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Abstract

It has been suggested that information cascades might occasionally prevent asset

markets from performing efficiently (e.g., Alevy et al. 1997). We run experiments

in which private signals about an asset with a common value are released sequen-

tially. That allows us to compare the quality of information aggregation in periods

in which an information cascade would occur in the absence of prices to the quality

of information aggregation in other periods. We find no significant difference, but we

do find evidence that prices are less likely to converge to the fully revealing rational

expectations equilibrium when early signals are misleading.

In a second chapter, we focus on information cascades in sequential games, where

subjects choose between two options and each subject has a small chance of being

perfectly informed about which option is correct. In treatment “sequence,” subjects

observe the entire sequence of predecessors’ choices, while in treatment “no-sequence”

they only observe the number of times each option has been chosen. Subjects tend

to follow their immediate predecessor in treatment sequence, which is the optimal

strategy under common knowledge of rationality. In treatment no-sequence, fully

rational agents would follow the minority of their predecessors (Callander and Hörner

2009), but subjects follow the majority more often than the minority. Models that

combine heterogeneity in the level of strategic thinking and allow for some degree of

trembling (e.g., noisy introspection proposed by Goeree and Holt 2004) fit our data

best.

A third chapter evaluates the performance of four different auction formats. We

find that bidders are not always bidding on the currently most-profitable combination

of available items as often assumed in the literature. Instead, subjects sometimes
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submit jumpbids. As a result, a clock auction (Porter et al. 2003) in which prices can

only increase incrementally generates particularly high revenues. We also find that

subjects are reluctant to risk exposure: when they have a high value for a combination

of items but low values for each item separately, they are unwilling to bid high on

these single items unless the auction allows them to submit a package bid. Such

package bids specify that the bid is only valid if the bidder wins all items included in

the package.

In the last chapter, we compare five different stationary concepts: Nash equi-

librium, quantal-response equilibrium, action-sampling equilibrium, payoff-sampling

equilibrium and impulse-balance equilibrium. Selten and Chmura (2008) run a large

number of completely mixed 2 × 2 games in the laboratory for that purpose. We

reanalyze their data and find that there are no significant differences with respect to

goodness of fit except that the Nash equilibrium fits worse than all the other models.

In a game with a risky and a safe choice (Goeree et al. 2003), impulse-balance equi-

librium yields a particularly good fit, which is due to its built-in loss aversion. When

other models are augmented with loss aversion, they yield an even slightly superior

fit. In games in which losses cannot occur (McKelvey et al. 2000), action sampling

and payoff sampling fit better than logit QRE and impulse balance, which fit better

than Nash.
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Chapter 1

Introduction

There are many economically relevant situations in which individual actors hold pri-

vate information. Aggregating this privately held information can often greatly im-

prove the quality of individual choices. Therefore, it is of great interest to examine

institutions that perform that function. One example of such an institution is a

double auction market. According to the efficient market hypothesis, prices in asset

markets aggregate privately held information quickly and without bias (Fama 1970).

A large experimental literature (e.g., Plott and Sunder 1982, 1988) examines under

which conditions the aggregation of individually held information succeeds in such

markets. However, the process of how information is aggregated is still not very well

understood. In chapter 2, we will focus on one possible explanation for why privately

held information is not always aggregated successfully. Since neither individually held

information nor valuations are easily observable in the field, we turn to the laboratory

to address this question.

An important part of the aggregation process in asset markets involves individual

traders observing the bids and asks that their predecessors submitted. When traders

no longer pay attention to their own private signals and instead follow the choices of

their predecessors, an “information cascade” occurs and privately held information is

no longer being aggregated (Bikhchandani et al. 1992, Banerjee 1992). It has been

suggested that such information cascades might occasionally prevent asset markets

from performing efficiently (e.g. Alevy et al. 1997). However, Avery and Zemsky

(1998) show that price adjustments prevent information cascades in markets under
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common knowledge of rationality when there is only one dimension of uncertainty.

Only when some of these conditions are relaxed is it possible that agents neglect their

private information and simply follow the choices of their predecessors (Avery and

Zemsky 1998, Lee 1998).

In the experiment that we discuss in chapter 2, we implement environments in

which information cascades would occur in the absence of prices and test whether

they can also be observed in a market setting. We find evidence that the sequence in

which private signals are released to traders has an effect on the quality of information

aggregation: when early signals are misleading, prices are less likely to converge to

the fully revealing rational expectations equilibrium. At the same time, we find that

the quality of information aggregation is not significantly worse in periods in which

information cascades would occur in the absence of prices.

While further research is needed to establish how important cascades are to explain

price formation in asset markets, previous experiments show that they do occur in

the environment originally proposed by Bickhchandani et al. (1992). When agents

sequentially choose among two options for which they have common values, rational

agents should often ignore their private signal and follow their predecessors instead,

and subjects indeed often do so in the laboratory (Anderson and Holt, 1997, for

example). However, in many situations, it is impossible to observe the entire sequence

of predecessors’ choices. Instead, only the number of choices for each option is visible.

A tourist can, for example, only see the number of diners seated in the restaurants

among which he has to choose. Callander and Hörner (2009) show that in such

a situation, it can be optimal to follow the minority when some agents have better

information than others. Chapter 3 focuses on this type of sequential decision-making

problem. In the laboratory, the prediction that subjects follow the minority fails

miserably. In fact, they are more likely to follow the majority than the minority. This

observed behavior is not entirely irrational: when agents tremble, the expected payoff

of following the minority is lower than the expected payoff of following the majority.

Trembles alone cannot explain subject behavior in this game satisfactorily, though.

We also observe heterogeneity in the level of strategic thinking and models that
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combine this feature with trembles (e.g., “noisy introspection” proposed by Goeree

and Holt 2004) fit our data best.

Like in markets or in sequential games, individually held information is also ag-

gregated in auctions. These institutions typically aim at maximizing either the sellers

revenue or allocative efficiency. In the process, information about what the objects for

sale are worth to bidders is aggregated, even though this is not the primary purpose

of these mechanisms. Since the true values of bidders are typically unobservable in

the field, laboratory experiments are a suitable way to test different auction formats.

In chapter 4, we compare three combinatorial auctions as well as the simultaneous

multiround (SMR) auction. In a treatment with high value complementarities, all

three combinatorial auction formats generate a more-efficient allocation than SMR.

In these auctions, bidders can submit package bids, which are only valid if the bidder

wins all items included in the package. These package bids help bidders to avoid the

“exposure problem” which arises when a bidder has to bid on several items separately

and risks incurring losses in case he ends up winning only some of these items. We

also find that a clock auction (originally proposed by Porter et al. 2003) in which

prices steadily increase from one round to another on items for which there is excess

demand, generates the highest revenue. Part of the reason might be that subjects

are not always bidding in a straightforward way as typically assumed in the literature

(e.g., Milgrom 2004, p. 270). Instead, they sometimes submit jumpbids in auction

formats that allow them to do so and that can lead to inefficient allocations.

In chapter 5, we examine games in which players have no private information

other than their intentions of how to play the game and their beliefs about what

other players will do. Clearly, agents in these games have every interest in learning

about these intentions and beliefs held by other players. When playing the same

game repeatedly, agents will presumably converge to some stationary equilibrium.

Selten and Chmura (2008) run a large number of experiments to test five different

equilibrium concepts on completely mixed 2 × 2 games. We reanalyze their data,

correct some errors, and find that there are no significant differences in terms of

goodness of fit except that the Nash equilibrium fits worse than any of the other
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models. In order to differentiate better between the five concepts, we also apply them

to previously published data of an experimental 2 × 2 game with a risky and a safe

choice (Goeree et al. 2003). Impulse balance equilibrium, an equilibrium concept

with built-in loss aversion, explains subject behavior in this game particularly well.

However, all other non-Nash models do even slightly better than impulse balance

once they are also augmented with loss aversion. In games in which no losses relative

to the max-min payoff are possible (McKelvey et al. 2000), the payoff-sampling and

the action-sampling equilibrium fit better than logit QRE or impulse balance, which

in turn fit better than Nash.
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Chapter 2

Cascades in Experimental Asset
Markets

2.1 Introduction

In the mid-1500s, the Netherlands became a center of cultivation and development of

new tulip varieties. A market for tulip bulbs was established. From November 1636 to

January 1637, prices of rare varieties surged upward and then rapidly collapsed to ap-

proximately 10 percent of their peak values (Garber, 1990). This episode, commonly

referred to as “tulip mania, is only one example for trade occurring at seemingly

irrational prices. Other instances often involve financial markets: in May 1719, the

shares of the French Compagnie des Indes sold at approximately 500 livres per share.

About 5 months later, the same shares were traded at 10.000 livres. The surge was

followed by a crash: in September 1721, the price was down at 500 livres per share

again (Garber, 1990). More recent examples of rapidly rising and shortly afterwards

even more rapidly collapsing prices include the stock market movements in the United

States at the end of the 1920s or the 1980s. In recent years, the valuations of many

Internet-related companies exhibited similar patterns.

Since the expected value of these assets given all available information at the

time is unknown, it remains unclear whether the according prices deviated from their

fundamental value or not. If they did, one possible explanation is that these were

instances of information cascades. According to Bikhchandani et al. (1992), “An
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informational cascade occurs when it is optimal for an individual, having observed

the actions of those ahead of him, to follow the behavior of the preceding individual

without regard to his own information” (p. 994). In an information cascade, individ-

ually held information is no longer revealed to others. As a consequence, agents can

end up making suboptimal choices given all privately held information at the time.

In this chapter, we will examine whether information cascades really routinely

occur in double auctions with endogenous prices. After a brief review of the relevant

literature, we will discuss the experimental design and then present the according

results.

Even though both Bikhchandani et al. (1992) and Banerjee (1992) mention finan-

cial markets as a possible environment in which information cascades might occur,

agents in their models sequentially choose among a set of options for which they have

common values. There are no prices and no trade occurs. In such environments,

information cascades are quite frequently observed in the laboratory (Anderson and

Holt, 1997, for example). However, it is unclear whether these results are relevant

to financial markets. Avery and Zemsky (1998) show that price adjustments prevent

information cascades under common knowledge of rationality when there is only 1

dimension of uncertainty. To test whether the presence of prices really eliminates

information cascades, Drehman et al. (2005a) and Cipriani and Guarino (2005) im-

plement markets in which the price of the asset always corresponds to the expected

value given the history of previous choices. If all agents were fully rational, subjects

should always follow their private information in these markets but they often fail

to do so. Nevertheless, neither Drehman et al. (2005a) nor Cipriani and Guarino

(2005) find evidence for information cascades. Instead, subjects exhibit contrarian

tendencies.

Despite these findings, it is not clear that it is impossible for information cascades

to be observed in financial markets. Avery and Zemsky (1998) show that informa-

tion cascades can occur in a model with an uninformed market maker, noise traders

and event uncertainty. Agents in their model are only allowed to trade once in an

exogenously determined sequence. Lee (1998) relaxes that latter condition and shows
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that even under common knowledge of rationality, agents are not necessarily always

following their private information. However, these are not information cascades in

the sense of Bikhchandani et al. (1992) since agents’ actions still depend on their

private signal, they just might choose not to follow their signal if it is not strong

enough.

In the experimental literature, there is some evidence suggesting that informa-

tion cascades might occur even when prices are endogenous and in the absence of

restrictions on the time and quantity of trade. In an experimental double auction,

Barner et al. (2005) find that informed traders tend to trade particularly actively

at the beginning of the period except in periods in which information aggregation

fails. This result suggests that subjects carefully observe what other traders do and

update their valuations accordingly. If the first few actions in a trading period are

misleading, prices tend not to reflect the expected value of the asset. Plott and Sun-

der (1982) also report that informed traders are particularly active in the early stages

of trading. Other experimental studies find that subjects tend to rely on their private

information too often (Nöth and Weber 1993, for example) or that they purchase too

many signals (Krämer et al. 2006). These results would rather suggest that subjects

are unwilling to rely too strongly on information revealed by the market and as a

consequence, it might be difficult to observe cascades in a market setting.

Hey and Morone (2004) run experimental asset markets in which subjects can

purchase signals that indicate the true value of the asset. They report that in 1 period,

the first few signals purchased were misleading and as a consequence, prices failed to

converge to the true value of the asset. Since they do not report the expected value

of the asset given all signals purchased, it is not entirely clear whether information

aggregation really failed in this instance. Even if it did, other factors such as a high

variance of the signals purchased might have contributed to the failure of prices to

converge to the fully revealing rational expectations equilibrium. Moreover, there

might have been other periods in which early signals were misleading but information

aggregation nevertheless succeeded.

In order to find out whether the sequence in which information is released to
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the market affects the quality of information aggregation, we design experiments that

allow us to control what information is released at which time more closely. Moreover,

we run a control treatment in which the same information is released simultaneously.

As a result, we can clearly identify periods in which information cascades would occur

if agents sequentially chose to buy or sell a unit of the asset at a fixed price. We

can then test whether the quality of information aggregation in these periods differs

relative to other periods. The treatment in which signals are released simultaneously

allows us to control for other possible explanations such as differences in the variance

of the signals released.

2.2 Experimental Design

In order to give subjects an incentive to pay attention to what other agents do,

all subjects have the same value for the asset that is being traded. This value is

determined independently for each trading period and is equally likely to be 0 or

100 units of the experimental currency. Even in such an environment, subjects often

place too much weight on their private information, which would prevent cascades

from occurring. One possible way to give traders an even higher incentive to infer

what signals other traders received is to release complementary signals. For example,

Plott and Sunder (1988) run experiments in which there are 3 possible states of the

world, x, y and z. Suppose the true state is y. In that case, half of the traders are

told that the state is either x or y while the other half knows that the true state is

either y or z. Such an information structure clearly encourages subjects to carefully

observe what others do. However, it is not suitable to study cascades since traders

would never ignore their private information.

Another possibility is to give more accurate signals to some traders. In that case,

it should be more obvious to traders with inaccurate signals that it is in their interest

to infer what signals other traders received. Moreover, they are probably more likely

to ignore their private information given that others know more about the true value

of the asset. Plott (2000) reports convergence of prices to the rational expectations
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equilibrium in an experiment with heterogeneous private signals.

In order to keep the experimental design as simple as possible, there are only 2

types of signals in our experiments: strong signals and weak signals. Subjects with

weak signals should have every interest in finding out what information subjects with

strong signals have. Therefore, the difference between the accuracy of the strong

signal and the accuracy of the weak signal should be large. At the same time, even

subjects with strong signals should have an interest in observing what others do and

as a result, the strong signal should not be too accurate. Also, if weak signals contain

almost no information, it would be trivial to find that subjects’ decisions do not

depend on their private information. For these reasons, the weak signal reflects the

true value of the asset with probability 0.6 while the strong signal corresponds to the

true value with probability 0.8. Each one of 8 traders is equally likely to receive a

strong or a weak signal.

Trading occurs in a continuous double auction that was implemented in jTrade.

Each subject is given an endowment of 5 units of the asset at the beginning of each one

of 7 trading periods. Subjects also receive a cash loan of 500 units of the experimental

currency that they have to repay at the end of the period. Even if prices are at 100,

subjects would thus be able to purchase at least 5 units. In order to preserve the

symmetry between the buy and the sell side, subjects only have values for at most 10

units of the asset. If a subject ends up holding more than 10 units of the asset at the

end of a period, his value for these assets would nevertheless at most be 1000 units

of the experimental currency.

In treatment baseline, all subjects receive their private information at the begin-

ning of each trading period. They can then trade for 2.5 minutes. In treatment

sequence, the first subject also receives his signal at the beginning of the period and

30 seconds after the market period opens, the second subject receives his private in-

formation. After another 30 seconds, another signal is released to the next subject

until all 8 subjects received their signals. The position of each subject in this sequence

is randomly determined for each period and is shown to other traders along with each

bid or ask that the subject submits. As a consequence, all subjects always know
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Table 2.1. Experimental Design.

Treatment # Sessions # Subjects per Session Average Earnings 

Baseline 5 8 $20 

Sequence 5 8 $20 

 

whether the trader who submitted a certain bid or ask already received his signal.

After all signals are released, subjects are given another 2.5 minutes to trade. As a

result, a market period in treatment sequence lasts 6 minutes. This duration is quite

different compared to treatment baseline but the time of trading available after all

information is released is exactly the same in both treatments. Since we use the same

signal and value draws for treatment baseline and treatment sequence, we can test

whether adding extra time during which information is released sequentially affects

the quality of information aggregation.

We run 5 sessions for each treatment using undergraduate and graduate students

at Caltech as subjects. Each subject was allowed to participate only once. In each

session, there is 1 practice period that does not affect earnings. Subjects receive a

$5 show-up fee as well as $1 for every 100 units of the experimental currency. As a

result, expected earnings are $22.5 per subject with sessions typically lasting for 1

hour for treatment baseline and 1.5 hours for treatment sequence.

2.3 Conjectures and Definitions

Under common knowledge of rationality, no trade should occur in either treatment

sequence or treatment baseline (Milgrom and Stokey 1982). However, we know from

previous market experiments that this is rather unlikely to happen. If trade does occur

and markets are efficient, prices should always reflect all information available to any

trader (Fama 1970). As a consequence, no information cascades should occur. On the

other hand, some subjects might fail to use their private information to update their

estimate of the value of the asset and instead rely on what they believe is revealed
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by actions of other market participants. In that case, information cascades could be

observed. More specifically, we examine both “good” and “bad” cascade periods and

compare the quality of information aggregation in these periods to other periods.

Definition 1 A bad (good) cascade period is a period which satisfies the following

conditions:

• If subjects had to sequentially guess whether the value of the asset was 0 or 100

and the sequence of choices was observable, at least half of them would not pay

attention to their private signal under common knowledge of rationality.

• The majority of subjects would choose the wrong (correct) value.

For the parameters we use in our experiment, only periods in which the first signal

is misleading and both the second and the third signal are either weak or both strong

and misleading qualify as bad cascade periods. Similarly, only periods in which the

first signal is correct and both the second and the third signal are either weak or both

strong and correct are good cascade periods. If information cascades are likely to

occur in our markets, we expect that the quality of information aggregation in bad

cascade periods is worse than in other periods.

Conjecture 1 The quality of information aggregation for bad cascade periods is

higher in treatment baseline than in treatment sequence.

Conjecture 2 The quality of information aggregation for bad cascade periods in

treatment sequence is lower than for other periods in treatment sequence.

To measure the quality of information aggregation, we compute the average of the

absolute value of the difference between transactions prices and the expected value

of the asset given all private signals. We calculate this average for 4 different sets of

transactions:

• All transactions that occurred during the last 2.5 minutes of trading
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• All transactions that occurred during the last 1.5 minutes of trading

• The last 5 transactions

• The last 5 units that were traded

The last 2.5 minutes of trading are relevant because all information has been

released by that time in treatment sequence. Therefore, prices would be identical in

both treatments if markets were efficient. We also take the average over transactions

that occurred during the last 1.5 minutes of trading in order to allow for time for

traders in treatment baseline to reveal their signals to others. For all measures,

the mean is always taken over the number of units that transact. For example, 2

transactions for 1 unit at price x are equivalent to 1 transaction for 2 units at price

x. The only exception is the third measure, for which we take the average over the

last 5 transactions giving equal weight to each one of them. Transactions at a price

of 0 or at prices of 100 or higher are dropped because these are obvious mistakes.

Just like in bad cascade periods, the aggregation of privately held signals stops

after some point in good cascade periods if information cascades occur. However,

The price at which information aggregation typically stops is almost always quite

close to the expected value of the asset given all private signals. Therefore, we do

not expect information aggregation in good cascade periods to be substantially worse

than in other periods but we nevertheless test whether or not it is. We will also test

whether there is a substantial difference in the quality of information aggregation

between treatment sequence and treatment baseline using all periods as observations.

Since there are only a few bad cascade periods and since we have no reason to expect

substantial differences in other periods, we do not expect these differences to be

significant.

2.4 Results

In this section, we will first test the conjectures stated above. Since we only find

very weak evidence to support them, we then test whether circumstances other than
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the sequence in which signals are released might be favorable to trigger information

cascades. To conclude, we provide some evidence for strategic behavior on the part

of subjects, which might explain why we fail to find significant differences between

periods that could be favorable to information cascades and other periods in terms

of the quality of information aggregation.

2.4.1 Bad Cascade Periods

To test conjecture 1, we compare bad cascade periods in treatment sequence to bad

cascade periods in treatment baseline. Figures 2.1 and 2.2 display the according price

patterns separately for each one of the 5 periods that qualify as bad cascade periods.

The first number at the top of each period-specific graph indicates the session while

the second number corresponds to the period. The size of the dots is proportional

to the number of units exchanged. The line corresponds to the expected value of the

asset given all private signals. In treatment sequence, prices clearly fail to converge

to the rational expectations equilibrium in session 3, both in period 4 and period 6.

It could very well be that bad information released early in these periods led to an

information cascade that prevented prices from effectively aggregating information.

However, prices in the corresponding periods of treatment baseline also failed to

converge to the expected value of the asset given all privately held information. As

a result, none of the tests we run allows us to reject the null hypothesis that the

quality of information aggregation in treatment baseline is equivalent to the quality

of information aggregation in treatment sequence for bad cascade periods. Table 2.2

contains the p-values of Wilcoxon matched-pairs signed-rank tests for the 4 different

measures of the quality of information aggregation.

Conjecture 2 does not fare much better than conjecture 1. Wilcoxon rank-sum

tests do not allow us to reject the null that the median of the quality of informa-

tion aggregation is identical in bad cascade periods compared to other periods within

treatment sequence. When comparing all 35 periods of treatment sequence to all 35

periods of treatment baseline, we are getting fairly close to rejecting the null hypoth-
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Figure 2.1. Prices in Treatment Sequence in Bad Cascade Periods.

esis of equal quality of information aggregation for some of the measures employed

with treatment sequence exhibiting the higher average absolute deviation of prices

from the rational expectations equilibrium price.

The fact that neither one of the main conjectures could be confirmed while there is

some support for the hypothesis that the quality of information aggregation is higher

in treatment baseline compared to treatment sequence might be due to an insufficient

number of bad cascade periods. Clearly, information cascades are not guaranteed to

occur even when the sequence of private signals would provide favorable conditions.

At the same time, information is not always aggregated very efficiently in treatment

baseline, either.
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Figure 2.2. Prices in Treatment Baseline in Bad Cascade Periods.
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Table 2.2. Test Results Bad Cascade Periods.

Measure 

Bad Cascade Periods 
Sequence vs. Bad 
Cascade Periods 
Baseline 

Bad Cascade Periods 
Sequence vs. Other 
Periods Sequence 
 

All Periods Sequence 
vs. All Periods 
Baseline 
 

Mean Absolute 
Deviation Using 
Transactions 
During the Last 90 
Seconds 

Mean Baseline: 39.7 
Mean Sequence: 40.1 
p = 1.0 

Mean Cascade: 40.1 
Mean Other: 31.1 
p = 0.39 

Mean Baseline: 27.6 
Mean Sequence: 32.4 
p = 0.18 

Mean Absolute 
Deviation Using 
Transactions 
During the Last 
150 Seconds 

Mean Baseline: 39.7 
Mean Sequence: 39.9 
p = 0.81 

Mean Cascade: 39.9 
Mean Other: 30.7  
p = 0.57 

Mean Baseline: 31.6 
Mean Sequence: 32.0 
p = 0.59 

Mean Absolute 
Deviation Using 
the Last 5 
Transactions 

Mean Baseline: 39.0 
Mean Sequence: 39.8 
p = 1 

Mean Cascade: 39.8 
Mean Other: 31.5  
p = 0.51 

Mean Baseline: 27.5 
Mean Sequence: 32.7 
p = 0.11 

Mean Absolute 
Deviation Using 
the Last 5 Units 
Traded 

Mean Baseline: 39.8 
Mean Sequence: 40.2 
p = 0.81 

Mean Cascade: 40.2 
Mean Other: 31.4  
p = 0.45 

Mean Baseline: 27.4 
Mean Sequence: 32.7 
p = 0.14 

We run Wilcoxon matched-pairs signed-rank tests to obtain the p-values for the first and 
the third column and Wilcoxon rank-sum tests for the second column. 
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2.4.2 Good Cascade Periods

Figures 2.3 and 2.4 display the price patterns in good cascade periods for treat-

ment sequence and treatment baseline. The size of the dots is proportional to the

number of units exchanged. The line corresponds to the expected value of the as-

set given all private signals. Table 2.3 contains the according test results. We run

Wilcoxon matched-pairs signed-rank tests to obtain the p-values for the first column

and Wilcoxon rank-sum tests for the second column. While only 5 out of 35 peri-

ods qualify as bad cascade periods, 16 qualify as good cascade periods. This might

be part of the reason why some of the comparisons between treatment sequence and

treatment baseline almost yield significant results. It appears that the quality of infor-

mation aggregation is somewhat lower in good cascade periods in treatment sequence

compared to good cascade periods in treatment baseline.
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Figure 2.3. Prices in Treatment Sequence in Good Cascade Periods.
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Figure 2.4. Prices in Treatment Baseline in Good Cascade Periods.

