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Abstract

A facility for investigating catalytic combustion and measurement of fuel molecule concentration

was built to examine catalyst candidates for inerting systems in aircraft. The facility consists of

fuel and oxygen supplies, a catalytic-bed reactor, heating system, and laser-based diagnostics. Two

supplementary systems consisting of a calibration test cell and a nitrogen-purged glove box were also

constructed. The catalyst under investigation was platinum, and it was mixed with silica particles

to increase the surface area available to react. The catalyst/silica mixture was placed in a narrow

channel section of the reactor and supported from both sides by glass wool. The fuels investigated

were n-octane and n-nonane because their vapor pressure is sufficiently high to create flammable

gaseous mixtures with atmospheric air at room temperature. Calibration experiments were per-

formed to determine the absorption cross-section of the two fuels as a function of temperature. The

cross-section values were then used to determine the fuel concentration before the flow entered the

reactor and after exposure to the heated catalyst. An initial set of experiments was performed with

the catalytic-bed reactor at two temperatures, 255 and 500◦C, to investigate pyrolysis and oxidation

of the fuel. The presence of the catalyst increased the degree of pyrolysis and oxidation at both

temperatures. The results show that catalytic modification of flammable atmospheres may yield a

viable alternative for inerting aircraft fuel tanks. However, further tests are required to produce

oxidation at sufficiently low temperature to comply with aircraft safety regulations.
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Chapter 1

Introduction

1.1 Background

A major concern in aviation safety and aircraft design is the possibility of accidental ignition of

flammable mixtures. This explosion risk can be mitigated by eliminating all sources of ignition,

which may be practically impossible, or by ensuring that the mixture composition cannot be ignited

by any source. The gas in the fuel tank ullage is one of the main concerns. For example, the National

Transport Safety Board investigation pointed out that the explosion of the center wing fuel tank

resulting from the ignition of the flammable atmosphere in the tank was the probable cause of the

TWA Flight 800 accident in 1996 (NTSB, 2000). Currently, the installation of an inert atmosphere

generation system on the fuel tank is required by the Federal Aviation Administration (FAA, 2008).

One inerting system currently in use is a hollow fiber membrane, which operates on the principle

of selective permeability creating an output flow that is highly enriched with nitrogen (Air Weekly,

2010). The output stream is directed into the fuel tank, displacing the potentially flammable mixture

in the fuel tank ullage and thereby lowering the oxygen concentration below the flammability limit.

A single unit of the hollow fiber membrane system weighs approximately 400 lbs and requires either

engine bleed air or a separate compressor for the high-pressure input into the bundle of membrane

fibers (Air Weekly, 2010). The use of engine bleed air requires a heat exchanger and ductwork

carrying air from the engine to the separation unit. These requirements stand in contrast to the

goal in current aircraft design, which aims to reduce weight and complexity by eliminating heat

exchangers and duct work by using electrical systems instead of bleed air. Hence, alternative methods

for inerting fuel tanks are in development.

One such alternative is low-temperature catalytic oxidation, which converts the flammable fuel-

air mixtures into inert products. The key idea is to use catalysts to initiate reactions between

hydrocarbon and oxygen molecules producing carbon dioxide and water vapor, which are fed back

into the fuel tank displacing the vapor in the ullage. In this manner, the overall composition in the

fuel tank is moved outside the flammability region, which is a function of the relative proportions of
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fuel, oxygen, and the inert gas such as nitrogen or carbon dioxide (Zabetakis, 1965). The range of

flammable mixtures is in fact smaller when carbon dioxide is used as the diluent instead of nitrogen.

The proposed catalytic reaction combines the effect of lowering the oxygen concentration with the

flammability reducing effect of carbon dioxide over nitrogen.

A schematic diagram of a fuel tank with the catalytic reactor is shown in Figure 1.1a. The

pressure in the fuel tank is equal to the ambient pressure outside the plane at all times. The

proposed catalytic conversion system would be installed on the aircraft connected to the fuel tanks

via supply and return lines, such that flammable gas is removed from the fuel tank ullage and

replaced by the process products.

Figure 1.1b illustrates the process of initial inerting and composition changes for a typical flight

on a standard flammability diagram (Zabetakis, 1965). Immediately after fueling the plane the

composition may be flammable and the inerting system is turned on. The amount of diluent is

increased by the catalytic conversion, which corresponds to changing the composition from the

initial point to point A in Figure 1.1b. The concentration of fuel in the vapor is only a function of

the temperature and overall pressure because the fuel consumed in the reaction is replenished from

the liquid phase. During the climb to cruise altitude it is assumed that a homogeneous mixture of the

gas in the ullage is vented so that the concentration of fuel is increased and diluent gas concentration

is decreased, as shown by point B. At this point the gas should still be non-flammable in the fuel

tank ullage. However, as the plane descends and pressure increases the mixture may return into the

flammable region before which the catalytic modification system can be re-engaged and inert the

fuel tank.
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installed to deliver the flammable gas from the fuel tank to the reactor and back to the 
tank.  The flammable gas will be pulled out from the tank and modified into non-
flammable condition through the reactor.  Then, it will return to the tank.  

Figure 1-(b) is illustrating the possible courses to be used for the fuel modification in a 
series of status of aircraft; takeoff, flight and landing.  Firstly, the ullage gas in the tank 
may be in the flammable region at the ground before takeoff as shown as a starting point.   
The gas moves to point A in non-flammable region with increased diluent gas 
concentration such as CO2 by going through the catalytic reactor.  The fuel concentration 
does not change because the vapor pressure of the fuel is constant under the fixed 
ambient pressure at an altitude.  When an aircraft is gaining altitude, the concentrations of 
fuel and diluent gas are reducing because of the decreasing of the atmospheric pressure. 
Therefore, the status of ullage gas moves to point B.  As the aircraft goes down to the 
ground for landing, the increasing of the ambient pressure forces the ullage gas to move 
to point C.  This gas should be modified again through the reactor because it is in the 
flammable region.  By reducing the fuel concentrations through the reactor, the ullage gas 
can come to the arriving point finally which is out of flammable region.  In this point, 
fuel concentration is the same as that of the starting point because they are both at the 
same altitude; the ground level.   

 

Fig. 1. Catalytic modification of flammable atmosphere in the aircraft fuel tank 
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Catalytic oxidation provides reaction pathways with lower energy barriers than conventional

oxidation processes in flames. Thus, the temperature at which the oxidation takes place is signif-

icantly lower than flame temperatures, which is are typically on the order of 2000 ◦C (Heyes and

Kolaczkowski, 1997). This technique is therefore potentially safer for use on aircraft in the fuel tank

ullage or flammable leakage zones.

1.2 Objective

The main objective of this study is to develop an evaluation methodology and test metrics for screen-

ing catalysts that can be used for low temperature oxidation of jet fuel. The initial investigation was

performed using a platinum catalyst in the laboratory using a bench-top experimental facility. The

facility consists of precisely controlled fuel and oxygen supplies, a once-through catalytic bed reactor,

a heated piping system, and laser-based diagnostics for measuring fuel concentration upstream and

downstream of the reactor. Auxiliary systems include a calibration test cell and nitrogen-purged

glove box for handling the catalyst.
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Chapter 2

Theory

2.1 Catalytic Combustion

Catalytic combustion has been widely studied to understand the effect of the catalyst on the chemical

pathways in the reactions. The catalyst promotes reaction pathways with lower energy barriers so

that the fuel is burned at lower temperatures than in conventional combustion. Therefore, catalytic

combustion is less hazardous because the system as a whole operates at significantly lower temper-

atures than in flames. Also, catalytic combustion can be achieved in fuel-oxidizer mixtures outside

of the traditional flammability limits and can readily be studied in small-scale facilities (Heyes and

Kolaczkowski, 1997).

The major products of catalytic combustion, referred to as total oxidation, are carbon dioxide

and water vapor. Energy is released in the form of heat through the following overall reaction:

2CxHy + (2x+ y/2) O2 → 2xCO2 + yH2O (2.1)

Due to the fact that the reactions occur at low temperatures, catalytic combustion produces less

nitrogen oxides than traditional combustion (Heyes and Kolaczkowski, 1997). Therefore, catalytic

combustion is a potential way to meet the increasingly strict emission regulations on industry and

transportation. The performance of catalytic combustors depends on many parameters such as

substrate structures, fuel-air ratio, catalytic material, and operating temperature.

Another reason that catalytic combustion is widely studied is that it provides a potential means

of producing hydrogen for use as a fuel or in fuel cell systems. Hydrogen is produced through the

partial oxidation reaction:

2CxHy + xO2 → 2xCO2 + yH2 (2.2)

Fuel molecules can decompose through a process called pyrolysis, in which compounds undergo

reactions without oxygen that only occur at high temperatures. The initial compound is transformed
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into smaller molecules in these reactions (Moldoveanu, 1998). Pyrolytic reaction can be promoted

by adding catalysts in what is called pyrolytic catalysis (Vasilieva et al., 1991).

