Chapter 3

Products of peroxy radical reactions from the NO_3 -initiated oxidation of isoprene²

² Adapted from Kwan, A. J., Chan, A. W. H., Ng, N. L., Kjaergaard, H.G., Seinfeld, J. H., and Wennberg, P. O.: Products of peroxy radical reactions from the NO₃-initiated oxidation of isoprene, in preparation.

Abstract

Peroxy radical reactions (RO_2 - RO_2) in the NO_3 -initiated oxidation of isoprene are studied with both gas chromatography and a chemical ionization mass spectrometry technique that allows for more specific speciation of products than in previous studies of this system. We find high nitrate yields ($> \sim 80\%$), consistent with other studies. We further see evidence of significant OH formation in this system, which we propose comes from RO_2 - HO_2 reactions with a yield of 44-64%. The branching ratio of the radical propagating, carbonyl and alcohol forming, and dimer forming channels of the RO_2 - RO_2 reaction are found to be 18-38%, 59-75%, and 7-10%, respectively. HO_2 formation in this system is lower than has been previously assumed. Reaction of RO_2 with isoprene is suggested as a possible route to the formation of several isoprene dimer compounds (ROOR). The nitrooxy, allylic, and C_5 peroxy radicals present in this system exhibit different behavior than the limited suite of peroxy radicals that have been studied to date.

3.1 Introduction

The global emissions of isoprene (440-660 Tg yr⁻¹ (Guenther et al., 2006)) are larger than those of any other non-methane hydrocarbon. Because of its high abundance and reactivity towards atmospheric radicals, isoprene plays a major role in the oxidative chemistry of the troposphere (e.g., Chameides et al., 1988; Williams et al., 1997; Roberts et al., 1998; Horowitz et al., 1998; Paulot et al., 2009a) and is an important precursor for secondary organic aerosol (SOA) (e.g., Claeys et al., 2004; Kroll et al., 2005, 2006; Surratt et al., 2006, 2010; Carlton et al., 2009).

Nitrate radicals (NO₃), which form primarily from the reaction of NO₂ and O₃, are likely the dominant oxidant of isoprene at night when photochemical production of hydroxyl radicals (OH) ceases. Although nighttime isoprene emissions are negligible (Sharkey et al., 1996; Harley et al., 2004), isoprene emitted late in the day, as OH concentrations drop, remains in the nighttime atmosphere (e.g., Starn et al., 1998; Stroud et al., 2002; Warneke et al., 2004; Steinbacher et al., 2005; Brown et al., 2009). The rate constant for the isoprene reaction with NO₃ is ~ 50,000 times higher than that with O₃, the other major nighttime oxidant (Atkinson, 1997). Assuming an NO₃ mixing ratio of 10 ppt and an O₃ mixing ratio of 40 ppb, oxidation of isoprene by NO₃ will proceed more than an order of magnitude faster than by O₃. Mixing ratios of NO₃ in the nighttime continental boundary layer generally exceed 10 ppt, being in the range of 10-100 ppt (Platt and Janssen, 1995; Smith et al., 1995; Heintz et al., 1996; Carslaw et al., 1997), though concentrations on the order of several hundred ppt have been reported (Platt et al., 1981; von Friedeburg et al., 2002; Brown et al., 2006; Penkett et al., 2007).

During the day, NO₃ is efficiently destroyed by photolysis and reaction with NO (Wayne et al., 1991), but significant daytime concentrations have been measured under conditions of sufficient O_x ($O_x = O_3 + NO_2$) and low actinic flux. NO₃ has been shown to reach concentrations of ~ 1 pptv and be responsible for $\sim 10\%$ of total isoprene oxidation in the daytime under clouds or in a forest canopy (Brown et al, 2005; Forkel et al., 2006; Fuentes et al., 2007). In Houston, with large concentrations of both NO_x and O₃, NO₃ concentrations between 5-30 pptv in the hours before sunset have been measured (Geyer et al., 2003a).

The reaction of isoprene and NO₃ can be significant to atmospheric carbon and nitrogen budgets – and subsequently ozone formation – particularly on a regional scale. Globally, it is estimated the isoprene-NO₃ reaction is responsible for \sim 6-7% of total isoprene oxidation (Horowitz et al., 2007; Ng et al., 2008) and \sim 15% of oxidized nitrogen consumption (Brown et al., 2009). Field studies in the northeastern United States, which has a mix of NO_x and isoprene sources, find that \sim 22% of isoprene oxidation in the residual daytime boundary layer, \sim 40% of isoprene oxidation in airmasses advected offshore within the marine boundary layer, and \sim 73% of NO₃ consumption can be attributed to this reaction (Warneke et al., 2004; Brown et al., 2009). In addition, the isoprene-NO₃ reaction is likely an important source of isoprene nitrates, which are significant NO_x-reservoir compounds affecting regional ozone formation (von Kuhlmann et al., 2004; Fiore et al., 2005; Horowitz et al., 1998, 2007).

The oxidation mechanism and products of the isoprene-NO₃ reaction have been the subject of numerous studies (Jay and Stieglitz, 1989; Barnes et al., 1990; Skov et al., 1992; Kwok et al., 1996; Berndt and Boge, 1997; Suh et al., 2001; Zhang et al., 2002; Fan et al., 2004; Ng et al., 2008, Perring et al., 2009; Rollins et al., 2009). The initial step in the reaction is addition to one of the double bonds, followed by addition of O_2 to make a nitrooxyalkyl peroxy radical (RO₂). The RO₂ radicals then react with NO₂ (to make short-lived peroxynitrate compounds), NO₃, HO₂, NO₂, or another RO₂, leading to a variety of 1st generation products (Figure 3.1). We neglect RO₂ reactions with NO, as NO concentrations are generally very low at night (and low in the chamber due to the rapid reaction NO₃ + NO \rightarrow 2NO₂).

In a previous study (Ng et al., 2008), we show that the SOA yield from the reaction of isoprene with NO₃ radicals is higher when experimental conditions favor RO₂-RO₂ reactions over RO₂-NO₃ reactions. This phenomenon is explained in part by the formation of low vapor pressure ROOR dimers from RO₂- RO₂ reactions, a product channel that had previously been considered insignificant. In light of the potential importance of RO₂-RO₂ reactions, we present here a detailed product study of the RO₂-RO₂ reactions from the NO₃-initiated oxidation of isoprene.

3.2 Experimental

This work presents a detailed product study of the "excess isoprene" experiment discussed in Ng et al. (2008). The thermal decomposition of N_2O_5 serves as the source of NO_3 radicals. N_2O_5 is synthesized by mixing streams of nitric oxide (\geq 99.5%, Matheson Tri Gas) and ozone in a glass bulb, which forms N_2O_5 via the following reactions (Davidson et al., 1978):

$$NO + O_3 \rightarrow NO_2 + O_2$$

 $NO_2+O_3 \rightarrow NO_3 + N_2O_5$
 $NO_2+NO_3 \leftarrow N_2O_5$

Ozone is generated by flowing oxygen through an ozonizer (OREC V10-0); its mixing ratio is found to be $\sim 2\%$ as measured by a UV/VIS spectrometer (Hewlett-Packard 8453). The flow rate of nitric oxide into the glass bulb is adjusted until the brown color in the bulb disappears. The N_2O_5 is trapped for 2 hours in an acetone-dry ice bath at

approximately -80°C, cold enough to trap N_2O_5 but not O_3 , as condensed O_3 can explode upon warming. After synthesis, the bulb containing the N_2O_5 , a white solid, is stored in a liquid nitrogen dewar.

Experiments are performed in the Caltech dual 28 m^3 Teflon chambers (Cocker et al., 2001; Keywood et al., 2004). O₃ (Horiba, APOA 360), NO and NO₂ (Horiba, APNA 360), and temperature and relative humidity (RH) (Vaisala, HMP 233) are continuously monitored. The chambers are maintained in the dark at room temperature ($\sim 20\text{-}21^\circ\text{C}$) under dry conditions (RH<10%). Prior to an experiment, the chambers are continuously flushed for at least 24 hours. The N₂O₅ is removed from the liquid nitrogen and vaporizes into an evacuated 500 ml glass bulb, the pressure in which is continuously monitored by a capacitance manometer (MKS). Once a sufficient pressure of N₂O₅ has been achieved in the bulb, the bulb's contents are flushed into the chamber with a 5L min⁻¹ air stream. After waiting ~ 1 hour to allow the N₂O₅ to become well-mixed in the chamber, a known volume of isoprene (Aldrich, 99%) is injected into a glass bulb and flushed into the chamber with a 5 L min⁻¹ air stream, which initiates the reaction.

The amount of isoprene added corresponds to a mixing ratio in the chamber of \sim 800 ppb, while the N_2O_5 concentration is \sim 150 ppb. The large excess of hydrocarbon with respect to N_2O_5 maximizes peroxy radical self- and cross- reactions and minimizes NO_3 reactions with both peroxy radicals and stable first generation products (i.e., species other than isoprene). This excess is magnified by adding the hydrocarbon after the N_2O_5 is well-mixed in the chamber: within the injected plume, hydrocarbon concentrations will be much greater than 800 ppb.

An Agilent 6890N gas chromatograph with flame ionization detector (GC-FID) measures isoprene and the oxidation products methyl vinyl ketone, methacrolein, and 3-methylfuran. The GC-FID, equipped with a bonded polystyrene-divinylbenzene based column (HP-Plot Q, 15 m x .53 mm, 40 µm thickness, J&W Scientific), is held at 60°C for 0.5 minutes, then ramped at 35°C min⁻¹ to 200°C, after which the temperature is held steady for 3.5 min.

The other gas-phase products reported here are monitored with a custom-modified Varian 1200 chemical ionization mass spectrometer (CIMS) (Ng et al., 2007; Paulot et al., 2009b), which selectively clusters CF₃O with compounds having a high fluoride affinity (e.g., acids, peroxides, and multifunctional nitrooxy- and hydroxy- compounds), forming ions detected at m/z MW + 85 (Crounse et al., 2006). The quadrupole mass filter scans from m/z 50 to m/z 425, with a dwell time of 0.5 s per mass. The CIMS enables more specific speciation of organic nitrates than other techniques that have been employed to study the isoprene-NO₃ system: Fourier transform infrared (FT-IR) (Barnes et al., 1990; Skov et al., 1992; Berndt and Böge, 1997), thermal dissociation-laser induced fluorescence (TD-LIF) (Perring et al., 2009; Rollins et al., 2009), and proton transfer reaction mass spectrometry (PTR-MS) (Kwok et al., 1996; Perring et al., 2009; Rollins et al., 2009). FT-IR and TD-LIF measure the amount of a certain functionality (e.g., nitrates), but in complex mixtures it is difficult to distinguish compounds sharing a common functional group (e.g., nitrooxycarbonyls and hydroxynitrates). The PTR-MS allows for identification of individual compounds, but does so with significant fragmentation and water clustering, which leads to complex mass spectra and an increased probability of mass analog confusion. In contrast, the CIMS does not lead to

significant fragmentation or water clustering under these experimental conditions, which simplifies interpretation of mass spectra.

