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alguna vez. Y tú, tú nunca perdiste fé en mı́. Aún cuando yo no la tuviera. A t́ı te debo

más cosas de las que pudiera agradecerte. Sin t́ı no estaŕıa aqúı. Estando en otro continente
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Abstract

In this thesis the geography and botany of irreducible symplectic 4-manifolds with abelian

fundamental group of small rank are studied. It resembles an anthology of the contribution

obtained by the author during his infatuation with 4-dimensional topology by studying its

recent developments. As such, each chapter is independent from each other and the reader

is welcomed to start reading whichever one seems more appealing. We now give an outline

for the sake of convenience.

The first chapter of the thesis deals with the existence and (lack of) uniqueness of smooth

irreducible symplectic non-spin 4-manifolds with cyclic fundamental group (both finite and

infinite). Chapter 2 does the same for 4-manifolds with abelian, yet non-cyclic π1; the use

of the homeomorphism criteria on these manifolds due to I. Hambleton and M. Kreck is of

interest. In Chapter 3, the Spin geography for abelian fundamental groups of small rank is

studied. A couple of subtle relations between simply connected and non-simply connected

exotic 4-manifolds are explored through out the fourth chapter.

Chapter 5 gives closure to a question raised in Chapter 4, and describes current re-

search projects pursued by the author. These projects came naturally through the results

presented in previous chapters. The thesis ends by describing two research progress that

are being pursued. Chapter 6 contains the current situation regarding the geography and

botany of spin manifolds with zero signature.

The current state of the joint work of the author with Jonathan Yazinski (at McMaster

University at the time of writing) is described in the seventh and final chapter.
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Chapter 1

Nonspin symplectic 4-manifolds
with cyclic π1

The geography and botany of smooth/symplectic 4-manifolds with cyclic fundamental group

are addressed. For all the possible lattice points that correspond to non-spin manifolds of

negative signature and a given homeomorphism type, an irreducible symplectic manifold

and an infinite family of pairwise non-diffeomorphic non-symplectic irreducible manifolds

are constructed. In the same fashion, a region of the plane for manifolds with non-negative

signature is filled in.

1.1 Introduction

Our understanding of simply connected smooth 4-manifolds has witnessed a drastic improve-

ment in recent years. A quick description of the blueprint to the chain of fresh successes of

4-dimensional topologists can be achieved through (great) oversimplification, by attribut-

ing them to two factors: an increase in the repertoire of techniques that manufacture small

symplectic 4-manifolds and a new perspective on the usage of already existing mechanisms.

The idea of using symplectic sums (see [28]) of non-simply connected building blocks along

genus 2 surfaces to kill fundamental groups in an efficient way was introduced in [1]. Its

immediate outcome was the construction of an exotic symplectic CP2#5CP2
and, later on,

the existence of an exotic symplectic CP2#3CP2
(cf. [4]) was put on display. Shortly after,

Luttinger surgery ([45], [8]) was invited to the game in [11] and in [57]. The combinations

of these techniques produced another exotic symplectic CP2#3CP2
in [11]. Several of these

constructions trace their origins to [20], where symplectic sums of products of 2-manifolds
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and surgery along nullhomologous tori were employed to construct symplectic and non-

symplectic exotic 4-manifolds.

Concerning the (lack of) uniqueness of smooth structures on irreducible 4-manifolds, the

article [22] introduces a technique to produce infinite families of distinct smooth structures

on many smooth 4-manifolds. The influx of these rather elegant geometric-topological man-

ufacturing mechanisms were succesful and several of the small simply connected 4-manifolds

CP2#kCP2
(k ≤ 9), which were the most challenging 4-manifolds in terms of exhibiting

the existence of one exotic smooth structure, were shown to admit infinitely many exotic

smooth structures. We refer the reader to the papers [56], [21], [4], [11], [12], [3], [22], and

[5] for a concise presentation of these ideas and for the current state of affairs in the subject.

Another major success in the 4-dimensional story was the use of these brand new man-

ufactured exotic manifolds to produce a myriad of irreducible 4-manifolds and, thus, fill out

a huge part of the symplectic geography plane and its botany counterpart (cf. [29], [21]).

The combination of these results with previous efforts ([2], [5], [50]) provides us with a fairly

comprehensive understanding of the geography/botany problem for simply connected sym-

plectic 4-manifolds of negative signature. Although the non-negative signature region in the

geography/botany plane is still a challenge ([56], [59], [49], [58], [9]), these new techniques

have also been useful in the study of such manifolds ([9], [6]).

In this chapter the focus is switched into the non-simply connected realm. The util-

ity of these new techniques is extended in order to address the geography and botany

of smooth/symplectic irreducible 4-manifolds with cyclic fundamental group. For all the

possible lattice points that correspond to non-spin manifolds of negative signature and a

given homeomorphism type, an irreducible symplectic manifold and an infinite family of

pairwise non-diffeomorphic non-symplectic irreducible manifolds are manufactured. Such a

goal involves building the smallest known 4-manifolds with cyclic fundamental group that

are known to admit an irreducible symplectic exotic smooth structure and use them to fill

in regions of the plane. In the same fashion, 4-manifolds with non-negative signature are

studied. The corresponding coordinates are given within the results for the convenience

of the reader. The tools in [22] help us conclude that the manufactured manifolds have
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infinitely many smooth structures.

The first examples of exotic 4-manifolds with cyclic fundamental group were constructed

in [38], [39], [31], [46], [32], and [70]. Efforts towards more general fundamental groups can

be found in [10], [12], and in [13].

1.1.1 Acknowledgments

The author thanks I.R. Baykur for suggesting the problem and for useful discussions.

Our greatest gratitude goes to Matilde Marcolli for her kind encouragement and awesome

support. We thank Paul Kirk for helpful e-mail exchanges and for his kind support; S.

Baldridge’s encouragement is much appreciated too. We thank A. Akhmedov, I. Hamble-

ton, R.A. Fintushel, M. Kreck, B.D. Park, R.J. Stern and the referee for useful remarks

on an earlier version of this paper. We thank the math department at Caltech, the math

department at the State University of Florida and, specially, we are thankful to the Max-

Planck Institut für Mathematik - Bonn for their warm hospitality and excellent working

conditions. This work was supported by an IMPRS scholarship from the Max-Planck Soci-

ety.

1.2 Statements of Results

The results obtained in this chapter follow two directions. First, several symplectic 4-

manifolds with cyclic fundamental group and small Euler characteristic are constructed.

Second, regions of the geography/botany plane of each fundamental group are filled out.

1.2.1 Notation

The following notation will be used to denote the manufactured symplectic manifolds:

Xπ1
b+2 ,b

−
2

.
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The corresponding topological prototypes for which exotic smooth structures are con-

structed will be

• b+2 CP
2#b−2 CP

2
# ˜L(p, 1)× S1 and

• b+2 CP
2#b−2 CP

2
#S1 × S3.

For example, X
Zp

1,3 denotes the symplectic manifold with finite cyclic fundamental group

Zp and XZ
2,4 stands for the one with infinite cyclic fundamental group, both have Euler

characteristic e = 6 and signature σ = −2. For the topological prototypes for finite cyclic

fundamental groups, we have the following. The piece ˜L(p, 1)× S1 stands for the surgered

product L(p, 1)×S1 of a lens space with the circle; the surgery is performed along {pt}×S1

to kill the loop corresponding to the generator of the infinite cyclic group factor so that π1

of the surgered manifold comes from the fundamental group of the lens space.

We point out that this notation gives away all the information needed to establish a

homeomorphism. In the infinite cyclic fundamental group case, we recall that b2(X) = e(X);

in particular notice that e(S1 × S3) = 0 since the Euler characteristic is multiplicative. In

the finite cyclic case, e( ˜L(p, 1)× S1) = 2. Thus, these manifolds share the same Euler char-

acteristic e = 6 and signature σ = −2. Thus, X
Zp

1,3 is an exotic CP2#3CP2
# ˜L(p, 1)× S1.

The following definition introduced by A. Akhmedov and B.D. Park in [6] will be used

for practical reasons.

Definition 1.1. A smooth 4-manifold X has the ∞-property if and only if there exists

an irreducible symplectic 4-manifold and infinitely many pairwise non-diffeomorphic irre-

ducible non-symplectic 4-manifolds, all of them homeomorphic to X.

1.2.2 Main results

Theorem 1.2. Let e and σ denote integers satisfying 2e+ 3σ ≥ 0, and e+ σ ≡ 0 (mod 4).

If, in addition,
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σ ≤ −1,

then there exists a non-spin irreducible symplectic 4-manifold with cyclic fundamental

group (for both choices, finite and infinite) with signature σ and Euler characteristic e.

Expressed in terms of the geography/botany problems, we manufacture irreducible

symplectic 4-manifolds with cyclic fundamental group and infinitely many pairwise non-

diffemorphic non-symplectic 4-manifolds with cyclic fundamental groups that realize the

coordinates

(c2
1, χh) if 0 ≤ c2

1 ≤ 8χ− 1.

The following result is an extension of the combined efforts of [2] and [5] to the geogra-

phy/botany problems of cyclic fundamental groups.

Theorem 1.3. Let (c, χ) be any pair of non-negative integers satisfying

0 ≤ c ≤ 8χ− 1.

The manifolds

(2χ− 1)CP2#(10χ− c− 1)CP2
# ˜L(p, 1)× S1 and

2χCP2#(10χ− c)CP2
#S1 × S3

have the ∞-property.

Besides manifolds with negative signature, one is able to fill in other regions. A sample

of such results is given below.

The following theorems extend some results in [49] and [22].

Theorem 1.4. For each integer k, 10 ≤ k ≤ 18, there exists an infinite family {Xn} of

pairwise non-diffeomorphic irreducible 4-manifolds with the following characteristics.

• Only one member is symplectic,
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• the characteristic numbers for all the members of the family can be chosen from the

following three pairs: χh = 2 and c2
1 = 19− k; χh = 3 and c2

1 = 19− k or χh = 3 and

c2
1 = 27− k,

• each member of the family contains a symplectic surface Σ2 of genus 2 and self-

intersection 0. The fundamental group of the complement of Σ2 in each manifold is

isomorphic to the fundamental group of the ambient manifold.

Theorem 1.5. For each integer k, 10 ≤ k ≤ 18, there exists an infinite family {Xn} of

pairwise non-diffeomorphic irreducible 4-manifolds with the following characteristics.

• Only one member is symplectic,

• the characteristic numbers for all the members of the family can be chosen from the

following two pairs: χh = 4 and c2
1 = 33− k or χh = 5 and c2

1 = 41− k.

• each member of the family contains a symplectic torus T of self-intersection 0. The

fundamental group of the complement of T in each manifold is isomorphic to the fun-

damental group of the ambient manifold.

Corollary 1.6. Let k and q be integers such that 10 ≤ k ≤ 18 and 10 ≤ q ≤ 20. The

following 4-manifolds have the ∞-property:

• 4CP2#(1 + k)CP2
#S1 × S3,

• 6CP2#(3 + q)CP2
#S1 × S3, 5CP2#(2 + q)CP2

# ˜L(p, 1)× S1,

• 8CP2#(7 + k)CP2
#S1 × S3, 7CP2#(6 + k)CP2

# ˜L(p, 1)× S1,
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• 10CP2#(9 + k)CP2
#S1 × S3, 9CP2#(8 + k)CP2

# ˜L(p, 1)× S1.

With the next result we start our enterprise into the non-negative signature region of

the geography planes.

Theorem 1.7. Let k ≥ 45. The manifolds

(2k + 2)CP2#(2k + 2)CP2
#S1 × S3,

(2k + 1)CP2#(2k + 1)CP2
# ˜L(p, 1)× S1

have the ∞-property.

Let q ≥ 49. The manifolds

(2q)CP2#(2q + 1)CP2
#S1 × S3,

(2q − 1)CP2#(2q)CP2
# ˜L(p, 1)× S1

By following an idea of Stipsicz [59] employed in [2] and using the recent efforts in [9],

[49], and [6], the following points/regions in the plane non-negative signature are shown to

be realized.

Theorem 1.8. There exists a closed minimal symplectic 4-manifold X with cyclic π1(X)

for the following choices of characteristic numbers:

• e = 94 and σ = 2 corresponding to (c2
1, χh) = (194, 24),

• e = 98 and σ = 2 corresponding to (c2
1, χh) = (202, 25),

• e = 100 and σ = 0 corresponding to (c2
1, χh) = (200, 25),

• e = 100 and σ = 4 corresponding to (c2
1, χh) = (212, 26),

• e = 104 and σ = 4 corresponding to (c2
1, χh) = (220, 27) or

• e = 106 and σ = 2 corresponding to (c2
1, χh) = (218, 27) .



8

These manifolds are used to fill in the following regions:

• (e, σ) = (2m+ 2, 0) and (c2
1, χh) = (4m+ 4, 1/2(m+ 1)),

• (e, σ) = (2m+ 1, 1) and (c2
1, χh) = (4m+ 5, 1/2(m+ 1)), and

• (e, σ) = (2m, 0) and (c2
1, χh) = (4m+ 6, 1/2(m+ 1)).

The following result states the regions in terms of the topological prototypes.

Proposition 1.9. Let m be an odd positive integer. If m ≥ 49, then

• mCP2#mCP2
# ˜L(p, 1)× S1,

• (m+ 1)CP2#(m+ 1)CP2
#S1 × S3,

• mCP2#(m− 1)CP2
# ˜L(p, 1)× S1, and

• (m+ 1)CP2#mCP2
#S1 × S3

have the ∞-property.

If r ≥ 47, then

• rCP2#(r − 2)CP2
# ˜L(p, 1)× S1 and

• (r + 1)CP2#(r − 1)CP2
#S1 × S3

have the ∞-property.

Let s be an odd positive integer. If s ≥ 53, then

• sCP2#(s− 3)CP2
# ˜L(p, 1)× S1 and

• (s+ 1)CP2#(s− 2)CP2
#S1 × S3
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have the ∞-property. If t ≥ 51, then

• tCP2#(t− 4)CP2
# ˜L(p, 1)× S1 and

• (t+ 1)CP2#(t− 3)CP2
#S1 × S3

have the ∞-property.

These manifolds correspond to the regions

• (e, σ) = (2m− 1, 3) and (c2
1, χh) = (4m+ 7, 1/2(m+ 1)) and

• (e, σ) = (2m− 2, 0) and (c2
1, χh) = (4m+ 8, 1/2(m+ 1)).

Proposition 1.10. For each odd integer m ≥ 1 and 10 ≤ k ≤ 18, there exists an irreducible

symplectic 4-manifold Y with cyclic fundamental group whose characteristic numbers can

be chosen amongst the following options:

1. χ(Y ) = 25m2 + 31m+ 5 and c2
1(Y ) = 225m2 + 248m+ 35− k;

2. χ(Y ) = 25m2 + 31m+ 6 and c2
1(Y ) = 225m2 + 248m+ 43− k;

3. χ(Y ) = 25m2 + 31m+ 6 and c2
1(Y ) = 225m2 + 248m+ 41− k;

4. χ(Y ) = 25m2 + 31m+ 7 and c2
1(Y ) = 225m2 + 248m+ 49− k;

5. χ(Y ) = 25m2 + 31m+ 8 and c2
1(Y ) = 225m2 + 248m+ 57− k.

Moreover, the manifolds with the first three choices of coordinates contain a symplectic

genus 2 surface Σ of self-intersection zero; the manifolds from the last two choices contain

a symplectic torus T of self-intersection zero and π1(Y − Σ) = π1(Y ) = π1(Y − T ).
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Proposition 1.11. Let n ≥ 2. There exists a symplectic minimal 4-manifold with cyclic

fundamental group whose characteristic numbers can be chosen among the following three

choices:

• e = 75n2 +256n+130 and σ = 25n2−68n−78; (c2
1, χh) = (225n2 +298n+26, 25n2 +

94n+ 13),

• e = 75n2 + 256n+ 134 and σ = 25n2− 68n− 78 (c2
1, χh) = (225n2 + 298n+ 30, 25n2 +

94n+ 14)or

• e = 75n2 + 256n+ 136 and σ = 25n2− 68n− 80 (c2
1, χh) = (225n2 + 298n+ 32, 25n2 +

94n+ 14).

The manifolds corresponding to the given coordinates have the ∞-property.

1.3 Background Results on 4-Manifolds

The corresponding topological prototypes used to determine the homeomorphism type of

the manufactured manifolds will be a connected sum of pCP2#qCP2
with a non-simply

connected manifold reponsible for the fundamental group. For π1 = Z, we build exotica for

qCP2#pCP2
#S1 × S3. For π1 = Zp, then the prototype manifolds would be of the form

qCP2#pCP2
# ˜L(p, 1)× S1.

1.3.1 Homeomorphism Criteria: Case π1 = Zp

For the finite cyclic fundamental group case, the classification result we will use is given in

[33] in the shape of Theorem C.

Theorem 1.12. (Hambleton, Kreck). Let X be a smooth, closed, oriented 4-manifold with

finite cyclic fundamental group. X is classified up to homeomorphism by the fundamental

group, the intersection form on H2(M ;Z)�Tors and the ω2 -type. Moreover, any isometry

of the intersection form can be realized by a homeomorphism.
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Since in this scenario we do have 2-torsion, one is to be careful about determining the

parity of the intersection form and its ω2-type. The Enriques surfaces are an example of the

sublety of the situation: their intersection form is even, but they are not spin manifolds. In

this case, there are three ω2-types:

1. ω2(X̃) 6= 0,

2. ω2(X) = 0,

3. ω2(X̃) = 0, but ω2(X) 6= 0.

By using the well-know work of Donaldson and of Minkowski-Hasse on the classification

of the intersection forms, the previous result can be stated in the following practical terms.

Theorem 1.13. A smooth, closed, oriented 4-manifold with finite cyclic fundamental and

indefinite intersection form is classified up to homeomorphism by the fundamental group,

the Betti numbers b+2 and b−2 , the parity of the intersection form, and the ω2-type.

However, do notice that for these manifolds, to know the invariants b+2 and b−2 is equiv-

alent to knowing any other two numerical invariants, like e or σ.

Moreover, most of the manufactured manifolds are non-spin; type II does not occur.

Deciding the ω2-type boils down to distinguishing if the universal cover is spin or not.

1.3.2 Homeomorphism Criteria: Case π1 = Z

For a huge region, the following result settles the homeomorphism criteria.

Theorem 1.14. (Hambleton-Teichner, cf. [36]). If X is a closed, oriented, smooth 4-

manifold with infinite cyclic fundamental group and satisfies the inequality

b2(X)− |σ(X)| ≥ 6,
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then X is homeomorphic to the connected sum of S1 × S3 with a unique, closed, simply

connected 4-manifold. In particular, X is determined up to homeomorphism by its second

Betti number b2(X), its signature σ(X), and its ω2 -type. In particular, X is either spin or

non-spin depending on the parity of its intersection form.

However, in more generality we have

Theorem 1.15. Let X be a closed, orientable 4-manifold with infinite cyclic fundamental

group and suppose the intersection form on X is extended from the integers. Then X is

homeomorphic to a connected sum of S1 × S3 with a simply-connected 4-manifold.

At this point the condition of a manifold to have an intersection form that is extended

from the integers is equivalent to its algebraic numbers complying with the inequality above.

It has been conjectured by Hambleton-Teichner that all smoothable 4-manifolds can be

topologically decomposed as a connected sum of a simply connected 4-manifold and S1×S3.

Because of the equivalence, this is the same as the indefiniteness inequality b2 ≥ |σ| ≥ 4

being all that is needed for the forms to be extended from Z.

1.3.3 Raw Materials

The elements employed in our constructions rely on the constructions of other authors ([5],

[2], [10], [11], [12], [22]). In this section we quote the notions, properties and results we used

the most for the convenience of the reader.

The following definition was introduced in [2].

Definition 1.16. An ordered triple (X,T1, T2) consisting of a symplectic 4-manifold X and

two disjointly embedded Lagrangian tori T1 and T2 is called a telescoping triple if

1. The tori T1 and T2 span a 2-dimensional subspace of H2(X;R).

2. π1(X) ∼= Z2 and the inclusion induces an isomorphism π1(X − (T1 ∪ T2)) → π1(X).

In particular, the meridians of the tori are trivial in π1(X − (T1 ∪ T2))→ π1(X).

3. The image of the homomorphism induced by the corresponding inclusion π1(T1) →

π1(X) is a summand Z ⊂ π1(X).

4. The homomorphism induced by inclusion π1(T2)→ π1(X) is an isomorphism.
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The telescoping triple is called minimal if X itself is minimal. Some words of expla-

natino are in order. Notice the importance of the order of the tori. The meridians µT1 , µT2

in π1(X − (T1 ∪ T2))→ π1(X) are trivial and the relevant fundamental groups are abelian.

The push off of an oriented loop γ ⊂ Ti into X− (T1∪T2) with respect to any (Lagrangian)

framing of the normal bundle of Ti represents a well-defined element of π1(X − (T1 ∪ T2)),

that is independent of the choices of framing and base-point.

The first condition assures us that the Lagrangian tori T1 and T2 are linearly indepen-

dent in H2(X;R). This allows for the symplectic form on X to be slightly perturbed so

that one of the Ti remains Lagrangian while the other becomes symplectic. It can also

be perturbed in such way that both of them become symplectic. If we were to consider a

symplectic surface F in X disjoint from T1 and T2, the perturbed symplectic form can be

chosen so that F remains symplectic.

Removing a surface from a 4-manifold usually introduces new generators into the funda-

mental group of the resulting manifold. The second condition indicates that the meridians

are nullhomotopic in the complement and, thus, the fundamental group of the manifold and

the fundamental group of the complement of the tori in the manifold coincide.

Out of two telescoping triples, one is able to produce one as follows.

Proposition 1.17. (cf. [2]). Let (X,T1, T2) and (X ′, T ′1, T
′
2) be two telescoping triples.

Then for an appropriate gluing map the triple

(X#T2,T ′1
X ′, T1, T

′
2)

is again a telescoping triple.

The Euler characteristic and the signature of X#T2,T ′1
X ′ are given by e(X) + e(X ′) and

σ(X) + σ(X ′).

By Usher’s theorem, if both X and X ′ are minimal the resulting telescoping triple will

be minimal too.

For the production of the exotic manifolds with cyclic fundamental groups we have the
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following.

Proposition 1.18. Let (X,T1, T2) be a telescoping triple. Let lT1 be a Lagrangian push off

of a curve on T1 and mT2 the Lagrangian push off of a curve on T2 so that lT1 and mT2

generate π1(X).

The symplectic 4-manifold obtained by performing either +1 Luttinger surgery on T1 along

lT1 or +1 surgery on T2 along mT2 has infinite cyclic fundamental group.

By applying a +1 Luttinger surgery on T1 along lT1 and a +1/p Luttinger surgery on T2

along mT2 a symplectic manifold with finite cyclic fundamental group is obtained.

Proof. We start with the infinite cyclic fundamental group case. Denote by Y the manifold

resulting from applying one of the two mentioned surgeries. For the sake of definiteness, say

T1 is the surgered torus and let T1 = T to simplify notation. A (0,+1) surgery is applied.

By definition, the meridians of a telescoping triple are trivial. Therefore, we have

π1(Y ) = π1(X − T )/N(µTm
p
T l
q
T ) = Z⊕ Z/N(1m1

T 1),

where N(m1) is the normal subgroup generated by m, which is Z. Therefore, π1(Y ) = Z

generated by t1. A surgery on T1 along lT1 kills t2 in the fundamental group.

If we apply a (0,+1/p) surgery on T2 along mT2 , we have π1 = Z/N(mp
T ) = Zp.

Remark 1. The fundamental group calculations for the more general torus surgeries are

analogous. To check the validity of the claims, it suffices to state

π1 = π1(X − T )/N(µTm
p
T l
q
T ).

Our basic building blocks are given in the following result.

Theorem 1.19. • There exists a minimal telescoping triple (A, T1, T2) with e(A) = 5,

σ(A) = −1.

• For each g ≥ 0, there exists a minimal telescoping triple (Bg, T1, T2) satisfying e(Bg) =

6 + 4g, σ(Bg) = −2.
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• There exists a minimal telescoping triple (C, T1, T2) with e(C) = 7, σ(C) = −3.