Many previous studies on catalytic combustion have used methane as the fuel because methane

has been widely used in transportation and power generation. Additional interest in catalytic com-

bustion of methane has been prompted by its use in natural gas vehicles. Unburned methane in the

exhaust gases poses an explosion hazard and may contribute to the greenhouse effect (Gelin and

Primet, 2002).

2.2 Types of Catalysts

The noble metal catalysts, called the platinum group metals, have received attention for their high

activity, excellent thermal stability, and lower tendency to react with support materials in comparison

to base metals such as nickel (Ni), copper (Cu), cobalt (Co), manganese (Mn), and copper/chromium

(Cu/Cr) (Gandhi et al., 2003). Noble metals outperform base metals in aspects of catalytic com-

bustion such as intrinsic reactivity, durability, and poison resistance (Gandhi et al., 2003). In the

platinum group metals, platinum (Pt), palladium (Pd), and rhodium (Rh) are preferred because

ruthenium (Ru), iridium (Ir) and osmium (Os) all form volatile oxides which are impurities that

have to be removed in a secondary process (Gandhi et al., 2003).

2.3 Ceramic Supporter

The enhancement of catalytic reaction by ceramic particles has been reported in previous studies

[8, 9]. For methane combustion using Rh-based catalysts, the catalyst is most reactive when sup-

ported by aluminum oxide (Al2O3) and least reactive when supported by silicon dioxide (SiO2),

with titanium dioxide (TiO2) being an intermediate ceramic. In addition to enhancing the reactiv-

ity, ceramics can also be used as a structural support. The ceramic provides a surface for spreading

out the catalyst and thus increasing the surface area for reaction. Also, the ceramic particles can

be mixed and packed together with smaller catalyst particles to allow more porosity for the fuel-air

mixture to flow through.

2.4 Catalyst Geometry

There are geometric criteria that can be applied to a catalytic bed to increase its effectiveness. In

this study, a once-through cylindrical catalytic bed is considered, where DT is the cylinder diameter,

L is the cylinder length, and DP is the catalyst particle diameter. The first criterion that must be

met is DT /DP > 10 to reduce the effect of channeling (Heyes and Kolaczkowski, 1997). Channeling
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occurs when the majority of the flow travels through the single largest void in the packed catalyst

bed. The second criterion is that DT should be as small as possible to ensure uniform temperature

while still maintaining an acceptable flow rate. As a compromise between the two criteria, the

following geometry limitations are applied to the setup: 6 < DT /DP < 10 and 50 < L/DP < 100

to reduce the effect of axial dispersion.

2.5 Laser Diagnostics

Laser diagnostics are often used in combustion research because they are non intrusive and provide

fast response times to variations of species concentration. For example, laser absorption methods

can be used to obtain the concentration of a hydrocarbon fuel. A helium-neon (He-Ne) laser omits

light at a wavelength of 3.39 �m, which corresponds to the resonance wavelength of the C-H bond

in a hydrocarbon molecule. Therefore, if the light from the He-Ne laser is passed through a gaseous

medium containing hydrocarbon molecules, some fraction of the light will be absorbed by the C-H

bonds and the intensity of the light will be reduced. The ratio of the observed light intensity, I, to

the intensity without any fuel present, I0, is related to the fuel concentration by Beer’s law:

I

I0
= exp

(
−��PL

R̃T

)
= exp

(
−��nL

V

)
(2.3)

The symbols in Equation 2.3 are defined in Table 2.1. If the value of the absorption coefficient,

�� , is known, then the mole density of the fuel, n/V , can be determined from the intensity ratio.

The absorption coefficient varies depending on the type of fuel, temperature, and pressure.

Table 2.1: Definitions and units of symbols in Equation 2.3

Parameter Units Description

I AU laser intensity

L m path length

n mol number of moles

P atm partial pressure

R̃ atm m3 mol−1 K−1 universal gas constant

T K temperature

V m3 volume

In Ki Choi
Sticky Note
Accepted set by In Ki Choi
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Chapter 3

Experimental Setup

The experimental setup consists of 5 sub-systems and 2 auxiliary systems. Sub-systems include a

piping system to deliver the gases, the pipe and flange heating systems, the gaseous fuel generating

system, the catalyst-packed reactor inside a furnace, and the laser diagnostic system to measure fuel

concentration upstream and downstream of the reactor. A calibration system and nitrogen-purged

glove box were added as auxiliary systems. A schematic diagram of the setup is shown in Figure 3.1.

!
Figure 3.1: Schematic diagram of the experimental setup

3.1 Piping System

The piping system has two functions: supplying a gaseous fuel-air mixture to the reactor and

venting the exhaust out from the setup. The amounts of nitrogen and air supplied to the reactor

are controlled by two mass flow controllers (MFCs), which are operated remotely with a computer
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using National Instruments LabVIEW software. The RS-232 DB-9 serial port on the computer is

connected to an 8-pin mini-DIN connector on the mass flow controllers. Using the supply system,

the air can be diluted with nitrogen to examine the effect of varying the oxygen concentration. The

mass flow controllers and their connections to the piping system are shown in Figure 3.2.

!
Figure 3.2: The mass flow controllers connected to the piping system

Check valves were installed to prevent flow reversal, and a pressure relief valve prevents over-

pressuring of the piping by venting the flow to the exhaust. A flame arrestor protects the fuel and

air supplies from flashback. It is possible to change the route of the flow several ways using seven

hand valves. For example, the flow can contain fuel molecules or only air through use of hand vales

3 and 5. After every test, the system is evacuated using a vacuum pump with hand valves 3, 4, and

6 closed and valves 5, 7, and 8 open to remove any remnant fuel.

The exhaust system is shown in Figure 3.3a. The mounted fan draws any gas leaking from the

system through an exhaust hood mounted over the furnace to the exterior of the building. The

exhaust gases from the vacuum pump and the experiment plumping are passively vented. The gas

from the outlet of the reactor flows through the exhaust line and is vented out of the room. Any

fuel vapor that has condensed will accumulate at the bottom of a tee built into the exhaust line.

The fuel can then be drained from the tee after the experiment, as shown in Figures 3.3a and 3.3b.

3.2 Gaseous Fuel Generating System

The fuel vessel is shown in Figure 3.4c. A bubbler is made from quarter-inch tubing formed into

a spiral with small holes approximately 1 mm diameter and is submersed in the fuel. Bubbling
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!
(a) Exhaust line tee and funnel

!
(b) HDPE tube and bucket

Figure 3.3: Gas exhaust fan and exhaust lines and condensed fuel removal system in the exhaust
line

air through the fuel creates a fuel-air mixture supplied to the catalytic reactor. Flash point and

vapor pressure measurements are used to characterize the fuel volatility (Reid et al., 1987, Kuchta,

1985). By controlling the fuel tank temperature, the vapor pressure can be varied to change the fuel

concentration in the mixture. The vessel sits on a magnetic stirrer platform that agitates the liquid

to prevent stratification of multi-component mixtures and to ensure temperature uniformity in the

fuel. The stirring bar inside the vessel was manufactured with a ring to ensure stable rotation.

!
(a) Stirring bar with ring

!
(b) Bubbler

!
(c) Fuel vessel

Figure 3.4: The fuel vessel, with stirring bar, and bubbler setup for creating fuel-air mixtures

The liquid fuel temperature is regulated by immersing the vessel in an ethylene glycol bath that

is constantly circulated by a pump. The fuel heating system system is shown in Figure 3.5. Four

tape heaters are attached to the outer wall of the bath using heat-conducting glue. The walls of the

bath are covered with a glass-fiber insulating jacket. The bath is placed inside a structure with four

support pillars to prevent the bath from tipping over.
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!
(a) Thermal bath

!
(b) Fuel vessel in heating bath

!
(c) Circulation pump

Figure 3.5: Gaseous fuel generation system

3.3 Heating System

3.3.1 Pipe Heating System

A heating system, required to keep heavy hydrocarbon fuels from condensing, is installed on the

piping system. The heavier the hydrocarbon, the lower the vapor pressure at a specific temperature.

Therefore, heavier hydrocarbons condense more easily than lighter hydrocarbons at the same tem-

perature. Because condensation can change the concentration of fuel molecules in the flow going into

the reactor, the fuel must remain completely gaseous. To ensure that the fuel is in the gas phase,

the heating system is used to maintain the temperature of the piping system above the boiling point

of the test fuel. The heating system consists of four zones controlled independently using the heater

control panel shown in Figure 3.6. A circuit breaker box is located under the control box to cut off

the power in case of emergency. This box also controls the power to the other facilities such as the

furnace, the laser system, the stirrer, and the circulation pump.