Table 2.3. Test Results Good Cascade Periods.

Measure 

Good Cascade Periods 
Sequence vs. Good 
Cascade Periods Baseline 

Good Cascade Periods 
Sequence vs. Other 
Periods Sequence 

Mean Absolute Deviation 
Using Transactions During the 
Last 90 Seconds 

Mean Baseline: 23.6 
Mean Sequence: 32.4  
p = 0.11 

Mean Cascade: 32.4  
Mean Other: 32.4  
p = 0.89 

Mean Absolute Deviation 
Using Transactions During the 
Last 150 Seconds 

Mean Baseline: 28.5 
Mean Sequence: 30.3 
p = 0.68  

Mean Cascade: 30.3 
Mean Other: 33.4 
p = 0.95 

Mean Absolute Deviation 
Using the Last 5 Transactions 

Mean Baseline: 23.7 
Mean Sequence: 31.3  
p = 0.15 

Mean Cascade: 31.3 
Mean Other: 33.9 
p = 0.79 

Mean Absolute Deviation 
Using the Last 5 Units Traded 

Mean Baseline: 23.5 
Mean Sequence: 30.9  
p = 0.16 

Mean Cascade: 30.9 
Mean Other: 34.2 
p = 0.74 

We run Wilcoxon matched-pairs signed-rank tests to obtain the p-values for the first 
column and Wilcoxon rank-sum tests for the second column. 
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2.5 Alternative Cascade Period Definitions

2.5.1 Shorter Information Cascades

Clearly, the low number of bad cascade periods combined with a relatively high vari-

ance in the quality of information aggregation in both treatments contributes to the

fact that we did not find much support in favor of conjectures 1 and 2. A possible

remedy would be to apply a more liberal definition of cascade periods by relaxing the

condition that at least 4 out of 8 traders would ignore their private signal if they chose

sequentially whether to buy or sell the asset. However, if only very few traders ignore

their private information, it would be difficult to find significant differences with re-

spect to the quality of information aggregation even if an information cascade actually

occurred. Therefore, the only extension that we test is one in which at least 3 traders

would ignore their private information if they chose sequentially. Unfortunately, this

more-liberal definition only yields 1 additional bad cascade period (session 5, period

4) and all differences in the quality of information aggregation remain insignificant.

Figure 2.5 displays transaction prices in this additional bad cascade period. The size

of the dots is proportional to the number of units exchanged. The line corresponds

to the expected value of the asset given all private signals.

2.5.2 Who Trades First?

Another reason why conjectures 1 and 2 could not be confirmed might be that the

sequence in which signals are released does not correspond to the sequence in which

subjects actually trade. As a consequence, the sequence in which private information

is revealed to the market might not correspond to the sequence in which signals

are released to traders. To test this hypothesis, we compute the Spearman rank

correlation coefficient between the position of a subject in the sequence in which

private signals are released in treatment sequence and the time at which that subject

first buys or sells at least 1 unit of the asset. We obtain a positive correlation (0.24)

and can easily reject the null hypothesis of no correlation (p=0.000).
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Figure 2.5. Prices in Session 5, Period 4 for Treatments Baseline and Sequence.

Table 2.4. Test Results For Cascade Periods Defined Based on the Time of the First
Transaction. We run Wilcoxon rank-sum tests to obtain the p-values.

Measure 

Bad Cascade Periods 
vs. Other Periods 
Both Treatments 

Good Cascade Periods 
vs. Other Periods Both 
Treatments 

Mean Absolute Deviation Using 
Transactions During the Last 90 
Seconds 

Mean Cascade: 31.9 
Mean Other: 29.8 
p = 0.79 

Mean Cascade.: 32.7 
Mean Other: 27.4 
p = 0.35 

Mean Absolute Deviation Using 
Transactions During the Last 150 
Seconds 

Mean Cascade: 33.5 
Mean Other: 31.6 
p = 0.88 

Mean Cascade: 35.1 
Mean Other: 28.6 
p = 0.21 

Mean Absolute Deviation Using the 
Last 5 Transactions 

Mean Cascade: 33.8 
Mean Other: 29.7 
p = 0.57 

Mean Cascade: 32.6 
Mean Other: 27.7 
p = 0.44 

Mean Absolute Deviation Using the 
Last 5 Units Traded 

Mean Cascade: 34.9 
Mean Other: 29.5 
p = 0.45 

Mean Cascade: 32.0 
Mean Sequence: 28.2 
p = 0.55 
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Since the correlation is not perfect, we reclassify cascade periods based on the

sequence in which subjects trade. We apply the same definition of cascade periods

that we originally used (Definition 1) but we now use the sequence of signals obtained

by the first 3 subjects who are buying or selling at least 1 unit of the asset to classify

periods. In treatment sequence, it occasionally happens that some of the these first

3 traders have not yet received their private information at the time at which they

first trade. We are not taking these traders into account since their private signal

clearly cannot have been revealed to the market at such an early stage. As a result,

7 out of 70 periods qualify as bad cascade periods and 5 of these periods are from

treatment sequence and 3 of them were already originally classified as cascade periods.

Wilcoxon rank-sum tests do not allow us to reject the null hypothesis that the median

of the quality of information aggregation in these bad cascade periods differs from the

median in other periods. When redefining good cascade periods based on the time

of the first transaction, 34 out of 70 periods qualify but none of the differences are

significant (table 2.4).

2.5.3 Who Submits Orders First?

Instead of the time of the first transaction, the time at which a trader first submits

a bid or an ask might be more closely related to the time at which he reveals his

private information to the market. Therefore, we test whether the time of the first

bid or ask is related to the time at which the private signal is received in treatment

sequence. The Spearman rank correlation coefficient is 0.29 and we can safely reject

the null that the 2 variables are unrelated (p=0.000). Instead of taking all bids and

asks into account, we only consider bids above 20 and asks below 80 since any signal

would justify lower bids or higher asks.

A reclassification of cascade periods based on the time of the first bid or ask yields

5 bad cascade periods, 4 of these periods already originally qualified as bad cascade

periods. We also obtain 35 good cascade periods. Wilcoxon rank-sum tests do not

allow us to reject the null hypothesis that the quality of information aggregation does
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Table 2.5. Test Results for Cascade Periods Defined Based on the Time of the First
Order.

Measure 

Bad Cascade Periods 
vs. Other Periods 
Both Treatments 

Good Cascade Periods 
vs. Other Periods Both 
Treatments 

Mean Absolute Deviation Using 
Transactions During the Last 90 
Seconds 

Mean Cascade: 25.5 
Mean Other: 30.0 
p = 0.81 

Mean Cascade.: 31.4 
Mean Other: 28.1 
p = 0.82 

Mean Absolute Deviation Using 
Transactions During the Last 150 
Seconds 

Mean Cascade: 25.9 
Mean Other: 31.1 
p = 0.74 

Mean Cascade: 30.5 
Mean Other: 30.9 
p = 0.79 

Mean Absolute Deviation Using the 
Last 5 Transactions 

Mean Cascade: 30.8 
Mean Other: 30.0 
p = 0.89 

Mean Cascade: 30.8 
Mean Other: 29.5 
p = 0.95 

Mean Absolute Deviation Using the 
Last 5 Units Traded 

Mean Cascade: 31.4 
Mean Other: 29.9 
p = 0.79 

Mean Cascade: 30.2 
Mean Sequence: 29.9 
p = 0.87 

 

not differ between bad cascade periods and other periods. Good cascade periods also

do not seem to yield a different quality of information aggregation (table 2.5).

2.6 Alternative Explanations

2.6.1 Early Expected Value vs. Late Expected Value

Even though subjects might not completely ignore their private information, they

might place too much weight on information that the actions of other traders reveal.

In that case, misleading early signals would still lead to a lower quality of information

aggregation but not necessarily in such a clear-cut way as the cascade model suggests.

To measure the extent to which early signals are misleading, we compute the expected

value of the asset given the first 4 signals. We then take the absolute value of the

difference between this early expected value and the expected value given all private

signals. This variable (devalue) is then used to explain the quality of information

aggregation. Using OLS, we estimate a coefficient for variable devalue (β) as well as

an intercept (α) separately for treatment sequence and treatment baseline using all

35 periods for each treatment as observations. The results of these regressions are
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displayed in table 2.6.

In treatment sequence, the coefficient of devalue is always significant at the 10%

level. The larger the difference between the early expected value of the asset and the

late expected value of the asset, the larger the mean absolute deviation of prices from

the late expected value. In that sense, misleading early signals do have an effect on

the extent to which prices converge to the rational expectations equilibrium price.

Since devalue is correlated with the variance of the signals that traders receive,

it could be that a higher variance of signals is the true cause for the observed worse

quality of information aggregation in periods with high values of devalue. In that case,

we would expect the coefficient of devalue to be significant in treatment baseline as

well. Since that is not the case, we conclude that the sequence in which signals are

released does indeed affect the extent to which markets can aggregate privately held

information. We also test whether including a variable that measures the standard

deviation of signals significantly improves the fit of these regressions. Wald tests do

not allow us to reject the null hypothesis that the coefficient of the standard deviation

of signals is zero.

2.6.2 Strategic Behavior

When we classify periods as cascade periods, we assume that subjects reveal their

private information to other traders. If they fail to do so, the information that the

market receives might not correspond to the information used to classify periods,

which could explain why information aggregation in bad cascade periods is not sub-

stantially worse than in other periods. In order to test whether subjects are trying to

mislead other traders, we examine the first order submitted in each period. At that

time, the only information subjects have is their private signal. We only consider

bids above 20 and asks below 80 that were made by traders who had already received

their signal. 28% of such first orders are misleading in the sense that subjects are

submitting a buy order even though they received a low signal or that they submit

a sell order even though they received a high signal. Not all of these orders are in-
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Table 2.6. Using Devalue to Explain Differences in the Quality of Information Ag-
gregation.

Measure Treatment R
2

  (sd) ! (sd) p-value 

Wald 

Baseline 0.06 23.21** 

(7.735) 

0.25 

(0.326) 

0.30 Mean Absolute Deviation Using 

Transactions During the Last 90 

Seconds Sequence 0.14 24.66** 

(6.804) 

0.44* 

(0.186) 

0.48 

Baseline 0.07 27.10** 

(6.754) 

0.26 

(0.302) 

0.27 Mean Absolute Deviation Using 

Transactions During the Last 150 

Seconds Sequence 0.17 23.70** 

(6.519) 

0.47* 

(0.193) 

0.62 

Baseline 0.06 22.93** 

(7.985) 

0.26 

(0.335) 

0.27 Mean Absolute Deviation Using the 

Last 5 Transactions 

Sequence 0.15 24.61** 

(6.337) 

0.46* 

(0.191) 

0.65 

Baseline 0.07 22.61** 

(8.103) 

0.27 

(0.324) 

0.29 Mean Absolute Deviation Using the 

Last 5 Units Traded 

Sequence 0.16 24.30** 

(6.248) 

0.48* 

(0.186) 

0.61 

Coefficients marked by (* / **) are significant at the (10 / 5) percent level. Robust 

standard errors clustered by session are shown in parentheses. 

consistent with the private signal received. For example, if a subject received a weak

high signal, the expected value of the asset is 60. It is then perfectly reasonable to

submit a sell order at a price of 70. However, 18% of all first orders are either sell

orders at a price below the expected value given the trader’s private signal or buy

orders at a price above the expected value given the trader’s signal. Clearly, other

traders will find it hard to figure out what signals these traders had based on the bids

or asks that they submitted. No matter whether these are intentional attempts to

mislead other traders or simply mistakes, the fact that bids and asks do not always

reflect the private information that a trader holds makes it difficult do identify the

effect of the sequence of signals on the quality of information aggregation.

2.7 Conclusion

While we find evidence that the sequence in which signals are released to traders af-

fects the quality of information aggregation, there is not much support for conjectures
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1 and 2. Bad cascade periods in treatment sequence do not seem to fare substantially

worse than bad cascade periods in treatment baseline or other periods in treatment

sequence. A possible reason could be that we simply do not have enough observa-

tions. Another reason could be the difficulty involved in identifying the sequence in

which information is released to the market. In fact, the sequence in which signals

are released to traders does not always correspond to the sequence in which subjects

actively trade or submit orders. Moreover, when they submit orders, they do not

always reveal their private signal but might instead try to mislead other traders.

An alternative experimental design would eliminate these 2 sources of complex-

ity while still preserving an endogenous price. Instead of allowing subjects to trade

at any point of time, we could require them to trade in a predetermined sequence.

Each subject would be able to submit as many sell and buy orders as desired but

only once. As a consequence, subjects would no longer have an interest in misleading

other traders since it would be impossible to capitalize on flawed prices by submit-

ting further orders at a later point of time. At the same time, the sequence in which

subjects trade would always correspond to the sequence in which they receive their

private information. A control treatment would simply correspond to a call market

with identical signals and value draws. By eliminating much of the complexity of

a continuous double auction while preserving an endogenous price without a mar-

ket maker, such a design should allow us to establish whether information cascades

routinely occur in markets with an endogenous price.
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Chapter 3

Wise Crowds or Wise Minorities?

This chapter is based on a paper written jointly with Jacob K. Goeree.

3.1 Introduction

When people are imperfectly informed they may try to learn from others’ choices.

Prospective graduate students, for instance, often inquire which schools other students

chose to apply to. Teenagers consult the charts before deciding which CD to buy and

tourists tend to prefer well-occupied restaurants to half-empty competitors. In many

of these situations, only others’ choices can be observed, not the exact information

they had when making their choices. And while in some instances the exact sequence

of predecessors’ choices is observed (as in the US primary elections), more often only

aggregate statistics based on those choices are available (e.g., the number of diners

in a restaurant).

When do others’ decisions contain relevant information and what course of action

do they suggest? Obviously, predecessors’ choices matter only when their payoffs are

correlated to some extent. For this reason, most of the social-learning literature makes

the simplifying assumption that agents have identical values for the available options,

as is the case, for instance, when buying stocks.1 In this common-value environment,

1Exceptions include Smith and Sørensen (2000) and Goeree et al. (2006, 2007) who study social
learning with heterogeneous payoffs. Others’ choices are also important when network externalities
are present, e.g., using the same technology standard. See Hung and Plott (2000) and Drehmann et
al. (2005b) for sequential decision-making experiments with informational and payoff externalities.
Cipriani and Guarino (2005), Drehmann et al. (2005a), and Bose et al. (2009) consider situations
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folk wisdom suggests it would be best to follow the majority, an intuition that is

formalized by theoretical models of social learning. Bikhchandani et al. (1992), for

example, consider a model where agents are privately informed about which of 2

options is better and the quality of information is the same across agents. They

demonstrate that after a few decisions, information cascades occur and all agents

herd on the majority choice regardless of their private information.2 Following the

majority is also optimal in Banerjee’s (1992) model where uninformed agents have

the ability to signal that they have no information.

In contrast, Callander and Hörner (2009) consider a situation where it can be

optimal to follow the minority. In their model, agents differ in terms of the quality

of information they possess and observe only the number of decisions for each option.

In this paper, we consider the following simplified version of their model: each agent

has a small chance of being perfectly informed about which of 2 options is correct or

gets no information at all (besides the prior information that puts equal weight on

both options). The information agents receive and the order in which they move are

exogenously determined.3 Finally, the probability of being informed is low enough

such that, under common knowledge of rationality, it is always optimal to follow the

minority. This result is explained in more detail below, but to glean some intuition

consider an uninformed agent who learns that 2 predecessors have chosen restaurant

A and one has chosen restaurant B. Such an outcome can only occur when the first

agent was uninformed and chose the worse of the 2 restaurants. If both the second

and the third agent were informed, it would be best to follow the majority but such a

case is relatively unlikely when the probability of being informed is low. When only

the second agent was informed, the third agent faces a tie and chooses randomly, in

which case following the minority is no worse than following the majority. As opposed

where predecessors’ choices affect payoffs by changing the prices of the alternatives.
2Laboratory evidence provides partial support for these predictions in the sense that information

cascades do occur but are often broken. In addition, subjects tend to overweigh their private
information vis-à-vis that contained in publicly observable predecessors’ choices (see, e.g., Anderson
and Holt, 1997; Çelen and Kariv, 2004a, 2004b; Goeree et al., 2006, 2007).

3Kübler and Weizsäcker (2004) present a study where the information available to decision makers
is endogenous, while Ottaviani and Sørensen (2001) allow the sequence of decision makers to be
endogenous.
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to a sequence with 2 informed agents, it is quite likely that only the third agent was

informed, in which case it is strictly better to follow the minority.

This simple logic extends to more general minority-majority divisions if common

knowledge of rationality can be subsumed (see Callander and Hörner, 2009). But

once we introduce the possibility of “trembles” or mistakes, it breaks down. Goeree

et al. (2007), for example, find that in standard social learning experiments (based

on Bikhchandani et al., 1992), cascades do form but almost never last as subjects

frequently opt to follow their contrary information and break the cascade.4 While un-

informed agents in our experiment do not possess any private information,5 trembles

may still occur especially because the information conveyed by predecessors’ choices

may be of low quality and value. Intuitively, the possibility of trembles greatly alters

equilibrium predictions in the Callander–Hörner setup. In the example above, for

instance, the 2–1 division between restaurants is more likely caused by a trembling

uninformed agent than by a deviating informed agent when the probability of being

informed is very low.

More generally, whether it is optimal to follow the majority or the “deviant minor-

ity” therefore depends on the likelihood of mistakes, the quality of others’ information,

the correlation of tastes, etc. It would be hard to distinguish these confounding ele-

ments in data from the field, which is why we turn to the lab. We conducted 2 types

of sequential decision-making experiments: in treatment “sequence,” agents can see

the entire sequence of predecessors’ decisions and in treatment “no-sequence” they

only see the number of predecessors’ choices for either option. Collecting data from

both treatments allows us to connect our findings to prior literature, which mostly

employs the sequence treatment, and enables us to evaluate the efficiency gains that

may result from the additional information in treatment sequence.

4In these experiments, cascade breaks are informative and prevent the learning process from
getting stuck. As a result, full information aggregation becomes possible in the limit as the number
of agents grows large. Goeree et al. (2007) demonstrate how a logit quantal response model can
account for much of the dynamics in the experiments.

5Previous social learning experiments have documented the tendency of subjects to overweigh
their private information. This is not possible in our design, since subjects get either no information
or information that is perfectly informative.
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We find that informed subjects always follow their signal, i.e., they always pick

the correct option. On average, uninformed subjects tend to follow unanimous pre-

decessors close to 90% of the time both in treatments sequence and no-sequence.

Furthermore, the frequency with which unanimous predecessors are followed signifi-

cantly rises (to levels between 90% and 100%) as the number of predecessors grows.

This high percentage of rational choices is maybe not surprising given that the deci-

sion problem faced by an uninformed agent is relatively easy when all predecessors

agree. When there is a deviator in treatment sequence, subjects tend to follow the

deviator only 72% of the time. The frequency with which a deviator is followed is

significantly higher when the deviator’s choice belongs to the majority (80%) than

when it belongs to the minority of previous choices (58%). Finally, in treatment

no-sequence, subjects tend to follow the minority only 28% of the time. This percent-

age significantly declines when the difference between the number of majority and

minority choices grows.

While observed choices deviate from theoretical predictions, they are approximate

best responses to the empirical distribution of play in the following sense. Given

the choices of others, and given the signals used in the experiment, the cost of not

following unanimous predecessors in the experiment is $1.53 on average. Likewise, the

cost of not following a deviator in treatment sequence is $1.23 on average, and the cost

of not following the minority is −$0.36 on average. In other words, subjects who are

(imperfect) profit maximizers would nearly always follow unanimous predecessors,

would more likely than not follow a deviator in treatment sequence (although not

as frequently as they would follow unanimous predecessors), and would follow the

majority in treatment no-sequence. The canonical model that captures this type of

imperfect maximization behavior is the (logit) QRE model. We show that, on an

aggregate level, logit-QRE is able to reproduce the main features of our data quite

well.

In the logit-QRE model, however, agents are assumed to be ex ante symmetric,

which is clearly not true in our data. While some subjects make rational choice in all

ten periods of the experiment, others do so in less than half the periods. This type of
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heterogeneity is captured by models that allow for different levels of strategic thinking,

such as the level-k model (e.g., Crawford and Iriberri 2007a, 2007b) and cognitive

hierarchy (Camerer, et al. 2004). When we apply level-k and cognitive hierarchy to

the data, we find they produce a worse fit both on an individual and aggregate level.

The reason for their poor performance is that these models subsume best response

behavior (given beliefs), except for level-0 who randomizes when uninformed. The

best-response assumption often conflicts with intuitive comparative statics observed

in the data, e.g., subjects tend to follow unanimous predecessors more frequently

when the group of predecessors is large. In addition, the best-response assumption

implies that a subject who mostly but not always makes a rational choice, is classified

as level-0 even though most of her choices suggest a higher level of thinking.

Goeree and Holt (2004) propose a “noisy introspection” model that blends the idea

of different levels of strategic thinking with noisy responses (trembling). In particular,

the noisy introspection model replaces the strict best responses of the level-k model

with logit “better responses.” Importantly, agents in the noisy introspection model

are assumed to be aware that others tremble. For example, when computing the

probability that the minority choice is correct in treatment no-sequence, agents take

into account the possibility that the minority arose because of trembles. As a result,

the model can predict why subsequent choices favor the majority (not the minority)

even for agents with high levels of strategic thinking.

We find that the noisy introspection model provides a significant improvement in

fit relative to logit-QRE and a dramatic improvement relative to level-k and cogni-

tive hierarchy. To illustrate the importance of the “common-knowledge-of-trembling”

assumption that underlies noisy introspection, we also estimate a noisy version of

the level-k model in which agents tremble but assume others do not. We find that

the noisy level-k model provides a better fit than level-k and cognitive hierarchy, but

does not do nearly as well as noisy introspection. We also estimate 2 versions of the

cognitive hierarchy model with trembles, one in which agents are aware that others

tremble and one in which they are not. Both of these models fit the data equally well

as the noisy introspection model.
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The chapter is organized as follows. In the next section, we briefly discuss the

theoretical predictions for the 2 treatments. The experimental design is presented in

section 3.3. The results of the experiment can be found in section 3.4. In section

3.5, we apply alternative models of bounded rationality to explain individual and

aggregate outcomes. Section 3.6 concludes.

3.2 Theoretical Predictions

Treatment sequence is a simple variant of the social learning model proposed by

Bikhchandani et al. (1992). There are 2 options, A and B, that are equally likely to

be correct and a finite set of n agents labeled t = 1, 2, . . . , n. Each agent chooses either

A or B after having observed a private signal st and the decisions of predecessors.

Signals in the experiment are either fully informative or not informative at all: if

ω denotes the correct option then st = ω with probability q > 0 and st = ∅ with

probability 1− q.

Given that some agents may be fully informed, the perfect Bayesian equilibria of

sequence treatment are easy to derive. First, an agent with st = ω chooses ω. Second,

if all predecessors agree, then an uninformed agent follows the majority since either all

predecessors were uninformed and the agent is indifferent or some predecessors were

informed and the agent strictly prefers to follow the majority. Third, if predecessors

were not unanimous, i.e. choices switched from one option to the other, then the

first predecessor who “deviated” by not following her predecessors must have been

informed. In this case, the agent should follow the deviator. Note that all 3 cases can

be succinctly summarized as follows: under common knowledge of rationality, unin-

formed agents follow their immediate predecessor. Finally, if predecessors switched

from one option to the other and then switched back, play is off the equilibrium path.

In this case, the agent cannot infer anything from prior play and simply randomizes

when st = ∅ and chooses ω when st = ω.