• There exists a minimal telescoping triple (D,T1, T2) with e(D) = 8, σ(D) = −4.

• There exists a minimal telescoping triple (F, T1, T2) with e(F ) = 10, σ(F ) = −6.

These manifolds were constructed in [2] and [66]. By a repeated use of Lemma 2 in [12]

and Usher’s theorem one proves the following.

Proposition 1.20. Let X be one of the manifolds A, Bg, C, D, F , and T1, T2 the cor-

responding Lagrangian tori as described in the previous results, with Lagrangian pushoffs

mTi and lTi and trivial meridians. Then the symplectic 4-manifolds obtained from ±1 Lut-

tinger surgery on one Lagrangian torus along (accordingly) mT2 or lT1 are all minimal. The

symplectic 4-manifolds obtained from ±1 Luttinger surgery on one Lagrangian tori along

(accordingly) mT2 or lT1 and ±1/p Luttinger surgery on the other tori along the proper

pushoff are all minimal.

We move on now to mimic the procedure of Lemma 10 in [2] in order to produce a

non-minimal telescoping triple out of (B, T1, T2) that suits perfectly our purposes. The

statement is

Lemma 1.21. The blow-up B̃ = B#16CP2
contains a genus 18 surface F18 with trivial

normal bundle and two Lagrangian tori T1× T2 so that the surfaces F18, T1, T2 are pairwise

disjoint, (B̃, F18) is relatively minimal and:

1. π1(B̃ − (F18 ∪ T1 ∪ T2)) = Zt1 ⊕ Zt2.

2. The inclusion B̃−(F18∪T1∪T2) ⊂ B̃ induces an isomorphism on fundamental groups.

In particular the meridians µF18, µT1, µT2 all vanish in π1(B̃ − (F18 ∪ T1 ∪ T2)).

3. The Lagrangian pushoffs mT1, lT1 of π1(T1) are sent to 1 and t2 respectively in the

fundamental group of B̃ − (F18 ∪ T1 ∪ T2).

4. The Lagrangian pushoffs mT2, lT2 of π1(T2) are sent to t1 and t2 respectively in the

fundamental group of B̃ − (F18 ∪ T1 ∪ T2).
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5. There is a standard symplectic generating set {a1, b1, a2, b2, . . . , a18, b18} for π1(F18)

so that the pushoff F18 ⊂ B̃ − (F18 ∪ T1 ∪ T2) takes b17 to t2 and b18 to t1, and all

other generators to 1.

In particular, (B̃, T1, T2) is a telescoping triple.

Needless to say, a basic element in these constructions is the computation of funda-

mental groups. Serious technical issues arise when dealing with fundamental groups and

cut-and-paste constructions; keeping track of the base point through the operations is cru-

cial. For example, in order to be able to apply van-Kampen’s theorem, the base points must

lie on the boundary and great care is required when one is performing fundamental group

calculations. The reader is referred to [11], [12], [13], and [22] for more detailed description

on this issue. The mechanisms employed in this paper are much softer though, since they

depend heavily on those calculations performed in the papers cited before.

1.3.4 Minimality/Irreducibility

The following results allow us to conclude on the irreducibility of the constructed manifolds.

Theorem 1.22. (Hamilton and Kotschick, [37]). Minimal symplectic 4-manifolds with

residually finite fundamental groups are irreducible.

Free groups and finite cylic groups are a well-known example of residually finite fun-

damental groups. In particular, the results tell us that the only property we should worry

about is minimality. For this purpose, we will make use of the following.

Theorem 1.23. (Usher, [69]). Let X = Y#Σ≡ΣY
′ be the symplectic sum where the surfaces

have genus greater than zero.

1. If either Y −Σ or Y ′ −Σ′ contains an embedded symplectic sphere of square -1, then

X is not minimal.
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2. If one of the summands, say Y for definiteness, admits the structure of an S2-bundle

over a surface of genus g such that Σ is a section of this S2-bundle, then X is minimal

if and only if Y ′ is minimal.

3. In all other cases, X is minimal.

Thus, to assure that the manufactured manifolds are minimal it suffices to exclude the

first two cases. For such a purpose, by taking a look at the building blocks of the symplec-

tic sums, it is usual to blow-up points to obtain the symplectic surface of self-intersection

0 used for the construction. The exceptional spheres introduced by the blow-up process

are the only -1 spheres. They are the only threats for our manifolds not being minimal.

To be assured that the first scenario of Usher’s theorem is not possible, we need to check

that every exceptional sphere does indeed intersect transversally at one point on the surface.

When working on a symplectic context, there is another useful method to eliminate the

first two cases of Usher’s theorem. The result appears as Corollary 3 in [44], here we stated

as a theorem due to its role.

Theorem 1.24. (Li). Let X be a symplectic 4-manifold that is not rational or ruled. Then

every smoothly embedded −1 sphere is homologous to a symplectic -1 curve up to sign. If

X is the blow-up of a minimal symplectic 4-manifold with E1, · · · , En represented by excep-

tional curves, then the Ei are the only classes represented by a smoothly embedded -1 sphere.

Therefore, any orientation preserving diffeomorphism maps Ei to some Ej up to sign.

1.4 Strategy

The blueprint to the manufacturing process of symplectic irreducible 4-manifolds with cyclic

fundamental group has two paths. The first one has already been observed by other authors

(cf. [13], [12], [2], and [5]) and we proceed to explain it. When one is aiming at building

a simply connected minimal symplectic 4-manifold using Luttinger surgeries, the process

can be interrupted before applying the last ±1 Luttinger surgery. The fundamental group
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of the resulting manifold will be infinite cyclic. We can then go ahead and apply a ±1/p

Luttinger surgery on the Lagrangian tori that is still left unused and produce a manifold

with finite cyclic fundamental group.

The second path consists of starting with a simply connected irreducible symplectic

4-manifold X that contains a symplectic torus or a symplectic surface of genus 2, both

of self-intersection zero and both having simply connected complement inside X. We can

build the proper symplectic sum with one of the raw materials presented in section 3 along

the corresponding symplectic surface. Then, we apply Luttinger surgeries to manipulate

the manifolds’ π1 as we need to obtain cyclic fundamental groups.

After pinning down a topological prototype for the constructed manifolds, the required

torus surgeries are applied to produce an infinite family of pairwise non-diffeomorphic,

non-symplectic manifolds sharing the same homeomorphism type. Since the manufacturing

process is strongly related for both types of cyclic groups, our proofs will carry on both

cases at the same time.

Remark 2. The No-2-Torsion Hypothesis. One might be able to argue without any ref-

erence to the SW invariants that any given symplectic irreducible manifold constructed is

an exotic copy of its corresponding topological prototype. However, in order to establish the

existence of infinitely many exotic smooth structures one does need these invariants. As

it is explained in [22], the Morgan-Mrowka-Szabo formula [41] is employed to distinguish

the Seiberg-Witten invariants and, by doing so, conclude that the members of the infinite

family {Xn} of irreducible manifolds which were obtained by torus surgeries are pairwise

non-diffeomorphic (see [22], the remark preceeding Corollary 14 in [12] and [3]).

This involves a one-to-one correspondence between the set of spinC structures on the

manifold and the characteristic elements of H2. Our constructions build exotic manifolds

for every single finite cyclic fundamental group. To establish the ∞-property on the manu-

factured manifolds, we assume that their fundamental groups do lack 2-torsion.
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We start our endeavor and exemplify the first path of our strategy. The method to fill

the region (c2
1, χh) = (5 + 8k, 1 +k) (for k ≥ 2) for cyclic fundamental groups was suggested

in [2]. We follow their proof closely and we adapt it to our needs.

Start by defining two minimal simply connected symplectic 4-manifolds:

X− := X1
3,5 and X+ := X1

1,3

with e(X−) = 10, σ(X−) = −2 and e(X+) = 6, σ(X+) = −2.

Each of these manifolds contains a symplectic surface F of genus 2 and trivial normal

bundle, as well as a symplectic torus H1 of square −1. Out of these submanifolds a sym-

plectic genus 3 surface F3 of square 1 is obtained by symplectically resolving the union

H1 ∪F . One gets rid of the self-intersection in the sense that one considers now the proper

transform F̃3 of F3 in X̃±: the blow up X± at a point on F3 provides us with a symplectic

surface F̃3 of genus three and self-intersection 0. The minimality of X± assures that the

meridian of F̃3 intersects the exceptional sphere, then π1(X̃± − F̃3) = 1.

Consider now the product F3 × G of a genus 3 surface with a genus g surface and its

product symplectic form. This is the step in the manufacturing process where manipulates

the the fundamental groups to obtain the desired manifold. For our purposes, we will only

perform 2g − 1 Luttinger surgeries on the following 2g − 1 disjoint Lagrangian tori along

the corresponding curves

Y1 ×Aj along lY1×Aj = aj and

Y2 ×Bj along lY2×Bj = bj ,

where j = 1, . . . , g by leaving (say for definiteness purposes) Y2×Bg alone, i.e., not per-

forming this surgery. By doing so, one obtains a manifold Zg. The fundamental group of Zg

is given by theorem 1 of [2] to be the group generated by the 6+2g loops x1, y1, x2, y2, x3, y3

(from the π1(F3)) and a1, b1, . . . , ag, bg (from π1(G)) and the relations

[x1, bj ] = aj for j = 1, . . . g and

[x2, aj ] = bj for j = 1, . . . g − 1.
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Build the symplectic sum Q̃±,g := X̃±#F̃3=FZg. Its fundamental group is infinite cyclic:

notice that π1(X̃−F̃3) = 1, so this block kills the generators xi and yi during the symplectic

sum. The relations from the Luttinger surgeries kill aj and bj except for bg. Therefore,

π1(Q̃±,g) =< bg >.

One can now perform a +1/p -Luttinger surgery along the remaining Y2 × Bg along

lY2×Bg to produce a manifold Q±,g with fundamental group Zp.

Since X̃± is relatively minimal by Li’s theorem, the only hypothesis needed to apply

Usher’s theorem and conclude that Q±,g is minimal as well is g ≥ 1. One then can go on

and compute

e(Q−,g) = 11 + 8g, σ(Q−,g) = −3,

e(Q+,g) = 7 + 8g, σ(Q+,g) = −3.

If k is even, rename X1+2k,4+2k = Q+,k/2; if k is odd, set X1+2k,4+2k = Q−,(k−1)/2.

This procedure manufactures the manifolds of the result we now state.

Theorem 1.25. Let k ≥ 2. The manifolds

(1 + 2k)CP2#(4 + 2k)CP2
# ˜L(p, 1)× S1 and

(2 + 2k)CP2#(5 + 2k)CP2
#S3 × S1

have the ∞-property.

Remark 3. The last Luttinger surgery applied in our constructions kills a loop carrying a

generator of the fundamental group. At the cost of leaving the setting of symplectic mani-

folds, one could apply a more general torus surgery instead. The resulting core torus from

the surgery is nullhomologous in the manufactured manifold. It serves as a dial to change

the smooth structure at will ([23], [22]). One can then proceed to use the Morgan-Mrowka-

Szabo formula to prove that the irreducible members of the infinite family produced by the

torus surgery are pairwise non-diffeomorphic. We refer the reader to [23], [22], and [41]
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for details. A concise explanation is given in the remark above Corollary 14 in [12].

On the fundamental group calculations related to the infinite family of exotic manifolds

homeomorphic to some topological prototype: for an exotic manifold X, the fundamen-

tal group of Xn differs only from the one of X by replacing a single relation of the form

b = [a−1, d] by b = [a−1, d]n . Thus the only thing needed is to check that raising the power

of the commutator in such a relation does not affect the fundamental group calculations (see

[3] for more details).

As a consequence of the telescoping triples presented in last section, one obtains the

following result.

Proposition 1.26. Let k ∈ {2, 3, 4, 5, 7, 8}. The manifolds

CP2#kCP2
# ˜L(p, 1)× S1

have the ∞-property.

The telescoping triples are rather practical black boxes when one is filling regions in

the geography plane. However, they offer no information on how the construction for an

exotic manifold goes. We proceed to give a more detailed description of such a process

for manifolds that can be obtained out of the construction process for exotic CP2#6CP2
’s

carried out in [5].

Example 1.27. (c2
1, χh) = (3, 1): In [5] the following symplectic sum was used

(T 4#CP2
)#Σ2(T 2 × S2#4CP2

)

and applied two surgeries on the 4-torus blown up once to obtain the mentioned simply

connected exotic manifold. Do notice that the symplectic sum already kills two generators

without any help from the surgeries. Now, we want to skip a surgery to obtain a manifold

with an infinite cyclic fundamental group. We proceed to exhibit the fundamental group

calculations of the process.
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Let α1, α2, α3, α4 be the generators of the fundamental group of the 4-torus blown up

once. Then, they all satisfy [αi, αj ] = 1. Let a′i, b
′
i i = 1, 2 be the generators of the genus 2

surface Σ′2 ⊂ T 4#CP2
. Assume that the inclusion induces a homomorphism on the funda-

mental groups that map the generators as follows:

a′1 7→ α1, b
′
1 7→ α2, a

′
2 7→ α2

3, b2 7→ α4.

We will apply one Luttinger surgery on this block. From our first example above, we

have learned that the generator α3 is to be killed, otherwise one obtains a finite cyclic fun-

damental group of order 2. Thus, we will apply (α′2×α′3, α′3,−p) and introduce the relation

α3 = [α−1
1 , α−1

4 ] to kill α3. The surgery (α′′2 × α′4, α′4,−m/r) used in [5] to produce simply

connected manifolds will not be applied. Denote by S the surgered manifold.

Consider now the other building block. Let c, d be the generators of π1(S2×T 2#4CP2
)

satisfying [c, d] = 1 and ai, bi the generators of Σ2. Assume the inclusion Σ′2 ⊂ S2×T 2#4CP2

induces a map on the fundamental groups that map the generators as follows:

a1 7→ c, b1 7→ d, a2 7→ c−1, b2 7→ d−1.

We remark that both genus 2 surfaces intersect an exceptional sphere inside the corre-

sponding block and thus both meridians are nullhomotopic. Assume the orientation revers-

ing diffeomorphism ∂(nbh(Σ′2))→ ∂(nbh(Σ2)) induces a homomorphism on the fundamental

groups which maps the generators of π1 as follows:

a′i 7→ ai, b
′
i 7→ bi for i = 1, 2.

We build the symplectic sum S = Y#Σ′2=Σ2
T 2 × S2#4CP2

. The presentation of π1(S)

is

< α1, α2, α3, α4, c, d|α3 = [α−1
1 , α−1

4 ], [α1, α2] = [α1, α3] = [α2, α3] = [α2, α4], [c, d], c =

α1, d = α2, α
2
3 = c−1, α4 = d−1 >.
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So we have α4 = α−1
2 and substituting it in α3 = [α−1

1 , α−1
4 ] implies that α3 = 1 = c

since α1 and α2 commute. This establishes that the only surviving generator is α4 = d−1.

Rename S = XZ
2,7.

One can then apply (α′′2 × α′4, α′4,−1/p) Luttinger surgery on the unused Lagrangian

torus to obtain X
Zp

1,6.

Since X
Zp

1,6 has an odd intersection form and its universal cover has signature σ = −5p, it

follows by Hambleton-Kreck’s criteria that it is homeomorphic to CP2#6CP2
# ˜L(p, 1)× S1.

However, its minimality implies that they are not diffeomorphic.

To build the next example we use Theorem 11 and Proposition 12 of [12]. In the previous

sense, these manifolds come out of the process to find exotic CP2#3CP2
’s.

Proposition 1.28. There exist irreducible symplectic 4-manifolds XZ
2,4 and X

Zp

1,3. The

manifold CP2#3CP2
# ˜L(p, 1)× S1 has the ∞-property.

One starts with the symplectic sum of T 2 × Σ2 and T 4#2CP2
along a genus 2 surface.

Call this manifold Z. We will surger Z to obtain the minimal symplectic XZ
2,4, X

Zp

1,3 and an

infinite family of non-symplectic pairwise non-diffeomorphic minimal 4-manifolds for each

one.

Then we will prove that the manufactured manifolds with finite cyclic fundamental

group have the claimed underlying topological prototype by establishing the existence of a

homeomorphism using Hambleton-Kreck’s criteria. We follow Baldridge-Kirk’s notation.

Proof. The chosen surgeries and the relations they introduce into the fundamental group

are

1. (T ′1,m
′
1,+1)−−−−−−−−−−−−− b1 = [a−1

2 , a−1
1 ],

2. (T1, l1,−1)−−−−−−−−−−−−− a1 = [b−1
1 , y−1],

3. (T ′2, l
′
2,+1)−−−−−−−−−−−−− b2 = [b1, a2],

4. (T3,m3,−1)−−−−−−−−−−−−− x−1 = [b−1
2 , y−1],
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5. (T4, l4,−1/p)−−−−−−−−−−−−− ap2 = [x−1, b2],

6. (T2,m2,−k/1)−−−−−−−−−−−−− y = [x−1, b1]k.

The two relations introduced by the first two surgeries take down a1 and b1: a1 =

[b−1
1 , y−1] = [[a−1

2 , a−1
1 ], y−1] = 1 and by Theorem 11 in [12], y commutes with both a1’s.

This results in a1 = 1, which implies b1 = 1. The relation introduced by the surgery on T ′2

along l′2 and the fact that b1 = 1 kill b2.

The fourth surgery (along T3) takes out x−1 and the fifth surgery sets ap2 = 1. We kill

the last surviving generator by surgering T2 along m2. This establishes

π1 = Zp

and X
Zp

1,3 has been produced. If we apply a p = 1 surgery instead and kill the other

generator, we can obtain a manifold with π1 = Z, i.e., this different path manufactures XZ
2,4.

Since the surgeries respect the Euler characteristic and the signature we have that e = 6

and σ = −2 and both have an odd intersection form.

Now we proceed on to seeing that we have chosen the correct topological prototype for

the homeomorphism type. We have that b+2 = 1 and b−2 = 3. Since the intersection form of

the manifold is odd, type II is ruled out. We claim that the manifolds are of type I indeed.

To rule out type III, we observe that the universal cover has Euler characteristic 6p and

signature −2p. For simplicity, assume p 6= 0 mod 8, then by Rohlin’s theorem the universal

cover will not be spin. Thus, these manifolds are of ω2-type I. The homeomorphism follows

from the quoted result of Hambleton-Kreck.

The last examples realize the pairs (c2
1, χ) = (6, 1) and (3, 1).

Remark 4. P. Kirk and S. Baldridge obtained a similar result for CP2#3CP2
# ˜L(p, 1)× S1

(cf. [42]).

The possible choices of Luttinger surgeries to skip in order to obtain a 4-manifold with

infinite cyclic fundamental group are not unique. For example, when one extends the third

instance of Theorem 1 in [5], instead of skipping (a′2 × c′1, c′1,+1) in the Yn(m) summand

of Xn(m) as the authors did in order to obtain simply connected manifolds, we will skip
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(a′2 × c′2, a′2,−1) to get the needed 4-manifolds with infinite cyclic fundamental group. We

then proceed to aply (a′2×c′2, a′2,−1/p) to conclude the finite cyclic fundamental group case.

Proposition 1.29. Let n ≥ 3. The following 4-manifolds have the ∞-property.

• (2n− 1)CP2#2nCP2
# ˜L(p, 1)× S1,

• 2nCP2#(2n+ 1)CP2
#S1 × S3.

Proof. Let Z ′ be the irreducible symplectic 4-manifold constructed in [5]. It contains a

genus 2 symplectic surface Σ′2 of self-intersection 0 and π1(Z ′ − Σ′2) is a quotient of the

group < α1, α2, α3, α4|α3 = [α−1
1 , α−1

4 ], [α1, α3] = 1, [α2, α3] = [α2, α4] = 1 >.

In Section 2 of [5], an infinite family of pairwise non-diffeomorphic irreducible 4-manifolds

which has the same cohomology ring as (2n−3) is constructed by applying 2n+3 Luttinger

surgeries and a single m torus surgery on the product Σ2 × Σn of a genus 2 surface with a

genus n surface. Let Yn(m)′ be the 4-manifold obtained by applying only 2n+ 2 Luttinger

surgeries and an m torus surgery. Using the notation of [22] and [5], we choose to not apply

(a′2 × c′2, a′2,−1); this means than in π1(Yn(m)′) all the fundamental group relations given

in [5] for Yn(m) still hold except for [b−1
2 , d−1

2 ] = a2. There is a genus 2 symplectic surface

Σ2 ⊂ Yn(m)′ of self-intersection 0.

Take the fiber sum

Sn(m) = Yn(m)′#ΦZ
′

using a diffeomorphism Φ : ∂(NΣ2)→ ∂(NΣ′2
). Notice that Sn(m) is symplectic if m = 1.

Let a′i, b
′
i be the standard generators of π1(Σ′2) and ai, bi be the generators of π1(Σ2); thus,

the fundamental group of Yn(m)′ is generated by a1, b1, a2, b2, c1, d1, . . . , cn, dn. Assume that

Φ? maps the generators of π1 as follows:

ai 7→ a′i, bi 7→ b′i.

The group π1(Sn(m)) is a quotient of the group π(Yn(m)−NΣ2)?π1(Z ′−NΣ′2
)/ < a1 =

α1, b1 = α2, b2 = α4, µ(Σ2) = µ(Σ′2) >. Notice that the existence of a -1 sphere in Z ′ which
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intersects the genus 2 surface allows us to build a nullhomotopy for the meridian of Σ′2. We

proceed to show that all but one generators in π1(Sn(m) are trivial.

Using the relations given in Section 2 of [5] we have that a1 = [b−1
1 , d−1

1 ] = [b−1
1 , [c−1

1 , b2]−1] =

[b−1
1 , [b2, c

−1
1 ]]. Moreover, from the fundamental group of the building block Z ′ we know that

[α2, α4] = 1 and since b2 is identified with α2 and b4 with α4, we have that [b1, b2] = 1.

Since b1 commutes with c1, then a1 = 1.

Once we have killed a1, one can get rid of b1, b2, c1, c2, d1 and d2 by using the first seven

surgeries in (4) of Section 2 in [5], and we conclude that cn = 1 = dn for n ≥ 3 by using

the last 2(n − 2) Luttinger surgeries of (4). This implies that α1 = 1 = α2 = α4 and

α3 = 1 = [a−1
1 , b−1

2 ] = 1. Thus, the infinite family of irreducible pairwise non-diffeomorphic

4-manifolds have π1(Sn(m)) =< a2 >= Z. Notice that the Lagrangian torus a2 × c2 is still

unused. We can now go and apply (a′2 × c′2, a′2,−1p) Luttinger surgery to Sn(m) and ob-

tain an infinite family {Xn(m)} of pairwise non-diffeomorphic irreducible 4-manifolds with

π1 = Zp; Xn(1) is symplectic.

We can compute

e(Sn(m)) = e(Xn(m)) = e(Yn(m)′) + e(Z ′)− 2e(Σ2) = 4n+ 1,

σ(Sn(m)) = σ(Xn(m)) = σ(Yn(m)′) + σ(Z ′) = −1.

From Hambleton-Teichner’s result, we conclude that Sn(m) is homeomorphic to 2nCP2#(2n+

1)CP2
#S1×S3 when n ≥ 2. By Hambleton-Kreck’s result, we conclude that Sn(m) is home-

omorphic to (2n− 1)CP2#2nCP2
# ˜L(p, 1)× S1 when p 6= 0 mod 16.

Example 1.30. • (c, χ) = (13, 2): by skipping (a′2×c′, c′,+1/p) one obtains XZ
4,7. This

manifold is non-spin, it has characteristic numbers e = 11 and σ = −3. The theorem

of Hambleton-Teichner implies that it is homeomorphic to

4CP2#7CP2
#S1 × S3.
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We proceed to apply the surgery (a′2 × c′, c′,+1/p) on the unused Lagrangian tori

with the given Lagrangian framing in order to obtain X
Zp

3,6. This manifold is non-spin

as well. Its universal cover has signature σ = −3p, which by Rohlin’s theorem, im-

plies it is nonspin as well.Hambleton-Kreck’s result says that X
Zp

3,6 is homeomorphic to

3CP2#6CP2
# ˜L(p, 1)× S1.