!
(a) Pipe heating system
control panel

!
(b) Control panel wiring

Figure 3.6: Control panel for the pipe heating system
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The control system includes an alarm circuit that shuts down all heaters in the event that the

temperature exceeds safe operating conditions. The control panel is comprised of the heater circuit

and the alarm relay circuit, schematics of which are shown in Figure 3.7. To initiate operation, the

controller switch is closed supplying 120 VAC power to the controllers. In normal operation the

alarm contacts in the controllers are all closed so that closing the heater switch energizes the 9 VDC

circuit to place the alarm relay in the “safe” condition. This action turns off the red alarm indicator

light and activates the contactor that passes AC power to the heaters. Once the contactor is closed,

the controllers supply the appropriate control signal to the solid state relays that switch the power

to the heaters. The heaters are connected in series with circuit breakers. When power is supplied

through the solid state relays to the heaters, a green indicator light is on. As long as the temperature

remains within the acceptable rage, the alarm light remains off and power is supplied to the heaters.

Manual toggling of the heater switch or tripping of any alarm in the controllers results in switching

the alarm relay to the “alarm” condition. This opens the main contactor, removing power to the

heaters while simultaneously illuminating the red alarm indicator light.

A serious problem had to be resolved to get this control system operational. The transients

induced by switching of contactor had to be isolated from the power supplied to the controllers, since

these transients caused the controllers to become unstable. This issue was overcome by introducing

a diode across the alarm relay, running the alarm circuit with a separate 10 VDC power supply, and

adding ferrite beads to the controller power supply lines and control signal wiring.

The piping system is divided into four heating zones to allow for maximum control of the tem-

perature. Rope heaters are wrapped around the pipe, and heated to prevent gaseous fuel from

condensing in the piping system. Silicon insulating jackets cover the pipe and heaters to minimize

heat loss as shown in Figure 3.8. The gaps between the jackets are filled with silicon-based sealant,

and white heat-resistant tape encapsulates the insulating jackets. Metal and Teflon-based hand

valves are used with extension rods in the heating zones because plastic-based valves cannot en-

dure temperatures over 150◦C. Four thermocouples are taped to the surface of the pipe to measure

the temperatures of the four heating zones. The thermocouples are positioned some distance away

from the rope heaters so they do not become hotter faster than the piping. The temperatures from

the thermocouples are read by the heater controllers, which switch solid state relays to power the

heaters.

3.3.2 Flange Heating System

A second heating system is required for the flanges because gaseous fuel can condense at the flanges

where the sapphire windows are exposed to the ambient air. Rope heaters wrapped around the inlet

and outlet flanges are operated by a control panel that is also composed of an alarm relay circuit

and heater circuit, as shown in Figures 3.9 and 3.10. The heater circuit is operated in the same
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(a) Alarm circuit (b) Heater circuit

Figure 3.7: Circuit diagrams for the piping heating system

way as that of the piping heating system. However, the alarm relay circuit for the flange heaters

is slightly different. The contacts in the controllers are normally open as long as the temperature

stays within the safe range. Therefore, the alarm light will remain off and the heater circuit will

be powered through the contactor. If the temperature exceeds the same limit as the pipe heating

system, the contacts will be closed and the alarm light will be on, cutting off the power to contactor.

The quartz reactor tube is longer than the furnace, and so rope heaters are used to heat the

exposed ends of the tube as shown in Figures 3.11a and 3.11b. Aluminum faced fiberglass insulation

covers the flanges and two ends of the reactor. The sapphire windows are not covered because they

are used as the pathway through the reactor for the HeNe laser beam. Two thermocouples are

taped to the surfaces of the flanges to read the temperature as inputs to the heater controllers. Two

additional thermocouples are inserted through the top of the flanges to measure the temperature of

the gas just above the laser path. Figure 3.11c shows the enlarged sapphire window which is exposed

to the ambient air. The head of the thermocouple can be seen through the window.
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                            (a) Inlet                                      (b) Hand valves                   (c) Outlet 

Fig. 9. Pipe heating and insulation system. 
 

b) The flange heating system 

Another heating system is installed because gaseous fuel can condense at flanges whose 
sapphire windows are open to the ambient air.  Rope heaters around the inlet and outlet 
flanges are controlled by the control panel which is also composed of two circuits as 
shown in Figure 10 and 11; the alarm relay circuit and the heater circuit.  The heater 
circuit is operated in the same way as that of the previous piping heating system.  
However, there is a change in the alarm relay circuit.  The contacts in controllers are 
normally open as long as the temperature stays in within the safe band.  Therefore, the 
alarm light will remain off and heater circuit will be powered through contactor.  If 
temperature goes out of the specified band, the contact will be closed and the alarm light 
will be on, cutting off the power to contactor.  

            

                         (a) Control panel                                                (b) Wiring 

Fig. 10. Flange heating control panel. 

(a) Piping system gas inlet

13 
 

    
                            (a) Inlet                                      (b) Hand valves                   (c) Outlet 

Fig. 9. Pipe heating and insulation system. 
 

b) The flange heating system 

Another heating system is installed because gaseous fuel can condense at flanges whose 
sapphire windows are open to the ambient air.  Rope heaters around the inlet and outlet 
flanges are controlled by the control panel which is also composed of two circuits as 
shown in Figure 10 and 11; the alarm relay circuit and the heater circuit.  The heater 
circuit is operated in the same way as that of the previous piping heating system.  
However, there is a change in the alarm relay circuit.  The contacts in controllers are 
normally open as long as the temperature stays in within the safe band.  Therefore, the 
alarm light will remain off and heater circuit will be powered through contactor.  If 
temperature goes out of the specified band, the contact will be closed and the alarm light 
will be on, cutting off the power to contactor.  

            

                         (a) Control panel                                                (b) Wiring 

Fig. 10. Flange heating control panel. 

(b) Piping system hand
valves
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Fig. 10. Flange heating control panel. 

(c) Piping system out-
let

Figure 3.8: Heating and insulation system for the gas piping system
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                         (a) Control panel                                                (b) Wiring 

Fig. 10. Flange heating control panel. 

         

                                     (a) Alarm circuit                                   (b) Heater circuit 
Fig. 11. Circuit diagrams of flange heating system. 

The rope heaters are wrapped around the flanges with two ends of the quartz reactor 
which are exposed out of the furnace as shown in Figure 12.  Aluminum faced fiberglass 
insulation covers the whole flanges and two ends of the reactor leaving just sapphire 
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(b) Control panel wiring

Figure 3.9: Control panel for the flange heating system

3.4 Catalyst-Packed Reactor

Figure 3.12 shows the details of the reactor and the inlet/outlet flanges. The catalytic materials are

contained in a quartz tube which can be heated up to 1100◦C in the furnace. Two flanges on the

end of the reactor are connected to the piping system and ease the removal of the reactor when the

catalytic material is changed. The flanges also hold the optical ports with the sapphire windows

that provide the pathway through the reactor for the laser beam. The length of the pathways,

i.e. the internal distance between the sapphire windows, are 43 mm and 41 mm for the inlet and

outlet flanges, respectively. A length of approximately 1 ft in the middle of the reactor is heated

by a furnace to temperatures sufficient to initiate catalytic reaction. The furnace is controlled by a

built-in PID circuit with the input from a thermocouple located beside the narrow middle section

of the reactor, as shown in Figure 3.12.

The sapphire windows are mounted on short lengths of tube made of Schott specialty glass. The

tubes are connected to the reactor flanges using ball and socket joints to protect the glass from
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(a) Alarm circuit (b) Heater circuit

Figure 3.10: Circuit diagrams for the flange heating system

(a) Reactor tube inlet (b) Reactor tube outlet (c) Sapphire window

Figure 3.11: Heating and insulation system for the reactor flanges

breaking and for ease of replacement. Since the thermal conductivity of quartz is low, this method

of construction is acceptable for the flanges because they are more than 2 inches away from the

furnace. For heavy hydrocarbons such as n-octane and n-nonane, the absorption cross section was

found to be dependent on temperature, but there is negligible dependence on pressure (Klingbeil

et al., 2006). Therefore, only the gas temperature is needed at the inlet and outlet flanges. So
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Fig. 13. Reactor Construction 

The sapphire optical ports are mounted on Pyrex tubing and connected to the reaction 
tube via ball and socket joints. The melting point of Pyrex is 821oC.  Considering low 
thermal conductivity of quartz, this method of construction is acceptable for flanges, 
which are more than 2 inches away from the furnace. The ball and socket joint is 
introduced to protect the quartz tube and Pyrex flange from breakage and for ease of 
replacement. For heavy hydrocarbons such as n-octane and n-nonane, the absorption 
cross section in the Beer’s law was found to be dependent on temperature but there is 
negligible dependence on pressure [10]. Therefore, flanges were designed to hold 
thermocouples in order to measure the temperature of the gas. The junction of 
thermocouple is located just above the laser beam path. 

The Pyrex tubes are connected to gas supply and exhaust system through flexible tubes 
to protect glassware from mechanical strain. 

The mixed catalyst is placed in the middle of the reactor such as given in Figure 14.  The 
catalytic materials are packed in the narrow channel and held in place by pushing glass 
wool into the reactor from both sides.     

