet another possibility. Electronic analog
computers can in a straightforward fashion simulate both transient and
frequency responses of either the switched or averaged circuit model;
hbwever, they lack the inherént accuracy of digital computers. Still,
analog accuracy should be sufficient for the comparative purposes of
this chapter, and provided he has access to an analog computer, any
investigator can readily duplicate the syspems studied here.

After consideration of the goals of this chapter and the relative
merits of the various procedural alternatives, the analog computer was
chosen as the basic experimental tool. Details of the simulation
appear in Appendix B, while the results are contained in the present
chapter. ‘Both switched and averaged models of the buck, boost, and
buck-boost power stages, shown in Fig. 2.1, 3.8, 3.1, 3.5, 1.85, and
3.10,will be simulated; in addition, the pulse-width-modulator (PWM)
described in Chap. 2 is simulated to control the switch operation of the
éwitched power stages. The block diagrams of the switched and averaged
configurations are shown in Fig. 5.1(a) and 5.1(b), respectively.

Section 5.2 deals with transient response. Since the theory in

Chap. 4 predicts a dependence of the effective circuit components

Parasitic resistances'Rl andbRC are included in each model.
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e(t) = PWM

a(t) SWITCHED ,
| ™  POWER STAGE — v(t)

(a)

. AVERAGED
POWER STAGE

——————p <v>(t)

(b)

Fig. 5.1 Configurations simulated with the analog computer:
(a) switched power stage and controller, (b)
averaged power stage.
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upon the dc-average of the switch drive, control transients promise to be
more interesting than corresponding source transients; consequantly, the
transient response cauéed by step variations in the switch control only
are studied in Sec. 5.2.

The frequency response for each type of conQerter is investigated
in Sec. 5.3. There the experimental data for switched and averaged
models are compared with the theoretiéal expressions derived in Chap. 4.
It is shown that the presence of the real positive zero in the control-
input transfer function of the boost and buck-boost power stages is
essential to produce good agreement between theory and experiment.

In Sec. 5.4, the gain margin and critical oscillation frequency,
which characterize closed-loop stability, are determined experimentally
for the switched power stages and compared with nominal values computed
from the averaged models. The practical utility of averaged models
depends on how easily and‘accurately closed-loop behavior of switched
power stages can be predicted; tbus, this section provides results for

the acid test of usefulness.

5.2 Transient Response

It is convenient to record on a strip chart the transient reponse
of switched and averaged converter models as simulated on the analog
computer; thus, comparisons are primarily qualitative in nature. In this
section the expected transient behavior for each type of power stage, as
determined in Chap. 4, will be summarized and then followed by interpre-
tation of experimental observations.

Figure 5.2 shows the control transitions experimentally investigated;
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certain transitions will be singled out to illustrate various features.
In practice, the PWM could not be simulated well for either very large
or very small duty ratios without affecting the nature of the switching
action, so the PWM input was limited to transitions between the levels
0.25, 0.50, and 0.75.

Since the effective filter component values in the averaged buck
power-stage model are independent of the switch-control, a given percent-
age step change in control signal should cause an output transient with
a characteristic shape and amplitude regardless of the final value of the
control; fufthermore, the transient caused by a negative control step
should be the mirror image of the transient associated with a positive
control step.

The.control—input transient response of switched and averaged buck
power stages is shown in Fig. 5.3; notice the close correlation between
the correéponding switched and averaged responses. The responses in
Figs. 5.3(a) and 5.3(c¢c) are identical and are the mirror image of the
transient in Fig. 5.3(b), which verifies the predictions stated in the
precedihg paragraph. The control step of Fig. 5.3(d) is twice the
amplitude of the step size represented by Figs. 5.3(a) to 5.3(c); the
characteristic shape of the corresponding transient is unchanged and its
magnitude is doubled with respect to Fig. 5.3(c). Fundamentél transient
properties, natural frequency and damping factor, are thus independent
of the initial value, magnitude, and final value of the control step for
the buck power stage.