• (c, χ) = (11, 2): By skipping a surgery one obtains XZ
4,9 and by applying (α′′2 ×

α′4, α
′
4,−1/p) one obtains X

Zp

3,8.

• (c, χ) = (9, 2): XZ
4,11 and by applying (α′′2 × α′4, α′4,−1/p) one obtains X

Zp

3,10.

The choice of Luttinger surgery to skip is not unique. In the next section we exemplify

these phenomena. It is unknown if the resulting manifolds, independently of the chosen

Luttinger surgeries, are diffeomorphic.

1.4.1 Constructing Manifolds via Telescoping Triples

In this section, the telescoping triples (X,T1, T2) built in [2] will be employed on the man-

ufacturing procedure of the exotic manifolds. The fundamental group of the manifold X is

Zt1⊕Zt2. One is able to think as the Lagrangian push-off mT2 being responsible for the Zt1

factor and the Lagrangian push-off lT1 responsible for the Zt2 factor. To produce an infinite

family {Xn} of irreducible 4-manifolds with infinite cyclic fundamental group, it suffices to

apply a single torus surgery: either (T1, lT1 ,+n/1) and obtain π1 = Zt1. One could apply

(T2,mT2 ,+n/1) as well and get π1 = Zt2. The family produced in both cases has a unique

symplectic member for n = 1.

In order to obtain 4-manifolds with finite cyclic fundamental group of order p, one needs

to apply two surgeries. Start by applying (T1, lT1 ,+1/p) and then (T2,mT2 ,+n/1). The

first surgery is a Luttinger surgery and it provides us with a manifold with fundamental

group Zt1 ⊕Zpt2. The second surgery is a general torus surgery. It has two duties: kill the
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Zt1 factor in π1 and to produce an infinite family of {Xn} of irreducible 4-manifolds where

X1 is the only member having a symplectic structure.

One obtains several organical results by applying the previous recipe to the telescop-

ing triples. By using Corollary 9 in [2], one obtains that all manifolds in the points

(c2
1, χh) = (6+8g, 1+g) (for a non-negative integer g) of the plane have the∞-property. In

this case the manifolds X
Zp

1+2g,3+2g and the infinite family {Xn} come out of the manifold Bg.

Proposition 1.31. Let g ≥ 0 and q ≥ 1. The manifolds

(1 + 2g)CP2#(3 + 2g)CP2
# ˜L(p, 1)× S1

and

(2 + 2q)CP2#(4 + 2q)CP2
#S3 × S1

have the ∞-property.

We now need to take care of the topological prototype. The two surgeries have already

provided us with the dial to change the smooth structure at will.

Proof. From the characteristic numbers of these manifolds we get b+2 = 1 + 2g and b−1
2 =

3 + 2g. They all have an odd intersection form. We claim they are of ω2-type I). Their

universal cover is not spin by Rokhlin’s theorem (this argument leaves out the n = 0 (mod

8) cases). Thus Hambleton-Kreck’s and Hambleton-Teichner’s criteria respectively say that

they are homeomorphic to the chosen topological prototype.

1.4.2 More Examples

In [12], a minimal symplectic 4-manifold X1 with fundamental group Z was constructed.

This manifold provides a smaller substitute for E(1) to be used in symplectic sums when

only one generator is desired to be killed. By gluing either X1 or E(1) with the manifolds
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from the telescoping triples given in [2] along T1 or along T2 accordingly, one is able to fill

in several points and regions as follows.

To make it visually clear, the constructions are collected into the next table. The

columns are arranged as follows. The first one indicates the corresponding symplectic sum

with either X1 or E(1). The second and third collumns display the manifold of infinite

cyclic fundamental group that we obtain right out of the symplectic sum, and its finite

cyclic fundamental group brother that one obtains after applying +1/p Luttinger surgery

on T2. The chosen notation immediately gives away the Euler characteristic and signature

of the manifolds. The last column indicates the coordinates on the plane.

Table 1.1: Putting the pieces together

Symplectic Sum π1 = Z π1 = Zp (c2
1, χh)

A#T1=TX1 XZ
4,7 X

Zp

3,6 (13, 2)

Bg#T1=TX1 XZ
4+2g,8+2g X

Zp

3+2g,7+2g (12 + 8g, 2 + g)

C#T1=TX1 XZ
4,9 X

Zp

3,8 (11, 2)

D#T1=TX1 XZ
4,10 X

Zp

3,9 (10, 2)

F#T1=TX1 XZ
4,12 X

Zp

3,11 (8, 2)

A#T1=TE(1) XZ
4,13 X

Zp

3,12 (7, 2)

Bg#T1=TE(1) XZ
4+2g,14+2g X

Zp

3+2g,13+2g (6 + 8g, 2)

C#T1=TE(1) XZ
4,15 X

Zp

3,14 (5, 2)

D#T1=TE(1) XZ
4,16 X

Zp

3,15 (4, 2)

F#T1=TE(1) XZ
4,18 X

Zp

3,17 (2, 2)

The gathering of these constructions yields

Proposition 1.32. Let k ∈ {5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17}. The manifolds

• 3CP2#kCP2
# ˜L(p, 1)× S1

• 4CP2#(k + 1)CP2
#S1 × S3

have the ∞-property.

Filling in the points (c2
1, χh) = (19− k, 2). In the same spirit we have

Lemma 1.33. Let g ≥ 1. The manifolds

• (3 + 2g)CP2#(7 + 2g)CP2
# ˜L(p, 1)× S1,
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• (4 + 2g)CP2#(8 + 2g)CP2
#S1 × S3

have the ∞-property.

Thus filling the points (c2
1, χh) = (12 + 8g, 2 + g).

For the remaining part of the section, we will take the second path we mentioned at

the beginning to produce more manifolds. Here we build on the efforts of other authors

([49], [6]) set on the simply connected case. We remind the reader that the second path has

as a starting point a simply connected irreducible symplectic manifold X which contains a

symplectic torus of self-intersection 0 (or a symplectic surface of self-intersection 0 in gen-

eral) with a simply connected complement. One builds the symplectic sum with a minimal

symplectic 4-manifold with non-trivial fundamental group and applies Luttinger surgeries

to it in order to obtain a manifold with cyclic fundamental group.

Proposition 1.34. Let Y be a minimal symplectic 4-manifold which contains a symplectic

torus T of self intersection 0. Assume π1(Y ) = 1 = π1(Y − T ). Then there exists an infi-

nite family of pairwise non-diffeomorphic irreducible 4-manifolds {Xn} which only has one

symplectic member. Moreover, all of its members can be chosen to have as characteristic

numbers one of the following three choices:

1. e = e(Y ) and σ = σ(Y );

2. e = e(Y ) + 4 and σ = σ(Y );

3. e = e(Y ) + 6 and σ = σ(Y ) = −2.

The next procedure will be followed to obtain the claimed manifolds. First, build the

symplectic sum of Y and a minimal non-simply connected 4-manifold X̃. The manifold X̃

must have the required characteristic numbers, enough Lagrangian tori with geometrically

dual tori to surger that are disjoint from the surface involved in the symplectic sum, and

the map π1(T ) → π1(X̃) must not be surjective. By modifying our chosen X̃, one obtains

the possible characteristic numbers.
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The symplectic sum kills some of the generators. To obtain our cyclic groups, the rest

of the generators will be dealt with by the surgeries. The existence of the infinity family

will follow from applying a general torus surgery at the corresponding point and Corollary

3 in [22].

Proof. Assume we want to build a manifold with characteristic numbers as in 2. of our

statement. Consider the minimal symplectic manifold Z of proposition in Section 3. This

manifold has e = 4 and σ = 0. Since S8 ⊂ Z is a homologically essential Lagrangian

torus, the symplectic sum can be perturbed so that S8 becomes symplectic, while all the

other tori stay Lagrangian. Consider the symplectic sum V of Y and Z along the tori T

and S8. The manifold V is minimal by Usher’s theorem. Its characteristic numbers are

e(V ) = e(Y ) + e(Z) = e(Y ) + 4 and σ(V ) = Σ(Y ) + σ(Z) = σ(Y ).

The fundamental group of V is generated by x1, y1, x2, y2, a1, b1, a2, b2, g1, . . . , gn. In this

notation the gi’s represent the meridians of the torus. Although we have a specific com-

mutator representing the meridian, we will not use it for what follows; thus our choice of

notation. Furthermore, since π1(X − T ) = 1 and the meridians are identified, we have that

the symplectic sum kills all the these gi’s as well as two generators y2 and b2. In particular,

the normal subgroup of π1(V ) generated by the meridian and the corresponding relations

is trivial. We proceed to show how the needed generators are killed via surgeries.

We start by applying (S3, l3,+1), which introduces the relation [b−1
2 , y−1

1 ] = a−1
2 . Thus,

a2 is killed. The relations introduced by the surgeries (S7,m7,+1), (S6, l6,+1), (S1,m1,+1)

and (S2, l2,+n/1) kill x2, b1, x1 and a1 respectively. If one stops at this point, a manifold

with infinite cyclic fundamental group generated by y1 is obtained.

In order to produce minimal symplectic manifolds with finite cyclic fundamental group,

one applies (S4,m4,+1/p). Now the generator y1 is subject to the relation yp1 = 1. Notice

that all the surgered Lagrangian tori have geometrically dual tori. We can apply Fintushel-

Park-Stern’s corollary to conclude that the manifolds in the family {Xn} are pairwise non-

diffeomorphic. Hamilton-Kotschick’s result imply that the manifolds are irreducible.
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The other two cases are similar. Assume that we want to build a manifold with charac-

teristic numbers as in 3. of our claim. Consider the manifold B of Section 3 built in [12].

Perturb the symplectic sum so that T1 becomes symplectic while T2 remains Lagrangian.

Build the symplectic sum of B and Y along T1 and T . The symplectic sum has π1 = Zt1,

e = e(Y ) + 6, σ = σ(Y ) − 2 and it is an irreducible symplectic manifold. By applying

(T2,mT2 ,+1/p), one obtains the finite cyclic fundamental group manifolds. To produce the

manifolds with e = e(Y ) and σ = σ(Y ), one glues in a copy of T 4 (see [11]).

One can alter the above procedure and glue along genus 2 surfaces instead of tori to

obtain a similar proposition with the appropriate increase in the characteristic numbers.

Proposition 1.35. Let Y be a minimal symplectic 4-manifold which contains a symplectic

surface Σ2 of genus 2 and self intersection 0. Assume π1(Y ) = 1 = π1(Y −Σ2). Then there

exists an infinite family of pairwise non-diffeomorphic irreducible 4-manifolds {Xn} which

only has one symplectic member. Moreover, all of its members can be chosen to have as

characteristic numbers one of the following two choices:

1. e = e(Y ) + 10 and σ = σ(Y )− 2;

2. e = e(Y ) + 14 and σ = σ(Y )− 2;

Proof. The proof is similar to the last proposition. One glues B and Y along F and Σ2

to obtain a symplectic 4-manifold with π1 = Zt1; by applying (T2, lT2 ,+1/p) one obtains

4-manifolds with π1 = Zp. The corresponding torus surgery produces the infinite family.

For the choice of manifold for 2. in our claim, see Lemma 17 in [2].

The utility of these two results can be noted right away since they imply that the fol-

lowing manifolds have the ∞-property.
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• (b+2 (Y ) + 1)CP2#(b−2 (Y ) + 1)CP2
#S1 × S3,

• (b+2 (Y ) + 3)CP2#(b−2 (Y ) + 3)CP2
#S1 × S3,

(b+2 (Y ) + 2)CP2#(b−2 (Y ) + 2)CP2
# ˜L(p, 1)× S3,

• (b+2 (Y ) + 3)CP2#(b−2 (Y ) + 5)CP2
#S1 × S3,

(b+2 (Y ) + 2)CP2#(b−2 (Y ) + 4)CP2
# ˜L(p, 1)× S3,

• (b+2 (Y ) + 5)CP2#(b−2 (Y ) + 7)CP2
#S1 × S3,

(b+2 (Y ) + 4)CP2#(b−2 (Y ) + 6)CP2
# ˜L(p, 1)× S3,

• (b+2 (Y ) + 7)CP2#(b−2 (Y ) + 9)CP2
#S1 × S3,

(b+2 (Y ) + 6)CP2#(b−2 (Y ) + 8)CP2
# ˜L(p, 1)× S3.

This procedure allows us to construct some more manifolds if we specify the chosen

simply connected blocks used in the symplectic sums. If we combine the procedure with

Lemma 2.1 and/or Proposition 2.1 in [49] accordingly, we fill out another wide region. If

we build the symplectic sum along tori, we have:

Theorem 1.36. For each integer k, 10 ≤ k ≤ 18, there exists an infinite family {Xn} of

pairwise non-diffeomorphic irreducible 4-manifolds with the following characteristics.

• Only one member is symplectic,

• the characteristic numbers for all the members of the family can be chosen from the

following three pairs: χh = 2 and c2
1 = 19− k; χh = 3 and c2

1 = 19− k or χh = 3 and

c2
1 = 27− k.

• each member of the family contains a symplectic surface Σ2 of genus 2 and self-

intersection 0. The fundamental group of the complement of Σ2 in each manifold is

isomorphic to the fundamental group of the ambient manifold.
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If instead of using the tori found in the manifold built by J. Park, we used the symplectic

genus 2 surfaces we obtain

Theorem 1.37. For each integer k, 10 ≤ k ≤ 18, there exists an infinite family {Xn} of

pairwise non-diffeomorphic irreducible 4-manifolds with the following characteristics.

• Only one member is symplectic,

• the characteristic numbers for all the members of the family can be chosen from the

following two pairs: χh = 4 and c2
1 = 33− k, or χh = 5 and c2

1 = 41− k,

• each member of the family contains a symplectic torus T of self-intersection 0. The

fundamental group of the complement of T in each manifold is isomorphic to the

fundamental group of the ambient manifold.

Corollary 1.38. Let k and q be integers such that 10 ≤ k ≤ 18 and 10 ≤ 20. The following

4-manifolds have the ∞-property:

• 4CP2#(1 + k)CP2
#S1 × S3,

• 6CP2#(3 + q)CP2
#S1 × S3, 5CP2#(2 + q)CP2

# ˜L(p, 1)× S1,

• 8CP2#(7 + k)CP2
#S1 × S3, 7CP2#(6 + k)CP2

# ˜L(p, 1)× S1,

• 10CP2#(9 + k)CP2
#S1 × S3, 9CP2#(8 + k)CP2

# ˜L(p, 1)× S1.

Other choices of simply connected 4-manifolds that can be used as building blocks (and

are found in the literature) produce the following manifolds.

Example 1.39. • Consider the symplectic manifold E′(k) = E(k)2,3 obtained from the

elliptic surface E(k) by performing two log transforms of order 2 and 3. It contains a

torus T with trivial normal bundle and π1(E′(k)−T ) = 1. By the procedure suggested

in the previous proposition one is able to build two manifolds: one with π1 = Z and
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other with π1 = Zp, both with e = 12k and σ = −8k.

One gets that the constructed manifolds have b+2 = 2k, b−2 = 10k and odd intersection

form. So, the manifolds

2kCP2#10kCP2
#S1 × S3 and (2k − 1)CP2#(10k − 1)CP2

# ˜L(p, 1)× S1

have the ∞-property.

Other choices of simply connected manifolds produce more manifolds which will be

needed later.

• Using the minimal manifold built by R.E. Gompf S1,1 ([28]) with e = 23 and σ = −15,

we conclude that

4CP2#18CP2
#S1 × S3 and 3CP2#17CP2

# ˜L(p, 1)× S1

have the ∞-property.

• Other manifolds built by R.E. Gompf in [28] that will come in handy later on are

the folowing. Applying the proposition to the manifold R2,1, which has e = 21 and

σ = −13, we obtain that the manifolds

4CP2#17CP2
#S1 × S3 and 3CP2#16CP2

# ˜L(p, 1)× S1

have the ∞-property.

The same procedure for R2,2 with e = 19 and σ = −11 leads to the conclusion that

4CP2#15CP2
#S1 × S3 and 3CP2#14CP2

# ˜L(p, 1)× S1

have the ∞-property as well.



36

• B. D. Park constructed a minimal simply connected symplectic 4-manifold with e = 17

and σ = −9 which contains a torus with the requires characteristics (cf [52]). Out of

his manifold one shows that the manifolds

4CP2#13CP2
#S1 × S3 and 3CP2#12CP2

# ˜L(p, 1)× S1

have the ∞-property.

1.4.3 Examples with Odd Signature

Proposition 1.40. There exist irreducible 4-manifolds XZ
6,11 and X

Zp

5,10 with e = 17 and σ =

−5 that are homeomorphic (respectively) to 6CP#11CP2
#S1×S3 and 5CP#10CP2

# ˜L(p, 1)× S1.

Proof. Consider the manifold B of the telescoping triple from Theorem 7 in [2]. It contains

a genus 2 symplectic surface F of square zero and a geometrically dual symplectic torus

H1 with square -1. One produces a genus 3 symplectic surface F3 ⊂ B of square 1 by

symplectically resolving F ∪H1.

We get rid of the its self-intersection by the standard procedure. Blow up B at a point

on F3 to obtain B̃ and consider the proper transform F̃3 of F . So we have a square zero

symplectic surface of genus 3 F̃3 ⊂ B̃ = B#CP2
.

Li’s theorem tells us that F̃3 intersects the exceptional sphere in B̃. Therefore, we can

find a nullhomotopy for its meridian through the sphere and obtain an isomorphism

π1(B̃ − F̃ )→ π1(B).

Rename B̃ = A and F̃3 = F3. Lemma 10 in [2] says that π1(A−(F3∪T1∪T2)) = Zt1⊕Zt2.

Now produce a genus 3 surface inside Y = T 2×F2 by taking the union of the geometri-

cally dual symplectic surfaces T 2 × {p} and {q} × F2 and symplectically resolving it. Note

that the inclusion induces a surjective homomorphism π1(F3)→ π1(Y ).
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We obtain a symplectic genus 3 surface F3 with self-intersection 2. Get rid of the self-

interection as it was done before to obtain F̃3 ⊂ Ỹ = T 2 × F2#2CP2
.

Once again the meridian of F̃3 is nullhomotopic. Consider the symplectic sum

S = A#F3=F̃3
Ỹ .

By the lemma constructed in the telescoping triples section, we know that the generators

a1, b1, a2, b2, a3, b3 of π1(F3) are taken to 1 except for b2 7→ t2 and b3 7→ t1. One can use the

Lagrangian push-offs suggested in the same lemma and apply the surgeries (T2,mT2 ,+1)

and and (T1, lT1 ,+1/p) to produce a manifold with π1 = Zp. One would leave the last one

out to obtain π1 = Z.

Usher’s theorem says that S is a minimal manifold and its characteristic numbers can

be computed to be e(S) = 17 and σ(S) = −5. The homeomorphism is settled by either

Hambleton-Kreck’s theorem or by Hambleton-Teichner. Rename S accordingly.

This settles the point (c2
1, χh) = (19, 3). One can go ahead and play with the building

blocks in the previous process to address the points (17, 3) and (15, 3).

Proposition 1.41. There exist irreducible 4-manifolds XZ
6,13 and X

Zp

5,11 with e = 19 and σ =

−7 that are homeomorphic (respectively) to 6CP#13CP2
#S1×S3 and 5CP#11CP2

# ˜L(p, 1)× S1.

There exist irreducible 4-manifolds XZ
6,15 and X

Zp

5,14 with e = 21 and σ = −9 that are

homeomorphic (respectively) to 6CP#11CP2
#S1 × S3 and 5CP#10CP2

# ˜L(p, 1)× S1.

For the manifolds in the first part of the proposition, consider the product of two tori

Z = T 2 × T 2 and build a genus 3 symplectic surfaces as follows. Take three distinct points

p1, p2, p3 ∈ T 2 to indicate the three symplectic surfaces T 2×{p1}, T 2×{p2}and {p3}×T 2.

By symplectically resolving their union, one obtains a genus 3 symplectic surface F ′3 ⊂ Z

of square 4. The homomorphism π1(F ′3) → π1(Z) induced by inclusion is surjective. One

proceeds to blow up Z at four points along F ′3 to obtain a surface with trivial normal bun-

dle. The proper transform F̃ ′3 ⊂ Z̃ = Z#4CP2
is such a surface.



38

For the manifolds in the second part of the previous proposition, consider Z = T 2 × S2

and choose three different points p1, p2, p3 ∈ S2 and {q} ∈ T 2. We could use them to point

out the four symplectic surfaces T 2×{pi} (i = 1, 2, , 3) and {q} ∈ S2. Consider their union

and symplectically resolve it to obtain a genus 3 symplectic surface of square 6 F ′3 ⊂ Z.

Once again, the homomorphism induced by inclusion π1(F ′3) → π1(Z) is surjective. Blow

up Z at six points along F ′3 and consider the proper transform F̃ ′3 ⊂ Z̃ = Z#6CP2
, which

is now the genus 3 symplectic surface with trivial normal bundle needed to build the sym-

plectic sum.

Corollary 1.42. The above manifolds have the ∞-property.

1.5 Region

1.5.1 Main Region

In this section we address the question of the existence of an irreducible symplectic 4-

manifold and infinitely many pairwise non-diffeomorphic non-symplectic 4-manifolds having

finite cyclic fundamental group that realize the coordinates:

(e, σ) when 2e+ 3σ ≥ 0, e+ σ =≡ 0 (mod 4) and σ ≤ −1.

In other terms, we wish to construct irreducible manifolds with finite cyclic fundamental

group realizing all pairs of integers

(c2
1, χh) when 0 ≤ c2

1 ≤ 8χh − 1.

The plan of attack to establish that these manifolds have the∞-property is to generalize

the main result of [2] (Theorem B and Theorem 22); this settles the region with signature

at most -2. Then, we fill in the gaps by generalizing the results contained in [5] to extend

the region up to signature at most -1.

Note that under the chosen coordinates, a 4-manifold with c2
1 = 8χ+ k has signature k;

therefore, the line c2
1 = 8χ− 1 corresponds to manifolds with σ = −2.
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Theorem 1.43. For any pair (c, χ) of non-negative integers satisfying

0 ≤ c ≤ 8χ− 2

there exists a minimal symplectic 4-manifold with finite cyclic fundamental group Y =

X2χ−1,10χ−c−1 with odd intersection form and

c = c2
1(Y ) and χ = χh(Y ).

Hence Y is homeomorphic but not diffeomorphic to

(2χ− 1)CP2#(10χ− c− 1)CP2
# ˜L(p, 1)× S1.

Proof. The beginning of the proof consists of manufacturing the manifolds that realize all

the pairs. This task is divided in two with respect to the parity of c. Let us start by

considering c to be even. Set (m,n) = (1/2c, χ).

By the quoted lemma, we have integers b, c, d, g, and k so that

m = d+ 2c+ 3b+ 4g and n = b+ c+ d+ g + k and g > 0 implies b ≥ 1.

The pairs are realized via symplectic sums where the raw materials are the manifolds

B, Bg, D, F from the telescoping triples and the manifold E′(k) built in [2]. The relation

between the arithmetic setting on the characteristic numbers and the number of manifolds

needed for the correct mix is

1. b copies of B if g = 0 and b− 1 copies of Bg when g ≥ 1,

2. c copies of D, and

3. d copies of F .

Each one of the manifolds B, D and F belongs to a telescoping triple, thus they contain

two essential Lagrangian tori. We will chain them together along these tori via symplectic

sums to create a symplectic manifold Z, which will be minimal by Usher’s theorem. Notice

that Proposition 3 of [2] assures us that at each step of the process, the result is a telescop-

ing triple.

If g = 0, then
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Z := B#s · · ·B#sD#s · · ·D#sD#sF#s · · ·#sF .

The notation chosen in [2] indicates the symplectic sum along the appropriate tori. This

might involve that the symplectic forms on the manifolds need to be perturbed so that a

Lagrangian tori becomes symplectic. This is possible since the building blocks are all mem-

bers of a telescoping triple. The unused Lagrangian tori will be relabelled T1 and T2 and

we construct indeed a telescoping triple (Z, T1, T2).

The characteristic numbers of Z are computed to be

e(Z) = be(B) + ce(D) + de(F ) = 6b+ 8c+ 10d. and σ(B) = −2(b+ 2c+ 3d).