Because authentic standards for the major products are unavailable, we estimate the sensitivity of the CIMS to these products using the empirical method described by Su and Chesnavich (1982) and Garden et al. (2009). This method estimates the collision rate of CF₃O⁻ and an analyte based on the analyte's dipole moment and polarizability, which are calculated with the Spartan06 quantum package based on molecular structures optimized with the B3LYP/6-31G(d) method. While this theoretical approach compares favorably with experimentally derived sensitivities for many compounds (Garden et al., 2009; Paulot et al., 2009ab), it represents the largest source of uncertainty (+/- 25%) for the CIMS data.

3.3 Results and Discussion

Because the isoprene-NO₃ reaction is rapid, the low time resolution of our measurements (one measurement every ~ 12 minutes for the GC-FID and ~ 8 minutes for the CIMS) allows us to determine only the final product distribution (Table 3.1). The yields in Table 3.1 vary from those reported in Ng et al. (2008) due to refinements in the estimated CIMS sensitivity, but these changes do not significantly alter the conclusions drawn in our earlier work. Due to the computational intensity of estimating the dipole and polarizability of large molecules, we have assumed that the CIMS has the same sensitivity to all of the C₉ and C₁₀ compounds.

The only species for which we see time dependent signals are the ROOR dimer compounds (CIMS m/z 332, 377, and 393), which reach peak signals 1-3 h after the

reaction is initiated, followed by a slow decay. This slow rise and decay is likely a result of the fact that these compounds have low vapor pressures and thus interact significantly with instrument tubing or condense into secondary organic aerosol ($\sim 10~\mu g/m^3$ of SOA forms rapidly in this experiment). For these compounds, the reported values are the peak mixing ratios seen during the experiment.

3.3.1 Nitrate yield

C₅ nitrooxycarbonyls, hydroxynitrates, and nitrooxyhydroperoxides, the major products of the isoprene-NO₃ reaction, are detected by the CIMS at m/z 230, 232, and 248, respectively. In addition, we see compounds appearing at m/z 216, 246, and 264, which are consistent with products resulting from the isomerization of the alkoxy (RO) radical originating from the δ -nitrooxyperoxy radical from (1,4) or (4,1) addition (the notation (x,y) indicates NO₃ addition to the x carbon and subsequent N₂O₅ addition to the y carbon) (Figure 3.2). Previous studies have shown that (1,4) additions are dominant in this system (Skov et al., 1992; Berndt and Böge, 1997; Suh et al., 2001). Isomerization also leads to a product at m/z 248, the same mass as the nitrooxyhydroperoxide. To estimate the ratio of these two isobaric species, we assume that the alkoxy radical yield from RO₂-RO₂ reactions is identical for both the non-isomerized and isomerized nitrooxyperoxy radical (the branching ratio of RO₂-RO₂ is discussed further in section 3.3.4). Finally, we see dimer ROOR products at m/z 332, 377, and 393 (further discussed in section 3.3.6). Summing the concentrations of these nitrates (and noting that the ROOR compounds at m/z 377 and 393 sequester two nitrates), we find a total organic nitrate concentration of ~ 100 ppb.

We express the nitrate yield with respect to both reacted nitrogen or carbon. For the nitrogen-based yield, we divide the nitrate concentration by the amount of NO_3 radical consumed, which is equivalent to the loss of N_2O_5 during this reaction. Lacking a quantitative measurement of N_2O_5 , we use the change in NO_2 concentration after the addition of isoprene (~ 125 ppb) as a proxy. Each conversion of N_2O_5 to NO_3 releases NO_2 , but the total change in NO_2 may be an overestimate of total NO_3 reacted because NO_2 can also be released in the formation of methyl vinyl ketone (MVK), methacrolein (MACR), 3-methylfuran (3-MF), and the C_5 hydroxycarbonyl (Figure 3.3), though in section 3.3.2 we discuss alternative formation pathways for these compounds. Subtracting these additional NO_2 sources to get a lower limit for NO_3 consumption leads to an NO_3 consumption range of 109-125 ppb and a corresponding nitrate yield of $\sim 80-90\%$.

This high yield suggests that the NO_3 radical reacts with isoprene predominantly, if not exclusively, via addition to a double bond. The CIMS does not see a detectable rise in HNO₃, indicating that hydrogen abstraction is not a significant pathway for this reaction (our sensitivity to HNO₃, however, is hampered by a large background – probably from impurities in the N_2O_5 or reaction of N_2O_5 with trace water). Assuming most of the 16.1 ppb of MVK, MACR, 3-MF, and the C_5 hydroxycarbonyl originates from nitrooxyperoxy radicals, we account for $\sim 100\%$ of the NO_3 reacted. Additionally, although our experimental design seeks to minimize reactions of NO_3 with species other than isoprene, our yield estimate should be considered a lower limit because there are also possible (likely small) losses of NO_3 from reaction with other radicals or first-generation products, or heterogeneously to the chamber walls or SOA.

The measured nitrate yield with respect to NO₃ is consistent with the substantial yields determined by other studies: \sim 95% (under NO-free conditions) (Berndt and Böge, 1997), 57 ± 11% (Perring et al., 2009), and 70 ± 8% (Rollins et al., 2009). Variance in yields with different experimental methods is not surprising because they depend on the relative concentrations of different radicals, as well as physical loss and mixing processes, which are unique to each work. Furthermore, the final product distribution is a strong function of the distribution of peroxy radical isomers: δ -nitrooxyperoxy radicals tend to maintain their nitrate functionality (with the exception of the possible formation of hydroxycarbonyl or 3-MF), while β -nitrooxyperoxy radicals, if they become nitrooxyalkoxy radicals, are likely to lose the nitrate to form MVK or MACR (Vereecken and Peeters, 2009). Berndt and Böge (1997) and Peeters et al. (2009) suggest that peroxy radical isomers formed from isoprene oxidation are continuously interconverting, so the distribution of isomers that defines the final product distribution may also be sensitive to specific experimental conditions.

To calculate the nitrate yield with respect to carbon, we divide the concentration of nitrates by the amount of isoprene reacted. Because a portion of the isoprene reacts immediately upon introduction into the chamber, the exact starting isoprene concentration is uncertain. Therefore, we assume that each of the products listed in Table 3.1 comes from one isoprene molecule, with the exception of the ROOR compounds (which comprise two isoprene molecules) and hydrogen peroxide (which comprises zero). This leads to an estimate of ~ 128 ppb of isoprene reacted, and a nitrate yield of ~ 80%. As with the nitrogen-based yield, this result too is consistent with other studies: ~

80% (Barnes et al., 1990), \sim 90% (Berndt and Böge, 1997), $70 \pm 8\%$ (Rollins et al., 2009), and $65 \pm 12\%$ (Perring et al., 2009).

That our CIMS-derived estimate of isoprene consumption is higher than our independent estimate of NO₃ consumption (by up to 20% depending on the sources of NO₂) suggests that our reported nitrate yields may be overestimated slightly, and should therefore be considered upper limits. The discrepancy between our estimates of isoprene and NO₃ consumption is likely attributable to the lack of an empirical calibration for the CIMS.

3.3.2 Hydroxyl radical (OH) formation

The CIMS detects the formation of products at m/z 185, 187, 203, and 201, which are indicative of compounds at MW 100, 102, 118, and 116, respectively. These compounds are analogous to those depicted in Figures 3.1 and 3.2, only with oxidation initiated by the hydroxyl radical (OH) instead of NO₃ (Surratt et al., 2010). Perring et al. (2009) report PTR-MS signals at m/z 101, 103, 119, and 117, which could be the protonated clusters of these compounds, though they attribute the latter three m/z to water clusters of other major product ions. Under the dry conditions of our experiment, however, we do not typically observe water clusters with, or significant fragmentation of, the product ions, so we are confident that the signals on the CIMS in fact represent hydroxy compounds. OH formation may also contribute to some or all of the MVK and MACR produced in our system, though it is likely most of the 3-MF comes from isoprene-NO₃ reactions because its yield in the isoprene-OH system is low (Ruppert and Becker, 2000; Paulot et al., 2009b).

We consider the following five possible routes to OH formation in our system: reactions of (i) O_3 and isoprene (Neeb and Moortgat, 1999), (ii) HO_2 and O_3 (Sinha et al., 1987), (iii) HO_2 and NO (Seeley et al., 1996), (iv) HO_2 and NO_3 (Mellouki et al., 1993), and (v) RO_2 and HO_2 (Hasson et al., 2004, 2005; Jenkin et al., 2007, 2008, 2010; Crowley and Dillon, 2008). Hypotheses (i) and (ii) are unlikely to occur. Not only is no O_3 detected during the experiment (limit of detection \sim 2 ppb), but there is no evidence in the CIMS data of significant organic acid or peroxide formation, which would result from the reaction of O_3 with isoprene (Hasson et al., 2001; Orzechowska and Paulson, 2005). Furthermore, for hypothesis (ii) to be feasible, HO_2 - O_3 reactions (k = 1.9 x 10^{-15} cm³ molec⁻¹ s⁻¹, Sander et al., 2006) must be significantly faster than HO_2 - HO_2 reactions (k = 2.48 x 10^{-12} cm³ molec⁻¹ s⁻¹ at 1 atm and 298K, Sander et al., 2006), which produce ppb levels of H_2O_2 in the system (Table 3.1). This would require O_3 to be more than three orders of magnitude more abundant than HO_2 , i.e., at ppm levels, that cannot come from trace contamination of the chamber.

