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ABSTRACT

Consider a coubinuous function, F{a3§ Bos eve 5 8, X) of
n paremeters and 2 ¢ [0,1]. Such a function is said to have
Property NS if the following theorem is velid for every contimuous

function, £{x):
THEORTEM: Nw'wgu.gﬁym is o best approximation
to £(x) if and only if there sre n+1 distinct points,

- ‘ ves < ¥ <« e X3 H, ose o,
0gx, <x,< ney S 1 such thet Fla¥, ef, > %n’xg)

. = { i x4 s wan
f(xj) ?{a% ofs eeo 5 8% Xj+}} f{xééa)}
= 4+ max 5?(&* 85, «o0 5 8, x) - £{x)].
xel0,1]

Depending on the basic assumptions on F, several sets of neceasary
and sufficient conditions ere given for F 1o have Property NS,
These conditions involve uaisolvence and related concepts. The
definition of Property N8 is generaliged and necessary ené sufficlent
conditions on F are given for F +to heve this generaliszed
property. The latler theory includes most comuon noniinear

epproximating funciions.
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Let two real funciions £ end F be given suych that
= £{x} is o continuous function for x ¢ [0,1] eand
F = E(a}g aig eee 5 2%, %) 18 a continuous function of n
parameters end x ¢ [0,1). For simplicity of notation the point
2

1 N al ; . .
{a', 8, «vv , ﬁ} in Buclidean ne-space, aﬁy is dencted by a.

The domain of the parameters of F ig denoted by P, a subset

The mein problem in the theory of approximation of
comtimuous functions may be gtated ag follows: Determine a% ¢ P
g0 that the deviation of the funebtion Fle,x) from £{x) shall
be minimized, Naturelly one must define the deviation of Fla,x)
from £{x) and different definitions leed to different theories.

In this thesis the deviaticn of F{a,x) from £{x) is taken to

be max Fla,x) - £(x)|. 211 mexima and minima are taken
Xc{0,1]

over x ¢ [0,1] unless otherwise staied. F(e*,x) is said to be
& best spprowimation to f£lx) if mex|F(a¥®,x) - £(x)]| <
max|F{a,x) - £{x}| for all a ¢ P. The results of this thesis
remain valid if [0,1] 418 veplaced by any other closed and
bounded interval.

P, L. Tchebycheff [3], [15] was the first to study

approximations using this definition of the deviation and the
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resulting epproximations are called Tchebychefl epproximations.

0
Tehebycheff developed his theory extensively for F(a,x) = akxk
=0
e
and Fa,x) = (:E:,a;& WS e "1y Guring the pericd 1855
5ﬁ§+!

to 1890. He obltained results for specific examples of f£{x) ané
he also tresied genegal problems such ss the uniguencss and
characterization of best spproximations. The studies of
Tchebyeheff were continued iﬁ the early part of the 20th cenbury
by many mathematicians including &. N. Bernstein, E. Borel,

M. Fréchet, A. Hasr, P. Kirehberger, Ch. de la Vellée Poussin
and L. Tonelli. These methemsticians extended the theory in
various directions such as: epproximeticn in two varisbles [14],
approximation in complex variables [10], [1k], approximation on

a finite point set [11], the existence of best approximations [16],
the uniqueness of best approximetiocns [5], [16], approximetion by
trigonometric functions [9], [4].

By 1920 an elegant theory of Tchebycheflf approximation
had been developed for F(a,x) depending linearly on the parameters
(2], [12]. Some of the main points of this linesr theory are given
in the following resume,

Let T be a set of n functicns ﬁ (x}g Q (%), ooe ﬁ (%)

contimious on [0,1] and let Pla,x) = 2: at ﬁ {x) be called &

T
Tepolynomial. Pla,x) is said to be & non-irivial T-polynomial

i - . s 42
| >0. T is saié to be = Tehebycheff Set if every
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non~trivial polynomial has st most ne1 zeros. mex|F(a,x) - £{x)|
is said to gliernmabe n fimes if there ere n+l points

< Ky L ovee < <3 ¥ ) o= £{x.)
0gx, <xy <x . %1 such that Fla,x 3} £{ 5
= - E?{agxé+i) f(x$+%)} = + max|F{a,x) - £{x)]|. ALlternance is
g bagic concept in the theory of Tchebycheff spproximetions. The

following theorem answers the principal questionsof e genersl

nature in the theory of linesr Tchebycheff approximations.

THEOREM: Let T be a Tchebycheff sel and let £{x)
be an erbitrary function comtimucus on [0,1]. Then
2. £{x) possesses s best approximetion,

B. =2 necessary snd sufficient condition that ?{ag,x)

k4 % a
be a best approximeticn o £{x) dis that

mexc|P(a_,x) ~ £(x)] elterneies at least n times,
W
o

Ll Iygper e 4 4 &#f 2 2
C. the best epprozimat £ix) is wigue.
b R I B N | 2 y wk 3 3 g o
It would be desirsble to have an explicit method for

deternining best approximetions, bub none exists. Theorem B,
which characierizes best approximations, provides the principal
meens of attacking the actual approximation problem [8], [12],
{131,

It is netural to try to extend the theory to cases
where Fla,x) does not depend linearly on the peremeters.
Strangely enocugh 1ittle has been done in this direction except

that the syistence of beslt epgroximations had been shown for

large classes of non-linear F and the special case
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Ly g, 2 oK ene
Fla,x) = (3_ &% )/ E } had been treated by

linear technigues.

The first gtep towards a non-linesr theory wes made by
T. S. Motekin [7] who introduced the concept of unisolvence.
The interpolaticn problem for = family of functions consists in
determining a function of the family which sssumes erbiltrarily
pregsceribed values et n erbitrerily prescribed distinct velues
of % ¢ [0,;1]. An neparamster femily of functions is sald to
be unieolvent if ithe interpolation problem has a unigue solution
and if the parameters cheracteriging the sclution depend con-
tinuously on the polnts. The definitlon of unisclvence refers to
three indevendent propertles. These are the existence of a
golution to the interpolstion problem, the unigueness of this
solution and the copbtinuous dependence of the solution on the
deta, If F dig linear and P = gﬁ then these properiies are
equivalent. Notzkin noted that iIf the family of curves defined
by Pla,x) were unisolvent then results enslogous to A, B, €
held. The only other cccurrence of unisolvence in spproximation
theory is in connection with an elgorithm for best approximations
[9]. Unisclvence and releted concepte will play an important role
in thig theeis.

4

., . ..
The thesis will give some g

]

neral resulis on the
characterigation of best non-linesr Tchebyehefl approximations.
It will go further then to give conditions on F sufficient for

2

the generelization of the classical linear theory to be valid.
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Undler various basic assumptions on F, it will give criteria

which are both necessary and sufficient for the genersliszation of
Theorem B to hold.
A similar problem in the linear theory has been solved

z}; &
by A. Haar [6]. He has shown for Fla,x) mczz: ar @i{x) thet a
K=l

necegsary and sufficient condition on F for best approximestions
to be unique ie that ﬁ%(x)ﬁ géix); vee Qﬁ(x) form & Tchebycheff
set. This is tc say that s necessary and sufficient condition for
Theorem C to be valid is that %K{x}f ggiﬁ}j coe ﬁn(x) form a
Tehebycheffl set.

Let ¥ be a set of besic assumpiions on F. A
natural generalizetion of Theorem B is: Let F satisfly Y and
have Property X. Then the slternation of max|F{e®,x) - €{x)| at
least n times ie a necessary and sufficient condition for F(a®,x)
o be a best epproximation to £(x). The problem considered in
Chspter II is as follows: glvena set ¥ determine a Property X
which is both necessary and sufficient for this theorem to hold
for 211 £{x).

This problem is solved for thres sets of basic
essumptions on F. The first sel essentially assumes only that
F is continuous. The resulting Property X is guite complicated.
The second set mssumes thet the family of curves defined by F is
closed under pointwise convergence. The resuliing Property X is

very closely related to unisolvence. The third set assumes a



gtronger closure property for the faﬁily.uf curves defined by F.
The resuliing Property X is uniscolvence.

$leo given in Chapter II is a theorem from the field
of resl variebles which giates: a uniformly bounded infinite
set of continuous Dunctions which mubually intersect at most 2
times combains a poluntwise convergent seguence. In Theorems 5
and 6 results are obteined sgimilar to Haar's result with Theorem C
replaced by Theorens A and B.