If g ≥ 1, we take

Z := Bg#sB#s · · ·B#sD#s · · ·D#sD#sF#s · · ·#sF

with characteristic numbers

e(Z) = 4g + 6b+ 8c+ 10d and σ(Z) = −2(b+ 2c+ 3d).

At this point we point out that the building blocks Bg, D, and F all contain a surface of

odd square which is disjoint from the Lagrangian tori used to perform the symplectic sum

and the following surgeries on Z. Therefore, all the manifolds coming out of performing

either symplectic sums with Z and a manifold with odd intersection form and/or surgeries

on Z will have odd intersection forms.

We carry on with the process of realizing the the given pairs with irreducible manifolds

with the desired fundamental group for. We divide the enterprise by cases.

Case k = 0: Apply (T2,mT2 ,+1/p) Luttinger surgery to Z to obtain an intermediate

manifold Z0 with π1(Z0) = Zp ⊕ Z. Then apply (T1, lT1 ,+n/1) torus surgery to kill the

Z factor on the fundamental group and produce an infinite family {Yn} whose minimal

members all have finite cyclic fundamental group and only X1 has a symplectic structure.

Case: k ≥ 1 and one of b, c, d is positive. Take the symplectic sum

S := Z#T1=TE
′(k)
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of the manifold of the telescoping triple (Z, T1, T2) with the symplectic manifold ob-

tained from the elliptic surface of odd intersection form by applying log transformations

E′(k) := E(k)2,3 along T1 and a generic fiber of E′(k). We claim that π1(S) = Z. Since

π1(E′(k)) = 1 = π1(E′(k)−T ) and Z is part of a telescoping triple, the Seifert-van Kampen

theorem shows that the symplectic sum only killed one generator of π1(Z − T1), thus the

fundamental group of S is infinite cyclic. We can then apply a +1/p Luttinger surgery to

obtain our desired symplectic minimal manifold.

Case: k ≥ 1 and all b, c, d are zero. Consider the symplectic sum S of the symplectic

manifold E′(k) and T 4 along a symplectic torus of self-intersection zero. This produces

a minimal symplectic manifold with π1(S) = Z ⊕ Z and the same characteristic numbers

since e(T 4) = 0 = σ(T 4). Notice that the four Lagrangian tori in T 4 can be pushed off

and remain Lagrangian within the standard Weinstein neighborhoods while they lie in the

complement of some small tubular neighborhoods of the two symplectic tori. One can now

apply the usual procedure to obtain the desired fundamental group.

At this point, we would also like to mention that minimal elliptic surfaces E(n, 0)p,q

with 1 ≤ p ≤ q for which π1 = Zgcd(p,q) have already been constructed (see Theorem 8.3.12

in [29]).

This concludes part one of the proof.

Suppose that c is odd and consider the region 7 ≤ c ≤ 8χ − 11. Let us reparametrize

the region by setting (c′, χ′) = (c − 7, χ − 2). Now the region looks like 0 ≤ c′ ≤ 8χ′ − 2

and c′ is even. Consider the manifold Z of the telescoping triple constructed to realize the

pair (c′, χ′). Perturb the symplectic form of Z so that T1 becomes symplectic while T2 stays

Lagrangian. This is possible since the Lagrangian tori are linearly independent in H2(Z;R)

(cf. [28]).

Consider the simply connected, minimal, symplectic 4-manifold S1,1 (Lemma 5.5 in

[28]) with e = 23 and σ = −15. It contains a symplectic torus F1 with π1(S1,1 − F1) = 1.

Construct the symplectic sum S of Z with S1,1 along T1 and F1. Just like above, one
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concludes that π1(S) = Z. We apply (T2, lT2 ,+1/p) Luttinger surgery on S to produce a

minimal symplectic manifold Xc,χ with π1 = Zp. Since c2
1(S1,1) = 1 and χh(S1,1) = 2, we

have that Xc,χ realizes the following coordinates in the geography plane:

(c2
1, χh) = (c, χ).

Let us work now on the region 7 ≤ c ≤ 8χ − 11 while still assuming c to be odd. The

process is analogous to the previous paragraph, with only a small change in the ingredi-

ents of the construction. Now we re-parametrize by (c′, χ′) = (c − 7, χ − 2); so one has

0 ≤ c′ ≤ 8χ′ − 2 and c′ even. Consider the manifold Z constructed for the corresponding

pair (c′, χ′).

Now consider the simply connected, minimal, symplectic 4-manifold X1
3,12 built by B.D.

Park in [52]. It has e = 17, σ = −9 and contains a symplectic torus T2,4 with simply

connected complement. Take the symplectic sum

S := Z#T1=T2,4X
1
3,12

along T2,4 and T1 (and NOT T2 like it was done in [2]). By using Seifert-van Kampen

theorem we conclude that π1(S) = Z. By applying (T2, lT2 ,+1/p) we obtain a minimal

symplectic 4-manifold with π1 = Zp that realizes the pair (c, χ). This last assertion is true

since c2
1(X1

3,12) = 7 and χ(X1
3,12) = 2.

In order to realize all pairs (c, χ) with c odd and within the region 21 ≤ c ≤ 8χ− 5, one

proceeds as above but instead of gluing in X1
3,12, one uses the manifold P5,8 constructed in

[2]. It has π1 = Z, e = 14 and σ = −3, or c2
1 = 21 and χh = 3.

The region 21 ≤ c = 8χ − 3 is expressed by the pairs (c, χ) = (5 + 8k, 1 + k) for any

k ≥ 2 and it was already covered using telescoping triples in a previous section.

Concerning the homeomorphism types of the constructed manifolds, we mention the fol-

lowing. The manifolds constructed in all these regions have odd intersection forms and we

know their b+2 and b−1
2 numbers. For the lines in the plane corresponding to odd signatures

and those that are not multiples of 16, one concludes immediately that they all have type
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I and that the homeomorphism type is as claimed.

The region corresponding to the manifolds (2χ−1)CP2#2χCP2
# ˜L(p, 1)× S1 and 2χCP2#(2+

1)χCP2
#S1 × S3 was filled in the previous section. To conclude the proof, one needs to

apply the proper homeomorphism criteria.

The procedure of the proof leaves out several points of the geography plane. We point

them out now and sketch how they are filled.

Remark 5. • (c2
1, χ) = (1, 1) corresponding to XZ

2,9 and X
Zp

1,8, comes out of the tele-

scoping triples.

• (c2
1, χ) = (3, 1) corresponding to XZ

2,7 and X
Zp

1,6, was built in the previous section as an

example.

• (c2
1, χ) = (5, 1) corresponding to XZ

2,5 and X
Zp

1,4, comes out of the telescoping triples.

• (c2
1, χ) = (1, 2) corresponding to XZ

4,19 and X
Zp

3,18;

these manifolds come out of the symplectic sum of the manifold S1,1 (Lemma 5.5 in

[Go]) constructed by Gompf and a copy of T 2×Σ2 (see [2] for the fundamental group

calculations). One then surgers the symplectic sum accordingly.

To fill in the next point, one can build and surger the symplectic sum of the mini-

mal symplectic 4-manifold homeomorphic to 3CP2#12CP2
containing a torus of self-

intersection 0 and simply connected complement built by B.D. Park in [50].

• (c2
1, χ) = (7, 2) corresponding to XZ

4,13 and X
Zp

3,12,

The following three points were filled in in the previous section.

• (c2
1, χ) = (15, 3) corresponding to XZ

6,15 and X
Zp

5,14,

• (c2
1, χ) = (17, 3) corresponding to XZ

6,13 and X
Zp

5,12,
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• (c2
1, χ) = (19, 3) corresponding to XZ

6,11 and X
Zp

5,10.

1.5.2 Signature Greater or Equal than −1

As done in [2], one can use an idea of Stipsicz (cf. [59]) to fill in the following regions for

σ = 0 and σ = −1.

Theorem 1.44. For all the integers k ≥ 45, there exists a minimal symplectic 4-manifold

X2k+1,2k+1 with Euler characteristic 4k + 4, signature σ = 0, and π1 = Zp.

For all the integers q ≥ 49, there exists a minimal symplectic 4-manifold X2q−1,2q with Euler

characteristic 4q + 1, signature σ = −1, and π1 = Zp.

This result fills in the points of the form (c2
1, χh) = (8k + 8, k + 1) for k ≥ 45 and

(8q − 1, q) for q ≥ 49. The prototype manifolds for these guys are (accordingly):

(2k + 1)CP2#(2k + 1)CP2
# ˜L(p, 1)× S1 and

(2q − 1)CP2#(2q)CP2
# ˜L(p, 1)× S1.

Proof. Consider the telescoping triple (B, T1, T2). The manifold B contains a symplectic

surface F of genus 2 and trivial normal bundle and a geometrically dual surface G of genus

2 and trivial normal bundle as well. The union F ∪G is disjoint from the Lagrangian tori

T1 ∪ T2. Perform +1 Luttinger surgery on T1 along lT1 to kill t2. Let R be the resulting

minimal symplectic manifold. Proceed to perturb the symplectic form on R so that T2 be-

comes symplectic. Concerning the fundamental group, we have π1(R − T2) = π1(R) = Zt1

and the map induced by inclusion π1(T2)→ π1(R) is surjective.

Consider the symplectic sum Y of the irreducible symplectic manifold homeomorphic to

CP2#3CP2
with T 2 × Σ2 along a genus 2 surface. The manifold Y has fundamental group

Z⊕ Z and contains the Lagrangian tori T1, T2, T3, T4 (see Theorem 18, [11]); it has e = 10

and σ = −2. One obtains a symplectic manifold with infinite cyclic fundamental group

by applying −1 Luttinger surgery on T1 along m1. One can then apply −1/p Luttinger

surgery on T2 along m2 to obtain a manifold with finite cyclic fundamental group of order

p. Denote by X the minimal symplectic manifold with cyclic fundamental group. There
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are two symplectic tori T3 and T4 left unused. They both have trivial normal bundles and

trivial meridians in X − (T3 ∪ T4) so by a correct choice of gluing map for the symplectic

sum, the embedding T3 → X is chosen so that π1(T3)→ π1(X) maps one generator to the

identity and the other to the generator of π1(X).

We build the symplectic sum

Q = X#T3=T2R.

Notice that the surfaces F and G persist in Q as symplectic surfaces of square zero and

are geometrically dual. The fundamental group of Q is cyclic, it has a single generator

and the relation it inherits from π1(X). The characteristic numbers can be computed to

be e(Q) = 16 and σ(Q) = −4; it follows from them that Q is not a rational nor a ruled

surface. The symplectic torus T4 coming from the X piece has the quality that its meridian

is trivial. So, the inclusion Q− T4 ⊂ Q induces an isomorphism on fundamental groups.

One can go through the same procedure using the telescoping triple B̃ of the lemma

located in the fourth section of this paper instead of B and build B̃#T2=T3X. This amounts

to describing how the genus 18 surface and self-intersection zero is obtained out of B. Since

its construction was described previously, we skip it and carry on with the proof. Denote

the result of symplectic summing B̃ and Xby Q̃. By Li’s theorem, every exceptional sphere

in Q̃ intersects F18 and π1(Q̃− F18) = π1(Q̃) = Z⊕ Z.

Let us consider the Lefschetz fibration H → K over a surface K of genus 2 constructed

in [59] (Lemma 2.1). The characteristic numbers of the fibration are e = 75 and σ = 25. It

has a symplectic section of square -1 and the fibers are genus 16 surfaces. This fibration will

be used as a building block. To argue that it is minimal, we notice that H is an algebraic

surface; the BMY inequality (see [29] for details) implies that it is holomorphically minimal.

By a result of Hamilton and Kotschick (see [37]) it is minimal from a symplectic point of

view as well. Since it lies on the BMY lie, H is not rational nor ruled.

We proceed to construct a genus 18 surface of self-intersection zero from the fiber and

section of this Lefschetz fibration. Consider the union of a fiber and section. We have a
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surface of genus and with double points. By resolving symplectically, we obtain a genus 18

symplectic surface of square 1 Σ′ ⊂ H. The exact sequence

π1(Σ′)→ π1(H)→ π1(K)

implies that the homomorphism π1(Σ′)→ π1(H) is surjective.

Now let us get rid of the [Σ′] = 1 point. Blow-up H once along Σ′ and consider the

proper transform Σ̃′ ⊂ H̃ = H#CP2
. Since H was neither taional nor ruled, Li’s theorem

implies that every exceptional sphere in H̃ intersects Σ̃′. Because the meridian of the sur-

face intersects the exceptional sphere, the necessary nullhomotopy can be built and we have

that π1(H̃ − Σ̃′)→ π1(H̃) is an isomorphism and φ : π1(Σ̃′)→ π1(H̃) is surjective.

Consider the symplectic sum

S = Q̃#Σ̃=Σ̃′H̃.

The surjectivity of φ implies that the map π1(Q̃)→ π1(S) is surjective too. We need to

establish that this last homomorphism is actually an isomorphism. For this we observe the

following: Let bi be a generator for π1(H̃). If we consider the fiber of this element under

φ−1 and compose it with the map π1(F18)→ π1(S) as was indicated in the lemma, we see

that xi is not trivial only in the cases when the inverse image gets mapped either to b18.

Therefore π1(S) is cyclic.

The characteristic numbers are e(S) = 176 and σ(S) = 4, i.e., c2
1(S) = 364 and

χh(S) = 45. Out of these numbers one can conclude (in the abscence of 2-torsion, as

usual), that these manifolds have odd intersection forms. Another way of noticing this fact

is to observe that the manifolds used in the construction have a torus of self-intersection -1.

Furthermore, notice that the torus T4 has not been used yet and the map π1(T4)→ π1(S)

induced by inclusion is trivial.

Now we apply Theorem 23 of [2] and its extension in [5] to produce the minimal sym-

plectic 4-manifolds with cyclic fundamental group and odd intersection form
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X
Zp

89+2χ,85+10χ+c and XZ
90+2χ,86+10χ+c

with characteristic numbers c2
1 = 364 + c and χh = 45 + χ for any (c, χ) in the region

0 ≤ c ≤ 8χ − 1 when c is even. To be able to appreciate better the zero signature quality

of the manifolds produced, substitute c = 8χ− 4 for any χ ≥ 1:

X
Zp

89+2χ,89+2χ and XZ
90+2χ,90+2χ.

To produce minimal symplectic 4-manifolds with signature -1 we proceed as follows.

Apply Luttinger surgery on B to kill one Z-factor of the fundamental group. Call the re-

sulting manifold B̂1 (π1(B̂1) = Z). Build the symplectic sum

W = B̂1#T1=TP1+2k,4+2k

with the manifold P1+2k,4+2k of Remark 1 in [2]. The homomorphism π1(T )→ π1(P1+2k,4+2k)

is surjective, π1(P1+2k,4+2k − T )→ π1(P1+2k,4+2k) is an isomorphism and π1(T )→ π1(B̂1)

has image a cyclic summand. The gluing map in the symplectic sum W can be chosen in

such manner that the map π1(T2) → π1(W ) = Z sends one generator to the identity and

the other to the generator of π1(W ) = Z.

Construct now the symplectic sum Z = W#T2=T4S, where S is the manifold constructed

above. Then Z has cyclic fundamental group and by renaming Z accordingly to the funda-

mental group we produce

X
Zp

93+2k,94+2k and XZ
94+2k,95+2k.

Their characteristic numbers are e = 189 + 4k and σ = −1 for any k ≥ 2.

The results of Hambleton-Kreck and Hambleton-Teichner settle the homeomorphism

type of these manifolds.
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1.5.3 Non-negative Signature

The last result in the previous section fills in a big region for manifolds with zero signature.

In this section, we proceed to fill in regions of the plane that correspond to non-spin mani-

folds with both zero and positive signature. We address both infinite cyclic and finite cyclic

fundamental groups in every result. Our main sources to do so are the results in [59], [9],

[49], and [6].

Let us start by using Proposition 8 in [9] to fill in the following regions.

Proposition 1.45. Let n ≥ 2. There exists a symplectic minimal 4-manifold with cyclic

fundamental group whose characteristic numbers can be chosen from the following three

choices:

• e = 75n2 +256n+130 and σ = 25n2−68n−78; (c2
1, χh) = (225n2 +298n+26, 25n2 +

94n+ 13),

• e = 75n2 + 256n+ 134 and σ = 25n2− 68n− 78 (c2
1, χh) = (225n2 + 298n+ 30, 25n2 +

94n+ 14), or

• e = 75n2 + 256n+ 136 and σ = 25n2− 68n− 80 (c2
1, χh) = (225n2 + 298n+ 32, 25n2 +

94n+ 14).

Proof. The manifold W (n) constructed in [9] has a symplectic torus T2 with trivial normal

bundle and π1(W (n)− T ) = 1. We build the symplectic sum of W (n) and a manifold from

Proposition 50 above along the corresponding tori. The possible characteristic numbers

come from the three choices given in Proposition 35.

From this proposition one concludes that the manifolds

• (50n2+94n+26)CP2#(25n2+162n+104)CP2
#S1×S3, (50n2+94n+25)CP2#(25n2+

162n+ 103)CP2
# ˜L(p, 1)× S1; and
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• (50n2+94n+28)CP2#(25n2+162n+104+q)CP2
#S1×S3, (50n2+94n+27)CP2#(25n2+

162n+ 103 + q)CP2
# ˜L(p, 1)× S1 for q ∈ {2, 4}

have the ∞-property.

Now we combine the building blocks of given in our proposition of Section 3 above and

Proposition 2.1 in [49] to obtain the following result.

Proposition 1.46. For each odd integer m ≥ 1 and 10 ≤ k ≤ 18, there exists an irreducible

symplectic 4-manifold Y with cyclic fundamental group whose characteristic numbers can

be chosen from the following options:

1. χ(Y ) = 25m2 + 31m+ 5 and c2
1(Y ) = 225m2 + 248m+ 35− k;

2. χ(Y ) = 25m2 + 31m+ 6 and c2
1(Y ) = 225m2 + 248m+ 43− k;

3. χ(Y ) = 25m2 + 31m+ 6 and c2
1(Y ) = 225m2 + 248m+ 41− k;

4. χ(Y ) = 25m2 + 31m+ 7 and c2
1(Y ) = 225m2 + 248m+ 49− k;

5. χ(Y ) = 25m2 + 31m+ 8 and c2
1(Y ) = 225m2 + 248m+ 57− k.

Moreover, the manifolds with the first three choices of coordinates contain a symplectic

genus 2 surface Σ of self-intersection zero; the manifolds from the last two choices contain

a symplectic torus T of self-intersection zero and π1(Y − Σ) = π1(Y ) = π1(Y − T ).

The characteristic numbers of Proposition 2.1 [49] are:

e = 74m2 + 124m+ 25 + k,

σ = 25m2 − 5− k.

The following manifolds have the ∞-property and the symplectic member of each cor-

responding infinite family contains a symplectic genus 2 surface of self-intersection 0.
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• (50m2+62m+10)CP2#(25m2+62m+15+k)CP2
#S1×S3; (50m2+62m+9)CP2#(25m2+

62m+ 14 + k)CP2
# ˜L(p, 1)× S1.

• (50m2+62m+12)CP2#(25m2+62m+17+k)CP2
#S1×S3; (50m2+62m+11)CP2#(25m2+

62m+ 16 + k)CP2
# ˜L(p, 1)× S1.

• (50m2+62m+12)CP2#(25m2+62m+19+k)CP2
#S1×S3; (50m2+62m+11)CP2#(25m2+

62m+ 18 + k)CP2
# ˜L(p, 1)× S1.

The symplectic member of the infinite families with the following topological proto-

types contains a symplectic torus of self-intersection 0.

• (50m2+62m+14)CP2#(25m2+62m+21+k)CP2
#S1×S3; (50m2+62m+13)CP2#(25m2+

62m+ 20 + k)CP2
# ˜L(p, 1)× S1.

• (50m2+62m+16)CP2#(25m2+62m+23+k)CP2
#S1×S3; (50m2+62m+15)CP2#(25m2+

62m+ 22 + k)CP2
# ˜L(p, 1)× S1.

Theorem 1.47. There exists a closed, minimal, symplectic 4-manifold X with cyclic π1(X)

for the following choices of characteristic numbers:

• e = 94 and σ = 2; (c2
1, χh) = (194, 24),

• e = 98 and σ = 2 (c2
1, χh) = (202, 25),

• e = 100 and σ = 0; (c2
1, χh) = (200, 25),

• e = 100 and σ = 4; (c2
1, χh) = (212, 26),

• e = 104 and σ = 4; (c2
1, χh) = (220, 27), or

• e = 106 and σ = 2; (c2
1, χh) = (218, 27) .
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Proof. Theorem 4.1 in [5] builds a manifold M with e(M) = 94, σ(M) = 2 which contains

a symplectic torus T with self-intersection and π1(M−T ) = 1. Build the symplectic sum of

this manifolds with one of the manifolds from proposition of Section 3.3 above. The different

choices of characteristic numbers correspond to using the manifold N from Theorem 4.2 in

[5] instead and different choices of manifolds that can be involved in the symplectic sum.

To check that the different symplectic sums have the other claimed properties is straight-

forward.

Remark 6. All the manifolds above contain a symplectic torus of self-intersection zero.

Going through the proofs of Theorems 4.1 and 4.2 in [5], one sees that the manifolds M and

N are obtained by building the symplectic sum of Yn(1) and the total space X2 of a genus 7

fibration over a surface of genus 2 (n = 7 to produce M and n = 9 to produce N). In both

cases, the building block Yn(1) has plenty of such tori. For example, Y9(1) contains 14 pairs

of geometrically dual Lagrangian tori that are all disjoint from the genus 9 surface used to

build the symplectic sum N = Y9(1)#Σ9X2. One could go ahead and use one of these 32

Lagrangian tori to obtain the claimed torus T by perturbing the symplectic form on N so

that T becomes symplectic.

Moreover, the homomorphism π1(T )→ π1(S) (where S is one of the manifolds from the

last two theorems) factorizes through the respective π1(Yn(1)′). In particular, the images of

the generators of π1(T ) are trivial.

One concludes that the following manifolds enjoy the ∞ -property:

• 48CP2#46CP2
#S1 × S3; 47CP2#45CP2

# ˜L(p, 1)× S1;

• 49CP2#47CP2
#S1 × S3; 48CP2#46CP2

# ˜L(p, 1)× S1;

• 50CP2#50CP2
#S1 × S3; 49CP2#49CP2

# ˜L(p, 1)× S1;
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• 52CP2#48CP2
#S1 × S3; 41CP2#47CP2

# ˜L(p, 1)× S1;

• 54CP2#50CP2
#S1 × S3; 53CP2#49CP2

# ˜L(p, 1)× S1;

• 54CP2#52CP2
#S1 × S3; 53CP2#51CP2

# ˜L(p, 1)× S1.

We proceed to use these manifolds to fill in regions of the plane corresponding to

non-negative signature. Theorem 4.1 in [5] is used to produce 4-manifolds with signa-

ture σ = 0, 1, 2.

Proposition 1.48. Let m be an odd positive integer. If m ≥ 49, then

• mCP2#mCP2
# ˜L(p, 1)× S1,

• (m+ 1)CP2#(m+ 1)CP2
#S1 × S3 (with characteristic numbers (e, σ) = (2m+ 2, 0)

and (c2
1, χh) = (4m+ 4, 1/2(m+ 1)),

• mCP2#(m− 1)CP2
# ˜L(p, 1)× S1,

• (m + 1)CP2#mCP2
#S1 × S3 (with characteristic numbers (e, σ) = (2m + 1, 1) and

(c2
1, χh) = (4m+ 5, 1/2(m+ 1)),

have the ∞-property. If m ≥ 47, then

• mCP2#(m− 2)CP2
# ˜L(p, 1)× S1 and

• (m+ 1)CP2#(m− 1)CP2
#S1 × S3 (with characteristic numbers (e, σ) = (2m, 0) and

(c2
1, χh) = (4m+ 6, 1/2(m+ 1)).

have the ∞-property.
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Proof. We already know that 48CP2#46CP2
#S1 × S3 and 47CP2#45CP2

# ˜L(p, 1)× S1

have the ∞-property. We apply Akhmedov-Park’s result ([5]) to them. Since there is no

margin for confusion, we deal with the infinite cyclic case and the finite cyclic case together.