In treatment no-sequence, informed agents with st = ω again choose ω. Also,

uninformed agents simply follow the majority if all predecessors agree. The surprising
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result for treatment no-sequence is that uninformed agents may be better off following

the minority, a result due to Callander and Hörner (2009). To glean some intuition,

consider their illustrative example in which uninformed agent t = 4 has to choose after

2 predecessors have chosen option A and 1 predecessor has chosen option B. In this

case, agent t = 1 must have been uninformed and must have chosen the wrong option

since predecessors would otherwise have been unanimous. Furthermore, either (i)

agent 2 was uninformed in which case she followed agent 1 and agent 3 was informed

and choose differently from her predecessors, or (ii) agent 2 was informed and choose

differently from agent 1 and agent 3 was uninformed and randomly followed agent 1,

or (iii) both agents 2 and 3 were informed and chose differently from agent 1. Under

scenario (i) the minority choice is correct, under (ii) both options are equally likely

to be correct, and under (iii) the majority choice is correct. For q < 1
2
, the situation

in which 2 agents are informed is less likely, and, hence, the minority is more likely

to be correct. A simple calculation shows that for q ∈ (0, 1),

P1,2(minority is correct) =
2− q

3
. (3.1)

Moreover, for small q, the probability that the minority is correct grows as the

majority increases in size. For example, consider the case where 3 predecessors have

chosen option A and 1 predecessor has chosen option B. The fourth agent must have

faced (i) unanimous predecessors in which case the minority choice B is correct (if

option A were correct the fourth agent should pick A whether or not informed), or

(ii) a 2–1 majority for A in which case the minority is wrong (now if option B were

correct the fourth agent should pick B whether or not informed, resulting in a tie).

Note that situation (i) only requires the fourth agent to be informed while situation

(ii) requires the fourth agent and at least 1 other agent to be informed. The chance

that the minority is correct is now

P1,3(minority is correct) =
2(1− q)2

2(1− q)2 + q(1 + q)
, (3.2)

and it is straightforward to verify that P1,3 > P1,2 for small q. The minority wisdom
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becomes even stronger as the majority grows larger than 3: the outcome in which

m ≥ 4 predecessors chose A and only 1 predecessor chose B requires at least m − 1

agents to be informed when the majority choice A is correct, but requires only the

final agent to be informed when the minority choice B is correct. Furthermore, this

logic extends to minorities of sizes other than 1.

Figures 3.1 and 3.2 and show the relevant probabilities for the experimental setup

discussed below: Figure 3.1 corresponds to the case where the probability of being

informed is q = 0.2 and the total number of agents is n = 7, and figure 3.2 corresponds

to the case where q = 0.1 and n = 13. In figure 3.1, the number of predecessors (on

the x-axis) is at most 6, and the minority size can be either 0, 1, or 2, as indicated by

the labels next to the 3 lines that represent the probabilities the minority is correct for

these cases. A minority of size 0 means that predecessors were unanimous in which

case the minority choice is more likely to be incorrect, as indicated by the decreasing

line that is everywhere below 0.5. The first 2 points of the line labeled “1” can be

computed from (3.1) and (3.2) above for q = 0.2: note that P1,m for m = 2, 3, 4, 5 is

everywhere above 0.5, i.e. the minority is more likely to be correct, and is increasing

in m, i.e. the minority wisdom becomes stronger as the majority grows. The same

is true for P2,m for m = 3, 4 as shown by the line labeled “2.” Figure 3.2 establishes

the same properties for our second treatment in which q = 0.1 and n = 13.

3.3 Experimental Design

The experiments were conducted in the Social Science Experimental Laboratory

(SSEL) at Caltech using undergraduate and graduate students as subjects. Each

subject was allowed to participate only once. For each session, we randomly deter-

mined the correct option in each of the ten periods. And for each period, we randomly

determined for each subject whether she was informed or not. Since the specific se-

quence of informed and uninformed agents can affect efficiency and behavior, we used

the same draws for both treatment sequence and treatment no-sequence. We ran ten

sessions for both treatments.
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Figure 3.1. Probability Minority is Correct in Treatment No-Sequence when q = 0.2
as a Function of the Number of Predecessors (x-axis) and the Minority
Size (Label Next to a Line).

The experiments were run by hand. After reading the instructions out loud,

subjects had an opportunity to ask clarifying questions. We used an urn to select the

subject who had to guess first. The experimenter then went to that subject’s seat and

indicated on the subject’s record sheet whether that subject was informed, and, if so,

what the correct option was. Then another draw without replacement determined

which subject had to guess next, etc. Each time, the experimenter revealed the correct

option only to informed subjects. In addition, all subjects, informed or uninformed,

were told the sequence of predecessors’ choices in treatment sequence and the number

of choices for both options in treatment no-sequence.6

6To avoid a bias for one of the options, we denoted option A with a circle (◦) and option B with
a cross (+) since these symbols have no obvious ordering. Also, there was no practice period that
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Figure 3.2. Probability Minority is Correct in Treatment No-Sequence when q = 0.1
as a Function of the Number of Predecessors (x-axis) and the Minority
Size (Label Next to a Line).

The main design parameters are the probability that an agent is informed (q) and

the number of subjects participating in a session (n). We chose q and n such that it

was optimal to follow the minority in treatment no-sequence in all possible situations

(assuming common knowledge of rationality). For q = 0.1 the maximum number is

n = 13 and for q = 0.2 the maximum number is n = 7, see table 3.1.7 At the end

of each period, the correct option was revealed to everyone and subjects earned $4 if

might have allowed subjects to coordinate their guesses at no cost. To test whether these measures
were sufficient to avoid a bias, we considered the 143 cases were both options had the same number
of choices in treatment no-sequence. In 82 of these cases, subjects chose A. Using a 2-tailed test and
a 5% confidence level, we cannot reject the null hypothesis that the number of choices of A follows
a binomial (143, 0.5) distribution.

7More generally, the larger q, the lower is the largest n for which following the minority is optimal
(Callander and Hörner, 2009).
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Table 3.1. Experimental Design Parameters and Subjects’ Earnings.

Treatment Prob Informed (q) # Subjects (n) # Sessions Earnings

Sequence 0.1 12-13 5 $31.3

Sequence 0.2 7 5 $29.8

No-sequence 0.1 11-13 5 $27.1
No-sequence 0.2 7 5 $26.5

they had picked the correct option (and 0 otherwise). At the end of the experiment,

subjects were paid their cumulative earnings plus a $5 show-up fee in cash. Average

earnings for the different treatments are shown in the rightmost column of table 3.1.

Sessions with 13 subjects usually took about 1 hour while sessions with only seven

subjects typically lasted about 35 minutes.

3.4 Results

We first discuss the extent to which subject behavior conforms to theoretical predic-

tions. We pool the data from the q = 0.1 and q = 0.2 sessions since there were no

significant differences between them.

3.4.1 Subject Behavior

Not surprisingly, informed subjects in the experiment always follow their signals,

and, hence, always select the correct option. In contrast, uninformed subjects do

not always choose according to their optimal strategy under common knowledge of

rationality. We differentiate among the following situations:

(S1) all predecessors chose the same option.

(S2) 1 predecessor deviated from his unanimous predecessors in treatment sequence.8

(S3) some option is chosen by a minority of predecessors in treatment no-sequence.

8We are not considering situations in which 2 or more agents deviated from their immediate
predecessor. In these situations, the assumption of common knowledge of rationality is clearly
violated.
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Figure 3.3. Subject Behavior in Treatment Sequence.

As explained above, rational agents would follow unanimous predecessors in both

treatments, a deviator in treatment sequence, and the minority in treatment no-

sequence. Figure 3.3 summarizes the behavior of uninformed subjects in treatment

sequence. For each of the ten sessions we compute the fraction of situations in which

subjects follow their optimal strategy under common knowledge of rationality. The

box plot summarizes these ten independent data points.9

The leftmost box in Figure 3.3 summarizes behavior in treatment sequence when

all predecessors chose the same option. The median frequency with which uninformed

subjects follow their unanimous predecessors (across ten sessions) is 0.89. In other

words, 89% of the time, subject behavior coincides with the optimal strategy (under

common knowledge of rationality) for this specific situation. The middle box concerns

situations in which 1 predecessor deviated from his unanimous predecessors. The

median frequency with which uninformed subjects follow such a deviator is 74%. The

rightmost box summarizes the difference between the frequency with which subjects

follow unanimous predecessors and the frequency with which they follow a deviator.

9The boundaries of the box correspond to the first and third quartile, the line within the box
marks the median. Observations that are more than 1.5 times the interquartile range higher (lower)
than the third (first) quartile are considered to be outliers and shown separately. The whiskers show
the position of the lowest (highest) observation that is not an outlier.
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Figure 3.4. Subject Behavior in Treatment No-Sequence.

In each one of ten sessions, this difference is positive. Treating each session as an

independent observation, this difference is therefore significant using any conventional

test. Subjects in our experiments are more likely to follow unanimous predecessors

than to follow a deviator in treatment sequence.

Figure 3.4 summarizes the behavior of uninformed subjects in treatment no-

sequence. As in Figure 3.3, the leftmost box summarizes behavior when subjects

face unanimous predecessors. Not surprisingly, the results are very similar to those

reported for treatment sequence (since there is no reason why subjects should behave

differently in the 2 treatments when all predecessors chose the same option). The

median frequency with which subjects follow unanimous predecessors is now 86%.

The middle box concerns situations in which there is a minority choice among prede-

cessors. Obviously, behavior deviates very strongly from the optimal strategy under

common knowledge of rationality: subjects only follow the minority about 29% of the

time (median over all ten sessions). In fact, in all but one session, subjects follow the

majority more frequently than the minority. Finally, for each of the ten sessions of

treatment no-sequence, we compute the difference between the frequency with which

subjects follow unanimous predecessors and the frequency with which they follow the

minority. The results are captured by the rightmost box in Figure 3.4. Subjects
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Figure 3.5. Frequency with Which Unanimous Predecessors Are Followed as a Func-
tion of the Number of Unanimous Predecessors.

in our experiments are clearly more likely to follow unanimous predecessors than to

follow the minority.

Summing up our findings for the 3 situations:

(S1) While subjects do not always follow their unanimous predecessors, they do so

more than 50% of the time in all 20 sessions.10 Furthermore, the tendency of

subjects to follow their unanimous predecessors becomes stronger as the number

of unanimous predecessors grows. Figure 3.5 shows the frequency with which

unanimous predecessors are followed when the number of predecessors varies

from 1 to 12. The size of each circle reflects the number of occurrences. A

simple Probit regression in which the dependent variable is the choice to follow

unanimous predecessors, Pfollow, and the independent variable is the number of

predecessors, n, results in significant estimates: Pfollow = Φ(β0 + β1 · n) yields

β0 = 0.7(0.1) and β1 = 0.12(0.04), where the numbers in parentheses denote

the robust standard errors (clustered by subject).

(S2) In nine out of ten sessions, subjects follow a deviator in treatment sequence

10We can easily reject the null hypothesis that subjects follow their unanimous predecessors in
50% of all instances using a Wilcoxon signed-rank test (p < 0.001).
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Minority, Creates a Tie, or Is in the Majority.

more than 50% of the time.11 Furthermore, the tendency to follow a deviator

is stronger if the choice of the deviator coincides with the majority choice.

Figure 3.6 shows the frequency with which a deviator is followed when the

deviator’s choice is in the minority (left circle), when there is a tie (middle

circle), and when the deviator’s choice is in the majority (right circle). The size

of each circle reflects the number of occurrences. To verify whether the observed

differences are statistically significant, we estimate a simple Probit model in

which the chance of following a deviator, Pfollow, is explained by whether there is

minority, tie, or majority: Pfollow = Φ(βmin + βtie + βmaj) yields βmin = 0.20(0.23),

βtie = 0.34(0.31), and βmaj = 0.65(0.29), where the numbers in parentheses

denote the robust standard errors (clustered by subject). The difference between

βmaj and βmin is significant at the 5% level.

(S3) In all but one session of treatment no-sequence, subjects follow the majority

more frequently than the minority.12 Furthermore, subjects are increasingly less

inclined to follow the minority the smaller the minority relative to the majority.

11The null that subjects follow a deviator half of the time in treatment sequence can be rejected
using a Wilcoxon signed-rank test (p = 0.004).

12The null that subjects are equally likely to follow the minority or the majority in treatment
no-sequence is rejected using a Wilcoxon signed-rank test (p = 0.004).
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Figure 3.7 shows the frequency with which subjects follow the minority as a

function of the difference between the size of the majority and the size of the

minority. The size of each circle reflects the number of occurrences. A Probit

analysis in which the chance of following the minority, Pfollow, is explained by

the difference between the size of the majority and the size of the minority, ∆n,

results in significant estimates: Pfollow = Φ(β0 +β1 ·∆n) yields β0 = −0.26(0.14)

and β1 = −0.098(0.039), where the numbers in parentheses denote the robust

standard errors (clustered by subject).

The observed choice frequencies across the 3 situations can be ranked as follows:13

P(follow unanimous predecessors) > P(follow deviator) >
1

2
> P(follow minority).

(3.3)

In other words, subjects are more likely to follow unanimous predecessors than a

deviator , are more likely to follow unanimous predecessors than the minority, and

are more likely to follow deviators than the minority. It is interesting to compare the

13Using a Wilcoxon matched-pairs signed-rank test, we can reject the null that subjects follow
unanimous predecessors equally frequently as a deviator in treatment sequence (p = 0.002). Likewise,
we can reject the null that subjects are equally likely to follow unanimous predecessors as the minority
in treatment no-sequence (p = 0.002) and the null that subjects follow deviators equally frequently
as the minority (p < 0.001 using a Wilcoxon rank-sum test).



42

ranking of choice frequencies with that of the associated average payoff differences,

computed using the actual draws and choices in the experiment:

∆π(unanimous predecessors) > ∆π(deviator) > 0 > ∆π(minority),

where ∆π measures the average payoff difference between following and not following

for each one of the 3 situations. To summarize, given the observed play of others, not

following a deviator is a costly mistake ($1.23), but it is less of a mistake than not

following unanimous predecessors ($1.53). Furthermore, not following the minority

is not a mistake, i.e. in the no-sequence sessions, following the majority yields higher

earnings ($0.36).

3.4.2 Efficiency

For the specific draws used in the experiment, the theoretically expected fraction of

correct choices is 78% in treatment sequence and 72% in treatment no-sequence.14

Actual efficiency was 69% in treatment sequence and 62% in treatment no-sequence.

Finally, the predicted fraction of correct choices when uninformed agents choose ran-

domly and informed agents choose correctly is 58%.

Treating each session as an independent observation (n = 10), we test the null hy-

pothesis that the distribution of the fraction of correct choices is identical under both

treatments. A Wilcoxon matched-pairs signed-rank test allows us to reject the null

hypothesis (p = 0.039). Therefore, efficiency in treatment sequence is significantly

higher than in treatment no-sequence. We also test whether observed efficiency is

significantly higher than when uninformed subjects choose randomly and informed

subjects choose correctly. Using the same test, we can reject the null for treatment

sequence (p = 0.006) but not for treatment no-sequence (p = 0.432). This result sug-

gests that information about predecessors’ choices improves efficiency only when the

entire sequence of decisions is known – subjects are not able to improve their decisions

14We computed the fraction of correct choices separately for each session and then took the average
across sessions.
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significantly when observing only the number of prior choices for each option.

3.5 Explaining Subject Behavior

In this section, we analyze the observed deviations through the lens of alternative

models of bounded rationality, including logit-QRE as well as 2 models in which

agents exhibit different levels of strategic thinking (level-k and cognitive hierarchy).

We find that models that combine heterogeneity in strategic thinking with error-prone

behavior (e.g., a noisy introspection model, Goeree and Holt, 2004) fit our data best.

3.5.1 Logit-QRE

Consider again the example discussed in Section 3.2, where 2 predecessors chose

option A and 1 predecessor chose option B. Whether the minority or majority is

more likely to be correct depends on whether the sequence {uninformed, uninformed,

informed}, for which the minority is correct, is more likely to occur than the sequence

{uninformed, informed, informed}, for which the majority is correct. For q < 0.5,

subjects should follow the minority under common knowledge of rationality. If sub-

jects tremble, however, then the minority is not necessarily correct even for sequence

{uninformed, uninformed, informed} since the second uninformed subject may not

have followed the first one (such a tremble is not unlikely since the associated payoff

loss is small); following the majority may be better as a result.

The above intuition can be formalized using a logit-QRE model in which subjects’

choice probabilities are positively but not perfectly related to expected payoffs, i.e.

subjects are “better responders” not necessarily “best responders.” For subject t, let

Ht denote the profile of predecessors’ choices and st the subject’s signal. Then the

probability that subject t chooses ct is

P (ct|Ht, st) =
1

1 + exp(λπ(1− 2P (ω = ct|Ht, st))
, (3.4)

where λ is a “rationality” parameter that determines how sensitive choice probabilities
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Figure 3.8. Uninformed Subjects’ Behavior as a Function of λ in a Logit QRE Model
for Situations that Occurred in the Experiment.

are with respect to expected payoffs and π = $4 is the payoff of picking the correct

option. Note that, since λπ > 0, agents more often choose the option that is more

likely to be correct.

The curves in Figure 3.8 show the predicted probability of following unanimous

predecessors, a deviator, or the minority respectively for different values of λ (to gen-

erate this figure we averaged predicted logit choice probabilities over all occurrences

of the particular situation in the experiment). For low levels of λ, logit-QRE pre-

dicts that uninformed subjects are more likely to follow the majority than to follow

the minority. The predicted probability of following a deviator is higher than 0.5

for all λ, and the same is true for the predicted probability of following unanimous

predecessors.

Using maximum-likelihood techniques (treating each decision as an independent

observation) we estimate λ = 1.4 (0.1) for treatment no-sequence, λ = 1.3 (0.1)

for treatment sequence, and λ = 1.3 (0.1) for the pooled data, where the number

in parentheses denotes the robust standard error (clustered by subject). The esti-
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mates are listed in the topmost panel of table 3.2 below (second column labeled “λ”),

together with the associated likelihood (third column labeled “LogLobs”), the likeli-

hood that results if all uninformed subjects chose randomly (fourth column labeled

“LogLrandom”), and the best-possible likelihood (fifth column labeled “LogLbest”) that

results by using the observed fraction for either option as the predicted fraction (sep-

arate for each different situation that occurred in the experiment).15 The rightmost

column in table 3.2 labeled “% Explained” provides a “goodness-of-fit” defined as

follows:

% Explained =
LogLobs − LogLrandom

LogLbest − LogLrandom

× 100%.

The circles in Figure 3.8 show the average frequency with which subjects in the

experiment follow unanimous predecessors, a deviator, or the minority respectively.

The data averages are shown at the pooled estimate λ = 1.3 to facilitate comparison

with logit predictions. Obviously, Logit-QRE can explain the qualitative patterns of

our data as summarized in (3.3) extremely well.

3.5.2 Subject Heterogeneity

The homogeneous logit-QRE model assumes that agents are ex ante symmetric, i.e.

they are equally likely to make mistakes. To test whether this is a reasonable assump-

tion, we compute the fraction of rational choices for each subject by treatment.16 If

all subjects were equally rational, this fraction would not vary much across subjects.

Figure 3.9 illustrates the distribution of rational choices separately for treatments

sequence (left) and no-sequence (right). Clearly, there is substantial subject het-

15We treat 2 situations as different if and only if at least one of the models we estimate makes
a different prediction for the 2 situations. More specifically, (1) we distinguish between informed
and uninformed agents, but all situations informed agents encounter are considered equivalent, (2)
the situation where n (m) predecessors have chosen A (B) is considered equivalent to the situation
where m (n) predecessors have chosen A (B), and (3) situations with an equal number of choices
for both options are equivalent.

16We only count choices made by uninformed subjects. Moreover, only situations in which there
is a rational and an irrational choice are considered. Hence, we drop choices made by first agents
in the sequence. We also drop choices made by agents who face the same number of predecessors’
choices for both options. In treatment sequence, we drop (“off-the-equilibrium-path”) choices made
after 2 or more predecessors deviated from their immediate predecessor’s choice.
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Figure 3.9. Fraction of Rational Choices in Sequence (left) and No-Sequence (right).

erogeneity. While the standard deviation of the fraction of rational choices is very

similar in both treatments (0.20 in sequence and 0.21 in no-sequence), the shape of

the distribution is quite different. In treatment sequence, a fairly high proportion of

subjects make choices that are always consistent with their optimal strategy (under

common knowledge of rationality), but this is not the case in treatment no-sequence.

3.5.3 Level-k and Cognitive Hierarchy

To account for the observed heterogeneity, we next consider a “level-k model” (e.g.,

Crawford and Iriberri, 2007a, 2007b) that allows for different levels of strategic think-

ing. We first describe how different types are defined in this model and then discuss

the model’s predictions and the estimation of the type distribution.

In the level-k model, type k best responds believing others are of type k − 1.

We assume that type 0 chooses randomly when uninformed and follows her signal

when informed.17 In treatment sequence, an uninformed type 1 then follows the

majority of predecessors, if all others are of type 0, the majority is more likely to

be correct since type 0 picks the correct option when informed. Uninformed type

2 follows unanimous predecessors, but since type 1 deviates from the majority only

17Under the assumption that type 0 chooses randomly even when informed, type 1 would choose
randomly when uninformed but would follow his signal when informed. Therefore, type 1 would
correspond to type 0 under our assumptions. The only change to the model would be an introduction
of an additional type that can only rarely be distinguished from type 1 (since informed agents are
rare). Moreover, informed agents in our experiments always follow their signal.
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when informed, uninformed type 2 follows such deviations. Note that it is possible

that type 2 observes a sequence that is inconsistent with her beliefs18 in which case

type 2 is assumed to randomly pick an option when uninformed and to follow her

signal when informed. Uninformed type 3 behaves the same as type 2 except that

there are more situations in which type 3’s beliefs are contradicted, and, hence, type

3 randomizes more often.19 All higher types (4 and above) are identical to type 3.

In treatment no-sequence, uninformed type 1 follows the majority of predecessors.

Uninformed type 2 follows unanimous predecessors, and since type 1 only deviates

from the majority when informed, uninformed type 2 follows the minority when pre-

decessors are not unanimous. Callander and Hörner (2009) show that it is optimal to

follow the minority when all others do, so uninformed types 3 and higher are identical

to type 2. In treatment no-sequence, there are no situations in which beliefs about

lower-types’ behavior are contradicted.

To facilitate comparison with the one-parameter logit-QRE model, we assume

that types follow a Poisson distribution with parameter τ , which we truncate at the

highest type that can be distinguished (2 in treatment no-sequence and 3 in treatment

sequence).20 Figure 3.10 summarizes the predictions of the level-k model for the 3

situations of interest for different levels of τ . For low τ , the level-k model is able to

reproduce the main features of our data as summarized in (3.3) although the fit is

not as good as that of logit-QRE (cf. Figure 3.8).

We estimate τ separately for treatment sequence and treatment no-sequence by

maximizing

L(τ) =
n∏
t=1

m∑
k=0

e−τ τk

k!∑m
v=1

e−τ τv

v!

Prob(ct | type = k), (3.5)

where n is the number of subjects, m the number of different types (2 in treatment

18For instance, if the majority choice switches from A to B after a deviation, then a next deviation
(back to A) would violate the assumption that all other agents are of type 1.

19Observing 2 or more deviations from the immediate predecessors’ choice violates the assumption
that all agents are of type 2, but if these deviations occur in favor of the majority’s choice then they
are compatible with the assumption that all other agents are of type 1. Therefore, the set of
situations that violate the assumptions made by type 2 is a strict subset of the set of situations that
violate the assumptions made by type 3.

20We also estimated the type distribution nonparametrically, see footnote 22.
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no-sequence and 3 in treatment sequence), and ct the ten choices made by subject t,

i.e. we assume that a subject’s type is the same for all ten periods.

The estimation results for the level-k model are shown in the second panel of ta-

ble 3.2, and the third panel provides results for the closely related poisson cognitive

hierarchy model (Camerer et al. 2004).21 Vuong tests for overlapping models confirm

that logit QRE fits all datasets (sequence, no-sequence and the pooled data) signif-

icantly better than either level-k or cognitive hierarchy while the difference between

level-k and cognitive hierarchy is not significant. 22

The worse fit could have been expected from Figure 3.10, which shows that ob-

served choice frequencies for the 3 situations of interest (represented by the circles)

cannot be matched. More importantly, because of the best-response assumption un-

derlying level-k, it cannot reproduce the intuitive data patterns of Figures 3.5–3.7.

For example, in level-k, types 1 and 2 follow unanimous predecessors and they do so

irrespective of whether the number of predecessors is 1 or 12. Clearly, this prediction

is refuted by the data, see Figure 3.5 (and a similar argument applies to Figures 3.6

and 3.7).