In Chapter III the degree of unisolvence is Gefined as
a function of the verameters. F is sald (o be unlsolvent of
degree k gt a® ¢ P if F is unieolvent for all sels of k pointe
on the graph of Fla*,z), x ¢ [0,1]. The extension of Theorem B
is then taken to be: Let F satisly ¥ and have Property X. Then
8 necesgary snd sufficient condition that F{a¥%,x) be a best

spproximetion to E£{x) is that mex|F{a¥,x) - £{x)| salternates

)

agt ¥ times. Here X iz not sssumed 1o be a congtant.

A ke ot Vel ECH

b
it

i

The second set of conditions from Chepter II sve taken for ¥. It
is then shown theid Properity X is "unisolvence of degree k at  a¥n
end is both necessary and eufficient for this theorem to be valid
for g1l £{x). This theory is of great praciical interest and

includes wost common non-linear apmroximsting functions.



CHAPTER II

1. Euclidean n~dimensionsl space is dencied by Eﬂg
pointg in B o Ore denoted by e, b, oic. end the coordinstes of
a ere {aﬁg ae,.,, e 5 B). Curly breckets, { } , denote a set
and {:xi } is read as "the set of x such that ... ",
Sequences sre dGenoted by square brackets. A1l maxims and minima
are taken over x ¢ [0,1] unless otherwise stated.

The real funciion F = Fla,x) is defined for x ¢ [0,1]
and & ¢ P where P 1is a subset of E;E. F is contimuous in
the sense thet given a e Py X « [0,1] and e > O there g &

§ >0 such thet 2 ¢ P, x ¢ [0,1], la, - al + jx -x] < §

3

implies that %?(%3%} - Fla,x)] < e. It is ossumed that if

for some ¥ ¢ [0,1]. The range

&0 to be the set {{:&:ﬁ’{a;x})i % ¢ [0,1); & ¢ }?}

131 denote continucus funciions

The Tchebycheff Approximeticon Problem for s conbinuocus
function, £{x}), msy be stated es: Determine a¥% ¢ P such that
max|P{a*,x) - £{x)| < max|Fla,x) - £{x)] for a1l ac¢P. A
solution, Fle¥,x), to the epprowimation problem is called a best
approximation to  £{x).

The concept of "alternance” plays a major role in the
clageical theory of Tchebycheff approximation developed for

polynomisls and Tchebycheff sets. The aim of this chapler is o
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siudy "elternance” in more genersl situatlions and to cheracterize

it there. The following definitions are required.

DEFINITION 1: mex|F{e¥,x) - £{z)| is said to alternate k

times if there are kel points 0 S x, <x, < oo <y £,

= + mex|F(a®,x) - £(x)|, If mex|P(a®,x) - £(x}] alternaies

such theat F{a%xé) i‘{x} ~{Fla*, s
k times but not k+1 times then max|Fla®,x) - £{x)| is

said to slternete exacily k itimes.

DEFINITION 2: F hes Properiy N if for every continuous
£(x), the alternsnce n times of mex|F(a*,x) - £{x)| is
8 necessery condition for Fle¥,x) 1o be 2 best approximstion

to  £lx).

DEFINTPION 3¢ F has Property S if for every continuous

£(x), the alternsnce n times of mex|F(e%®,x) - £{x)] is a
sufficient condition for F(a¥*,x) to be a best epproximation

o £{x).
DEFINITION 4 F has Property NS if F has both Property N
and Property S.

From the last definition it ig seen that the problem of character-

izing "alternance’ is the problem of characterigzing Properly NS.
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2., The two properties neef@ed to characterize
Property NS sre given in Definitions 5 and 6.

DEFINITION 5: F has Property Z of degree k if a # a®
implies that F(a,x) - Fle*,x) has ai most k-1 geros
in [0,1].

The phrase "of degree k" is omitted if k = n is understocod.

DEFINITION 6: ¥ has Property A if given a% ¢ P,

{xj{OaxO-{:{ <o <% z%} and ¢ with

1

| 1 _ c o
G<€’<22ﬁ§1'1 {K}ﬂ xj)g J m@ﬁ lg eve g }.‘; t&}len

i) there are ey, 8, & P such thet for x e [0,1]
Fla#;x) = ¢ < ?(a%,x} < Fla*,x) < E{aegx} < Fla*,x)+ ¢

ii) there ere 8., 8y ¢ P such that %F{aB,x}wFia%,xH%9

%3
i%"{aw}:) - Flar,x}| < ¢ for x ¢ [0,1] and

F{ayx) - Fla¥,x), F(awx) « F{a#,x) change sign from
b4 I e o Z?*ig + ¢, and have no zeros ocutside

{KJ = &3 Xj L 2 @Eﬁ j @ 1g 2; s60 g k. Further F(ﬁS;G)
:3" F{a%?i}} g Féaw(}).

The first theorvem cheracterizing Property NS can now
be stalted.

THEOREM 1: F has Property NS if and only if ¥ has
Property & and Property 2.

The proof of Theorem 1 follows from a series of fouwr lemmas,

LERMA 1 If F has Property A them F has Property H.



w 1{J =

PROOF:  fosume that F  has Property & byl doss not
have Property N, i.e., Fla*,x) ig o best approximetion to £{x)
and max|P(e¥,x) - £{x)] does not siternste n times, If
max |F{a*,x) - £{x)| does not alternste al &ll, let x, be a point
where |Pla®,x) - £{x)| assumes its meximm. BSay F{a%x b»ﬁ{:- >0,

then by 1) of Definition 5 there i an &, ¢ P so that

£,

=

O < Fla%,x) - ?{%gx? < e. Por ¢ sufficiently smell it is seen
thet E’{aggx} is a better approximetion to £{x) than F(a®,x).

Hence max|F{e*,x) - £{x}] mst a1

£y

ternete at least once if F
hag Property A,

The interval [0,1] may be éivided into £ subintervals
by O=3x < <o <xpo=i, P<u so that 1) ?{a%ﬁf:j}
P 1, 2 eee y, -1 mnd 11) max|P{e®,x)-f{x

alternates exactly once on any two adjacent subintervals but

does not altarneie in any one subliniery
= min{Fla®,z) - £{x}} with the mexrimm znd minimum teken over

there is su iuberval (X, - €., ¥, + ¢,} such thet in this interval

€
[F(e#,x) - £(x)] < | max|P(e%,x) - £(x)]. Let ¢ = min(e, peees€ pys
Va? =*o 5 D poye % wex|F{e*,x) - £{x)]) end determine a ¢ P

by ii) of Definition  so that F{a,xz) - Fla®,x) chenges sign from
ey d=m 1, 2 eee 5 £ -1 with max|F{a¥,x)-Fla,x)]

'

% ¢. FPwibher choose the glgn of Fla

:P

%,0) - F{a,0) so that

IF(a®,x) - £{x)] > IF{a,x) - £{x)] i (0, X, = e); the same



inequality will then hold outside of Exém ey Xyt el 3= 1,800, f =10
Fla,x) 1is a better epproximetion to £(x) than F(a¥,x) which
contradicts the assumption and proves the lemma.

LESA 23 If F bhas Property Z then F has Properiy S.

PROOF: Asscume that mex|Fla*,x)- £{x)| elternates n times
end that there is an @ ¢ P such that max!Fla, x) - £{x)|
< mex|Fle*,x) - £(x)]. Let (Xeiﬁ = 1, 825 eee 5 Dty X, <X, }
o J J+1
be & set of pointe in [0,1] such that %‘{a@%’ng) - £{x.)
= - (F{a%?xi '_%) - ﬁ’(xh})} = + max|F{a*,x) - £{x)|. Then

sga{?(a‘%' ) - Fa, 53)) - sgn{Fla*,x, E(a, )) which

*5
implies that F(e*,x) -~ F(a,x) has at least n zeros conitradicting

g M
Property 2.