In contrast to the buck type, the averaged boost and buck-boost

power-stage models have effective component values which are modified
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by the switch control; hence, the transient characteristics shculd vary
with the final value of the control step. In fact, any control step
which terminates at a certain level produces the same kind of transient
response, the only differences being in the initial conditions which
correspond to the pre-existing control value.

Figures 5.4 and 5.5 show the switched and averaged transient responses
of the boost and buck-boost power stages. Once again, the fact that
switched and averaged data agrees closely in all essential aspects indi-
cates that averaged models are valid representations of the switched
power stages. The transient characteristics, natural frequency and damp-
ing factor, in the Figs. 5.4(a), 5.4(b), 5.5(a), and 5.5(b) are identical,
whereas Figs. 5.4(c), 5.4(d), 5.5(c), and 5.5(d) show different, but
common, transient characteristics. Together these figures verify the
dependence of transient characteristics upon the final value of the control
step as predicted.

One can deduce a considerable amount of quantitative information
from Figs. 5.3 to 5.5; for example, when the natural frequencies and
damping ratios of the simulated systems are estimated from the strip
chart traces, the values are approximately those computed in Table 4.2.

In summary, the transient responses of the averaged power-stage
models correlate very well in all respects with those of switched power
stages. Notice how the dominant response times are always much greater
than the switching period; this condition, which is usually obtserved in
switched converters by design, is necessary for proper application of

the averaging technique.
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5.3 Frequency Response

For this series of measurements, a sinusoidal signal is injected in
series with a dc control input D for the configurations shown in Fig. 5.1.
At any given modulation frequency w, the control input and power-stage
output are éimultaneously recorded on a strip chart, from which the
amplitude and phase of the output component at the modulation frequency
can be measured with respect to the modulation amplitude and phase. The

magnitude and phase of the effective transfer function are:

(amplitude'of modulation-
frequency output component)

magnitude (5.1)

modulation amplitude

relative phase of modulation-
phase = frequency output component (5.2)
with respect to modulation

and can be conveniently presented in a Bode plot. An additiocnal phase
term,-wDT, is added to experimental phase data from the averzged simula--
tions to account for phase delay associated with the PWM in Eq. (4.51)
since a linear time-delay device is not available in analog computers.
Figure 5.6(a) shows a typical trace of switched output for a modula-
tion whose frequency is moderately low when compared to the switching
frequency. The upper limit on useful modulation frequency for describing-
function purposes was determined in Chap. 2 to be one-half the switching
frequency, but in practice, the switching frequency masks the modulation

component of the output at even lower frequencies as shown in Fig. 5.6(b);
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Fig. 5.6 Typical frequency-response traces of
switched output voltage: (a) w/ws = 0.100,
(b) m/ws = 0.316.
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consequently, problems in interpretation of the switched data make
experimental values of the transfer-function magnitude and phase relative-
1y inaccurate at the higher modulation frequencies.

A Bode plot of the theoretical control-input transfer function
derived in Sec. 4.3 (see also Eq. (4.22) and Table 4.1) for the averaged
buck power>stage and PWM is shown as the solid line in Figs. 5.7 to 5.9
for different values of the parameter D; superimposed on these figures
are the experimental data from the switched and from the averaged models.
Since the transfer function of the switched buck power stage is known a
priori to be independent of switch-control parameters, the principal
purpose in illustrating the performance of the buck power stage is to
demonstrate the calibration of the experimental procedure. Figure 5.10
shows how the theoretical Bode plots of the averaged buck power stage vary
as a function of the switch duty ratio D: the magnitude is unaffected
by D, but the phase varies with D as a consequence of the PWM phase
factor.

Two qualitative conclusions can be drawn from a study of Figs.

5.7 to 5.9. First, there is virtually no difference between the experi-
mental measurements of the averaged power stage énd the theoretical
predictions which were derived from the averaged power stage, and

second, although the switched data tends to scatter somewhat when the
modulation frequency approaches the switching frequency as previously
explained, the switched data does correlate very well with the averaged
data at lower frequencies. Both conclusions are fundamentally gratifying

and justify for the buck configuration the representation of switched
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power stages by averaged power-stage models; still, it is essential to
investigate experimentally the frequency response of the boost and buck-
boost power-stage configurations and the correspondence between the
actual switched power stages and the averaged power-stage models,

not only because the appropriate circuit models and analytic expressions
are original, but also because the frequency responses predicted for
these power-stage types in Chap. 4 are unusual.

