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Abstract

By allowing for the fabrication of flexible crystalline-Si (c-Si) solar cells that employ

∼1/100th the Si of a traditional wafer-based c-Si solar cell, while maintaining high

photovoltaic efficiencies, vertically aligned arrays of c-Si microwires provide a novel

photovoltaic geometry that has the potential to dramatically reduce the cost of solar

electricity. In this thesis we report on 1) the growth of Si microwire arrays, 2) the

chemical and electrical characterization of Si microwire arrays, and 3) the fabrication

of Si microwire-array solar cells.

Using the vapor-liquid-solid (VLS) growth mechanism in combination with pho-

tolithographic patterning, vertically aligned arrays of Si microwires, with nominally

identical heights and diameters, were fabricated over areas > 1 cm2. Chemical char-

acterization of the Si wires was then performed using secondary ion mass spectrom-

etry to measure the incorporation of the Au VLS-catalyst into the Si wire. The

incorporation of the VLS-catalyst into the Si wires at its thermodynamic equilib-

rium concentration suggested that the use of Cu as a VLS-catalyst was less likely to

limit the photovoltaic performance of Si microwire-array solar cells. Switching to the

Cu-catalyzed growth of Si wires, in-situ doping with BCl3 was used to demonstrate

control of the electrically active dopant concentration from 8 × 1015 to 4 × 1019

dopants cm−3. Scanning photocurrent measurements were then made to measure the

minority-carrier diffusion length. The observation of 10 µm minority-carrier diffu-

sion lengths indicated that solar cells with efficiencies of 17.5% should be possible.

With the knowledge that highly efficient solar cells were possible, methods for the

fabrication of a p-n junction and a transparent top contact in a solid-state solar cell

were developed. This culminated in the demonstration of Si microwire-array solar

cells with Air Mass 1.5 Global photovoltaic conversion efficiencies of up to η = 7.9%.

Through improved device processing and the use of an amorphous Si passivation layer

at the top contact, ∼15% efficient solar cells should be possible.
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Chapter 1

Introduction

1.1 The Promise of Solar Energy

Solar energy is abundant, globally distributed, and free. Take a moment to consider

the implications of this statement: energy, the single resource that has been most

fundamental to improved standards of living, distributed equitably to all.

To place the abundance of solar energy in perspective, 90,000 terawatts (TW)

of solar power continuously strikes the earth’s surface.[1] Humanity’s global power

demand is a mere 14 TW.[2] Additionally, solar energy is the only energy resource

that humanity could chose to use, not for the next 100 years, 10,000 years, or 1,000,000

years, but rather, for the next 5,000,000,000 years.

However the challenges to humanity’s use of solar energy are not without merit.

Like the facts above, it is also no secret that we desire to use energy when the

sun does not shine. Additionally, we have developed technologies (airplanes and

automobiles) that require areal power densities that can not be directly met by solar

energy. Finally, humanity is largely able to function through capitalistic economies,

which may or may not have correctly assessed the cost of solar energy, in its present

form, to be unaffordable.

Consequently, for those who would desire to increase the use of solar energy, we

must develop technologies that allow our global society to collect and store solar

energy for as low a cost as possible.

1



1.2 Photovoltaics

Photovoltaic devices, or more commonly solar cells, are devices that upon exposure to

electromagnetic radiation (photo) produce an electrical potential (volt). Though not

the only means for harvesting solar energy†, photovoltaics are particularly interesting

because of their ability to produce electricity, which is the largest and fastest growing

form of energy used in the United States.[4]

1.2.1 Market

Photovoltaics are currently experiencing rapid global growth, with 10-year and 5-year

compound annual growth rates of 46% and 56%, respectively.[5] This tremendous rate

of growth was initially driven by the restructuring of Germany’s Renewable Energy

Sources Act in 2000.[6] This act is a feed-in tariff, which guarantees to pay a price for

photovoltaic electricity that will ensure that a well designed and operated photovoltaic

system can realize between a 5 and 10% rate of return.

As the photovoltaics industry has grown, it has continued to exhibit a 80% progress

ratio, which has led to significant cost reductions.[7, 8] A progress ratio reflects the

cost reductions that are achieved as economies of scale are realized. Today the in-

dustry appears to be between 6 and 10 years from grid-parity without technological

breakthroughs.[9] Grid-parity is the point at which the end-user pays the same price

for photovoltaic electricity as they would to purchase electricity from the electrical

grid.

However, if photovoltaics are to move beyond simply providing electricity dur-

ing the day, the cost of photovoltaic electricity must be reduced below the point

†Photosynthesis, concentrated solar power, and passive solar energy are also important methods

for harvesting solar energy. Though it receives little press, passive solar energy (the capture, storage

and use of solar energy through building elements such as windows, Trombe walls, sunrooms, thermal

chimneys, green roofs, roof ponds, thermal masses, day lighting and solar water heaters) is a form

of particular interest for reducing the 39% of U.S. annual energy consumption that is attributed to

buildings, of which 19.8% goes to space heating, 12.7% to space cooling and 17.7% to lighting.[3]

2



of grid-parity. To this end the need for technological breakthroughs in the field of

photovoltaics still exists.

1.2.2 Technology

A number of photovoltaic technologies exist in the market today, e.g. crystalline-

silicon (c-Si), multi-crystalline silicon (mc-Si), cadmium telluride (CdTe), copper in-

dium gallium selenium (CIGS), amorphous-Si (a-Si), gallium arsenide (GaAs), and

multi-junction solar cells, among others. Broadly, these technologies can be grouped

into three groups. Thin-film technologies (CdTe, CIGS, a-Si) that are low-efficiency

(7-10%) and low-cost (< $1 per Watt peak), c-Si and mc-Si solar cells that are mid-

efficiency (13-22%) and mid-cost ($2.50-3.50 per Watt peak), and multi-junction solar

cells that are high-efficiency (35-40%) and high-cost (many $100’s per Watt peak).

Historically, crystalline-silicon (c-Si) and multi-crystalline (mc-Si) solar cells have

been responsible for > 90% of the photovoltaics market. But in recent years this frac-

tion has dropped to ∼85% as thin-film technologies (specifically First Solar’s CdTe

technology) have reduced costs low enough to enable significant market penetration

despite their low efficiencies.

The low costs of thin-film technologies center around their reduced material us-

age and the ability to manufacture solar cells with a minimal number of processing

steps. All three thin-film technologies achieve reduced materials usage (as compared

to c-Si and mc-Si) through the use of semiconductors with direct bandgaps that

strongly absorb incident sunlight. These materials need only be a few µm-thick to

ensure complete absorption of incident sunlight as compared to ∼200 µm-thick c-

Si and mc-Si wafers. Perhaps more importantly is the small number of processing

steps that are needed to fabricate thin-film solar cells. By developing manufacturing

processes that allow for processing of the photovoltaic material on its final support

structure, thin-film solar cells have a significantly smaller number of processing steps

than wafer-based photovoltaic technologies. Additionally, the deposition of the pho-

tovoltaic material onto the final support structure in thin-film technologies is often

accomplished thru a low-cost solution or vapor deposition method.
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Despite these recent advances in thin-film technologies, c-Si and mc-Si photo-

voltaics are still quite competitive with thin-film technologies because of their higher

efficiencies. Though higher cell efficiencies are not enough to offset the low mate-

rials and manufacturing cost of thin-film cells at the module level, the higher cell

efficiencies of c-Si and mc-Si cells becomes economically significant at the systems

level, where higher efficiencies allow for significant reductions in the installation and

balance of systems (support structure, copper wiring, etc.) costs.

As follows below, we will present a technology that combines the reduced ma-

terials utilization (and possibly the fewer number of processing steps) of thin-film

technologies with the efficiencies of c-Si and mc-Si technologies.

1.3 Si Microwire-Array Solar Cells

1.3.1 Initial Motivation

For a typical photovoltaic installation, the solar panels comprise between 33% and

50% of the total installed cost.[9] In turn, for c-Si panels, the initial Si feedstock

comprises between 14% and 28% of the panel cost.[10, 11] The large raw material cost

of Si is determined by the purity of the Si required to produce efficient photovoltaic

devices. Consequently, reducing the amount of Si feedstock required and/or the purity

of the Si feedstock required‡ has a significant impact upon the cost of c-Si solar panels

and installed photovoltaic systems.

In order to reduce the Si purity required in a traditional wafer-based solar cell, one

must decrease the distance that minority-carriers must travel before being collected

at the p-n junction. However, because c-Si is a relatively weak absorber, the distance

that minority-carriers must travel to the p-n junction is pre-determined by the wafer

thickness required to absorb the incident illumination (∼200 µm). One design that

circumvents this challenge is the use of radial p-n junctions in wire-array solar cells.[13]

‡Metallurgical grade Si (∼98% pure) can be purchased for ∼$2/kg,.[12] while semiconductor/solar

grade Si (99.9999% pure) costs ∼$60/kg.[9]
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As seen in Figure 1.1, the use of a radial p-n junction orthogonalizes the minority-

carrier extraction direction from the light absorption direction. Si wires with length

to diameter ratios on the order of 100:1 allow for solar cells that are optically thick,

yet require minority-carrier diffusion lengths of only 1-2 µm, thereby significantly

reducing the purity of the Si required.

n+-Si Shell

p-Si Core

hν

Figure 1.1. Schematic of a radial p-n junction, wire-array solar cell.

Incident illumination is absorbed along the axial wire direction, while

photogenerated minority-carriers (black dot) are collected radially.

Figure 1.2 provides a comparison of the calculated solar cell efficiencies for (a)

a traditional planar cell and (b) a wire-array solar cell, as predicted by numerical

modeling.[13] Whereas the traditional wafer-based solar cell exhibits a significant

decay in efficiency as the minority-carrier diffusion length (Ln) is reduced, the wire-

array solar cell remains capable of efficiencies > 10% for diffusion lengths as short

as 100 nm. For minority-carrier diffusion lengths between 1 and 10 µm, wire-array

solar cell efficiencies range from 12 to 15%. These efficiencies are quite comparable to

the efficiencies of multi-crystalline Si solar cells and are meaningfully higher than the

10% efficiency of First Solar’s CdTe solar cells (both mc-Si and First Solar’s CdTe

technologies are currently doing very well in the photovoltaics market).
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Figure 1.2. Calculated cell efficiency as a function of minority-

carrier diffusion length (Ln) and cell thickness for (a) a traditional

wafer-based solar cell and (b) a wire-array solar cell. In (b) the wire

radius for the modeled solar cell has been set equal to the minority-

carrier diffusion length.[13]

6



1.3.2 Flexible c-Si

Finding the predicted efficiencies of wire-array solar cells to be sufficiently high to

merit further investigation, we began fabricating the proposed device structure. As

will be detailed in Chapter 2, the fabrication of Si wire arrays is possible. However,

we would like to point out that having fabricated Si wire arrays a fundamentally

new type of material can be obtained by embedding the Si wire arrays in a flexible

polymer.

As can be seen in Figure 1.3, Si wires embedded in polydimethylsiloxane (PDMS)

polymer are a flexible form of c-Si.[14] We have shown that this material can absorb

> 85% of the above bandgap solar illumination using a volume of Si equivalent to a

2.8 µm-thick Si film.[15] Thus, wire-array solar cells not only offer the possibility to

reduce the cost of solar cells through the use of lower purity Si, but more importantly,

wire-array solar cells offer the potential to use 1/100th the Si of a traditional wafer-

based solar cell. Furthermore, the flexibility of this material is especially exciting. In

addition to allowing for the fabrication of flexible solar panels with efficiencies > 10%,

it may also result in reduced module manufacturing costs through the adoption of

quasi roll-to-roll fabrication processes.

Figure 1.3. Optical image of a Si microwire array embedded in

polydimethylsiloxane polymer.[14]
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1.4 Thesis Outline

This thesis will detail key steps in the fabrication and characterization of Si microwire-

array solar cells. Chapter 2 will detail how the vapor-liquid-solid (VLS) growth

mechanism can be used to grow arrays of nominally identical, vertically aligned, Si

microwires over areas > 1 cm2. In Chapter 3, Si microwires are chemically character-

ized to understand if incorporation of the metal VLS-catalyst into the Si microwires

might limit the microwire solar cell efficiencies. Chapter 4 details how in-situ doping

was incorporated during the VLS-growth process to control the electrical properties of

the microwires. Chapter 5 presents photocurrent measurements used to demonstrate

that the minority-carrier diffusion length in the Si microwires was sufficiently large

for the fabrication of efficient solar cells. In Chapter 6, Si microwire-array solar cells

are fabricated and characterized. Finally, Chapter 7 provides an outlook for further

progress towards the fabrication of ∼15% efficient, flexible, Si microwire-array solar

cells.
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Chapter 2

Vertically Aligned Si Microwire Arrays

2.1 Introduction

In this chapter we will discuss the development of a process for the fabrication of

large-area arrays of vertically aligned, nominally identical, Si microwires. There are

three major reasons that a homogeneous medium of Si microwires was felt to be

important for the characterization and fabrication of Si microwire arrays as a potential

photovoltaic material. First, control of the wire height and diameter allows for the

fabrication of wires with diameters and heights that are optimized for photovoltaic

performance based upon the measured photovoltaic properties of the wires. Second,

fabrication steps, such as the definition of a p-n junction, the growth of a surface

passivation layer, and the deposition of a transparent top contact, are much more

straightforward (as will be seen in Chapter 6) for a uniform array of wires. Third,

a large distribution of wire heights and diameters will lead to a distribution in each

wire’s voltage at its maximum power point.[16] As the wires will be connected in

parallel in a wire-array solar cell and as the wire-array solar cell must operate at a

single voltage, a distribution in the wire height and diameter will result in a fraction

of wires that operate away from their maximum power point. Thus, a wire-array solar

cell with a large variation in wire heights and diameters will be inherently inefficient.

The fabrication of nominally identical, vertically aligned, Si microwires was ac-

complished through the use of the vapor-liquid-solid (VLS) growth mechanism. Pho-

tolithography was used to pattern an array of VLS-catalysts (Au, Cu or Ni) onto a

Si(111) wafer. VLS-growth using SiCl4 as a Si precursor at 1000 ◦C was then used

to grow Si microwires roughly 2 µm in diameter and 75 µm in length. The use of a
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thermally grown silicon oxide was found to be critical to prevent catalyst diffusion

and loss of pattern fidelity during the pre-growth anneal at 1000 ◦C.