LEAA 33 If F hes Property NS then F has Properiy Z.
PROOF: Assume that F has Properiy NS and that there are a,
a% ¢ P such that F{a,x) - Fla%,x) has n or mwre zeros. Let

Mlx) = § [Fla,x) + Pla®,x}]; N = f} max|F{a,x) - Fla*,x)| end let

0gx <x, <o <x < 1 be n points where Fla,x)-Fla¥,x) =0

along with ope point where Fla,x) - Fla®,x) # 0, say Fla¥,x )

> Fla for coneretentds. et S = 1 min 4 ou g¥ o
F{ ‘aXEB nNess S (X,‘ ,X2 13b L4 9}{21'%’1 ;{ﬁﬁ

; oF 1 = o omitted if they are gerc. A funciion

4

%wgﬂﬁ) with x
£{x) continuous on [0,1] will be defined as follows: £{x) = M(x)
in the intervals Ex§ + Sg:x:j «S}, J= 1, 8 s 5 1

£(x) =u(x) in [0, x, =51 ir x, > 0; £(x) = (x) in
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[x,,, + §,1]1 if x_ . <1; in the remaining intervals £(x)

i
satisfies f(xj) = F(aﬁ,xg) + (n's)j”“ {%) and |Fle,x)-2{x)]

<3l |nerx) - o] <3 for fx, .

Now max|Pla*,x) - £{x)] alternates exactly n times end
mex|Fla,x) - £{x)] alternates exactly n-2 times. By Property S
Fla*,x) is a best approximation to f£(x) and since mex|F(a,x)-(x)|
= max|Fla®,x) - £(x)| so is F(e,x). This contradicts Property N

and proves the leumma.
LEMA B¢ If F has Property NS then F  has Property A.

2 00F : { g = < 3 ces & ¥ =
PROOF: Let &% ¢ P, {xéfﬁ X, ;.gﬁii < 41 ’i’}

‘,Vj:; n=-1 and e  be given with 0 < g < % gﬁn{x§+.§»g§)g
, 3 3

J=0,1, ¢oe 3 £ « A consiruction showing the existence of 8,
of Definition 5 will be described, the existence of 8,5 8, and
a) follow by similer constructioms. A function £{x) will be
defined as follows: £{x) is continmuous on [0,1]; in

ixc}’ e, X =el; J2 1,2 eee , f-1, £(x) = F(a%aﬂ)'?(“})'}%?(%)y

NEN
end £(x) 4is linear in each of the remaining intervals. Since
max|F(a*,x) ~ £{x)| elternates at most f times, Fla®,x) is not
a best approximetion to £{x) by Property H. Henmce there is an

8, ¢ P which is a better spproximetion to £(x) than F{a¥,x).

3
This implies that w}?(ayx) - Pla#,x)| < %Q . Further

?(a?},,x) - £{a*,x) has no zeros outside of the intervals [x joesx j+€~2§ s
J =1, 2, eoe , # and elternstes in sign from Xy - e to X5+

33132; ""3’P'



It is ¢lesr that Theorem 1 follows from these four

lewmas,
& @ifficult problem associasted with thie theorem is the
problem of possible improvement. It is difficult to lmow whether

there ig some other properity, apparently simpler or more regirictive,

which, along with Property Z, is equiveleni io Property NS. The

following example shows thet 1t is unlikely that Theorem 1 can be

improved upon in this sense, This example shows that there exisis

a one perameter function F  with Properiy HS which is unlikely to

satisfy eny set of conditiocns simpler than those given for Property A.
Let the number p be of the form e/ﬁ where o is odd,

Then the index mip) of p is defined to be m., The multiplication

of a set P of real numbers by & consten é, a ig defined by

apP = ap}pz:?} ené p + aP means {@«é«&pi peP}‘

Let P, = {;g; 2‘“5§,§ =1, 2 e U {o}.p, 15 definea

recursively from Pz -

2+
2+n(p) , ?

as follows: let p e B -1 and fomathe
set p + ‘P‘i /2 :3’.5 defined to be ithe union of all such sets

for p ez?kﬂ. et P o= :&J ?,. It may be shown that P is a
=1

nowhere dense counbable sget,

P is taken as the peremeter space of F with Fla,x) = &
for a ¢ P. Dvery point of P is the limit from both the left
and right of points in P, giving F Property A. Hence F g0
defined has Property A, Property Z end Property NS.
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3. With further assumptions on the function F  a much
simpler end more elegant characterizetion of Property NS may be
given. As 2 preliminery a theorem in the £ield of Real Variables

is proved, e theorem of some interest in itselfl.

THEOREM 2: Let {£(x)} e e wniformly bounded
infinite set of funmections continuous on [0,1] with
Property Z. Then { £ m{l‘&}} conteins a pointwise

convergent subsequence.

The proof is broken inte four perte. In the following when a
seguence of functions is ché:)sen whose function values converge at
a particuler point, 1t will alweys be chosen so that the convergence
is monotonie at that point '

LEAA 5: Let {f&{x)} be & uniformly bowunded infinite

get of funetions contimuous on [0,1] which sre mubtuslly

e oo e
%

CE3- LN ST

bﬂs

contains a pointwise

convergent segquence.

PROOF: Consider { f&(O)} which is a bounded set of real
numbers and hence conteing e convergent monolonic seguence
{f};‘(ﬁ)lk = 1, 2, wes }. Since {i‘k(O)E is monotonic so ig
[£,{x)] monctonic for every % ¢ [0,1]. Since (£, (x)] is

boundedl it follows that E%{x)} is convergent for every x ¢ [0,1].
9
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LEWA 5 Let {fmixi'} be s uniformly bounded infinite
set of funetions combinuous on [0,1] with Property & of
degree 1. Then {f&{x)} contains a pointwise convergent

sequence.

PROOF: For simplicity the sequences f, iix), fgfix) 5 see
and gﬁ;uix)ﬁ gg‘p{z)g ... ove denoted by Fp and Gp and their
limits et x are denoted by FJ‘,(X} and G*(x) i€ these limits
exist and if Fp, Gp eave monotonic at x. F, C G_? will be
used to indicate that F y: is a submaguence of G 3 with the order
proserved.

Choose o sequence F_ from f@{x)} such that FQ(G)
end F‘O{%} exist., If F_ is increasing at both O and 1 or
decreasing at both points then the functions of {f}, @(3{}} msh
be matuelly non-intersecting end Lemme 5 stabtes thatl E‘G is a point-
wigse convergent sequence.

e FG converges in opposite directions at O end 1, then
choose F, Cr . euch shet F, if}é) existe. The direction of
convergence of F, ot ¥ =% mst agree with the direction of
convergence of Fi at either O or 1. Hence a subsegquence f_%,gC_ F

mey be chosen which is pointwise convergent in an dnterwvel of length

+ as in Lemma 5.
Choose FEC G, ®o that F, converges at the midpoint

of the remaining interval, Agein the direction of convergence of
E“g at the midpoint must agree with the direcition of convergence
of ?2 at one of the endpoints. As in Lemms 5 there is a
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subsequence G,(C F, which is pointwise comvergeni except in an
interval of length -g; .

In this way an infinite number @:f subseguences
G, 28,720 :‘3@? D crr wmay be found where T p is pointwise
convergent except possibly in en interval of length 2 - o The
disgomel sequence of this sequence of seduences may be formed and
it converges at ell points of [0,1] with possibly one exception.
In case the disgonal sequence feils Lo converge at one point then

a further subsequence is chwsgen that converges there elso.

Lmais 72 Let  {£ (x)} be e uniformly bounded infinite
set of functions conbinuous on {C,1] with Properiy Z and such
that for every % e L0,1], every monotonic infinite sequence

£rom {f&(:{}} is monotonic decressing. Then { f&@i)}

contains a pointwise convergent sequence.

FROOF: The p

proof 18 by induetion on the degree of
Property 2. The Lemme hag been established for n =0 and n = 1,
It will be shown that if the lemma is true for Properiy 2 of

e

degree k then it is true Lfur Property Z of degree k+2.

Select a sequence F_ from {i‘mix)} which converges

%
at % = 0, ‘é‘*; o F is monotonically decreasing al these points.
The assertion ls now mede that F o either has e subseguence which

&

- 1 . .
ig convergenmt in [0, g} or one which is convergent in {:}3,1 i.
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H

Assume that theve ls no convergenld subsequence in

el

5

[z, 1], Then there is an X, € [%ﬁ 11 such that 5'0{2;3) doas

not exist. Choose subsequences F‘%CF@ R i:%?c: F o gsuch that
F%(}%) < %’E?{}zi}. For some X, fk%,i(:gq) < ﬁf%{x%) and therefore

there is a subseguence H C G such that every function of .Ei‘}

intersects £ ﬁi:&:} in é“;;yx) and (*‘:?,}3)
H, does not converge in E 5 1} and hence there is an

%y, sy in [x,,1], such thet H (x)) does not exist. Choose
F,CH,, G,CH, such that Folz,) < Gg{g{g}, hgain for some

X, fkézgixg) < ﬁaiﬁg) and hence there i1s a subsequence HECGE

such that every funciion of H, intersects £, ,{x) in {}{1 }x‘?)
En B e e
e
and (xgﬂ).
In this way en infinite sequence F¥ = Y(y)% 21,2500,

? / {x) ¢ ‘P}? is obiained such that every member ai‘ this sequence

intersects every other member at least twice in [= 31] Therefore

» . Then S . conen e VPR ST A S S
» d FY 488 rPORETYY 4 UL HECE £ L LIGUCTLION 4YyDPO
2 13

& L3 & ‘3 2 & L4
is applied in [0, 2] 1o obtein a pointwise convergent sub-
sequence ¥ C Fg .