Experimental data from the switched and averaged boost power-stage
models is'shown superimposed on the theoretical Bode plots in Figs.

5.11 to 5.13. Once again, the correlation between averaged and theoreti-
cal datum points is nearly perfect and, in turn, the switched data

agrees well with averaged data at lower frequencies, but the inaccuracy
of switched data at higher freduencies leaves a lingering uncertainty
concerning the role of various theoretical factors in determining the
overall frequency response.

To study this question, one can decompose the theoretical transfer
funcfion into distinct factors6 which represent the effective amplifier,
filter, and switch controller of the aﬁeraged boost power stage. These
component factors, together with the composite response, are plotted
as a function of frequency in Figs. 5.14 to 5.16 for three values of
duty ratiovand reveal useful conclusions. It is unmistakably clear
that, even though there is some experimental uncertainty at higher
frequencies, the data correlation with the computer curve would be much

For convenient amplitude normalization, the scale factor V_ is

divided from the amplifier factor and multiplied with the Sfilter
factor,
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worse if any single theoretical factor were missing; thus, each factor
of the overall transfer function is necessary to correctly describe the
behavior of switching power stages. 1In particular, the effective
"amplifier term, novel because of its real positive zero, is essential
for good correlation of the results for D=0.75, even at relatively low
frequencies where the switched data is fairly accurate.

Another observation concerns the variation of component factors
with switch duty ratio. Viewed on the basis of logarithmic frequency,
the PWM factor assumes importance only at the higher frequencies, but
its influence on the phase cannot be neglected there, especially for
large values of D since the PWM phase lag is proportional to D. The
quadratic corner frequency in the effective filter term which arises
from modified circuit components varies about one-third of a decade
when D éhanges from 0.25 to 0.75, but far more sensitive is the corner
frequency of the effective amplifier because it shifts over one and
one-half decades for the same change in D; thus, the effective amplifier
term which emerged from approximate describing-function analysis of the
averaged boost model plays an undeniable role in determining the power-
stage response to frequency and duty-ratio variations. For comparative
purposes, the theoretical Bode plot of the boost power stage and
modulator is shown in Fig. 5.17 for various values of D; imnsight into
the nature of the differences is best obtained from the component plots
in Figs. 5.14 to 5.16.

Armed with new confidence that the accuracy of experimental data

is sufficient for verification of the averaged model, one can now
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investigate the remaining power~stage type. Figs. 5.18 to 5.20 show
the experimental data from the switched and averaged buck-boost power-
stage models superimposed on the theoretical Bode plot for various duty
ratios. It is clear that measurements and theory from the averaged
model correlate very well with data from the switched model. The
analytical expressions for the frequency response of the averaged power
stage and controller are plotted in Fig. 5.21 to show the comparative
effects of duty ratio; the qualitative variations are similar to those
of the boost power stage, but are less extreme.

In conclusion, it is established in this section that for each
type of power stage the averaged model gives essentially the same
experimental frequency response as the switched model; therefore,
the averaged model is a valid representation of the switched power
stage. Furthermore, the analytical expressions derived from the
averaged model in Chap. 4 are verified here by excellent correlation
of experimental data with computed frequenéy response. Analysis of the
component factors associated with the effective amplifier, filter,
and switch controller shows that each distinct factor produces a

significant contribution to the overall frequency response.

5.4 Closed-Loop Stability

Given that the open-loop frequency response of switched power
stages is approximated by that of the averaged model, the inherent
nonlinearity of the PWM and switched power stage leaves one uncertain
at this point how well the closed-loop behavior of the switched system

can be predicted by the averaged system; however, for clocked switch
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controllers such as the PWM, one intuitively expects the fundamental
component Qf the feedback signal to be more significant in determining
closed~loop behavior than the shape of the feedback waveform, so there
may be a reasonable correlation between switched and averaged system
stability. The behavior of the switched system cannot be predicted

from the averaged model for frequencies higher than one-~half the switching
frequency because the describing-function requirements are not satisfied
then for the PWM; therefore, any derived stability conditions will be
merely necessary, but not sufficient, for stability. The objective

of this section is to provide an e#perimental basis for the comparison
of closed-loop stability associated with switched systems and averaged
systems.