2.2 Vapor-Liquid-Solid Growth

2.2.1 Mechanism

The vapor-liquid-solid (VLS) growth mechanism was discovered in 1964 by Wagner

and Ellis.[17] As depicted in Figure 2.1, the VLS growth mechanism involves the

incorporation of Si from a gaseous Si precursor into a VLS-catalyst/Si alloy (liquid),

followed by the precipitation of solid Si from the VLS-catalyst/Si alloy. Under the

appropriate growth conditions, the VLS-catalyst (most commonly Au) enhances the

local deposition rate ∼100-fold, resulting in the creation of a one-dimensional Si wire.

Figure 2.1b provides the Au-Si phase diagram. Prior to the introduction of the

Si precursor, Si from the growth wafer alloys with the Au catalyst (and Au from the

catalyst diffuses into the wafer) as the sample is brought to the growth temperature.

This annealing process results in a Au-Si alloy lying on the right liquidus line (as

indicated by the small circle). With the addition of a gaseous Si precursor, the Au-Si

alloy incorporates additional Si and begins to precipitate solid Si.

Studying the VLS-growth mechanism in some depth, Wagner and Ellis showed

that a number of metals could be used as VLS-catalysts (e.g, Au, Pt, Ag, Pd, Cu,

Ni, Gd, Mg and Os).[17, 19] Importantly, Wagner also showed that wires grown

by the VLS-growth mechanism were single-crystals and grew in the <111> growth

direction.[20] The observation of single-crystal wire growth is significant, as it indi-

cates that the wires have the potential to exhibit very good photovoltaic properties.

2.2.2 Growth Conditions

For the fabrication of Si wires, the early work of Wagner focused on the use of SiCl4

as the Si precursor.[17, 18, 19, 20] In contrast the recent literature has focused on the

use of SiH4 or Si2H6 as a Si precursor.[21, 22, 23] VLS-growth conditions using SiH4
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(a)

(b)

Figure 2.1. (a) Schematic of the vapor-liquid-solid (VLS) growth

mechanism.[17] (b) The Au-Si phase diagram.[18]
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typically range from 350-600◦C and have a typical SiH4 partial pressure between 0.01

and 5 Torr. SiCl4 growth conditions use temperatures between 800◦C and 1000◦C

and operate close to atmospheric pressure with a SiCl4 to H2 ratio of 1:50.

In addition to the different temperature and pressure regimes, a key difference be-

tween the use of SiH4 and SiCl4 as a Si precursor is the presence of an etching reaction

when using SiCl4 as a Si precursor. The decomposition of SiH4 as shown in Eqn. 2.1

is an exothermic, irreversible reaction, limited only by kinetic decomposition.[24] In

comparison SiCl4 can be used to either etch or deposit Si depending upon the pres-

sure, temperature, and the ratio of SiCl4 to H2 in the gas phase.[25] This is because

the decomposition of SiCl4 as shown in Eqn. 2.2 results in the production of HCl(g),

which is known to etch Si.

SiH4(g)→ Si(s) + 2H2(g) (2.1)

SiCl4(g) + 2H2(g) 
 Si(s) + 4HCl(g) (2.2)

In our work we have used both SiH4 and SiCl4 as Si precursors. For SiH4 growths,

a hot wall reactor was used as shown in Figure 2.2, while for SiCl4 growths a tube

furnace reactor was used as shown in Figure 2.3. Using SiH4, Brendan Kayes found

the optimal growth temperature to be between 500 and 550 ◦C and the optimal growth

pressure to be 1 Torr with a 100 sccm flow of SiH4 (5% in H2.)[26]. Using SiCl4 we

found the optimal growth temperature to be 1000 ◦C at atmospheric pressure with a

500:10 sccm H2:SiCl4 reactant flow.[27].
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Figure 2.2. SiH4 VLS growth reactor located in Watson 247. The

gas inlet is the thin cylinder on the far right of the chamber, while

the gas outlet is the visible opening on the left hand side of the

chamber. The sample is placed in the center of the chamber, above

the internal heating element (not used during VLS growths) visible

at the center of the reactor and ∼0.5 in. below the external heating

element of the reactor, which is located in a recessed well that is

part of the top of the reactor (not shown here.)
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Figure 2.3. SiCl4 VLS growth reactor located in Watson 251. Gases

enter the tube furnace from the left and are exhausted to a NaOH

scrubber (not shown) on the right hand side. For a more detailed

description and a schematic of the reactor layout, see Appendix A.
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2.3 Catalyst Deposition

2.3.1 Blanket Deposition

Initial efforts in our group to obtain Si wire arrays for solar cells focused on the

blanket deposition (thermal evaporation) of Au catalyst, followed by the optimization

of wire-growth conditions (catalyst, temperature and pressure) using SiH4 as the Si

precursor.[28] In this process, the blanket deposited Au would break up into smaller

droplets from which the Si wires would grow, as schematically depicted and shown

(for a 6 nm-thick Au layer) in Figure 2.4. It is clear from Figure 2.4c that the size of

the Au-Si alloy at the onset of wire-growth was varied and that Si wire growth did

not begin uniformly across the wafer.

375 nm

(c)

(b)(a)

Figure 2.4. SEM image of the onset of VLS-growth. The white arrow

denotes a wire that has begun to grow.
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After three hours of growth, wire arrays exhibiting a roughly 75% fraction of

vertically oriented wires were obtained, as shown in 2.5. The Si wires were ∼200 nm

in diameter and on the order of 10 µm in length. In Fig. 2.5a, the short bright lines

are the vertically oriented wires.

6.0 μm

4.3 μm

(a)

(b)

Figure 2.5. (a) Top-down and (b) tilted SEM images of a Si wire

array grown from a 20 nm-thick Au film using SiH4 as the Si pre-

cursor.
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2.3.2 Photolithographic Patterning

Hoping to realize a more uniform array of Si wires, efforts were undertaken to pattern

the Au catalyst prior to wire growth. Two photolithographic patterning processes

were developed. The first process produced a square-array of 3 µm diameter Au pads

on a 7 µm pitch on a Si(111) wafer (Fig 2.6a). The second process patterned the same

array of Au pads, except that these pads were patterned onto the Si wafer through

openings in a thermal oxide (SiO2) with the inverse pattern (Fig. 2.6b). Figures

2.6c,d provide optical and SEM images, respectively, of a catalyst array deposited

onto a Si wafer through openings in a thermal oxide (the second process.) The right

hand side of Fig. 2.6c is a region of the wafer with incomplete lift-off of the 1813

photoresist after blanket Au deposition. Though incomplete lift-off was not typical,

it has been included here to provide a sense of the lift-off process.

21 μm

(b)

(d)

(a)

(c)

Figure 2.6. Cross-sectional schematic of a patterned Au array (a)

on a Si(111) substrate and (b) into holes in a thermal oxide on a

Si(111) substrate. (c) Optical and (d) SEM images of 300 nm-thick

Au pads surrounded by a thermal oxide on a Si(111) substrate.
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Our initial thought in developing the second patterning process was that the

etched oxide might guide initial wire growth in the vertical direction. However, given

that SiO2 is etched isotropically by hydrofluoric acid (aq.) and that the deposited

catalyst thickness was comparable to the oxide thickness (typically 300 nm), it is un-

likely that the patterned oxide conferred a significant physical barrier to wire kinking

at the onset of growth. But, as can be seen in Figure 2.7, it was discovered that the

presence of the thermal oxide between the patterned Au pads was critical to prevent-

ing Au diffusion during the pre-growth anneal at 1000 ◦C when using SiCl4 as the Si

precursor.[27]

Figure 2.7. SEM images of patterned Au catalyst arrays before (left)

and after (right) a pre-growth anneal in H2 (740 Torr) at 1000 ◦C.

The top row is a catalyst array without the thermal oxide, and the

bottom row is a catalyst array with the thermal oxide. Insets, the

scale bars are 10 µm.[27]
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2.4 Array Growth

As can be seen in Figure 2.8, use of the patterned catalyst arrays (no oxide present)

in the SiH4 growth system resulted in the desired isolation of wire growth to areas

of the substrate initially patterned with catalyst (as expected from the VLS-growth

mechanism.) Encouragingly, the density of wires and the fraction of vertically oriented

wires was now uniform over the growth area, which was a marked improvement from

the varying density of wires and varying fraction of vertically aligned wires obtained

using the blanket deposition of catalyst (Fig. 2.5.)

However, the nucleation of multiple wires per patterned catalyst area and the

presence of wire kinking during growth meant that the synthesized wire arrays were

still not uniform enough for use in solar cells. The nucleation of multiple wires per

Au pad is attributed to breakup of the catalyst droplet. Considering the large ratio

of the catalyst diameter, 3000 nm, to the catalyst thickness, 1 nm, breakup of the

catalyst droplet seems plausible. Furthermore, nucleation of multiple wires per Au

pad was successfully eliminated by increasing the catalyst thickness to 300-500 nm.

Figure 2.9 provides a higher magnification image of the kinking observed during wire

growth.

While I had been working on the development of photolithographically patterned

catalyst arrays, Brendan Kayes and Dr. Michael Filler had been building a reactor

for VLS-growth using SiCl4. SiCl4 had recently been shown to yield a very high

fraction of vertically aligned Si wires,[28] and it was hoped that by combining the

use of patterned catalyst arrays with a SiCl4 precursor we would be able to obtain

homogeneous wire arrays over large areas.

Indeed, as shown in Figure 2.10, the fabrication of nominally identical, vertically

aligned, Si microwires over areas > 1 cm2 was possible.[27] Though it was not known

to us at the time, the selective placement and growth of vertically aligned wires over

very small areas ( 100 wires on a 60µ pitch) had previously been shown using a

similar process.[29] After a 30 min growth, the wires were 75 µm in length and 2 µm

in diameter. The difference between the patterned catalyst diameter of 3 µm and the
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(a)

(b)

4.0 μm

Figure 2.8. (a) Top-down and (b) tilted SEM images of a Si wire

array grown from a photolithographically patterned, 1 nm-thick, Au

array (thermal oxide not present), using SiH4 as the Si precursor.
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Figure 2.9. SEM image of a wire that has kinked multiple times

during VLS-growth using SiH4 as a Si precursor.

observed wire diameter of 2 µm is attributed to the change in the catalyst shape as it

transitions from the solid state to the liquid state when alloyed with Si at the growth

temperature.

In addition to the growth of the Si wire arrays using Au as the VLS catalyst, we

have demonstrated that structurally identical wire arrays can be grown using Cu or

Ni as the VLS-catalyst under identical growth conditions, as seen in Figure 2.11. The

Si wire growth rate using Cu and Ni catalysts was ∼5 µm/min, roughly twice the

2-3 µm/min growth rate observed for Au-catalyzed Si wires. Ni and Cu-catalyzed Si

wires also exhibited slightly smaller diameters for a given catalyst thickness, likely

due to a change in the contact angle of the catalyst alloy with the growing Si wire

and/or greater incorporation of the catalyst into the growth wafer.
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(a)

(b)

Figure 2.10. (a) Cross-sectional and (b) top-down SEM images of

a Si wire array grown in the SiCl4 reactor using a 500 nm-thick Au

catalyst array.[27]
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(a)

(b)

Figure 2.11. (a) Cu-catalyzed wire array growth (b) Ni-catalyzed

wire array growth.[27]
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2.5 Discussion

2.5.1 Si Precursor

Though our high-fidelity wire arrays were grown using SiCl4, it is not clear that similar

arrays could not also be grown using SiH4 as the Si precursor. However, the presence

of an etching reaction during SiCl4 growth should facilitate the removal of high-energy

surface defects that may lead to kinking during wire growth. Indirect evidence for the

dependence of kinked wire growth on surface defects exists in the literature. Using

SiH4 as the Si precursor, Westwater showed that wire kinking decreased with in-

creasing growth temperature and decreased with decreasing SiH4 partial pressure.[21]

Higher growth temperatures and lower SiH4 pressures should both result in greater Si

surface diffusion, the later as a result of a greater number of unoccupied surface sites.

Thus, Westwater’s observations support the hypothesis surface defects may lead to

kinked wire growth.

Additional indirect evidence relating wire kinking to surface defects is provided by

two separate observations. First, Si wires grown from Si2H6 at a pressure of 1 × 10−6

Torr and temperature of 600 ◦C (using an ultra-high vacuum growth system) exhibited

minimal kinking, while wires grown under the same conditions with the addition of

2 × 10−7 Torr O2 exhibited significant wire kinking.[30] Second, O2 is known to

prevent the sintering of Si particles (performed at T > 1000 ◦C), which is largely a

surface diffusion driven process.[31] Thus, we again conclude that decreased surface

diffusion and a probable increase in the number of defect states at the Si surface is

likely related to kinked wire growth.

2.5.2 Photolithography

Though photolithography is a simple and relatively inexpensive patterning method

at the research scale, the use of photolithography in the manufacturing of commercial

solar cells would likely be prohibitively expensive. While other patterning techniques,

such as the use of ink-jets, could be used in place of photolithography, Josh Spurgeon
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in the Lewis group has demonstrated a promising method to re-use the growth sub-

strates without additional patterning, as seen in Figure 2.12.[32] After peel-off of the

PDMS-embedded Si wire array,[14] the growth substrate retains the patterned ther-

mal oxide as well as a small fraction of the wire bases and the PDMS (Fig. 2.12a).

The wire bases and the PDMS are then removed through wet chemical etching, while

leaving the patterned thermal oxide intact (Fig. 2.12b). The desired array of Au cat-

alyst pads was then created through the electrodeposition of Au, taking advantage

oxide’s dielectric properties (Fig. 2.12c). Thus, another Si wire array was grown on

a previously used growth substrate without the use of additional patterning methods

(Fig. 2.12d).

Figure 2.12. SEM images detailing the re-use of the growth substrate

without additional patterning steps. (a) Si substrate after peel-off of

the PDMS-embedded wire array. (b) Chemical etching is performed

to remove the remaining PDMS and the bases of the Si wires. (c)

Electrodeposition of the VLS-catalyst onto the Si substrate (but

not onto the thermal oxide.) (d) Growth of a Si wire array from a

Au array electrodeposited onto a previously used growth substrate.