It hes thus been shown that there is & ssouence Gﬁ
1

from { fﬁ(x}} vhich converges in an interval of length 7.
The enmtire construction is now repesied o @bﬁaﬁ.ﬁ G%%CG%‘ which
converges in half of the remaining intervel., Continuing in ﬁm
way & sequence of sequences ng@? ¢ce  1ig obtained which
converge except in intervals of length %ﬁ zg sse o The diegonal

processe is used as in Lemoe 6 1o obtain a subsequence which is

pointwise convergent in [0,1].
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It is clear that this lemma is also true when decreasing

is repleced by increasing.

PROOF OF THEOREM 2: The proof is by induction. The
induction hypothesie is that the theorem is true for Property Z of
degree k. For k = 0 the theorem follows from Lemmas 5 and 6.

It is assumed that (f@(x}} has Property 7 of degree
k+1. If there is a subset of { f’%{x)} satisfying the assumptions
of Lemma 7 the proof 1s complete. If there 18 no gsuch subset then
there is & sequence F@ £rom {fﬁﬁx)} which has opposite

divections of comvergence at two points, x, end x,. Let A be
i

i
the set of points in [0,1] such that all subsequences of F e
monotonic decreasing or all are monotonic increasing at these pointe.
4 is nom-voild gince it contains %, and Xy ir A #£[0,1] then
x, may be chosen in A end x) not in & such that §;:3 - x|

is arbitrarily smell. If A = [0,1] then A may be divided imto
cne with all increasing subsequences and one with
zll Gecreasing subsequences., Then x3 may be chosen in the first
set end ¥, in the second so that 53{3 - :{aﬂ is erbitrarily small.
In either case there i & subsequence EE‘C. F, end Xy Xy € {0,1]

F., has opposite directions of convergence

such that x, < X,

3 &4 1
b X g0 " has length les s 4 1
ab g and %y, and EXEQ%‘} ngtl less then 5 e

Since every member of F.g intergects every other member of

F, et least cnce in ?}239 %,3 , in each of the inmtervals EG,;{SE

1

and [x &,12 F., hes Property 2 of degree k. By the induction

1
hypothesis there is a subseguence F_ (T E".i which coaverges point-

wise in these intervala,
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Ir Fg gatigfies the assumpiions of Lemma 7 in
Exg,th the proof is complete. If not, & repetition of the above
srgument shows thet there is a subsequence ?3(:153 which converges
outeide of {x§;x6§ where the length of Exﬁgxéﬁ is less than '%s

This process i repested to obtain an infinite muwber of
sequences %‘?DFED'“ Dﬂ,:‘: °es  where ii, is pointwise
convergent except in an interval of length less than 2"’F. The
dlegonal sequence may be taken as in Lemms 6 to cbtain a point-

wige convergent sequence in [0,1].

h, The sssumptions on F with regard to the dependence
of F(a,x) on & have so far been rather weak. In cases of general
interest F patisfies much more stringent conditions. These conditions
sre 1) a closure property of some kind for ithe family of functions
defined by F and ii) s regularity property for P. Two such
conditions ere exactly defined in the following

DEFINITION 7: F 4is said to be closed if P is commectied
end 1f F is closed under pointwise limits, i.e.,
lim F(ak,x) = 0{x) with (x, ¢{(x)) ¢ B implies thst
) g
there is an & ¢ P such that lim g, =2 and hence
o W» ]

?(a@ix) = G{x).

The eim of this section is to cheracterize Property NS with the

additionsl sscumption of closure em F.
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If P is 8 commected set then R is seen 10 be a
perticulerly simple region. Let L{x) = {(x,,?{aﬁx))!a e P} .
Since F ig contimious end P is commecied L(x) is a line
segment and R = %{}’ ) Li{x). Let LG(}{) be the interior of L{x)

xel0,

in the one dimensional topology end let R = U L G(x),
xef{0,1]

LBsA 8: If P is connected snd F  has Property NS then
given & % ¢ P there is an ¢ » Q0 such that

{z, Fla*,x) & ¢) ¢ R, for all x,

FROOF: Since F has Property MS,by Theorem 1 F has
Property A. By i) of Property & there ave a,, 8, ¢ P such that
%‘éa%ﬁx} < Pla¥,x) < E‘f{aggx}. Let ¢, = zzﬁ.a%?{a], x) - Fla*,x)],
¢, = min|P(ayx) - Fle¥,x)| and c = §minlc,, c,). Since P
is comnected it is clear that (x, Fla®,x) + ¢) « R, for ell x.

The following properity will be used in the chersciler-

ization of Property NS.

DEFINITION 8: F i sald to be locally solvent if given
Ogx, <x, < 0 <x <1, 8% P and ¢ >0 there is a

$ (a*, ¢, Xys Kps eee s :{n) >0 such that Qyj - F(a“ﬁ’ng)kg
implies the existence of a solution a ¢ P to F(aﬁxé) =¥y
with max|F(a,z) - Fla¥,x)| < e.

DEFINITION 9: F iz seid to be locally unisolvent if F

is locally solvent and has Property Z.



LESA 9 If P is comnecied end F is locally unisolvent

then R = Rﬁ.

PROOF: Assume that (x@,yé) £ B, with y_ = F{aﬁgxa).
By the local solvence of F there is a Saiaﬁ,xg, cee } >0
end 8,, &, ¢ P such thel F(a1,xg§ = F{a%ggg} + '% éaaﬂ
F{ag}xﬁ) = F{a%,xg} - % 5’® . This ig a contradiction and proves
the lemmna.
The purpose of Lemma 9 is to show that Property NS
and local unisolvence each imply that B = EQ if P is connected.
A zero %, of £{z) is seid to be & simple zero if
£{x) changes sign at x end a double gero if £{x) does not
chenge sign at X The following le shows that if F is
locally unisolvent then Properiy 7 is valild couniting the ﬁmltipiiéity

of 2ercg.

cannct have more than n-1 zeros counting multipliclties.

PROOF: Let {z§§3 = 1y, 85 wee 3 k} be the set of geros

of Fle,x) - Fla¥,x). Assume, for concretenses, that x, is a

double zerc and Fla,x) - Fla¥,x) » 0 near = . Since F is

?Q

locally solvent there is an a, ¢ P sueh that F{a?ng} = F(a;xj)

1
J A1, Fla,x) < F{aﬁxié and max!?{aigx) - fla,x)| <e. For e
suffielemsly amall it is clear that 1) {lel;- =2, 3y ene K}
are geros of F(a1,x§ - Fla#,x) ii) every double zero of

Pla,x) -~ Fle*,x) is either a double zerc of F(a?,x) ~ Fla%,x)
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or has been replaced by two simple zerog., 1ii) F(a1gx) - Pla®,x)

hag two simple zeros near X Hence, counting mulitiplicities,the

1*
number of geros of F{aj,x} - Fla*,x} is the seme as the number
of zercs of F(a,z) « Fla*,x). Thieg process is contimued to obtain

& <P such that F(axﬁx} - F{a*,x) has 21l simple zeros and the

number of zeros of F{am;x} - Fla*,x) and Fla,x) - Fla®,x) is

the same counting mulitiplicities. This completes the proof.

v

Property NS can now be charecterized by

THEOREM 33 IP F 4 closed then locol waisclvence is g

necessary ané sufficient condition for F  to have Property NS.

The fact that ¥ 1s closed leads to the following stronger

form of Lemma &.

LM 11 Let F be closed and have Property NS. Then

given a¥* ¢ P; ¢ » 0 and & get {kj!$mxw <x, <0 < %,

]
< Riny = 1; B < ﬂ} there are 8,5 8,5 ¢ P so that
i) Fla#,x) - F(aiyxﬁﬁ Fla®,x) - F(ag,x} change sign at

%h@ b4 F] j = 15 g} ﬁt;’ P }.{ ﬁilﬂ a’t noe G”@‘I@i’“ Wiﬂﬁs.