Refer to Fig. 4.11 for the closed-loop configuration of the switch-
ing converter. Local stability can be experimentally examined by grad-
uallybincreasing the value of the gain factor K until a small disturbance
in the steady-state limit cycle no longer decays with time but grows
in amplitude. The critical value of K which separates the two modes of
behavior is denoted Kc’ and the corresponding oscillation occurs at
frequency wc. In practice, the perturbation is originated by changing
U for a few switching cycles and then returning U to its steady-state
value; the effect is to initiate non-steady-state initial conditions
in the state variables of the system.

Theoretical values for KC and w, were computed from the averaged
models in Sec. 4.6.2 by observing the frequency w, where the phase

lag is T and then choosing a gain factor KC which makes the magnitude
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of the open-loop-gain equal to unity; values are summarized in Table 4.2.

Experimental values of KC and w_ are compared in Table 5.1 with
predicted analytical values. Considering the possibility that
experimental values for W, and KC may lie in a semi-infinite interval,
one must conclude that the empirical data correlates well with values
derived analytically from the averaged models. Experimental values
could not be obtained in the buck-boost simulation for D=0.25 because,
as K increases, the discontinuities in output voltage, which are a
consequence of switched. current through the parasitic resistance of the
imperfect filter capacitor, drive the switch controller into a saturated
condition before the system becomes unstable. The same problem plagues
the simulation of the buck converter to an even greater extent since the
critical gains expected there are larger; although it could be a real
operational characteristic, the problem in the simulation was traced to
amplifier loading.

The essential agreement between experimental and theoretical
closed—ioop behavior indicates that even closed-loop response of
switched dc-dc converters can be well predicted by averaged models;
hence, the averaging technique should be a useful tool for the design

and analysis of switching converters.
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Table 5.1

Critical stability factors of the closed-loop regulator configuration.

3
D Kc wc[lo rad/sec]

Theory Measured Theory Measured
0.25 0.028 0.034 2.84 2.87
Boost 0.50 0.012 0.015 1.73 1.65
0.75 0.004 0.007 0.73 0.82

0.25 0.158 - 6.34 -
pucks 0.50 0.023 0.037 2.37 1.89
oost .

0.75 0.006 0.010 0.93 1.13
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Chapter 6
CONCLUSIONS

Techniques have been developed in this work for the representation
of switched voltage converters by averaged models. These models were
subsequently used to derive analytical expressions for the character-
istic transient and frequency responses of switched power stages. The
averaging method avoids a dependence on transcendental equations and thus
applies for high-order systems without a commensurate increase in
complexity; however, it portrays only‘those responses7 whose character-
istic times are large compared to the switching period. One of the
general results which emerge from analysis is the dependence of effec-
tive component values upon the switch duty ratio.

Cﬁapter 1 introduces several switched circuits (buck, boost, and
buck-boost) which are often used for conversion of dc voltages from one
level to another when efficiency is a fundamental concern. There the
nonlinear nature of switched converters is exposed. Conventicnal methods
of nonlinear analysis are discussed and found to be not only lacking in
design interpretation, but also difficult or impossible to apply. The
practical design implications of transient response and frequency

response lead to a problem formulation in search of (at least) these

quantities.

This limitation is not a serious one since practical switched converters
invariably satisfy the slow-response criterion.