To examine the remaining hypotheses, we create a box model incorporating the major reactions in the system for developing a qualitative understanding of which processes may be important for the final product yield. Table 3.2 lists the parameters of this box model; for rate constants that have not been experimentally determined, we use estimates based on the literature, but caution that the actual rate constants may differ significantly. Initial conditions reflect the nominal concentration of reagents in the chamber: [isoprene] = 800 ppb, [N₂O₅] = 125 ppb, and [NO₂] = 50 ppb (the NO₂ likely results from decomposition of N₂O₅ prior to isoprene injection). In reality, though, the isoprene concentration is higher than 800 ppb during the reaction because of our injection

method. As discussed later, there are major uncertainties in the HO_2 sources and magnitudes, so for the purposes of assessing possible OH sources, we assume as an upper limit that the formation rate of HO_2 is the same as that of RO_2 ; the final concentration of peroxides (i.e., $[ROOH] + 2 \times [H_2O_2]$) is ~ 23 ppb, much less than the ~ 109 -128 ppb of RO_2 that is formed (section 3.3.1), suggesting that the formation of HO_2 is significantly less than that of RO_2 .

The box model shows that the NO levels in the chamber are too low to sustain substantial OH formation via hypothesis (iii). The NO_x monitor measures < 1 ppb of NO throughout our experiment, and any NO that may exist prior to the experiment (or as a trace impurity in the N_2O_5) reacts quickly with NO_3 after N_2O_5 injection; the NO lifetime is ~ 1 s with the N_2O_5 loading. Although NO may be generated as a minor channel of the $NO_2 + NO_3$ reaction, the rapid reaction of NO and NO_3 limits the steady state concentration of NO to < ~ 4 ppt, so $HO_2 + NO$ is unlikely to contribute to significantly to the 12-21 ppb of OH that is formed in the system. In the simulation, NO at its maximum concentration cannot compete with other radicals (RO_2 , RO_3 , and RO_2) reacting with RO_3 .

The box model also suggests that hypothesis (iv) is not feasible because of the substantial difference in the rates of the NO₃-isoprene and NO₃-HO₂ reactions, both of which are well established experimentally. Under the base conditions of the box model in Table 3.2, which significantly overestimates the prevalence of HO₂ and underestimates the concentration of isoprene, less than 1% of the NO₃ reacts with HO₂, while 94% reacts with isoprene and the rest with RO₂. Therefore, while there is significant uncertainty with the RO₂-HO₂, RO₂-RO₂, and RO₂-NO₃ rate constants, the frequency of the NO₃-

 $\mathrm{HO_2}$ reaction predicted by the model is quite insensitive to these rates. Even if we favor $\mathrm{NO_3}\text{-HO_2}$ reactions by reducing the $\mathrm{RO_2}\text{-HO_2}$ and $\mathrm{RO_2}\text{-NO_3}$ rate constants by a factor of 100, we obtain ~ 5 ppb of OH formation; in contrast, lowering the isoprene- $\mathrm{NO_3}$ rate constant leads to significantly more production of OH via $\mathrm{NO_3}\text{-HO_2}$ (Figure 3.4). These simulations reflect the observations of Atkinson et al. (1988) during hydrocarbon- $\mathrm{NO_3}$ kinetics studies that there is apparent OH formation when slower reacting hydrocarbons are studied. The reaction of isoprene with $\mathrm{NO_3}$ is sufficiently fast under our experimental conditions, however, that such behavior should not occur.

We therefore conclude that formation of OH radicals most likely results from the reaction of RO_2 and HO_2 radicals. Quantifying the branching ratio of the RO_2 -HO₂ reaction, however, is not trivial. There there are four documented pathways for the RO_2 -HO₂ reaction:

$$RO_2 + HO_2 \rightarrow ROOH$$
 (3.1a)

$$\rightarrow$$
 ROH + O₃ (3.1b)

$$\rightarrow$$
 RO + OH + O₂ (3.1c)

$$\rightarrow$$
 R'CHO + H₂O + O₂ (3.1d)

Channel (3.1a) can be quantified with CIMS measurements of peroxides. We neglect channel (3.1b), first because there is no evidence for ozone formation, and also because this channel is believed to proceed via a hydrotetroxide intermediate that yields O₃ only if RO₂ is an acylperoxy radical (RC(O)OO) (Hasson et al., 2005). To quantify channel (3.1c), we can use the sum of OH products as a tracer, but MVK, MACR, and the C₅

hydroxycarbonyl can come from either OH or NO₃, which leads to uncertainty in this quantity. Similarly, the nitrooxycarbonyl can result directly from reaction (3.1d), indirectly from the RO formed in reaction (3.1c), or RO₂-RO₂. Because multiple pathways share common products, and lacking more knowledge about these individual pathways, we cannot unambiguously constrain the RO₂-HO₂ branching ratios with the available data.

Recognizing the uncertainties, we estimate the OH yield from RO₂-HO₂ but emphasize that our assumptions and results must be verified by further studies. We assume channel (3.1d) is negligible, as well as OH from RO₂-HO₂ reactions where the RO₂ originates from isoprene + OH (Paulot et al., 2009a), and ignore any RO₂-HO₂ reactions from the isomerized nitrooxy RO₂. We constrain the range of OH formation (channel 3.1c) to 9-20.5 ppb, with the upper limit being all the hydroxy products plus MVK and MACR, and the lower limit being the upper limit minus MVK, MACR, and the hydroxycarbonyl. We estimate channel (3.1a) by the concentration of the nitrooxyhydoperoxide at m/z 248, so obtain a range for (3.1c)/[(3.1a)+(3.1c)] of between 9/20.5 and 20.5/32.1, or 44-64%.

This high yield contrasts with the existing, albeit limited, literature on RO₂-HO₂ reaction channels. Thus far, significant OH yields (15-67%) have been found only for acylperoxy, methoxymethylperoxy (CH₃OCH₂O₂), and β-carbonylperoxy (RC(O)CH₂OO) radicals, while alkylperoxy and hydroxyalkylperoxy radicals have exhibited minimal yields (Hasson et al., 2004; Jenkin et al., 2007, 2008, 2010; Crowley and Dillon, 2008). Perhaps the presence of nitrooxy group or the additional double bond present in the RO₂ radicals in this study make the radical propagating channel more

favored than for the compounds previously studied. We also recognize that some entirely different mechanism unknown to us is responsible for the formation of OH.

3.3.3 RO₂-RO₂ branching ratio

Using the data and assumptions described above, we derive a master equation for RO₂-RO₂ reactions. An estimated 55 ppb of RO₂ passes through the channel forming R'CHO and ROH, and 5 ppb becomes ROOR (Table 3.1). The nitrooxycarbonyl yield in excess of the hydroxynitrate yield is assumed to arise from RO-forming channels of either RO₂-HO₂ or RO₂-RO₂. Total RO formation is estimated to be 33.5-45 ppb, as calculated from the sum of the isomerized nitrates, 3-MF, and the excess hydroxynitrate (the upper limit includes MVK, MACR, and hydroxycarbonyl from isoprene-NO₃ reactions). Of this, 9-20.5 ppb comes from RO₂-HO₂, depending on the true provenance of MVK, MACR, and the hydroxycarbonyl.

Each pathway to RO (e.g., RO₂-RO₂, RO₂-HO₂, RO₂-NO₃) has a different heat of reaction, which may affect the RO fate (Bernt and Böge, 1997; Atkinson, 2007). Lacking any specific knowledge about the dependence of RO fate on the reaction enthalpy, however, we assume that every RO behaves the same, regardless of source. We also neglect possible RO₂-RO₂ reactions involving the hydroxyperoxy RO₂.

Taking into account the uncertainties involving RO, we get between 13.5 (i.e., 33.5-20.5) and 36 (i.e., 45-9) ppb of RO coming from RO₂-RO₂, and between 73.5 and 96 ppb (i.e., between 55 + 5 + 13.5 and 55 + 5 + 36) of RO₂ undergoing RO₂-RO₂ reactions. From this, we derive ranges for the RO₂-RO₂ branching ratio:

$$RO_2 + RO_2 \rightarrow 2RO + O_2 \tag{3.2a}$$

$$\rightarrow$$
 R'CHO + ROH + O₂ (3.2b)

$$\rightarrow$$
 ROOR + O₂ (3.2c)

where the branching ratios of (3.2a), (3.2b), and (3.2c) are 18-38%, 59-75%, and 7-10%, respectively.

To our knowledge, this is the first study analyzing the branching ratio of RO₂-RO₂ reactions of isoprene nitrooxyperoxy radicals. For most peroxy radicals that have been studied, channel (3.2a) is typically more than 50%, while channel (3.2c) is generally considered negligible (Atkinson, 1997, and references therein). Ziemann (2002) proposes ROOR formation as the source of diacyl peroxides found in SOA from cycloalkene ozonolysis. Preliminary work in our laboratory has also detected ROOR compounds as products of RO₂-RO₂ reactions from the NO₃-initiated oxidation of 1,3butadiene, as well as the OH-initiated oxidation of 1,3-butadiene and isoprene. There remain many uncertainties regarding the mechanism of RO₂-RO₂ reactions (Dibble, 2008), so it is difficult to assess whether reported ROOR formation (or lack thereof) is a result of the particular radicals studied or the analytical techniques employed to study their reaction. It is possible that the larger peroxy radicals we have studied are more likely to form ROOR than smaller radicals because they have more vibrational modes with which to distribute collisional energy and prevent breaking apart upon collision with another RO₂ radical. This may be analogous to trends in organic nitrate (RONO₂) yields from RO₂-NO reactions, which tend to increase with increasing RO₂ size (O'Brien et al., 1998; Arey et al., 2001; Matsunaga and Ziemann, 2009).

3.3.4 RO radical fate and HO₂ production

The fate of the alkoxy radical is important both for understanding the chamber studies and in nighttime chemistry as it leads to the production of HO₂. From the amount of excess hydroxycarbonyl formed, we estimate that 18 ppb of HO₂ forms from O₂ abstraction of RO (33.5-45 ppb; Section 3.3.3), or 40-54% of RO. This assumes that O₂ abstraction from RO is the sole source of excess nitrooxycarbonyl, and that direct formation from RO₂-HO₂ reactions (equation 3.1d) is negligible. This HO₂ estimate is somewhat lower than the total sum of HO₂ derived from peroxide measurements in our system (23 ppb, section 3.3.2). Additional HO₂ comes from O₂ abstraction from minor alkoxy radicals (the isomerized nitrooxyalkoxy and hydroxyalkoxy radicals), but it is not trivial to attempt an HO₂ balance because of the uncertainties in both the CIMS calibration and the sources and sinks of HO₂. HO₂ can result from the conversion of the nitrooxyalkoxy radical to a nitrooxycarbonyl, or MVK and MACR if the latter are from OH + isoprene; sinks of HO₂ include peroxide formation, RO₂-HO₂ derived alkoxy radicals that do not undergo abstraction, and from nitrooxycarbonyls formed directly from RO_2 - HO_2 via channel (3.4c).

