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Abstract 
 
 
Secondary organic aerosol (SOA) are important components in atmospheric processes 

and significantly impact human health.  The complexity of SOA composition and 

formation processes has hampered efforts to fully characterize their impacts, and to 

predict how those impacts will be affected by changes in climate and human activity.  

Here, we explore SOA formation in the laboratory by coupling an environmental 

chamber with a suite of analytical tools, including a gas-phase mass spectrometry 

technique that is well suited for tracking the hydrocarbon oxidation processes that drive 

SOA formation.  Focusing on the oxidation of isoprene by the nitrate radical, NO3, we 

find that reactions of peroxy radicals (RO2) to form ROOR dimers is an important 

process in SOA formation.  The other gas-phase products of these RO2 reactions differ 

from what is expected from studies of simpler radicals, indicating that more studies are 

necessary to fully constrain RO2 chemistry.  Finally, we examine the role of 

heterogeneous oxidation as a sink of organic aerosol and a source of oxygenated volatile 

organic compounds in the free troposphere. 
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