5
i1) |F(e,,x) - Flat,x)| S e, |Flay,n) - Fla#,x)| S ¢

ii1) either F(a ,x) - Fle*,x) = 0, %{aa,x) - Fla¥,x) = 0

or sga[Fle,,x) ~ Fle*,x}] = - sgnlFle,,x) - Fla®,x)].

FROOF: The proof is given for a,, vhe proof for a

gﬁ
follows in the same way. By Lemma 8§ it is possible to take ¢

1

amall enough that (x, Fle¥,x) ¢ ¢) ¢ R, for all x. Let

1 [ :
< <+ i - Ker eee - -
’Po g‘mla(xlg Xy = Xqs s Xy = By gy ] xk) where x

1



or ‘ska is omitted if they are zero. A seguence of functions

{f:?(li);} =P £ *#1; ves 1 will be defined so that ii:P{
contimous in [0,1]; in the intervals §,x3 + % -}v},
§ =2, 3, ses 5 k-1, f}(? = Fla#,x) + {~ ‘zw &5 :‘iﬁ“ x
gp(x) = Flat,z) + £ 1 [0, x, -}H, ® ox <1,

ﬁ.}iﬁz} = Fla®,x) + {‘»3) ;, in E.&fwﬂ, { e} 4 is linesr in each of

1

the remeining intervels. F{a*,x) is not a best approximation
to any Q}(:&)} for max|F{a%,x) - f},{x)i slternates al most k times.
fowever it will be showmn wa“%: there isa b € P such that
F{%gx) is a best spproximation to f‘?(x)‘

Consider & sequence {F{b q;x)f:’i =1, 8, «se | for which

:’;:ims;h( ;x} avfﬁ(‘z} ﬁ m!?(a,x} - fﬁp%‘X} {F(E} .,K)}

forms s bounded infinite set of contimmous fmatizms. This sei has
Property Z by Lemma 3. ﬁworem 2 may be applied to extract a
convergent subsequence of iF{b ,x)} By the closure of P the
gubsequence has a limit, E’i%}‘?,x) , which is e best approximation
to ij?(x).

In the seme way {F(b‘g,,x)ﬁ,? = £ 'Pa”i’ coe ] has s
linit Fla,,x). Cleerly 0% [Fla,x) - Fs#,2)] (-1)9 < (-1) ¢
in {x, ngﬂ}ﬁ J=0, 1,2 «., k If 2, £ &% then it is seen
thet %‘{aa,x) - F{a%,z) changes sign at the Iy =212, ses 5 &
and novhere else.

It remains to be shown that s, # a%. Since

méﬁ‘{b*,x) - f.:ff’i{)% alternates n times, QF(/?’X} - Fla®,x)}|> %.
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By the closure of ¥ lim %;j?m a,. Since max|Fla,x) ~ Flak,x)|

e

is a continuous funchtion of a it follows that }:@m max |F{bp ,x)
%
~ Fla#,x)| = mex|Flag,x) - Flew,x)| z_% end 8, # a¥.

DEFINITION 10: Fla,x) is said to be between F(a1 sX)  and
Fla,,z) if IF(aﬁX) ~ Fla,x)| + |Pa,x) - %‘{agi,x)i

= §F{aﬁx} - I%”"{aggx}% for a1l x e [0,1].

LEAA 120 Let F(aw:\z} - F(agﬁz) @%&éﬁg@ sign et n-1 distinet
points and let }?(agggﬁ) # Fiaggxo); i€ F is closed and hag
Property NS then gi&f@@ y between E{.ﬁ? q 0} and P( 8, 535:0}
there is an a ¢ P such that E*‘(a,x@} =y and Fla,x) is

between F{awx) g '?‘(aaﬁzﬁ).

PROOF: Since F . r;es Property NS it follows from Lemme 3
that F has Property % aﬁélh@ﬁwe E‘{a.t %) - i%‘(ag,,x} has exactly
n-1 Zeros. | | |

For eamf@mﬁ%fsfé assume F(a? ﬁ%}, > F{ag 3}:0} and let
I= {ﬁ&yxc), Fia.ﬁ:ﬁﬁ&)} and A be the subset of I for which
the lemms io true. |

It will now be shown thet & is a closed set, Leb
€y§!§ = 1,2, o0, ¥y € Eé.saa given with Bﬁi Yy =Ty
Corresponding  to 5;933; there is a s@qu&mea i{?{ayx)iig‘{a j,xﬁ)m%}
of functions between ?{ag-;x} and F{agg;?;:;‘ Theorem 2 is epplicable
to this sequence and hence [F(a j,x)l has & polintwise eonvergent
pubsequence. Since F  is closed this subsequence hes a limit

Fla,x) end Pla,x ) =y, which implies y_ c A.
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It will now be shown that I - A is empiy. I - A is
an open gset. If I -4 18 not emply it conteins en open interval

(y@;yz) with y_,¥, ¢ &, Since y_ e A there isan 8, ¢ P s0

3
that ?‘{ay:ﬁg) =y, end Fiasgx) is between ?(aj,x) and F(ag,x}.
By Lemma 11 there is an @) ¢ P such that E‘{awx} is between
E(avﬁ) and Fiaggsz) end ¥, ﬁ“ﬁ’(aw%} <y This contradicts

the existence of an open interval in I « A and A = I.

LEMA 13: 12 F is closed and hes Property NS then F is

locally solvent.

PROOF: The gzﬁa}ﬁi‘ ie conducted by an induction argument.
The stetement to be verified by induction ig: Let a¥ ¢ P, ¢ > 0
and & set {xgii} S, <xy<ee <x < 3} be given. Then there
isa §lat, e k, ::55 > 0 such that E;;;J - F{a*,x
J= 1, B, evs 5, k& implies that there ig an 1 a e P such that
)

F{f_g;{«j} = ::;::.5 ‘E o ai; f{iy L R k; g?ia;‘a}:} hed g{a‘;}.& g e{‘: & &zﬁd

X «
J

Fla,x.) = F{a‘%xﬁ}g S = kY, ees , n. The induction is om k
J

and for %k = n the stztement dpmplies that F iz locally solvent.

For Lk = 1 this stetement will be established from Lemmas

11 and 12, lLet E"(aa s2) and Pla,,x) be determined by Lemma 11
8 [

i
f

so that %‘{a,§,§§§§ s Fla,,x,) = Fle®, x.), § =2, 3y «oo 5 B;

29"
%%‘ia%;x} - Flat,x)| < ¢, 5?52&2
> Fla¥,x,) > F{&E}KE}‘ Since %“iaw %}, %‘(aﬁg %) intersect at

n-1 points it is not possibdle that Flex;) = Fle¥,x,) or
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F{aapxi) = F(gfég;{%}. Taxe §(a%, ¢, 1, xj) = ﬁiﬂ(i?{aw:ﬁ??
- ?(a%,x,iéﬁ 5 51%‘(&29%) - Féa%,:x; 1) end the stetement follows
for k=1 by i.eﬁm 12,

In order to proceed with the genersal induction etep some
auxiliery facis will be osteblished. Let 7 o= (yi s y:g, ces s 3;!%
be @ polnt in E  and let A = {3}; 1:;:3‘ - Fiaﬁ*ﬁxé)i < g(aﬁ';eﬁkﬁ’j);
L= 1, 2, aee 1;} . Define two subsets, P.(§) and P (F),
of P ag follows: |Fla,x) - Flat,x)] <e¢ for a e P,gif,?)?

8 ¢ Py(5); Fla,xy) = ¥, 3=18 e,k 8 P(F); & ¢ Po(F)s
§{a$3-> F(Wf}% Js J = %2, 0o , 1, 8¢ P { )y 2 e P (y);

yiaﬁf‘}; 3§ > Fla® s, }.ﬁ‘ g2¢ebP (uw F(ajl%a&%} < Fla*,x )9 acekh i.f}
et § () = suwp _ (Fle,z, ) - B g».a),ﬂ)m
ot &4y aig?:@} Bo%100y 814470290 0\ \

sup (E&’{ag%xkﬂ} - E’_{aﬂ?ﬁﬂ)}u It follows from Lemma 11 that
a»é?g(éf’) ‘ '

P,(3) end P (§) eare non-empty and thet 53(5}} >0, 52(5?) > 0.