The data patterns of Figures 3.5–3.7 are consistent with models in which choice

probabilities vary continuously with expected payoff differences, i.e. when best re-

sponses are replaced by (logit) better responses. Introducing trembles has the addi-

21Cognitive hierarchy differs from level-k only in that type k is aware of the entire distribution of
types lower than k, while agents in the level-k model assume all other agents are of type k−1. Choice
probabilities in cognitive hierarchy do not vary continuously with τ since a change in τ not only
alters the type distribution but it can also shift the best response (since expected payoff calculations
depend on the type-distribution). The likelihood function for the cognitive hierarchy model is not
differentiable, and we introduce very small logit trembles (using λ = 20) to facilitate estimation. As
for the level-k model, we assume type 0 picks randomly when uninformed and chooses the correct
option when informed.

22 Logit-QRE, level-k and cognitive hierarchy all predict completely random behavior for some
parameter values. Therefore, these models are overlapping in the sense of Vuong (1989). To run these
tests, we assume each subject produces 1 independent observation. This assumption is consistent
with the requirement that all subjects are of the same type in each one of the ten periods as well
as with computing standard errors clustered by subject. Note also that level-k still fits worse than
logit-QRE when we estimate the type distribution nonparametrically. In treatment sequence, the
estimated fractions of types (0, 1, 2, 3) are (0.68, 0.17, 0.09, 0.05) and the associated loglikelihood is
−512. In treatment no-sequence, the estimated fractions of types (0, 1, 2) are (0.70, 0.26, 0.04) and
the associated loglikelihood is −504. In other words, allowing for an arbitrary type distribution
hardly improves the fit compared to the assumed Poisson distribution of types.
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Figure 3.10. Uninformed Subjects’ Behavior as a Function of τ in a Level-k Model
for Situations that Occurred in the Experiment.

tional benefit that the type distribution can be determined more robustly. Compared

to previous experiments, we find a high fraction of type 0: Using our estimate for τ ,

we obtain an expected fraction of type 0 of 70% in treatment no-sequence and 63%

in treatment sequence. 23 The reason is that a subject is classified as type 0 even

if her behavior is incompatible with type 1 or 2 in only 1 single period. The model

presented in the next section avoids this problem.

3.5.4 Noisy Introspection

The noisy introspection model proposed by Goeree and Holt (2004) combines subject

heterogeneity and error-prone behavior by assuming that (i) subjects differ in levels

23Instead of estimating the distribution of types, one can also simply classify the observed sample.
A subject is then assigned the type that produces the highest likelihood of observing that subjects’
decisions. The aim of such a classification is not to make claims about the distribution of types in
the general population but simply describes our sample. Using the types as defined by the level-k
model, we classify 43 out of 99 subjects as type 0, 17 as type 1, 12 as type 2 and 11 as type 3 while
16 subjects cannot be conclusively classified in treatment sequence. In treatment no-sequence, 65
out of 98 subjects are classified as type 0, 26 as type 1 and 7 as type 2.
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of strategic thinking and (ii) subjects realize others are “better responders” and not

necessarily “best responders.” Let φλ(·) denote the logit response function, see (3.4),

then type k’s choice probabilities can be recursively defined as Pk = φλ◦Pk−1, i.e. type

k better responds believing that observed choices are generated by better responders

of type k − 1. Equivalently:24

Pk = φλ ◦ · · · ◦ φλ︸ ︷︷ ︸
k times

◦φ0. (3.6)

So type k better responds to type k − 1, who better responds to type k − 2, . . ., and

type 1 better responds to type 0 who chooses randomly (since φ0 results in uniform

choice probabilities). The noisy introspection model in (3.6) reduces to the level-k

model of the previous section when λ = ∞, i.e. when logit better responses are

replaced by standard best responses.

For finite levels of λ, predicted behavior is different for all types (unlike in the

model without trembles). To keep the model parsimonious and comparable to level-k,

we again assume that the types follow a Poisson distribution. The estimated parame-

ter values for τ and λ are shown in fifth panel of table 3.2. They are highly significant,

and are higher than for the corresponding estimates in models that contain either λ

or τ . Hence, compared to the level-k model, the introduction of trembles leads to a

right-shift of the type distribution because subjects whose choices are almost always

compatible with a type higher than 0 are now classified as such. Likewise, intro-

ducing types into logit-QRE increases the estimated rationality parameter because

some of the randomness in observed choices is accounted for by the presence of type

0. Note that noisy introspection provides a significant improvement in fit relative to

logit-QRE and a dramatic improvement relative to level-k and cognitive hierarchy. 25

24Goeree and Holt (2004) define choice probabilities for the noisy introspection model by consid-
ering an infinite sequence of logit responses: P = limn→∞ φλn

◦ · · · ◦ φ1 ◦ φ0, where λ1 ≤ · · · ≤ λn.
Note that this is equivalent to (3.6) when λn = · · · = λn−k+1 = λ and λn−k = · · · = λ1 = 0.

25Since level-k and noisy introspection are nested models, we can run a likelihood ratio test to
determine whether the difference in goodness of fit is significant. That is indeed the case for all
datasets (sequence, no-sequence and the pooled data). To compare noisy introspection to logit-QRE
and cognitive hierarchy, we run Vuong tests for overlapping models, treating each subject as an
independent observation. Noisy introspection fits significantly better on all datasets. Just like for
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Table 3.2. Overview of Different Models, Robust Standard Errors are in Parenthe-
ses.

   LogLobs LogLrandom LogLbest % Explained 

QRE 

     Sequence  1.3 (0.1) -417 -686 -364 83.5% 

     No-sequence  1.4 (0.1) -438 -679 -407 88.6% 

     Pooled  1.3 (0.1) -856 -1366 -771 85.7% 

Level-k 

     Sequence 0.5 (0.1)  -516 -686 -364 52.8% 

     No-sequence 0.4 (0.1)  -504  -679 -407 64.3% 

     Pooled 0.4 (0.1)  -1021 -1366 -771 58.0% 

Cognitive Hierarchy 

     Sequence 1.2 (0.1)  -489 -686 -364 61.2% 

     No-sequence 0.5 (0.1)  -504 -679 -407 64.3% 

     Pooled 1.0 (0.1)  -1003 -1366 -771 61.0% 

Noisy Level-k 

     Sequence 1.9 (0.3) 2.0 (0.2) -402 -686 -364 88.2% 

     No-sequence 1.0 (0.1) 1.6 (0.2) -457 -679 -407 81.6% 

     Pooled 1.3 (0.1) 1.7 (0.1) -869 -1366 -771 83.5% 

Noisy Introspection 

     Sequence 2.3 (0.3) 1.8 (0.2) -385 -686 -364 93.5% 

     No-sequence 2.1 (0.4) 1.7 (0.1) -429 -679 -407 91.9% 

     Pooled 2.2 (0.3) 1.8 (0.1) -815 -1366 -771 92.6% 

Noisy Cognitive Hierarchy 

     Sequence 2.2 (0.2) 2.0 (0.2) -383 -686 -364 94.1% 

     No-sequence 1.6 (0.2) 1.9 (0.2) -430 -679 -407 91.5% 

     Pooled 1.9 (0.2) 2.0 (0.1) -815 -1366 -771 92.6% 

Cognitive Hierarchy (Noisy Introspection Trembles) 

     Sequence 2.5 (0.3) 2.3 (0.3) -382 -686 -364 94.4% 

     No-sequence 2.5 (0.4) 1.9 (0.3) -430 -679 -407 91.5% 

     Pooled 2.5 (0.2) 2.1 (0.2) -813 -1366 -771 92.9% 
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We also estimate a cognitive hierarchy model in which agents “better respond”

to their assumptions about the distribution of types. Like in the noisy introspection

model, subjects are aware of the fact that others tremble. Not surprisingly, this

combination of cognitive hierarchy and logit-QRE also yields a very good fit (see the

last panel in table 3.2). A Vuong test for overlapping models does not allow us to

reject the null that the cognitive hierarchy model with noisy introspection trembles

fits equally well as the noisy introspection model on any of the datasets.

Previous papers that have allowed for trembles within the level-k framework typ-

ically have assumed that subjects are unaware that others tremble (i.e. only the

econometrician assumes trembles). In other words, subjects compute their expected

payoffs under the assumption that others are best responders (even though they are

better responders themselves). To gauge the importance of the “common-knowledge-

of-trembles” assumption, we also estimate a noisy level-k model that follows by re-

placing others’ logit responses by best responses:

P̃k = φλ ◦ φ∞ ◦ · · · ◦ φ∞︸ ︷︷ ︸
k − 1 times

◦φ0 (3.7)

Note that in this model, there can be situations in which beliefs are inconsistent with

observed play. Also, there are now 4 (instead of 3) distinct types in treatment se-

quence26 (the number of distinct types does not change for treatment no-sequence).

The estimation results in panel 4 of table 3.2 demonstrate that this model fits much

better than level-k and cognitive hierarchy. Likelihood ratio tests (for level-k) respec-

the standard level-k model, we can also assign a type to each subject in the framework of a noisy
introspection model. Instead of estimating the type distribution, we simply classify each subject as
the type that yields the highest likelihood and only estimate the rationality parameter λ. When
doing so, 11 out of 99 subjects are classified as type 0, 41 as type 1, 37 as type 2, 8 as type 3 and
1 as type 4 for treatment sequence. In treatment no-sequence, 18 out 98 subjects are classified as
type 0, 42 as type 1, 17 as type 2, 7 as type 3, 9 as type 4 and 5 as type 5.

26Like type 2, type 3 follows the minority. While type 2 assumes that everybody else follows the
majority, type 3 assumes all other agents follow the minority. Therefore, type 2 and type 3 arrive at
different expected probabilities that option A is correct and as a consequence also exhibit different
trembles. Like type 3, type 4 assumes that everybody follows the minority. Since agents in the
simple noisy level-k model are unaware of the fact that other agents tremble, type 4 is identical to
type 3.
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tively Vuong tests (for cognitive hierarchy) yield significant differences on all datasets.

However, Vuong tests for overlapping models allow us to safely reject the null of equal

fit in favor of superior fit by noisy introspection as well as by the cognitive hierarchy

model with noisy introspection trembles. 27

Similarly, we also estimate a noisy version of the cognitive hierarchy model and

summarize the results in panel 6 of table 3.2. While logistic trembles under the

“common-knowledge-of-trembles” assumption generate a substantially better fit than

mere logistic responses in the framework of a level-k model, both types of trembles

yield a comparable and excellent fit when combined with cognitive hierarchy (in fact,

a Vuong test for overlapping models does not allow us to reject the null of equal fit

by the cognitive hierarchy models with different types of trembles). Since agents in

the cognitive hierarchy model are aware of the entire distribution of lower types, they

understand that others can make mistakes (they can be type 0), even in a model

without trembles. As a result, the assumption that agents are aware that others

tremble seems to be less crucial in a cognitive hierarchy framework compared to the

level-k model.

3.6 Conclusion

The “wisdom of the crowds” typically refers to the observation that a group may

produce better decisions than any of its members could have. The common explana-

tion is that groups aggregate diverse opinions and preferences, yielding more accurate

information or more widely acceptable policies and rules (e.g., Surowiecki, 2004). The

wisdom of the crowds is a central outcome of most social-learning models in which

imperfectly informed agents infer valuable information from predecessors’ choices. In

the canonical social learning model developed by Bikhchandani et al. (1992), for in-

stance, herding occurs frequently and almost immediately after a few decisions have

27Classifying subjects in the framework of the noisy level-k model for treatment sequence results
in 19 out of 99 subjects being assigned type 0, 38 type 1, 12 type 2 and 16 type 3 while the type of
14 subjects remains unidentified. For treatment no-sequence, 24 out of 98 subjects are classified as
type 0, 59 as type 1, 4 as type 2 and 11 as type 3.
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been observed.

In a clever and novel contribution, Callander and Hörner (2009) discuss settings

where the minority is predicted to be correct. Necessary conditions for this predic-

tion to hold are that agents are differentially informed and only observe the number

of times each option is chosen (and not the exact sequence of prior choices as in

Bikhchandani et al., 1992). In this paper, we test the Callander–Hörner model in a

controlled laboratory setting. We employ a simplified version of their model where

each agent is either perfectly informed (with small probability) or not informed at

all (with complementary high probability). We report data from 2 treatments: in

treatment “sequence,” subjects could observe the entire sequence of predecessors’

choices, while in treatment “no-sequence” they could see only how many times either

option had been chosen. For our setup, the predictions are that subjects follow their

immediate predecessors in treatment sequence and follow the minority in treatment

no-sequence.

In a nutshell, the data may be characterized as follows: subjects tend to over-

whelmingly follow unanimous predecessors in both treatments (87%), they more fre-

quently than not follow a deviator in treatment sequence (72%), and they do not

follow the minority in treatment sequence (28%). The observed deviations from the-

oretical predictions are approximate best responses to the empirical distribution of

play. Given the choices of others, and given the draws used in the experiment, not

following unanimous predecessors is very costly ($1.53 on average), not following a

deviator in treatment sequence is less costly ($1.23 on average), and not following the

minority pays ($0.36 on average).

We analyze the deviations observed in our data using alternative models of bounded

rationality. In the logit Quantal Response Equilibrium (QRE), for instance, agents

are predicted to tremble, which can overturn the logic for why the minority is correct.

Intuitively, if the probability of being informed is very low then a “deviant minority”

is more likely the result of a tremble that should rationally be ignored. When applying

the logit-QRE to our data we find that it is able to reproduce the main (aggregate)

features. Zooming in on individual level data, however, reveals a substantial amount
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of heterogeneity that cannot be explained by the symmetric logit-QRE.

Heterogeneity in levels of strategic thinking is more naturally explained by the

cognitive hierarchy model (Camerer et al. 2004) or the closely related level-k model

(e.g., Crawford and Iriberri 2007b). The level-k model, for example, assumes that

agents of type k best respond to their beliefs that others are of type k− 1. We apply

both models to our data and find they are also able to reproduce the main aggregate

features, although not as well as logit-QRE. Furthermore, their fit of the individual

data is substantially worse. The main reason for these shortcomings is the underlying

best-response assumption, which conflicts with several intuitive comparative stat-

ics observed in our data (e.g., subjects tend to follow unanimous predecessors more

frequently when the group of predecessors is large). In addition, the best-response

assumption skews the estimated type distribution towards lower types.

The noisy introspection model proposed by Goeree and Holt (2004) combines

heterogeneity in strategic thinking with noisy behavior by replacing level-k’s best

response with a logit “better response.” Importantly, agents in the noisy introspection

model know that others tremble. For example, when computing the probability that

the minority choice is correct in treatment no-sequence, agents take into account the

possibility that the minority arose because of trembles. As a result, the model can

predict why subsequent choices favor the majority even for agents with high levels

of strategic thinking. We illustrate the importance of the “common-knowledge-of-

trembling” assumption by also estimating a noisy version of the level-k model in

which agents tremble but assume others do not (as is typically done in the literature)

and show that it fits significantly worse.

A combination of the cognitive hierarchy model with either simple logistic trembles

or introspective trembles also yields a very good fit. Like the noisy introspection

model, these version of cognitive hierarchy allow for heterogeneity in subject behavior

as well as trembles. Realizing that others can be error prone, sophisticated agents in

these models benefit from following the wisdom of the crowds.
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Chapter 4

An Experimental Test of Flexible
Spectrum Auction Formats

This chapter reproduces a paper written jointly with Jacob K. Goeree, Charles A.

Holt, and John O. Ledyard.

4.1 Introduction

Simultaneous auctions for multiple items are often used when the values of the items

are interrelated. An example of such a situation is the sale of spectrum rights by

the Federal Communications Commission (FCC). If a telecommunications company

is already operating in a certain area, the cost of operating in adjacent areas tends to

be lower. In addition, consumers may value larger networks that reduce the cost and

inconvenience of “roaming.” As a consequence, the value of a collection of spectrum

licenses for adjacent areas can be higher than the sum of the values for separate li-

censes.1 Value complementarities arise naturally in many other contexts, e.g., aircraft

takeoff and landing slots, pollution emissions allowances for consecutive years, and

coordinated advertising time slots. This paper reports a series of laboratory experi-

ments to evaluate alternative methods of running multi-unit auctions, in both high-

and low-complementarities environments.

1There can also be important synergies in the spectrum frequency dimension, where adjacent
bands may improve capacity and reduce interference. For instance, in the FCC auction for air-to-
ground communications frequencies in May 2006, a package of 3 bandwidth units sold for about 4.5
times as much as a single unit, and similar synergies were implied by unsuccessful bids.
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Various auction formats have been suggested for selling multiple items with inter-

related values. The most widely discussed format is the simultaneous multiple round

(SMR) auction, first used by the FCC in 1994. In the SMR auction, bidders are

only allowed to bid on single licenses in a series of “rounds,” and the auction stops

when no new bids are submitted on any license. To win a valuable package of licenses

in this type of auction, bidders with value complementarities may have to bid more

for some licenses than they are worth individually, which may result in losses when

only a subset is won. Avoidance of this “exposure problem” may lead to conservative

bidding, lower revenue, and inefficient allocations.2

The obvious solution to the exposure problem is to allow bidding for packages of

items. In such combinatorial auctions, bidders can make sure they either win the

entire package or nothing at all. As a result, bids can reflect value complementarities,

which should raise efficiency and seller revenue. Combinatorial bidding, however,

may introduce new problems. Consider a situation in which a large bidder submits

a package bid for several licenses. If other bidders are interested in buying different

subsets of licenses contained in the package, they might find it hard to coordinate

their actions, even if the sum of their values is higher than the value of the package

to the large bidder (the threshold problem). Thus, there is no clear presumption

that package bidding will improve auction performance. The FCC has increasingly

relied on laboratory experiments to evaluate the performance of alternative spectrum

auctions (see also Goeree and Holt 2008). The next section summarizes the main

features of the auction formats to be considered.

4.2 Alternative Auction Formats

The various combinatorial auctions to be considered are best understood in terms of

how they differ from the incumbent standard, the FCC’s simultaneous multi-round

2In the recent AWS auction (FCC auction 66), for example, the total cost of acquiring 20 MHz
of nationwide coverage was $2.268 billion for all 734 individual licenses in the “A-block” while the
total cost was $4.174 billion for the 12 larger regions in the “F-block.” Presumably there was a
larger exposure problem in the A-block because it consisted of a larger number of small licenses.
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auction procedure. Therefore, we will begin by explaining how the SMR auction was

implemented in the experiments. Each auction consists of multiple rounds in which

bidders have a fixed amount of time to submit their bids. Once the round ends, the

highest bid on each license is announced as a provisional winner. Once no more bids

are submitted, the auction stops and the provisionally winning bids become the final

winning bids.

There are 2 constraints on bidding. The first constraint is the FCC “activity

limit” that determines the maximum number of different licenses for which a bidder

can submit bids. Each bidder is assigned a prespecified activity limit at the beginning

of the auction. A bidder’s activity limit falls if the number of submitted bids (plus the

number of provisionally winning bids in the previous round) is less than the bidder’s

activity limit in the previous round. Activity is transferable, so a bidder with a limit

of 3 could bid on licenses A, B, and C in 1 round and on licenses E, F, and G in

the next round, for example. The second restriction is that each bid must exceed the

previous high bid for that license by a specified bid increment. This requirement is a

minimum, and new bids can exceed the “provisionally winning” bid by up to eight bid

increments. The only exception to the increment rule is that the provisionally winning

bidder is not required to raise that bid. Bidders can observe others’ previous bids

and can see which of those were provisionally winning.3 The effect of activity limits

and bid increments is to force bids upward, although there are limited opportunities

for withdrawing bids.4 The auction stops after a round in which no new bids are

submitted and no withdrawals occur.

This multi-round procedure can be adapted to allow for bids on both individ-

ual licenses and packages, and this approach has been shown to improve auction

3In most FCC auctions to date, bidders’ identities are revealed during the auction. More recently,
the FCC has contemplated revealing bid amounts but not bidder identities (anonymous or “blind”
bidding).

4As a partial remedy to the exposure problem, the FCC allows bidders to withdraw their pro-
visionally winning bids in at most 2 rounds, at a penalty that equals the difference between their
withdrawn bids and the subsequent sale price if that is lower. Porter (1999) reports laboratory data
showing that the introduction of this withdrawal rule increases the efficiency of the final allocation
as well as the seller’s revenue.
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performance in some cases.5 With package bidding, the relevant price of a license

is not necessarily the highest bid on that license; indeed there may not even be a

(non-package) bid on a particular license. One approach is to calculate the revenue-

maximizing allocation of licenses after each round, and to use “shadow” prices that

represent marginal valuations in terms of maximized revenue. Then the price of a

package is the sum of the prices for individual items, and new bids in the subse-

quent round then have to improve on these prices by some minimum increment that

depends on the size of the package. As with SMR, bidders are given the option of

selecting 1 of a series of pre-specified higher increments. This approach, known as

RAD (Resource Allocation Design) pricing, is due to Kwasnica et al. (2005). One

advantage of the RAD approach is that prices may convey information about how

high a bidder must go to “get into the action” on a particular license or package.6

The revenue maximization at the close of each round uses all bids for all completed

rounds. This maximization routine results in provisionally winning bids (on licenses

or packages) and associated RAD prices. As in the SMR auction, a specified bid

increment is added to the RAD price to determine the minimum acceptable bid for

the license in the next round.7 The minimum acceptable bid for a package is simply

the sum of minimum acceptable bids for the licenses it contains. Bidders were al-

lowed to submit multiple bids on licenses and/or packages. The treatment of activity

limits is analogous to SMR, with activity being calculated as the number of different

licenses being bid for or being provisionally won in the previous round (separately or

as part of a package). The auction stops when no new bids are submitted, and the

“provisional winning bids” for that round become the final winning bids (withdrawals

are not needed with this format).

The FCC developed a variant of RAD pricing, called SMRPB. Of the 4 formats

5Rassenti et al. (1982) first used experiments to compare the performance of sealed-bid auctions
with and without package bidding. Ledyard et al. (1997) provide data comparing several iterative
processes. The combinatorial auction produces higher efficiencies in both designs.

6Ideally, the license prices should represent the revenue value of relaxing the constraint that there
is only 1 of each license. The discreteness in license definitions may, however, result in nonexistence
of dual prices, and Kwasnica et al. (2005) propose a method of computing approximate prices.

7In order to prevent cycles, the bid increment is raised after a round in which revenue does not
increase.
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considered, SMRPB is the only auction procedure that employs an “XOR” bidding

rule, which means that each bidder can have at most 1 winning bid. For example, the

XOR rule means that a bidder who is interested in both licenses A and/or B must

bid on A, B, and the package AB, since a bid on AB alone would preclude winning

either license separately while bids on A and B only would preclude winning the

package. Since XOR bidding typically calls for making bids on lots of combinations,

the activity rule used with the FCC’s SMRPB auction is based on the size of the

largest package bid, so a bidder with activity 3 could bid on both ABD and ABC, for

example, but not on ABCD. Another difference with RAD concerns the pricing rule:

in the SMRPB version, prices adjust slower in response to excess demand because

they are “anchored” with respect to prices in the previous round.8

An alternative approach to the pricing problem is to have prices rise automatically

and incrementally in response to excess demand, via a “clock” mechanism (Porter et

al., 2003). In each round of the combinatorial clock (CC) auction, the price of a

combination is the sum of the prices for each component, and bidders can indicate

demands for 1 or more individual items or combinations of items. If more than 1

bidder is bidding for an item in the current round, either separately or as part of

a package, the clock price for that item rises by the bid increment. Otherwise, the

price remains the same. There are no provisional winners, but other aspects of this

auction are analogous, e.g., activity is defined in terms of the number of different

licenses for which a bidder indicates a demand.9 The auction typically stops when

there is no longer any excess demand for any item.10 One possible advantage of an

8See Appendix D in the Goeree and Holt (2005) experiment design report for more details.
9Note that Porter et al. (2003) did not use activity limits in their combinatorial clock auctions.

10When there is no more excess demand for any of the licenses but some are in excess supply, the
revenue maximizing allocation is calculated using all bids in the current and previous rounds. If this
process results in a failure to sell to the remaining bidder for an item, the clock is restarted to let
that bidder have another chance to obtain the item. This restart procedure can be illustrated with
a simple 3-license example, which is taken from the instructions to subjects. Suppose bidder 1 only
wants license A and is willing to bid up to 40 for A, bidder 2 only wants license B and is willing to
bid up to 40 for B, and bidder 3 only wants license C and is willing to bid up to 80 for C. Finally,
bidder 4 only wants package ABC and is willing to bid up to 150 for ABC. Initially there is excess
demand for all licenses, which causes prices to rise. Bidders 1 and 2 drop out when prices rise to
45, 45, 45, but since there is still competition for license C its price continues to rise. Bidder 4 is
willing to keep bidding on ABC as long as the price of C does not exceed 60. So when the price of
C rises to 65, bidder 4 drops out. At prices of 45, 45, 65 no one is bidding for licenses A and B. At
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incremental clock auction is that it prevents aggressive “jump bids,” which have been

observed by McCabe et al. (1988) in the laboratory and by McAfee and McMillan

(1996) in an FCC auction.11 The clock-driven price increments may also alleviate the

threshold problem of coordinating small bidders’ responses to large package bids. In

addition it is possible to add a final round of sealed-bids to the clock phase. This

final or shootout phase could be structured as a first-price (pay-as-bid) auction or a

second-price auction (proxy bidding, see Ausubel et al. 2006).