Scale bars are 20 µm.
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2.6 Conclusion

Vapor-liquid-solid growth using SiCl4 as a Si precursor and photolithographically

patterned arrays of a Au, Cu, or Ni catalyst were used to produce vertically aligned,

Si microwire arrays over areas > 1 cm2. The narrow distribution of wire heights and

diameters obtained with the described growth method is critical to the fabrication of

efficient wire-array solar cells. As such, the Si wire arrays fabricated in this chapter

represent the key building block upon which the subsequent work in this thesis is

built.
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Chapter 3

Si Microwire Chemical Composition

3.1 Introduction

Having demonstrated the ability to fabricate arrays of vertically aligned Si microwires

using the vapor-liquid-solid (VLS) growth mechanism in Chapter 2, we turned our fo-

cus to the characterization of the wires’ chemical composition. Quantitative measure-

ment of the concentration of both impurity (e.g., VLS catalyst) and dopant species

in Si microwires allows one to understand the limits on photovoltaic efficiency im-

posed by the VLS growth mechanism and the pn-junction fabrication process. In

this chapter we use secondary ion mass spectrometry to characterize the Au catalyst

concentration within individual, VLS-grown, Si wires. For Si wires grown by chemical

vapor deposition from SiCl4 at 1000 ◦C, an upper limit on the bulk Au concentration

was observed to be 1.7 × 1016 atoms cm−3, similar to the thermodynamic equilibrium

concentration of Au in Si at the growth temperature. Additionally, we demonstrate

the ability to measure B and P concentrations > 5 × 1017 atoms cm−3. Finally, we

discuss the motivation for switching to Cu-catalyzed wire growth.

3.2 Background

Efforts to determine Au incorporation in VLS-grown, Si wires have been limited to

date, as a result of the sub-micron spatial resolution and better than part per million

chemical sensitivity required to analyze individual wires. In an attempt to meet these

stringent requirements, localized electrode atom probe (LEAP) tomography has been

used to probe the concentration of Au in 100 nm diameter Si wires grown by chemical
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vapor deposition (CVD) at 550 ◦C using SiH4 as the Si precursor.[33] However, using

LEAP tomography Perea et al. were unable to detect Au in the Si wires and were

limited to setting an upper limit on the Au concentration between 5 × 1017 and

1.5 × 1018 atoms cm−3.[34] More recently, high-angle annular dark-field (HAADF)

scanning transmission electron microscopy (STEM) has been used to spatially localize

single Au atoms within 15 nm diameter Si wires grown by CVD at 450 ◦C,[34] as well

as ∼30 nm diameter Si wires grown by molecular beam epitaxy (MBE) at 500 ◦C.[35]

SiH4 was used as the Si precursor in both reports. These HAADF STEM results

suggested that for both the CVD and MBE grown Si wires the bulk Au concentration

is considerably greater than the thermodynamic equilibrium concentration of Au in

Si at the growth temperature. Estimates of the bulk Au concentration from the

HAADF STEM results were limited by the small volume of Si sampled (only a couple

Au atoms were detected) and the correspondingly poor counting statistics.

3.3 Sample Preparation

As described in Chapter 2 and shown in Figure 3.1, high-fidelity arrays of well-aligned

Si wires were grown from patterned Au catalysts on a Si(111) wafer.[27] These wires

were then analyzed in both the axial and radial directions. To analyze the wires

radially, the wire arrays were sonicated in isopropanol to obtain a suspension of Si

wires in isopropanol. This suspension was then drop-cast onto a Ge(111) wafer to

obtain wires lying on their side. For axial analysis, wires were measured in their

as-grown vertical orientation on the growth substrate.

All axially profiled wires and some radially profiled wires were etched to remove

Au (in a manner similar to Woodruff et al.[36] and detailed in Appendix B) prior to

SIMS analysis (Fig. 3.1c). After treatment, Au was not detectable on the sidewalls or

tips of the wires by electron beam energy dispersive spectroscopy (EDS). Ellipsometry

measurements on a silicon on insulator wafer revealed that the Au etching procedure

did not etch Si.
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(c)

(a)

(b)

Figure 3.1. VLS-grown, Au-catalyzed, Si wire arrays were grown on

a Si(111) substrate from Au catalyst that had been lithographically

patterned and confined by a thermal oxide. Wires were tens of mi-

crometers in length and 2 µm in diameter and grew in the <111>

direction. (a) Tilted SEM image of a Au-etched wire array. (b)

Tilted SEM image of a single Si wire tip, prior to Au removal. (c)

Tilted SEM image of a single Si wire tip, after Au removal.
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3.4 Secondary Ion Mass Spectrometry

3.4.1 General Principles

In secondary ion mass spectrometry (SIMS), a primary ion beam is used to ionize

and sputter surface atoms from the sample, as depicted in Figure 3.2. The sputtered,

ionized surface atoms (secondary ions) are then collected and analyzed in a mass

spectrometer. To obtain accurate results, secondary ions are only collected from the

center of the area over which the primary ion beam is rastered through the process

of electronic gating (Fig 3.2a). Because it will be relevant to the discussion of the Au

surface concentration later, it is worth noting that the process of sputtering produces

an amorphized, well-mixed layer at the sample surface (Fig. 3.2b). In this work,

a Cameca NanoSIMS-50L was used for secondary ion mass spectrometry (SIMS)

analysis. The NanoSIMS-50L is a relatively new type of SIMS instrument (designed

for use in the field of geology), which has the unique ability of being able to provide

sub-micron spatial resolution.

To obtain an elements concentration (e.g., Au) from the secondary ion count rates,

a relative sensitivity factor (RSF) is required, see Eqn. (3.1).

Au Concentration = RSF (atoms cm−3)
197Au count rate
30Si count rate

(3.1)

The RSF is a function of the impurity and matrix secondary ion species sampled.

To calculate the RSF, Au, B, and P standards (Charles Evans and Associates) with

known Au, B, and P implant doses and depth profiles were used. A discussion of the

calculated RSFs is presented in Appendix B.

3.4.2 Analysis Conditions

As a result of the complex ion optics necessary to achieve sub-micron spatial resolution

in the NanoSIMS-50L, it was difficult to obtain similar beam conditions between suc-

cessive sessions on the NanoSIMS. Optimal analysis conditions used a 1 µm2 rastered

area to predominantly confine the sputtered area within the wire, as seen for a ra-
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(a)

(b)

Gated Area

Sample Rastered Area

Figure 3.2. (a) Schematic of secondary ion mass spectrometry

(SIMS) analysis technique. (b) Schematic of the sputtering process

induced by the primary ion beam.
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dially profiled wire in Figure 3.3. Electronic gating of the secondary ions was used

to further limit the area sampled to the center 0.25 µm2 of rastered area. However,

because the beam diameter has a finite size (on the order of a couple hundred nm)

some secondary ions will be collected from outside of the electronically gated area.

A discussion of the beam currents used and the resulting sample sputtering rates as

well as the differences in analysis conditions can be found in Appendix B. For all

measurements, wires were analyzed at normal incidence with a 16 keV Cs+ primary

ion beam.

(b)

(a)

7.5 μm 

Figure 3.3. SEM images of a radially profiled wire. (a) Top-down

image of an analyzed wire. (b) Top-down and side-view images of

the analysis area indicated by the black arrow in (a).
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3.5 Secondary Ion Count Rates

The measured count rates of 30Si, 74Ge, and 197Au secondary ions versus depth for a

Au-etched Si wire analyzed in the radial direction are displayed in Figure 3.4. The

point at which the sputtered depth reached the back surface of the wire was clearly

visible from the sharp rise in the 74Ge count rate and the sharp fall in the 30Si count

rate. The 197Au count rates within the bulk of the wires were often only a few counts

per second (cps), but even a 1 cps 197Au count rate is still significant compared to

the average background 197Au count rate of ∼0.01 cps.

30Si

Radial:  Au-etched Wire

Wire-
Substrate
Interface

74Ge

197Au

Figure 3.4. 30Si, 74Ge, and 197Au secondary ion count rates for a

radially profiled VLS-grown, Si wire. The vertical, grey band corre-

sponds to the Si wire / Ge substrate interface, defined as the transi-

tion region from 16% to 84% of the maximum counts for either 30Si

or 74Ge. The 30Si and 74Ge count rates are referred to the left-hand

y-axis, while the 197Au count rate is referred to the right-hand y-axis.

Two possible effects from the large sputtered depth to rastered length ratio were

observed (in traditional SIMS this ratio would be ∼1:100, whereas our analysis condi-

tions are ∼3:1). First, the measured 197Au count rate was larger at the front surface
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than the back surface of the wires. This difference in the 197Au count rate produced

the observed difference in the front and back surface Au concentrations, see below.

While the origin of the lower 197Au count rate at the back surface is unknown, we

suspect that the large aspect ratio of the sputtered crater when sampling the back

surface leads to a decreased secondary ion extraction efficiency. At the same time,

the sidewalls of the sputtered volume are likely to contribute a greater number of

secondary ions as the sputtered depth increases. Thus the measured Au concentra-

tion at the back surface is likely to have contributions from both the back surface of

the wire and the bulk of the wire. However, the difference in the 197Au count rate

(and Au concentration) at the back surface may also be related to the discontinuous

crystalline interface between the Si wire and the Ge substrate.

The second possible effect of the large sputtered depth to rastered length ratio

was the roughly two-fold increase in the measured 30Si counts as the wire was profiled

in the radial direction. The increase in 30Si counts is not well understood but may be

related to the effective increase in sputtering area as the sputtered depth increased.

Remember that the finite width and Gaussian profile of the primary ion beam will

result in the collection of some counts from outside of the electronically gated area,

and thus allow for an increase in the effective sputtering area to be observed.

3.6 Surface Au Concentration

Figure 3.5 displays the Au concentration profiles for un-etched and Au-etched, radially

profiled wires. In both cases, the Au concentration is larger near the surface than in

the bulk (center) of the wires. Comparing the un-etched and the Au-etched wires, a

large difference in both the near-surface and bulk Au concentrations was observed.

As the Au removal does not appreciably etch Si, the differences between the two Au

concentration profiles are ascribed to a difference in the amount of Au present at the

surface of the wires before and after the Au etch.

As a result of the amorphization and mixing at the sample surface during SIMS

analysis (see Fig. 3.2),[37] a Au layer residing on the sidewalls of the wires is expected
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(a)

Wire-
Substrate
Interface

Wire-
Substrate
Interface

Radial:  Au-etched WireRadial:  Un-etched Wire
(b) (c)

Figure 3.5. (a) Schematic of the radial-analysis geometry. (b) Radial

Au concentration profile of an un-etched, VLS-grown, Si wire. (c)

Radial Au concentration profile of a Au-etched, VLS-grown, Si wire.

The apparent lines in the Au concentration profile, for the Au-etched

wire, reflect the fact that integer counts per cycle time period were

observed. In b and c, the vertical, grey band corresponds to the Si

wire / Ge substrate interface.
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to produce an exponential decay in the observed Au concentration profile. This is

observed for the Au-etched wires, though a single exponential decay is less obvious

for the un-etched wires. The perturbation from a single exponential decay for the

un-etched wires is thought to arise from the use of a more diffuse primary ion beam

during analysis of the un-etched wires (confer Appendix B).

Given the evidence for the observed near-surface Au concentration arising from

Au on the sidewalls of the wires and a mechanism by which Au could be mixed to a

greater depth within the wire, it is reasonable to estimate the surface Au concentration

by integrating the Au concentration profile for the un-etched Si wire over the depth of

the near-surface region (Fig. 3.5b). Integrating from 0 to 400 nm yields an estimate

for the surface Au concentration on the order of 1 monolayer.

Further examining the observed surface Au concentration, one finds that it is

larger at the front surface than at the back surface of the wires. This difference in

the surface Au concentration seems unreasonable, given the radial symmetry of the

wires. As discussed in Section 3.5, the high-aspect ratio of the sputtered volume

when sampling the back surface of the wire may be producing this asymmetry in the

surface Au concentration. It is important to note that the elevated Au concentration

observed within the Ge wafer, seen for both un-etched and Au-etched wires, is an

artifact of the decreased 30Si count rate when sputtering the Ge wafer.

3.7 Bulk Au Concentration

3.7.1 Un-etched and Au-etched Wires

Comparing the observed bulk Au concentrations for the un-etched and Au-etched Si

wires, one notes an order of magnitude higher Au concentration for the un-etched Si

wire (Fig. 3.5b,c). Since the Au concentration profile for the un-etched wire exhibits

a nearly constant value (∼2 × 1017 atoms cm−3) between 500 and 2000 nm, the

larger bulk Au concentration observed for this wire is unlikely to be due to Au from

the sidewall of the wire that was mixed to a greater depth. Rather, it is likely that
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a small fraction of secondary ions are being collected from outside of the rastered

area. Given the high surface Au concentration, the collection of only one secondary

ion in 200 from outside of the rastered area would produce the observed bulk Au

concentration for the un-etched wire.

To obtain an estimate for the bulk Au concentration, the observed Au concen-

tration was averaged over the first half of the Au-etched wires (not including the

near-surface region), where the effects of the high-aspect ratio sputtered area should

be smallest. For the five, Au-etched, radial profiles obtained, the average Au concen-

tration within the bulk of the wire was 1.7 ± 0.7 × 1016 atoms cm−3. The internal

error of the measurement is estimated to be < 15%.† Given the high surface Au

concentration still present for the Au-etched wires and the potential to collect counts

from the sidewalls of the wires, the average bulk Au concentration is best viewed as

an upper limit.

3.7.2 Removing the Surface Au

As seen in Figure 3.6, an increased Au concentration at the surface of the wire is not

observed with the addition of a KOH etch after the Au-etch to remove ∼20 nm of the

surface Si. For the two KOH-etched wires, the average bulk Au concentrations were

1.2 × 1016 atoms cm−3 and 0.9 × 1016 atoms cm−3, demonstrating that the bulk Au

concentration is ∼1 × 1016 atoms cm−3. As before, the average was performed over

the first half of the wire. However, the un-rastered analysis conditions (Appendix B)

used to measure the KOH-etched wires resulted in a larger internal error for the bulk

Au concentration. Therefore, we believe that the Au-etched data reflects the most

conservative upper bound on the bulk Au concentration.

†The total internal error is found by taking the root of the sum of the squares of the internal

errors. The two dominant internal errors arise from the counting statistics for the 197Au secondary

ions and the measurement of the average sputtered depth on the standard.
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Radial:  KOH-etched Wire

Wire-
Substrate
Interface

Figure 3.6. Radial Au concentration profile for a KOH-etched, Au-

etched, VLS-grown Si wire. Note the observed zero Au concentra-

tion values in the Au concentration profile. The vertical, grey band

corresponds to the Si wire / Ge substrate interface, defined as the

transition region from 16% to 84% of the maximum counts for either

28Si or 74Ge.