168

0f the two functional blocks with which switched converters are
composed, the switch controller is well defined, so the power stage is
chosen for further study. Chapter 2, deals with the buck power stage,
which is a simple linear circuit because the filter components are not
separated by switches. For this case the problem reduces to a knowledge
of the controller characteristics, so for illustrative purposes a pulse
width modulator (PWM) is chosen as controller and the output spectrum
corresponding to a monofrequency input modulation is Fourier analyzed to
determine the conditions for which a simple describing function is
representative of the PWM,

The difficulty previously encountered in nonlinear analysis of
switched power stages is éuccessfully surmounted in Chap. 3 by the
semiheuristic development of a continuous power-stage model. The model
is derived by a technique which averages discontinuous state variables
over a time interval that is comparable with the switching period and
hence is.limited to response times greater than the averaging interval.

Equivalent circuits and analytic expressions for the transient and
frequency responses of each power-stage type are derived in Chap. 4 from
the averaged models. A linearized control-input transfer function is
obtained for small amplitude variations of the averaged contrcl and is
then identified as that of an effective amplifier and filter in cascade.
Analytic expressions for the amplifier and filter transfer functions
which correspond to variations of either the source. or control input are
summarized in Sec. 4.4, Consequential observations in Chap. 4 include

the modification of effective component values, and hence filter
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characteristics, by the control input, and the presence of a factor in

the control-input amplifier transfer function which has a real positive
zero. After it was verified that present analysis is compatible with
existent published results, Chap. 4 is concluded by computing critical
gain factors and oscillation frequencies for marginal stability of a
given feedback configuration. Analysis of a particular feedback config-
uration indicates that closed-loop stability of each power stage decreases
as either the duty racio or the source voltage increases.

The ultimate destiny of any model is its portrayal of the essential
characteristics of reality; thue, the appropriate responses of both
switched power stages and averaged power-stage models are experimentally
determined in Chap. 5 with the aid of an analog computer and found to
be in excellent correlatioo. Each component of the theoretical control-
input transfer function is found to be necessary for correct prediction
of the experimental frequency response; consequently, the theoretical
and experimental frequency responses agree very well., Finally, it is
determined experimentally that critical gain factors and osciilation
frequencies for marginal closed-loop stability of switched power stages
in a feedback configuration can be adequately predicted by theoretical
analysis of the corresponding averaged power stages.

It has been shown here that the averaging technique is a powerful
analytical tool for exposing tractable characteristics of switched
circuits. With such a general tool, one can now consider research

extensions into several areas of practical and theoretical interest



such as:

(a)

(b)

()

(d)
(e)
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A study of the effects of nonresistive loads and their
variations,

Evaluation of line (source) rejection and output impedance
for a given feedback configuration,

A study of comparative power-stage merits,

Analysis of other feedback configurations,

Feedback optimization for given performance criteria.
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Appendix A
EVALUATION OF THE PWM SPECTRUM

The output d of the PWM defined in Eq. (2.20) can be expressed8 as
a superposition of unit steps:

o

d(t) = E [h(t -kT) - h(t - kKT - T e(kT))], (A.1)
k==c
where
0; t <o
h(t) =
1; t>o . (A.2)

The problem is to evaluate the frequency components of d when the PWM

input € is given by
e(t) = U + u sin(uwt - ¢) . (a.3)

To attain a solution, one must determine the coefficients in the Fourier
series which represents d.
One intuitively expects the interaction of two independent frequen-

. 2m , . .
cies, w and ws = = in the PWM output, so consider the two-~dimensional

Equation (A.l) assumes that the PWM input does not exceed saturation
limits: 0 < e(kT) < 1,
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(6)

method demonstrated by Rowe to evaluate a double Fourier series.
Although the method can be applied to find the spectrum of d directly,
the derivation is considerably shortened if one uses some of Rowe's results

to determine the spectrum of the time derivative of d.