 

 

Fig. 14. Catalytic bed 

Thermocouple 

Figure 3.12: Reactor assembly

thermocouples are mounted in the flanges with the thermocouple junctions located just above the

path of the laser beam. The flanges are connected to the gas supply and exhaust system using

flexible tubes to protect the glassware from mechanical strain. The catalyst is placed in a narrow

channel in the middle of the reactor, as shown in Figure 3.13. The catalytic material is packed in

the channel and held in place by pushing glass wool into the reactor from both ends.
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The sapphire optical ports are mounted on Pyrex tubing and connected to the 
reaction tube via ball and socket joints. The melting point of Pyrex is 821oC.  
Considering low thermal conductivity of quartz, this method of construction is 
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octane and n-nonane, the absorption cross section in the Beer’s law was found to 
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Therefore, flanges were designed to hold thermocouples in order to measure the 
temperature of the gas. The junction of thermocouple is located just above the 
laser beam path. 

The Pyrex tubes are connected to gas supply and exhaust system through flexible 
tubes to protect glassware from mechanical strain. 

The mixed catalyst is placed in the middle of the reactor such as given in Figure 
14.  The catalytic materials are packed in the narrow channel and held in place by 
pushing glass wool into the reactor from both sides.     

 

 

Fig. 14. Catalytic bed 

(5) Laser diagnostics 

The optical system consists of a HeNe laser, a filter, a chopper, mirrors, a beam 
splitter, and detectors for measuring fuel concentrations. The beam from the IR 
HeNe laser source in the lower level is chopped, filtered, and steered to arrive at 
the upper level where the observing sections and detectors are located.  Then it is 
split so that it goes through the two observation ports both upstream and 
downstream of the furnace.  The setup and beam path are shown in Figure 15.  
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Figure 3.13: Catalytic bed

3.5 Laser Diagnostics

The optical system consists of a HeNe laser, a filter, a chopper, mirrors, a beam splitter, and detectors

for measuring fuel concentration. The laser, chopper, and filter are mounted on a lower optical table,

and mirrors are used to steer the laser beam up to a higher optical table at the same vertical height

as the reactor. The beam is then split so that it goes through the optical ports both upstream and

downstream of the furnace and finally reaches the detectors, as illustrated in Figures 3.14 and 3.15.

The other experimental facilities, such as the piping system and heater control panel, are shielded

from the experiment by movable aluminum plates.

The laser beam intersects the sapphire windows at a slight angle to avoid interference effects.
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Fig. 15. Fuel sensing optical system. 

 

Schematic view of the optical setup for reactor and flanges is shown in Figure 16, in 
which beam splitters and mirrors are used to direct light from the lasers through the 
optical ports up- and downstream of the reactor tube and into the detectors. 

 

Fig. 16. Schematic view of the optical setup 

The laser beam goes through at a slight angle to avoid interference effect on sapphire 
windows.  When the flange temperature is increased, the expansions of sapphire windows 
and flanges result in the change to the thickness of each window and the path length 
between two windows.  This can alter the interference pattern and finally the signals 
arriving at detectors.   
      
The alignment of the infrared laser can be done by following the faint glow, while the 
final alignment has to be performed through observation of the detector signal in 
LabVIEW.  The windows are covered by black panels to reduce the light level in the 
room to aid during the alignment of the optics.   
 
The output from the two detectors together with the reference signal from the chopper is 
analyzed using a LabVIEW program after the signals are digitized.  A screen shot of the 
virtual instrument is shown in Figure 17. 

Figure 3.14: Optical system for laser-based fuel sensing
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Fig. 15. Fuel sensing optical system. 

 

Schematic view of the optical setup for reactor and flanges is shown in Figure 16, 
in which beam splitters and mirrors are used to direct light from the lasers 
through the optical ports up- and downstream of the reactor tube and into the 
detectors. 

 

Fig. 16. Schematic view of the optical setup 

The laser beam goes through at a slight angle to avoid interference effect on 
sapphire windows.  When the flange temperature is increased, the expansions of 
sapphire windows and flanges result in the change to the thickness of each 
window and the path length between two windows.  This can alter the interference 
pattern and finally the signals arriving at detectors.   
      
The alignment of the infrared laser can be done by following the faint glow, while 
the final alignment has to be performed through observation of the detector signal 
in LabVIEW.  The windows are covered by black panels to reduce the light level 
in the room to aid during the alignment of the optics.   
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Figure 3.15: Schematic view of the optical setup

When the flange temperature is increased, the thermal expansion of the sapphire windows and

flanges result in a change in the thickness of each window and the path length between the windows.

The changes in the path length due to thermal expansion are of negligible magnitude, and are

therefore neglected in this investigation. The changes in thickness of the windows cause a change in

the interference patterns internal to the window, but this effect is accounted for by taking reference

measurements at each temperature.

The alignment of the laser is done by following the faint plasma glow and observing the detector

signals in LabVIEW. The room windows are covered with black panels to reduce the ambient light

level in the room during alignment of the optics. The output from the two detectors and the reference

laser signal from the chopper are digitized and then analyzed using LabVIEW software. A screen

shot of the LabVIEW virtual instrument is shown in Figure 3.16.

A narrow band-pass filter (68 nm FWHM) is introduced to improve the quality of the laser

source. The filter is placed between the chopper and the mirror as shown in Figure 3.17a. The filter

is necessary because the HeNe laser source also emits a diffuse glow and light at wavelengths other

than 3392 nm, which could alter the reading of the detectors. The filter removes wavelengths that

are not within a certain tolerance of 3392 nm, as shown in the transmittance plot in Figure 3.17b.
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The output from the two detectors together with the reference signal from the 
chopper is analyzed using a LabVIEW program after the signals are digitized.  A 
screen shot of the virtual instrument is shown in Figure 17. 
 

 
Fig. 17. Screen shot of the fuel measuring virtual instrument. 

 
The operator and the other experimental facilities such as the piping system and 
heater control panel are shielded from the experiment by movable aluminum 
plates. 
 
A narrow band-pass filter (68 nm FWHM) has been introduced to improve the 
quality of the laser source.  This is placed between the chopper and the mirror as 
Figure 18-(a) since the HeNe laser source also emits a diffuse glow and light at 
wavelengths other than 3392 nm which could alter the reading of the detectors.  
The filter removes all the wavelengths away from the region near the center value, 
3390 nm.  Therefore, just the light with wavelengths near 3390 nm will pass 
through the measuring zone.  
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Figure 3.16: Screen shot of the LabVIEW virtual instrument used for fuel concentration measure-
ments
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(a) Filter between the chopper and the mirror 

 
(b) Transmitting characteristic of filter 

(reproduced from Infrared Optical Products, Inc. documentation) 
Fig. 18. Narrow band-pass filter. 

 
(6) Auxiliary systems 

a) Calibration system 

Additionally, to determine the cross section values accurately following the 
temperature, a calibration manifold was added to the original piping system.  It is 
composed of a cell with two sapphire windows, pressure gauge, septum, and hand 
valves as shown in Figure 19.  The leak rate of the calibration manifold is 650 
µTorr/min.  This calibration system is connected to hand valve 9 of the piping 
system through a flexible tube. Therefore, the cell and tubing can be evacuated by 
the vacuum pump before every test.  To change the temperature of the gaseous 
fuel, the rope heater surrounds the cell including the pressure gauge and the 
septum.  The silver-faced fiberglass insulation jacket and the silicon insulation 
jacket cover the system with the heater and the white heat-resistant tape is 
wrapped as the final insulating step.  There are two thermocouples in the cell. One 
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(b) Transmitting characteristic of the
filter (reproduced from Infrared Optical
Products, Inc. documentation)

Figure 3.17: Infrared filter
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3.6 Auxiliary Systems

3.6.1 Calibration System

To determine the absorption cross-section values accurately over a range of temperatures, a calibra-

tion system was added to the original piping system. The system consists of a test cell with two

sapphire windows, a pressure gauge, septum, and hand valves as shown in Figure 3.18. The leak

rate of the calibration system was determined to be only 650 µTorr/min. The calibration system is

connected to hand valve number 9 of the piping system using a flexible tube, allowing for the cell and

tubing to be evacuated by the vacuum pump before each test. A rope heater is wrapped around the

cell as well as the pressure gauge and septum. An aluminum-faced fiberglass insulation jacket and

silicon insulation with heat-resistant tape is used to cover the system. There are two thermocouples

in the test cell. One thermocouple is on the surface of the cell to read the cell temperature as an

input to the controller, and the other thermocouple is mounted inside the cell just above the path

of the laser beam to measure the gas temperature. The laser beam is split, with one beam passing

through the cell and the other passing outside the cell. Two detectors measure the reference laser

intensity and the variation of the beam after it passed through the test cell.
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on the surface to read the cell temperature as an input to the controller and the other is 
placed just above the beam path inside the cell to acquire the gas temperature.   

The laser beam which arrives at the upper level is split into two ways to be reached to 
two detectors.  Detector 1 measures the reference value and detector 2 observes the 
variations of the beam gone through the cell.  