Let X be either one of these two manifolds: χh(X) = 24 and c2
1 = 194. By Theorem 1 in

[6], there exists a minimal symplectic 4-manifold Y with χh(Y ) = χ + 24 and c + 194. By

Hambleton-Teichner’s criteria in the infinite cyclic fundamental group and by Hambleton-

Kreck’s criteria in the finite cyclic fundamental group case, such Y is homeomorphic to

• if π1(Y ) = Z: (2χ+ 48)CP2#(10χ− c+ 46)CP2
#S1 × S3 or

• if π1(X) = Zp: (2χ+ 47)CP2#(10χ− c+ 45)CP2
# ˜L(p, 1)× S1.

By setting the constants from Akhmedov-Park’s theorem to be c = 8χ − s, where s ∈

{0, 1, 2}, we produce an irreducible symplectic 4-manifold Y homeomorphic to

• if π1(Y ) = Z: (2χ+ 48)CP2#(2χ+ 46 + s)CP2
#S1 × S3 or

• if π1(X) = Zp: (2χ+ 47)CP2#(2χ+ 45 + s)CP2
# ˜L(p, 1)× S1.

A torus surgery on a nullhomologous torus in Y as explained in [22] produces infinite families

of pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds homeomorphic (2χ+

48)CP2#(2χ+ 46 + s)CP2
#S1×S3 if π1(Y ) = Z or homeomorphic to (2χ+ 47)CP2#(2χ+

45 + s)CP2
# ˜L(p, 1)× S1 if π1(Y ) = Zp.

Similarly, a result concerning a large region of non-spin 4-manifolds with cyclic funda-

mental group and signature σ = 3, 4 is obtained.

Proposition 1.49. Let m be an odd positive integer. If m ≥ 53, then

• mCP2#(m− 3)CP2
# ˜L(p, 1)× S1 and

• (m+ 1)CP2#(m− 2)CP2
#S1 × S3 (with characteristic numbers (e, σ) = (2m− 1, 3)

and (c2
1, χh) = (4m+ 7, 1/2(m+ 1))

have the ∞-property. If m ≥ 51, then

• mCP2#(m− 4)CP2
# ˜L(p, 1)× S1 and
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• (m+ 1)CP2#(m− 3)CP2
#S1 × S3 (with characteristic numbers (e, σ) = (2m− 2, 0)

and (c2
1, χh) = (4m+ 8, 1/2(m+ 1))

have the ∞-property.
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Chapter 2

Abelian non-cyclic π1

In this chapter we construct several irreducible 4-manifolds, both small and arbitrarily large,

with abelian non-cyclic fundamental group. The manufacturing procedure allows us to fill

in numerous points in the geography plane of symplectic manifolds with π1 = Z⊕Z,Z⊕Zp

and Zq ⊕ Zp (gcd(p, q) 6= 1). We then study the botany of these points for π1 = Zp ⊕ Zp.

2.1 Introduction

The main results are:

Theorem 2.1. Let G be either Z⊕Z, Z⊕Zp, or Zq ⊕Zp. Let n ≥ 1 and m ≥ 1. For each

of the following pairs of integers

1. (c, χ) = (7n, n),

2. (c, χ) = (5n, n),

3. (c, χ) = (4n, n),

4. (c, χ) = (2n, n),

5. (c, χ) = ((6 + 8g)n, (1 + g)n) (for g ≥ 0),

6. (c, χ) = (7n+ (6 + 8g)m,n+ (1 + g)m),

7. (c, χ) = (7n+ 5m,n+m),

8. (c, χ) = (7n+ 4m,n+m),
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9. (c, χ) = (7n+ 2m,n+m),

10. (c, χ) = ((6 + 8g)n+ 5m, (1 + g)n+m) (for g ≥ 0),

11. (c, χ) = ((6 + 8g)n+ 4m, (1 + g)n+m) (for g ≥ 0),

12. (c, χ) = ((6 + 8g)n+ 2m, (1 + g)n+m) (for g ≥ 0),

13. (c, χ) = (5n+ 4m,n+m),

14. (c, χ) = (5n+ 2m,n+m), and

15. (c, χ) = (4n+ 2m,n+m),

there exists a symplectic irreducible 4-manifold X with

π1(X) = G and (c2
1(X), χh(X)) = (c, χ).

Proposition 2.2. Fix π1(X) = Zp ⊕ Zp, where p is a prime number greater than two.

Let (c, χ) be any pair of integers given in Theorem 2.1 such that n + m ≥ 2. There exists

an infinite family {Xn} of homeomorphic, pairwise non-diffeomorphic irreducible smooth

non-symplectic 4-manifolds realizing the coordinates (c, χ).

The characteristic numbers are given in terms of χh = 1/4(e + σ) and c2
1 = 2e + 3σ,

where e is the Euler characteristic of the manifold X and σ its signature.

The geography problem for abelian fundamental groups of small rank has already been

previously studied with great success. In R.E. Gompf’s gorgeous paper [28] where the

symplectic sum operation was introduced, infinitely many minimal symplectic 4-manifolds

with b+2 > 1 were constructed. R.E. Gompf also constructed a new family of symplectic

spin 4-manifolds with any prescribed fundamental group. In [12], [13], and [14], more and

smaller symplectic manifolds were constructed.

Other construction techniques have also been implemented. For the group π1 = Z⊕Zp,

examples with big Euler characteristic were constructed using genus 2 Lefschetz fibrations in

[47] and [55]. Results studying the symplectic geography for prescribed fundamental groups

appeared in [14] and [12]. Concerning the botany, J. Park in [49] constructed infinitely
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many smooth structures on big 4-manifolds with finitely generated fundamental group.

The addition of Luttinger surgery (cf. [45], [8]) into the manufacturing procedure has

provided clean constructions to study rather effectively the geography of simply connected

4-manifolds (cf. [12], [2], [5]). On the botany part, the technique of using a nullhomologous

torus as a dial in order to change the smooth structure developed in [23] and [22] has proven

to be a succesful tool to study the lack of smooth uniqueness. In this paper, we apply these

efforts to manifolds with the three given fundamental groups.

Our results provide manifolds with both 12χ − c small and arbitrarily large. Most of

the points filled in by Theorem 2.1 were not yet considered elsewhere. For example, the

point (7, 1) corresponds to the smallest manifold built up to now. A blunt overlap occurs

for the points (6 + 8g, 1 + g), (5, 1), and (4, 1), which have been filled in already by con-

structions given in [12] and [13]; we are using their constructions to build larger manifolds,

thus filling in considerably many more points. The existence of at least two smooth struc-

tures on complex surfaces with finite non-cyclic fundamental groups was first studied in

[33]. Proposition 2 takes advantage of the recent techniques and offers a myriad of new

exotic irreducible 4-manifolds with finite abelian, yet non-cyclic fundamental group hosting

infinitely many smooth structures; it includes the smallest manifold with such π1 known to

possess this quality.

The assumption gcd(p, q) 6= 1 serves the sole purpose of emphasizing that the results

that appear here are disjoint from the cyclic case studied in [65] (Chapter 1). We feel the

results presented here deserve their own space and they should not be buried in a long paper

for several reasons. Amongst them is the employment of the homeomorphism criteria for

finite groups of odd order (cf. [33]) given in Section 2.6.3.

The structure of the chapter is as follows. The geography is addressed first; Section

2.2 starts by describing the ingredients we will use to build the manifolds of Theorem 2.1.

The manufacturing procedure starts later on in this section. The results that allow us to

conclude irreducibility are presented in Section 2.3. The fourth section takes care of the

fundamental group calculations. The fifth section gathers up our efforts into the proof of
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Theorem 1. The last part of the paper goes into the botany, where Section 2.6 takes on the

existence of the exotic smooth structures claimed in Proposition 2.2.

2.2 Raw Materials

The following definition was introduced in [2].

Definition 2.3. An ordered triple (X,T1, T2) consisting of a symplectic 4-manifold X and

two disjointly embedded Lagrangian tori T1 and T2 is called a telescoping triple if:

1. The tori T1 and T2 span a 2-dimensional subspace of H2(X;R).

2. π1(X) ∼= Z2 and the inclusion induces an isomorphism π1(X − (T1 ∪ T2)) → π1(X).

In particular, the meridians of the tori are trivial in π1(X − (T1 ∪ T2)).

3. The image of the homomorphism induced by the corresponding inclusion π1(T1) →

π1(X) is a summand Z ⊂ π1(X).

4. The homomorphism induced by inclusion π1(T2)→ π1(X) is an isomorphism.

The telescoping triple is called minimal if X itself is minimal. Notice the importance

of the order of the tori. The meridians µT1 , µT2 in π1(X − (T1 ∪ T2)) are trivial and the

relevant fundamental groups are abelian. The push-off of an oriented loop γ ⊂ Ti into

X − (T1 ∪ T2) with respect to any (Lagrangian) framing of the normal bundle of Ti rep-

resents a well-defined element of π1(X − (T1 ∪ T2)) which is independent of the choices of

framing and base-point.

The first condition assures us that the Lagrangian tori T1 and T2 are linearly indepen-

dent in H2(X;R). This allows for the symplectic form on X to be slightly perturbed so

that one of the Ti remains Lagrangian while the other becomes symplectic. The symplectic

form can also be perturbed in such way that both tori become symplectic. If we were to

consider a symplectic surface F in X disjoint from T1 and T2, the perturbed symplectic

form can be chosen so that F remains symplectic.
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Removing a surface from a 4-manifold usually introduces new generators into the funda-

mental group of the resulting manifold. The second condition indicates that the meridians

are nullhomotopic in the complement and, thus, the fundamental group of the manifold and

the fundamental group of the complement of the tori in the manifold coincide.

Out of two telescoping triples, one is able to produce another telescoping triple as follows.

If both X and X ′ are symplectic manifolds, then the symplectic sum along the symplectic

tori X#T2,T ′1
X ′ has a symplectic structure ([28]). If both X and X ′ are minimal, then the

resulting telescoping triple is minimal too (by Usher’s theorem cf. [69]).

Proposition 2.4. (cf. [2]). Let (X,T1, T2) and (X ′, T ′1, T
′
2) be two telescoping triples. Then

for an appropriate gluing map the triple

(X#T2,T ′1
X ′, T1, T

′
2)

is again a telescoping triple. The Euler characteristic and the signature of X#T2,T ′1
X ′ are

given by e(X) + e(X ′) and σ(X) + σ(X ′).

We refer the reader to Theorems 20 and 13 and to Proposition 12 in [12] for the proof

and for more details. The building blocks we will use are gathered together in the following

theorem.

Theorem 2.5. • There exists a minimal telescoping triple (A, T1, T2) with e(A) = 5,

σ(A) = −1.

• For each g ≥ 0, there exists a minimal telescoping triple (Bg, T1, T2) satisfying e(Bg) =

6 + 4g, σ(Bg) = −2.

• There exists a minimal telescoping triple (C, T1, T2) with e(C) = 7, σ(C) = −3.

• There exists a minimal telescoping triple (D,T1, T2) with e(D) = 8, σ(D) = −4.

• There exists a minimal telescoping triple (F, T1, T2) with e(F ) = 10, σ(F ) = −6.
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The manifolds Bg, D, and F were already built in [2]. They are taken out of the con-

structions given in [12] by the following mechanism. The main goal of [12] is to construct

simply connected 4-manifolds by applying Luttinger surgery to symplectic sums. If one is

careful about the fundamental group calculations, the procedure can be interrupted by NOT

performing two surgeries, and thus obtain a symplectic manifold with π1 = Z⊕Z. Further-

more, the skipped surgeries have to be chosen carefully so that the unused Lagrangian tori

comply with the requirements and the pieces can then be aligned into a telescoping triple.

To finish the proof of Theorem 2.5, we construct (A, T1, T2) and (C, T1, T2) by applying

this mechanism to the constructions in [5]. This is done in the following two lemmas, where

we follow the notation of [5].

Lemma 2.6. There exists a telescoping triple (A, T1, T2) with e(C) = 5 and σ(C) = −1.

Proof. This telescoping triple is obtained out of the construction of an exotic irreducible

symplectic CP2#2CP2
given in [5]. The two surgeries to be skipped are (a′2 × c′, c′,+1/p)

and (b′1 × c′′, b′1,−1) (the notation is explained in [23]). Rename the corresponding tori T1

and T2. This procedure manufactures a minimal symplectic manifold A. Notice that the

tori are linearly independent in H2(A;R). We need to check that such a manifold has indeed

π1 = Z2 and that it contains the required tori.

Let us begin with the fundamental group calculations. By combining the relations com-

ing from the surgeries (a′1×c′, a′1,−1) and (a′′2×d′, d′,+1) that were performed on the Σ2×T 2

block (see [5] for details) we have α1 = a1 = [b−1
1 , d−1] = [b−1

1 , [b2, c
−1]−1] = [b−1

1 , [c−1, b2]] =

1. One concludes this commutator is trivial by observing how the generators are identified

during the gluing and using the commutators [α2, α4] = 1 and [b1, c] = 1. Substituting this

in the relations coming from the surgeries applied to the building block T 4#CP2
, we obtain

α3 = a2 = 1 and α4 = b2 = 1. By looking at the relations from the other building block we

see d = 1. Note that the meridians of the surfaces along which the gluing is performed are

trivial. Thus only two commuting generators survive in the group presentation.
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We check that the meridian of the first torus is µT1 = [d−1, b−1
2 ] = 1 and its Lagrangian

push-offs are mT1 = c and lT1 = a2 = 1. For the torus T2 one sees µT2 = [a−1
1 , d] = 1 and its

Lagrangian push-offs are mT2 = c and lT2 = b1. So, π1(A − (T1 ∪ T2)) is generated by the

commuting elements b1 and c. By the Mayer-Vietoris sequence we seeH1(A−(T1∪T2)) = Z2.

Thus π1(A− (T1 ∪ T2) = Zb1 ⊕ Zc. We conclude (A, T1, T2) is a telescoping triple.

Lemma 2.7. There exists a telescoping triple (C, T1, T2) with e(C) = 7 and σ(C) = −3.

Proof. We follow the construction of an exotic irreducible symplectic CP2#4CP2
given in

[5]. The surgeries (α′2 × α′′3, α′2,−1) in the T 4#2CP2
block and (α′′2 × α′4, α′4,−1) in the

T 4#CP2
block will NOT be performed. Call these tori T2 and T1 respectively and the

resulting manifold C. Notice that they are linearly independent in H2(C;R).

We apply (α′1 × α′3, α
′
1,−1) on the T 4#2CP2

. This introduces the relation α1 =

[α−1
2 , α−1

4 ]. Using the commutator [α2, α4] = 1, one sees α1 = 1. The relation α3 =

[α−1
1 , α−1

4 ] obtained by applying a Luttinger surgery on the T 4#CP2
building block implies

α3 = 1. The surfaces of genus 2 along which the symplectic sum is performed have trivial

meridians.

The meridian of T1 is µT1 = [a−1
1 , α4] = 1 and its Lagrangian push-offs are mT1 = α2

and lT1 = α3 = 1. The meridian of T2 is given by µT2 = [α1, α
−1
3 ] = 1 and its Lagrangian

push-offs are mT2 = α4 and lT2 = α2. We have that π1(C − (T1 ∪ T2)) is generated by the

commuting elements α2 and α4. The Mayer-Vietoris sequence computes H1(C−(T1∪T2)) =

Z2, thus π1(C − (T1 ∪ T2)) = Zα2 ⊕ Zα4. Thus, (C, T1, T2) is a telescoping triple.

Remark 7. One is able to realize the point (c2
1, χh) = (3, 1) for the fundamental groups

π1 = Z2 and π1 = Z during the manufacturing process of an exotic irreducible symplectic

CP2#6CP2
. Consider the symplectic sum of T 4#CP2

and T 2 × S2#4CP2
along a genus 2

surface given in [5]. The resulting minimal symplectic 4-manifold has a fundamental group

with the following presentation

< α1, α2, α3|[α1, α2] = 1, [α2, α3] = 1, α−1
1 = α2

3 >
∼= Z⊕ Z.
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If we apply the surgery (α′′2×α′4, α′4,−1), the relation α4 = [α1, α
−1
3 ] is introduced to the

fundamental group presentation and we obtain a manifold with fundamental group

π1 =< α1, α3|α−1
1 = α2

3 >
∼= Z.

If we apply the surgery (α′2 × α′3, α
′
3,−1), the relation α3 = [α−1

1 , α−1
4 ] is introduced

to the fundamental group presentation and we obtain a manifold with fundamental group

π1 =< α2 >= Z.

One can go on and build more telescoping triples out of these five by using Proposition

4. We proceed to do so now. Let us start by setting some useful notation. Let (X,T1, T2)

be a telescoping triple. We will denote by Xn := #n(X) the manifold obtained by building

the symplectic sum (cf. [28]) of n copies of X along the proper tori.

Proposition 2.8. For each n ≥ 1 and m ≥ 1, the following minimal telescoping triples

with the given characteristic numbers exist:

1. (An, T1, T2) satisfying e(An) = 5n and σ(An) = −n.

2. (Cn, T1, T2) satisfying e(Cn) = 7n and σ(Cn) = −3n.

3. (Dn, T1, T2) satisfying e(Dn) = 8n and σ(Dn) = −4n.

4. (Fn, T1, T2) satisfying e(Fn) = 10n and σ(Fn) = −6n.

5. (#n(Bg), T1, T2) satisfying e(#n(Bg)) = (6 + 4g)n and σ(#n(Bg)) = −2n.

6. (An#m(Bg), T1, T2) satisfying e(An#m(Bg)) = 5n+ (6 + 4g)m and σ(An#m(Bg)) =

−n− 2m.

7. (An#Cm, T1, T2) satisfying e(An#Cm) = 5n+ 7m and σ(An#Cm) = −n− 3m.

8. (An#Dm, T1, T2) satisfying e(An#Dm) = 5n+ 8m and σ(An#Dm) = −n− 4m.

9. (An#Fm, T1, T2) satisfying e(An#Fm) = 5n+ 10m and σ(An#Fm) = −n− 6m.

10. (#n(Bg)#Cm, T1, T2) satisfying e(#n(Bg)#Cm) = (6+4g)n+7m and σ(#n(Bg)#Cm) =

−2n− 3m.
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11. (#n(Bg)#Dm, T1, T2) satisfying e(#n(Bg)#Dm) = (6+4g)n+8m and σ(n(Bg)#Dm) =

−2n− 4m.

12. (#n(Bg)#Fm, T1, T2) satisfying e(#n(Bg)#Fm) = (6+4g)n+10m and σ(n(Bg)#Fm) =

−2n− 6m.

13. (Cn#Dm, T1, T2) satisfying e(Cn#Dm) = 7n+ 8m and σ(Cn#Dm) = −3n− 4m.

14. (Cn#Fm, T1, T2) satisfying e(Cn#Fm) = 7n+ 10m and σ(Cn#Fm) = −3n− 6m.

15. (Dn#Fm, T1, T2) satisfying e(Dn#Fm) = 8n+ 10m and σ(Dn#Fm) = −4n− 6m.

The claim about minimality is proved in the next section.

2.3 Minimality and Irreducibility

The following result allows us to conclude the irreducibility of the constructed minimal

4-manifolds.

Theorem 2.9. (Hamilton and Kotschick, [37]). Minimal symplectic 4-manifolds with resid-

ually finite fundamental groups are irreducible.

Finite groups and free groups are well-known examples of residually finite groups. Since

the direct products of residually finite groups are residually finite groups themselves, the

previous result implies that all we need to worry about is producing minimal manifolds in

order to conclude on their irreducibility. This endeavor follows from Usher’s theorem.

Theorem 2.10. (Usher, [69]). Let X = Y#Σ≡ΣY
′ be the symplectic sum where the surfaces

have genus greater than zero.

1. If either Y −Σ or Y ′ −Σ′ contains an embedded symplectic sphere of square -1, then

X is not minimal.
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2. If one of the summands, say Y for definiteness, admits the structure of an S2-bundle

over a surface of genus g such that Σ is a section of this S2-bundle, then X is minimal

if and only if Y ′ is minimal.

3. In all other cases, X is minimal.

This theorem implies that the manifolds of Proposition 8 are minimal.

2.4 Luttinger Surgery and its Effects on π1

Let T be a Lagrangian torus inside a symplectic 4-manifold M . Luttinger surgery (cf. [45],

[8]) is the surgical procedure of taking out a tubular neighborhood of the torus nbh(T)

in M and gluing it back in, in such way that the resulting manifold admits a symplectic

structure. The symplectic form is unchanged away from a neighborhood of T . We proceed

to give an overview of the process before we get into the fundamental group calculations.

The Darboux-Weinstein theorem (cf. [15]) implies the existence of a parametrization

of a tubular neighborhood T ×D2 → nbh(T ) ⊂ M such that the image of T × {d} is La-

grangian for all d ∈ D2. Let d ∈ D−{0}. The parametrization of the tubular neighborhood

provides us with a particular type of push-off Fd : T × {d} ⊂M − T called the Lagrangian

push-off or Lagrangian framing. Let γ ⊂ T be an embedded curve. Its image Fd(γ) under

the Lagrangian push-off is called the Lagrangian push-off of γ. These curves are used to

parametrize the Luttinger surgery.

A meridian of T is a curve isotopic to {t} × ∂D2 ⊂ ∂(nbd(T )) and it is denoted by µt.

Consider two embedded curves in T which intersect transversally in one point and consider

their Lagrangian push-offs mT and lT . The group H1(∂(nbd(T )) = H1(T 3) is generated by

µT ,mt, and lT . We take advantage of the commutativity of π1(T 3) and choose a base-point

t on ∂(nbh(T )), so that we can refer unambiguously to µT ,mT , lT ∈ π1(∂(nbd(T )), t).

Under this notation, a general torus surgery is the process of removing a tubular neigh-

borhood of T in M and gluing it back in such a way that the curve representing µkTm
p
T l
q
T
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bounds a disk for some triple of integers k, p, and q. In order to obtain a symplectic mani-

fold after the surgery, we need to set k = ±1 (cf. [12]).

When the base-point x of M is chosen off the boundary of the tubular neighborhood of

T , the based loops µT ,mt and lT are to be joined by the same path in M −T . By doing so,

these curves define elements of π1(M − T, x). The 4-manifold Y resulting from Luttinger

surgery on M has fundamental group

π1(M − T )/N(µTm
p
T l
q
T )

where N(µTm
p
T l
q
T ) denotes the normal subgroup generated by µTm

p
T l
q
T .

We proceed now with the fundamental group calculations needed to prove Theorem 1.

To do so, we plug into the previous general picture the information we have for the tele-

scoping triples. Let (X,T1, T2) be a telescoping triple. The fundamental group of X has

the presentation < t1, t2|[t1, t2] = 1 >. Let us apply +1/p Luttinger surgery on T1 along lT1

and call Y1 the resulting manifold. Since the meridian µT1 is trivial we have

π1(Y1) = π1(X − T )/N(µTm
0
T1
lpT1) = Z⊕ Z/N(1 · 1 · lpT1).

Thus, π1(Y1) =< t1, t2|[t1, t2] = 1, tp2 = 1 >.

Let us apply now +1/q Luttinger surgery on T2 along mT2 and call the resulting manifold

Y2 the resulting manifold. Since the meridian µT2 is trivial we have

π1(Y2) = Z⊕ Zp/N(1 ·mq
T2
· 1).

Thus, π1(Y2) =< t1, t2|[t1, t2] = 1, tq1 = 1 = tp2 >.

The reader might have already noticed the symmetry of these calculations.

Proposition 2.11. Let (X,T1, T2) be a minimal telescoping triple. Let lT1 be a Lagrangian

push-off of a curve on T1 and mT2 the Lagrangian push-off of a curve on T2 so that lT1 and

mT2 generate π1(X).
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• The minimal symplectic 4-manifold obtained by performing either +1/p Luttinger

surgery on T1 along lT1 or +1/p surgery on T2 along mT2 has fundamental group

isomorphic to Z⊕ Zp.

• The minimal symplectic 4-manifold obtained by performing +1/p Luttinger surgery

on T1 along lT1 and +1/q surgery on T2 along mT2 has fundamental group isomorphic

to Zq ⊕ Zp.