3.8 Axial Au Concentration Profile

Figure 3.7 depicts the Au concentration profile observed when a Au-etched, Si wire

was axially profiled. For the wire shown, the observed Au concentration decreased

exponentially from 6 × 1018 atoms cm−3 at the surface to an average of 2.4 × 1016

atoms cm−3 within the bulk of the wire, while a second axially profiled wire exhibited

a surface Au concentration of 8 × 1018 atoms cm−3 and an average bulk Au concentra-

tion of 5 × 1016 atoms cm−3. As compared to the Au-etched, radially profiled wires,

the observed surface Au concentrations for the Au-etched, axially profiled wires are

a factor of 7 larger. This difference is reasonable given that the rapid cooling of the

Au-Si alloy at the wire tip produces a Au-Si region that is difficult to etch (images

not shown). In contrast, the average bulk Au concentration is expected to be simi-
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lar for both the axially and the radially profiled wires. Though the axially profiled

wires exhibited a few-fold higher bulk Au concentration, the sputtering of the wire

sidewall that occurred in the axial geometry, shown in Figure 3.7c, would be capable

of producing this difference.

(b)

(c)

(a)

Axial:  Au-etched Wire

Figure 3.7. (a) Schematic of the axial-analysis geometry. (b) Axial

Au concentration profile of a Au-etched, VLS-grown, Si wire. The

apparent lines in the Au concentration profile reflect the fact that

the detection limit was approached under our analysis conditions

and that integer counts per cycle time period must be obtained. (c)

Top-down and tilted SEM images of an axially profiled wire.
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3.9 Discussion

3.9.1 Au Surface Phase

The increased Au concentration on the sidewalls of the wires may be a result of a

Au-Si phase that is present during growth. The existence of a Au-Si phase on the

sidewalls of VLS-grown, Au-catalyzed, Si wires during growth has been suggested

previously for Si wires grown with Si2H6 as the Si precursor,[38] and Au clusters,

possibly indicators of the existence of a Au-Si surface phase, have also been found

on the surface of Si wires grown with SiH4.[39, 40] Moreover, HAADF STEM results

also revealed an increased Au concentration near the sidewalls of the wires for the

MBE grown wires, though not for the CVD grown wires.[34, 35] In our work, for the

two un-etched wires measured, the integrated amount of Au over the surface region

was on the order of 1 monolayer, which would be consistent with the existence of a

Au-Si surface phase.[41]

3.9.2 Bulk Au Concentration

Our observed upper limit on the bulk Au concentration of 1.7 × 1016 atoms cm−3 is

comparable to the 1 × 1016 atoms cm−3 thermodynamic equilibrium concentration

of Au in Si at the growth temperature of 1000 ◦C.[42] The observed upper limit

represents a chemical sensitivity to Au in Si of ∼400 ppb. For the VLS growth

method, the Au-Si phase diagram should determine the bulk Au concentration within

the Si wire provided that the diffusion kinetics are sufficiently rapid to enable the

establishment of the thermodynamic equilibrium Au concentration within the wire.

Thus, we expect the bulk Au concentration within our 2 µm diameter Si wires to be

representative of the bulk Au concentrations for Si wires ranging from tens of nm to

many µm in diameter, as long as the Au-Si phase diagram is similar across the range

of diameters and the wires are grown under our growth conditions.

In contrast, HAADF STEM results indicate a bulk Au concentration much greater

than the thermodynamic equilibrium concentration of Au in Si for Au-catalyzed, Si
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wires grown by CVD and MBE at temperatures of 450 ◦C and 500 ◦C, respectively,

using SiH4 as a Si precursor.[34, 35] While these differences can not yet be fully ex-

plained, it is possible that they are related to changes in the growth temperature

and/or the Au-Si phase diagram between the various growth conditions and wire di-

ameters. In particular, the much higher temperature of our growth conditions should

prevent kinetic effects from controlling the incorporation of the VLS-catalyst into the

Si wire at concentrations other than the thermodynamic equilibrium concentration.

3.9.3 Implications for Solar Cells - Catalyst Choice

A bulk Au concentration of 1.7 × 1016 atoms cm−3 in Si is expected to yield a

minority-carrier recombination lifetime of 3 ns, for either electrons or holes as minority

carriers.[42] In a radial-junction photovoltaic cell, with dopant concentrations of 1018

dopants cm−3 for both the n- and p-type regions, a 3 ns minority-carrier recombination

lifetime would lead to minority-carrier diffusion lengths of 1 µm for both electrons and

holes,[43] which agrees reasonably well with the 2 µm effective hole diffusion length

that has recently been observed by scanning photocurrent microscopy on similar VLS-

grown, Au-catalyzed, Si wires with ND = 1018 atoms cm−3.[44] As shown in Figure

3.8, theoretical modeling predicts that solar cells with efficiencies of 13.4% should

be possible with minority-carrier diffusion lengths of 2 µm. However, if other VLS-

catalysts are also incorporated at their thermodynamic equilibrium concentration in

Si using our growth conditions, then the use of Cu as a catalyst should result in

minority-carrier diffusion lengths of at least 10 µm,[45] enabling the possibility for

17.5% efficient solar cells.

3.10 Measuring B and P Concentrations

In addition to quantifying the Au concentration in VLS-grown, Si microwires, SIMS

measurements were made on Si microwires to demonstrate the ability to characterize

radial p-n junctions. These radial p-n junctions were fabricated by performing a P

thermal diffusion, followed by a thermal drive-in (to ensure a uniform P concentration
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Figure 3.8. Theoretically modeled solar cell efficiencies as a func-

tion of wire radius and diffusion length. Cells with the expected

minority-carrier diffusion length for Cu-catalyzed and Au-catalyzed

microwires are highlighted, assuming that the catalyst is incorpo-

rated at its thermodynamic equilibrium concentration in Si at the

growth temperature.

in the radial direction), and completed with a B thermal diffusion (to form a heavily

doped emitter).[26] As seen in Figure 3.9, the P concentration is quite uniform in

the radial direction with an average concentration of ∼8 × 1017 atoms cm−3. The

observed uniformity indicates that the thermal drive-in step is effective, and the

average P concentration is close to the desired P concentration based upon theoretical

modeling.[16] The measured B concentration is greater than the P concentration

near the front surface of the wire and well below the P concentration in the wire

bulk, indicating that the B thermal diffusion is effective. Similar to the radial Au

concentration profile, the measured B concentration at the back surface of the wire

is lower than the measured B concentration at the front surface of the wire. In

summary, these results indicate that p-n junction profiles should be resolvable using

the NanoSIMS for B and P concentrations > 5 × 1017 atoms cm−3.
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Interface

(a)

(b)

Wire-Substrate
Interface

Figure 3.9. (a) Radial P concentration profile in a Si microwire after

a thermal P diffusion and drive-in. (b) Radial B concentration profile

in a Si microwire after a thermal B diffusion.
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3.11 Conclusion

In this chapter we have shown that secondary ion mass spectrometry can be used

to quantitatively measure the bulk Au concentration in VLS-grown Si wires. The

measured bulk Au concentration is found to be in good agreement with the ther-

modynamic equilibrium concentration of Au in Si at the growth temperature. Solar

cells with efficiencies of 13.4% should be possible using Au as the VLS-catalyst, and

solar cells with markedly higher efficiencies of 17.5% should be possible using Cu as

the VLS-catalyst, assuming that Cu is also incorporated at its thermodynamic equi-

librium concentration in Si at the growth temperature. We have also shown that a

simple Au-etch was not sufficient to remove all of the surface Au, but that a KOH-

etch to remove ∼20 nm of the surface Si leads to a Au-free Si surface. Lastly, it was

shown that the NanoSIMS should be able to characterize p-n junctions with B and

P concentrations > 5 × 1017 atoms cm−3.
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Chapter 4

Doping of Si Microwires

4.1 Introduction

This chapter discusses the use of thermal diffusion and in-situ doping to control the

electrically active dopant concentrations in Si wire devices. Thermal dopant diffusion

was found to work well for producing a large dopant concentration (∼1019 cm−3) at

the wire surface, while in-situ doping with BCl3 allowed for the electrically active

dopant concentration to be varied from 8 × 1015 cm−3 to 4 × 1019 cm−3 in the as-

grown wire. In-situ doping was critical for the study of minority-carrier diffusion

lengths (Ch. 5.), and both in-situ doping and thermal dopant diffusion were essential

for the fabrication of efficient Si microwire-arrays solar cells (Ch 6.).

4.2 Background

4.2.1 Optimal Base Doping

Control of the base (wire core) electrically active dopant concentration is of particular

importance when trying to fabricate microwire solar cells with radial p-n junctions.

As shown in Figure 4.1, optimal doping of the wire base is required to avoid parasitic

recombination in the wire base. If the base doping is too low (Fig. 4.1a), the heavy

doping of the emitter (wire shell) will deplete the entire core of the wire. Because

recombination in the depletion region is higher than in the quasi-neutral region (un-

depleted regions of emitter and base), majority-carriers are now likely to recombine

before being collected at the contact at the base of the wire. (Remember that the
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wires have large wire length to wire diameter ratios, ∼1/100.) However, if the base

doping is too high (Fig. 4.1c), it can lead to a reduction of the minority-carrier dif-

fusion length to the point where photo-generated minority-carriers recombine before

reaching the p-n junction. In the case of degenerate (very high, > 1019 cm−3) base

doping, a tunnel-junction may form between the base and emitter, eliminating the

rectifying properties of the p-n junction. Thus, precise control of the base doping is

critical for ensuring an optimal base doping (Fig. 4.1b) so that undue recombination

of the photo-excited carriers does not occur.

4.2.2 Literature

Thermal diffusion doping, in-situ doping, and ion-implantation have been used to

dope Si wires.[22, 46, 47] In particular, in-situ doping has been studied using p-type

(trimethylboron and diborane) and n-type (phosphine) dopants in Si wires grown

using SiH4.[22, 48, 49] However, to the best of our knowledge, no comprehensive

doping studies have been undertaken for Si wires grown using a SiCl4 precursor.

4.3 Thermal Dopant Diffusion

Initial attempts to control the electrically active dopant concentrations in the Si wires

were made using thermal dopant diffusion. As depicted in Figure 4.2, either B or P

source wafers were placed in close proximity to Si wire arrays and then heated in a

tube furnace to a temperature between 850-950 ◦C under a stream of N2.

During the thermal diffusion, either boric oxides or phosphorous oxides were trans-

ferred to the Si wires. Upon adsorption to the Si, the boric or phosphorous oxide

decomposes, resulting in the formation of free B and P atoms and a SiOx layer. As

was shown in Figure 3.8a, this produced a thin region of doping at the wire surface.

As will be shown in Chapter 6, the creation of a n+-Si emitter through a thermal

phosphorous diffusion helped lead to the fabrication of efficient solar cells.

To create a uniform base doping, a thermal drive-in of the dopant species is

required. For B doping this requires heating the Si microwires for 5 hrs at 1100 ◦C
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Emitter

Depletion 
Region

Optimal
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Depleted 
Core

(c)

Figure 4.1. Cross-sectional schematic of carrier collec-

tion/recombination in wires with radial p-n junction where

(a) the base doping is too small, (b) the base doping is optimal, and

(c) the base doping is too large.
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Tube Furnace

Figure 4.2. Schematic of B thermal dopant diffusion.

to ensure complete diffusion of the B atoms across the radius of the wire (or 3 hrs

at 1100 ◦C for P species.) Though not desirable in a commercial process because of

the costs associated with processing steps that require high-temperatures, a thermal

drive-in is an effective method for producing a uniform base doping as was shown in

Figure 3.9a.

Finally, a schematic for the formation of a radial p-n junction via thermal diffusion

is shown below in Figure 4.3. After wire growth, the base thermal diffusion is

performed, followed by the base drive-in and then finally an emitter thermal diffusion.

Thus, it is clear that two high-temperature processing steps could be removed, if in-

situ doping during growth could be used to create a uniform base profile.
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Intrinsic Si 
Microwire

Base Diffusion Base Drive-In Emitter Diffusion

Figure 4.3. Schematic of the radial p-n junction fabrication process

using thermal dopant diffusion. Top, graphs of the net electrically

active dopant concentration.

4.4 In-Situ Doping

To evaluate the possibility of in-situ doping, BCl3 was added to the SiCl4 and H2 gas

stream during the VLS-growth of the Si microwires. Upon the addition of BCl3 no

change in wire morphology or array fidelity was observed, as seen in Figure 4.4.

By removing the wires from the growth substrate and depositing them onto a

Si wafer with an insulating Si3N4 coating,[44] photolithographic patterning could be

used to deposit Al contacts on individual Si microwires for both 2 and 4-point current-

voltage measurements, as shown in Figure 4.5.

Initial current-voltage measurements on the Si microwires grown in the presence

of BCl3 were made in a back-gated field effect transistor geometry as shown in Figure

4.6. By applying a negative bias to the n+-Si substrate, a negative charge is introduced

at the n+-Si/Si3N4 interface and a positive charge is induced at the bottom surface of

the Si microwire. For p-type Si microwires, this positive charge at the bottom surface

of the wire results in an accumulation layer of majority-carriers, thereby resulting in

a slightly decreased wire resistivity. However, when a positive bias is applied to the
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50.0 μm

Figure 4.4. SEM image of a wire array grown with in-situ BCl3

doping.

Figure 4.5. SEM image of a Si microwire with four Al contacts.
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n+-Si substrate, a negative charge is induced at the bottom surface of the wire. This

negative charge will produce a depletion layer in p-type Si microwires and result in

a slightly increased wire resistivity. As seen in Figure 4.7, this is exactly the type of

behavior we observe for Si microwires grown in the presence of BCl3.

VSource

VDrain

n+-Si Substrate

Si3N4 
Si Microwire

VApplied

Figure 4.6. Schematic of back-gated field effect transistor measure-

ment.

Figure 4.7. Voltage-current behavior of a Si microwire grown with

BCl3 in-situ doping.

Having demonstrated that the addition of BCl3 to the reactant stream resulted in
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the expected p-type behavior, four-point I-V measurements were used to measure the

wire resistance as a function of the BCl3 concentration in the gas phase. Four-point

I-V measurements, as opposed to two-point I-V measurements, were made so that

the contact resistance could be eliminated from the measured wire resistance. From

the measured wire resistance and cross-sectional area (as measured by SEM), a wire

resistivity was calculated. The wire resistivity was then used to infer the electrically

active dopant concentration.[50]

Figure 4.8 plots the electrically active dopant concentration as a function of

the BCl3 concentration in the gas phase. By varying the gas phase concentration

from 0.5 to 200 ppm, the electrically active dopant concentration could be varied

from 8 × 1015 cm−3 to 4 × 1019 cm−3. Cu-catalyzed, microwires grown without the

presence of BCl3 were not observed to pass current under reasonable biases, implying

that any electrically active dopants were present in concentrations << 1014 cm−3.