Because the δ -nitrooxyalkoxy radical, the dominant alkoxy radical in the system, can isomerize via a 1,5-H shift, the large HO₂ yield is somewhat surprising because isomerization reactions are typically faster than abstraction by O₂ (Atkinson, 2007). It is possible that the nitrooxy group limits isomerization when the δ -nitrooxyalkoxy radical is in a Z conformation. According to the structure-activity relationship of Kwok and Atkinson (1995), H-abstraction from a carbon with an attached nitrooxy group is an order

of magnitude slower than from a carbon with an attached methyl group. The nitrooxy group likely does not prevent isomerization – we see the analogous isomerized nitrates in experiments with 1,3-butadiene, for which the isomerization must abstract a hydrogen from the carbon α to the nitrooxy group – but more study is required to elucidate the effect of the NO₃ group on isomerization rate. It is also possible that O₂ abstractions are faster for the alkoxy radicals in this system.

While our HO_2 yield is higher than expected based on the alkoxy radical structure, it is lower than the value of 80% of RO_2 that has been used in modeling studies (Horowitz et al., 2007; Rollins et al., 2009). Therefore, models may overestimate the impact of isoprene- NO_3 reactions on nighttime HO_x chemistry in this respect.

3.3.5 Formation of dimer compounds

In Ng et al. (2008), we report the formation of ROOR dimer compounds at m/z 377 and 393. Further examination of the CIMS data reveals other isoprene dimer compounds. The most abundant of these, with a signal similar in magnitude to that of m/z 393, appears at m/z 332, which indicates a hydroxynitrate ROOR. One possible source for this compound is an RO_2 -RO $_2$ reaction where one RO_2 comes from RO_3 and the other from OH. The abundance of OH is much less than that of RO_3 , however, so it would be surprising if such a reaction would produce almost as much ROOR as the reaction between nitrooxyperoxy radicals. Alternatively, this compound may result from addition of an RO_2 radical to isoprene, creating a RO_3 alkyl (and subsequently alkyl peroxy) radical, which undergoes an RO_2 -RO $_2$ reaction to create the RO_3 hydroxynitrate ROOR (Figure 3.5). This mechanism for creating a RO_3 radical is analogous to the

formation of bicyclic radicals by aromatic peroxy radicals (Atkinson and Arey, 2007). Small amounts of the corresponding nitrooxycarbonyl and nitrooxyhydroperoxide at m/z 330 and 348, respectively, are seen, as well as a compounds at m/z 316 that can be a C_9 compound that results from isomerization of a C_{10} nitrooxyalkoxy radical; isomerization may also lead to a diol at m/z 348, the same mass as the hydroperoxide.

We do not know of any previous work that has examined RO₂ addition to alkenes under atmospheric conditions, though it has been reported in both gas-phase combustion (e.g., Osborn and Waddington, 1980; Stark and Waddington, 1995) and liquid-phase studies (e.g., van Sickle et al., 1965ab; Mayo, 1968; Simmons and van Sickle, 1973), producing both epoxides and polymeric peroxy radicals.

3.4 Implications

The observed high nitrate yields, in general agreement with previous results, support the modeling results of Horowitz et al. (2007) that isoprene-NO $_3$ reactions, while a minor sink of isoprene, are a substantial source of isoprene nitrates in the atmosphere. The formation and fate of these nitrates, in turn, significantly influences tropospheric NO $_x$ and ozone.

Although we obtain similar nitrate yields relative to both reacted nitrogen and carbon, these two yields are fundamentally different quantities that coincidentally have similar magnitudes. Even in an ideal situation in which NO₃ reacts exclusively with isoprene (i.e., no reactions with RO₂, HO₂, walls, etc.), the nitrogen based yield (i.e., [nitrates]/[NO₃ consumed]) is non-unity solely due to loss of the nitrate functionality by the initial isoprene-NO₃ adduct (Figure 3.2); in contrast, the carbon-based yield (i.e.,

[nitrates]/[isoprene reacted] or [nitrates]/[total carbon products]) is non-unity from both nitrate losses by the initial adduct and isoprene reactions with OH. For systems with extensive amounts of competing NO₃ sinks and/or OH formation, the nitrogen- and carbon-based yields may vary considerably. Thus, when applying experimental yields to atmospheric models, care must be taken to choose the appropriate value, as well as to consider the conditions under which those yields are obtained.

The large yield of products from reaction of OH with isoprene is potentially very important for nighttime chemistry, particularly because we propose that the source of OH is from RO₂-HO₂ reactions which likely dominate in the ambient environment. Recent field studies suggest that the radical propagating channels of RO₂-HO₂ reactions must be significant to explain observations (Thornton et al., 2002; Leileveld et al., 2008). Previous studies of nighttime chemistry have considered only alkene ozonolysis and HO₂-NO, HO₂-O₃, and NO₃-HO₂ reactions as sources of OH (Bey et al., 1997, 2001ab; Harrison et al., 1998; Faloona et al., 2001; Gölz et al., 2001; Geyer et al., 2003b; Ren et al., 2003; Geyer and Stutz, 2004; Vaughan et al., 2006). While a missing OH source may explain instances where models underestimate field measurements of OH (Faloona et al., 2001; Ren et al., 2003), Geyer et al. (2003b) overpredict measurements by a factor of two without such a source. Clearly, there remain many unresolved issues surrounding the abundance of oxidants in the nighttime atmosphere.

While this study focuses on the first-generation products from the isoprene-NO₃ reaction, another nighttime source of OH in the atmosphere would be the further oxidation of the nitrooxyhydroperoxide, which can produce a dinitrooxyepoxide and OH (Paulot et al., 2009a). In another experiment described in detail in Ng et al. (2008), we

first add 179 ppb of isoprene to the chamber followed by three additions of N_2O_5 (~ 120, 50, and 210 ppb). After the first two additions, isoprene is completely consumed, so the third aliquot leads primarily to the formation of second-generation products; some second-generation products may be oxidized by this third addition, but the amount of N₂O₅ added is similar to the concentration of first generation products (which is roughly equal to the starting isoprene concentration), so such tertiary chemistry is likely to be minimal. After this third addition, the nitrooxyhydroperoxide signal drops ~ 8 ppb, while the signal for the dinitrooxyepoxide (at m/z 293) rises ~ 2.5 ppb. This indicates that the epoxide (and OH) yield from the NO₃ oxidation of the nitrooxyhydroperoxide is $\sim 30\%$, compared to ~ 75% for OH oxidation of isoprene hydroxyhydroperoxides (Paulot et al., 2009a), although heterogeneous loss of epoxide to the acidic aerosol is also possible (Surratt et al., 2010). The yield in the NO₃ system is likely lower because the dominant first-generation peroxy radical is from the (1,4) addition of NO₃. Therefore, to form an epoxide the second NO₃ must add to the 2-carbon, creating a secondary alkyl radical, whereas the more favored addition is likely to the 3-carbon creating a more stable tertiary alkyl radical (Figure 3.6). In the OH system, (1,2) and (4,3) additions in the first oxidation step are most common (Paulot et al., 2009b), which means that the epoxideforming channel involves a second OH addition to the more favored 4- or 1- carbon, respectively.

As demonstrated by Ng et al. (2008), while ROOR compounds are minor products of RO₂-RO₂ reactions, they may be important in the atmosphere because they present a means of significantly increasing the mass of a molecule, thereby reducing its volatility and increasing its potential to form SOA. Currently, field measurements of SOA burdens

often exceed those predicted by models (de Gouw et al., 2005; Heald et al., 2005; Johnson et al., 2006; Volkamer et al., 2006; Simpson et al., 2007), a discrepancy that may be explained by SOA formation pathways, such as ROOR, that are not included in models. In this work, we see evidence of an additional ROOR formation pathway, the RO₂ addition to alkenes, that may be relevant to SOA formation. As SOA itself is a minor product of hydrocarbon oxidation (Donahue et al., 2009), pathways that are negligible in the context of gas-phase oxidation mechanisms may in fact be important if they represent efficient pathways to forming SOA.

The formation of ROOR compounds in the atmosphere, and the importance of RO₂-RO₂ reactions in general, is difficult to predict because of the large uncertainties in the rates of all the relevant competing pathways (RO₂-RO₂, RO₂-NO₃, RO₂-NO, RO₂-HO₂, RO₂-alkene) as well as the large variation in ambient mixing ratios of the relevant species. It is clear, though, that RO₂-RO₂ reactions are most favored when the concentration of hydrocarbon is greater than that of oxidant. For the case of isoprene-NO₃ reactions, this most likely would occur in the early evening, as OH concentrations drop and NO₃ concentrations are still low, though during this time NO concentrations may still be high enough to react with a significant amount of RO₂.

Situations favoring nighttime RO₂-RO₂ (or RO₂-alkene) reactions may be more prevalent for monoterpenes and sesquiterpenes, which, unlike isoprene, may be emitted at night (Sakulyanontvittaya et al., 2008). Many of these compounds have exhibited high SOA yields in laboratory studies, though there are still many uncertainties in the SOA formation mechanism (Griffin et al., 1999; Hallquist et al., 1999; Spittler et al., 2006; Fry et al., 2009). Based on our experience with isoprene, the role of monoterpene and

sesquiterpene RO₂-RO₂ reactions in nighttime SOA formation is worthy of further study, particularly because the nitrooxy group is electron withdrawing, and presence of electron withdrawing groups has been shown to significantly increase RO₂-RO₂ reaction rates (Lightfoot et al., 1992). As noted by other investigators (e.g., Brown et al., 2009; Fry et al., 2009), SOA formed from the reaction of biogenic compounds with NO₃ – an anthropogenic oxidant – is consistent with the common finding that while SOA is largely composed of biogenic carbon (Bench et al., 2007; Schichtel et al., 2008), its concentrations are correlated with anthropogenic emissions (de Gouw et al., 2005, 2008; Quinn et al., 2006; Sullivan et al., 2006; Weber et al., 2007).