The proof is omitted. It is based on a repeated use of Lemma 2 in [12] and Usher’s

theorem (cf. [69]). The reader is suggested to look at the proofs of Theorems 8, 10 and 13

of [12] for a blueprint to the proof.

2.5 Proof of Theorem 2.1

Proof. The possible choices for characteristic numbers in Theorem 1 are in a one-to-one

correspondence with the telescoping triples of Proposition 2.8. The enumeration indicates

that, in order to produce the manifold in Theorem 2.1 with one of the choices for charac-

teristic numbers claimed in item # (k), we start with the telescoping triple of item # (k)

in Proposition 2.8 (k ∈ {1, 2, 3, 4, 5, . . . , 14, 15}). Let S := (X,T1, T2) be the chosen mini-

mal telescoping triple. The manifolds of Theorem 2.1 are produced by applying Luttinger

surgery to S according to the choice of characteristic numbers. By Proposition 2.11 we

know that out of S one produces two symplectic manifolds: Y1 with π1 = Z ⊕ Zp and Y2

with π1 = Zq ⊕ Zp. Since Luttinger surgery does not change the Euler characteristic nor

the signature, the resulting manifolds Y1 and Y2 share the same characteristic numbers as X.

Proposition 2.11 states that Y1 and Y2 are minimal. By Hamilton-Kotschick’s result,

both of them are irreducible. The calculation of the characteristic numbers of Y1 and Y2 is

straightforward. Since our chosen S was arbitrary, this finishes the proof.
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2.6 Exotic Smooth Structures on 4-Manifolds with Abelian

Finite Non-Cyclic π1

The purpose of this section is to put on display the exotic smooth structures for the con-

structed manifolds having π1 = Zp ⊕ Zp, i.e., to prove Proposition 2.2.

2.6.1 Smooth Topological Prototype

We proceed to construct the underlying smooth manifold on which infinitely many exotic

smooth structures will be displayed. Start with the product of a lens space and a circle:

L(p, 1)× S1. Its Euler characteristic is zero as well as its signature. Consider the map

L(p, 1)× S1 → L(p, 1)× S1

{pt} × α 7→ {pt} × αp

We perform surgery on L(p, 1)× S1: cut out the loop αp and glue in a disc in order to

kill the corresponding generator

˜L(p, 1)× S1 := L(p, 1)× S1 − (S1 ×D3) ∪ S2 ×D2.

The resulting manifold has zero signature and Euler characteristic two. By the Seifert-

Van Kampen theorem, one concludes π1( ˜L(p, 1)× S1) = Zp ⊕ Zp.

Since we are aiming at non-spin manifolds, our topological prototypes will have the shape

b+2 CP
2#b−2 CP

2
# ˜ L(p, 1)× S1

but spin 4-manifolds with π1 = Zp⊕Zp are also built in such a straightforward manner.

2.6.2 An infinite family {Xn}

We apply now the procedure described in [23] and [22] to produce infinitely many distinct

smooth structures on any of our topological prototypes. Let X0 be the manifold obtained
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by applying +1/p Luttinger surgery on T2 along lT2 to any of the manifolds from the tele-

scoping triples previously constructed. Since X0 is a minimal symplectic manifold with

b+2 = 2, its Seiberg-Witten invariant is non-trivial by [62].

The infinite family {Xn} is obtained by applying a +n/p torus surgery to X0 on T1

along mT1 . Notice that now k = n according to our notation of Section 4; only the case

k = 1 = n produces a symplectic manifold. We take a closer look at the process to see that

we comply with the hypothesis of Corollary 2 in [22].

The boundary of the tubular neighborhood of T1 in X0 is a 3-torus whose fundamental

group is generated by the loops µT1 ,mT1 , and lT1 . Notice that in π1(X0−T1), the meridian

is trivial µT1 = 1, mT1 = x and lT1 = 1, where x is a generator in π1(X0) = Zp ⊕ Zx.

The manifolds in the family {Xn} can be described as the result of applying to X0 an n/p

surgery on T1 along mT1 , and so µnT1mT1 = xp is killed.

Let X be the manifold obtained from X0 − T1 by gluing a thick torus T 2 × D2 in a

manner that γ = S1 × {1} × {1} is sent to lT1 , λ = {1} × S1 × {1} is sent to µT1 , and

µX = {(1, 1)} × ∂D2 is sent to m−pT1 . If n 6= 1, the manifold X will not be symplectic, but

in any case π1(X) = Zp ⊕ Zp. Denote by Λ ⊂ X0 the core torus of the surgery.

Notice that given the identifications on the loops during the surgery, λ = µT1 = 1, thus

it is nullhomotopic in X0 − T1 = X − Λ; in particular, λ is nullhomologous. The torus

surgery kills one generator of H1 and two generators of H2; Λ is a nullhomologous torus.

One obtains a manifold Xn by applying n surgery on Λ along λ with π1(Xn) = Zp ⊕ Zp.

The manifold X0 can be recovered from X by applying a 0/1 surgery on Λ along λ.

By Corollary 2 in [22], we produce an infinite family {Xn} of pairwise non-diffeomorphic

4-manifolds. These manifolds will have the same cohomology ring as the corresponding

topological prototype. Thus we have the following lemma.

Lemma 2.12. There exists an infinite family {Xn} of pairwise non-diffeomorphic irre-

ducible non-symplectic 4-manifolds with π1 = Zp⊕Zp sharing the same Euler characteristic,

signature, and type as a given topological prototype constructed in the previous subsection.
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2.6.3 Homeomorphism Criteria

Now we need to see that the manifolds produced share indeed the same underlying topo-

logical prototype. Ian Hambleton and Matthias Kreck proved the needed homeomorphism

criteria in [33] (Theorem B). They showed that topological 4-manifolds with odd order

fundamental group and large Euler characteristic are classified up to homeomorphism by

explicit invariants.

The precise statement of their result includes a lower bound for the Euler characteristic

in terms of an integer number d(π), which depends on the fundamental group of the mani-

fold. We proceed to explain the notation employed.

Let π1 = π be a finite group and let d(π) be the minimal Z-rank for the abelian group

Ω3Z ⊗Z[π] Z. One minimizes over all representatives of Ω3Z, the kernel of a projective

resolution of length three (cf. [34]) of Z over the group ring Z[π]. In particular, Ω3Z is a

submodule of π2(X). The minimal representative is given by π2(K), where K is a 2-complex

with the given π1.

The result we will use in order to conclude on the homeomorphism type of our manifolds

is the following:

Theorem 2.13. (Hambleton-Kreck, cf [33]). Let M be a closed oriented manifold of di-

mension four, and let π1(X) = π be a finite group of odd order. When ω2(X̃) = 0 (resp.

ω2(X̃) 6= 0), assume that

b2(X)− |σ(X)| > 2d(π),

(resp. > 2d(π)+2). Then M is classified up to homeomorphism by the signature, Euler char-

acteristic, type, Kirby-Siebenmann invariant, and fundamental class in H4(π,Z)/Out(π).

Notice that since p ≥ 3 is assumed to be a prime number, π1 has odd order and no

2-torsion. Therefore, the type of the manifold is indicated by the parity of its intersection

form over Z. All of our manufactured manifolds are non-spin; since they are smooth, the
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Kirby-Siebenmann invariant vanishes.

For the finite groups π = Zp ⊕ Zp, we claim

d(π) = 1.

We are indebted to Matthias Kreck for explaining to us the argument [43]. Assume

π = π1 is a finite group and let K be a 2-complex with fundamental group π1. The minimal

Euler characteristic of a K is given by d(π) + 1. We claim d(π) = 1.

Consider the map from K to the Eilenberg-MacLane space K(π, 1) which induces an

isomorphism on π1. Then the induced map on H2(K;Zp) is surjective. Thus, the Euler char-

acteristic of K is greater or equal than 3 - 2 + 1. This implies d(π) is greater or equal than 1.

To conclude now d(π) = 1, consider the standard presentation of Zp ⊕ Zp given by

< x, y|xp = 1, yp = 1, [x, y] = 1 >.

The 2-complex realizing this presentation has Euler characteristic 2 = d(π) + 1. There-

fore, d(π) = 1 as claimed.

In order to conclude on the homeomorphism type of our manufactured manifolds, we

only need to know the numerical invariants b+2 and b−2 which need to satisfy

b2(X)− |σ(X)| > 4.

2.6.4 Proof of Proposition 2.2

The proof of Proposition 2.2 is now clear if one rewrites it in the following form. First, in

order for our manifolds to satisfy the inequality in the previous paragraph, the integers n

and m from Theorem 1 need to be as follows. If m = 0 (similar for n = 0) or it does not

appear in the statement, then n ≥ 2 (m ≥ 2). Thus we have

Proposition 2.14. Assume n+m ≥ 2. The manifolds
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b+2 CP
2#b−2 CP

2
# ˜L(p, 1)× S1

with the following coordinates admit infinitely many exotic irreducible smooth structures,

only one of which is symplectic.

1. (b+2 , b
−
2 ) = (2n− 1, 3n− 1),

2. (b+2 , b
−
2 ) = (2n− 1, 5n− 1),

3. (b+2 , b
−
2 ) = (2n− 1, 6n− 1),

4. (b+2 , b
−
2 ) = (2n− 1, 8n− 1),

5. (b+2 , b
−
2 ) = ((2 + 2g)n− 1, (4 + 2g)n− 1),

6. (b+2 , b
−
2 ) = (2n+ (2 + 2g)m− 1, 3n+ (4 + 2g)m− 1),

7. (b+2 , b
−
2 ) = (2n+ 2m− 1, 3n+ 5m− 1),

8. (b+2 , b
−
2 ) = (2n+ 2m− 1, 3n+ 6m− 1),

9. (b+2 , b
−
2 ) = (2n+ 2m− 1, 3n+ 8m− 1),

10. (b+2 , b
−
2 ) = ((2 + 2g)n+ 2m− 1, (4 + 2g)n+ 5m− 1),

11. (b+2 , b
−
2 ) = ((2 + 2g)n+ 2m− 1, (4 + 2g)n+ 6m− 1),

12. (b+2 , b
−
2 ) = ((2 + 2g)n+ 2m− 1, (4 + 2g)n+ 8m− 1),
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13. (b+2 , b
−
2 ) = (2n+ 2m− 1, 5n+ 6m− 1),

14. (b+2 , b
−
2 ) = (2n+ 2m− 1, 5n+ 8m− 1),

15. (b+2 , b
−
2 ) = (2n+ 2m− 1, 6n+ 8m− 1).

Proof. The infinite families are provided by Lemma 2.12. Choosing the topological pro-

totype accordingly to the coordinates, by Theorem 2.13 and the discussion that follows

we conclude on the homeomorphism type. Notice that the enumeration of the coordinates

presented in Proposition 2.14 correspond exactly to the ones in Theorem 2.1.
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Chapter 3

Spin geography and botany

In this paper we study the geography and botany of symplectic spin 4-manifolds with abelian

fundamental group. Building on the constructions in [50] and [48], the techniques employed

allow us to give alternative proofs and extend their results to the non-simply connected

realm. New testing ground for a conjecture concerning 4-manifolds with even b+2 (in the

spirit of [17]) is provided.

3.1 Introduction

The geography and botany of irreducible spin simply connected 4-manifolds have been suc-

cesfully studied in [19], [59], [28], [50], [49], and [48], so that most of the existence questions

have been settled. The recent addition of Luttinger surgery (cf. [45], [8]) to the repertoire

of symplectic constructions was extremely powerful. Not only did it allow an impressive

development in our understanding of simply connected 4-manifolds ([2], [12], [5]), but also

had as a natural consequence the study of the geography for other fundamental groups ([12],

[65], [66]).

The progress concerning the botany has not been any less poignant. R. Fintushel and

R. Stern’s work on surgery on nullhomologous tori ([23], [22]) unveiled a myriad of ex-

otic smooth structures that were previously out of reach through an elegant geometric-

topological mechanism. The same authors in joint work with B.D. Park (cf. [22]) exploited

a duality between Luttinger surgery and its counterpart on nullhomologous tori that en-

abled the hand-in-hand study of the symplectic geography and its botany used by many

authors these days, this note included.
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In order to put the results of this chapter into context, we give a rough outline of the cur-

rent knowledge on the geography of symplectic spin 4-manifolds with π1 = 1. In [50], B.D.

Park and S. Szabó proved that every allowed homeomorphism type located in the region

0 ≤ c2
1 < 8χh and with odd b+2 is realized by a simply connected spin irreducible symplectic

4-manifold (Theorem 1.1, [50]). J. Park obtained a similar yet much broader result (The-

orem 1.1, [48]) which also encompassed spin symplectic simply connected 4-manifolds of

zero and positive signature. In particular, he cleverly used a complex spin surface built by

C. Persson, C. Peters and G. Xiao in [53] to produce an infinite number of exotic smooth

structures on (2n+ 1)(S2 × S2) for a rather large number n.

Our first result concerns the geography of spin manifolds with negative signature. It

provides an extension of B.D. Park and Z. Szabó ’s result to non-trivial abelian fundamen-

tal groups. In the simply connected case, we also offer an alternative proof to their theorem.

Theorem 3.1. Let s ≥ 1 and let G be either 1,Zp,Zp ⊕ Zq (and assume n ≥ 2) or

Z,Z⊕ Zp,Z⊕ Z (and n ≥ 1). For each of the following pairs of integers

(c, χ) = (8n− 8, 2s+ n− 1),

there exists an irreducible symplectic spin 4-manifold X with

π1(X) = G and (c2
1(X), χh(X)) = (c, χ).

Concerning 4-manifolds with non-negative signature, by following closely J. Park’s main

construction in [48] one obtains the following result.

Theorem 3.2. Let G be as above. Except for finitely many lattice points, every pair (c, χ)

lying in the region 8χ ≤ c ≤ 8.76χ is realized by an irreducible symplectic spin 4-manifold

with

π1(X) = G and (c2
1(X), χh(X)) = (c, χ).

Concerning their botany, we have the following two results.

Proposition 3.3. Fix π1(X) = 1,Zp,Zq ⊕ Zq or Z, where q is a prime number greater

than two. Let (c, χ) be any pair of integers given in Theorem 3.1 and/or in Theorem
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3.2. There exists an infinite family {Xn} of homeomorphic, pairwise non-diffeomorphic

irreducible smooth non-symplectic 4-manifolds realizing the coordinates (c, χ).

À la J. Park, for the manifolds with zero signature of Theorem 3.2 we have

Corollary 3.4. There exists an integer N such that ∀n ≥ N the manifolds

• (2n+ 1)(S2 × S2)# ˜L(p, 1)× S1,

• (2n+ 1)(S2 × S2)# ̂L(p, 1)× S1, and

• (2n)(S2 × S2)#S1 × S3

have infinitely many exotic irreducible smooth structures. Only one of these smooth struc-

tures admits a symplectic structure.

Here the piece ˜L(p, 1)× S1 stands for the surgered product L(p, 1)× S1 of a lens space

with the circle; the surgery is performed along {pt}×α to kill the loop corresponding to the

generator of the infinite cyclic group factor so that π1 = Zp of the surgered manifold comes

from the fundamental group of the lens space. If instead, we cut out a loop {pt} × αp and

glue in a disc to kill the corresponding generator (S2 × D2), then we obtain a 4-manifold

with π1 = Zp ⊕ Zp. Such manifold is denoted by ̂L(p, 1)× S1.

The last contribution to be described concerns new testing ground for a conjecture about

the non-existence of irreducible smooth 4-manifolds with even b+2 .

Corollary 3.5. (Compare with [17]) Let X be

K3#S2 × S2#S3 × S1 or

H(7k′ − 1)#S2 × S2#S3 × S1.

There exists an infinite family {Xn} of irreducible pairwise non-diffeomorphic 4-manifolds,

all of them sharing the homeomorphism type of X.

The chapter is organized as follows. Section 3.2 provides the reader with a description

of the building blocks and the tools that are employed in our constructions. This section

includes the two crucial lemmas for our results as well. In Section 3.3 we employ them to

prove Theorem 3.1 and half of Proposition 3.3. A description of J. Park’ s construction
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is given in the fourth section, as well as a proof of Theorem 3.2, Corollary 3.4, and the

remaining part of the proof of Proposition 3.3. The last section contains new testing ground

for a conjecture concerning simply connected manifolds with even b+2 , including a myriad of

new manifolds sharing certain similarities with the one built by R. Fintushel and R. Stern

in [17].

3.2 Tools and Raw materials

3.2.1 Symplectic sums

In his beautiful paper [28], R.E. Gompf introduced the symplectic sum, a procedure to

build symplectic 4-manifolds that has become essential in our understanding of symplectic

4-manifolds. The following result gathers the properties we will use.

Lemma 3.6. (Gompf, [28]). Let X and Y be spin symplectic 4-manifolds, each containing

a symplectic surface Σg of genus g and self-intersection 0. Then the symplectic sum X#ΣgY

is a spin symplectic irreducible manifold with coordinates

c2
1(X#ΣgY ) = c2

1(X) + c2
1(Y ) + 8(g − 1) and

χh(X#ΣgY ) = χh(X) + χh(Y ) + (g − 1).

The reader is reminded that a spin symplectic 4-manifold is mechanically irreducible,

since its Seiberg-Witten invariant is non-trivial (cf. [63], [62]) and it can not be the blow-up

of another manifold, otherwise it would not be spin.

3.2.2 Luttinger surgery and nullhomologous tori

Carving a torus out of a 4-manifold and then gluing it back in differently is a standard topo-

logical procedure to unveil exotic smooth structures. Recently this idea as been exploited

succesfully in three directions. First, perform such an operation symplectically by adding

Luttinger surgery to the palette of constructions of symplectic manifolds; second, use it to

construct not only simply connected symplectic manifolds, but also manifolds with several

fundamental groups; and last but not least, use a (nullhomologous) torus that canonically

comes out of these surgeries as a dial to change the smooth structure at will. We proceed

to give an overview of this well-oiled machinery. For specific details on the construction the
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reader is advised to consult the references given below.

Let T ⊂ X be a torus of self-intersection zero, thus having a tubular neighborhood

NT
∼= T 2 ×D2. Let α and β be the generators of π1(T ) and consider the meridian µT of T

in X and the pushoffs S1
α, S

1
β in ∂NT = T 3; these are loops homologous in NT to α and β

respectively. The manifold obtained from X by performing a p/q - surgery on T along β is

defined as

XT,β(q/p) = X −NT ∪φ T 2 ×D2,

where the gluing map φ : T 2 × ∂D2 → ∂(X − NT ) satisfies φ∗([∂D
2]) = p[S1

β] + q[µT ]

in H1(∂(X −NT ));Z). Denote core torus S1 × S1 × {0} ⊂ XT,β(q/p) by Tq/p. The surgery

reduces b1 by one and b2 by two. The fundamental group of the resulting manifold is given

by π1(XT,β(q/p)).

If X is symplectic and T Lagrangian, then performing a 1/p surgery on the prefered

Lagrangian framing of NT results in XT,β(1/p) being symplectic (cf. [8]). Concerning the

botany, the paper [22] introduced a procedure to use the nullhomologous torus Tq/p to man-

ufacture infinitely many exotic smooth structures starting with a manifold with non-trivial

Seiberg-Witten invariant (for example, the symplectic manifold where Tq/p was obtained

from), by applying a more general n/1 - surgery on Tq/p (see [22] or the discussion following

Theorem 13 in [12] for more details). This manufactures an infinite family {Xn} of pairwise

non-diffeomorphic non-symplectic 4-manifolds.

If X is assumed to be spin, one can endow XT,β(q/p) with a spin structure by choosing

a suitable bundle automorphism T 2 × D2 → T 2 × D2 as follows. Fix a spin structure on

X −NT and one on T 2×D2. Their difference is given by an element in H1(T 2×D2;Z2) ∼=

H1(T 2;Z2). This element, on the other hand, can be readily seen to be the image of

an appropriate bundle automorphism under the coefficient homomorphism H1(T 2;Z) →

H1(T 2;Z2). Thus, identifying two spin structures on T 2 × D2 coming from X − NT and

from T 2 ×D2, yields a spin structure for XT,β(q/p) itself.

We use the remaining part of the section to introduce the building blocks in our con-
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structions.

3.2.3 Surgered T 4

This building block will allow us to manipulate the fundamental group of our constructions

without adding anything to the Euler characteristic or to the signature. Let π1(T 4) be

generated by x, y, a, b. Removing a surface from a 4-manifold would normally introduce

more generators to the fundamental group of the complement. In [12], S. Baldridge and P.

Kirk showed that the fundamental group of the complement of two Lagrangian tori T1 and

T2 inside the 4-torus is generated by four elements, just like π1(T 4) itself.

Proposition 3.7. (Baldridge-Kirk, cf. [12]) The fundamental group of T 4−(T1∪T2) is gen-

erated by the loops x, y, a, b and the relations [x, a] = [y, a] = 1 hold. The meridians of the

tori and the two Lagrangian pushoffs of their generators are given by the following formulae:

µ1 = [b−1, y−1],m1 = x, l1 = a and

µ2 = [x−1, b],m2 = y, l2 = bab−1.

As a corollary of their efforts one obtains the following lemma.

Lemma 3.8. Let X be a simply connected spin symplectic 4-manifold containing a sym-

plectic torus such that π1(X−T ) = 1. There exists a spin symplectic 4-manifold with Chern

numbers χh(Z) = χh(X) and c2
1(Z) = c2

1(X). The fundamental group of Z can be chosen

to be

1. π1 = Z⊕ Z,

2. π1 = Z⊕ Zq,

3. π1 = Z

Proof. Let T1 ⊂ T 4 be as above. Perturb the symplectic form on T 4 such that T1 becomes

symplectic while T2 stays Lagrangian. The torus T1 carries the generators x and b. Take the

symplectic sum Y := T 4#T1=TX. Since the meridian of T in X − T is trivial, the relation

[y, b] = 1 holds in the fundamental group of this newly constructed manifold. Therefore,
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the symplectic sum results in a manifold Y with π1(Y ) = Zy⊕Zb. We can now proceed to

apply 1/q Luttinger surgery to T2 to produce a manifold with π = Zp ⊕ Zb; for q = 1 we

have π1 = Z and for q > 1, π1 = Zq ⊕ Zb.

3.2.4 Cohomology (2n− 3)(S2 × S2)

In [22], R. Fintushel, B.D. Park, and R. Stern built an infinite family of irreducible pairwise

non-diffeomorphic spin 4-manifolds with the same integer cohomology ring as S2 × S2.

Then, A. Akhmedov and B.D. Park generalized the construction in [5], by producing

an infinite family of irreducible pairwise non-diffeomorphic spin 4-manifolds {Yn(m)|m =

1, 2, 3, . . .} with only one symplectic member which has the same integer cohomology ring as

(2n− 3)(S2×S2) with n ≥ 2. The characteristic numbers of these manifolds are e = 4n− 4

and σ = 0; equivalent, χh = n− 1 and c2
1 = 8n− 8.

These manifolds are constructed by applying 2n + 3 Luttinger surgeries and one torus

surgery to Σ2 × Σn (the product of a genus 2 surface with a genus n surface). Let ai, bi, cj

and dj (i = 1, 2, j = 1, . . . , n) be the standard generators of π1(Σ2) and π1(Σn) respectively.

The following relations hold in π1(Yn(m)). We refer the reader to [5] for further details.

[b−1
1 , d−1

1 ] = a1, [a
−1
1 , d1] = b1, [b

−1
2 , d−1

2 ] = a2, [a
−1
2 , d2] = b2,

[d−1
1 , b−1

2 ] = c1, [c
−1
1 , b2] = d1, [d

−1
2 , b−1

1 ] = c2, [c
−1
2 , b1] = d2,

[a1, c1] = 1, [a1, c2] = 1, [a1, d2] = 1, [b1, c1] = 1,

[a2, c1] = 1, [a2, c2] = 1, [a2, d1] = 1, [b2, c2] = 1,

[a1, b1][a2, b2] = 1, [c1, d1][c2, d2] = 1,

and

[a−1
1 , d−1

3 ] = c3, [a
−1
2 , c−1

3 ] = d3, · · · , [a−1
1 , d−1

n ] = cn, [a
−1
2 , c−1

n ] = dn,

[b1, c3] = 1, [b2, d3] = 1, · · · , [b1, cn] = 1, [b2, dn] = 1,∏n
j=2[cj , dj ] = 1.
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These manifolds are our basic building block for manipulating the fundamental group.