Figure 4.8. Electrically active doping concentration as a function of

BCl3 concentration in the gas phase. Error bars are the standard

error.
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4.5 Total Dopant Concentration and Electrically

Active Dopant Fraction

In addition to control of the electrically active dopant concentration, the demonstra-

tion of a high electrically active dopant fraction (electrically active dopant concen-

tration / total dopant concentration) is desirable. A low ( < 0.1) electrically active

dopant fraction is undesirable as it will lead to increased carrier recombination with-

out providing the desired electrical properties.

Initial attempts to measure the total dopant concentration were made using both

secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spec-

trometry (ICP-MS). Using SIMS an attempt was made to measure the B concentra-

tion for two different doping concentrations. However, the analysis conditions chosen

(an O− primary ion beam was used instead of the Cs+ primary ion beam in an at-

tempt to measure the Cu concentration in Cu-catalyzed wires) did not result in the

generation of enough secondary ions to quantitatively measure the B concentration.

As SIMS measurements on the Cameca NanoSIMS-50L were quite time intensive,

ICP-MS was explored as a potentially quicker method for measuring the total dopant

concentration in the wires. The challenge with ICP-MS is that it requires ∼1 mg of

sample material. While the mass of a single wire is << 1 mg, the mass of a wire array

is ∼1 mg. Because of the homogenous nature of the wire arrays, we felt comfortable

that the average total dopant concentration in the wire array would be quite close

to the total dopant concentration in a given wire. Table 4.5 reports our initial ICP-

MS findings. (The concentration of the species of interest can be calculated in one

of two ways using ICP-MS.) In agreement with the measured electrically active B

concentration, the total B concentration was observed to increase from samples 598

to 601. Additionally, the order of magnitude agreement between the measured total B

concentration and the electrically active B concentration suggests that the electrically

active dopant fraction is on the order of 1. While these results demonstrate the

promise of ICP-MS, the fact that the measured total B concentration was at times

lower than the measured electrically active B concentration is likely indicative of error
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in the ICP-MS measurement, and further development of ICP-MS sample preparation

and data collection is necessary to obtain quantitative results.

Table 4.1. Boron concentration measured by ICP-MS.

598 599 600 601

[B] calculated from semi-

quantitative analysis (cm−3)

5.0 × 1016 1.5 × 1017 4.0 × 1017 1.3 × 1018

[B] calculated from concentra-

tion standards and sample mass

(cm−3)

2.2 × 1017 5.0 × 1017 1.3 × 1018 4.0 × 1018

NA (cm−3) 4.0 × 1016 6.7 × 1017 2.8 × 1018 1.0 × 1019

4.6 Electrically Active B Concentration in Ni-Catalyzed

Wires

The use of BCl3 as an in-situ dopant was also studied for Si wires grown from a Ni-

catalyst.[51] The Ni-catalyzed, Si wires were grown under the same growth conditions

as the Cu-catalyzed, Si wires, and the preparation of single wire devices for electrical

characterization (wire placement onto a Si wafer with an insulating coating, followed

by photolithography, contact deposition and contact annealing) was also the same.

However, unlike for the Cu-catalyzed wires, four point current-voltage measurements

were only linear (and therefore meaningful) for the most heavily doped wires. For

the most heavily doped, Ni-catalyzed wire an electrically active B concentration of

4 × 1017 cm−3 was inferred.

The non-linearity of the of four-point current-voltage measurements for the more

lightly doped Ni-catalyzed wires suggests that the contact resistance to these wires

was quite high. As seen in Figure 4.9, two point current-voltage measurements were

roughly linear but exhibited no trend with increasing dopant concentration (except
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for the Ni-catalyzed wires grown under the highest BCl3 concentration, which ex-

hibited a significantly decreased resistance as expected), suggesting that the contact

resistance was large and that it dominated the measured resistance. Modifications to

the contact fabrication procedure (chemical etching prior to metal deposition, contact

anneals of increased temperature and time) were made in an attempt to reduce the

contact resistance, but no appreciable change in the measured resistances was ob-

served. Though we do not know for sure, we suspect that the observed large contact

resistances arose from a low electrically active B concentration in the wires (it can be

quite difficult to obtain low resistance contacts to lightly doped, < 1015 cm−3, Si). If

so this poses the curious question as to why the electrically active B concentration

increased so dramatically between 10 and 45 ppm of BCl3 in the gas phase. One

possible explanation is that the Ni-Si alloy (the catalyst phase may actually be a Ni-

silicide) acts as a B sink. Thus, the B concentration in the wire remains low/negligible

until the B sink is saturated, at which point B enters the wire as expected. If so,

this would indicate that it could be quite difficult to control the electrically active B

concentration in Ni-catalyzed Si wires below ∼ 4 × 1017 cm−3.
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Figure 4.9. Resistance of Ni-catalyzed Si wires as a function of the

BCl3 concentration in the gas phase. Error bars are the standard

error.

4.7 Conclusion

In this chapter we have demonstrated the ability to controllably dope Si wires. Thru

the combination of BCl3 in-situ doping to moderately dope the as grown Si wires and

a post-growth thermal phosphorous diffusion to create a heavily doped wire shell, the

fabrication of radial p-n junctions is now possible.
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Chapter 5

Minority-Carrier Diffusion Lengths in

Cu-Catalyzed Si Wires

5.1 Introduction

With the ability to control the active doping concentration in Cu-catalyzed, Si mi-

crowires (Ch. 4), we turned our attention to the fabrication of devices that would

allow us to study the minority-carrier diffusion length. As alluded to in section 3.9.2,

the minority-carrier diffusion length is a critical indicator of material quality and plays

a significant role in determining photovoltaic performance. To measure the minority-

carrier diffusion length, scanning photocurrent microscopy measurements were made

on single wire devices exhibiting rectifying behavior. In dark, ambient conditions, the

effective minority-carrier diffusion length (Ln,eff ) was limited by surface recombina-

tion to a value of ≤ 0.7 µm. However, a value of Ln,eff = 10.5 ± 1 µm was measured

under broad area illumination (low-level injection conditions). The minority-carrier

diffusion length observed under broad-area illumination is consistent with filling of

the surface states of the Si wires by photogenerated carriers and has important impli-

cations for the design of high-efficiency solar cells from arrays of Si wires synthesized

by the VLS-growth method.

5.2 Background

Kelzenberg et al. measured minority-carrier diffusion lengths from 2 µm to 4 µm in

900 nm diameter, Au-catalyzed, Si wires.[44] These values are considerably smaller
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than the diffusion length in high-purity bulk Si. However, they are in good agreement

with the minority-carrier diffusion length expected for Si with a Au concentration of

1.7 × 1016 cm−3, the measured Au concentration in the Si wires, see Chapter 3. (Au

is a highly effective recombination center in bulk Si.) As discussed in Chapter 3, the

measured Au concentration in the Si wires is in good agreement with the thermody-

namic equilibrium concentration of Au in Si at the growth temperature of 1000 ◦C.

Assuming that the Cu concentration in the Si wire is also at its thermodynamic equi-

librium concentration in Si at the growth temperature, Cu-catalyzed Si wires would

be expected to exhibit bulk minority-carrier diffusion lengths of ∼20 µm.[45] Thus,

by switching from the use of a Au VLS-catalyst to a Cu VLS-catalyst, we hope to

see a significant enhancement in the bulk minority-carrier diffusion length.

5.3 Scanning Photocurrent Microscopy

As depicted in Figure 5.1, scanning photocurrent microscopy (SPCM) produces a

map of a wire’s local photocurrent response by scanning the wire beneath a focused

illumination source while the photocurrent is measured. For wires with a rectify-

ing junction and sufficiently high doping, such that the minority-carrier transport

is dominated by carrier diffusion and not carrier drift, the minority-carrier diffusion

length can be extracted using Eqn. (5.1), where (xJxn-x) is the distance between the

rectifying contact and the laser illumination.[50]

Jph ∝ e
−(xJxn−x)

Ln,eff (5.1)

5.4 Diode Fabrication

Having demonstrated the ability to selectively place metal contacts on the Si wires,[44]

we felt that the most direct route to obtaining Si microwires with rectifying behavior

would be to form one Ohmic metal contact and one rectifying metal contact through

the use of a two-step photolithography process. Though the scientific literature sug-
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Confocal Laser 
Illumination

x

y

Figure 5.1. In scanning photocurrent microscopy, the short-circuit

current is measured as the sample (the wire) is rastered beneath a

confocally focused laser beam.

gests that a few metals (Ca, Cr, Mg, and Ti) should exhibit barrier-heights > 0.6

eV to p-Si,[50] the fabrication of good rectifying devices proved difficult in practice.

However, thoroughly scanning the literature revealed the use of Al metal-insulator-

silicon (MIS) contacts as rectifying junctions in silicon solar cells.[52] In these solar

cells, the use of a thin layer (3-9 nm) of SiO2 (either native or thermally grown)

between p-Si and Al resulted in rectifying contacts with ideality factors of 1.4.

As described in Ch. 2 and Ch. 4, Cu-catalyzed Si wires were grown at 1000

◦C and 1 atm from a 500:10 sccm gaseous H2:SiCl4 stream using BCl3 to in-situ

dope the wires. Four-point probe measurements of the wires studied in this chap-

ter indicated that the wires were p-type with a resistivity of 0.19 ± 0.02 Ω cm.

This value corresponds to an acceptor concentration, NA, of (1.05 ± 0.15) × 1017

cm−3, assuming a bulk hole mobility (3.1 × 102 cm2 V−1 s−1) for Si. Prior to

SPCM characterization, a 5:1:1 (by volume) mixture of deionized H2O (18 MΩ cm

resistivity):NH4OH(29%):H2O2(30%) (RCA1) was used to remove any organic con-
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tamination, and a 6:1:1 (by volume) mixture of deionized H2O:HCl(37%):H2O2 (RCA2)

was used to remove residual Cu. The chemical/native oxide was then removed by

etching the wires for 15 s in Buffer HF Improved (Transene Inc.). A native oxide was

then grown on the wires by exposing them to atmosphere for 3.5 days.

The Si wires were then removed from the growth substrate and dispersed onto a

Si3N4-coated Si(100) wafer. A two-step photolithography process was used to pattern

an Ohmic and a rectifying contact onto individual Si wires. Rectifying contacts were

formed by sputtering Al onto the native oxide of the p-Si wires. Ohmic contacts were

formed by sputtering Al (with 1% Si) onto the p-Si wires, after a 15 s etch in Buffer

HF Improved, to remove the native oxide. After contact deposition, a contact anneal

was performed at 300 ◦C for 10 min in forming gas (5% H2 in N2).

Figure 5.2 illustrates the observed rectifying behavior for a device with an ideality

factor of 1.8 and an effective barrier height of 0.6 eV. Ideality factors ranged from 1.4

to 3.1, and the effective barrier height ranged from 0.4 to 0.7 eV. The inset of Fig. 5.2

displays an optical microscope image of the device. The bright spot near the center

of the wire corresponds to the area illuminated by the laser. The other two spots are

artifacts that arose from reflections in the microscope optics.

5.5 Minority-Carrier Diffusion Lengths

5.5.1 Measurement Conditions

SPCM measurements were made using a WiTec scanning near-field optical microscope

(SNOM) in confocal mode. Local illumination was provided by a 650 nm laser that

was chopped at 30 Hz to allow for the use of a lock-in amplifier and focused through

a 20x objective to produce a diffraction-limited spot-size of 0.4 µm. Broad-area

illumination was provided by the microscope light (color temperature = 3200 K). By

using a photodiode to measure the illumination power density, the carrier generation

density for both illumination sources was calculated to be a factor of 40 less than the

equilibrium hole concentration of 1.0 × 1017 cm−3, thus satisfying the requirement for
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Figure 5.2. Current-voltage sweep of a 2.0 µm diameter Si wire

device. Inset, optical microscope image of the measured device; the

Ohmic contact is on the left and the Al MIS contact is on the right.

The laser illumination spot can be seen in the center of the wire.

low-level-injection (LLI) illumination conditions (see Appendix C). The photocurrent

from the MIS rectifying contact was detected by a pre-amplifier connected to a lock-in

amplifier.[44] For measurements at an applied bias, the Ohmic contact was connected

to a DC voltage source.

5.5.2 Photocurrent Response

Figure 5.3 provides (a) an SEM image of and (b-d) zero-bias SPCM images for the

devices from 5.2. In the dark (Fig. 5.3b), a small photocurrent (note respective scale-

bars) was observed along the wire, as well as on the MIS rectifying contact in the

regions immediately above and below the wire. The photocurrent above and below

the wire on the MIS contact is believed to arise from an optically thin coating of

Al along the sidewall of the wire that formed as a result of the directional nature

of sputtering and the large ratio of the wire diameter to the thickness of the con-

tact. Under broad-area illumination (Fig. 5.3c), a much larger signal, that extended
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greater than half the length of the device, was observed. Interestingly, a photocurrent

response comparable to the one observed under broad-area illumination was observed

for dark measurements made immediately after exposure to broad-area illumination

(Fig. 5.3d).

Figure 5.3. (a) SEM image of the device of Fig.5.2. (b) Scanning

photocurrent microscopy (SPCM) image of the device measured in

the dark. (c) SPCM image of the device measured under low-level-

injection, broad-area illumination. (d) SPCM image of the device

measured in the dark for a measurement started ∼5 s after exposure

to broad-area illumination.

To further characterize the observed transient surface passivation of Figure 5.3d,

photocurrent measurements were made in the dark 0 min, 10 min, 20 min and 65

min after exposure to the broad-area illumination, as shown in Figure 5.4. Note that

in Fig. 5.4 the scale bars are all the same, unlike in Fig. 5.3. The time-dependent

decay in the dark photocurrent response was clearly evident. Similarly, the observed

increase in photocurrent-response with broad-area illumination is not instantaneous
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(data not shown.) The measurement time for a single SPCM image was 4 min and

14 s.

a)

b)

c)

d)

3.3 nA

3.3 nA

3.3 nA

3.3 nA

0.00 nA

0.00 nA

0.00 nA

0.00 nA

Figure 5.4. Dark SPCM images (a) 0 min (b) 10 min (c) 20 min and

(d) 65 min after exposure to broad-area illumination. Note that (d)

is shifted to the right as a result of imperfect attempts to center the

device after a slow stage drift. Also note that the photocurrent scale

bars are the same, unlike in Fig. 5.3.