Fe,(7),X)
"F(Q*,x)
%4 . F(a(7), X)
gz(Y} - F(q )ix)

Xig) Kewy === Xu
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It will now be shown that for any S}Q ¢ & there is a
neighborhood, N(¥ 0)3, of §G such that ¥ ¢ N,(g‘rG} implies
51(:?} g% 5%{5}@)‘ There is an a, ¢ szi’?@) such that
Fla, %, ) = Flet,x ) + 1 £.(5,). Hence by the induction state-
ment applied to F(ayﬂ) there is a 5 {a?,"[, X, X, } >0 asuch

that for every ¥ with ”"‘j y‘ji < S there is en Fla,x) so0

that 1) Fla,2,) = 9%, J =1, 2, vee , k  ii) F{a,:{j) = Fla,x,)
W
e F(@%ﬁzzjjﬁ j o k‘%‘gg s g 33;3 la—:‘h) Fia; }{?3) = F{&i”glﬁ-?)

2 Flar,x,, ) + =-~ 5 (¥ ). Further |F(a,x) - Fa,,x)] < 1

end for '{ sufficiently smell |Fle,z) - Fla#,x)| < ¢. Hence SO
defines a neighborhood, N(S}@) so that for every point ¥ of
M(§G) 'i:,hém isen 8¢ .%?{:;’) with Fla,z_ .} > Fiaﬁ%,&ﬁﬂ)

1 -
+ 3 5353?;3).

Bl

It will now be shown that S }{Sé) is bounded away from
zero for ¥ ¢ A. A i3 a compact set whieh has en open covering by
neighborhoods, (N{ s“;} » Hemee A hes a finite covering
MF,), oo s NF,) and a§<z‘;~> > L minl £,65,0,8 (5p)seees &G
= gi > 0. A similer ergument shows that gg{:'}) > 52 > 0,

The penereal induction step can now be mede with the
preceding construction snd Lemme 12, For X > 1 take

s 1 - s
S(a%; g, Btl, Xj} = mﬁi"é 533 2 g;_;: g(ﬁ’*; €, K, 5?’:5)3’ Given

any set {ygij = 1, 25 sse s kﬂ,!?ia’é‘v,xg} - 33"53 < j{a%,efkﬂ,xé)}
then there are =a,,8, ¢ P such that i) z&’(a} ,,x;g} = F(agﬁzg)wj s

J=1,2 v,k i1) Fla,x, ) 2Fletx, )+ g(a%,e,m,xé},
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Flay, x,,) S Fla®,x, ) -'5 (a%; ) 1, x,)5 3dd) Flay,x,)

= ?(Q.E,Xj) = F(a'g',xj)’ j =& g"{":ﬁy ves 9 fia 3 3?-‘:1?} iFﬁ:ﬁig}i} - F(aﬂﬁgx}i'ﬁ%g

i?{azg;c) - Fla*,x)| € ¢. By Lemma 12 there is an a
‘ ok

Flagi 1) =y

This concludes the Induction step and it follows from the induction

3 e P such that

snd ?{aa,,x} is between F{alﬁx) and F’(ag,x).

statement for k =n thet F 1is locally soclvent.

LA 1h: If F is closed and locally unisclvent them F

has Properiy N.

PROOF: Assume that max|F{a*,x) - £{x)| alternates exscily k
times, k < n. It will be shown that F(e*,x) cannot be e best
epproximation to  £{x).

1 mex|F{e*,x) -~ £{x)| is not sssumed at both O and 1
then one of the imtervels [0, $ 1; {?»Sf‘il; say {9,53 for concrete-
ness, is chosen with & determined so that for x e {0, S] and some
¢, > 0, we have [F(a®,x) - £(x)} < max|F{e®,x) - £{x)] - € e Let
Osx <x o <X 4.0 <oe<x =1 divide [0,1] into k1
subintervals so that i) F(a%,xé) - i’(xé} =0, § = nek, D=M+1,000,0=1;
i1) max|Fla%,x) - £{x)| alternates exactly once in eny two adjacent
subintervals but does not elternete in eny one subinterval., Choose
n-k-1 distinet points, {le,j =1, 2, see ; Bok=1, X5 < xﬁﬂ}, in
(0,81, Let ay = max(F(a*,x) - £(x)) - min(F(a?,x) - £(x)) with the
maximm and miniman teken over ixj,xéﬂh J = 0=kel; 0=k, ees , D=1,

2
aﬂﬁ» e = m(?nﬂk"" eee ?{ n_*} ';}2 €O>B L@’b X? @8@0‘@@ a Pﬁiﬁt

Let ' ;= max|F(a®,x) - £(x)] - 1 @y § = 0-k-1, 0=k, <0o , -1

where max|F(a*,x) - £{x)]| is attained.
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Since F d4s locally solveni there is an a ¢ P such that
Pla,x) - Fla¥,x) changes sign at X5 $ =21, 2, veo , =1 and
[Fla,x') - £(x)] < |Fla®,xt) - £(x')] with nax|F{a,x) - Fla¥,x)|<c.
Since F(a,x) - Fle*,x) connot have any move gercos Fa,x) is
uniformly closer to f£{x} than F(a%*,x) except in [0, 5 j. There-
fore F(a,x) is a better epproximation then Fle®,x) to £(x).

I max|F{a#,x) - £{x)| is assumed at both O and 1 let the
intervel (O, 53 be replaced by Exﬁ”kw S 2% nm&;} where
{xéié = 0, BeK, ees , n}ﬁ § . csag Ry @4 e ae defined in
a mammer analogous to the preceding construstion, For n-k-1 even

n-k-
and determine a ¢ P so that |F(a,0) - £{0)] < |F(e*,0) - £(0)],

4 o o Hn 3 . - < sow 3
choose n-k-1 points xéixz&“}{ $ < %, <x, < < xﬁ“k}'

[7(2,1) - £01)] < |p(a,1) - £(1)], |F(a,x) - Fla®,x)| < c and

Fla,x) - Fla*,x) changes sign at the %4 J = 1, 25 ese 5 n=la

Fla,x) is a better spproximation than Fle¥,x) to £(x). For n-k-2
even chooge nek-2 points (ngxn”k -§ < Ky Sxg K ere g € Knm}x}
and Getermine a so that |[F(e,0) - £(0)| < [P(a*,0) « £(0)],

IF(a,1) - £(1)] < |F(e#,1) - £(1)], |F(a,x) - Fle¥,x)| <e for

¥ ¢ [0,1] end F(a,x) - Fla¥,x) chenges sign at the X5

d=2, 3, see , n=t. F{a,x) - Fla¥,x) coumnot have another zero

without having two more, counting muliiplicity, and hence Fla,x) is

a better approximetion then F(e*,x) to f£(x). This concludes the -

proof.

PROOF OF THEOREM 3: The stetement of Theorem 3 may be considered
as a set of four statements, nemely Lemmes 2, 3, 13 and 14, all of which

have been cetablished as trus.
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S. In Theorem 3 Property NS is characterized by mainly

properties of the function F. If e stronger closure conditdon

ig imposed on F then Property NS cen be characterized by "global®

properties of F. This glronger condition is satisfied by the

compen forme of F.

DEFINITION 11: F is said to be solvent if F is mcally solvent

1

and if given a set {(yé,y Yo <= «e:x < ese <x <
(}:j ?yj) € R_} then there is e solution, a ¢ P, to the equations

F(a.’;{j) ":*:}733 j = 33 2; eae o e

DEPINITION 12 F  is s0id 1o be unisolvent if F is solvent

and has Propariy Z.

DEFINITION 13: F is n-point closed if P is comnected and
if P is closed under pointwise convergence at any n poinis,
iﬂat} }.m ?(E‘u ;X ) ' e} é = 35 2} LR ¥ ﬂ ?{?itﬁ (Xagyj) Q ?{
Yrmeco d J o
implies the existence of an a_ ¢ P such that. Fla ,zz%) =¥ ;e

It is seen that if F is n-point closed then F  is closed,

THEQRIM 4 If F is n-point closed then unisolvence is a

necessary and sulficlent condition for F to have Property HS.

Lemmas 2, 3 and 14 otill epply here as in the proof of

Theoren 3 and only Lemsa 13 needs to be replaced.

LEAA 12: If F  is n-point closed and has Properiy NS

then F is golvent. .