Differentiate the expression in Eq. (A.l) to get the time derivative

of d:
a'(t) = z [6(t = KT) = 8(t = kT = T e(kT))]
= t) - (t) , (A.4)
2,0-2,
where
Z (t) = /V §(t ~ KT) (A.5)

1 k==

22(t>

[= -]

28 §(t = kT = T e(kT))

k=—x

[~

z §(t - kT - TU - Tu sin(ekT - ¢)) (A.6)

k=<0

and where §(t) is the Dirac delta function. Since ZSl(t + pT) =
22 1(t) for any interger p, the summation in Eq. (A.5) can be easily
expanded in a Fourier series:

co

Zlm - Z a ;mwsc : (A7)

m=..oo
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where
T/2
-jmw _t
a=l/§(t)e S de
m T Lt
1
~T/2

. (A.8)

Substitute Eq. (A.8) into Eq. (A.7) to get the frequency spectrum of

5

Eil(t) ) %' 25 ejmwSt . (A.9)

M=w=00

Consider now the spectrum of j; . Rowe used the two-dimensional
reed
2

method to derive the following identity:

j(mwS + nw)y
§[y - kT - uT cos(wkT)] =

k=—w

L] s

a7 8

(-j)n Jn[uT(mws + nw)l e

.00

i
T
m

]
8

(A.10)

where Jn[z] is the Bessel function of the first kind with argument z and
order n. The summation over k in Eq. (A.10) is gimilar to that in

Eq. (A.6), but the absence of a phase term in the cosine makes direct
analogy impossible; however, an appropriate phase term can be carried

through Rowe's derivation to show that
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o]

E §[y = kT - uT sin(wkT = ¢)]
k=_w o] o0
1 ~in(¢ + m) j(mwS + nw)y
=5 E e Jn[uT(mws + nw)] e .

M= J=e=00 (A- ll)

Replace y by t - UT in Eq. (A.1l1l) to get the frequency spectrum of E

2
1 g -in(p + m jQt - UT)
(t) =75 Jn[uTQ] e R (A.12)
2 M=~0 N=emco
where
Q= mo + nw . (A.13)

Substitute Egqs. (A.9) and (A.12) into Eq. (A.4) to obtain the

frequency spectrum of d':

' L Z jmat -in(e + m) it - UT)
a'(t) = T e -5 E e Jn[uTQ] e

=0 == - 00 n=—m

(A.14)
m # 0 Q= mo +now # 0

The m = 0 term in EI cancels with them = n = 0 term in E " sp d' has
1

no dc component. The indices m and n which conceivably make & zero do
not contribute components to d' since Jn(O) = 0 for n # 0. Equation (A.1l4)

can now be integrated to get the frequency spectrum of d:
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o)
jmw t
1 s
d(t) = Ci + E jmws T e

m=—m
m#0
2 z ~in(s + m) Jn[uQT] iQ{t - UT)
- e ——— e .
i@ T

(A.15)
Q= mo +nw # 0

The integration constant Ci can be evaluated for a special case of the
PWM input; for example, if u = 0 in Eq. (A.3), then d has a single
periodicity T in Eq. (A.1l), and the spectrum of d is contained in

Eq. (A.15). 1In particular, Ci is the dc component of d given by the

expression:
T
1
Ci_T / d(t) dt
0 u=20
T
1
=z / [h(t) - h(t - UT)] dt
0
=U . " (A.16)
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Appendix B

ANALOG COMPUTER SIMULATION

Experimental data was obtained from simulations on a Beckman 2132
analog computer of the switched and averaged models for each pcwer-stage
type. The simulation procedure is demonstrated here in detail for the
boost power stage, but since the procedures are similar, only the final
computer diagrams are given for the other types.

To make the actual system compatible with computer capabilities,
amplitude and time must be scaled. Amplitude scale factors are chosen
in such a way that the normalized amplitudes are always less than unity
The actual switching frequency of 10 kHz.is scaled down by a factor of
lO3 so simulated responses can be adequately computed and recorded. ' In
the following discussions, the prefixes A, P, C, and M, respectively,
refer to identification numbers for amplifiers, potentiometers,

comparators, and multipliers,

B.1 Switched Boost Power Stage

The problem variables in Eq. (3.1) to (3.5), which characterize
the switched boost power stage, are multiplied by the scale factors

h to create normalized simulation variables. X:
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h, 1
i

h v
v

ht t

h v
Vs s

h, i
i n

h v
vV v

> (8.1)

Notice that in and i have the same peak amplitude, so their scale factors

are identical; likewise, for v, and v.