The larger amplitude of the photocurrent and the increased distance over which

photocurrent was observed are indicative of a larger effective electron minority-carrier

diffusion length, Ln,eff , under broad-area illumination than in the dark. Because

of the observed long time decay in Ln,eff (time scale of minutes) after removal of

the broad-area illumination, we assume that an improvement in surface passivation

produces the observed increase in Ln,eff with broad-area illumination. An increase in

Ln,eff , as a result of an increase in the bulk lifetime, would be expected to decay on

the time scale of the minority-carrier lifetime (10100 ns.) A proposed mechanism for
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the observed surface passivation under broad-area illumination is presented in section

5.6.

5.5.3 Extracted Minority-Carrier Diffusion Lengths

Figure 5.5 displays photocurrent cross-sections of the SPCM images along the length

of the wire, as a function of the bias voltage applied to the Ohmic contact. These

data allowed calculation of values of Ln,eff based upon the expected relationship for

diffusion-limited minority-carrier transport in the quasi-neutral region, as detailed

in Eqn. (5.1). Under broad area illumination, the best-performing individual device

exhibited a value of Ln,eff = 9.5 ± 0.2 µm for photocurrent cross-sections along the

center of the wire and a value of Ln,eff = 11.5± 0.2 µm for photocurrent cross-sections

along the sidewall of the wire (Fig 5.3c, see Appendix C), producing an average Ln,eff

of 10.5 ± 1 µm for this sample. Measurements in the dark yielded Ln,eff ≤ 0.7 µm.

The value of Ln,eff measured in the dark is an upper bound for the actual value of

Ln,eff under these conditions, because the photocurrent variation produced by the

Gaussian profile of the laser beam is significant for such small diffusion lengths. Four

other devices yielded Ln,eff values under illumination of 4, 5, 6 and >7 µm, with the

latter value limited by the contact-to-contact spacing in the devices under study. The

observed variation of Ln,eff is not surprising based on the proposed surface passivation

mechanism. The highest measured value of 10.5 µm can thus be taken as a lower

bound on the true bulk minority-carrier diffusion length of such wires. Measurements

made at both forward and reverse bias, as well as zero-bias photovoltaic collection

conditions, confirmed that the measured effective minority-carrier diffusion lengths

were independent of bias, and thus rule out significant contributions from drift current

to the Ln,eff measurements.

5.6 Proposed Surface Passivation Mechanism

The photo-injection of electrons into the oxide (oxide trapped charge)[53] could pro-

duce a decrease in the surface recombination velocity, S, and is consistent with the long
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(a)

(b)

Figure 5.5. Photocurrent cross-sections along the length of the wire,

as a function of the bias voltage applied to the Ohmic contact. (a)

Measured in the dark, (b) and measured under low-level-injection,

broad-area illumination. In both (a) and (b) the zero-bias fit is

shown as a dashed black line and is used to calculate effective elec-

tron minority-carrier diffusion lengths, Ln,eff , of < 0.7 µm and 9.7

µm, respectively.
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time decay in Ln,eff . Figure 5.6a depicts the expected band structure for p-Si coated

with a native oxide that contains positive fixed oxide charge. The presence of positive

fixed oxide charge, which is well known to exist in SiO2,[54, 55] will introduce nega-

tive surface band bending. This band-bending will result in a large minority-carrier

surface concentration and hence produce a high surface-recombination velocity. How-

ever, the photo-injection of electrons into the oxide could balance the positive fixed

oxide charge, thereby reducing the negative surface band bending and decreasing S.

(Fig. 5.6b). A long time scale (time scale of minutes) for electrons to tunnel out

of an oxide[56] is consistent with observed the long time decay in Ln,eff under the

proposed surface passivation mechanism.

(a) (b)

Figure 5.6. (a) Schematic illustration of the proposed band-diagram

in the dark. (b) Schematic diagram of the proposed band-diagram

under broad-area illumination.

5.7 Surface Recombination Velocity

The Ln,eff in a cylindrical geometry can be calculated as a function of the surface

recombination velocity (SRV) and bulk minority-carrier diffusion length using the

method reported by Allen and developed by Daiminger.[34, 57] Figure 5.7 displays the

calculated Ln,eff for a 2.0 µm diameter, p-Si wire with an active doping concentration
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of 1.0 × 1017 cm−3, as a function of SRV and bulk minority-carrier diffusion length.

Ln,eff is observed to depend sensitively on the SRV for 2.0 µm diameter Si wires with

bulk minority-carrier diffusion lengths > 10 µm.

Figure 5.7. Calculated Ln,eff in 2.0 µm diameter p-Si wires with a

doping of 1.0 × 1017 cm−3 plotted against the surface recombination

velocity (SRV) and the bulk minority-carrier diffusion length, Ln.

As can be seen from Table 5.7, bounds of S ≤ 9 × 102 cm s−1 under broad-area

illumination and S ≥ 3 × 105 cm s−1 in the dark can be estimated from the measured

values of Ln,eff for the best-performing device, assuming a bulk diffusion length of 20

µm.[34, 58]

5.8 Discussion

5.8.1 Bulk Minority-Carrier Diffusion Length

The bulk minority-carrier electron diffusion length is 20 µm for p-Si that contains

the thermodynamic equilibrium concentration (1017 atoms cm−3) for Cu in Si at

1000◦C.[45] Hence, the Ln,eff measured for our Cu-catalyzed Si wires may still be

limited by surface recombination and/or by the presence of other impurities in the

bulk of the Si wires.

Since the time of this work, we have shown that Ln,eff >> 30 µm (and corre-

spondingly the bulk minority-carrier diffusion length >> 30 µm) are possible using
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Table 5.1. Calculated Ln,eff in 2.0 µm diameter p-Si wires with

a doping of 1.0 × 1017 cm−3 for values of the surface recombina-

tion velocity (SRV) from 10 to 106 cm s−1 assuming a 20 µm bulk

minority-carrier diffusion length, Ln.

SRV (cm/s) Bulk Ln (µm) Ln,eff (µm) SRV (cm/s) Bulk Ln (µm) Ln,eff (µm)

10 20 20 10000 20 3.3

25 20 19 25000 20 2.1

100 20 17 50000 20 1.5

250 20 14 100000 20 1.1

500 20 12 250000 20 0.76

1000 20 9.3 500000 20 0.60

2500 20 6.3 1000000 20 0.51

an a-SiNx:H layer to passivate the surface of the wires.[59]

5.8.2 Interface Trap Density

From the value of S measured in the dark, the Si-SiO2 interface trap density can

be estimated to exceed 3 × 1013 cm−2, assuming reasonable values of the thermal

velocity (νth = 107 cm s−1) and of the trap capture cross-section (σ =10−15 cm2) (Dit

= 1/(S σ νth)). This is a large interface trap density, but is comparable with previous

results[34] and is much smaller than the surface density of Si atoms.

5.8.3 Implications for Solar Cells Catalyst Choice

Achievement of Ln,eff = 10.5 µm in Si microwires grown from a low-cost Si precursor

is a significant result for Si wire array photovoltaics. Semiconductor device transport

models suggest that single-wire solar cells with a Si wire diameter of 5.8 µm, a wire

length of 103 µm, and a base doping concentration of 6 × 1017 cm−3 should be able

to produce Air Mass 1.5 efficiencies of η =17.5%.[16] As a means for comparison, the

optimized design parameters for a single-wire solar cell with an Ln,eff = 2 µm are a
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wire diameter of 1.7 µm, a wire length of 46 µm, and a base doping concentration of

1018 cm−3, yielding a cell with a predicted efficiency of η =13.4%.[16]

Additionally, concurrent to the work presented in this chapter, we have used Cu-

catalyzed, Si wire arrays (in-situ doped with BCl3) to demonstrate internal quantum

yields of at least 0.7 in a photoelectrochemical cell.[60] Internal quantum yields ¿ 0.7

further demonstrate the possibility to fabricate an efficient Si microwire-array solar

cell.

5.9 Conclusion

In this chapter we have demonstrated that Cu-catalyzed, Si microwires, in-situ doped

with BCl3, can exhibit effective minority-carrier diffusion lengths of 10.5 µm. This

result indicates that solar cells with efficiencies of at least 17.5% should be possible.

With this knowledge, we can now turn our attention to the fabrication steps necessary

to realize a solid-state, Si microwire-array solar cell.
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Chapter 6

Si Microwire-Array Solar Cells

6.1 Introduction

The work presented in this chapter is the culmination of work by myself and others

to develop an efficient Si microwire-array solar cell. In particular, I would like to

acknowledge work by Michael Kelzenberg that demonstrated the use of light-trapping

elements for enhanced optical absorption in Si microwire arrays,[15] which guided the

development of solid-state Si microwire-array solar cells of an advanced design, as

presented in this chapter.

In this chapter we will discuss the design, fabrication, and characterization of Si

microwire-array solar cells with Air Mass 1.5 Global conversion efficiencies of up to

η = 7.9%. These solar cells exhibited open-circuit voltages of 500 mV, short-circuit

current densities (Jsc) of up to 24 mA cm−2, and fill factors > 65%, and had Al2O3

dielectric particles that scattered light incident in the space between the wires, a Ag

back reflector that prevented the escape of incident illumination from the back surface

of the solar cell, and an a-SiNx:H passivation/antireflection layer. Wire-array solar

cells without some or all of these design features were also fabricated to demonstrate

the importance of the light-trapping elements in achieving a high Jsc. Scanning

photocurrent microscopy images of the microwire-array solar cells revealed that the

higher Jsc of the most advanced cell design resulted from an increased absorption

of light incident in the space between the wires. Spectral response measurements

further revealed that solar cells with light-trapping elements exhibited improved red

and infrared response as compared to solar cells without light-trapping elements.
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6.2 Background

Wire solar cells have been fabricated using c-Si,[26, 44, 61, 62, 63, 64, 65, 66, 67, 68, 69]

amorphous-Si,[70] GaAs,[71] III-Nitrides,[72] and InP,[73] via a variety of growth tech-

niques, including VLS growth,[26, 44, 61, 62, 63, 64, 65, 66, 69] metal-catalyzed

chemical etching,[67, 70] molecular beam epitaxy,[71] metal-organic chemical vapor

deposition,[72, 73] and deep reactive-ion-etching.[68] In particular, the VLS growth

method offers a materials-efficient and scalable route for the synthesis of semicon-

ducting wires. However, the efficiencies of VLS-grown, c-Si, single-wire[44, 64, 66]

and wire-array[26, 61, 62, 63, 65, 69] solar cells, up to 3.4%[64] and 1.8%[65] respec-

tively, have fallen short of the ∼15% photovoltaic efficiency predicted from simple

considerations.[13, 57] In particular these solar cells have failed to demonstrate open-

circuit voltages (Voc) in excess of 300 mV, possibly indicative of significant recombi-

nation within the depletion region and/or at the surfaces of the cells.[13, 63, 74]

6.3 Device Design

6.3.1 p-n Junction Design

Before delving into the process of device fabrication, there are two points with regards

to device design that are worth mentioning. The first point relates to the design of

the p-n junction. Figure 6.1 depicts the most straightforward p-n junction design:

a continuous emitter that extends throughout the length of the wire and across the

growth substrate. This type of junction could be readily achieved through a single

thermal diffusion doping of the p-Si wire arrays. However, given the long ( >> 30 µm)

minority-carrier diffusion lengths reported in passivated Si microwires,[59] it is likely

that the simplicity of this design will impose a larger p-n junction area than the p-n

junction area necessary to ensure the complete collection of the photoexcited carriers.

Because the dark saturation current (Jo) scales with junction area and because the

Voc logarithmically decreases with increasing Jo, see Eqn. (6.1), the effect of the

additional junction area will be to reduce the Voc.

72



Voc =
kT

q
ln
JL
Jo

(6.1)

Continuous
n+-Si Emitter

p-Si Core

Figure 6.1. Continuous emitter geometry in a wire-array solar cell.

While a decreased Voc is not optimal, a larger concern with the continuous emitter

design arises when one considers the fabrication of Si wire-array solar cells that have

been removed from the growth substrate. For wire-arrays with continuous emitters,

both the p and n regions of the solar cell will be exposed at the base of the wire-

array. Consequently, making a back contact without shorting the p-n junction will be

difficult. (The back contact would have to make an Ohmic contact to the p-region,

while making a rectifying contact to the n-region under 0.5-0.6 V forward-bias.)

Thus, to avoid a reduced Voc and the possibility for a short at the back contact,

we developed a photolithography-free process for the fabrication of p-n junctions

extending across an arbitrary length of the wires, as will be discussed in section 6.4.3.

6.3.2 Contacting Strategies

The second design point worth mentioning is the fabrication of a contact to the n+-Si

emitter. Two separate designs were considered for contacting the n+-Si emitter. The

first design employed a transparent conducting oxide (TCO) to electrically contact
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each wire, as shown in Figure 6.2a. The second design utilized an Al film to electrically

contact each wire and serve as a back reflector, as shown in Figure 6.2b. In addition

to serving as a back reflector, the embedded Al contact is promising because of its

potential for reduced shadowing loses. In comparison, a TCO layer is only expected

to transmit ∼90% of the solar spectrum and would require a metallic top contact grid

covering ∼5% of the cell area (not shown in Fig. 6.2a) to keep the cell series resistance

below an acceptable level (∼0.5 Ω cm2.) Though good progress was made towards

realizing the embedded Al contact (Appendix D), the more straightforward TCO

design was demonstrated first and used to explore the more fundamental challenges

for the fabrication of efficient Si microwire-array solar cells, namely the incorporation

of light-trapping elements in a solid-state device.

6.4 Device Fabrication

6.4.1 As-Grown, Scatterer, and PRS Cell Types

Three different types of Si microwire solar cells were fabricated. The As-Grown cell

contained no light trapping elements or surface passivation. The Scatterer cell incor-

porated light-scattering Al2O3 particles (nominally 80 nm in diameter) in-between

the wires. The PRS cell utilized an a-SiNx:H passivation layer to minimize surface

recombination and serve as an anti-reflection coating, a Ag back reflector to prevent

the loss of incident illumination into the growth substrate, and Al2O3 particles to

scatter light incident between the Si microwires.

The As-Grown cell was fabricated in the following manner: growth of wire arrays

(section 6.4.2); definition of the p-n junction (section 6.4.3); dielectric infill of the wire

arrays (section 6.4.7); and deposition of a transparent conducting oxide (section 6.4.8).