Most of the RO₂ formed from isoprene-NO₃ reactions are primary radicals, however, whereas a significant amount of the RO₂ derived from monoterpenes are likely to be secondary or tertiary. Primary RO₂ tend to undergo significantly faster RO₂-RO₂ reactions than secondary or tertiary RO₂ (Lightfoot et al., 1992). Reactivity trends are less certain for RO₂-NO, RO₂-NO₃, and RO₂-HO₂ reactions, but the variation in the available data is less pronounced than for RO₂-RO₂ (Lightfoot et al., 1992; Lesclaux, 1997; Wallington et al., 1997; Atkinson et al., 2006; Vaughan et al., 2006). So while monoterpenes and sesquiterpenes are generally more reactive with NO₃ than isoprene (i.e., have higher RO₂ formation rates) (Atkinson and Arey, 2003), RO₂-RO₂ reactions for these compounds may be less competitive than for isoprene under the same conditions because of the significantly lower RO₂-RO₂ rate constants compared to competing reactions.

Although we have gained insights into the isoprene-NO₃ system in this work, chamber studies such as those we report here have limitations. There currently exists no

stable precursor of NO₃ suitable for chamber studies, so chemical transformations occur the instant the NO₃ precursor and hydrocarbon meet; for isoprene, the chemistry occurs on a much faster timescale than the mixing. Because of our experimental conditions, we are able only to do an end product analysis of our experiments, and are unable to perform kinetic modeling, which could provide deeper insights into the system. Furthermore, while we can constrain RO₂ reaction pathways in chamber studies of OH oxidation (i.e., RO₂+NO for high NO_x conditions and RO₂+HO₂ for low NO_x conditions), this is currently not feasible for NO₃ chamber studies. Also, while the CIMS can isolate oxidation products with greater specificity than other techniques, the lack of commercial or easily synthesizable standards leads to uncertainties in product quantification.

Up to now, most studies relating to hydrocarbon oxidation mechanisms and kinetics have focused on ozone or the OH radical; application of the techniques employed in those studies to NO₃ oxidation kinetics and mechanisms offers promise to significantly advance our understanding of nighttime atmospheric chemistry, but will require overcoming challenges such as reagent sythesis (including isomeric specificity), finding suitable radical precursors, and limiting secondary and competing reactions. Many of our results (e.g., OH yield from RO₂-HO₂, RO yield from RO₂-RO₂, HO₂ formation from RO, ROOR formation, RO₂-HO₂ reaction rates) differ from those suggested by previous work on different – mostly small alkylperoxy, acylperoxy, or hydroxyalkylperoxy – systems. More studies focused on nitrooxy and allylic peroxy radicals, as well as larger peroxy radicals, are warranted.

Acknowledgments

This research was funded by the U.S. Department of Energy Biological and Environmental Research Program DE-FG02-05ER63983 and by the U.S. Environmental Protection Agency STAR agreement RD-833749. Also, this material is based upon work supported by the National Science Foundation (NSF) under grant ATM-0432377 and an NSF Graduate Research Fellowship (AJK). The authors would like to thank C. D. Vecitis, J. Cheng, M. R. Hoffmann, K. Takematsu, and M. Okumura for experimental assistance, and J. D. Crounse, N. H. Donahue, N. C. Eddingsaas, F. Paulot, and H. O. T. Pye for helpful discussions.

References

Arey, J., Aschmann, S. M., Kwok, E. S. C., and Atkinson, R.: Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from the NOx-air photooxidations of C-5-C-8 n-alkanes, Journal of Physical Chemistry A, 105, 1020-1027, 2001.

Atkinson, R., Aschmann, S. M., and Pitts, J. N.: Rate constants for the gas-phase reactions of the NO₃ radical with a series of organic compounds at 296 +/- 2K, Journal of Physical Chemistry, 92, 3454-3457, 1988.

Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds .1.

Alkanes and alkenes, Journal of Physical and Chemical Reference Data, 26, 215-290, 1997.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for

atmospheric chemistry: Volume II - gas phase reactions of organic species, Atmospheric Chemistry and Physics, 6, 3625-4055, 2006.

Atkinson, R.: Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method, Atmospheric Environment, 41, 8468-8485, 10.1016/j.atmosenv.2007.07.002, 2007.

Atkinson, R., and Arey, J.: Mechanisms of the gas-phase reactions of aromatic hydrocarbons and PAHs with OH and NO3 radicals, Polycyclic Aromatic Compounds, 27, 15-40, 10.1080/10406630601134243, 2007.

Barnes, I., Bastian, V., Becker, K. H., and Tong, Z.: Kinetics and products of the reactions of NO₃ with monoalkenes, dialkenes, and monoterpenes, Journal of Physical Chemistry, 94, 2413-2419, 1990.

Bench, G., Fallon, S., Schichtel, B., Malm, W., and McDade, C.: Relative contributions of fossil and contemporary carbon sources to PM 2.5 aerosols at nine Interagency Monitoring for Protection of Visual Environments (IMPROVE) network sites, Journal of Geophysical Research-Atmospheres, 112, D10205, 10.1029/2006jd007708, 2007.

Berndt, T., and Boge, O.: Gas-phase reaction of NO₃ radicals with isoprene: A kinetic and mechanistic study, International Journal of Chemical Kinetics, 29, 755-765, 1997.

Bey, I., Aumont, B., and Toupance, G.: The nighttime production of OH radicals in the continental troposphere, Geophysical Research Letters, 24, 1067-1070, 1997.

Bey, I., Aumont, B., and Toupance, G.: A modeling study of the nighttime radical chemistry in the lower continental troposphere 2. Origin and evolution of HOx, Journal of Geophysical Research-Atmospheres, 106, 9991-10001, 2001.

Biggs, P., Canosamas, C. E., Fracheboud, J. M., Shallcross, D. E., and Wayne, R. P.: Investigation into the kinetics and mechanism of the reaction of NO₃ with CH₃O₂ at 298 K and 2.5 Torr - a potential source of OH in the nighttime troposphere, Journal of the Chemical Society-Faraday Transactions, 90, 1205-1210, 1994.

Brown, S. S., Osthoff, H. D., Stark, H., Dube, W. P., Ryerson, T. B., Warneke, C., de Gouw, J. A., Wollny, A. G., Parrish, D. D., Fehsenfeld, F. C., and Ravishankara, A. R.: Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry, Journal of Photochemistry and Photobiology A-Chemistry, 176, 270-278, 10.1016/j.jphotochem.2005.10.004, 2005.

Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311, 67-70, 10.1126/science.1120120, 2006.

Brown, S. S., Degouw, J. A., Warneke, C., Ryerson, T. B., Dube, W. P., Atlas, E., Weber, R. J., Peltier, R. E., Neuman, J. A., Roberts, J. M., Swanson, A., Flocke, F., McKeen, S. A., Brioude, J., Sommariva, R., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol, Atmospheric Chemistry and Physics, 9, 3027-3042, 2009.

Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele, V.: Is the reaction between CH₃C(O)O₂ and NO₃ important in the night-time troposphere?, Journal of the Chemical Society-Faraday Transactions, 92, 2211-2222, 1996.

Carlton, A. G., Wiedinmyer, C., and Kroll, J. H.: A review of Secondary Organic Aerosol (SOA) formation from isoprene, Atmospheric Chemistry and Physics, 9, 4987-5005, 2009.

Carslaw, N., Carpenter, L. J., Plane, J. M. C., Allan, B. J., Burgess, R. A., Clemitshaw, K. C., Coe, H., and Penkett, S. A.: Simultaneous observations of nitrate and peroxy radicals in the marine boundary layer, Journal of Geophysical Research-Atmospheres, 102, 18917-18933, 1997.

Chameides, W. L., Lindsay, R. W., Richardson, J., and Kiang, C. S.: The role of biogenic hydrocarbons in urban photochemical smog - Atlanta as a case study, Science, 241, 1473-1475, 1988.

Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W.: Formation of secondary organic aerosols through photooxidation of isoprene, Science, 303, 1173-1176, 2004.

Cocker, D. R., Flagan, R. C., and Seinfeld, J. H.: State-of-the-art chamber facility for studying atmospheric aerosol chemistry, Environmental Science & Technology, 35, 2594-2601, 10.1021/es0019169, 2001.

Crounse, J. D., McKinney, K. A., Kwan, A. J., and Wennberg, P. O.: Measurement of gas-phase hydroperoxides by chemical ionization mass spectrometry, Analytical Chemistry, 78, 6726-6732, 10.1021/ac0604235, 2006.

Daele, V., Laverdet, G., Lebras, G., and Poulet, G.: Kinetics of the reactions CH₃O+NO, CH₃O+NO₃, and CH₃O₂+NO₃, Journal of Physical Chemistry, 99, 1470-1477, 1995.

Davidson, J. A., Viggiano, A. A., Howard, C. J., Dotan, I., Fehsenfeld, F. C., Albritton, D. L., and Ferguson, E. E.: Rate constants for reactions of O_2^+ , NO_2^+ , NO_2^+ , NO_3^+ , NO_2^- , and halide ions with N_2O_5 AT 300 K, Journal of Chemical Physics, 68, 2085-2087, 1978.

de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W. C., Roberts, J. M., Fehsenfeld, F. C., Worsnop, D. R., Canagaratna, M. R., Pszenny, A. A. P., Keene, W. C., Marchewka, M., Bertman, S. B., and Bates, T. S.: Budget of organic carbon in a

polluted atmosphere: Results from the New England Air Quality Study in 2002, Journal of Geophysical Research-Atmospheres, 110, D16305, 10.1029/2004jd005623, 2005.

de Gouw, J. A., Brock, C. A., Atlas, E. L., Bates, T. S., Fehsenfeld, F. C., Goldan, P. D., Holloway, J. S., Kuster, W. C., Lerner, B. M., Matthew, B. M., Middlebrook, A. M., Onasch, T. B., Peltier, R. E., Quinn, P. K., Senff, C. J., Stohl, A., Sullivan, A. P., Trainer, M., Warneke, C., Weber, R. J., and Williams, E. J.: Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes, Journal of Geophysical Research-Atmospheres, 113, D08301, 10.1029/2007jd009243, 2008.

Dibble, T. S.: Failures and limitations of quantum chemistry for two key problems in the atmospheric chemistry of peroxy radicals, Atmospheric Environment, 42, 5837-5848, 10.1016/j.atmosenv.2007.11.005, 2008.

Dillon, T. J., and Crowley, J. N.: Direct detection of OH formation in the reactions of HO₂ with CH₃C(O)O₂ and other substituted peroxy radicals, Atmospheric Chemistry and Physics, 8, 4877-4889, 2008.