Results of laboratory experiments suggest that these and other forms of package

bidding may enhance performance measures, especially in environments with high

complementarities.12 In the Porter et al. (2003) experiment, for example, the combi-

natorial clock auction attained 100% efficiency in 23 sessions and 99% efficiency in 2

other sessions. Previous experiments have mainly focused on specific auction formats.

This chapter provides a systematic and parallel consideration of SMR and its most

widely discussed alternatives, including the one developed by the FCC.13

this point, bidder 3 is the only one bidding on C but the computer finds it better to assign ABC
to bidder 4 (for a total of 45+45+60 = 150) than to assign A to bidder 1, B to bidder 2, and C to
bidder 3 (for a total of 40+40+65 = 145). To allow bidder 3 (who has a value of 80 for C) to get
back into the action on license C, the computer will raise the price of C further to 70, 75, until (i)
either bidder 3 drops out or (ii) the revenue from assigning A to bidder 1, B to bidder 2, and C to
bidder 3 exceeds that of assigning ABC to bidder 4. In this manner the price of a license can rise
even though only 1 bidder is still bidding for it. Also, bidders may be assigned a license or package
even though they were no longer bidding in the final round (as for bidders 1 and 2 in the example).

11In the recent AWS auction, for example, 1 of the bidders made the maximum allowed jump bid
for the hotly contested Northeast and West regional licenses, effectively doubling the prices to about
$1.5 billion. The main competitors for these licenses ceased bidding immediately afterwards.

12Banks et al. (1989) proposed a different type of combinatorial auction, called Adaptive User
Selection Mechanism (AUSM). In this auction, bidders can submit bids for individual licenses and
packages in continuous time. A new bid becomes provisionally winning if revenue can be increased by
an allocation that includes the new bid. Kwasnica et al. (2005) compare RAD and AUSM to SMR in
a laboratory setting. Efficiencies observed with RAD and AUSM are similar and higher than those
for SMR, but revenue is higher in SMR since many bidders lose money due to the exposure problem.
(If we assume that bidders default on bids on which they make losses and thus set the prices of such
bids to zero, revenues are in fact higher under AUSM and RAD than under SMR.) Charles River
and Associates also developed a combinatorial auction, called Combinatorial Multi-Round Auction
(CMA). In this auction, only bids that are sufficiently high allow bidders to maintain their activity.
A bid is sufficiently high when it is at least 5% higher than the currently highest combination of bids
that spans the same licenses. Banks et al. (2003) ran an experiment to compare the CMA and SMR
auction formats. They find that the CMA leads to more efficient allocations but less revenue since
many bidders incur losses in their SMR auction experiments due to the exposure problem. Porter
et al. (2003) also compare CMA to SMR auctions and also find that CMA tends to lead to more
efficient allocations.

13A common feature of the combinatorial formats discussed in this paper is that they permit
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4.3 Experimental Design

Our design involves groups of eight bidders and 12 licenses, a size that was selected

to provide enough added complexity, while still permitting us to obtain sufficient

independent observations for a broad range of auction formats and value structures.

Bidders’ values for the licenses were randomly determined for each auction, which

resulted in a rich variety of market structures. There are 2 types of bidders in this

design: small regional bidders (labeled 1 through 6) and large “national” bidders

(labeled 7 and 8). A graphical representation of bidders’ interests is shown in Fig-

ure 4.1. Each diamond represents a different region, and the licenses along the center

line (A, D, E, H, I, and L) are the ones of interest to the 2 national bidders. In the

diamond shaped region on the far left, for example, the regional bidders, 1, 2, 5 and

6, are interested in licenses B and C, and in addition, each is interested in 1 of the

licenses (A or D) that are targets for the 2 national bidders. Similarly, in the middle

region, small bidders 1, 2, 3, and 4, are interested in licenses F and G, and each one

is interested in 1 of the licenses (E and H) that are also of interest to the national

bidders. The far-right diamond shaped region has a similar structure. Notice that

each regional bidder has interests in 2 adjacent regions, e.g., the left and center di-

amonds for bidders 1 and 2. Subjects’ ID numbers stayed the same throughout the

experiment, and, hence, so did their roles as regional or national bidders.

Regional bidders can acquire at most 3 licenses, and complementarities occur

only when licenses in the same region are acquired. For example, if bidder 1 wins the

combination ABE, then the value synergies would only apply to A and B, which are

in the same region in Figure 4.1. Since value synergies do not apply across regions,

a group of licenses in 1 region is a substitute for a group of licenses from another

region, which creates an interesting “fitting problem.” For example, under the SMR

“flexible” package bidding, i.e., bidders can construct arbitrary “customized” packages. An alterna-
tive approach is to restrict bidding to pre-specified packages as was done in the FCC air-to-ground
auction in 2006. Rothkopf et al. (1998) have suggested hierarchically structured sets of pre-defined
packages to reduce the complexity of the (revenue-based) assignment problem. Goeree and Holt
(2008) propose a simple pricing mechanism for hierarchically structured packages and test the re-
sulting auction in the lab.
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Figure 4.1. Eight-Bidder Design with 3 Regions. Regional bidders (1-6) are in-
terested in 1 side of 1 of 2 diamond-shaped regions. National bidders
(7-8) are interested in the middle line connecting all 3 diamond-shaped
regions.

procedure, bidder 1 with an activity of 3 could either bid on licenses A, B, and C in

the left region or E, F, and G in the middle region to capture the regional synergies.

Likewise, under the RAD and CC procedures, bidder 1 could either bid to obtain

synergies for the ABC package or the EFG package. The “XOR” rule used in SMRPB

facilitates the regional bidders’ “choice of region” problem because it allows them to

bid on packages from both regions knowing that at most 1 bid can be winning. An

additional advantage of the “XOR” rule is that bidders always know the maximum

financial liability they face, i.e., the highest dollar amount of any of their bids.

National bidders can acquire up to 6 licenses and they have value complementar-

ities for all 6 licenses in some treatments and for only 4 licenses in other treatments.

The larger number of licenses subject to complementarities creates a larger exposure

problem for the national bidders. The total number of possible allocations with this

setup is 13,080,488.



64

Auction formats. The 4 auction formats are described in detail in Appendices

A-C. They include 3 combinatorial formats (SMRPB, RAD, and CC) and 1 non-

combinatorial format (SMR). The main modification of the basic SMR procedures

described above is that bid withdrawals were permitted in at most 2 rounds of an

auction. For example, a bidder who withdraws any number of bids in rounds 8 and 10

would not be able to make any withdrawals in subsequent rounds. If a withdrawn bid

caused the final sale price to go down, the bidder had to pay the difference. If a license

with a withdrawn bid went unsold, however, then the bidder was only responsible for

25% of the withdrawn bid, which represents a penalty intended to mimic the effect

of having to pay the difference between a withdrawn bid and a lower sale price in

a subsequent auction. A key feature of the withdrawal provisions is that the seller

(FCC) becomes the provisionally winning bidder at the second-highest bid (minus a

bid increment), so that the person who originally made the second-highest bid would

be able to reenter at that level if the bidder has activity and interest to do so. This

provision can benefit a bidder whose interests have changed, perhaps to a different

region.

For each auction format, the experiments cover 4 different treatments: high/low

overlap in national bidders’ interests (HO vs. LO) and high/low complementarities

(HC vs. LC). For example, treatment HOHC has high overlap and high complemen-

tarities. We next describe the treatment variations in more detail.

Complementarities. Payoffs in the experiment were expressed in terms of points,

where each point was worth $0.40 to subjects. (The bid increment was 5 points in

all auctions.) The baseline draw distributions are uniform on the range [5, 45] for

each license of interest to national bidders, and on the range [5, 75] for each license

of interest to regional bidders. Synergies between licenses are modeled in a linear

manner: when a bidder acquires K licenses the value of each goes up by a factor

1 + α(K − 1). In the high-complementarities treatment, the synergy factor (α) for

national bidders was 0.2. Thus each license acquired by a national bidder goes up in

value by 20% (with 2 licenses), by 40% (with 3 licenses), by 60% (with 4 licenses), by

80% (with 5 licenses) and by 100% (with all 6 licenses). With low complementarities,
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these numbers are 1%, 2%, 3%, 4% and 5%, corresponding to α = 0.01. With high

complementarities (HC), each license acquired in the same region by a regional bidder

goes up in value by 12.5% (with 2 licenses in the same region), and by 25% (with

3 licenses in the same region), so α = 0.125. With low complementarities, these

numbers are 1% and 2% for regional bidders. These minimal complementarities in

the LC treatment allowed us to maintain parallelism in instructions and procedures.

Participants were informed about the synergies that applied to regional and national

bidders and about the distributions of possible values (but not about others’ value

draws).

Overlap. With high overlap (HO), each national bidder, 7 and 8, has value draws

from the same distribution for all 6 licenses on the base of Figure 4.1, and the com-

plementarities apply equally to all 6 licenses. In this sense, each national bidder is

equally strong across the line. With low overlap (LO), national bidder 7 only receives

complementarities for the 4 licenses on the left side of the base (A, D, E, and H).

Conversely, national bidder 8 receives complementarities for the 4 licenses on the

right side (E, H, I, and L). Thus with high complementarities and low overlap, each

national bidder has a natural focus of interest that only partially overlaps with the

other national bidder’s area. One issue of interest is whether this type of partial

separation may yield tacit collusion and less aggressive bidding in the center.

Treatment structure. The 2-by-2 treatment design yields 4 treatments for each of

the 4 auction formats, for a total of 16 treatments. We used the same value draws

across auction formats so that differences cannot be attributed to specific sequences

of value draws. Each session consisted of 1 or 2 practice auctions and a series of

6 auctions for cash payments. The treatment and auction type was unchanged for

all auctions in a session, but the randomly generated value draws changed from one

auction to the next. In addition, we used new sequences of random draws for each

of 3 “waves” of 16 sessions that spanned all treatments. To summarize, there were

18 (3 waves times 6 auctions) independent sets of value draws that were used in all 4

auction formats.

Subjects and sessions. Before conducting the sessions that form waves 1-3, we
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trained over 128 Caltech subjects in 16 sessions of eight people. These inexperienced

sessions (“wave 0”) involved both SMR and combinatorial auctions and were con-

ducted to familiarize subjects with the auction software and bidding environment.14

For these inexperienced sessions, we promised to pay each person a $60 bonus (in

addition to other earnings) if they returned 3 more times.15 This decision to use ex-

perienced bidders was based on the complexity of the auction formats and on earlier

pilot experiments. For the subsequent data analysis, only the data from waves 1-3

but not from wave 0 is used. In waves 1-3, earnings averaged $50 per person per

session, including $10 show-up fees and bonuses, for sessions that lasted from 1.5 to

2 hours, depending on the number of auctions.16 In total, there were 16 training

sessions and 48 sessions (3 ×16) with experienced subjects, each involving a group of

eight subjects.

4.4 Results

One way to measure market efficiency is to divide the sum of all bidder values for

licenses they won, the actual surplus (Sactual), by the maximum possible surplus

(Soptimal). It is well known that this simple efficiency measure may be difficult to

interpret. For example, adding a constant to all value amounts will tend to raise

this efficiency ratio, since efficiency losses are affected by differences in valuations,

not absolute levels. A more natural measure of efficiency is calculated on the basis

of the difference between the actual surplus and the surplus resulting from a random

allocation (Srandom), this being normalized by the maximum such difference.

14The experiments were run using jAuctions, which has been developed at Caltech by Jacob Go-
eree. The jAuctions software consists of a flexible suite of Java-based auction programs designed to
handle a wide range of auction formats and bidding environments, including combinatorial auctions
with bid-driven or clock-driven prices, private and common valuations, etc. Instructions, which are
available on request, were structured around relevant screen shots of the jAuctions program.

15As a consequence, most subjects participated in more than 1 auction format.
16In some cases, subjects ended the session with negative earnings, and these subjects were only

paid the show-up fee. An alternative would have been to rotate bidder roles during the session,
which would have avoided negative final earnings. This is the procedure followed in Goeree and Holt
(2008).
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efficiency =
Sactual − Srandom
Soptimal − Srandom

∗ 100%

The value of a random allocation can be computed by taking the average of the

surplus over all possible allocations, of which there are 13,080,488 in total for the

design in Figure 4.1.17 This definition of efficiency measures how much the auction

raises surplus relative to a random allocation mechanism. In the analysis that follows,

we will use these normalized efficiency measures.

Similarly, revenues will be measured as the difference between actual auction rev-

enue and the revenue from a random allocation in which bidders pay their full values

for all licenses and packages they receive (Rrandom = Srandom). This difference is then

divided by the difference between the maximum possible revenue (Roptimal = Soptimal)

and the revenue from a random allocation. Note that the optimal revenue benchmark

is the revenue obtained if bids equal full value on all licenses and packages leaving

zero profits for the bidders, i.e., full rent extraction.

revenue =
Ractual −Rrandom

Roptimal −Rrandom

∗ 100%

Since Rrandom = Srandom and Roptimal = Soptimal, the denominators of the normal-

ized efficiency and revenue measures are equal, and the normalized sum of bidders’

profits is simply equal to the difference between efficiency and revenue:

profit =
Sactual −Ractual

Soptimal −Rrandom

∗ 100% =

∑
i π

i
actual

Soptimal − Srandom
∗ 100%.

All efficiency, revenue, and profit measures reported below are normalized in this

manner for the specific value sequences used in each auction for each of the 3 waves

of sessions with experienced bidders.18

17Without the restriction that regional bidders can acquire at most 3 licenses, the total number
of allocations would be 16,777,216.

18There were occasional glitches in the data recording, i.e., when a bidder’s computer would
temporarily be offline. A detailed analysis of all the bid books reveals that less than 1% of all bids
were lost. Since a bidder’s activity was determined by the bids she submitted (not according to the
bids recorded by the server) this had no adverse effects for the bidder’s activity. Unless the round
in which this occurred was the final round, the effect of lost bids was negligible.
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Figure 4.2. Efficiency by Auction Format. The bars from light to dark (left to right)
correspond to SMR, CC, SMRPB and RAD respectively.

Efficiency. Package bidding is designed to help bidders avoid the “exposure prob-

lem” of bidding high for licenses with high complementarities. As expected, switching

from SMR to a combinatorial format raises efficiency in the high complementarities

treatments. The differences between SMR and the combinatorial formats occur for

both of the high complementarities treatments, as can be seen from the left side of

Figure 4.2. In this and subsequent figures the colorcoding is as follows: from light to

dark the bars correspond to SMR, CC, SMRPB, and RAD respectively.

In contrast, the switch to combinatorial auctions reduces efficiency when com-

plementarities are minimal (our “low complementarities” treatment). The efficiency

levels are now 97% for SMR and 89%, 92%, and 96% for SMRPB, CC, and RAD re-

spectively. Again, this difference shows up in both LC treatments shown on the right

side of Figure 4.2. Result 1 summarizes our findings, where we use the following nota-

tion: ∼ implies a pairwise difference is not significant, �∗ indicates significance at the

10% level, �∗∗ indicates significance at the 5% level, and �∗∗∗ indicates significance

at the 1% level.

Result 1 With high complementarities, efficiency levels are highest for the 3 combi-
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natorial formats and are ranked

RAD ∼ SMRPB ∼ CC �∗∗ SMR.

With low complementarities, efficiency levels are ranked

RAD ∼ SMR �∗∗ CC ∼ SMRPB.

Pooling the low and high complementarities treatments, efficiency levels are ranked

RAD �∗ CC ∼ SMRPB ∼ SMR.

Support. Session averages are grouped by wave and auction format in Appendix C.1.

For example, consider the efficiencies for the HC treatments (pooling high and low

overlap) shown in the eight columns on the left side of Appendix refapD (top 3 rows).

It is important to compare the auction formats for the same wave, since the valuation

draws change from one wave to another. All 6 of the paired comparisons for the HC

treatments show higher efficiencies for any of the package bidding auctions compared

to SMR. This effect is significant using a Wilcoxon matched-pairs signed-rank test (p

= 0.03). These results are generally reversed with low complementarities, where all

paired comparisons between SMR and CC and SMRPB go in the opposite direction

(higher efficiency for SMR): this effect is significant (p = 0.03). The only combi-

natorial auction that is not statistically different from SMR in terms of efficiency is

RAD (p = 0.41). When pooling the data from the low and high complementarities

treatments, RAD is more efficient than SMRPB (p = 0.02), CC (p = 0.09), and SMR

(p = 0.09). There are no significant differences between SMR, SMRPB, and CC.

In addition to being statistically significant, the differences in observed efficiencies

are also economically significant. With high complementarities (combining the low

and high overlap treatments and data from all 3 waves), the average efficiency in

SMR is 84% while it is 90%, 90%, and 91% in SMRPB, CC, and RAD respectively.

One reason why SMR leads to low efficiencies with high complementarities is the

incidence of unsold licenses, which happens with rates of 4% and 7% in the high-
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and low-overlap treatments respectively, see Appendix C.1. Unsold licenses typically

result from withdrawals late in the auction when a bidder realizes that it will not

be possible to obtain the value synergies associated with multiple licenses. After a

withdrawal, recall that the seller becomes the provisional winner at the second highest

bid, and the person who made that bid previously may have lost activity or interest

in that license, which causes it to go unsold.19 Withdrawals are not permitted in the

combinatorial auctions, where the exposure problem is addressed directly by allowing

package bids, so these auctions do not result in unsold licenses. The difference between

SMR and any of the combinatorial formats in terms of license sales rates is significant

with a Wilcoxon matched-pairs signed-ranks test (p = 0.05).

Revenues. Figure 4.3 shows the revenues by auction format and treatment av-

eraged across sessions (session averages for each parameter/experience wave can be

found in rows 4-6 of the table in Appendix C.1). What is obvious from Figure 4.3

is that the combinatorial clock auction extracts more rents for the seller in all treat-

ments, even when it is less efficient than other formats.

Result 2 Revenues are highest for the combinatorial clock auction and are ranked

CC �∗∗∗ RAD ∼ SMRPB ∼ SMR.

Support. There are 3 rows in the Revenue section of Appendix C.1, 1 for each wave

of parameter values. In each row, there are 4 paired comparisons between CC and

a particular alternative format, so overall there are 12 paired comparisons. The CC

provides higher revenue in all 12 pairwise comparisons with each of the alternatives,

except for RAD where CC yields higher revenues in 11 of 12 cases. These comparisons

are significant using a Wilcoxon matched-pairs signed-rank test (p = 0.001). Basically,

19Since the seller’s value for a license is assumed to be 0, an unsold license was given a value of 0
in the efficiency calculations. This calculation provides a lower bound for the efficiency since unsold
licenses are typically sold in later auctions (there is, however, an efficiency loss associated with delays
in spectrum use). Alternatively, a rough estimate of the upper bound for the efficiency would be
to scale the actual efficiency by 1 + x where x is the proportion of unsold licenses. By scaling up
the efficiencies for the SMR auction in the high-complementarities treatments using an “x factor”
of 0.05 (proportion of unsold licenses averaged across treatments) raises average efficiency from 84%
to 88%. This scaled up efficiency is only slightly lower than those for the combinatorial formats,
indicating that a large part of the efficiency loss in the SMR auction is due to unsold licenses. Note
that these calculations ignore “selection effects,” i.e., low-value licenses are more likely to go unsold.
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 Figure 4.3. Revenue by Auction Format. The bars from light to dark (left to right)
correspond to SMR, CC, SMRPB and RAD respectively.

CC is higher than the others with both low and high complementarities (p = 0.03),

except for the comparison with RAD in the low-complementarities (LC) treatment (p

= 0.06). Revenue under RAD is borderline significantly higher than SMRPB when

we pool all data (p = 0.109). Revenue under RAD is not significantly different from

SMR, and SMR and SMRPB raise the same revenues.

These revenue differences are also significant economically: averaging over all

treatments and all waves, the revenue from the combinatorial clock format is 50% as

compared to 37%, 40%, and 35% for the SMR, RAD, and SMRPB auctions respec-

tively.

With high overlap, national bidders own more licenses and, hence, can create

bigger packages with higher associated values especially when complementarities are

high. The result is that revenues are higher for the High Overlap and High Com-

plementarities bars on the left side of Figure 4.3. Moreover, national bidders earn

more in the high overlap and high complementarities treatments, while the regional

bidders do worse (see the table in Appendix C.1). These revenue and profits results fit

with our prior expectation that there could be more tacit collusion in the low overlap
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treatments where there is less head-to-head competition between the national bidders.

Profits. Figure 4.4 shows bidders’ profits by auction format and by treatment.

The ability to bid for combinations allows bidders to bid high on packages and avoid

the exposure problem, an effect that is mainly relevant with high complementarities.

But if all bidders bid higher, the effect on bidder profits is unclear.

Result 3 Bidders’ profits are lowest in the combinatorial clock auction and are ranked

RAD ∼ SMRPB ∼ SMR �∗∗∗ CC.

Support. Normalized profits are calculated as the differences between entries in the

efficiency and revenue rows of Appendix C.1. With 3 waves and 4 treatments, there

are 12 paired profit comparisons between CC and a particular alternative format, and

the CC provides lower profits in all 12 pairwise comparisons with SMR, and for 11 of

the 12 comparisons with RAD and SMRPB. These comparisons are significant using

a Wilcoxon matched-pairs signed-rank test (p = 0.001). Averaged over treatments,

profits for CC are 40% while the profits for the other formats are all in a narrow range

from 53% to 55%.

The exposure problem can be alleviated to some extent by the (limited) bid with-

drawal provisions built into the SMR bidding rules under consideration. In this man-

ner a bidder may compete aggressively for a package and then decide to withdraw,

paying a penalty equal to the difference between the withdrawn bid and the final sale

price if it is higher. Withdrawals are more frequent (and the associated penalties

higher) with high complementarities, as would be expected. While the possibility of

bid withdrawals helps bidders deal with the exposure problem to some extent, some

losses did occur when bidders decided not withdraw or had to pay a penalty after a

withdrawal.20

Summary. Pooling data across treatments and sessions, the revenue and efficiency

results by auction format are given in Table 4.1. In terms of seller revenues and

20National bidders’ penalties averaged 2% in the HC treatments and were negligible in the LC
treatments. Regional bidders’ penalties averaged 1% in the HC treatments and were negligible in
the LC treatments.
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Figure 4.4. Bidder’s Profits by Auction Format. The bars from light to dark (left

to right) correspond to SMR, CC, SMRPB and RAD respectively.

bidder profits,21 the combinatorial clock auction is best for the seller and worst for

the bidders, but these results are not caused by bidder losses, which are not present

in the CC sessions (see the losses rows for Nationals and Regionals in Appendix C.1).

In a comparison with the other formats, the SMRPB auction with XOR bidding is

the worst from the seller’s point of view (lowest revenue and efficiency), and it is the

best from the bidders’ point of view (sum of profits for regionals and nationals).

The bottom row of Table 4.1 provides a perspective on the levels of the realized

bidders’ profits. The percentages in this row are calculated as ratios of actual bid-

ders’ profits (national profits plus regional profits) to profits that would result under

collusion, i.e., when all bidders drop out at zero price levels resulting in a random al-

location with the corresponding surplus, Srandom, being divided among the bidders.

Note that realized profits are far from collusive levels, especially for the combinatorial

clock format.

One reason why the SMRPB auction performs the worst in terms of efficiency

21In Table 4.1, the “Profit Regionals” row lists the total profit (as a percentage) for the group of
6 regional bidders, while the “Profit Nationals” row lists the combined profits (as a percentage) for
the 2 national bidders.
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Table 4.1. Summary Statistics by Auction Format.

 SMR CC RAD SMRPB 

Efficiency 90.2% 90.8% 93.4% 89.7% 

Revenue 37.1% 50.2% 40.2% 35.1% 

Profit Regionals 52.0% 38.5% 50.0% 51.3% 

Profit Nationals 1.5% 2.3% 3.5% 3.5% 

Profits/Collusive Profits 34.2% 26.0% 34.1% 34.9% 

 

is that, in the presence of minimal complementarities, the requirement that bidders

can only have 1 bid accepted (the XOR rule) may reduce efficiency, since bidders

have to bid on many combinations of licenses to find all possible efficiency gains.