For the Scatterer solar cell, the same process was followed, except that inclusion of

Al2O3 particles (section 6.4.4) occurred prior to the dielectric infill of the wire arrays

(section 6.4.7). For the PRS cell, the deposition of an a-SiNx:H layer (section 6.4.5),

followed by the fabrication of a Ag back reflector (section 6.4.6) was performed prior
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TCO Top Contact

Transparent
Dielectric

Embedded Al
Contact

Transparent
Dielectric

(b)

(a)

Figure 6.2. (a) Schematic of a wire array solar cell employing a

transparent conductive oxide (TCO) as a transparent top contact.

(b) Schematic of a wire array solar cell employing an Al film em-

bedded near the base of the wire array, which functions as both a

contact to the n+-Si emitter and as a back reflector.

to the inclusion of the Al2O3 particles (section 6.4.4). The details of these fabrication

steps can be found in Appendix D.

6.4.2 Starting Material

Square-tiled arrays of vertically aligned Si microwires (2-3 µm in diameter on a 7

µm pitch) were grown on p++ (resistivity, ρ, < 0.001 Ω cm) Si(111) wafers using the

VLS growth method, as described previously.[27] P-type doping of the Si microwires

was achieved during growth using BCl3 as a gaseous dopant source.[75] Four-point

electrical measurements performed on individual Si wires from arrays grown under
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nominally identical growth conditions indicated that the wires were p-type with ρ =

0.05 Ω cm, which corresponds to an electrically active dopant concentration (NA) of

7 × 1017 cm−3, assuming a bulk hole mobility of 1.8 × 102 cm2 V−1 s−1 for Si.

6.4.3 p-n Junction

As illustrated in Figure 6.3, a simple and photolithography-free p-n junction fabrica-

tion process was developed that allowed for p-n junctions to extend across an arbitrary

length of the wires. First, the as-grown wire arrays (Fig. 6.3a) were chemically etched

to remove the Cu-catalyst and to remove a thin layer (∼50 nm) of surface Si. A 200

nm-thick thermal oxide was then grown, which was followed by the deposition of a

polydimethylsiloxane (PDMS) layer at the bases of the microwires (Fig. 6.3b). The

thermal oxide was then selectively removed in a hydrofluoric acid (HF) solution (aq.)

using the PDMS layer as an etch barrier for the thermal oxide located at the bases

of the microwires (Fig. 6.3c). After removal of the PDMS,[76] radial p-n junctions

were formed in the upper region of the Si microwires during a thermal phosphorous

diffusion, while the thermal oxide functioned as a phosphorous diffusion barrier for

the lower region of the wires (Fig. 6.3d).

Figure 6.4 displays cross-sectional scanning electron microscope (SEM) images of

a wire array after p-n junction formation. As seen in Figure 6.4a, the height of the

thermal oxide (and thus the extent of the radial p-n junction) was uniform across the

wire array. Figure 6.4b demonstrates the abrupt removal of the thermal oxide that

can be obtained with this junction fabrication method. Spreading resistance analysis

of planar controls revealed the phosphorous diffusion depth to be ∼80 nm, as shown

in Figure 6.5.
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(d)(c)

(b)(a)

p-Si Wire

Cu-
Catalyst

Diffused
Emitter (n-Si)

Oxide
Removed

PDMS

Thermal
Oxide

Figure 6.3. Schematic of the radial p-n junction fabrication process.

(a) VLS-grown, p-Si microwire array. (b) Microwire array after cat-

alyst removal, growth of a thermal oxide and deposition of a PDMS

layer. (c) Removal of the unprotected thermal oxide. (d) Removal

of the PDMS and subsequent phosphorous diffusion to complete the

fabrication of a radial p-n junction.
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p-n Junction

Thermal Oxide

3 μm

(b)

(a)

Figure 6.4. Cross-sectional SEM images of a Si microwire array after

radial p-n junction formation. (a) Low-magnification SEM image.

Inset, top-down SEM image of the same Si microwire array. (b)

High-magnification SEM image of the region where the thermal oxide

ends and the radial p-n junction begins.
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Figure 6.5. Phosphorous diffusion profile for a 10 min diffusion at

850◦C as measured by spreading resistance analysis on a planar sam-

ple.

6.4.4 Al2O3 Scattering Particles

For the Scatterer and PRS solar cells, Al2O3 scattering particles were incorporated by

centrifuging a dispersion of Al2O3 particles in ethanol onto a wire array, as depicted

in Figure 6.6a. Al2O3 scattering particles accumulated primarily at the base of the

wire array, however some also collected along the wire sidewalls and at the wire tips

(Fig. 6.6b.)

6.4.5 a-SiNx:H Passivation/Antireflection

For the PRS solar cells, the thermal oxide was completely removed after the phospho-

rous diffusion. An a-SiNx:H passivation/antireflection layer was then deposited using

79



10 μm 2 μm

(b)(a)

Figure 6.6. (a) Schematic of Al2O3 particle incorporation. (b) SEM

image of a wire array after incorporation of Al2O3 scattering parti-

cles. Inset, high magnification SEM image of wire tips.

plasma enhanced chemical vapor deposition (PECVD), as described previously.[15]

The a-SiNx:H layer conformally coated the wires and substrate prior to selective re-

moval of the a-SiNx:H from the tips of the wires using hydrofluoric acid (HF) aq.,

as shown in Fig. 6.7. The bright tip is the c-Si wire, while the darker base is the

a-SiNx:H-coated c-Si wire. The difference in the extent of the exposed tip relates

to variations in the wire height and variations in the height of the mounting wax

etch barrier (removed prior to imaging.) Removal of the a-SiNx:H allowed for the

transparent conducting oxide to form an Ohmic contact the n-Si emitter.

Figure 6.7. SEM image of a wire array after selective removal of

a-SiNx:H from the wire tips.
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6.4.6 Ag Back Reflector Fabrication

Figure 6.8 provides SEM images that document the fabrication of the Ag back reflector

in the PRS solar cell after a-SiNx:H deposition, but prior to Al2O3 incorporation.

Following two 500 nm Ag evaporations, Ag uniformly coated the substrate and the

wire sidewalls (Fig. 6.8a). PDMS was then deposited and continuously coated the

Ag-coated substrate (Fig. 6.8a,b). (Because the SEM images shown are from the edge

of a wire array, the PDMS is thinner than in the center of the wire array and there

exists a small area at the immediate wafer edge where no PDMS coating exists.) A Ag

etch was then used to remove any Ag that was not protected by the PDMS film at the

base of the wire array (Fig. 6.8b). After PRS cell fabrication, the PDMS-protected

Ag back reflector was revealed by cell cross sectioning (Fig. 6.8c).

6.4.7 Transparent Dielectric

Four different materials were considered for use as a dielectric infill and structural sup-

port. As the selection of a dielectric infill provided considerable insight into the future

design of Si microwire-array solar cells, especially the design of flexible Si microwire-

array solar cells, a discussion of the different materials examined is provided in Ap-

pendix D. Ultimately mounting wax (a transparent, non-conducting, thermoplastic

polymer) was selected for its ability to provide a sufficiently firm surface as to prevent

fracture of the transparent conducting oxide during contact with an electrical probe

tip. By melting mounting wax into the wire array, a uniform infill of mounting wax

at the height of the wire tips could be obtained, as seen in Figure 6.9. The one minor

issue with mounting wax was that it cracked upon cooling (Fig. 6.9 inset), (These

cracks closely resembled the cracks found in dried mud.) By reducing the cooling rate

the density of cracks could be sufficiently reduced to the point where fabricated cells

did not contain cracks. Prior to TCO deposition, an O2 plasma was used to remove

5-15 µm of wax to ensure that all of the wire tips were exposed and free of wax (Fig.

6.9b).
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PDMS

PDMSAg

Ag

PDMS

(c)

(b)

(a)

Figure 6.8. Tilted scanning electron microscope (SEM) images illus-

trating the fabrication of a Ag back reflector. (a) SEM image post Ag

and protective polydimethylsiloxane (PDMS) deposition. (b) SEM

image of the wire array from (a) after a Ag-etch. (c) Cross-sectional

SEM image of a PRS microwire solar cell.
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20 μm

10 μm

20 μm

(b)

(a)

Figure 6.9. (a) SEM image of a wire array infilled with mounting

wax. Inset, a small density of cracks in the mounting wax was ob-

served. (b) SEM image of a wire array after removing a few microns

of mounting wax with an O2 plasma.
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6.4.8 Transparent Conducting Oxide

Indium tin oxide (ITO) was chosen as the transparent conducting oxide to contact the

n+-Si emitter because of its excellent optical transmission and electrical conductivity.

A 120-150 nm-thick ITO layer (ρ ∼7 × 10−4 Ω cm) was sputtered through square

openings in a shadow mask (270 µm on a side) to form a top contact and to define

the area of the solar cells, as shown in Figure 6.10.

(b)

(a)

5 μm

100 μm

Figure 6.10. (a) SEM image of a wire array infilled with mounting

wax and coated with a 150 nm-thick ITO layer. (b) Cross-sectional

SEM image revealing the ITO layer on top of the mounting wax, as

indicated by the black arrow.
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Figure 6.11 plots the transmission as a function of wavelength for a glass coverslip

with a 150 nm-thick indium tin oxide (ITO) layer. For wavelengths > 700 nm,

strong oscillations in transmission were observed. Nearly identical oscillations in the

transmission as function of wavelength were observed for a glass coverslip without an

ITO coating. Thus, the oscillations are attributed to Fabry-Pérot interferences that

arise from the thin nature of the glass coverslip. Applying a 5 nm running average,

transmission through the ITO was found to be > 80% for wavelengths > 500 nm,

and monotonically increasing from 65% to 80% between 400 and 500 nm.

Figure 6.11. Transmission as a function of wavelength for a glass

coverslip with and without a 150 nm-thick indium tin oxide coating.

The black lines are 5 nm running averages.

6.4.9 Completed Cells

Figure 6.12 displays cross-sectional scanning electron microscope (SEM) images for

(a) As-Grown, (b) Scatterer, and (c) PRS microwire-array solar cells. Wire heights

ranged from 57-63 µm, 71-78 µm, and 43-49 µm for the As-Grown, Scatterer, and

PRS microwire solar cells, respectively. The thermal oxide in the finished cells covered
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the lower 27-32 µm of the wires for the As-Grown and Scatterer solar cells. For both

the Scatterer and PRS solar cells, the 80 nm Al2O3 particles were observed to form

micron-sized agglomerates that were located near the base of the wires, as evidenced

by the granular texture of the mounting wax near the bottom of the wire array (Fig.

6.12b,c) and at the wire tips and sidewalls (Fig. 6.12b,c inset.) In the PRS solar cells,

the 1000 nm-thick Ag back reflector covered the growth substrate and the tapered

base of the wires (Fig. 6.12c and Fig. 6.8). The a-SiNx:H anti-reflection/passivation

layer is not visible in Fig. 6.12c. For all devices, the mounting wax uniformly infilled

the wire array, and the ITO conformally coated the mounting wax and the wire tips,

thereby providing a continuous top contact despite the highly textured surface.

Figure 6.13 provides optical images of the fabricated solar cells. Contact to the p-

type core of the Si microwires was established through the p+-Si substrate by scribing

a Ga/In eutectic onto the back side of the growth wafer. The growth wafer was then

placed on Cu tape and mounted onto a glass slide for ease of handling. Figure 6.13b

is an optical microscope image of an electrical probe tip contacting a single microwire

solar cell. The bright stripes down the centers of the solar cells are Au contact fingers

(not found on the cells discussed below) that were placed on initial solar cells in an

attempt to improve the ease of obtaining a low resistance electrical contact between

the electrical probe tip and the ITO layer.

6.5 Characterization

6.5.1 Cell Area

In total, 15 As-Grown microwire solar cells, 12 Scatterer microwire solar cells, and 24

PRS microwire solar cells were fabricated. The area of the fabricated cells spanned

a range from 0.12 to 0.21 mm2, as a result of variations in the gap between the top

of the microwire arrays and the shadow mask during the deposition of the ITO. To

accurately determine the cell area, scanning photocurrent microscopy (SPCM) was

used to image the perimeter of 2-3 cells from each cell type, as schematically depicted
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ITO

(c)

(b)

(a)

Figure 6.12. Si microwire-array solar cell device geometry. Cross-

sectional SEM image of (a) an As-Grown solar cell, (b) a Scatterer

solar cell, and (c) a PRS solar cell. Insets, higher magnification SEM

images of the wire tips d. For (a)-(b) the white arrow denotes the

height of the thermal oxide.
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(a)

(b)

Figure 6.13. Si microwire-array solar cells. (a) Optical image of As-

Grown, Scatterer, and PRS cells (from left to right.) (b) Optical

microscope image of a probe tip contacting an individual solar cell.

Each pad is ∼ 300 µm on a side.
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in Figure 6.14.

Figure 6.14. Schematic of the scanning photocurrent measurement.

Confocal laser illumination is focused onto the Si microwire-array

solar cell. The solar cell sits on top of a piezoelectric stage and

is rastered beneath the focused laser illumination while the short-

circuit current is measured.

Scanning photocurrent microscopy images (90 µm x 90 µm, Fig. 6.15a) were

stitched together to produce a photocurrent map of the cell perimeter (Fig. 6.15b),

which was then analyzed to calculate the cell area (Fig. 6.15c). Area analysis was

performed using the thresholding feature in Image J. Thresholding was done in such

a way that all of the wires within the cell perimeter (defined by the photoactive

wires) were selected. The indent on the left side of the cell resulted from contact

shadowing and an appropriate correction to the cell area was made (not shown.) A

small photocurrent signal was present outside of the cell perimeter (Fig. 6.15a) and is

presumed to arise from light that was scattered/reflected into the active area. Though

this additional collection area was accounted for during the thresholding process, no

correction should have been necessary given that an equivalent amount of light would

have also been scattered/reflected out of the cell.
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Figure 6.15. Measuring PRS C4R5s active area. (a) 90 µm x 90

µm scanning photocurrent microscopy (SPCM) image along the cell

perimeter. (b) Twenty-six SPCM images over-laid to map out the

cell perimeter. (c) Image of (b) after thresholding. The blue line is

the cell perimeter from which the cell area was calculated.
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6.5.2 Dark J-V

Figure 6.16a plots the measured current density as a function of voltage for the

champion microwire solar cell of each cell type in the dark. The microwire solar

cells exhibited rectifying behavior with diode ideality factors between 1.7 and 2.2.

The roll-off in the current density near 0.5 V in forward-bias resulted from the series

resistance of the solar cells, which ranged from 300 to 3000 Ω (Figure 6.16b) and was

dependent upon the quality of the contact between the electrical probe and the ITO.