 

 

Fig. 19. Calibration manifold. 

b) Glove box 

Another safety feature which has been added to the facility is a glove box to handle the 
catalysts (see Figure 20).  By using the glove box, catalysts will be kept away from any 
sources of ignition and any flammable atmosphere, since the glove box is purged with 
nitrogen.  Dust from catalyst such as platinum with sufficient concentrations can form 
explosive mixtures with air.  Additionally, it prevents the operator from being exposed to 
catalyst dust during packing.  Neoprene gloves are used and these are compatible with 
our candidate catalysts.  A digital balance with a 0.001 g resolution is used to measure the 

Beam splitterDetector1 

Detector2 

Septum

Calibration cell

Pressure 
gauge 

Figure 3.18: Calibration system

3.6.2 Glove Box

Another safety feature that was added to the facility is a glove box to use when handling the

catalysts, shown in Figure 3.19. By using the glove box, catalysts are isolated from any sources of

ignition and any flammable atmosphere since the glove box is purged with nitrogen. Dust from a
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catalyst such as platinum sufficient concentrations can form explosive mixtures with air if there is a

sufficient concentration. Additionally, using the glove box prevents the operator from being exposed

to catalyst dust during packing. Neoprene gloves are used that are compatible with the candidate

catalysts. A digital balance with a 0.001 g resolution is used to measure the mass of the catalyst

and is operated inside the glove box. Before every operation, the glove box is purged with N2 gas

from the inlet in the left side of the box, forcing the air out of the gray pipe in the right corner of

the box. The glove box is fixed on the table using wooden frames at the base.

A glass funnel and wooden support frame were constructed to aid in packing the catalyst into

the reactor. The funnel has a sharp end tip with a 1 mm inner diameter so that it can be placed

precisely between the narrow section and the end of the reactor while packing the catalyst. The

support frame holds the reactor in place while packing.

Figure 3.19: Glove box used when handling the catalyst

(a) Support frame (b) Glass funnel

Figure 3.20: Catalyst packing system
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Chapter 4

Experimental Procedures

4.1 Catalyst Preparation

The catalyst was prepared by mixing the platinum particles with the supporting silica in a ball

mill with zirconia spheres. The platinum powder has a purity of 99.9% and 0.15-0.45 µm particle

size. Silica particles, which are 99.8% pure and have a particle size of 0.1-0.5 mm, were washed and

calcined by the manufacturer. All materials were procured from Sigma-Aldrich.

The catalyst particles, silica particles, and zirconia spheres were all placed in a vial and distilled

water was added. The mixture of silica and platinum (1% platinum by weight) was mixed on a ball

mill for 24 hours to create a homogeneous mixture. The zirconia spheres served to break up larger

lumps of particles. The initial catalyst mixture preparations are illustrated in Figure 4.1.

The mixture was then dried in the N2-filled glove box. In order to separate the catalyst, a mortar

was covered with plastic wrap that was punctured with a series of holes that were smaller than the

zirconia spheres (see Figure 4.2). The final catalyst mixture in the mortar was ground by a pestle to

ensure that the catalyst mixture was fully homogeneous. The final preparation steps for the catalyst

mixture are illustrated in Figure 4.2.

4.2 Catalyst Packing

The catalyst was packed into the reactor inside the N2-filled glove box. First, one side of the

reactor was filled with Pyrex glass wool procured from Corning. Then, the reactor was placed on

a supporting frame with the glass funnel inserted in the empty end as shown in Figure 4.3. The

catalyst material was poured into the funnel until the narrow middle section of the reactor was filled.

The mass of the catalyst material used was carefully measured using the balance during the filling

process. Finally, the second end of the reactor was packed with glass wool.
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4. Experimental process 

(1) Catalyst preparation 

The catalyst for experiment was prepared by being mixed with silica supporter using a 
blender and zirconia balls (several mm in diameter).  Platinum and silica powders were 
obtained from Sigma-Aldrich.  Silica has 99.9 % purity and 0.15~0.45 µm particle size. 
Silica particles were washed and calcined by manufacturer. They have 99.8 % purity and 
0.1~0.5 mm particle size. 

First of all, catalyst particles, silica particles and zirconia balls are put together in the 
distilled water in a vial.  In this study Pt was mixed with silica with the ratio of 1 wt % Pt.  
The blender rotates the vial at a constant speed for 24 hours to mix particles evenly.  
Zirconia balls moves around in the vial and break up lumps of particles.  Then, the 
mixture is dried in the N2-filled glove box.  Dried mixture is put on the plastic wrap 
which covers a mortar.  Because this wrap is punctured into many holes and only catalyst 
and silica particles can pass through holes, zirconia balls can be removed by the wrap.  
Remnant mixture in the mortar is ground by a pestle to finish the catalyst mixture into a 
homogeneous material.  

+ 	
  

    (Pt catalyst: 0.10~0.45µm)  (Silica: 100~500 µm)  (Zirconia balls, O.D: 1/8 in) 
 

	
  	
  	
  →	
   	
  →	
   	
  

    (1wt% Pt mixture in the Nalgene bottle)  (Mixing on the ball mill for 24 hrs in Prof. Haile’s group) 
	
  

Distilled 

Water 
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Deleted: a 

Figure 4.1: Initial catalyst mixture preparation

4.3 Calibration

For heavy hydrocarbons such as n-octane and n-nonane, the absorption cross-section was found

to be dependent on temperature but there is negligible dependence on pressure [10]. Therefore,

calibration of the absorption cross section as a function of temperature was necessary.

The calibration experiment proceeded as follows. First, the manifold was heated up to a pre-

selected temperature where the cross-section value was to be determined. Then, the test cell was

evacuated and the hand valve was closed to quarantine the cell from the vacuum manifold. Next, a

small amount of fuel is injected into the test cell using a micro-liter syringe. The molar density of the

fuel in the cell was calculated from the pressure and the temperature. After determining the molar

density, the laser intensity was recorded. The intensity of the beam through the cell was measured

while fluctuations of the laser baseline intensity were accounted for by the use of a reference detector

via a beam splitter. From the ratio of these two laser light intensities the cross-section value at a

given temperature could be calculated using Beer’s law:

− 1
L

(
log

I

I0

)
=

P

R̃T
σν =

n

V
σν . (4.1)

Tests were performed at 23, 125, 150, 175, and 200◦C, and at each temperature, measurements

were taken with 5 or 6 different concentrations of the fuel. The fuel concentration, n/V , was known
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from the fuel partial pressure and the temperature,

n

V
=
Pfuel

R̃T
. (4.2)

Following Equation 4.1, the calculated values of the quantity −1/L (log (I/I0)) were plotted versus

the fuel concentration. An example of such a plot for octane at 200◦C is given in Figure 4.4. A

linear fit was performed on the data, and the slope of the trend line was taken to be the absorption

cross-section, σν . The absorption cross-section could be calculated from a single fuel concentration

measurement. However, calculating the cross-section using the method described here provides a

greater degree of confidence in the results.

4.4 Catalytic Modification

With the knowledge of the fuel’s absorption cross-section as a function of temperature from the

calibration experiments, the fuel concentration could be calculated from the ratio of observed laser

intensities:
n

V
= −

log I
I0

σνL
(4.3)

Finally, the variation of fuel concentrations between locations upstream and downstream of the

catalyst could then be estimated:

∆n
V

=
n1 − n2

V
= − 1

σνL

((
log

I1
I0

)
−
(

log
I2
I0

))
=

log I2
I1

σνL
(4.4)

4.5 Test Procedure

Before the test, the boiling temperature of the fuel was identified as this is the minimum temperature

for the system during operation to ensure that the fuel remains gaseous. While the piping system

and reactor flanges were heating up to the boiling temperature, nitrogen gas was flowing through

the reactor. During this time, the furnace was also heated to 255◦C. After heating, the gas flow was

switched from nitrogen to air, and baseline laser measurements were taken. Then the gas flow was

changed again to fuel and air to check for any low-temperature reaction. The furnace temperature

was then increased to 500◦, and during the heating time the flow was switched to fuel and nitrogen.

Using nitrogen instead of air prevents oxidation during the heating process, however, fuel pyrolysis

may still take place. Once the temperature reached equilibrium, the nitrogen was replaced with air

to test oxidation of the fuel. Then the flow switches back to fuel and nitrogen to check for pyrolysis

at the high test temperature. Finally, the flow was changed to pure nitrogen to ensure that the laser

measurements return to their baseline values.
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Figure 4.2: Final catalyst mixture preparation and the mixture under the microscope
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Figure 4.3: Catalyst packing procedures and enlarged narrow section filled with mixture
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Figure 4.4: Logarithmic plot of the intensity ratio versus fuel concentration, with the slope equal to
the absorption cross-section
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Chapter 5

Results and Discussion

5.1 Calibration

For calibration of the experiment, the fuels n-octane (C8H18) and n-nonane (C9H20) were selected

because their vapor pressure is just high enough to have a flammable gaseous mixture at room

temperature. Calibration experiments were performed at room temperature and for the temperature

range from 125◦C to 200◦C because cross-section values at these temperatures are not available in

the literature. The results from the tests at room temperature were compared with results from

previous studies [10-12].