(Even though our design, in which regional bidders face a choice of region problem,

favors the XOR rule.) RAD, in contrast, more or less reduces to SMR with low

complementarities while it enables bidders to extract the extra efficiency gains when

complementarities are high. Another consideration may be that the inertia in the

SMRPB price adjustment algorithm could exaggerate the threshold problem, since

attempts to unseat large package bids may have delayed effects due to inertia. The

next section explores the treatment differences in greater detail.

4.5 Individual Bidding Behavior

This section provides an analysis of bidding patterns to explain the main qualitative

features of the aggregate data. In particular, with high complementarities, efficiency

is significantly lower in SMR than in the 3 combinatorial auction formats. This

suggests that bidders are competing conservatively for larger packages when package

bids are not allowed, which could lead to an inefficient allocation.

In order to quantify the effect of “exposure risk” on bidder behavior in SMR, we

consider a conditional logit model in which bidders choose among all combinations

of licenses that are still feasible given their current activity limits. The conditional

logit model includes 4 variables to explain the choice of a specific bidding basket,

see Table 4.2. Since some sources of noise are individualspecific, we estimate robust

standard errors allowing for correlation among observations generated from the same
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subject.

The “profit” variable is the difference between the value of the basket (the value

of the combination of licenses that the bidder is either bidding on or provisionally

winning) and the minimum required bid. The value calculations include possible

synergies. The coefficient of this “Profit” variable shown in the top row of Table 4.2

is highly significant; as expected, bidders are more likely to bid on a basket when it

yields a higher profit.22

The second row of the table shows the effect of the binary variable “PW,” which

assumes a value of 1 if the bidder is already provisionally winning at least 1 of the

licenses in the basket. The highly negative coefficient indicates that subjects are not

likely to raise their bids on licenses they are already provisionally winning, which is

again intuitive. The third variable, “Inertia” is a dummy variable that is 1 if the set

of licenses that the bidder was provisionally winning or bidding for in the last round

is the same as the set of licenses the bidder is bidding for or provisionally winning in

the current round.

Finally, “Exposure” is measured as the largest possible loss that a bidder might

sustain when bidding on a certain combination of licenses.23 We include an interaction

term “Exposure * HC” to allow for the possibility that exposure has less of an effect

with high complementarities. Note that exposure is significant and negative in both

treatments,24 suggesting that bidders are less likely to bid on baskets that entail the

risk of winning licenses at prices above private values. The sign of the coefficient is

robust across a variety of different specifications.

To illustrate the importance of exposure, let us consider a simple example for the

case of high complementarities. Suppose the national bidder is interested in winning

22These estimations are based on all bids, including those that could result in negative profits.
Such bids are more prevalent in the high-complementarities treatments (9.2%) than in the low-
complementarities treatments (6.3%).

23Profit always refers to the difference between value and the minimum required bid for all licenses
that the bidder is bidding on or provisionally winning. As noted earlier, we only consider baskets
that yield a positive profit. However, when the bidder ends up winning only some of the licenses
that he is currently provisionally winning or bidding for, he might sustain a loss.

24Running separate regressions for the low and high complementarities treatments yields exposure
coefficients of -0.05 (0.007) with high complementarities and -0.11 (0.0038) with low complementar-
ities.
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Table 4.2. Bidding Behavior in SMR.

Conditional (fixed-effects) logistic regression 

     

N 184,884  Log pseudolikelihood -6853 

Wald chi2(4) 1642  Pseudo R2 0.69 

Prob > chi2 0    

     

Bid Coef. Robust Std. Err. z P>|z| 

Profit 0.09 0.008 10.9 0 

PW -5.22 0.412 -12.6 0 

Inertia 1.44 0.081 17.7 0 

Exposure -0.13 0.035 -3.7 0 

Exposure*HC 0.08 0.036 2.2 0.03 

 

either the national package ADEHIL or nothing at all (and is not the provisional

winner on any license). License values are 25 on average so the national package is

worth 300 on average. Consider a situation where license prices are 42 each so the

minimum required bid would be 47 for each license, totaling 282 for the package. In

this case, profit would be 18 but exposure would be 36, i.e., when the national bidder

ends up winning only 3 out of the 6 possible licenses. Hence, the national bidder

prefers stop bidding for the national package when its price is 252 (6 times the license

price of 42) even though the value of the package is 300.

The second qualitative feature of the data is that efficiency is higher in RAD

than in SMRPB for the minimal complementarities treatment. While activity in

RAD is maintained by bidding or provisionally winning a sufficiently large number

of different licenses, bidders in SMRPB have to bid on sufficiently large packages to

maintain activity. As a result, bidders in RAD can simply bid on single licenses when

there are no complementarities. In SMRPB, however, they typically bid on some

profitable large package in order to maintain activity and are not also bidding on

the subsets of that large package. Therefore, the number of possible allocations in

SMRPB tends to be far lower than in RAD. If a bidder has high values for licenses

A, B and C, for example, that bidder will typically bid on all 3 licenses separately in

RAD. In SMRPB, the same bidder typically bids on package ABC only.
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Table 4.3. Average Bid Characteristics when Complementarities Are Low (standard
deviation).

 
Auction Bidding Activity Number of bids Size of bids 

SMRPB 2.91 (0.09) 1.62 (0.08) 2.44 (0.13) 

SMR 2.60 (0.07) 2.60 (0.07) 1.00 (0.00) 

RAD 2.69 (0.09) 2.11 (0.28) 1.60 (0.24) 

CC 2.66 (0.07) 3.15 (0.52) 1.69 (0.13) 

To evaluate why efficiency is lower in SMRPB when complementarities are low,

we compare bidding behavior in terms of numbers and sizes of bids. The bidding

activity column in Table 4.3 indicates that with low complementarities, subjects are

bidding for or provisionally winning about 3 different licenses on average in all 4

formats. However, in SMRPB, bidders do so by bidding on fewer packages of a larger

average size than in the other formats. The average number of bids submitted is

lower in SMRPB than in any other auction format in every single one of the 6 sessions

with low complementarities. Using a Wilcoxon matched-pairs signed-rank test, this

difference is therefore significant (p = 0.03, n = 6). Similarly, the average size of the

bids under SMRPB is higher in all 6 sessions. This bid size effect is significant in

comparisons between SMRPB and any of the other auction formats (p = 0.03, n =

6). The consequence of having fewer bids of larger size is to create a fitting problem

under SMRPB. This problem is not present for the other formats where activity can

be maintained by submitting many smaller bids.

The seller’s revenue is higher in the combinatorial clock auction than in any other

auction format in all treatments of our experiment. In SMR, efficiency and thus also

revenue is negatively affected by the exposure problem when complementarities are

high. Moreover, the option to withdraw bids leads to a higher fraction of unsold

licenses in SMR, which further reduces the seller’s revenue.

In RAD and SMRPB, the threshold problem can potentially reduce the seller’s

revenue, since large bidders may be able to win packages at low prices when small

bidders are unable to coordinate their actions. In order to test for the effects of the

threshold problem in SMRPB and RAD, we look at whether small bidders bid up to
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Table 4.4. Bidding up to Value.

Auction Mean Standard Deviation 

CC 99.2% 9.9% 

SMRPB 87.1% 5.3% 

RAD 85.8% 3.0% 

 

their values in periods in which they end up winning nothing. Since the threshold

problem only pertains to small bids, we only look at bids on individual licenses and

packages containing 2 licenses.

Recall that the combinatorial clock auction solves the threshold problem by forc-

ing bidders to increase bids together on licenses for which there is excess demand. On

average, small losing bids are closer to bidders’ values in the combinatorial clock auc-

tion than in either RAD or SMRPB (p < 0.001 for both comparisons using a Wilcoxon

matched-pairs signed-rank test with 12 observations). The differences between RAD

and SMRPB are not significant (p = 0.23, n = 12), see also Table 4.4.

Table 4.5. Size of Jumpbid (Bid - Minimum Required Bid).

Auction Treatment Mean Standard Deviation 

CC All 0 0 

RAD HC 3.1 2.2 

RAD LC 1.3 0.8 

SMRPB HC 4.1 2.1 

SMRPB LC 2.6 1.2 

 

If the threshold problem is indeed the reason why small bidders fail to bid up to

their values, one would expect large bidders in SMRPB and RAD to submit aggressive

“jump bids,” i.e., to bid more than the minimum required bid in the early rounds of

the auction. Taking the average across all bids submitted during the first 5 rounds, the

difference between the bid price and the minimum required bid is higher in SMRPB

than in RAD both with high and low complementarities, see Table 4.5. However,

these differences are not significant (pooling data from low and high complementarities

yields p = 0.15 using a Wilcoxon matched-pairs signed-rank test with 12 observations).

Since the combinatorial clock auction does not allow jump bids, both these differences

are higher for RAD and SMRPB than for CC (see Table 4.5).
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4.6 Conclusion

The simultaneous multi-round auction is considered to be a remarkably successful

application of game theory, with careful attention to the details of implementation

by policy makers. This auction format is currently used around the world, and

government officials in other agencies now routinely consult the FCC on auction

design matters. Concerns about the effects of value complementarities have convinced

many people that new procedures need to be developed and tested. In particular, the

FCC developed a package bidding variant of the SMR auction, known as SMRPB.

This chapter compares the performance of these 2 alternatives and that of 2 other

package-bidding formats: the combinatorial clock (Porter et al. 2003) and the RAD

auction (Kwasnica et al. 2005).

The experiments were conducted with a common jAuctions bidder interface and

parallel sets of value draws, for an array of structural and auction format treatments.

The combinatorial auction procedures used (RAD, SMRPB, and CC) all result in

higher efficiency than the currently used SMR procedure when value complemen-

tarities are present. It is important to emphasize that value complementarities are

not just a theoretical possibility; a package of 3 bandwidth segments sold for about

5 times as much as a single segment in a recent FCC auction that offered a very

limited menu of pre-specified package bidding options. Complementarities are almost

surely significant for other potential applications of package bidding such as emissions

permits for successive years.

However, of the 3 combinatorial auction types, SMRPB performed worst in terms

of revenue and efficiency. One distinguishing feature of SMRPB is the XOR rule,

which allows each bidder to have at most a single winning bid. A bidder who is

interested in obtaining 1 or more licenses in a certain region thus has to bid on all

possible combinations of those licenses. In the experiment, however, bidders submit

only a few bids per round, in which case the additional constraint of at-most-one-

winning bid per bidder becomes detrimental for efficiency and revenue. The poor

performance of SMRPB reported here was a main factor in the FCC’s decision not
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to implement it.

The FCC subsequently decided to implement package bidding for 1 of the 5 blocks

in the recently conducted 700 MHz auction. Unlike the fully flexible package bidding

formats considered in this paper, the FCC opted to use a simple format with a single

50-state package and 2 additional packages (Atlantic and Pacific). This setup is a

simple version of the Hierarchical Package Bidding mechanism proposed by Goeree

and Holt (2008). Under this mechanism, predefined packages are structured in a hier-

archical manner and after each round of bidding, prices for all licenses and packages

are determined such that they signal the bid amounts required to unseat the current

provisional winners.

Without extensive knowledge of bidders’ valuations, there will be some efficiency

loss associated with using predefined packages. However, the simplicity of the hierar-

chical package structure (e.g., individual licenses, non-overlapping regional packages,

and a single nationwide package) avoids fitting problems that can arise with fully

flexible package bidding. For example, if a nationwide package bid is winning then

the non-overlapping nature of the regional packages together with the simple pricing

feedback allows regional bidders to avoid the threshold problem. This approach was

tested using laboratory experiments based on 2-layer and 3-layer hierarchies and the

results were cited by the FCC as a factor in their decision to use Hierarchical Package

Bidding in the recent 700 MHz auction.
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Chapter 5

A Correction and Reexamination
of “Stationary Concepts for
Experimental 2 × 2 Games”

This chapter is based on a paper written jointly with Colin F. Camerer, and Jacob

K. Goeree.

5.1 Introduction

A recent paper by Reinhard Selten and Thorsten Chmura (2008) (henceforth SC)

reports laboratory results for 12 different 2× 2 games with a unique mixed-strategy

equilibrium. These binary-choice games are relatively simple and provide a natural

testbed for alternative models that aim to predict long-run, or stationary, outcomes

of play. SC consider 5 such models: Nash equilibrium, quantal response equilib-

rium, action-sampling equilibrium, payoff-sampling equilibrium, and impulse-balance

equilibrium.

Nash equilibrium assumes that players have correct beliefs about others’ play

and that players best respond to those beliefs. Quantal response equilibrium (QRE)

replaces the requirement of best responses with “better responses,” i.e., players are

more likely to choose the option with the higher expected payoff but they do not

necessarily choose the best option all the time. QRE does assume that players’ beliefs

are correct on average, i.e., beliefs are not systematically biased. Action-sampling
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equilibrium describes the long-run outcome when players best respond to a finite

sample of their opponent’s previous actions.1 Payoff-sampling equilibrium describes

the long-run outcome when players form 2 finite samples of their past payoffs, 1 for

each option, and select the one with the highest total payoff. Finally, impulse-balance

equilibrium is based on the idea that players take into account foregone payoffs. If

the option not chosen would have yielded higher payoffs, then there is an “impulse”

to change (and, importantly, “losses” of foregone payoff are weighted twice as heavily

as gains). impulse-balance equilibrium corresponds to the long-run outcome where,

for both players, expected impulses are equal across the 2 options.

SC conclude that Nash and QRE fit worse than the other 3 concepts. They write,

It is remarkable that the newer concepts of impulse-balance equilibrium,

payoff-sampling equilibrium, and action-sampling equilibrium clearly out-

perform the more established concepts of quantal response equilibrium

[QRE] and Nash equilibrium. All the relevant comparisons are highly sig-

nificant. This is perhaps the most important result of the statistical tests.

(p. 962)

The first purpose of this comment is to correct the reported model fits for 2 of the

5 concepts, QRE and action sampling, which are incorrect for all 12 games in SC. We

report the correct results for these 2 models (and some other small corrections). The

corrected fits for QRE are close to the other 3 non-Nash concepts, which overturns

the most novel (and to some, surprising) part of their conclusion, viz., QRE fits as

well as the other concepts, not worse (as SC concluded).2

1Action-sampling equilibrium is closely related to the “stochastic learning equilibrium” concept
introduced by Goeree and Holt (2002) where players make a noisy best response to a weighted
average of their opponents’ past decisions. Rather than putting a weight of 1 on a fixed number of
past observations and a weight of 0 on observations that are in the more distant past, as in action-
sampling equilibrium, the stochastic learning equilibrium assumes that weights decline continuously
for more distant observations (e.g., geometrically). Stochastic learning equilibrium has been shown
to yield an improved fit over QRE in some contexts (see, e.g., Capra et al. 2002).

2It is true that with the corrected analysis, Nash predictions do fit worse than the other 4
concepts. However, the ability of other models to explain deviations from Nash play has been shown
in many previous experiments (see Camerer 2003 for a book-length summary). This part of their
conclusion is solid but is only original in its emphasis on the sampling and impulse balance models.
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Fit measures and statistical tests show that the 4 non-Nash models are about

equally accurate. SC note this fact (but for 3 models, not all 4) and suggest a

research direction as follows:

It is not easy to understand why the predictions of the 3 newer concepts

are not very far apart, in spite of the fact that they are based on very

different principles. This is perhaps peculiar to our sample. It would be

desirable to devise experiments that permit a better discrimination among

the 3 concepts. (p. 965, emphasis ours).

The second purpose of our comment is to extend their analysis, by showing how 2

different games reported several years ago do “permit a better discrimination” among

some of the concepts. The first game was explicitly designed to show that no quantal

response equilibrium (logit or otherwise) could explain observed behavior (see Game

4 and Proposition 1 in Goeree et al., 2003). Applying impulse-balance equilibrium

to this game works like “magic:” it explains observed behavior almost perfectly. So

this game is capable of differentiating between 2 of the concepts, impulse-balance

equilibrium and risk-neutral QRE, which fit equally well in SC’s data.

The results also highlight one of the crucial assumptions underlying impulse-

balance equilibrium: impulses are defined relative to a security level (the max-min

payoff) and it is assumed that losses with respect to this security level are weighed

twice as much as gains. While impulse-balance equilibrium is ostensibly a parameter-

free concept (since the loss aversion coefficient is fixed to 2), this additional assump-

tion about players’ different reactions to foregone losses and gains is not innocuous.

For the game designed by Goeree et al. (2003), it is the assumption of loss aversion

that makes impulse-balance equilibrium predict well.3 The favorable comparison of

impulse-balance equilibrium (with loss-aversion built in) to risk-neutral QRE rein-

forces the main point of the Goeree et al. (2003) paper, i.e., that some degree of

3In a 1-parameter extension of impulse-balance equilibrium where the weight for gains is fixed
to be 1 but the weight for losses is a free parameter, γ, we obtain an estimate of γ = 2.07. In other
words, the degree of loss aversion (γ = 2) that is hardwired into the impulse-balance equilibrium
concept is nearly optimal for the data set considered.
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risk or loss aversion is needed to explain behavior in their game. Indeed, as we show

below, if the other concepts are augmented with loss aversion, they predict behavior

quite well (and even better than impulse-balance equilibrium).

The second class of games that discriminate among concepts are asymmetric 2×2

matching pennies games (e.g., Ochs, 1995). We report new analyses using the data

of McKelvey et al. (2000). In these games, loss aversion plays no role since security

levels are 0 and payoffs are non-negative. We find that impulse-balance equilibrium

fits a little better than QRE but much worse than action- or payoff-sampling. These

2 reanalyses of older data take up the search for games that discriminate better

among stationary concepts that SC called for, and show that the loss-aversion built

into impulse-balance equilibrium accounts for some of that concept’s success on risky

games such as game 4 from Goeree et al. (2003).

5.2 Reexamining the Selten and Chmura (2008)

Results

Table 5.1 shows data averages and model predictions for each of the 12 experimental

games that SC ran. This table, and all subsequent tables and figures report corrections

of their results in a visual form identical to their originals. The bold numbers indicate

discrepancies between our results and those of SC. In particular, we find (i) a different

impulse balance prediction for Game 1, (ii) a different data average for Game 3, (iii)

a different optimal sample size (n = 12) and, hence, different predictions for action-

sampling equilibrium (see Figure 5.1 for the mean-squared distances by sample size),

and (iv) vastly different predictions for the QRE model: the precision parameter we

estimate using the mean-squared distance objective function is λ = 1.05, much lower

than the estimate reported by SC (λ = 8.84).4

At this lower value of λ, the QRE predictions (see Table 5.1) are much different

from Nash predictions and much closer to the data. The improved fit is illustrated

4Using maximum-likelihood techniques yields an estimate λ = 0.99.
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Table 5.1. 5 Stationary Concepts Together with the Observed Relative Frequencies
for Each of the Experimental Games. Note: λ is the logit precision
parameter, n is the optimal sampling size for action or payoff sampling.

    Nash 
QRE 

(λ  = 1.05) 

Action-
sampling 
(n = 12) 

Payoff-
sampling 
(n = 6) 

Impulse 
Balance 

Observed 
average of 12 
observations 

Game 1 U 0.091 0.042 0.090 0.071 0.068 0.079 
 L 0.909 0.637 0.705 0.643 0.580 0.690 
Game 2 U 0.182 0.154 0.193 0.185 0.172 0.217 
 L 0.727 0.579 0.584 0.569 0.491 0.527 
Game 3 U 0.273 0.168 0.208 0.152 0.161 0.163 
 L 0.909 0.770 0.774 0.771 0.765 0.793 
Game 4 U 0.364 0.275 0.302 0.285 0.259 0.286 
 L 0.818 0.734 0.719 0.726 0.710 0.736 
Game 5 U 0.364 0.307 0.329 0.307 0.297 0.327 
 L 0.727 0.657 0.643 0.654 0.628 0.664 
Game 6 U 0.455 0.417 0.426 0.427 0.400 0.445 
 L 0.636 0.607 0.596 0.597 0.600 0.596 

    Nash 
QRE 

(λ  = 1.05) 

Action-
sampling 
(n = 12) 

Payoff-
sampling 
(n = 6) 

Impulse 
Balance 

Observed 
average of 6 
observations 

Game 7 U 0.091 0.042 0.090 0.060 0.104 0.141 
 L 0.909 0.637 0.705 0.691 0.634 0.564 
Game 8 U 0.182 0.154 0.193 0.222 0.258 0.250 
 L 0.727 0.579 0.584 0.602 0.561 0.587 
Game 9 U 0.273 0.168 0.208 0.154 0.188 0.254 
 L 0.909 0.770 0.774 0.767 0.764 0.827 
Game 10 U 0.364 0.275 0.302 0.308 0.304 0.366 
 L 0.818 0.734 0.719 0.730 0.724 0.700 
Game 11 U 0.364 0.307 0.329 0.338 0.354 0.331 
 L 0.727 0.657 0.643 0.650 0.646 0.652 
Game 12 U 0.455 0.417 0.426 0.404 0.466 0.439 
 L 0.636 0.607 0.596 0.599 0.604 0.604 
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Figure 5.1. Overall Mean Squared Distance for the Action-Sampling Equilibria with
Different Sample Sizes (cf. SC Figure 9).

by Figure 5.2, which shows data averages and model predictions and parallels Figure

8 in SC. Using an “ocular metric” suggests that the predictions of the alternative

models are remarkably close to each other and to the data averages. To quantify this

we also computed the sample variance and theory-specific variance as in SC, which

are shown in Figure 5.3 (cf. Figure 12 in SC).

Following SC, it is useful to evaluate the stationary concepts using data from

the first 100 periods and final 100 periods, see their Figure 13. The correction can

be found in Figure 5.4, which displays the theory-specific variances for the different

concepts (excluding Nash) by blocks of 100 periods and for all 200 periods. Note

that impulse-balance equilibrium is the best model in the first 100 periods and the

worst in the second 100 periods. Furthermore, compared to its overall performance,

impulse-balance equilibrium predicts 30% worse in the first 100 periods and 14%

worse in the final 100 periods. In contrast, the other concepts do better in the final

100 periods compared to the first 100 periods (or all 200 periods), and outperform

impulse-balance equilibrium in the final 100 periods.

To test for significant differences, SC report ten pairwise comparisons of the 5
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different models based on the Wilcoxon matched-pairs signed-rank test. Each model

generates a squared deviation (between observed and predicted frequencies) for each

game, and the Wilcoxon test is applied to the differences in these squared deviations,

treating each session as an independent observation. As noted by a referee, the

Wilcoxon test assumes that the distributions of these differences have the same shape,

which is not necessarily true in the data. The Kolmogorov–Smirnov test relaxes this

assumption, and when we apply it to the ten different pairs of models, we cannot

reject the null hypothesis of identical distributions except when comparing action

sampling and impulse-balance equilibrium (5% level) and when comparing any of the

non-Nash models with Nash. These results are corroborated using a robust rank-order

test (Fligner and Policello 1981). This test also relaxes the assumption of identical

shape and only requires both distributions to be symmetric. We find that none of
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Table 5.2. P-Values in Favor of Row Concepts, 2-Tailed Matched-Pairs Wilcoxon
Signed-Rank Tests, n = 108 (Rounded to the Next Higher Level Among
0.1 Percent, 0.2 Percent, 0.5 Percent, 1 Percent, 2 Percent and 10 Per-
cent).

  

Action-

sampling 

equilibrium 

Payoff-

sampling 

equilibrium 

Quantal 

response 

equilibrium 

Impulse 

balance 

equilibrium 

Nash 

equilibrium 

 n.s. 2 percent n.s. 0.1 percent 

  10 percent 5 percent 0.1 percent 
Action-

sampling 

equilibrium  n.s. 10 percent  0.1 percent 

  5 percent n.s. 0.1 percent 

n.s.  0.1 percent 0.1 percent 0.1 percent 
Payoff-

sampling 

equilibrium     0.1 percent 

   n.s. 0.1 percent 

   0.1 percent 0.1 percent 
Quantal 

response 

equilibrium  n.s.   1 percent 

    0.1 percent 

    0.1 percent 
Impulse balance 

equilibrium 

 n.s. 5 percent 0.5 percent  0.1 percent 

Above: All 108 Experiments; Middle: 72 Constant-Sum Game Experiments; Below: 36 

Non-Constant Sum Game Experiments. 