Let {xjgzj ¢ [0,11, § =1, 2, «eo , 0} be en crbiirery
set of n points which shall remain fixed through the first portion of
e E; yjz: F{ang}ﬁ

8 % E’} « Heeall the definition of Lg‘(}:} in the discussion pre-

this proof. Relative to this sel define U =

<«
=

cediing Lemme 8. Let LG{::;E be the closed interval obteined by

shortening L {1{) by ¢ ot eech end. Let C = {yiy < B,

v &

8

y e L (..“)} %? is seen ‘o be an n-dimensional parallelepiped.

]

It will be shown that ﬂ U=% forell ¢ sufficiently smeil.
&
Tt follows from the n-point closure of F thet %ﬂ;{:ﬂ U

ie 2 ¢loged set in E 1

Since n-point closure implies closure 1t follows from

Theorem 3 1 F ie locally unisolvent. Let Yo be any point of
ﬁeﬁﬂ U. Sinee F is locally solvent 1t follows that there is a
g{gz 531. ) > 0 defining an n-dimensional cube aboutb I which is in

U. Hence ‘&?En U ig an open set relative to ‘fif{:,

&

Since H = ?a ig aon-empty it is clear that for some

e Ly
¢, >0, “”g( ) U is non-empty. Therefore L [y is a non-cmpty set
‘O o
which is both open and closed relative to %‘Q and %’ég n U= %éf‘g .
o o o
It is clear that for ¢ < €, 0 %ﬁ?ﬁﬂ U is noo-eppity end hence

)93“”“3;23“*:1@}

o Therefore thers

Since R =R _, ery set (yj]:«f‘} g Lﬁ(x

Couto

=

is represented by & point in %@g for some ¢ X

o

s
igen & P go that ?’{aj*x.‘) v9, 5 =1, 2, ese , D, for any
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6. It hes been seen that the ngture of P plays an
important role in thie theory. In the claselcal theory for Tchebycheff
sets it is always assumed that P = En. From the example following
Theorenm 1 it is seen that P need nol be Eﬁ in order for a linear
approximating functlon to have Property NS. The question then
neturally arises; can Theovems A and B of the imtroluction be true
for a lipnesy approximating function with P # Eﬁ? It has been shown
[6] that Property Z is a uecessary and sufficlent condition for
Theorem £ to be valid. Theorem 5 glves conditions on P and F dn
order that either Theorem & or Thecrem B be velid for a lineexr
approximeting function. The guestion raised above is answered

negatively by Theorem 6.

el

THEOREM 5: Let Fla,x) = a gi{x) where giix} is
i=1

comtinuous on [0,1]. If det{d,(x.)) # O for emch set
: - W
§ = 2y 20w ‘n<:g, . E 2
{ﬁgij 1, 2, s T, xs XJ%}g X; € {0,}}} then
i) P has Properiy NS if and only if P is open,
ii) Every contimuous function has s best epproximetion if and

only if P is closed.

PROOF: Since the proof of this theorem is siraight forward
but involved only a sketch of the proof dis given.
1) If P is open then clearly F is locelly solvent and hence
has Property NS.
Assume F has Property NS and that P contains one of
its boundery points, a . Let {jSj =15 2 eee , B, Xy € {@yai}

be a set of n distinet polnis. Consider the mepping, T, from Em
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P n

onto E_ defined by ‘i“(ai,aaﬁ sne &) = {Z at 7.4z ),

x! Epe i
oo n, 4
S_at g (x), e, T o #ilx)). Since den(d(x,)) £0, T
4 ive £ itn i3
et L=l
ig a one-to-one conbinucus mapping. Any neighborhood of T{ a; ;&i s ses ,ai}
contains points which are not the imege under T of pointe of P.
Thevefore F camnot be locally solvent near F{a@ 2% )e

ii) Let p = inf max|F(a,x) - £{x)| then it can be shown, [1]

ach
24
page 10, that there is en M < = such thet »_ la*| >M implies
del

mox|Fla,x) - £(x)] > @+1. £(x) hes a best epproximation if there
is an a® ¢ P such thet max|Fla®,x) - £(x)| = inf max|F(e,x)-£(x)}].

k! acP

et P, = falacp, 2; la™ ] 5:&%} . Clearly a neay be resitricted to
iz

M

velues from P,. If P is closed then inf max|F{a,x) - £{x)|
ach .
jcd

is attained and £(x) possesses a best epproximetion
Assume P is not closed and that P # E, . let a  be
s boundery point of P wot combained in P. A function f£(x) is

no,
defined so thet mex|) aé ﬁi{z) - £{x)] alternates n times. Then
= ‘

clearly inf mex|F{a,z) - #{x)] < mwii f:é ¢i(3) - £(x)]|. 18 £(x)

acP 1=l
- iy e i 1
pogsesses & best approximetion, :g_zm’g Ch ﬁiiﬁf} , then :?,Ew’i {ao" 1) %{x}

hae et least n zeros which contradicts é@'&{ﬁiixé}} £ 0. This
completes the sketch.
n

THECREM 6: Let Fla,x) = a- 3:9’1(3{) vhere ﬁfi(x) is con~
=

tinuous on [0,1]. Theorems A end B ere both velid for F
if end only if {gé’jix}Ei m'“i,a 2, see ﬁ} ie a Techebycheff sot
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PROOF: It is a classical result thet Theorems A and B are
velid if { in{:ﬁ:)} is @ Tchebycheff set and P = E_.
It will be shown that 1) if d&%igﬁi(x 3)) = O for some
set {x j} of distinet pointe and P = § them Theorem B is not
)y ie ée%(%(zé}} =0, P& g and Theorems A end B are
valid then P ig the emply set, It follows directly from Theorem 5
that if ée@{gafi{xg)} Ao forall {x 3} then the validity of

Theorems A and B dmply P = & .

i) S8imnce P = E, and d&@(ﬁi{xj)) = 0 there is a non-trivial
T-polynomial with n geros. This contradicts Property Z end hence
Theoren B.

ii) The same proof es in Theorem % spplies to show that P
ig both open end closed. Hemce P is the emply set. This concludes

the proof.
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CHAPTER III

1. Often vhen one is using common non-linear epproximeting
functions it develops thel Property W8 is lacking. Yet the chavacter-
ization of best epproximations is nevertheless very closely related
to Property NS. Three examples are given below which illustrate
this situetion, The aim of this chepler is to generalize unlsclvence

and related concepts and to develop a theory for these situations.

2. The followlng exsmples illustrate different forms of
F whickh do not have Property NS but for which a simple theorem

cheracterizing begt spproximations can be given.

on [0,1]. 8ince the numerator end dencminator mey be muliiplied by

DHME 4 o
a common fector it is essumed that D {(&7)" = 1. P is, then,
K=1
teken to be the subset of the unit ephere of I for which

T2

ERrE .
T K Remed . .

ax A0 for x e [0,1),

k=ns1

The classicel theorem cheracterizing best epproximetions

is ([1], Chapter 2}:
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wwa,x) = s{x)(@F %+ vee + 20) T P 4 cs 4 10)
shere 0<a<n, OSFm, B 2o, o7% Lo, % 4o s
the best approximation to £{x) if end only if max|F{a,x)-f{x)|
alternates at least mneZ-d times where ¢ = min{a, gl; if

Fle,x} 20 then 4 = m."

t points of P where both the mzmm‘tw and Gencminetor ere of lowey
degree there is an effective loss of parameters, This can be due
either to the cancellstimof common factors or to the coefficients
of the leading terms being zerc. It cen be shown that F is not
locally solvent near such points and therefore max|F{a,x) - £{x}]
cannot glternate neanm? times for all £{x).

a X e A
¥la,x) = a, & 2, as and let P bve delined by §m3{ < o, %aei < o,
§a3§ <. When @ =1 it is seen thet F depends only on a +a,

ead F  is not locally scivent near F = cousband.

EXAMPLE 33

et F Dbe a polynomial end

P be taken as a proper subset of E 0 For example, let Fla,x)

e

1

ol 4 8% 4 a9%° with §a}§ < o, ia:‘?% <10, Je°] £ |. From Theoren 6

by

it follows that F does not have Property W8. F  fails to be

locally solvent on the boundaries of P.

3. In each of these examples F fails to be locally
golvent at some exceptlional points of P. However it is seen thail
there is still some degree of locel solvence at these pointe. This
leads one to the concept of degree of solvence gilven in the following

definitione
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DEFINITION 14 F is solvent of degree m ot &% ¢ P if glven

a set {xﬁi‘} < x,

isa §le¥, ¢, Xip wee xﬁ) >0 euch that 353 - F{a%;xg)i*i 5

<;;Q<;~*«£xm§3} and ¢ » O then there

implies that there is @ solution, & ¢ P, %0 Figgxé) =¥y

J=1, 2, eoe , m with max|F(a,x) - Fla®,x)] < ¢.
Thus, the degree of solvence may vary [rom point to podint
in P. The definitions of Peoperties NS and Z mey be generaliszed

in an analogous menmner.