To calibrate the fuel concentration measurements, a separate test cell was built. The partial pres-

sures of fuel used for the calibration experiments were very low (on the order of 1 Torr), requiring

tight tolerances on the leakage rates from the vessel over the full temperature range under investiga-

tion. Since the tests were performed at elevated temperatures, the o-rings had to be replaced after

every experiment due to the plastic deformation caused by thermal expansion. Additionally, the

vacuum grease used, Apiezon H (M&I Materials Ltd.), was found to absorb hydrocarbon molecules

and was replaced by Krytox grease by Dupont. All components of the calibration cell including the

precision pressure transducer and septum connection were heated and insulated to avoid thermal

gradients and fuel condensation.

In the original test procedure, the intent was to measure the absorption cross-section of a fixed

amount of fuel as the temperature is increased. However, due to the high thermal expansion coeffi-

cient of the test cell, leaks caused by thermal expansion were sufficient to change the amount of fuel

over the time required for heating. For successful calibration, the temperature instead was increased

while evacuating the test cell and several measurements were taken with different amounts of fuel at

each temperature, with each measurement completed within 1 minute. The measured cross-section

versus temperature from the current work and the values from previous work [10-12] are shown in

Figures 5.1 and 5.2 for n-octane and n-nonane, respectively. The measurement data at selected

temperatures is also given in Appendix A.
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Fig. 24. Cross-section of n-octane as a function of temperature. 

 

 

 

    

Fig. 25. Cross-section of n-nonane as a function of temperature. 
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Fig. 24. Cross-section of n-octane as a function of temperature. 

 

 

 

    

Fig. 25. Cross-section of n-nonane as a function of temperature. 
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Figure 5.2: Cross-section of n-nonane as a function of temperature.

5.2 Catalytic Modification

A series of validation tests were performed first to verify the use of the measurement techniques.

In the test configuration, sapphire observation windows were attached to tubes that branched from

the main flow section (see Figure 3.15). Due to the line integration of the laser-based measurement,

uncertainty in the fuel concentration may arise from separated or recirculating gas flow. Preliminary

tests were conducted using the same gas flow rates used in the main test series to determine whether

recirculation was an issue.

The test was initiated with nitrogen flowing through the reactor to obtain a baseline reading.

Then, the flow was redirected through the fuel bath, and the subsequent rise time in the fuel

concentration was measured. To confirm that no recirculation was occurring, the flow was then

changed back to the inert gas, and the fall time of the fuel concentration was measured. The
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rise and fall times were consistent, indicating that recirculation does not cause uncertainty in the

measurement of the fuel concentration.

While it was determined that no recirculation was present in the flanges, it was noted that during

a tests with long durations (greater than 3000 seconds) condensation occurred on the windows. As

a result, a heating system was added to the flanges, successfully eliminating the fuel condensation

issue. Still, the flanges were cleaned every 4 tests with dish detergent to remove fuel droplets and

were rinsed with acetone and isopropyl alcohol.

5.2.1 Effect of Packing the Reactor on the Flow Rate

Packing the reactor with silica or a catalyst mixture blocks the gas flow and causes a pressure rise

upstream of the narrow section. At high enough flow rates, the silica or catalyst mixture particles

were pushed out of the narrow section and consequently spread throughout the glass wool. To avoid

this failure mode, flow rates were kept below 0.7 L/min. Additionally, the blockage created by

the tightly packed silicon and catalyst significantly hindered the overall flow through the reactor.

This effect was observed in the delay between the detection of fuel in the inlet and outlet flanges,

which was on the order of several minutes in some experiments. Starting with the simplest case,

an empty reactor, several tests were performed by adding only the components used to pack the

catalyst mixture into the reactor to investigate the effects of the packing material on the reaction.

5.3 Empty Reactor with n-Nonane

As a reference case, a test was performed with an empty reactor and a flow rate of 0.5 L/min.

The initial furnace temperature was chosen to be 255◦C which corresponds to a temperature of

160◦C at the outlet flange to prevent the n-nonane from condensing. No reaction occurred at this

temperature even when both fuel and oxidizer were present in the flow. When the temperature of

the furnace was increased past 310◦C, the mole density of fuel at the outlet flange dropped, and

since there was no oxidizer, just nitrogen, in the flow this disappearance of fuel molecules was due

to pyrolysis. When air flow was supplied at 1250 seconds after the furnace reached 500◦C, the mole

density of the fuel at the outlet fell even further, approaching zero. This decrease in the mole density

indicated that oxidation of the fuel occurred due to auto-ignition. The temperature increase due to

the oxidation was observed at the inlet and outlet. A simple calculation (Appendix B) indicates that

the temperature of the outlet flange will increase only slightly after oxidation due to heat transfer

because of the low flow rate and relatively large diameter of the reactor. To confirm that auto-ignition

was indeed occurring, the air supply was stopped and the fuel mole density returned to the original

value associated with pyrolysis. After turning off the fuel supply, the mole density values returned

to zero at both the inlet and outlet, indicating that were no remnant fuel molecules in either flange.
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When the gas was switched between air and nitrogen, spikes appear in the temperature histories

which are due to peaks in the flow rate produced by the mass flow controllers. The negative values

of the fuel concentration at the outlet after turning off the fuel supply were a result of a change in

the baseline laser light intensity I0 (see Equation 4.3).
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mole density values return to zero at both the inlet and outlet, indicating that are no remnant fuel 
molecules in either flange.  The times when the gas was switched between air and nitrogen 
appear as spikes in the temperature histories.   

 

 

 

Fig. 26. Variation of fuel molar density and temperature at the inlet and outlet flanges for                       
n-nonane in the empty reactor. 

 

(2.2)  Reactor Filled with Glass Wool 

In the second set of tests, the reactor, except the narrow channel in the center, was filled with 
Pyrex glass wool.  As with the reference tests, the flow rate was set to 0.5 L/min.  Because the 
Pyrex has low thermal conductivity, the gaseous fuel does not absorb sufficient heat while in the 
reactor to trigger pyrolytic reaction.  Therefore, the mole density of the fuel at the inlet and outlet 
flanges remained the same up to a time of approximately 1500 s.  By this point in time, the 
supplied air has been heated to 500°C and this temperature is high enough to cause auto-ignition 
of the fuel-air mixture.  The combustion is not reflected in the temperature trace because the 
glass wool disperses the flow and absorbs the heat produced by the combustion. 
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Figure 5.3: Variation of fuel molar density and temperature at the inlet and outlet flanges for
n-nonane in the empty reactor

5.3.1 Reactor Filled with Glass Wool

In the second set of tests, the reactor was filled with Pyrex glass wool, except for the narrow channel

section in the center. As with the reference tests, the flow rate was set at 0.5 L/min. Since the Pyrex

has low thermal conductivity, the gaseous fuel does not absorb sufficient heat while in the reactor

to trigger pyrolytic reaction. Therefore, the molar density of the fuel at the inlet and outlet flanges

remained the same up to a time of approximately 1100 s. At this point in time, the supplied air had

been heated to 500◦C and this temperature was high enough to cause auto-ignition of the fuel-air

mixture. The oxidation is not reflected in the temperature trace because the glass wool disperses

the flow and absorbs the heat produced by the oxidation.
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Fig. 27. Variation of fuel molar density and temperature at the inlet and outlet flanges for n-
nonane in the reactor filled with glass wool. 

 

(2.3)  Reactor Filled with Glass Wool and Silica 

For the third set of tests, the narrow channel in the middle of the reactor was filled with 0.176 g 
of silica powder and the rest of the channel was filled with glass wool.  For these tests the flow 
rate was reduced to 0.3 L/min, and a delay of the flow from the inlet to outlet flanges was 
observed with the fuel supply is turned on and off.  This delay was a result of packing the narrow 
channel in the reactor with the silica particles which are several hundred microns in diameter.  
The delay in the flow increases the residence time of the fuel in the reactor, and the fuel heats up 
sufficiently for pyrolysis to occur.  The pyrolysis is reflected in the observed disappearance of 
fuel molecules at the outlet flanges where there is just nitrogen and fuel.  When air is supplied at 
500°C, once again auto-ignition of the fuel occurs.  Because of the glass wool, the temperature 
increase due to the combustion is not as large as in the empty reactor.  Temperature changes are 
also observed at the inlet flange when switching between gases because the silica particles delay 
the flow, increasing the flow temperature.   
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Figure 5.4: Variation of fuel molar density and temperature at the inlet and outlet flanges for
n-nonane in the reactor filled with glass wool

5.3.2 Reactor Filled with Glass Wool and Silica

For the third set of tests, the narrow channel in the middle of the reactor was filled with 0.176 g of

silica powder and the rest of the channel was filled with glass wool. For these tests the flow rate was

reduced to 0.3 L/min, and a delay of the flow from the inlet to outlet flanges was observed when

the fuel supply was turned on and off. This delay was a result of tightly packing the narrow channel

in the reactor with the silica particles which are several hundred microns in diameter. The delay

in the flow increases the residence time of the fuel in the reactor, and the fuel heats up sufficiently

for pyrolysis to occur. The pyrolysis is reflected in the observed disappearance of fuel molecules

at the outlet flanges from 700 s to 1100 s when there was just nitrogen and fuel. When air was

supplied at 1200 s and the furnace was at 500◦C, once again auto-ignition of the fuel occurred.