To illustrate the use of scale

factors, the normalized version of Eq. (3.1) is given as

h_ dX

; X X
i VS vn

t L i
LB—.—d = - % - o . (B.2)
1 Vs v 1

For a constant source

voltage Vs and with the scale factors given by

the simulation equations are:

dx
dt

dXx
dt

1 -0.500X, -3
i

1.312 X, - 0.3935 X
in ve

N
’ (8.3)

/
XVn (B.4)
(B.5)
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X = 0.9836 X+ 0.0546 X, (B.6)
ve in

0 ; switch state "on"
X o= (8.7)
X s switch state "off"

" 1

0 ; switch state "'on
Xin = (B.8)
» X.; switch state "off" .

The computer diagram to solve Egs. (B.4) to (B.8) is shown in
Fig., B.l. The two double-throw switches are relay contacts which simu-
late the actual switches S and S' and are further discussed in the

following section.

B.2 PWM Switch Controller

The pulse-width~modulator described in Sec., 2.3 is simulated to
operate the power-stage switches. Because the PWM describing function
used in the analysis assumes that the dimensionless input is restricted
between zero and unity, only the linear portion of the PWM characteristic
shown in Fig. 2.3 must be simulated.

Without belaboring the synthesis, the computer diagram to simulate
the linear PWM characteristic is shown in Fig. B.2. Each comparator
Ca’ Cb’ and CC operates a double-pole double~throw relay switch in such
a way that a positive comparator input céuses switch connections to be
made as shown: the opposite switch connections correspond to a negative
comparator input. Operation of the simulated‘PWM is explained with the

aid of typical waveforms shown in Fig, B.3, A periodic timing waveform
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Fig. B.3 Computer waveforms in PWM simulation.
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with period TX is generated in the upper portion of the computer diagram
and is shown in Fig, B.3(a); by adjusting P7, one can set Tx =>O.l sec

as specified by the time scale factor in Eq. (B.3). If the input XC of
comparator Cb is positive, then the position of switches Sbl and sz will
remain as shown until the quantity Xa illustrated in Fig. B.B(E) becomes
negative, During this time interval the integrator A9 is reset to the
value of Xe’ which is the dimensionless PWM input (notice that the scale
factor which relates e to Xs is unity since in its definition the actual
PWM input is properly scaled for simulation). When XC is negative, then
A9 operates to increase Xb at a linear rate as shown in Fig. B.3(c) until

Xb becomes positive, at which time the comparator C, again changes state.

b

The resultant waveform of XC shown in Fig. B.3(d) drives an additional

comparator Cc which operates the contacts SC and SC used in Sec. B.1l to

1 2

simulate the switched power stage. The computer configuration described
above successfully divides a uniform timing period Tx into two subintervals
as required to simulate the PWM; the duration of the first subinterval

is proportional to the value of the input sampled at the initiation of

T .
X

B.3 Averaged Boost Power Stage

Some of the normalized equations -- namely, Eqs. (B.4) to (B.6) --
which describe the switched boost power stage also apply for the corres-
ponding averaged model shown in Fig. 3.5; however, the driving functions
Xvn and Xin are no longer switched, but continuous. If the analog vari-

able Xd represents the slowly-varying (averaged) components of the digital

switch-drive signal, then the driving functions suitable for simulation
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of the averaged boost power-stage model are

]

i a - xd) X (B.9)

>
i

in Q- Xd) Xi . (B.10)
The computer diagram to simulate the averaged boost stage is shown
in Fig., B.4, Equations (B.9) and (B.10) are implemented with analog
multipliers M1 and M2.
Step changes and sinusoidal modulations are readily programmed for

the analog inputs Xe and X. to investigate the various responses of the

d

switched power stage and its averaged model,.

B.4 Buck and Buck-Boost Power Stages

The computer diagrams used to simulate the switched and averaged
models of the buck and buck-boost power stages are presented for refer-
ence in Figs, B.5 to B.8, The scale factors which normalize the pro-

blem variables are listed below.

Scale factor Buck “Buck=boost
3 3
ht 10 10
hVs 1/60 : 1/60
hi 2/5 1/20
h 1/60 1/240
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