 

the pairwise comparisons are significant except when comparing Nash to any of the

non-Nash models. For completeness, Table 5.2 reproduces SC’s pairwise comparisons

using the Wilcoxon matched-pairs signed-rank test (see their Table 3): the entries

display rounded p-values for 2-tailed tests. Combined, the various statistical tests

confirm the “no difference” result suggested by Figure 5.3, there is no clear ranking

among 4 of the stationary concepts, except that that all 4 models always do better

than Nash.

To summarize, the SC design does not differentiate well among the stationary

concepts they consider. As noted in the Introduction, an extension to games which

do differentiate well across concepts is therefore of interest in addressing the central

point of the SC paper.
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5.3 Differentiating Stationary Concepts in Other

Data Sets

5.3.1 A Matching Pennies Game with Safe and Risky Choices

Goeree et al. (2003) designed the game in the left panel of Figure 5.5 to illustrate the

limitations of QRE in terms of explaining behavior when other factors, such as risk

aversion, are likely to play a role. In particular, both players have a “safe” choice that

rewards either 160 or 200 and a “risky” choice that rewards either 10 or 370. Goeree

et al. (2003) prove that in any quantal response equilibrium (logit or otherwise),

the column player’s probability of playing Right is greater than 0.5. Risk aversion,

however, will naturally steer players towards the safer option of playing Left.

In the experiment, the aggregate choice frequencies were 65% for Left and 47%

for Up, which contradicts QRE predictions. To compute the impulse-balance equi-

librium of the game, note that the max-min payoff is 160 for both players. Sub-

tracting 160 from all payoffs and multiplying by 2 if the resulting number is negative

yields the transformed game in the right panel of Figure 5.5. The condition that,

for both players, the expected impulses even out yields: 300 pD qR = 170 pU qL and

300 pU qR = 170 pD qL, which implies that pU=1
2

and qL = 30
47
≈ 0.64. impulse-balance

equilibrium fits almost perfectly!

 Left Right   Left Right 

Up 200, 160 160, 10  Up 40, 0 0, -300 

Down 370, 200 10, 370  Down 210, 40 -300, 210 
       

 
Figure 5.5. A Matching Pennies Game with “Safe” (200/160) and “Risky” (370/10)

Choices (Left) and the Transformed Game (Right).

However, it is important to point out the importance of the loss aversion that is

built into the impulse-balance equilibrium concept. If losses and gains were weighed

equally, the relevant conditions would be: 150 pD qR = 170 pU qL and 150 pU qR =

170 pD qL, which implies that pU=1
2

and qL = 15
32
≈ 0.47. In other words, without

loss aversion, the impulse-balance equilibrium predictions are on the wrong side of
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Figure 5.6. Theory-Specific Mean-Squared Distances for Game 4 from Goeree et al.
(2003) for Models with and without Loss Aversion.

0.5 just like the risk-neutral QRE predictions reported by Goeree et al. (2003). The

rightmost bars in Figure 5.6 show the theory-specific mean-squared deviations for

impulse balance, with and without loss aversion. The other pairs of bars display

the analogous results for Nash and non-Nash models. The latter do slightly better

than impulse-balance equilibrium once they are also augmented with loss aversion

(weighing losses twice as much as gains). Clearly, it is the loss aversion assumption

that drives the goodness of fit for this game.

5.3.2 Asymmetric Matching Pennies Games

A second test of the stationary concepts is provided by the experiments of McKelvey

et al. (2000). They used games with an “asymmetric matching pennies” structure

(Ochs, 1995), shown in Figure 5.7. The Row player earns a positive amount if the

players match on “Heads” or “Tails” (and then the Column player earns nothing),

or the Column player earns a positive amount if the players mismatch (and then the
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Row player earns nothing). McKelvey et al. (2000) consider 4 related games: in

game A, X = 9; in game D, X = 4; game B payoffs are the same as game A’s except

Column payoffs are multiplied by 4; game C payoffs are the same as game A’s except

all payoffs are multiplied by 4.

 Heads Tails 

Heads X, 0 0, 1 

Tails 0, 1 1, 0 
   

 
Figure 5.7. An Asymmetric Matching Pennies Game.

To compute the impulse balance equilibria for these games note that the max-min

payoff is 0 for both players (as is the second-lowest payoff) so the transformed games

are equivalent to the original games. A simple calculation shows that for the game

in Figure 5.7, the impulse-balance equilibrium predictions for the Row and Column

players are5

pH =

√
X

1 +
√
X
, qH =

1

1 +
√
X
. (5.1)

Since multiplicative factors drop out of the impulse-balance equilibrium calculations,

the predictions for games A, B, and C are identical: pH = 0.75 for Row and qH = 0.25

for Column, while for game D we have pH = 0.67 for Row and qH = 0.33 for Column.

The aggregate choice frequencies observed in the experiments are shown in Ta-

ble 5.3 together with the predictions of the 5 stationary concepts as well as parame-

ter estimates. We apply the same tests that we applied to the SC data to establish

whether there are any significant differences in terms of goodness of fit. For that

purpose, we compute the mean squared deviation separately for each one of 16 ex-

5Interestingly, the predictions in (5.1) are identical to those obtained from a “Luce”-type quantal
response equilibrium where choice probabilities are proportional to expected payoffs, e.g.,

pH =
πRH

πRH + πRT
, qH =

πCH
πCH + πCT

.

The expected payoffs on the right side depend on the choice probabilities: πRH = qHX, πRT = 1− qH
and πCH = 1− pH , πCT = pH . It is straightforward to show the fixed-point probabilities are those in
(5.1).
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Table 5.3. 5 Stationary Concepts Together with the Observed Relative Frequencies
for Each of the Experimental Games in McKelvey et al. (2000). Note: λ
is the logit precision parameter, n is the optimal sampling size for action
or payoff sampling.

    Nash 

QRE 

(  = 5.35) 

Action-

sampling 

(n=3) 

Payoff-

sampling 

(n=3) 

Impulse 

Balance 

Observed 

average n 

Game A U 0.500 0.691 0.643 0.625 0.750 0.643 6 

 L 0.100 0.115 0.291 0.276 0.250 0.241  

Game B U 0.500 0.550 0.643 0.625 0.750 0.630 4 

 L 0.100 0.104 0.291 0.276 0.250 0.244  

Game C U 0.500 0.551 0.643 0.625 0.750 0.594 4 

 L 0.100 0.101 0.291 0.276 0.250 0.257  

Game D U 0.500 0.619 0.643 0.625 0.667 0.550 2 

 L 0.200 0.218 0.291 0.276 0.333 0.328  

MSD  0.039 0.028 0.011 0.010 0.023   

 

perimental games.6

Table 5.4 contains the p-values of these pairwise comparisons. For each pairwise

comparison, we run a Kolmogorov-Smirnov test (KS), a robust rank order test (FP)

and a Wilcoxon matched-pairs signed-rank test (W). Both payoff sampling and action

sampling perform substantially better than any of the other equilibrium concepts.

Moreover, impulse balance and QRE yield a significantly better fit than the Nash

equilibrium.

5.4 Conclusion

Correcting for errors in estimating 2 of the 5 stationary concepts SC compare, QRE

and action-sampling equilibrium, we find that their design does not differentiate

among the non-Nash stationary concepts that were considered. They also suggest

it is desirable to create games which discriminate among these non-Nash theories, a

direction we pursue. We first compare the fit of the 5 stationary concepts on a 2× 2

game with a risky and a safe choice (game 4 from Goeree et al., 2003) and find that

6McKelvey et al. 2000 run 2 different games within each session. We treat each one of these 2
games as an independent observation even though the same subjects participate in both games.
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Table 5.4. P-Values in Favor of Row Concepts for Pairwise Tests on the McKelvey
et al. 2000 Data. Column “KS” contains p-values of a Kolmogorov-
Smirnov test, “FP” p-values of a robust rank-order test (Fligner and
Policello 1982) and column “W” p-values of a Wilcoxon matched-pairs
signed-rank test, n = 16.

  

Action-sampling 

equilibrium 

Impulse balance 

equilibrium 

Quantal response 

equilibrium Nash equilibrium 

 KS FP W KS FP W KS FP W KS FP W 

Payoff-sampling 

equilibrium 0.91 0.64 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Action-sampling 

equilibrium    0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Impulse balance 

equilibrium       0.91 0.58 0.23 0.02 0.00 0.02 

Quantal response 

equilibrium                   0.07 0.03 0.00 

 

the impulse-balance equilibrium fits particularly well. It turns out that this superior

fit is due to the hardwired loss aversion that characterizes impulse balance. When

we incorporate loss aversion in the other non-Nash concepts, their fit is even slightly

better than the fit of the impulse-balance equilibrium. Asymmetric matching pennies

games in which loss aversion plays no role (games A-D from McKelvey et al. 2000)

also allow us to discriminate among the 5 equilibrium concepts. We find that action

sampling and payoff sampling fit significantly better than any of the other models

while all models fit better than the Nash equilibrium.

While we do find differences in goodness of fit between the models we compare,

they also share similar features. For some games, impulse-balance equilibrium co-

incides with a specific QRE model (see footnote 5). Furthermore, by varying the

sample size in the action-sampling equilibrium from 1 to infinity, the implied behav-

ior ranges from purely random to Nash behavior in the 2 × 2 games studied here.

This is akin to varying the precision parameter in a QRE model. Both models trace

out a 1-dimensional curve in the 2-dimensional unit square corresponding to players’

choice probabilities, and payoff-sampling yields yet another such curve. Evaluating

theories via a simple horse race is simply asking which of these curves comes closest

to the observed data points. However, the value of the models we compare cannot be
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measured by their goodness of fit alone. Other considerations such as their analytical

tractability or their theoretical appeal are also important. Moreover, further research

is needed in order to establish how well these models can explain behavior in other

types of games.
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Appendix A

Appendix to Chapter 2

A.1 Treatment Sequence No-Cascade Periods
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Figure A.1. Prices in Treatment Sequence no-Cascade Periods. The size of the dots
is proportional to the number of units exchanged. The line corresponds
to the expected value of the asset given all private signals.
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A.2 Treatment Baseline No-Cascade Periods
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Figure A.2. Prices in Treatment Baseline no-Cascade Periods. The size of the dots
is proportional to the number of units exchanged. The line corresponds
to the expected value of the asset given all private signals.

A.3 Instructions for Treatment Baseline

The instructions for all treatments were presented as a powerpoint-presentation. The

first 10 slides explain how the market works and each subsection corresponds to a slide.

The last 10 slides describe the user interface and for that part of the instructions,

each figure (figures A.4 – figure A.13) corresponds to a slide.

A.3.1 Welcome to SSEL

• Welcome and thank you for participating in today’s experiment.
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• Today’s experiment will involve a series of markets. At the end of the experiment

you will be paid in cash for your participation. Each of you may earn different

amounts. The amount you earn depends on your decisions, chance, and on the

decisions of others.

• You will be using the computer for the entire experiment, and all interaction

between you and others will be through computer terminals. Please DO NOT

socialize or talk during the experiment.

• If you have any questions, raise your hand and your question will be answered

so everyone can hear.

• Please do not use any programs unrelated to the experiment.

A.3.2 Markets, Commodities, and Traders

• The experiment consists of a series of 7 market periods. Each period lasts 2.5

minutes during which you can submit as many bids and asks as you want.

• In each period, you will be in a group of 8 traders.

• In each period, one commodity labeled A will be traded.

A.3.3 Common Value

• The value of the commodity A is the same for all traders.

• This common value is either 0 or 100 points, each number being equally likely.

Imagine we flip a fair coin in each market period to determine the common

value of commodity A.

• Traders will NOT know the value of A at the time of trading. Instead, each

trader receives a common-value signal (CVS) about the commodity’s common

value at the beginning of each period.
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A.3.4 Common Value Signal I

• The common-value signal (CVS) is either 0 or 100. It can be either strong or

weak.

– If you receive a strong CVS, your signal corresponds to the actual common

value with probability 0.8.

– If you receive a weak CVS, your signal corresponds to the true common

value with probability 0.6.

– Each CVS is equally likely to be strong or weak. You will be told whether

your signal is strong or weak.

• Each trader receives exactly one common-value signal at the beginning of each

market period. You can only see your own CVS, not the signals of other traders.

• Common-value signals are independent across traders and periods.

A.3.5 Common Value Signal II

This slide graphically explains how the CVS is determined and consists of figure A.3.
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Figure A.3. Drawing Signals.

A.3.6 Making Profits from Trades

• Traders make money by buying or selling commodities.

– Your profit from a purchase is simply: common value - price you pay.

– Your profit from a sale is simply: price you get paid - common value.

• In other words, you make money by BUYING BELOW THE COMMON VALUE

and/or by

• SELLING ABOVE THE COMMON VALUE.

A.3.7 Maximum Number of Units

• You will start with 5 units of A and you have values for at most 10 units of A.
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• In other words, if you hold more than 10 units of A, the additional units will

be worthless to you even though you paid for them—so buying additional units

results in a loss!

• You will not be able to sell more units than you currently hold. In other words,

short sales are not allowed.

A.3.8 Market Prices

Whenever someone submits a new order, the computer checks if it can transact orders.

Here’s an example:

• Trader 1 bids 10 for A

• Trader 2 bids 65 for A (*)

• Trader 3 asks 35 for A (*)

• Trader 2 asks 55 for A

Here the orders with a (*) transact. The transaction price will be 50, that is

halfway between the best ask price (35) and the best bid price (65).

A.3.9 Summary

• The experiment consists of a series of 7 market periods preceded by 1 practice

period that does not affect earnings.

• Each period lasts 2.5 minutes, and you can submit as many bids/asks as you

want during that time. After each submission the computer checks which orders

can transact and determines corresponding prices.

• A trader’s profit is simply:

– common value - price paid when a unit of A is bought

– price received - common value when a unit of A is sold.
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• In other words, you make money by buying below the common value or by

selling above the common value.

• Traders have values for at most 10 units of commodity A.

A.3.10 Concluding Remarks

• The exchange rate used in the experiment is 100 points for $1.

• You also receive a $5 participation fee.

• You will be paid at the end of the experiment the total amount you have earned

in all of the periods. You need not tell any other participant how much you

earned.

12

 

Your Screen

Market Period

Time left

Cash Endowment
The initial cash

endowment is
borrowed and has
to be paid back at
the end of the
period.

Commodity
information

Figure A.4. Your Screen.
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Submitting Orders
How to place Orders:

1. Highlight row

2. Click on the “Buy”
or “Sell” button

3. Click on the “Price”
field to raise price

5. If you want to
submit multiple
copies of the same
order, click on the
#Orders field and
raise the spinner

6. Click “Submit
Order”

Figure A.5. Submitting Orders.

A.4 Instructions for Treatment Sequence

The instructions for treatment sequence are identical to the instructions for treatment

baseline except for the description of the common value signal. The slide “common

value signal I” is slightly different and there is one extra slide (common value signal

III).

A.4.1 Common Value Signal I

• The common-value signal (CVS) is either 0 or 100. It can be either strong or

weak.

– If you receive a strong CVS, your signal corresponds to the actual common

value with probability 0.8.

– If you receive a weak CVS, your signal corresponds to the true common

value with probability 0.6.
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Your Screen: Updated Info

1. If you sell
commodities,
your cash
increases…

2. …and your
holdings
decrease

3. This shows market
transactions

Figure A.6. Your Screen: Updated Info.

– Each CVS is equally likely to be strong or weak. You will be told whether

your signal is strong or weak.

• Each trader receives exactly one common-value signal. Common-value signals

are independent across traders and periods.

A.4.2 Common Value Signal III

• In each period, each trader receives exactly one common-value signal. However,

different traders receive their signal at different times. Trader 1 receives his

signal at the beginning of the market period. Trader 2 receives his signal 30

seconds after the beginning of the market period. Every 30 seconds, another

trader receives his common-value signal. After the last trader (trader 8) received

his signal, you have 2.5 minutes to trade before the market closes. Therefore,

one period lasts 6 minutes.
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Accepting Standing Orders
This shows all standing

orders

If you like one of the
standing orders you
can simply click on it
and the order is
inserted in the Order
Basket.

Warning: you should
double check the order
when it appears in your
basket to see if it is
really what you want.
Also, you should
always check
    #Orders

       before submitting!

Figure A.7. Accepting Standing Orders.

• In each market period, your position is randomly determined. Therefore, the

point of time at which you receive your common-value signal is likely to change

from one period to the next.

• You will only see your own common value signal but not other traders’ signals.

• You will be able to see the ID number of the trader for each bid/ask submitted.

Therefore, you will always know whether the person who submitted a certain

order has already received his common-value signal.
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Withdrawing Orders

If you don’t like one of
your own standing
orders then simply
right click on it.

A box will appear.
Click on it.

Figure A.8. Withdrawing Orders I.

17

 

Withdrawing Orders

Your order will be
crossed out.

You still have to click
“Submit Order” to
cancel your order.

Warning: If you already
have all the units you
desire, you should
withdraw all standing
buy orders that you
have.  Otherwise, if
someone else
accepts your
standing buy order
you end up with more
units than you want.

Figure A.9. Withdrawing Orders II.
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Sorting Standing Orders
To find your way through

the Standing Orders
you can click on ANY
of the column
headings, which will
then be SORTED (you
can reverse sort by
clicking again).

Figure A.10. Sorting Standing Orders.
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Filtering Standing Orders

To find your way
through the
Standing Orders
you can also
FILTER

For example, if you are
interested in selling
you can filter on
“Bid” to see only
buy orders

To undo filtering and
see all standing
orders you have to
select the blank
option for the filter.

Figure A.11. Filtering Standing Orders.
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End of Period Feedback

After the period
ended:

1. Units bought/sold
and final
holdings

2. Your total amount
of cash, total
value of your
holdings, and
net earnings

3. These net
earnings are
added to any
previous
earnings.

Figure A.12. End of Period Feedback.

21

Summary

- Open orders are shown under “standing orders”
- When orders transact they are shown under “market transactions”
- To quickly find the best order you can filter/sort orders
- If you submit multiple copies of an order, some, none, or all may

transact
- You can withdraw own orders (right click and then submit)
- You can accept others’ orders (click on them and then submit)

Figure A.13. Summary.



109

Appendix B

Appendix to Chapter 3

B.1 Instructions for Treatment Sequence

All experiments reported in chapter 3 were conducted without computers. Instead,

subjects wrote down their decisions on a piece of paper. The instructions were pre-

sented in the form of a powerpoint-presentation and subjects were able to ask ques-

tions both during and after the presentation. The following is the text used in the

presentation. There was a total number of 9 slides (one per subsection). The in-

structions for sessions with different values of q (the probability that a subject was

informed) were identical.

B.1.1 Welcome to SSEL

• Welcome and thank you for participating in today’s experiment.

• Place all of your personal belongings away, so we can have your complete at-

tention.

• In today’s experiment, you will not use a computer. Instead, you will write

down all of your decisions on paper forms.

• You will make a total number of 10 decisions. For each correct decision, you

will earn $4. You will be paid in cash at the end of the experiment.
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• Please do not talk during the experiment. If you have a question, raise your

hand.

B.1.2 The Correct Option

In each one of 10 identical periods, you will choose among two options, cross (+) and

circle (◦). One of these two options is the “correct” option. If you choose the correct

option, you receive $4, otherwise, you receive nothing in that period.

For each period, we flipped a fair coin to determine whether ◦ or + is the correct

option. Therefore, in each period, both + and ◦ have an equal chance of being the

correct option.

B.1.3 Sequential Guessing

You will guess what the correct option is one after another. The order in which you

make your guesses is determined randomly using the following procedure: Each one

of you has been assigned an ID number (at the top of your record sheet). An urn

contains each one of these numbers exactly once. To decide who goes first, we draw

a number from the urn. To decide who goes second, we again draw a number from

the urn without replacing the number of the person who guessed first. This process

is repeated until there are no numbers left.

 

2 

1 

7 6 4 5 

1 6 
3 2 5 4 7 

Figure B.1. Urn Representation.
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B.1.4 Your Information I

When it is your turn to guess, we will randomly determine whether you are told what

the correct option is or not. The probability that you are told what the correct option

is is 0.2. In other words, you can imagine that we rolled a 5-sided die separately for

each one of you in each period to determine whether you are told what the correct

option is.

B.1.5 Your Information II

No matter whether you are told what the correct option is or not, you will always be

told what your predecessors’ decisions were.

For example, suppose the first decision maker chooses ◦, the second chooses +

and the third chooses ◦. If you are the forth decision maker, you will be shown the

following table:

 

Period 1 1  2  3 4 5 6 7 
 

Guess 
  +      

 

Figure B.2. Information Given to Subjects in Treatment Sequence.

B.1.6 Summary

• + and ◦ have an equal chance of being the correct option.

• You will guess what the correct option is in a randomly determined sequence.

• With probability 0.2, you are told what the correct option is.

• You can see what your predecessors guessed.

• There are 10 periods. In each period, you receive $4 for correctly guessing what

the correct option is.
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• There will be no practice period. Please raise your hand if you have a question.

B.1.7 Keeping Track I

You all received an earnings sheet. Your ID number is indicated at the top. In each

period,

• you record your position

• we record whether you are told what the correct option is

• and if so what it is

• you record your guess

• you record what the correct option was

• you record your earnings for the period

After the last period, please add up your earnings and also add $5 show-up fee.

B.1.8 Keeping Track II

This slide explains how subjects were supposed to keep records and consisted of figure

B.3.

B.1.9 Concluding Remarks

For each correct decision, you will receive $4. In addition to that, you will receive a

$5 show-up fee.

You will be paid at the end of the experiment the total amount you have earned.

You need not tell any other participant how much you earned.

To ensure your privacy and that of others in the experiment, please pull out the

dividers as far as they will go.
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ID: 7 
Period  Position  Correct Option  Guess  Correct Option  Earnings  
1  _    
2  -    
3  -    
4  -    
5  -    
6  -    
7  -    
8  -    
9  +    
10  -    
Show-up Fee  $5.00  
Total   
 

We record 
-    if you don’t know what the correct option is 
+   if the correct option is + 
○   if the correct option is ○ 

Figure B.3. Record Sheet.

B.2 Instructions for Treatment No-Sequence

The instructions for treatment no-sequence were identical to the instructions for treat-

ment sequence with the exception of slides 5 (Your Information II) and 6 (Summary).

Therefore, we only reproduce these two slides.

B.2.1 Your information II

No matter whether you are told what the correct option is or not, you will always

be told how many of your predecessors chose + and how many of your predecessors

chose ◦.

For example, suppose the first participant chooses ◦, the second chooses + and



114

the third chooses ◦. If you are the fourth participant to guess the correct option, you

will be told that 2 of your predecessors chose ◦ and 1 of your predecessors chose +.

 

Figure B.4. Information Given to Subjects in Treatment No-Sequence.

B.2.2 Summary

• + and ◦ have an equal chance of being the correct option.

• You will guess what the correct option is in a randomly determined sequence.

• With probability 0.2, you are told what the correct option is.

• You can see how many of your predecessors chose ◦ and how many of your

predecessors chose +.

• There are 10 periods. In each period, you receive $4 for correctly guessing what

the correct option is.

• There will be no practice period. Please raise your hand if you have a question.
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Appendix C

Appendix to Chapter 4

C.1 Rules for the Simultaneous Multi-Round (SMR)

Auctions

Rounds and bid structure. All licenses are put up for bid simultaneously, and partici-

pants may only submit bids on individual licenses. The auction consists of successive

rounds in which participants may place bids. Following each round, the high bid

for each license is posted. These high bids then become the standing bids for the

subsequent round.

Acceptable bids. In the first round, an acceptable bid must be equal to or exceed

the initial price of 0 by 5 points (each point equaled 40 cents in the experiment).

Subsequently, in order to be acceptable, a bid must exceed the provisionally winning

bid for the license by at least 5 points. Bidders are given the choice of making one of

eight incrementally higher bids (in 5-point increments).

Bid withdrawal. Each bidder has at most 2 rounds in which they are permitted

to withdraw any of their provisionally winning bids. After the withdrawal, the seller

becomes the provisionally winning bidder for the withdrawn license and the minimum

acceptable bid in the following round equals the second highest bid received on the

license, which may be less than or equal to (in the case of tied bids) the amount of

the withdrawn bid. A withdrawing bidder pays a penalty equal to the maximum of

zero or the difference between the price at which the bidder withdrew its bid and the
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final sale price in the current auction. If the license goes unsold, the bidder would

normally be responsible for paying the difference between the withdrawn bid and

the sale price in a subsequent auction, plus a small percentage penalty of 3%. In

the experiment, there is no subsequent auction, so these penalties for the case of an

unsold license were implemented by requiring that the bidder pay a penalty of 25%

of the withdrawn bid.