When nitrogen was supplied again at 1900 s, the catalytic oxidation disappeared and only catalytic

pyrolysis occurred after 2500 s. At that time, the reaction rate was smaller than the previous

pyrolysis that occurred from 700 s to 1100 s as indicated by the elevated fuel concentration. More

analysis is needed to understand this phenomenon. Because of the glass wool, the temperature

increase due to the combustion is not as large as in the empty reactor. Temperature changes are

also observed at the inlet flange when switching between gases because the silica particles delay the

flow, increasing the flow temperature.
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Fig. 28. Variation of fuel molar density and temperature at the inlet and outlet flanges for n-
nonane in the reactor filled with glass wool and silica. 

 
 
(2.4) Reactor Filled with Glass Wool, Silica, and a Platinum (Pt) Catalyst 
 
In the final set of tests, a mixture of silica and 0.155 g of a platinum catalyst is placed in the 
narrow channel.  The flow rate was again set to 0.3 L/min.  To differentiate between pyrolysis 
and combustion, only nitrogen was used initially.  A slight difference in the inlet and outlet fuel 
concentrations indicated that pyrolysis was occurring at a temperature that did not lead to 
pyrolysis in previous tests.  The platinum catalyst promoted the pyrolytic reaction resulting in 
catalytic pyrolysis [13].  After approximately 800 s, the flow stream is switched to air and a 
decrease in the fuel concentration and temperature increase at the outlet indicated that catalytic 
combustion was occureing.  Consequently, almost all the fuel molecules were consumed by the 
catalytic pyrolysis and the catalytic combustion.  
 
After heating, pyrolysis and catalytic combustion are still observed.  However, the heating did not cause a 
significant change in the difference in the fuel concentrations at the inlet and outlet flanges when 
compared with the results at 255°C.  After approximately 2800 s, the temperature increases, indicating 
auto-ignition in the reactor which has now reached 500°C.  While the temperature at the outlet increases, 
the temperature at the inlet decreases.  The sudden combustion in the reactor draws the flow upstream, 
increasing the velocity at the inlet and therefore decreasing the temperature.  This large temperature 
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Figure 5.5: Variation of fuel molar density and temperature at the inlet and outlet flanges for
n-nonane in the reactor filled with glass wool and silica

5.3.3 Reactor Filled with Glass Wool, Silica, and a Platinum Catalyst

In the final set of tests, a mixture of silica and 0.155 g of a platinum catalyst was placed in the

narrow channel. The flow rate was again set to 0.3 L/min. To differentiate between pyrolysis

and oxidation, only nitrogen was used initially. A slight difference in the inlet and outlet fuel

concentrations indicated that pyrolysis was occurring at a temperature that did not lead to pyrolysis

in previous tests. The platinum catalyst promoted the pyrolytic reaction resulting in catalytic

pyrolysis (Muradov, 1998). After approximately 800 s, the flow stream was switched to air and a

decrease in the fuel concentration and temperature increase at the outlet indicated that catalytic

oxidation was occurring. Consequently, almost all the fuel molecules were consumed by the catalytic

pyrolysis and the catalytic combustion. After heating to 500◦C, pyrolysis and catalytic oxidation

were still observed. However, the heating did not cause a significant change in the difference in the

fuel concentrations at the inlet and outlet flanges when compared with the results at 255◦C. After

approximately 2800 s, the temperature increased, indicating auto-ignition in the reactor which was

at 500◦C. While the temperature at the outlet increased, the temperature at the inlet decreased.

This was due to the sudden oxidation in the reactor drawing the flow upstream, increasing the

velocity at the inlet and therefore decreasing the temperature. This large temperature change at the

inlet could have lead to significant changes in the value of the cross-section, and so the temperature

at the inlet was increased manually.
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change at the inlet can lead to significant changes in the value of the cross-section, and so the temperature 
at the inlet was manually increased. 
 

 

              Fig. 29. Variation of fuel molar density and temperature at the inlet and outlet flanges 
for n-nonane in the reactor filled with glass wool, silica, and the platinum (Pt) catalyst. 

 
 
	
  

6. Conclusions 

The system was prepared to realize bench-top catalytic combustion and measurement 
using He-Ne laser including fuel and air supplies and gaseous fuel generating system. 
The performance of this system was demonstrated through a series of tests with Pt.  

It is shown that it is possible by using Pt to lower the temperature of pyrolytic and 
combustive reactions which remove fuel particles from gaseous fuel flows. This can 
provide a starting point in finding an alternative way using catalytic reactions, which can 
replace the current hollow fiber membrane system to reduce fuel concentration in the 
ullage of fuel tank of aircrafts. 

It is known that the catalytic combustion is highly dependent on the temperature of the 
catalyst before the reaction [14].  In this study, just two values were selected as the 
temperatures of the furnace where catalyst mixture was placed.  Therefore, a series of 
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platinum and therefore can be called catalytic 
pyrolysis [13].  The catalyst also activates the 
combustion when the air is provided around 800 s.  
Consequently, almost all fuel particles were 
disappeared by these two reactions; catalytic 
pyrolysis and catalyst combustion.  The small 
temperature increase at outlet shows that there is 
combustion.  After heating, pyrolytic and 
combustive reactions are still observed although the 
laser intensity changed such as the increase of 
reference (inlet) values represent after 3000 s.  
However, the heating did not bring a noticeable 
change on the differences between the mole densities 
of inlet and outlet flanges compared to the results at 
255°C.  The drastic changes of temperatures around 
2800s mean that there is also the combustion in the 
reactor which is heated up to 500°C.  The 
temperature at inlet decreases here although that at 
outlet increases.  The sudden combustion in the 
catalyst mixture draws the flow upstream and 
therefore the velocity of the flow increases at inlet.  
As a result, the temperature is going down at inlet.  
Because the temperature change so big as here can 
give an effect on the cross section value, the set 
temperature is altered manually for inlet flange to 
increase the temperature.       

... [1]

Figure 5.6: Variation of fuel molar density and temperature at the inlet and outlet flanges for
n-nonane in the reactor filled with glass wool, silica, and the platinum (Pt) catalyst
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Chapter 6

Conclusions

An experimental system was developed to investigate bench-top catalytic combustion with quanti-

tative fuel concentration measurements using laser absorption spectroscopy. The setup included fuel

and air supplies and a gaseous fuel generating system to provide flow to a catalytic reactor heated

by a furnace. The performance of the system was demonstrated through a series of tests using a

platinum catalyst in the reactor.

It was shown that it is possible to lower both the temperature of pyrolysis and oxidation reactions

by using the platinum catalyst. While pyrolysis occurred and was measured using the laser diagnos-

tics, the oxidation reactions were the focus of this investigation because they can lower the oxygen

concentration below the flammability limit. This initial success in demonstrating catalytic conver-

sion of flammable atmospheres motivates further work on developing catalytic reaction systems for

inerting aircraft ullage spaces.

In this study, experiments were performed at two temperatures of the furnace where the catalyst

was housed. It is known that catalytic oxidation is strongly dependent on the temperature of the

catalyst before the reaction (Lyubovsky et al., 2003). Additionally, catalysts are more reactive under

fuel-rich conditions than fuel-lean (Lyubovsky et al., 2003). In the present experiments, the fuel-

to-air ratio was held constant (0.5% fuel) because the temperature of the fuel reservoir was fixed at

room temperature. Therefore, a parametric study of catalytic oxidation over a range of temperatures

and fuel concentrations is required. Finally, it has been shown that the rate of catalytic pyrollysis

is influenced by dilution with inert gases (Vasilieva et al., 1991). Therefore, dilution is a potential

method to increase the amount of fuel modified through catalytic pyrolysis after the effectiveness of

catalytic oxidation is optimized.
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Appendix A

Cross-Section Measurements

Table A.1: Cross section measurement of each fuel at selected temperatures

σν (m2/mol)

T (◦C) n-octane n-nonane

23 48.04 ± 2.88 52.99 ± 3.18

125 50.48 ± 2.72 58.98 ± 3.54

150 48.85 ± 2.09 57.64 ± 3.46

175 49.00 ± 3.39 46.16 ± 2.77

200 50.82 ± 2.50 42.64 ± 7.25
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Appendix B

Heat Transfer Calculations

The equation for calculating the heat transfer to the flow through the pipe under the constant surface

temperature condition is (Incropera and DeWitt, 1996):

Ts − Tm,o
Ts = Tm,i

= exp
(
− pL

ṁcP
h

)
(B.1)

where the variables are defined as:

Ts: the surface temperature of the pipe

Tm,i: the mean temperature of the flow at the inlet

Tm,o: the mean temperature of the flow at the outlet

P : the perimeter of the inside of the pipe

L: the length of pipe from the inlet to the outlet

ṁ: the mass flow rate

cP : the specific heat of the gas

h: the convection heat transfer coefficient of the flow

Figure B.1: Reactor schematic for heat transfer calculations
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Table B.1: Heat transfer calculation variables