We employ them to obtain the following.

Lemma 3.9. Let X be a simply connected spin symplectic 4-manifold containing a sym-

plectic torus such that π1(X − T ) = 1. Then for all n ≥ 1 there exists a spin symplectic

4-manifold with Chern numbers χh(Z) = χh(X) + n− 1 and c2
1(Z) = c2

1(X) + 8n− 8. The

fundamental group of Z can be chosen to be

1. π1 = Z⊕ Z,

2. π1 = Z⊕ Zq,

3. π1 = Zp ⊕ Zq,

4. π1 = Zp,

5. π1 = Z, or

6. π1 = 1.

Furthermore, Z contains a Lagrangian torus such that the inclusion induced homomorphism

π1(Z − T )→ π1(Z) is an isomorphism.

Proof. Consider the case n = 2. Let S be the manifold obtained by applying 5 Luttinger

±1 -surgeries to Σ2 × Σ2. The surgeries that are not to be performed are (a′1 × c′1, a′1,−1),

(a′2 × c′2, a′2,−1), and (a′′2 × d′1, d′1,+1). Call these three tori T1, T2, and T3 respectively. In

π1(S) all the relations from π1(Y2(1)) hold except for [b−1
1 , d−1

1 ] = a1, [b−1
2 , d−1

2 ] = a2, and

[c−1
2 , b1] = d2.

Build the symplectic sum of X and S along the corresponding torus in X and T1 in S

and call the resulting manifold SZ⊕Z. The meridian of T1, [b−1
1 , d−1

1 ] = a1 is killed during

the symplectic sum and the surviving relations show that π1(SZ⊕Z − T2 ∪ T3) is gener-

ated by the two commuting elements a2 and d1. The Mayer-Vietoris sequence shows that

H1(SZ⊕Z − T2 ∪ T3);Z) = Z2, thus π1(SZ⊕Z) = Za2 ⊕ Zd1. It is straight-forward to check

e(SZ⊕Z) = e(X) + 4 and σ(SZ⊕Z) = σ(X).
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Notice that the geometrically dual torus T ′ to T1 is contained in SZ⊕Z and its meridian

is trivial in the complement. This implies π1(SZ⊕Z − T ′) ∼= π1(SZ⊕Z) = Z2. Thus, item (1)

of the lemma has been produced.

Applying (a′2 × c′2, a′2,−1/q), aka −1/q Luttinger surgery to SZ⊕Z on T2 along a′2 pro-

duces item (2). By applying (a′′2 × d′1, d
′
1,+1/p) to the resulting manifold one produces

item (3) (p > 1) and item (4) (p = 1). Applying (a′′2 × d′1, d′1,+1) to SZ⊕Z produces item

(5), while item (6) on the list is produced by applying both surgeries (a′′2 × d′1, d′1,+1) and

(a′2 × c′2, a′2,−1) to SZ⊕Z.

The cases n ≥ 3 follow almost verbatim the procedure described above substituting

Σ2 × Σ2 with Σ2 × Σn. The details are left to the reader. We do point out that the bigger

n is, the more Lagrangian tori the resulting manifold contains. For example, the surgered

Σ2×Σ5 contains 12 Lagrangian tori while the surgered Σ2×Σ7 has 20 Lagrangian tori; all

of them have trivial meridian.

Remark 8. Concerning the production of an infinite family {Xn} of pairwise non-diffeomorphic

irreducible smooth manifolds we have the following. Properly applying a torus surgery on a

nullhomologous torus as sketched at the end of 2.2 or in [22] produces the desired family.

To conclude on their homeomorphism type, one must check that these manifolds have the

desired fundamental group; we already know their Chern invariants remained unchanged

after the surgery. For this purpose it suffices to see that the effect such surgery has on the

presentation of the fundamental groups is to replace a relation of the form [a, b] = cp by

[a, b]n = cp for a given p and n and generators a, b. Given that in the proofs of Lemma

9 and Lemma 10 we concluded that the original relation is trivial, then raising it to any

power will result in a trivial relation as well. Hence, we will make no distinctions in future

sections about the computations of π1 of the infinite families.

3.2.5 Horikawa surfaces

The complex surfaces satisfying c2
1 = 2χh − 6 are commonly known as Horikawa surfaces

and are denoted by H(4k− 1). They are constructed as branched covers of the Hirzebruch

surface F2m along disconnected curves and we point out that a simply connected Horikawa
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surface is spin if and only if k is even. The Chern invariants of the specific manifolds we

will be using, H(8k′ − 1), are given by (c2
1, χh) = (16k′ − 8, 8k′ − 1). Moreover, H(8k′ − 1)

contains an embedded Lagrangian torus which intersects a 2-sphere transversally at one

point (cf. [19], [59]).

3.2.6 A spin surface of positive signature

In [53], U. Persson, C. Peters and G. Xiao constructed a simply connected spin complex

surface Y of positive signature which contains a holomorphic curve Σg of genus g and trivial

self-intersection. Furthermore, the meridian of this surface in the complement is trivial since

Y also contains an embedded 2-sphere CP1 intersecting Σg transversely at a point. Its Chern

invariants are approximately χh(Y ) ≈ 6857x2 and c2
1(Y ) ≈ 60068x2.

3.2.7 (Knot surgered) Elliptic minimal surfaces

Our last building block is also a classical element in the construction of 4-manifolds and

we only remind the reader of its properties relevant to our purposes. Let E(2s) denote

the underlying smooth 4-manifold of the simply connected minimal elliptic surface without

multiple fibers and with geometric genus pg = 2s − 1 (cf. [27] or Prop. 3.1.11 in [?]). Its

Chern numbers are given by c2
1 = 0 and χh = 2s. Notice that in particular E(2) is a K3

surface. In Section 3 and Section 4, it is easy to see where the manifold E(2s) can be

replaced by a knot surgered exotic version E(2s)K [19].

3.3 Negative signature

3.3.1 Examples with σ = −16s for s > 0

Proposition 3.10. Let s ≥ 1. For π = 1,Zp,Zp ⊕ Zq assume n ≥ 2 and for π = Z,Z⊕ Zp

and Z⊕ Z assume n ≥ 1. There exists a spin irreducible symplectic manifold X satisfying

c2
1 = 8n− 8, χh = n+ 2s− 1 and π1(X) = π.

Proof. The proposition follows from employing X = E(2s)K in Lemma 3.8 and Lemma

3.9.
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By applying the corresponding homeomorphism criteria, we conclude that the manifolds

constructed are homeomorphic to the following topological prototypes:

• π = 1: E(2s)#(2n− 2)(S2 × S2) (cf. [26]).

• π = Zp: E(2s)#(2n− 2)(S2 × S2)# ˜L(p, 1)× S1 (cf. [34]).

• π = Zq ⊕ Zq: E(2s)#(2n− 2)(S2 × S2)# ̂L(p, 1)× S1 (cf. [34]).

• π = Z: E(2s)#(2n− 1)(S2 × S2)#S3 × S1 (cf. [36]).

Thus, considering Remark 3.1 we have the following.

Corollary 3.11. The manifolds

• E(2s)#(2n− 2)(S2 × S2),

• E(2s)#(2n− 2)(S2 × S2)# ˜L(p, 1)× S1,

• E(2s)#(2n− 2)(S2 × S2)# ̂L(p, 1)× S1 and

• E(2s)#(2n− 1)(S2 × S2)#S3 × S1.

admit infinitely many exotic irreducible smooth structures.

3.3.2 Examples with σ = −16s− 16 for s ≥ 0

Proposition 3.12. Let s ≥ 0. For π = 1,Zp,Zp ⊕ Zq assume b ≥ 2 and for π = Z,Z⊕ Zp

and Z⊕ Z assume n ≥ 1. There exists a spin irreducible symplectic manifold X satisfying

(c2
1, χh) = (8n− 8, 2s+ n+ 1) and π1(X) = π.

Proof. The proposition follows by using X = K3k#T 2E(2s), where K3k stands for an

irreducible exotic K3 surfaces produced by knot surgery, in Lemma 3.8 and Lemma 3.9.

For these manifolds, we obtained the following.

Corollary 3.13. The manifolds
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• E(2(s+ 1))#(2n− 2)(S2 × S2),

• E(2(s+ 1))#(2n− 2)(S2 × S2)# ˜L(p, 1)× S1,

• E(2(s+ 1))#(2n− 2)(S2 × S2)# ̂L(p, 1)× S1, and

• E(2(s+ 1))#(2n− 1)(S2 × S2)#S3 × S1

admit infinitely many exotic irreducible smooth structures.

3.3.3 Examples with σ = −48k′ for k′ > 0

Employing the Horikawa surfaces H(8k′−1) and H(7)#T=T#H(8k′−1) in Lemma 3.8 and

Lemma 3.9 yields the following proposition.

Proposition 3.14. Let k′ > 0. For π = 1,Zp,Zp⊕Zq assume n ≥ 2 and for π = Z,Z⊕Zp

and Z⊕ Z assume n ≥ 1. There exists a spin irreducible symplectic manifold X satisfying

• c2
1(X) = 16k′ + 8n− 16, χh(X) = 8k′ + n− 2, or

• c2
1(X) = 16k′ + 8n+ 88, χh(X) = 8k′ + n+ 53

and π1(X) = π.

Corollary 3.15. The manifolds

• H(8k′ − 1)#(2n− 2)(S2 × S2),

• H(8k′ − 1)#(2n− 2)(S2 × S2)# ˜L(p, 1)× S1,

• H(8k′ − 1)#(2n− 2)(S2 × S2)# ̂L(p, 1)× S1, and

• H(8k′ − 1)#(2n− 1)(S2 × S2)#S3 × S1

admit infinitely many exotic irreducible smooth structures.

3.4 Nonnegative signature

3.4.1 J. Park’s construction

In [48], J. Park used the spin complex surface described in 3.2.6 above to realize all but

finitely many allowed points in the region 0 ≤ c2
1 ≤ 8.74χh for trivial fundamental group.
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Given that we already filled in the points of negative signature above, we now follow his

construction in [48] almost verbatim in order to address the region 8 ≤ c2
1 ≤ 8.76χh. We

start by describing the argument and main building blocks in [48].

Consider a simply connected spin symplectic 4-manifold Z which contains a symplectic

torus T in a cusp neighborhood N and symplectic surface Σg of genus g and zero self-

intersection, Σg disjoint from N . The Chern invariants of this manifold are c2
1(Z) = 8g2 −

16g+ 8 and χh(Z) = 2g2 − g+ 1. In particular its signature is given by σ(Z) = −8g2 + 8g.

Now take the spin complex surface introduced in 2.6 above and build the symplectic sum

X :=

k︷ ︸︸ ︷
Y#Σg · · ·#ΣgY #ΣgZ.

Assume the integer k is such that X has positive signature. Furthermore, π1(X) = 1

since all the pieces are simply connected and the meridian of Σg in Y − Σg is trivial.

The Chern numbers can be calculated to be c2
1(X) = kc2

1(Y ) + c(Z) + 8k(g − 1) and

χh(Y ) = kχh(Y ) + χh(Z) + k(g − 1), thus by considering large enough integers k and x,

one has

c21(X)
χh(X) =

kc21(Y )+c(Z)+8k(g−1)
kχh(Y )+χh(Z)+k(g−1) ≈

c21(Y )
χh(Y ) ≈

60068x2

6857x2
= 8.76009 · · ·

J. Park then fixes k and x big enough such that
c21(X)
χh(X) > 8.76 holds. At this point

one should notice that X contains a symplectic torus of self-intersection zero lying on the

building block Z. In fact, one can also find such tori in the Y blocks. To finish his argument,

he then proceeds to define a line c = f(χ) by

f(χ) = c(X)
χ(X) · (χ− c(X)/2− 6) + c(X)

and whose slope c(X)
χ(X) =

c21(X)
χh(X) is greater than 8.76. Finally, build the simply con-

nected manifold W :=

m︷ ︸︸ ︷
X#T 2X#T 2#T 2 · · ·#T 2X #T 2V (where the block V can be chosen

from H(8k′ − 1)#T 2E(2s), H(7)#T 2H(8k′ − 1)#T 2E(2s) or a simply connected manifold

constructed in this paper in Proposition 15). Then, for some integer m, for every al-

lowed lattice point (c, χ) in the first quadrant of the geography plane that complies with

c = f(χ), there exists an irreducible symplectic simply connected spin 4-manifold W with
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(c, χ) = (c2
1(W ), χh(W )).

Given that W has a torus T of self-intersection zero and of trivial meridian in W − T ,

Lemma 3.9 and Lemma 3.10 imply the following (Theorem 3.2):

Proposition 3.16. Let π = 1,Zp,Zp ⊕ Zq,Z,Z⊕ Zp, and Z⊕ Z. Except for finitely many

lattice points, for every allowed pair (c, χ) lying in the region

8χ ≤ c ≤ 8.76χ,

there exists a spin irreducible symplectic manifold X satisfying

π1(X) = G and (c2
1(X), χh(X) = (c, χ).

Concerning the manifolds with negative signature from the previous proposition, we

have the following.

Corollary 3.17. There exists an integer N such that ∀ n ≥ N the manifolds

• (2n+ 1)(S2 × S2),

• (2n+ 1)(S2 × S2)# ˜L(p, 1)× S1,

• (2n+ 1)(S2 × S2)# ̂L(p, 1)× S1, and

• (2n+ 2)(S2 × S2)#S1 × S3

have infinitely many exotic irreducible smooth structures.

3.5 Testing ground for a conjecture concerning manifolds

with even b+
2

3.5.1 Recovering an example of Fintushel and Stern

In [17], R. Fintushel and R. Stern constructed a manifold X homeomorphic to K3#S2 ×

S2#S3 × S1 and, using Donaldson’s invariants, concluded it was exotic. By surging out

the loop carryng π1(X), one obtains a smooth simply connected manifold K with b+2 = 4.

Given the exotic nature of X, one could suspect K to be exotic as well. They proved this

is not the case, K is actually diffeomorphic to K#S2 × S2 for some 4-manifold K, thus
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providing circumstantial evidence for the conjecture that there does not exist an irreducible

4-manifold with even b+2 .

The usage of the new techniques produces a myriad of new candidates.

Proposition 3.18. There exists an infinite family {Xn} with one symplectic member of

irreducible pairwise non-diffeomorphic 4-manifolds, all of them homeomorphic to

K3#S2 × S2#S3 × S1.

3.5.2 More candidates

Just as above, out of Proposition 3.15 one can produce more manifolds with even b+2 by

surgerying away the fundamental group of the following infinite family.

Proposition 3.19. There exists an infinite family {Xn} with one symplectic member of

irreducible pairwise non-diffeomorphic 4-manifolds, all of them homeomorphic to

H(8k′ − 1)#S2 × S2#S3 × S1.

Remark 9. For all the manifolds with non-trivial fundamental group produced in this paper,

one can surger away a loop carrying a generator of π1 at the cost of adding two to the Euler

characteristic and repeat this operation until one obtains a manifold with π1 = 1. In any

case, this procedure always results in a manifold with even b+2 .

As testing ground for the mentioned conjecture, we ask the following

Question 1. Are the simply connected 4-manifolds obtained by surgerying away the funda-

mental group from Xn irreducible?

For the answer, the reader is invited to Chapter 5.
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Chapter 4

Interaction between the two realms

4.1 Introduction

Two samples of the interplay between exotic 4-manifolds with trivial and with non-trivial

fundamental group are given in this short note. First, we put on display exotic simply

connected 4-manifolds as universal covers of exotic manifolds with finite cyclic fundamental

group. On the other direction, we use a recent technique of Fintushel and Stern to unveil

exotic smooth structures on manifolds with non-trivial π1 out of standard versions of simply

connected ones. This provides more evidence for a conjecture of Fintushel and Stern. We

proceed to put the first situation in perspective.

Consider the infinite family {Xn} of pairwise non-diffeomorphic irreducible smooth man-

ifolds with finite cyclic π1, ω2-type I) (non-spin) with Euler characteristic 6, and signature

−2 produced in [65] by using the tools from [11] and the techniques of [22]. From Theorem

C in [33] we know the homeomorphism type of these manifolds is given by the topological

prototype

CP2#3CP2
# ˜L(p, 1)× S1.

By fixing an integer p ≥ 2 and taking a look at its universal cover X̃, we see that it

is non-spin, has Euler characteristic 6p, and signature −2p. Thus, by Freedman’s theorem

(cf. [26])

X̃ ∼=C0 (2p− 1)CP2#(4p− 1)CP2
.
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At this point it is natural to ask whether X̃ is standard or exotic.

If X̃ were standard, then the action of the cyclic group would be exotic. In [25] exotic

smooth actions on a myriad of simply-connected 4-manifolds were constructed. The first re-

sult of this note addresses another phenomena. That is, we exhibit exotic irreducible smooth

structures on p-covers of exotic irreducible 4-manifolds with finite cyclic fundamental group.

With more generality, the circumstances of our first result are as follows. Let {Xn} be

a family of pairwise homeomorphic, yet non-diffeomorphic irreducible smooth 4-manifolds

with finite cyclic fundamental and non-trivial Seiberg-Witten invariants; assume at least

one member is symplectic (cf. [65]). Let X ∈ {Xn}. We have

Theorem 4.1. Let π : X̃ → X be a p-cover. The universal cover X̃ admits an exotic

irreducible symplectic smooth structure. In the case of double covers, X̃ admits an exotic

irreducible non-symplectic smooth structure as well.

Our second result is greatly indebted to the recently introduced technique of Fintushel

and Stern [24]. For the groups π1 = Zp,Zp ⊕ Zq,Z⊕ Zp,Z⊕ Z, and Z, we have

Theorem 4.2. By applying surgeries on nullhomologous tori in CP2#kCP2
(with k =

2, . . . , 7 and 9) one obtains

• an infinite family of minimal exotic CP2#kCP2
# ˜L(p, 1)× S1,

• an infinite family of pairwise non-diffeomorphic minimal 4-manifolds sharing the same

π1 = Zp ⊕ Zp and the homology of CP2#kCP2
# ̂L(p, 1)× S1,

• an infinite family of pairwise non-diffeomorphic minimal 4-manifolds sharing the same

π1 and the homology of 2CP2#(k + 1)CP2
#L(p, 1)× S1,

• an infinite family of pairwise non-diffeomorphic minimal 4-manifolds sharing the same

π1 and the homology of 2CP2#(k + 1)CP2
#T 2 × S2, and

• an infinite family of pairwise non-diffeomorphic minimal 4-manifolds sharing the same

π1 and the homology of 2CP2#(k + 1)CP2
#S1 × S3.
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Here, ˜L(p, 1)× S1 and ̂L(p, 1)× S1 stand for the 4-manifolds obtained by taking the

product of the lens space L(p, 1) and S1, and then surging the loop that generates the

Z-factor in the fundamental group accordingly.

This chapter is organized as follows. Section 4.2 is devoted to the construction of exotic

covers. The third section provides an outline to construct exotic non-simply connected

4-manifolds out of standard simply connected ones.

4.2 Exotic p-covers

Let X
Zp

b+2 ,b
−
2

denote any of the irreducible smooth manifolds with finite cyclic π1 constructed

in [65] (do notice that our arguments work in more generality). We have that its homeo-

morphism type is b+2 CP
2#b−2 CP

2
# ˜L(p, 1)× S1. Its p-cover X̃b+2 +2,2b−2 +1 is homeomorphic to

(p(b+2 + 1)− 1)CP2#(p(b−2 + 1)− 1)CP2

by Freedman’s Theorem (cf. [26]).

For every p-cover we have the following.

Lemma 4.3. Let X be the symplectic member of the family {Xn}. Then X̃ is an exotic

symplectic

(p(b+2 + 1)− 1)CP2#(p(b−2 + 1)− 1)CP2
.

Proof. Let π : X̃ → X be a covering and let ω be a symplectic form on X. Then π∗ω is a

symplectic form on X̃. Taubes’ theorems (cf. [64], [63]) now implies that SWX̃ 6= 0.

4.2.1 SW invariants on double covers

The main ingredient in the proof of Theorem 4.1 is the following formula for the Seiberg-

Witten invariants of a double cover π : X̃ → X.

Theorem 4.4. (Ruan and Wang, cf. [54]) Suppose that π : X̃ → X is an unramified

double cover. It is clear that there is a well-defined pull back spinc structure of X such

that dL = 0, c1(L) is non-torsion. Then the Seiberg-Witten invariants satisfy the following

relation:
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SW (ξ̃) =
∑

γ∈K SW (ξ ⊗ γ) mod 2,

where K is the set of isomorphism classes of complex lines bundles on X which pull back

to the trivial bundle on X̃.

4.2.2 Proof of Theorem 4.1

The first result in the introduction is a corollary of Ruan-Wang’s formula and Lemma 4.3.

Proof. From {Xn}, take the irreducible symplectic member X and an irreducible non-

symplectic X1. By Theorem C in [33], both X and X1 have

b+2 CP
2#b−2 CP

2
# ˜L(p, 1)× S1

as a topological prototype. Consider the universal covers X̃ and X̃1. By Freedman’s Theo-

rem (cf. [26]), we know these manifolds are homeomorphic to

(p(b+2 + 1)− 1)CP2#(p(b−2 + 1)− 1)CP2
.

Lemma 4.3 allows us to conclude the existence of the exotic symplectic copies for a

p-cover π : X̃ → X.

In the case p = 2, Ruan-Wang’s result implies the existence of an exotic

(2b+2 + 1)CP2#(2b−2 + 1)CP2

which does not admit a symplectic structure.

4.3 Pinwheels and nullhomologous surgery

The surgery techniques on nullhomologous tori introduced by Fintushel and Stern in [24]

enable the construction of exotic 4-manifolds with abelian fundamental group from standard

simply connected manifolds by applying surgeries on nullhomologous tori. This procedure

was already envisioned in their previous work ([23]). In particular, Theorem 4.2 is a corol-

lary of the recent tools introduced in [24] to find such tori, and of the blueprint to manipulate

the fundamental group calculations exemplified below in 4.3.2 for the manifolds constructed

out of CP2#2CP2
. A contribution of the recent preprint [24] that is worth noticing is that
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it unifies the recent constructions of small exotic 4-manifolds.

4.3.1 Scheme of the construction

The reader is advised to look at [24] for details and for further references. A crucial point in

their technique is to find the nullhomologous tori inside the standard versions of a manifold.

Fintushel and Stern start with an standard CP2#kCP2
with k as in our theorem above.

Then, by the help of actions of T 2 on that given manifold, they endowed it with a pinwheel

structure where the surfaces of the gluings are spheres. They proceed to find a new pin-

wheel structure by ambiently pushing 2-handles in the starting pinwheel presentation. The

surfaces of the gluings are now tori and the components of the new pinwheel contain the

needed nullhomologous tori.

By applying surgeries on these tori, they construct a non-simply connected (symplectic)

4-manifold with nontrivial Seiberg-Witten invariants X1 which contains tori carrying the

generators of its fundamental group. We point out that this symplectic manifold appears

to be the model manifold in the reverse-engineering technique of [12], [3], and [22]. For

example, for the procedure on CP2#3CP2
the symplectic manifold constructed appears to

be Sym2(Σ3), just like in [22]. This, however, remains unproven.

The manifold X1 is now surgered along these tori, thus producing an infinite family of

pairwise nondiffeomorphic manifolds with b1 = 0. One concludes the resulting manifolds

are simply connected by looking at the resulting fundamental group presentations. The

composition of the surgeries from the standard CP2#kCP2
with the ones applied to the

manifold X1 gives a direct construction of exotic 4-manifolds out of standard versions. As

it was mentioned in [24], this technique can be applied to many other manifolds.

In the next part of this chapter, we show how to employ these techniques to produce

non-simply connected exotic 4-manifolds.

4.3.2 Process for CP2#2CP2

Our starting point is the manifolds in [24], and we follow closely their calculations on π1

based on the analysis done in [12]. We provide a blueprint on how the fundamental group

calculations should be manipulated to produce manifolds with a desired fundamental group.

We do so by proving Theorem 4.2 for the instance k = 2. The other calculations follow
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almost verbatim.