Donahue, N. M., Robinson, A. L., and Pandis, S. N.: Atmospheric organic particulate matter: From smoke to secondary organic aerosol, Atmospheric Environment, 43, 94-106, 10.1016/j.atmosenv.2008.09.055, 2009.

Faloona, I., Tan, D., Brune, W., Hurst, J., Barket, D., Couch, T. L., Shepson, P., Apel, E., Riemer, D., Thornberry, T., Carroll, M. A., Sillman, S., Keeler, G. J., Sagady, J., Hooper, D., and Paterson, K.: Nighttime observations of anomalously high levels of hydroxyl radicals above a deciduous forest canopy, Journal of Geophysical Research-Atmospheres, 106, 24315-24333, 2001.

Fan, J. W., and Zhang, R. Y.: Atmospheric Oxidation Mechanism of Isoprene, Environmental Chemistry, 1, 140-149, 10.1071/en04045, 2004.

Fiore, A. M., Horowitz, L. W., Purves, D. W., Levy, H., Evans, M. J., Wang, Y. X., Li, Q. B., and Yantosca, R. M.: Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States, Journal of Geophysical Research-Atmospheres, 110, D12303, 10.1029/2004jd005485, 2005.

Forkel, R., Klemm, O., Graus, M., Rappengluck, B., Stockwell, W. R., Grabmer, W., Held, A., Hansel, A., and Steinbrecher, R.: Trace gas exchange and gas phase chemistry in a Norway spruce forest: A study with a coupled 1-dimensional canopy atmospheric chemistry emission model, Atmospheric Environment, 40, S28-S42, 10.1016/j.atmosenv.2005.11.070, 2006.

Francisco-Marquez, M., Alvarez-Idaboy, J. R., Galano, A., and Vivier-Bunge, A.: A possible mechanism for furan formation in the tropospheric oxidation of dienes, Environmental Science & Technology, 39, 8797-8802, 10.1021/es0500714, 2005.

Fry, J. L., Kiendler-Scharr, A., Rollins, A. W., Wooldridge, P. J., Brown, S. S., Fuchs, H., Dube, W., Mensah, A., dal Maso, M., Tillmann, R., Dorn, H. P., Brauers, T., and Cohen, R. C.: Organic nitrate and secondary organic aerosol yield from NO₃ oxidation of beta-pinene evaluated using a gas-phase kinetics/aerosol partitioning model, Atmospheric Chemistry and Physics, 9, 1431-1449, 2009.

Fuentes, J. D., Wang, D., Bowling, D. R., Potosnak, M., Monson, R. K., Goliff, W. S., and Stockwell, W. R.: Biogenic hydrocarbon chemistry within and above a mixed deciduous forest, Journal of Atmospheric Chemistry, 56, 165-185, 10.1007/s10874-006-9048-4, 2007.

Garden, A. L., Paulot, F., Crounse, J. D., Maxwell-Cameron, I. J., Wennberg, P. O., and Kjaergaard, H. G.: Calculation of conformationally weighted dipole moments useful in ion-molecule collision rate estimates, Chem. Phys. Lett., 474, 45-50, 10.1016/j.cplett.2009.04.038, 2009.

Geyer, A., Alicke, B., Ackermann, R., Martinez, M., Harder, H., Brune, W., di Carlo, P., Williams, E., Jobson, T., Hall, S., Shetter, R., and Stutz, J.: Direct observations of daytime NO₃: Implications for urban boundary layer chemistry, Journal of Geophysical Research-Atmospheres, 108, 4368, 10.1029/2002jd002967, 2003a.

Geyer, A., Bachmann, K., Hofzumahaus, A., Holland, F., Konrad, S., Klupfel, T., Patz, H. W., Perner, D., Mihelcic, D., Schafer, H. J., Volz-Thomas, A., and Platt, U.: Nighttime formation of peroxy and hydroxyl radicals during the BERLIOZ campaign: Observations

and modeling studies, Journal of Geophysical Research-Atmospheres, 108, 8249, 10.1029/2001jd000656, 2003b.

Geyer, A., and Stutz, J.: Vertical profiles of NO₃, N₂O₅, O₃, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry, Journal of Geophysical Research-Atmospheres, 109, D12307, 10.1029/2003jd004211, 2004.

Gölz, C., Senzig, J., and Platt, U.: NO₃-initiated oxidation of biogenic hydrocarbons, Chemosphere - Global Change Science, 3, 339-352, 2001.

Griffin, R. J., Cocker, D. R., Flagan, R. C., and Seinfeld, J. H.: Organic aerosol formation from the oxidation of biogenic hydrocarbons, Journal of Geophysical Research-Atmospheres, 104, 3555-3567, 1999.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, 6, 3181-3210, 2006.

Hallquist, M., Wangberg, I., Ljungstrom, E., Barnes, I., and Becker, K. H.: Aerosol and product yields from NO₃ radical-initiated oxidation of selected monoterpenes, Environmental Science & Technology, 33, 553-559, 1999.

Harley, P., Vasconcellos, P., Vierling, L., Pinheiro, C. C. D., Greenberg, J., Guenther, A., Klinger, L., De Almeida, S. S., Neill, D., Baker, T., Phillips, O., and Malhi, Y.: Variation in potential for isoprene emissions among Neotropical forest sites, Global Change Biology, 10, 630-650, 10.1111/j.1529-8817.2003.00760.x, 2004.

Harrison, R. M., Shi, J. P., and Grenfell, J. L.: Novel nighttime free radical chemistry in severe nitrogen dioxide pollution episodes, Atmospheric Environment, 32, 2769-2774, 1998.

Hasson, A. S., Ho, A. W., Kuwata, K. T., and Paulson, S. E.: Production of stabilized Criegee intermediates and peroxides in the gas phase ozonolysis of alkenes 2.

Asymmetric and biogenic alkenes, Journal of Geophysical Research-Atmospheres, 106, 34143-34153, 2001.

Hasson, A. S., Tyndall, G. S., and Orlando, J. J.: A product yield study of the reaction of HO₂ radicals with ethyl peroxy (C₂H₅O₂), acetyl peroxy (CH₃C(O)O₂), and acetonyl peroxy (CH₃C(O)CH₂O₂) radicals, Journal of Physical Chemistry A, 108, 5979-5989, 10.1021/jp048873t, 2004.

Hasson, A. S., Kuwata, K. T., Arroyo, M. C., and Petersen, E. B.: Theoretical studies of the reaction of hydroperoxy radicals (HO₂) with ethyl peroxy (CH₃CH₂O₂), acetyl peroxy (CH₃C(O)O₂) and acetonyl peroxy (CH₃C(O)CH₂O₂) radicals, Journal of Photochemistry and Photobiology A-Chemistry, 176, 218-230, 10.1016/j.jphotochem.2005.08.012, 2005.

Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J., Seinfeld, J. H., Liao, H., and Weber, R. J.: A large organic aerosol source in the free troposphere missing from current models, Geophysical Research Letters, 32, L18809, 10.1029/2005gl023831, 2005.

Heintz, F., Platt, U., Flentje, H., and Dubois, R.: Long-term observation of nitrate radicals at the tor station, Kap Arkona (Rugen), Journal of Geophysical Research-Atmospheres, 101, 22891-22910, 1996.

Horowitz, L. W., Liang, J. Y., Gardner, G. M., and Jacob, D. J.: Export of reactive nitrogen from North America during summertime: Sensitivity to hydrocarbon chemistry, Journal of Geophysical Research-Atmospheres, 103, 13451-13476, 1998.

Horowitz, L. W., Fiore, A. M., Milly, G. P., Cohen, R. C., Perring, A., Wooldridge, P. J., Hess, P. G., Emmons, L. K., and Lamarque, J. F.: Observational constraints on the chemistry of isoprene nitrates over the eastern United States, Journal of Geophysical Research-Atmospheres, 112, D12s08, 10.1029/2006jd007747, 2007.

Jay, K., and Stieglitz, L.: The gas-phase addition of NO_x to olefins, Chemosphere, 19, 1939-1950, 1989.

Jenkin, M. E., Hurley, M. D., and Wallington, T. J.: Investigation of the radical product channel of the CH₃C(O)O₂+HO₂ reaction in the gas phase, Physical Chemistry Chemical Physics, 9, 3149-3162, 10.1039/b702757e, 2007.

Jenkin, M. E., Hurley, M. D., and Wallington, T. J.: Investigation of the radical product channel of the CH₃C(O)CH₂O₂+HO₂ reaction in the gas phase, Physical Chemistry Chemical Physics, 10, 4274-4280, 10.1039/b802898b, 2008.

Jenkin, M. E., Hurley, M. A., and Wallington, T. J.: Investigation of the Radical Product Channel of the CH₃OCH₂O₂ + HO₂ Reaction in the Gas Phase, Journal of Physical Chemistry A, 114, 408-416, 10.1021/jp908158w, 2010.

Johnson, D., Jenkin, M. E., Wirtz, K., and Martin-Reviejo, M.: Simulating the formation of secondary organic aerosol from the photooxidation of aromatic hydrocarbons, Environmental Chemistry, 2, 35-48, 10.1071/en04079, 2005.

Keywood, M. D., Varutbangkul, V., Bahreini, R., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from the ozonolysis of cycloalkenes and related compounds, Environmental Science & Technology, 38, 4157-4164, 10.1021/es.0353630, 2004.

Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions, Geophysical Research Letters, 32, L18808, 10.1029/2005gl023637, 2005.

Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from isoprene photooxidation, Environmental Science & Technology, 40, 1869-1877, 10.1021/es0524301, 2006.

Kwok, E. S. C., and Atkinson, R.: Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-activity relationship - an update, Atmospheric Environment, 29, 1685-1695, 1995.

Kwok, E. S. C., Aschmann, S. M., Arey, J., and Atkinson, R.: Product formation from the reaction of the NO3 radical with isoprene and rate constants for the reactions of methacrolein and methyl vinyl ketone with the NO3 radical, International Journal of Chemical Kinetics, 28, 925-934, 1996.

Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M., Taraborrelli, D., and Williams, J.: Atmospheric oxidation capacity sustained by a tropical forest, Nature, 452, 737-740, 10.1038/nature06870, 2008.

Lesclaux, R.: Combination of Peroxyl Radicals in the Gas Phase, in: Peroxyl Radicals, edited by: Alfassi, Z., Wiley, 81-112, 1997.