Variable Section 1 Section 2 Section 3

D [m] 0.021 0.021 0.009

P [m] 0.066 0.066 0.028

L [m] 0.162 0.144 0.181

ṁ [kg/s] 9.678×10−6 9.678×10−6 9.678×10−6

cP [J/kg-K] 1007 for air 1007 for air 1007 for air

h [W/m2-K] 2 2 2

Ts [K] 773.15 433.15 523.15

Table B.2: Calculated temperature distribution

T0(K) T1(K) T2(K) T3(K)

Without combustion 773 773 503 516

With combustion 1500 852 519 521
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Appendix C

Experiment Checklist

Temperature-varying Fuel Density Test

Date: / /

Time:

Operator: /

1. Preparation

1) Turn on the fan beside the window. ( )

2) Check if all hand valves are closed. ( )

3) Turn on the circuit breaker 4. ( )

a) Turn on the laser. : / (HH/MM)

** 1 hr warm-up is required for the laser source to be stable.

4) Turn on two thermometers in flanges. ( )

5) Turn on the circuit breaker 2 and 3. ( )

6) Turn on the pipe heating control box. ( )

7) Turn on the stirrer & circulating pump for the fuel vessel. ( )

8) Turn on the controllers and start heating. ( )

Zone 1: C, Zone 2: C, Zone 3: C, Zone 4: C

9) Turn on the flange heating control box. ( )

10) Start heating of flanges. ( )

Inlet: C, Outlet: C

11) Start heating of furnace. : C

12) Flow N2 gas to push out the remnant gas in the piping system.

a) Turn on the MFC A for N2 and the MFC B for air.

MFC A: ( ), MFC B: ( )

b) Open the hand valves 1, 2, 4 and 8.
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HV 1: ( ), HV 2: ( ), HV 4: ( ), HV 8: ( )

c) Turn on the Labview program. - ‘MFC’ ( )

d) Set the flow volume rate.

N2: SLPM (0.69)

Air: ______ SLPM (0 SLPM because just N2 will be used as a base gas.)

e) Run both MFCs. : / (HH/MM)

13) Run the Labview program. - ‘Fuel Mod with temp’ ( )

a) Turn on the chopper. ( )

b) Open the shutter of the laser source. ( )

c) Check if the laser intensities at two detectors are the same. ( )

d) Check the laser intensity : (I0, i.e. w/o fuel)

e) Change the value of I0 in the ‘Fuel Mod with Temp’ to that from step 12-d). ( )

I0: _____

2. Run

1) Reload the Labview program ‘Fuel Mod with Temp’ : ______/______ (HH/MM)

3. Fuel

1) Check if temperatures arrive at the set values

 Set value (ºC) Present value (ºC) 

Zone 1   

Zone 2   

Zone 3   
Piping system 

Zone 4   

Inlet   Flanges (By controllers, 
surface) Outlet   

Inlet  Flanges (By thermometer, 
gas flow) Outlet 

No set value 
 

Furnace   

 
2) Open the hand valves 3, 5 and 6. :              (s) 
HV 3: (     ) → HV 6: (     ) → HV 5: (     ) 
3) Close the hand valve 4. : (     ) 
4) Check the temperature of fuel. :            ºC 
5) Check the temperatures of gas flow at flanges.  
Inlet:            ºC, Outlet:            ºC 

 
4. Air flow  

1) Change the flow rate. :              (s)  
N2:               SLPM (0) 
Air: ______   SLPM (0.69) 
2) Check the temperatures of gas flow at flanges.  
Inlet:            ºC, Outlet:            ºC 

 
5. N2 gas flow  

1) Change the flow rate. :              (s) 
N2:               SLPM (0.69) 
Air: ______   SLPM (0) 
2) Check the temperatures of gas flow at flanges.  
Inlet:            ºC, Outlet:            ºC 

 
6. Heating of furnace 

1) Start heating of the furnace up to 500 ºC. :              (s) 
2) Check if the temperatures when the furnace is at 500 ºC. :              (s) 
 

 Set value (ºC) Present value (ºC) 

Zone 1   

Zone 2   

Zone 3   
Piping system 

Zone 4   

Inlet   Flanges (By controllers, 
surface) Outlet   
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2) Open the hand valves 3, 5 and 6. : (s)

HV 3: ( ) ? HV 6: ( ) ? HV 5: ( )

3) Close the hand valve 4. : ( )

4) Check the temperature of fuel. : C

5) Check the temperatures of gas flow at flanges.

Inlet: C, Outlet: C

4. Air flow

1) Change the flow rate. : (s)

N2: SLPM (0)

Air: ______ SLPM (0.69)

2) Check the temperatures of gas flow at flanges.

Inlet: C, Outlet: C

5. N2 gas flow

1) Change the flow rate. : (s)

N2: SLPM (0.69)

Air: ______ SLPM (0)

2) Check the temperatures of gas flow at flanges.

Inlet: C, Outlet: C

6. Heating of furnace

1) Start heating of the furnace up to 500 C. : (s)

2) Check if the temperatures when the furnace is at 500 C. : (s)

 Set value (ºC) Present value (ºC) 

Zone 1   

Zone 2   

Zone 3   
Piping system 

Zone 4   

Inlet   Flanges (By controllers, 
surface) Outlet   

Inlet  Flanges (By thermometer, 
gas flow) Outlet 

No set value 
 

Furnace   

 
2) Open the hand valves 3, 5 and 6. :              (s) 
HV 3: (     ) → HV 6: (     ) → HV 5: (     ) 
3) Close the hand valve 4. : (     ) 
4) Check the temperature of fuel. :            ºC 
5) Check the temperatures of gas flow at flanges.  
Inlet:            ºC, Outlet:            ºC 

 
4. Air flow  

1) Change the flow rate. :              (s)  
N2:               SLPM (0) 
Air: ______   SLPM (0.69) 
2) Check the temperatures of gas flow at flanges.  
Inlet:            ºC, Outlet:            ºC 

 
5. N2 gas flow  

1) Change the flow rate. :              (s) 
N2:               SLPM (0.69) 
Air: ______   SLPM (0) 
2) Check the temperatures of gas flow at flanges.  
Inlet:            ºC, Outlet:            ºC 

 
6. Heating of furnace 

1) Start heating of the furnace up to 500 ºC. :              (s) 
2) Check if the temperatures when the furnace is at 500 ºC. :              (s) 
 

 Set value (ºC) Present value (ºC) 

Zone 1   

Zone 2   

Zone 3   
Piping system 

Zone 4   

Inlet   Flanges (By controllers, 
surface) Outlet   
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Inlet  Flanges (By thermometer, 
gas flow) Outlet 

No set value 
 

Furnace   

 
 

7. Air flow  
1) Change the flow rate. :              (s)  
N2:               SLPM (0) 
Air: ______   SLPM (0.69) 
2) Check the temperatures of gas flow at flanges.  
Inlet:            ºC, Outlet:            ºC 
 

8. N2 gas flow  
1) Change the flow rate. :              (s) 
N2:               SLPM (0.69) 
Air: ______   SLPM (0) 
2) Check the temperatures of gas flow at flanges.  
Inlet:            ºC, Outlet:            ºC 
 

9. Recovery check (w/o fuel) 
1) Open the hand valves 4. (     )  
2) Close the hand valves 3, 5 and 6. :              (s) 
HV 3: (     ) → HV 6: (     ) → HV 5: (     ) 
3) Check the temperatures of gas flow at flanges.  
Inlet:            ºC, Outlet:            ºC 

 
10. Closing 

1) Save data. (     ) 
2) Stop the stirrer. (     ) 
3) Stop the MFC.  

a) Reduce the flow rate as 0. (     ) 
b) Stop the Labview program ‘MFC’ and the MFC. (    ) 

4) Close the hand valve 4. (     ) 
5) Stop the Labview program ‘Fuel Mod with Temp’. (     ) 
6) Turn off all circuit breakers. (     ) 

 
 

7. Air flow

1) Change the flow rate. : (s)

N2: SLPM (0)

Air: ______ SLPM (0.69)

2) Check the temperatures of gas flow at flanges.

Inlet: C, Outlet: C

8. N2 gas flow

1) Change the flow rate. : (s)

N2: SLPM (0.69)

Air: ______ SLPM (0)

2) Check the temperatures of gas flow at flanges.

Inlet: C, Outlet: C

9. Recovery check (w/o fuel)

1) Open the hand valves 4. ( )

2) Close the hand valves 3, 5 and 6. : (s)

HV 3: ( ) ? HV 6: ( ) ? HV 5: ( )

3) Check the temperatures of gas flow at flanges.

Inlet: C, Outlet: C

10. Closing

1) Save data. ( )

2) Stop the stirrer. ( )

3) Stop the MFC.

a) Reduce the flow rate as 0. ( )

b) Stop the Labview program ’MFC’ and the MFC. ( )

4) Close the hand valve 4. ( )

5) Stop the Labview program ’Fuel Mod with Temp’. ( )

6) Turn off all circuit breakers. ( )
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