Proof. The fundamental group of X1 is generated by ai, bi and y0 with i = 0, 1, 2. We are

aiming at constructing an intermediate manifold X̃1 with π1 = Z⊕Z. We proceed as follows.

In the block Â perform the surgery that introduces the relation b0[a−1
0 , b1] = 1.

In the block A perform the surgery that introduces the relation b1[a−1
1 , b2] = 1.

The combination of these two relations and the commutativity of a0 with a1 and with

b2 implies b0 = 1.

Now move to the block I0; the generator y0 is killed by applying the surgery introducing

the relation y0[a−1
2 , b0] = 1. This implies that b2 = y0ξ = 1. The generator b1 is killed by

the surgery done on the A block.

Notice that the surviving generators a0 and a1 commute. We have thus obtained a

symplectic 4-manifold X̃1 with π1 = Za0 ⊕ Za1. To produce an infinite family with the

same fundamental group and the same homology as our intermediate manifold X̃ = 1, it

suffices to apply the surgery on the block I0 which introduces the relation y0[a−1
2 , b0]n = 1.

This manufactures an infinite family of pairwise non-diffeomorphic manifolds, which are all

candidates to be exotic 2CP2#3CP2
#T 2 × S2.

The infinite family {Zn} of pairwise non-diffeomorphic candidates for exotic 2CP2#3CP2
#S1×

S3 (see [36] for the homeomorphism criteria) are obtained as follows. Perform in the A block

the surgery responsible for introducing the relation a1[b−1
2 , b−1

1 ]n = 1. This kills the gener-

ator a1 and all the manifolds obtained have π1 = Za0.

If for this last surgery n = 1 and one applies in the Â block the surgery that intro-

duces the relation ap0[b−1
1 , b−1

0 ]m = 1, we obtain an infinite family {Yn} of pairwise non-

diffeomorphic 4-manifolds, all homeomorphic (cf. [33]) to

CP2#2CP2
# ˜L(p, 1)× S1.
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Taking the intermediate manifold X̃1 and applying the surgeries

• A : ap1[b−1
2 , b−1

1 ] = 1 and

• Â : ap0[b−1
1 , b−1

0 ]r = 1,

one obtains an infinite family of pairwise non-diffeomorphic manifolds candidates to be

homeomorphic to CP2#2CP2
# ̂L(p, 1)× S1.
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Chapter 5

On the Manifolds of Sections 4.3
and 4.5, and Future Research
Projects

Regarding the manifolds of Question 1 at the end of Chapter 4, R.E. Gompf has suggested

to us [30] that all of them are irreducible. For the sake of closure to the raised ques-

tion, we proceed to explain his argument by taking a closer look at the construction. Let

π1(T 4) = Zx ⊕ Zy ⊕ Za ⊕ Zb. Abusing notation, let the Lagrangian tori T1 and T2 be

spanned by the curves x, a and y, b and the symplectic tori T3 and T4 spanned by a, b

and x, y, respectively. Recall how we produced a manifold X in the infinite family {Xn} of

Section 4.5. First, build the fiber sum of a manifold Q containing a torus of self-intersection

T (and trivial meridian in π1(Q−T ) = 1 = π1(Q)) with T 4 along T1, apply a torus surgery

on T2 and then kill the surviving generator by doing an ordinary surgery on the loop b.

Denote the manifold obtained this way by Z.

The surgered loop b lies on T3, and the surgery transforms such torus into an embedded

sphere S with self-intersection 0. We will see that S is actually a factor of an S2 × S2

summand in the resulting manifold Z. Start by observing that the meridian of S is nullho-

motopic in X −S. Indeed, S has T4 for a dual torus; since the loop x spanning T4 becomes

nullhomotopic after the symplectic sum, we obtain an immersed sphere S′ by surging T4.

This immersed sphere S′ intersects S in a single point, offering a nullhomotopy for the

meridian of S as it was claimed.

By carving out S, one obtains a manifold Y containing a standardly embedded circle C
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on which surgery gives the starting X back. This exhibits X as Y#S2×S2, thus irreducible.

Notice that the argument depends only on the T 4 block of our constructions and it applies

to all the manifolds considered in Section 4.5 of Chapter 4 above. Thus, we have

Lemma 5.1. (Gompf, [30]) The 4-manifolds with π1 = 1 constructed in Section 4.5 above

are reducible.

5.1 The shape of things to come

5.1.1 2-knots

Not everything is lost. As a side-effect, we came across an infinite family of nullhomolo-

gous knots with infinite cyclic knot group inside 4-manifolds like our Q above, which are

topologically equivalent but have nondiffeomorphic complements. This is currently work in

progress [67].

5.1.2 Homeomorphism criteria

In the recent paper [35], I. Hambleton, M. Kreck and P. Teichner have established a homeo-

morphism clasification for closed oriented topological 4-manifolds with solvable Baumslag-

Solitar fundamental groups based on their ω2-type, the equivariant intersection form and the

Kirby-Siebenmann invariant. This includes Z⊕Z and, therefore, the manifolds constructed

above. It is an interesting task to find numerical invariants to conclude a homeomorphism

criteria. This involves studying algebraic K-theoretical methods to come up with numerical

invariants (Euler characteristic, signature, type). This is work in process [68].
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Chapter 6

Work in Progress: Project 1

We end the thesis by stating two on-going projects. The second one is joint work with

Jonathan Yazinski.

6.1 Irreducible spin 4-manifolds with abelian π1 and σ = 0

Assuming the existence of an exotic symplectic S2×S2 which contains a symplectic surface

of genus 2 and self-intersection zero, in this short note we address the existence and (lack

of) uniqueness of irreducible spin symplectic smooth 4-manifolds. The tools employed allow

us to study manifolds with several non-trivial abelian fundamental groups, and address the

botany in some of these cases. Our results use an exotic S2 × S2, whose construction was

outlined in the recent Preliminary report [7].

In that paper, the authors claim that by modifying their construction in [7], they were

able to build to build exotic copies of the connected sums (2k − 1)(S2 × S2). The proofs

employed in this chapter are of a completely different nature; we make use of auxiliary

building blocks and we do not need to modify the construction in [7].

Moreover, the agenda of this paper is to exploit the recent construction techniques to

study 4-manifolds with abelian fundamental group of small rank, and not only simply con-

nected 4-manifolds.

Our main result regarding the symplectic geography is the following.
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Theorem 6.1. Let g ≥ 0 and let G be either 1,Zp,Zp ⊕ Zq,Z,Z⊕ Zp, or Z⊕ Z. For each

of the following pairs of integers

(c, χ) = (8 + 8g, 1 + g),

there exist an irreducible symplectic spin 4-manifold X with

π1(X) = G and (c2
1(X), χh(X)) = (c, χ).

Concerning the botany, we have

Proposition 6.2. • For every k ≥ 2 integer, there exists an infinite family {Zn} of

irreducible pairwise nondiffeomorphic manifolds, all of them homeomorphic to

(2k − 1)(S2 × S2).

• For every k ≥ 1 integer, there exists an infinite family {Yn} of irreducible pairwise

nondiffeomorphic manifolds, all of them homeomorphic to

(2k − 1)(S2 × S2)# ˜L(p, 1)× S1.

• For every k ≥ 1 integer, there exists an infinite family {Wn} of irreducible pairwise

nondiffeomorphic manifolds, all of them homeomorphic to

(2k − 1)(S2 × S2)# ̂L(q, 1)× S1.

• For every k ≥ 2 integer, there exists an infinite family {Vn} of irreducible pairwise

nondiffeomorphic manifolds, all of them homeomorphic to

(2k)(S2 × S2)#S3 × S1.

This chapter is work in progress. It is organized as follows. Section 6.2 deals with the

construction of symplectic irreducible manifolds homeomorphic to the connected sum of

(2k−1) copies of S2×S2. In Section 6.3, we study symplectic manifolds with more general

fundamental groups. This section contains our main technical tool when building manifolds
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with abelian fundamental groups of small rank (Proposition 6.5) and a description of the

topological prototypes used to pin down the homeomorphism types for the myriad of mani-

folds produced. The exposition of the work in progress finishes with Section 6.4, where our

claim regarding the botany is proven.

6.2 Symplectic geography of simply connected spin 4-manifolds

with signature zero

6.2.1 Warm up example: a symplectic 3(S2 × S2)

Consider the manifold M built in [7]. According to A. Akhmedov and B.D. Park, this

symplectic manifold contains a symplectic surface of genus 2: the quotient q(Σ2 × {ω0}).

Denote it by Σ2. Furthermore, this Σ2 intersects transversally the genus two surface

q({z0} × Σ3). Thus, the meridian of Σ2 is dictated by the product of commutators coming

from q({z0}×Σ3), which were killed during the Luttinger surgeries ((9) in [7]). This implies

π1(M − Σ2) = 1.

Now consider the spin manifold Q2 constructed in [28], tagged as Building Block 5.8 in

R.E. Gompf’s paper. It has zero Euler characteristic and zero signature. This Q2 contains

a genus 2 symplectic surface Σ and π1(Q2 − Σ)/ < π1(Σ′′) >= 1 (see Lemma 5.9 in [28]),

where Σ′′ is a parallel copy of the surface Σ in Q2−Σ. Now, build the symplectic sum ([28])

Z := M#Σ2=ΣQ2.

It follows from Seifert-Van Kampen’s theorem that π1(Z) = 1. One computes directly

e(Z) = e(M) + 4 = 8 and σ(Z) = 0. Thus, by applying Freedman’s theorem (cf [26]) to our

Z, we conclude the following.

Lemma 6.3. There exists an irreducible symplectic 4-manifold homeomorphic to 3(S2×S2).

6.2.2 Exotic symplectic (2k − 1)(S2 × S2)

We proceed now to iterate the usage of Gompf’s manifold Q2 in the previous construction

in order to address the symplectic geography completely.
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Proposition 6.4. Let k ≥ 2 be an integer. There exists an irreducible symplectic 4-manifold

homeomorphic to (2k − 1)(S2 × S2)

Proof. Take n copies of Q2, {Q(1)
2 , . . . , Q

(n)
2 }, and inside each of them consider a genus 2

symplectic surface Σ(j). Now, inside the manifold M , let {Σ1, · · · ,Σn} be n parallel copies

of the symplectic surface of genus 2, Σ. Take one of these surfaces, say Σj , and build

the symplectic sum of M with each Q
(j)
2 along Σj = Σ(j). Then continue to build the

symplectic sum, one by one, of a copy of a parallel surface in M with a copy of Q2 along

the corresponding Σ(i). We get

Zn := M#nΣgn(Q2) =
⊔
j(Q

(j)
2 − Σ(j))

⋃
j(M − ∪Σj),

where the block
⊔
j(Q

(j)
2 − Σ(j)) stands for the disjoint union of the copies. Notice

that for all j, Σj gets identified with Σ(j); the choice of gluing map can be supressed

in our definiton of Zn by Remark 8.1.3 in [29]. The characteristic numbers of Zn are

e(Zn) = e(M) + 4n = 4 + 4n and σ(Zn) = 0. We claim π1(Zn) = 1.

Indeed, the inclusion Σ′′ ↪→ M −
⋃
j Σj induces the trivial map on π1. Thus, all loops

contained in the building block Q
(j)
2 − Σ(j) are trivial in π1(Zn). Moreover, the meridians

of the surfaces Σ(j) normally generate π1(M − ∪jΣj), and they can be pushed off into

Q
(j)
2 − Σ(j). Therefore, Seifert-Van Kampen’s theorem says π1(Zn) = 1 as was claimed.

Rename Zn = Zk.

By Freedman’s theorem (cf [26]), the manifold Zk is homeomorphic to (2k−1)(S2×S2).

Remark 10. Note that the proof for the case k = 1 was outlined in [7]. In the same

preliminary report, the authors claim that by modifying their construction they are able to

prove the claim for k ≥ 2. Proposition 5.4 is disjoint from their results from two perspetives.

First, our proofs are different. Second, we are interested in abelian fundamental groups, and

not only simply connected manifolds.

6.3 More abelian π1’s

In what follows we turn our attention to the symplectic geography of spin 4-manifolds whose

fundamental group is amongst the following choices:
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• π1 = Z⊕ Z,

• π1 = Z⊕ Zp,

• π1 = Z,

• π1 = Zp ⊕ Zq,

• π1 = Zp and

• π1 = 1.

6.3.1 Technical tool

Using symplectic sums ([28]) and Luttinger surgeries ([45], [8]) we produce our main tool

in the study of the geography.

Proposition 6.5. Let X be a symplectic simply connected manifold containing a symplectic

surface of genus 2 of self-intersection zero, Σ. Assume π1(X − Σ) = 1. Let g ≥ 0 and

assume π1(X−Σ). There exists an irreducible spin symplectic 4-manifold with characteristic

numbers e(Z) = e(X) + 4g and σ(Z) = σ(X). The fundamental group of Z can be chosen

to be

1. π1 = Z⊕ Z,

2. π1 = Z⊕ Zq,

3. π1 = Zp ⊕ Zq,

4. π1 = Zp,

5. π1 = Z or

6. π1 = 1.

The cases π1 = 1,Zp with g = 0 were claimed in [7]. We proceed to prove the rest of

our assertion.

Proof. For g = 0, the proposition follows from [7]; for example, one obtains a manifold with

infinite cyclic fundamental group by not performing one of the surgeries. Now, let g = 1.

Take the product of T 2 × Σ2 of a torus and a genus 2 surface with the product symplectic

form, and build the symplectic sum ([28])
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S1 := X#Σ=Σ2T
2 × Σ2.

By Proposition 7 of [12] (using the notation there), an application of Seifert-Van Kam-

pen’s theorem concludes π1(S1) = Zx⊕Zy. Notice that in S1 we have two Lagrangian tori

carrying the generators x and y each. Applying a -1/q Luttinger surgery on T1 along m1 = x

produces a symplectic spin manifold with π1 = Zq ⊕ Z ([45], [8]). If to that manifold one

applies a -1/p Luttinger surgery, one obtains a symplectic spin manifold with π1 = Zq ⊕Zp

(if p = 1, we obtained a manifold with infinite cyclic fundamental group. If we apply to S

a -1 Luttinger surgery on T1 along m1 and a -1/p Luttinger surgery, we obtain a manifold

with finite cyclic fundamental group of order p; if p = 1, then the resulting manifold is

simply connected.

The instances corresponding to g ≥ 2, one builds

Sg := X#Σ=Σ2Σ̃2 × Σg,

where the block Σ̃2 × Σg stands for the surgered product of a surface of genus 2 and

a surface of genus g (see [22] (for g = 2) and [4] (for g ≥ 3) regarding the details on the

fundamental groups needed for our computations).

We remind the reader that a spin symplectic 4-manifold is irreducible. Indeed, by

Taubes’ results ([67], [64]) the Seiberg-Witten invariants of such manifold are nontrivial,

and it is not the blow-up of another manifold, since it is spin. Therefore, it is minimal.

Irreducibility now follows from [37].

Theorem 6.1 follows now as a corollary of Proposition 6.5 and the work done in Section

6.2.

Remark 11. Concerning the production of an infinite family {Xn} of pairwise non-diffeomorphic

irreducible smooth manifolds we have the following. Properly applying a torus surgery on

a nullhomologous torus (see [22] or the remark that follows Theorem 13 in [12]) produces

the desired family. To conclude on their homeomorphism type, one must check that these

manifolds have the desired fundamental group; we already know their characteristic num-

bers remained unchanged after the surgery. For this purpose, it suffices to see that the effect
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such surgery has on the presentation of the fundamental groups is to replace a relation of

the form [a, b] = cp by [a, b]n = cp for a given p and n and generators a, b. Given that in

the proof of Proposition 5 we concluded that the original relation is trivial, then raising it

to any power will result in a trivial relation as well. Hence, we make no further distinctions

about the computations of π1 of the infinite families.

Remark 12. During the computations involved in the proof of the previous proposition,

one notices that many other fundamental groups can be obtained during the procedure.

6.3.2 Smooth topological prototypes

In order to fix a homeomorphism type for the exotic manifolds with non-trivial π1 built

here, we will employ the following smooth topological prototypes:

• π1 = Z : (b+2 + 1)(S2 × S2)#S3 × S1,

• π1 = Zp : b+2 (S2 × S2)# ˜L(p, 1)× S1 and

• π1 = Zq ⊕ Zq : b+2 (S2 × S2)# ̂L(p, 1)× S1.

The common characteristic of these smooth manifolds is that the last block carries all

the fundamental group. To construct it, take the product of a Lens space and a circle:

L(p, 1) × S1. The Euler characteristic of this manifold is zero, as well as its signature.

Consider the map

L(p, 1)× S1 → L(p, 1)× S1

{pt} × α 7→ {pt} × αp

We perform surgery on L(p, 1) × S1: cut out the loop αp and glue in a disc (S2 ×D2)

in order to kill the corresponding generator

̂L(p, 1)× S1 := L(p, 1)× S1 − (S1 ×D3) ∪ S2 ×D2.

The resulting manifold has zero signature and Euler characteristic two. By the Seifert-

Van Kampen theorem, one concludes π1( ̂L(p, 1)× S1) = Zp⊕Zp and π1( ˜L(p, 1)× S1) = Zp.
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6.4 Botany

We now proceed to build a myriad of irreducible smooth structures on the topological

prototypes built above. From now on, we assume

π1( ̂L(q, 1)× S1) = Zq ⊕ Zq,

where q ≥ 3 is an odd integer. Regarding the lack of a unique smooth structure we have

the following result (Proposition 6.2 above).

Proposition 6.6. • For every k ≥ 2 integer, there exists an infinite family {Zn} of

irreducible pairwise nondiffeomorphic manifolds, all of them homeomorphic to

(2k − 1)(S2 × S2).

• For every k ≥ 1 integer, there exists an infinite family {Yn} of irreducible pairwise

nondiffeomorphic manifolds, all of them homeomorphic to

(2k − 1)(S2 × S2)# ˜L(p, 1)× S1.

• For every k ≥ 1 integer, there exists an infinite family {Wn} of irreducible pairwise

nondiffeomorphic manifolds, all of them homeomorphic to

(2k − 1)(S2 × S2)# ̂L(q, 1)× S1.

• For every k ≥ 2 integer, there exists an infinite family {Vn} of irreducible pairwise

nondiffeomorphic manifolds, all of them homeomorphic to

(2k)(S2 × S2)#S3 × S1.

In each of these families, one member is symplectic.

Proof. The infinite families {Zn}, {Yn}, {Wn} and {Vn} were constructed in Proposition 6.5

and Remark 6.2. We need to conclude on the homeomorphism types. The simply connected

case follows from Freedman’s theorem ([26]). The homeomorphism criteria for the manifolds

with π1 = Zp and π1 = Zq ⊕Zq is given by Hambleton-Kreck’s theorems in [33] (for a proof

of the fact d(π) = 1 for the noncyclic π1 case see [66]). The infinite cyclic fundamental

group case follows from Hambleton-Teichner’s result in [36].
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Chapter 7

Work in Progress: Project 2

7.1 Exotic smooth structures on CP2#CP2

Jonathan Yazinski and I are currently pursuing an idea which aims at proving the following.

Theorem 7.1. There exists an infinite family {Xn} of irreducible pairwise nondiffeomor-

phic 4-manifolds, all of them homeomoprhic to CP2#CP2
.

We wish to employ the techniques in [22]. At the moment, we are facing critical issues

when trying to determine that our construction is not diffeomorphic to the standard mani-

fold via Seiberg-Witten theory. We do believe, for several reasons and even if the initial goal

is not accomplished, that this idea is worth pursuing. We explain one interesting reason in

particular.

If we are indeed able to apply the full program of [22], a slight modification in our

construction results in the following

Corollary 7.2. There exists an infinite family {Cn} of irreducible pairwise nondiffeomor-

phic 4-manifolds, all of them homeomorphic to CP2#CP2
# ˜L(p, 1)× S1.

The block ˜L(p, 1)× S1 stands for the result of surgering the product of a Lens space

and a circle in such way that it has π1 = Zp, Euler characteristic two and zero signature.

By looking at the universal cover of these manifolds we conclude

Corollary 7.3. The manifold 3CP2#3CP2
admits an exotic smooth structure.

This is exciting work in progress.
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7.2 Raw Materials

We employ two building blocks. First, we consider an S2-bundle over a torus containing a

section of square 1 and a section of square -1. Call this manifold X. Our second building

block is the product of a torus and a genus 2 surface Y := T 2×Σ2 endowed with the product

symplectic form. The symplectic manifold Y contains a symplectic surface of genus 2 and

self-intersection zero {pt} × Σ2 which we denote by F .

Our model manifold is

M := X#Σ=FY ,

the fiber sum of the S2-bundle and Y along surfaces of genus 2. A direct calculation

shows that the Euler characteristic of M is 4 and its signature 0. We proceed to explain

how the required surface of genus 2 inside X is constructed.

7.2.1 A Genus 2 Surface inside the Bundle

We construct a genus 2 surface inside X by tubing two sections together. We proceed as

follows. Consider an involution σ on S2 whose fixed point set is S1. The bundle X contains

a section of square 1, T1, and a section of square -1, T−1.

Use the involution on the 2-sphere to specify an involution on X; in particular we have

σ(T1) = σ(T−1). Consider a path ξ in X which connects the sections T1 and T−1 and which

is invariant under σ. Now pick a tube contained in a neighborhood and glue T1 with T−1

with it. This results in a surface Σ of genus 2 and self-intersection 0. In particular notice

we have σ(Σ) = Σ.

Regarding the way the tubing is performed, notice one would like for it to produce the

desired representative for the computations of Section 3. Carefulness in doing so is required.

We have two choices for the tubing.

7.3 SW Computations/Issues

Our construction fits the recent procedure theme of [22]. However, unlike the recent con-

structions of exotic smooth structures, our model manifold is not symplectic. This forces
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the computations of the Seiberg-Witten invariants to be more involved.

For the full implementation of the techniques of [22], one wishes to see that our model

manifold has non-vanishing Seiberg-Witten invariants.

The key ingredient for this is Corollary 3.3 in [40]. In order to apply this result, we

need to use a Wall crossing formula argument on our building block X (the bundle), to see

that one of the chambers have non-vanishing invariants. We proceed to explain the issues

we are tangled in at the moment.

7.3.1 SW invariants of T 2 × Σ2

The Seiberg-Witten invariants of this building block have been computed following [51].

Viewing a Seiberg-Witten invariant as an element of the group ring Z
[
H2
(
T 2 × Σ2;Z

)]
,

we have that

SWT 2×Σ2
=
(
PD

[
T 2 × {∗}

]−1 − PD
[
T 2 × {∗}

])2

7.3.2 SW invariants of X

The bundle admits a metric of positive scalar curvature. We need to look at the chambers;

the one with small η will have vanishing invariant. We would like a general Wall-crossing

formula argument to conclude the non-triviality for the invariants of this building block.

A basis for H2(X) is given by {T1, T−1}. It is straight-forward to see that in this basis

[Σ] = [T1] + [T−1].

Now consider a fiber S2 of the bundle and, just to simplify notation, denote T := T1.

These surfaces provide us with a new basis for H2(X), {[T ], [S2]}. We claim that in this

new basis

[Σ] = 2[T ]− [S2].

Indeed, we can convert the first basis into the second one by using [Σ] · [T ] = [T ] · [T ] +

[T−1]·[T ] = 1+0 = 1 and [Σ]·[S2] = [T1]·[S2]+[T−1][S2] = 1+1 = 2. Thus, [Σ] = 2[T ]−[S2]
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as claimed.

We will apply the Wall-crossing formula to show that SWX(l1) 6= 0 in one of the cham-

bers. First we check that the manifold X does satisfy the required hypothesis.

In order to compute that SWX(l1) 6= 0, we need to compute the Σ∗-negative Seiberg-

Witten invariant, in the sense of [40]. Notice that the Seiberg-Witten invariants will vanish

in the chamber with generic η ≈ 0 and g, since X admits a metric of positive scalar curvature

[?]. We can compute that this chamber is the Σ∗-positive chamber, and so SWΣ
X(l1) 6= 0.

7.3.3 Tubing the sections and representatives

Tubing T1 and T−1 has to be done carefully, having in mind we would like to have [T1]+[T−1]

has the representative. One selection of tubing results in a sum of these homology classes

and other selection results in their difference. We are pursuing both paths.
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