DEFINITION 15: F has Property NS of degree m at &% ¢ P AF,
for every £{x), the eliernance m times of max|F(a%,x)-£{x)]
ie a necessary and sufficient condtion for Fla*,x) to be a
beat gpproximetion %o £{x). A point, &% ¢ P, is said to be

of degree m if F hes Properiy NS of degree m > O at a¥,

DEFINITION 161 P has Properiy 2 of degree mat &% ¢ P if

for any a £ %, Fla*,x) - Fla,x) hes at most m-1 zercs.

DEFINITION 17: F is unisclvent of degrec mat a% ¢ P if
i) F hes Properiy Z of degree m ab e* and F is solvent
of degree m at a%; 11) F is not solvent of degree m+i

at  a®,

The analog of the classical slatement cherecterizing best
approximations is; Let a* be of degree m, then P{a%*,x) ie & best
approximetion to £{x) if and only if mex|P(a*,x) - £(x)] allernates

o times.
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L, The aim of this section is to relate the degree of &

point in P end the degree of unisolvence of F at that point.

LEMMA 16; If P is comnected end if the degree is defined
for every point of P then given &% ¢ P there lsan ¢ >0

such that (x, Fla¥,2) £ ¢) e B for a3l x ¢ [C,1],

LEMA Y7 I P

}d-

g cormected and 1f P 1o solvent of positive

degree at every point of P then R = R o

Thede two lemuas mey be proved by & alight modificetion

of the proofs of Lemmes & and 9.

Lo 18: Let P be closed and let F  Dbe unisolvent of positive
degree at every point of P. If F is unisolvent of degree n

gt a* then the degree of a% Iz n.

This lemma may be proved by a2 siight modification of the proofs of
Lempms 2 and 14,

The converse of Lomma 10 is move difficult. A& series of
lemmas will be established which culminate in Lemma 22 which is the
converse of Lemma 18. The following lemme is a generalizetion of

Lemma 3.

LEMA 19 Lot the degree be defined for every point of P.
If a® ig of degree m then F has Property Z of degree m

at  a¥.
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FROOF: Ascume there fs an & ¢ P such thet Fle,x) - Fla¥,x)
has m or more geros. Then as in the prool of Lemma 3 theve is a
conbinuous function, flix) , such that mex|Fla®,x) - i’?{}:}} alternates
exactly m times, mex|F{a,x) -«fl(x}i alternates exactly m-2 times and
max |F{a*,x) «fg(x}i = max|Fla,x) - i‘gﬁ};)i. Let f.(x) be the
continuous funetion anslogously defined so that max|F(a® 3.@{)-5‘2(}&;)3
alternates exactly o2 times, mex|F(s,x) - fgix){ alternates exactly
m times and mex|Fla¥,x) - £ (x)| = mex|Fla,x) ~ £ (x)].

Since a* is of degrse m, Fla¥,x} is e best epproxmimation %o
f%(x) and hence Fle,x) is also a begi approximation to fiix}a
Therefore the degres of a is less then or equal to m-2. Hoeuce
¥{a,x) is a begt spproximation to f?:(z«:} and so is F{a%,x). But
gince mex|P(a®,x) ~ £ (x)| salternates exactly m-2 times e¥% cennot

2,

be of degree m.

The following lewwm 18 the generalization of Lemma 11 and

&3

has the same proof as Leuma 11.

LEMA 20: Let F be closed and let the degree be defined fox
every point of P. Then given a% ¢ P, ¢ » 0 and & set

(xj}i?s =x Sx <xy Lo <= ‘5} there are a,, 8, ¢ P
such that 1) Fle¥,x) - F{aw}:)ﬁ Fla¥,z) - ?{ag,x) change

sign st the X, and ot no other points, 411) §F(a}ﬁx) - Ple*,x)|
< e, §3{a2?x) - Fla*,x}] € e, 1ii) either ?iaggx} - Fla¥,x)=0
%"{&ng} - FMa*,x) = 0 ar s@‘m{%"{a,};x} - Fla#,x}] =

- egnl[F(a,,x) - Fla¥,x)1.
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The next lemme shows an interssting property of some special

subsete of P and provides a means of generalisging Lemmas 12 and 13.

5

LEBEA 21: Let T be closed and let the degree be defined
for every point of P. Define ?k = {&%a ¢ P, degree of a 2 k}

Then P, is au open sot,

- g4 3
J J
of these zevos and set ¥ = 0, %, = 1. Let S = min max
Fi8

5 m{xé.,zz ]

iF{a%,x) - 3{&%95}2; J =0, 1,2, «oo , k1. It ig clear that for

el

&
o

]

v
§e
2
Zg
i
3
oy

(a,z) - Flar,x)] < § tnen Pla,z) = E‘(&lgx)
has gt least k-1 zeros.

Since P is coniinuous there s g nelghborhood of a¥%,

s%) has ot least k-1 zeros. By Lemma 19 the degree

of a is laoprger than or equel o kK.

LEAA 22: Let F  Dbe closed and let the degree be defined
for every point of P. If a% ig of degree m then F is

2 - - & 28
unisolvent of degres u ol a¥,

PROOF: Let § be the quaniity defined in the proof of Lemma 21
and set A = {{Rgg?}éﬁé e [0,1], |Fla*,x) -yl < 5}, From the proof
of Lerma 21 it iz seen that every Fle,x) entirely in A is of
degree m oy more. Lemae £2 is now proved by restricting consider-
ation to funcltions entirely in A and by using the proofs of Lemmes

12 and 13,
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The statement of the generslization of Lemma 12 is: 'Let
F be closed and let the degree be defined for every polnt in P.
Let e% ¢ P be given with degree m and let F(a¥,x) - Ple,x) change
sign at m-1 pointe with Fia;xﬁ) # F(a%xg) and let max|F(e¥*,x)

- Fla,x)| € §. Then given y between F{a,x@) and F{aﬁ,%)
there is an 8, € P such that E?{aﬁ,xm) =y ond F(%;x) is
between Fla,x) end Fla*,z)." The only part of the statement
that is not e siraightforward generalizetion of Lemms 12 is the
condition that max|Pla®,x) - Fla,x)| <& . This condition implies
that a io of degree m or more amd the prood of Lemma 12 may be
uged to prove this generaliszation of Lemma 12.

The generalization of Lemma 13 may be proved with a
slight modificaticn of the proof of Lemue 13, In the induction
srgument of the proof it is merely necessary o take ¢ < 5 and
the same proof is velid for the generaliszstion.

In view of Lemos 19, this concludes the proof of Lemme 22,

The preceding lemmas have egtablished

THEOREM 72 I€ F  is closed then the following statements sre

eguivalent:

i} F is unisclvem: abt every point of P and is unisolvent
of degrec m gt g¥,

ii) The degree is defined for every point of P end the

degree of a% i 8.
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5, Theorem 7 dlrectly relates the characterization of
best epproximations to the degree of unisolvence of F. Since
unisolvence is directly comected with the explicit definition of
F thig gives s natural means @;%i" ghudying the characterigation of

best ayp@*aximfmi 3%

It is interesting o exsmine the verlation of the degree

for the three exssples previously considered.

" I ] I+ n4m=X

EXMPLE 1; et P = {a%aa?, e o een g QIR L, MK, 6’3}
ﬁ }""} G o, &

and P! ={alacP, a"=e" meema’=0f. It BeBy,

a g P, ‘then the degree of o is sk end iF a ¢ P the
depree of & 18 o+l, If a dis in none of these gets then the

degrec of a is nwel.

IXAMPLE 2: Every polmt of P is of degree 3 except those for

which 8, = ,; these pointg are of degree 2. HNote that F is not

1
cloged in this example for as a, ~» ~~ the limiting function is
discontinuous. However, it can be shown that the theory developed

here is still valid.

EXAMPLE 3: The interior points of P ave of degree 3. The
interior points of the two dimensionel faces are of degree 2 and the
pointe on the one dimensionel edges are of degree 1.

In this example 1f P were defined by |el] <=, |a2] < 10,
Ea3§ < 1 then F would have Property NS with n = 3, However
best epproximations would nol exist for every continuous funciion as

they do with the present definition of P.
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