Bidding eligibility and activity. Each license in the experiment is assigned one

bidding unit. The total number of bidding units available to the bidder establishes

the bidder’s maximum eligibility to bid. National bidders begin each auction with 6

activity units and regional bidders begin with 3. In each round, a bidder’s activity

is calculated as the number of licenses for which that bidder is a provisional winner,

plus the number of licenses for which acceptable bids are submitted. If a bidder’s

activity falls below the bidder’s current activity limit, that limit is reduced to equal

the bidder’s actual activity. There were no activity rule wavers in the experiment,

so a reduction in activity would put an upper limit on the bidder’s activity for all

subsequent rounds of that auction.

End of round feedback. At the end of each round, bidders receive information

on all provisionally winning bids, withdrawn bids, and the corresponding bidder ID

numbers. Bidders also see the sum of their own values for the licenses that they are

provisionally winning and prices that would be paid for the licenses if the auction had

ended.

Closing rule. The auction closes after any round in which no new bids were placed

and no bids were withdrawn. In this case provisionally winning bids become winning

bids that are used to calculate auction earnings. The experiment did not allow for

defaults on payments, so gains were added to cumulative earnings and losses were

subtracted.
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C.2 Rules for Resource Allocation Design (RAD)

Pricing (in Bold) and the Simultaneous Multi-

Round Auction with Package Bidding (SM-

RPB) (in Italics)

Rounds and bid structure. This is a simultaneous, multi-round auction in which par-

ticipants may submit one or more bids on individual licenses or on combinations of

licenses (packages). Provisionally winning bids are calculated by maximizing seller

revenue for the round, using all current and past bids. (SMRPB: Bids have an exclu-

sive XOR structure in the sense that each bidder can have at most one provisionally

winning bid.)

Acceptable bids. In the first round, an acceptable bid must be equal to or exceed

the minimum opening bid of 0 by 5 points for each license, or by 5 points times the

number of licenses in a package. After each subsequent round, prices are calculated

for each license on the basis of bids received in the previous round. The pricing rule,

as specified in Appendix D of the Experiment Design Report, calculates prices that

reflect (as closely as possible) the marginal sales revenue of each license based on

bids received. Prices for packages are the given by the sum of the prices for each

license in the package. In order to be acceptable, a bid must exceed the price of a

license or package at least 5 points times the number of licenses covered by the bid.

Bidders are given the choice of making one of eight incrementally higher bids (in

5-point increments).

Bidding eligibility and activity. Each license in the experiment is assigned one

bidding unit. The total number of bidding units available to the bidder establishes

the bidder’s maximum eligibility to bid (3 for regional bidders and 6 for national

bidders). (RAD: In each round, a bidder’s activity is calculated as the

number of different licenses for which that bidder is a provisional winner

or for which that bidder places a bid, either singly or as part of a package.)

(SMRPB: In each round, a bidder’s activity is calculated as the maximum of (1) the
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size of the largest package the bidder is provisionally winning and (2) the size of the

largest package the bidder is bidding for.) If a bidder’s activity falls below the bidder’s

current activity limit, that limit is reduced to equal the bidder’s actual activity. There

were no activity rule wavers in the experiment, so a reduction in activity would put

an upper limit on the bidder’s activity for all subsequent rounds of that auction.

End of round feedback. At the end of each round, bidders receive information

on all provisionally winning bids (for licenses and packages) and the corresponding

bidder ID numbers. Bidders also see the prices for all licenses, the sum of their own

values for the licenses and packages that they are provisionally winning, and the sum

of prices that would be paid for those licenses and packages if the auction had ended.

Closing rule. The auction closes after any round in which no new bids were placed.

In this case provisionally winning bids become winning bids that are used to calculate

auction earnings. The experiment did not allow for defaults on payments, so gains

were added to cumulative earnings and losses were subtracted.

C.3 Rules for the Combinatorial Clock (CC)

Rounds and bid structure. This is a simultaneous, multi-round auction in which par-

ticipants may submit one or more bids on individual licenses or on combinations

of licenses (packages). Submitted bids stay active until they are removed (just as

provisionally winning bids in the other formats are automatically renewed).

Acceptable bids. In the first round, an acceptable bid must be equal to or exceed

the minimum opening bid of 0 by 5 points for each license, or by 5 points times the

number of licenses in a package. After each subsequent round, prices are calculated

for each license on the basis of bids received in the previous round. If a license is in

the contained in a bid made by more than one bidder (individually or as part of a

package), then the price for that license will rise by the bid increment (5), otherwise

the price does not change. For example, if one bidder is bidding on A and AB, and if

the only other bidder is bidding on B, then the price of B will increase and the price

of A will stay unchanged. Prices for packages are the given by the sum of the prices
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for each license in the package, so the price of a package can increase by at most the

product of the bid increment and the number of licenses in the package.

Bidding eligibility and activity. Each license in the experiment is assigned one

bidding unit. The total number of bidding units available to the bidder establishes

the bidder’s maximum eligibility to bid (3 for regional bidders and 6 for national

bidders). In each round, a bidder’s activity is calculated as the number of different

licenses for which that bidder places a bid, either singly or as part of a package. For

example, a regional bidder with an initial activity limit of 3 would be able to bid on

packages BC and on ABC, but not on ABC and E. If a bidder’s activity falls below

the bidder’s current activity limit, that limit is reduced to equal the bidder’s actual

activity. There were no activity rule wavers in the experiment, so a reduction in

activity would put an upper limit on the bidder’s activity for all subsequent rounds

of that auction.

End of round feedback. At the end of each round, bidders receive information

on all prices and submitted bids (for licenses and packages), with the corresponding

bidder ID numbers.

Closing rule. The auction generally closes after any round in which there is no

excess demand, i.e., no license is in the bidding basket of more than one person.

However, if there is excess supply at this point (one or more unclaimed licenses),

then a revenue maximization routine is run using all submitted bids in all rounds in

order to arrange the sale of all licenses. If the resulting allocation displaces the sole

remaining bidder for any of the licenses, the auction is restarted and the clock prices

on those licenses are raised to let those bidders have the chance to reclaim them.
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C.4 Experimental Instructions for the Simultane-

ous Multi-Round Auction with Package Bid-

ding (SMRPB)

The instructions were presented in the form of a powerpoint-presentation in all ses-

sions. The following figures (figure – figure) correspond to the slides used for the

simultaneous multi-round auction with package bidding (SMRPB). We are only dis-

playing the full set of slides for this particular auction since we used the same instruc-

tions with appropriate simplifications for all other auction formats. All other auction

formats used a different activity rule, which was described in the slides corresponding

to figures C.35 and C.36. Also, the combinatorial clock auction used a substantially

different pricing rule, which is described in the slides corresponding to figures C.37

and C.38.

1

Welcome to SSEL

Welcome and thank you for participating in today’s experiment.

Place all of your personal belongings away, so we can have your
complete attention.

It is very important that you do not touch the computer until you are
instructed to do so.  When you are told to use the computer,
please use it only as instructed.  In particular, do not attempt to
browse the web or use programs unrelated to the experiment.

Figure C.1. Slide 1.
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2

The Experiment

The experiment you will be participating in today will involve a series of
auctions.  At the end of the experiment you will be paid in cash for
your participation.  Each of you may earn different amounts.  The
amount you earn depends on your decisions, chance, and on the
decisions of others.

You will be using the computer for the entire experiment, and all
interaction between you and others will be through computer
terminals.   Please DO NOT socialize or talk during the experiment.

If you have any questions, raise your hand and your question will be
answered so everyone can hear.

Figure C.2. Slide 2.

3

Groups and Bidders

In each of the 6 periods of the experiment an auction is conducted, and
you will be in a group of 8 bidders (you and 7 others).

In each group there are 6 small bidders and 2 large bidders.

At the start of each period of the experiment you will randomly be
assigned the role of small or large bidder.

Figure C.3. Slide 3.
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4

Licenses for Sale

In each group, 12 licenses labeled A through L will be auctioned off.

Small bidders are interested in 3 licenses and large bidders are interested in 6
licenses.  In particular:

Small bidder 1 is interested in A, G and H
Small bidder 2 is interested in B, G and H
Small bidder 3 is interested in C, I and J
Small bidder 4 is interested in D, I and J
Small bidder 5 is interested in E, K and L
Small bidder 6 is interested in F, K and L

Large bidder 7 is interested in A, B, C, D, E and F
Large bidder 8 is interested in A, B, C, D, E, and F

Figure C.4. Slide 4.

5

Bidders’ Values

The screen will indicate your value for each license you are interested in.

Small bidders: the value for each license you are interested in lies between
5 and 75 points, all numbers being equally likely.

Large bidders: the value for each license you are interested in lies between
5 and 45 points, all numbers being equally likely.

You will NOT know others’ values.  You only know that others’ values for
each license lie between 5 and 75 points when they are small bidders
and between 5 and 45 points when they are large bidders (all numbers
being equally likely).

In each period, the computer randomly determines new values for every
large and small bidder.

Figure C.5. Slide 5.
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6

Small Bidders’ Values

If you win a single license then the amount of points you receive is your value for
the license.

If you win:
2 licenses then the value of every license won goes up by 12.5%
3 licenses then the value of every license won goes up by 25%

Examples: values are 10 for A, 40 for G, and 70 for H.
The value of winning both A and H is 1.125*(10+70) = 90.
The value of winning A and G and H is 1.25*(10+40+70) = 150.

Figure C.6. Slide 6.

7

Large Bidders’ Values

If you win a single license then the amount of points you receive is your value for
the license.

If you win:
2 licenses then the value of every license won goes up by 20%
3 licenses then the value of every license won goes up by 40%
4 licenses then the value of every license won goes up by 60%
5 licenses then the value of every license won goes up by 80%
6 licenses then the value of every license won goes up by 100%

Examples: values are 5 for A, 10 for B, 15 for C, 20 for D, 25 for E and 30 for F.
The value of winning both A and B is 1.2*(5+10) = 18.
The value of winning A, B, C, and D is 1.6*(5+10+15+20) = 80.
The value of winning A, B, C, D, E and F is 2*(5+10+15+20+25+30) = 210.

Figure C.7. Slide 7.
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8

Packages and Values
A package is a combination of licenses, e.g. the package JK contains licenses

J and K, the package ABCDEF contains licenses A through F etc.

A package is worth more than the sum of its parts because each license
goes up in value when more than one license is won.

At the start of every auction period, you have 60 seconds to create packages
(as explained next) and see how much they are worth.

It is very important that you use these 60 seconds to create packages!  Bidding
on a package reduces the risk of bidding high on two or more licenses and
only winning one of them.  If your bid for a package wins,  you get all
licenses in that package.  If a package bid for ABC does not win, you get
neither A nor B nor C.  The only way that you can obtain A or B or C
separately is if you have winning bids for A or for B or for C separately.

Figure C.8. Slide 8.

9

Bidder’s Screen: Values

Bidder ID (may change
from period to period)

Information Table:
Licenses you are

interested in (A,G,H)
and their values

Bidding Basket:
This is where you can

place your bids
(explained later)

History Table:
This is where everyone’s

bids appear as the
auction proceeds

Figure C.9. Slide 9.
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10

Prior to the start of each
auction (period) you
have 60 seconds to
create packages and
to place them in your
basket (although you
can also do so after
bidding begins).

How to create a package:

Highlight the relevant
rows

(Control, mouse click)

Click “Add Custom
Package”

Bidder’s Screen: Creating Packages

Figure C.10. Slide 10.

11

Bidder’s Screen: Creating Packages

The package AGH will
appear

The value is indicated
here: 181

(note that it exceeds
the sum 51+63+31
= 145)

It is easiest to create
your packages
before the bidding
starts, so that you
can see your
values for each
package.

Figure C.11. Slide 11.
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12

Periods and Rounds

In each of the 6 periods of the experiment an auction is conducted.

Each auction consists of multiple rounds: each round consists of at most 60
seconds in which bidders can submit bids on any license they are
interested in.  You can only submit bids once per round.

There will be a new round of the auction as long as one or more bidders in
your group submit a new bid.  You can speed things up by submitting your
bids early in the round.  If bidders submit late or forget to submit a
basket then the entire group may have to wait the full 60 seconds.

If prices are such that you are no longer interested in bidding you can submit
an empty basket at the start of the round or you can click the “I am out”
button.  Please keep in mind that when you click the “I am out” button, you
will no longer be able to bid in that period, that is, you will not be able to
bid in any of the remaining rounds of the auction.

Figure C.12. Slide 12.
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13

Bidder’s Screen: Periods and Rounds

Period (3rd auction)
Round (1st round

of bidding)
Time left in current

round (out of
60 seconds)

The “I am out”
button

Figure C.13. Slide 13.

14

Bids and Bid Increments

New bids have to improve on the current price for a license by a minimum of
5 points.

New bids have to improve on the current price for a package by a minimum
of 5 points times the number of licenses in the package.

The software automatically adds a bid increment of 5 points to the current
price when you move a license to your bidding basket, and it adds 5
points times the number of licenses when a package is moved to the
basket.

Once the license or package is in your basket, you can further raise your bid
by clicking on its price.

Figure C.14. Slide 14.
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Bidder’s Screen: Submitting Bids

How to Bid:
1. Click on license or

package row

2. Click on the “Add”
button

 (Increment of 5 points
times the number of
licenses in package is
automatically added)

Figure C.15. Slide 15.
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Bidder’s Screen: Submitting Bids

How to Bid:

1. Click on license or
package row

2. Click on the “Add”
button

3. Click on the “Price”
field to raise bid

Figure C.16. Slide 16.
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Bidder’s Screen: Submitting Bids

How to Bid:

1. Click on license’s row

2. Click on the “Add”
button

3. Click on the “Price”
field to raise bid

4. Once all desired bids
are in the basket
click “Submit”

Please Note: Since you
only submit bids
once per round, be
sure that you have
placed all desired
bids in the basket
before pressing
“Submit”.

Figure C.17. Slide 17.
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Provisional Winners

At the end of each round (after bids are submitted or time runs out), the
computer calculates the combination of winning bids that would maximize
the sales revenue for all licenses combined (more details given later). Ties
are broken by a random choice between the tied bidders.

The winning bids are announced as “provisional winners” for the round.

In the final round (when no bids are submitted), the provisional winning bids
become the final sales prices for each license.  Only these final bids are
used to calculate earnings for the auction (period).

Figure C.18. Slide 18.
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Winning Bids

At most 1 bid in your bidding basket can be a winning bid!

If you want to win license J or license K or both then you have to make a bid on
J, and a bid on K, and a bid on JK.  If you make only a bid on J and a bid on
K, you may win J or you may win K but not both!  If you only bid for the
package JK then you may win this package but never J or K separately.

Similarly, if you are interested in licenses A, B, C, and D, and possible
combinations then you will have to make bids on all these licenses and
combinations!  If you make only bids on A, B, C, and D then you may win
one of them but never more than one.  If you make only a bid on the
package ABCD then you may win this package but never any subset of it.

Figure C.19. Slide 19.
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Winning Bids

Once everyone has submitted their baskets the program computes who wins
which licenses or packages.  The winning bids are found by maximizing
the total amount paid for the licenses (the seller’s revenue).

Suppose for example that the following three bids were submitted:
50 for A
25 for BC
120 for ABC

Then the bid of 120 for ABC is provisionally winning since the seller receives
more money by selling the package ABC at 120 than by selling license A
for 50 and the package BC for 25.

Figure C.20. Slide 20.
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Next Round’s Prices

Besides determining the winners, the program also computes prices for the
licenses that are needed for bidding in the next round.

Example 1: Suppose bids are
60 for A
20 for B
30 for C

Then the prices are simply 60 for A, 20 for B, and 30 for C.  Note that, in
this case, the prices plus increments are the amounts needed for
another bidder to displace a provisional winner.

Figure C.21. Slide 21.
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Next Round’s Prices

Example 2: Suppose bids are
60 for A
50 for C
120 for ABC

The provisional winning bid is 120 for the package ABC and the prices
are 60 for A, 10 for B, and 50 for C.

This way the
- prices sum up to the winning bid for ABC of 120
- price for A is no less than 60
- price for C is no less than 50

Figure C.22. Slide 22.
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Next Round’s Prices

Example 3: Suppose bids are
100 for AB
100 for BC
100 for AC
120 for ABC

Again, the bid of 120 for ABC would be provisionally winning since there is no way
to allocate licenses in a manner that generates a sales revenue above 120. In
this case, the computer would assign prices of 40 for A, 40 for B, and 40 for C.

Now it is impossible for the three prices to sum up to 120 and for any pair of prices
to sum up to at least 100.  In this case, the program computes prices that come
as close as possible.

So your bid may exceed the minimum price and yet not be winning, and in this
sense, prices may only provide a rough idea of how high one must bid to “get
into the action” for a particular license or package.

Figure C.23. Slide 23.
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Next Round’s Prices

Example 3 (continued): Suppose bids are
100 for AB
100 for BC
100 for AC
120 for ABC

The computer assigns prices of 40 for A, 40 for B, and 40 for C.

Note that in this case the minimum bids for the packages AB, BC, and AC would be
their current prices plus 2 times the bid increment = 40 + 40 + 5 + 5 = 90.
These minimum bids are lower than the bids of 100 that were submitted.

To keep prices moving upward the software will increase the bid increment on
each license (from 5 to 10 to 15 to …) after a round in which the new incoming
bids exceed the minimum bids but do not displace the current winners.

So when adding licenses or packages to your basket you may sometimes notice
that the bid increment is higher than 5.

Figure C.24. Slide 24.
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Bidder’s Screen: Feedback (round)

Information Feedback:

1. The licenses/packages
you have the high
bid for are shown in
gray.

2. This shows the total
number of points
you would receive if
you win the licenses
you are currently the
high bidder for and
how much you
would have to pay
for them.

3. This shows the history of
all bids and all
winning bids (in
gray).  The “My
History” button
limits this list to your
own bids.

Figure C.25. Slide 25.
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Activity: “Use It or Lose it”

At the start each period bidders get an activity limit equal to the number of
licenses they are interested in.

Bidders’ activity limits in a round indicate the maximum size of the packages
they can bid for.  For example, if the activity limit is 3 a bidder can bid on
ABC but not on ABCD.

Your activity limit for the next round is equal to:
 the number of licenses you are currently the provisional winner for

+ the number of licenses in the largest package you are bidding for but 
not provisionally winning

So to keep your activity you do NOT have to bid on the licenses you are already
provisionally winning.

If the number of licenses you bid on plus the number of licenses you are currently
the provisional winner for is less than your current activity then your activity
limit will drop in the next round and subsequent rounds.

Figure C.26. Slide 26.



135

27

Activity: “Use It or Lose it”

Example:
a bidder currently has an activity limit of 4 units
the bidder is provisionally winning license A
the bidder is bidding on the package BC, and on the license D

In the next round the bidder will have:
+1 activity unit for provisionally winning license A
+2 activity units for bidding on the package BC
= total of 3 activity units

This means that in the next round the bidder’s activity limit will drop to 3
meaning that the bidder can bid at most for 3 licenses

Figure C.27. Slide 27.
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Activity: “Use It or Lose it”

When you try to bid
on more licenses
than your current
activity limit
allows for, you will
get a warning
message.

Here the current
activity limit is 2,
and the bidder is
already
provisionally
winning 1 license,
so can bid only for
1 other license.

Figure C.28. Slide 28.
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Activity: “Use It or Lose it”

When you submit a
basket that will
lower your current
activity limit you
will get a warning
message.  You
have to click
“confirm” to
submit your bids
or “cancel”.

You can disable this
option if you
prefer.

Your activity limit will
always be shown
at the top.

Figure C.29. Slide 29.
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Your Earnings

Once no more bids are submitted (either all bidders submit empty baskets
or the clock ticks down with no bids made), the auction closes and your
earnings for the period are determined.  Your earnings equal the total
value of the licenses or packages you won minus the total bids you made
for them.

earnings = sum of values for licenses/packages you won
            – sum of your bids for licenses/packages you won

Figure C.30. Slide 30.
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Bidder’s Screen: Feedback (period)

After the period ended:

1. The licenses you won
show a 1; others
show a 0.

2. The total number of
points you won and
the total price you
pay for the licenses
you won are shown
here, and your net
earnings.

3. These net earnings are
added to any
previous earnings.

Figure C.31. Slide 31.
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Summary

The experiment will consist of a series of 6 auctions (“periods”), preceded by
2 practice periods that do not affect earnings.

Bidders’ interests and values are randomly regenerated at the start of each
new auction.

Each auction period consists of multiple bidding rounds, and you only submit
one set of bids per round.

Provisional winning bids are announced after each round, but these do not
affect earnings until the final round (when no bids are submitted), at which
time they become official winning bids.

Earnings (values received minus final bids paid) for each of the 6 auctions are
summed to determine your total earnings for the experiment.

Figure C.32. Slide 32.
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Ready to Begin

In a minute, the first of two practice periods will begin.  Please raise your
hand if you have any questions during these periods, and someone will
come to your position to help. These periods will not affect your earnings.

After the practice periods there will be 6 auction periods, and the number of
rounds in each is not fixed, so to speed things up, please make your
bids early in a round.  If you are not interested in raising your bids,
press “Submit Bids” with an empty basket or click on the “I am out”
button so that people do not have to wait the full 60 seconds. Please keep
in mind that when you click the “I am out” button, you will no longer be
able to bid in that period, that is, you will not be able to bid in any of the
remaining rounds of the auction.

When all bidders submit empty baskets, the auction ends and a results
screen showing your winning bids and earnings will appear.

Figure C.33. Slide 33.
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Concluding Remarks

The exchange rate used in the
experiment is $0.40 per point,
so 10 points = $4.

You will be paid at the end of the
experiment the total amount you
have earned in all of the periods
(auctions).  You need not tell any
other participant how much you
earned.

To ensure your privacy and that of
others in the experiment, please pull
out the dividers as far as they will
go.

Figure C.34. Slide 34.
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C.5 Experimental Instructions for the Activity Rule

Used in the Simultaneous Multi-Round Auc-

tion, Resource Allocation Design, and the Com-

binatorial Clock

As mentioned earlier, the instructions for all auction formats differed from SMRPB

in their description of the activity rule. The according slides are shown in figures

C.35 and C.36.

22

Activity: “Use It or Lose it”

Example:
a bidder currently has an activity limit of 4 units
the bidder is provisionally winning license A
the bidder is bidding on the licenses B and C

In the next round the bidder will have:
+1 activity unit for provisionally winning license A
+2 activity units for bidding on the licenses B and C
= total of 3 activity units

This means that in the next round the bidder’s activity limit will drop to 3
meaning that the bidder can bid at most for 3 licenses

Figure C.35. Activity Rule I.



140

23

Activity: “Use It or Lose it”

When you try to bid
on more licenses
than your current
activity limit
allows for, you will
get a warning
message.

Here the current
activity limit is 2,
and the bidder is
already
provisionally
winning 1 license,
so cannot bid on
two other licenses.

Figure C.36. Activity Rule II.

C.6 Experimental Instructions for the Pricing Rule

Used in the Combinatorial Clock Auction

In the combinatorial clock auction, prices are determined in a completely different

way than in SMRPB. Figures C.37 and C.38 correspond to the according slides.
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Prices
In the first round of an auction, prices for all licenses and packages are 0. In

the second round, the price of a license increases to 5 points if more
than one bidder has the license in his bidding basket at the end of the
first round. Otherwise, the price of the license remains the same as in the
previous round.

Prices in subsequent rounds are determined in the same manner. The price
of a license increases by 5 points if more than one bidder has the license
in his bidding basket at the end of the previous round.

Example 1:
- Bidder 1 bids for package AB and license A
- Bidder 2 bids for license B
- No further bids

Therefore, the price of license B increases by 5 points while the price for
license A remains the same. Note: If you are the only bidder bidding on a
certain license, its price will not go up even if you bid for that license
separately as well as in a package.

Figure C.37. Pricing for the Combinatorial Clock I.

19

Prices

Example 2:
- Bidder 1 bids for package AB and license C
- Bidder 2 bids for package AC
- No further bids

Therefore, the price of licenses A and C increases by 5 points while the price
of license B remains the same in the next round.

The price of a package is equal to the sum of the prices of the individual
licenses contained in the package. Therefore, in example 2, the prices
for packages ABC and AC increase by 10 points while the prices for
packages AB and BC increase by 5 points.

Figure C.38. Pricing for the Combinatorial Clock II.
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Table C.1. Efficiency, Revenue, and Profits by Auction Format.
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