Lightfoot, P. D., Cox, R. A., Crowley, J. N., Destriau, M., Hayman, G. D., Jenkin, M. E., Moortgat, G. K., and Zabel, F.: Organic peroxy radicals - kinetics, spectroscopy and tropospheric chemistry, Atmospheric Environment Part A-General Topics, 26, 1805-1961, 1992.

Matsunaga, A., and Ziemann, P. J.: Yields of beta-Hydroxynitrates and Dihydroxynitrates in Aerosol Formed from OH Radical-Initiated Reactions of Linear Alkenes in the

Presence of NOx, Journal of Physical Chemistry A, 113, 599-606, 10.1021/jp807764d, 2009.

Mayo, F. R.: Free radical autoxidations of hydrocarbons, Accounts of Chemical Research, 1, 193-201, 1968.

Mellouki, A., Talukdar, R. K., Bopegedera, A., and Howard, C. J.: Study of the kinetics of the reactions of NO₃ with HO₂ and OH, International Journal of Chemical Kinetics, 25, 25-39, 1993.

Neeb, P., and Moortgat, G. K.: Formation of OH radicals in the gas-phase reaction of propene, isobutene, and isoprene with O₃: Yields and mechanistic implications, Journal of Physical Chemistry A, 103, 9003-9012, 1999.

Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H. O. T., Crounse, J. D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO₃), Atmospheric Chemistry and Physics, 8, 4117-4140, 2008.

O'Brien, J. M., Czuba, E., Hastie, D. R., Francisco, J. S., and Shepson, P. B.:

Determination of the hydroxy nitrate yields from the reaction of C-2-C-6 alkenes with

OH in the presence of NO, Journal of Physical Chemistry A, 102, 8903-8908, 1998.

Orzechowska, G. E., and Paulson, S. E.: Photochemical sources of organic acids. 1. Reaction of ozone with isoprene, propene, and 2-butenes under dry and humid conditions using SPME, Journal of Physical Chemistry A, 109, 5358-5365, 10.1021/jp050166s, 2005.

Osborne, D. A., and Waddington, D. J.: Reactions of oxygenated radicals in the gas phase: 7. Reactions of methylperoxyl radicals and alkenes, Journal of the Chemical Society-Perkin Transactions 2, 925-930, 1980.

Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.: Isoprene photooxidation: new insights into the production of acids and organic nitrates, Atmospheric Chemistry and Physics, 9, 1479-1501, 2009a.

Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kurten, A., St Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene, Science, 325, 730-733, 10.1126/science.1172910, 2009b.

Peeters, J., Nguyen, T. L., and Vereecken, L.: HOx radical regeneration in the oxidation of isoprene, Physical Chemistry Chemical Physics, 11, 5935-5939, 10.1039/b908511d, 2009.

Penkett, S. A., Burgess, R. A., Coe, H., Coll, I., Hov, O., Lindskog, A., Schmidbauer, N., Solberg, S., Roemer, M., Thijsse, T., Beck, J., and Reeves, C. E.: Evidence for large average concentrations of the nitrate radical (NO₃) in Western Europe from the HANSA

hydrocarbon database, Atmospheric Environment, 41, 3465-3478, 10.1016/j.atmosenv.2006.11.055, 2007.

Perring, A. E., Wisthaler, A., Graus, M., Wooldridge, P. J., Lockwood, A. L., Mielke, L. H., Shepson, P. B., Hansel, A., and Cohen, R. C.: A product study of the isoprene+NO₃ reaction, Atmospheric Chemistry and Physics, 9, 4945-4956, 2009.

Platt, U., Perner, D., Schroder, J., Kessler, C., and Toennissen, A.: The diurnal variation of NO₃, Journal of Geophysical Research-Oceans and Atmospheres, 86, 1965-1970, 1981.

Platt, U., and Janssen, C.: Observation and role of the free radicals NO₃, ClO, BrO and IO in the troposphere, Faraday Discussions, 100, 175-198, 1995.

Quinn, P. K., Bates, T. S., Coffman, D., Onasch, T. B., Worsnop, D., Baynard, T., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Williams, E., Roberts, J. M., Lerner, B., Stohl, A., Pettersson, A., and Lovejoy, E. R.: Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine, J. Geophys. Res., 111, D23S36, 10.1029/2006jd007582, 2006.

Ren, X. R., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., Adams, J., Simpas, J. B., and Brune, W. H.: HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001, Atmospheric Environment, 37, 3627-3637, 10.1016/s1352-2310(03)00460-6, 2003.

Roberts, J. M., Williams, J., Baumann, K., Buhr, M. P., Goldan, P. D., Holloway, J., Hubler, G., Kuster, W. C., McKeen, S. A., Ryerson, T. B., Trainer, M., Williams, E. J., Fehsenfeld, F. C., Bertman, S. B., Nouaime, G., Seaver, C., Grodzinsky, G., Rodgers, M., and Young, V. L.: Measurements of PAN, PPN, and MPAN made during the 1994 and 1995 Nashville Intensives of the Southern Oxidant Study: Implications for regional ozone production from biogenic hydrocarbons, Journal of Geophysical Research-Atmospheres, 103, 22473-22490, 1998.

Rollins, A. W., Kiendler-Scharr, A., Fry, J. L., Brauers, T., Brown, S. S., Dorn, H. P., Dube, W. P., Fuchs, H., Mensah, A., Mentel, T. F., Rohrer, F., Tillmann, R., Wegener, R., Wooldridge, P. J., and Cohen, R. C.: Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields, Atmospheric Chemistry and Physics, 9, 6685-6703, 2009.

Ruppert, L., and Becker, K. H.: A product study of the OH radical-initiated oxidation of isoprene: formation of C-5-unsaturated diols, Atmospheric Environment, 34, 1529-1542, 2000.

Sakulyanontvittaya, T., Duhl, T., Wiedinmyer, C., Helmig, D., Matsunaga, S., Potosnak, M., Milford, J., and Guenther, A.: Monoterpene and sesquiterpene emission estimates for the United States, Environmental Science & Technology, 42, 1623-1629, 10.1021/es702274e, 2008.

Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 15: jpldataeval.jpl.nasa.gov, 2006.

Schichtel, B. A., Malm, W. C., Bench, G., Fallon, S., McDade, C. E., Chow, J. C., and Watson, J. G.: Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States, Journal of Geophysical Research-Atmospheres, 113, D02311, 10.1029/2007jd008605, 2008.

Seeley, J. V., Meads, R. F., Elrod, M. J., and Molina, M. J.: Temperature and pressure dependence of the rate constant for the HO₂+NO reaction, Journal of Physical Chemistry, 100, 4026-4031, 1996.

Sharkey, T. D., Singsaas, E. L., Vanderveer, P. J., and Geron, C.: Field measurements of isoprene emission from trees in response to temperature and light, Tree Physiology, 16, 649-654, 1996.

Simmons, K. E., and van Sickle, D. E.: Addition abstraction competition of acylperoxy radicals reacting with alkenes - cooxidation of cyclohexene and valeraldehyde, Journal of the American Chemical Society, 95, 7759-7763, 1973.

Simpson, D., Yttri, K. E., Klimont, Z., Kupiainen, K., Caseiro, A., Gelencser, A., Pio, C., Puxbaum, H., and Legrand, M.: Modeling carbonaceous aerosol over Europe: Analysis of the CARBOSOL and EMEP EC/OC campaigns, Journal of Geophysical Research-Atmospheres, 112, D23s14, 10.1029/2006jd008158, 2007.

Sinha, A., Lovejoy, E. R., and Howard, C. J.: Kinetic study of the reaction of HO₂ with ozone, Journal of Chemical Physics, 87, 2122-2128, 1987.

Skov, H., Hjorth, J., Lohse, C., Jensen, N. R., and Restelli, G.: Products and mechanisms of the reactions of the nitrate radical (NO₃) with isoprene, 1,3-butadiene and 2,3-dimethyl-1,3-butadiene in air, Atmospheric Environment Part A-General Topics, 26, 2771-2783, 1992.

Smith, N., Plane, J. M. C., Nien, C. F., and Solomon, P. A.: Nighttime radical chemistry in the San Joaquin Valley, Atmospheric Environment, 29, 2887-2897, 1995.

Spittler, M., Barnes, I., Bejan, I., Brockmann, K. J., Benter, T., and Wirtz, K.: Reactions of NO₃ radicals with limonene and alpha-pinene: Product and SOA formation, Atmospheric Environment, 40, S116-S127, 10.1016/j.atmosenv.2005.09.093, 2006.

Stark, M. S., and Waddington, D. J.: Oxidation of propene in the gas-phase, International Journal of Chemical Kinetics, 27, 123-151, 1995.

Starn, T. K., Shepson, P. B., Bertman, S. B., Riemer, D. D., Zika, R. G., and Olszyna, K.: Nighttime isoprene chemistry at an urban-impacted forest site, Journal of Geophysical Research-Atmospheres, 103, 22437-22447, 1998.

Steinbacher, M., Dommen, J., Ordonez, C., Reimann, S., Gruebler, F., Staehelin, J., Andreani-Aksoyoglu, S., and Prevot, A. S. H.: Volatile organic compounds in the Po

Basin. part B: Biogenic VOCs, Journal of Atmospheric Chemistry, 51, 293-315, 10.1007/s10874-005-3577-0, 2005.

Stroud, C. A., Roberts, J. M., Williams, E. J., Hereid, D., Angevine, W. M., Fehsenfeld, F. C., Wisthaler, A., Hansel, A., Martinez-Harder, M., Harder, H., Brune, W. H., Hoenninger, G., Stutz, J., and White, A. B.: Nighttime isoprene trends at an urban forested site during the 1999 Southern Oxidant Study, Journal of Geophysical Research-Atmospheres, 107, 4291, 10.1029/2001jd000959, 2002.

Su, T., and Chesnavich, W. J.: Parameterization of the ion-polar molecule collision rate constant by trajectory calculations, Journal of Chemical Physics, 76, 5183-5185, 1982.

Suh, I., Lei, W. F., and Zhang, R. Y.: Experimental and theoretical studies of isoprene reaction with NO3, Journal of Physical Chemistry A, 105, 6471-6478, 10.1021/jp0105950, 2001.

Sullivan, A. P., Peltier, R. E., Brock, C. A., de Gouw, J. A., Holloway, J. S., Warneke, C., Wollny, A. G., and Weber, R. J.: Airborne measurements of carbonaceous aerosol soluble in water over northeastern United States: Method development and an investigation into water-soluble organic carbon sources, Journal of Geophysical Research-Atmospheres, 111, D23s46, 10.1029/2006jd007072, 2006.

Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., Szmigielski, R., Vermeylen, R., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld,

J. H.: Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene, Journal of Physical Chemistry A, 110, 9665-9690, 10.1021/jp061734m, 2006.

Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M. N., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proceedings of the National Academy of Sciences of the United States of America, 107, 6640-6645, 10.1073/pnas.0911114107, 2010.

Thornton, J. A., Wooldridge, P. J., Cohen, R. C., Martinez, M., Harder, H., Brune, W. H., Williams, E. J., Roberts, J. M., Fehsenfeld, F. C., Hall, S. R., Shetter, R. E., Wert, B. P., and Fried, A.: Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume, Journal of Geophysical Research-Atmospheres, 107, 4146, 10.1029/2001jd000932, 2002.

van Sickle, D. E., Mayo, F. R., and Arluck, R. M.: Liquid-phase oxidations of cyclic alkenes, Journal of the American Chemical Society, 87, 4824-4832, 1965a.

van Sickle, D. E., Mayo, F. R., and Arluck, R. M.: Liquid-phase oxidation of cyclopentene, Journal of the American Chemical Society, 87, 4832-4837, 1965b.

Vaughan, S., Canosa-Mas, C. E., Pfrang, C., Shallcross, D. E., Watson, L., and Wayne, R. P.: Kinetic studies of reactions of the nitrate radical (NO3) with peroxy radicals

(RO2): an indirect source of OH at night?, Physical Chemistry Chemical Physics, 8, 3749-3760, 10.1039/b605569a, 2006.

Vereecken, L., and Peeters, J.: Decomposition of substituted alkoxy radicals-part I: a generalized structure-activity relationship for reaction barrier heights, Physical Chemistry Chemical Physics, 11, 9062-9074, 10.1039/b909712k, 2009.

Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L. T., Worsnop, D. R., and Molina, M. J.: Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected, Geophysical Research Letters, 33, L17811, 10.1029/2006gl026899, 2006.

von Friedeburg, C., Wagner, T., Geyer, A., Kaiser, N., Vogel, B., Vogel, H., and Platt, U.: Derivation of tropospheric NO₃ profiles using off-axis differential optical absorption spectroscopy measurements during sunrise and comparison with simulations, Journal of Geophysical Research-Atmospheres, 107, 4168, 10.1029/2001jd000481, 2002.

von Kuhlmann, R., Lawrence, M. G., Poschl, U., and Crutzen, P. J.: Sensitivities in global scale modeling of isoprene, Atmospheric Chemistry and Physics, 4, 1-17, 2004.

Wallington, T. J., Nielsen, O. J., and Sehested, J.: Reactions of Organic Peroxy Radicals in the Gas Phase, in: Peroxyl Radicals, edited by: Alfassi, Z., Wiley, 113-172, 1997.

Warneke, C., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Williams, E. J., Lerner, B. M., Jakoubek, R., Brown, S. S., Stark, H., Aldener, M., Ravishankara, A. R., Roberts, J. M., Marchewka, M., Bertman, S., Sueper, D. T., McKeen, S. A., Meagher, J. F., and Fehsenfeld, F. C.: Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England Air Quality Study 2002, Journal of Geophysical Research-Atmospheres, 109, D10309, 10.1029/2003jd004424, 2004.

Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosamas, C. E., Hjorth, J., Lebras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.: The nitrate radical - physics, chemistry, and the atmosphere, Atmospheric Environment Part A-General Topics, 25, 1-203, 1991.

Weber, R. J., Sullivan, A. P., Peltier, R. E., Russell, A., Yan, B., Zheng, M., de Gouw, J., Warneke, C., Brock, C., Holloway, J. S., Atlas, E. L., and Edgerton, E.: A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States, Journal of Geophysical Research-Atmospheres, 112, D13302, 10.1029/2007jd008408, 2007.

Williams, J., Roberts, J. M., Fehsenfeld, F. C., Bertman, S. B., Buhr, M. P., Goldan, P. D., Hubler, G., Kuster, W. C., Ryerson, T. B., Trainer, M., and Young, V.: Regional ozone from biogenic hydrocarbons deduced from airborne measurements of PAN, PPN, and MPAN, Geophysical Research Letters, 24, 1099-1102, 1997.

Zhang, D., and Zhang, R. Y.: Unimolecular decomposition of nitrooxyalkyl radicals from NO₃-isoprene reaction, Journal of Chemical Physics, 116, 9721-9728, 10.1063/1.1476695, 2002.

Compound	Method	m/z (CIMS)	final concentration (ppb)
C4 compounds			
MACR	GC-FID		3
MVK	GC-FID		6
C4 hydroxy carbonyl	CIMS	171	< 0.5
C5 Nitrates			
C5 nitrooxycarbonyl	CIMS	230	45.7
C5 hydroxynitrate	CIMS	232	27.5
C5 nitrooxy hydroperoxide	CIMS	248	11.6
C5 Isomerized Nitrates			
C5 nitrooxy hydroxy carbonyl	CIMS	246	5.5
C5 nitrooxy diol	CIMS	248	3.0
C5 nitrooxy hydroxy hydroperoxide	CIMS	264	2.1
C4 nitrooxy carbonyl	CIMS	216	0.6
C5 Hydroxy compounds			
C5 hydroxy carbonyl	CIMS	185	2.6
C5 diol	CIMS	187	2.3
C5 hydroxy hydroperoxide	CIMS	203	4.2
C5 Isomerized hydroxy compoun	ds		
C5 dihydroxy carbonyl	CIMS	201	1.5
C5 triol	CIMS	203	1.3
C5 dihydroxy hydroperoxide	CIMS	219	< 0.5
Dimer compounds	011.40	077	
dinitrooxy ROOR	CIMS	377	1.4
isomerized dinitrooxy ROOR	CIMS	393	0.9
nitrooxy carbonyl ROOR	CIMS	330	< 0.5
hydroxy nitrate ROOR	CIMS	332	0.9
nitrooxy hydroperoxide ROOR	CIMS	348	< 0.5
C9 nitrooxy ROOR carbonyl	CIMS	316	< 0.5
Other			
3-MF	GC-FID		4.5
hydroxyacetone	CIMS	159	0.5
hydrogen peroxide	CIMS	119	2.4
glycolaldehyde	CIMS	145	0.9

Table 3.1: Products detected by GC-FID and CIMS. Products with small but non-zero signals are noted as < 0.5 ppb.

No.	Reaction	Rate constant	Source
~	NO_3 + isoprene \longrightarrow RO_2 + HO_2	6.6E-13	Atkinson, 1997
7	$RO_2 + RO_2 \longrightarrow products$	1.0E-13	Atkinson et al., 2006, and references therein
ო	$RO_2 + NO_3 \rightarrow products$	3.0E-12	Biggs et al., 1994; Daele et al., 1995; Canosa-Mas et al., 1996; Vaughan et al., 2006
4	$RO_2 + HO_2 \longrightarrow products$	2.2E-11	Atkinson et al., 2006, and references therein
2	$NO_3 + HO_2 \longrightarrow OH + NO_2 + O_2$	3.5E-12	Sander et al., 2006, and references therein
9	$NO_2 + NO_3 \rightarrow N_2O_5$	6.7E-12	Sander et al., 2006, and references therein
7	$N_2O_5 \rightarrow NO_2 + NO_3$	2.2E-01	Sander et al., 2006, and references therein
∞	$HO_2 + HO_2 \longrightarrow H_2O_2$	2.5E-12	Sander et al., 2006, and references therein
0	$HO_2 + NO_2 \longrightarrow HO_2 NO_2$	2.8E-12	Sander et al., 2006, and references therein
10	$HO_2NO_2 \longrightarrow HO_2 + NO_2$	1.7E-01	Sander et al., 2006, and references therein
7	$NO_3 + NO_2 \rightarrow NO + NO_2 + O_2$	6.6E-16	Sander et al., 2006, and references therein
12	$NO_3 + NO \rightarrow 2NO_2$	2.6E-11	Sander et al., 2006, and references therein
13	$HO_2 + NO \longrightarrow NO_2 + OH$	8.1E-12	Sander et al., 2006, and references therein

Table 3.2: Reactions considered for assessment of OH sources in isoprene-NO₃ system. All rate constant units are cm³ molec⁻¹ s⁻¹, except k_7 and k_{10} , which are s⁻¹. Rates of reactions involving RO₂ are based on an approximation of values found in the literature. HO₂ yield in reaction 1 is an upper limit to facilitate model analysis.

Figure 3.1. Generalized reaction mechanism in the isoprene- NO_3 system. Boxed compounds are detected by CIMS instrument at the indicated m/z values.

Figure 3.2. Formation of compounds resulting from the isomerization of alkoxy radicals and seen by CIMS instruments at m/z 216, 246, 248, and 264. This figure assumes initial NO $_3$ attachment to the 1-carbon and formation of an (E)- δ -peroxy radical, but other isomers are possible.

a)
$$NO_3$$
 O_2 O_2NO O_2 O_2NO O_2 O_2NO O_2 O_3 O_2 O_2 O_3 O_4 O_4 O_4 O_5 O_5

Figure 3.3. Formation mechanism of methyl vinyl ketone (a), methacrolein (b), 3-methylfuran (c), and hydroxycarbonyl (d), leading to release of NO_2 . The exact mechanism of 3-methylfuran formation is still unknown (Francisco-Márquez et al., 2005).

Figure 3.4. Box model simulations for OH production in isoprene-NO₃ system. Blue: base case described in Table 2; Red: RO₂-HO₂ and RO₂-NO₃ rate constants reduced by factor of 10; Green: RO₂-HO₂ and RO₂-NO₃ rate constants reduced by factor of 100; Pink: isoprene-NO₃ rate constant reduced by factor of 100; Light Blue: isoprene-NO₃ rate constant reduced by factor of 100. Initial conditions: 150 ppb N₂O₅, 800 ppb isoprene, 50 ppb NO₂.

Figure 3.5. Proposed formation mechanisms of products detected by CIMS at m/z 316, 330, 332, and 348. Other isomers are possible.

$$NO_3$$
 O_2
 O_2NO
 OOO
 ONO_2
 OOO
 OOO

Figure 3.6. Formation mechanism of dinitrooxyepoxide and hydroxyl radical from oxidation of nitrooxyhydroperoxide.