6.5.3 Light J-V and Photovoltaic Performance

Under simulated AM 1.5G illumination, the champion PRS solar cell exhibited markedly

higher photovoltaic performance than the champion Scatterer and As-Grown solar

cells, as a result of a significant increase in the short-circuit current density, as seen

in Figure 6.17. Table 6.1 displays the open-circuit voltage (Voc), the short-circuit

current density (Jsc), the fill factor (FF ), and the efficiency (η) for all microwire solar

cells, whose cell areas were measured by SPCM. Voc of ∼ 500 mV and FF > 65%

was observed for all three cell types. (For each cell type, the majority of the cells

were found to exhibit similar Voc and FF, see Appendix D.) The champion PRS solar

cell produced a Voc of 498 mV, Jsc of 24.3 mA cm−2, and FF of 65.4%, for an η =

7.92%. The champion Scatterer and As-Grown solar cells exhibited η = 5.64% and η

= 3.81%, respectively, with similar Voc and FF but lower Jsc. For PRS and Scatterer

cells the differences in η within a cell type largely resulted from differences in Jsc,

which may result from either variations in the incorporation of the Al2O3 scattering

particles or the fraction of electrically contacted wires (see Fig. figCellarea and Fig.

6.18b,c) between cells of the same type. We estimate the internal error in the mea-

surement of the cell area to be 5% and the internal error in the AM 1.5G illumination

intensity to be 5%, yielding a ∼ 7% internal error in the measurement of the Jsc and

η.
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(a)

(b)

Figure 6.16. (a) Current density as a function of voltage for the

champion microwire solar cell of each cell type in the dark. The

black line in is an exponential fit to the dark J-V curve of the PRS

solar cell and is used to extract an ideality factor of 1.8. (b) Current

as a function of voltage on a linear scale for two microwire solar cells

in the dark. The black lines are linear fits to the dark I-V curves

and yield series resistances of 300 and 3000 Ω.
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Figure 6.17. Current density as a function of voltage for the cham-

pion microwire solar cell of each cell type under simulated AM 1.5G

illumination.

Table 6.1. Photovoltaic performance under simulated AM 1.5G illu-

mination. The champion solar cell from each cell type is bolded.

Sample Voc(mV) Jsc(mA cm−2) FF(%) η(%)

As-Grown C2R3 482 11.2 69.4 3.75

As-Grown C4R6 482 11.8 67.5 3.81

Scatterer C2R4 499 16.6 68.0 5.64

Scatterer C2R3 504 15.2 68.8 5.28

PRS C2R5 503 22.2 66.1 7.38

PRS C3R5 500 22.8 67.2 7.65

PRS C4R5 498 24.3 65.4 7.92
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6.5.4 Photocurrent Mapping

To better understand the differences in Jsc between the PRS, Scatterer, and As-Grown

solar cells, scanning photocurrent microscopy was used to map the photocurrent pro-

duced by the wire-array solar cells as a function of localized laser illumination (λ =

650 nm, ∼1.0 µm beam waist), as seen in Figure 6.18. To facilitate comparison be-

tween the different types of cells, each scanning photocurrent image was normalized

to its maximum photocurrent. The measured photocurrent was maximized when the

laser illumination was centered on a wire and was minimized when the illumination

was centered between four adjacent wires. The photocurrent cross-sections shown

below each scanning photocurrent image indicated that the relative magnitude of the

decay in photocurrent as the laser moved from a peak (centered on a wire) to a valley

(between two adjacent wires) decreased from the As-Grown cell (Fig. 6.18a) to the

Scatterer cell (Fig. 6.18b) and from the Scatterer cell to the PRS cell (Fig. 6.18c). In

particular, the PRS solar cell exhibited nearly uniform absorption across the array,

demonstrating that the Ag back reflector and Al2O3 dielectric scattering particles

allowed for the effective collection of light incident between the wires.

The spots of greatly reduced photocurrent in the Scatterer and PRS solar cells

arose from wires that were not electrically contacted by the ITO (wire vacancies would

be expected to produce a photocurrent similar to the valley photocurrent, whereas,

uncontacted wires parasitically absorb incident illumination.) Comparing Fig. 6.15b

with Fig. 6.18c, the fraction of electrically inactive wires was higher near the cell

perimeter (2-20%) than at the cell center (∼2%), which is not unexpected given the

decreased ITO thickness at the device edge. The small fraction of electrically inactive

wires, at the cell center, seen for the PRS and Scatterer cells may result from the

presence of Al2O3 scattering particles at the wire tips preventing the fabrication of a

good electrical contact between the n-Si emitter and the ITO.
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6.5.5 Spectral Response

As seen in Figure 6.19, the As-Grown and Scatterer solar cells exhibited similarly

shaped spectral response curves (though different in absolute magnitude), both ex-

hibiting a decline in the external quantum yield (EQY) at wavelengths > 550 nm.

By comparison, the PRS solar cell exhibited nearly constant EQY between 500 nm

and 800 nm. The increased red and infrared response of the PRS cell presumably

arose from light incident between the wires that was scattered multiple times from

the Al2O3 scattering particles and the Ag back reflector. Integration of the observed

EQY with the AM 1.5G solar spectrum predicted Jsc values of 13.3 mA cm−2, 18.0

mA cm−2, and 23.3 mA cm−2 for the As-Grown, Scatterer, and PRS solar cells,

respectively, in good agreement with the measured Jsc values.

Figure 6.19. Spectral response of the champion Si microwire solar

cell of each cell type.
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6.6 Discussion

6.6.1 Photocurrent Response from the Growth Substrate

An important consideration for measurements of the photovoltaic performance of

wire-array solar cells is the contribution to the observed photocurrent from the growth

substrate. Though the fabrication of an appropriate control cell is not straightfor-

ward (even if the emitter doping compensated the substrate doping, the n+ emitter

and p++ substrate would form a tunnel junction) significant photocurrent from the

substrate can be ruled out in our microwire-array solar cells. For the As-Grown and

Scatterer solar cells, scanning photocurrent microscopy measurements indicated a <

0.5 µm effective minority-carrier diffusion length for electrons in the thermal oxide

coated bases of the wires.[59] Consequently, neither the growth substrate nor the

lower 27-32 µm of the wires contributed significantly to the observed photocurrent

of the As-Grown and Scatterer solar cells. For the PRS microwire solar cells, the

removal of the thermal oxide, followed by the deposition of the a-SiNx:H passivation

layer, produced an effective electron minority-carrier diffusion length >> 30 µm in

the p-type bases of the wires.[59] Taken together, these results suggest that the bulk

minority carrier diffusion length is >> 30 µm throughout the wire but that the ther-

mal oxide coated bases of the wires, for the Scatterer and As-Grown cells, exhibited

very high surface recombination velocities, limiting the effective diffusion length in

the oxide-coated wire bases to < 0.5 µm. Hence, a photovoltaic response from the

entire length of the wires was possible for the PRS solar cells. However, the photo-

voltaic contribution from the substrate for the PRS cells should be negligibly small.

The optically thick Ag back reflector coated the entire substrate except for where the

wires had grown, ensuring that only the light guided through the Si microwires was

able to reach the substrate. Consequently, 95% of the illumination ≤ 800 nm should

be absorbed over the 43-49 µm length of the wires, by a simple Beer-Lambert law

analysis. The remaining illumination entered the p++ Si substrate (ρ < 0.001 Ω cm),

which has been shown to exhibit an external quantum yield < 0.05 for 800 nm -1100

nm illumination.[59, 60]
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6.6.2 Comparing Between Cell Types

The three types of microwire solar cells were fabricated to facilitate a comparison

between the cell types. However, three differences between the cells are worth noting.

First, the wire length and thermal oxide heights translated to active wire lengths of

27-33 µm, 41-48 µm, and 43-49 µm for the As-Grown, Scatterer and PRS solar cells,

respectively. Assuming no reflection losses and single-pass absorption, the theoretical

increase in Jsc from a 30 µm-thick Si wafer to a 45 µm-thick Si wafer is 1.75 mA cm−2,

a 5.3% increase. Applying a 5.3% increase to the 11.8 mA cm−2 Jsc of the As-Grown

champion solar cell yields a Jsc of 12.4 mA cm−2, well short of the observed 16.6

mA cm−2 Jsc for the Scatterer champion solar cell. Thus, the additional active wire

length alone cannot explain the increase in Jsc from the As-Grown solar cells to the

Scatterer solar cells. Second, the Al2O3 scattering particles were largely located ad-

jacent to the photo-inactive, thermal oxide coated, bases of the wires in the Scatterer

solar cells. Consequently, the full effect of the Al2O3 scattering particles is unlikely

to have been seen in the Scatterer solar cells. Third, for the PRS and Scatterer cell

types, ∼2% of the wires in the center of the cell (Fig. 18b,c) and 2-20% of the wires

near the perimeter of the cell (Fig. 15b) were not electrically active. Thus, with

improved contacting, the PRS and Scatterer cell types would be expected to produce

a still higher Jsc and η.

6.7 15% Efficient Solar Cells

The fabrication of Si microwire-array solar cells with efficiencies of∼15%, as compared

to the simple theoretical expectation of 17%, should be possible by increasing the

short-circuit current density to 32 mA cm−2, increasing the fill factor to 80%, and

increasing the open-circuit voltage to 600 mV, as detailed below.
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6.7.1 Short-Circuit Current Density (Jsc)

Previously, we have shown that wire-array photoelectrochemical cells can exhibit near-

unity internal quantum yields.[15] We have also shown that Si microwire arrays can

absorb 96% of the visible solar spectrum and exhibit day-integrated absorption > 85%

of the above bandgap solar spectrum.[15] Consequently, near-unity external quantum

yields resulting in a Jsc of 35.9 mA cm−2 (not accounting for contact shading) should

be possible through improved light trapping in microwire-array solar cells.

Lower than unity external quantum yields in the microwire-arrays solar cells re-

ported can be attributed to three factors. First, a significant fraction of Al2O3 parti-

cles collected at the wire tips. The presence of dielectric scatterers at the top of the

solar cell is expected to increase reflection losses. Additionally, the presence of Al2O3

particles at the wire tips likely led to the observed fraction (a few percent) of uncon-

tacted wires. Second, the Si microwires in the PRS cell were only between 45 and

49 µm in length, as compared to 67 µm in the absorption study. Ideal wire lengths

for microwire-array solar cells are thought to fall between 80 and 100 µm. Third,

the indium tin oxide (ITO) layer was 150 nm-thick. If the ITO thickness could be

reduced to 80 nm, there would be lower reflection losses and roughly half the para-

sitic absorption losses. Incorporating these improvements (the growth of longer wires

and a more ideal incorporation of the Al2O3 scattering particles at the base of the

wire-array have already been shown), short-circuit current densities of 32 mA cm−2

should be possible (accounting for contact shading).

6.7.2 Fill Factor (FF)

Single-wire solar cells have exhibited open-circuit voltages up to 600 mV and fill

factors up to 82%.[59] The lower fill factors of 65-70% observed in the microwire-

array solar cells are related, at least in part, to the cell series resistance, which is

typically between 0.45 and 4.5 Ω cm2, and thus expected to partially degrade the fill

factor.[77] The addition of a metallic top contact grid (shadowing losses are accounted

for in the short-circuit current density quoted above), should significantly reduce the
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series resistance of the solar cells and lead to noticeable gains in the fill factor.

6.7.3 Open-Circuit Voltage (Voc)

The difference in open-circuit voltage between the best single-wire solar cells (600

mV) and the microwire arrays can be partly attributed to the use of an amorphous

Si layer between the Si wire and the Al contacts in single-wire solar cells with high

Voc.[59] Furthermore, the microwire-array solar cells have a much larger contact area

(as a fraction of the total wire area), than the single-wire solar cells as a result of our

current fabrication methods. This additional contact area leads to increased recom-

bination (ohmic contacts are essentially perfect recombination sources for carriers)

and consequently an increased dark saturation current and decreased open-circuit

voltage.[77]

6.8 Conclusion

In this chapter we have demonstrated that microwire-array solar cells fabricated from

arrays of VLS-grown Si microwires can exhibit significant performance with Voc >

500 mV, Jsc > 24 mA cm−2, FF approaching 70%, and η = 7.9%. We have also

demonstrated that optical light-trapping elements, such as a back reflector and/or

dielectric scattering particles, are important for realizing high short-circuit current

densities in wire-array solar cells through the capture of illumination incident between

wires and the collection of red and infrared illumination.
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Chapter 7

Outlook

7.1 The Potential of Si Microwire-Array Solar Cells

As detailed at the end of Chapter 6, the fabrication of Si microwire-array solar cells

with efficiencies of ∼15% should be possible without significant technological ad-

vances. These efficiencies, in combination with the ability to grow arrays of Si mi-

crowires over large areas (> 1 cm2),[27] to peel the wire arrays from the growth

substrate in a flexible polymer,[14] and to re-use the growth substrate,[32] indicate

that the fabrication of flexible, high efficiency c-Si solar cells should be possible.[13, 57]

If realized, these solar cells would possess a clear efficiency advantage over First So-

lar’s market leading cadmium tellurium (CdTe) technology, while hopefully offering

a similar, or even lower, cost per watt.

Two recent results in our lab further demonstrate the potential for Si microwire-

array solar cells to be (1) flexible and (2) high efficiency. First, using a thin metallic

film as a back-contact to a peeled wire array, Josh Spurgeon has shown that wire-

array cells exhibit nearly identical photoelectrochemical performance to on-wafer wire-

array cells.[78] Second, as shown in Figure 7.1, Michael Kelzenberg and Dan Turner-

Evans have shown that single-wire solar cells can exhibit efficiencies of 17.4% when

operating at the per wire short-circuit current (calculated from optical and device

physics modeling) for a wire-array solar cell with optimal light-trapping.[59]

101



(a) (b) (c)

Figure 7.1. (a) Schematic of the single-wire solar cell measurement

geometry. (b) Cartoon of the wire-array unit cell used in optical and

device physics modeling. (c) Photovoltaic performance of a single-

wire solar cell operating at the per wire short-circuit current of a

wire-array solar cell with optimal light absorption.[59]

7.2 Advanced Device Design

The growth of a p-n junction in-situ would allow for a significant reduction in the

number of processing steps (growth of a thermal oxide, PDMS deposition, selective

oxide removal, PDMS removal, and emitter diffusion) and thus represent an additional

advance in the development of Si microwire-array solar cells. One method for creating

an in-situ junction would be through dopant modulation during growth to produce

an axial p-n junction. The use of an axial p-n junction would require minority-carrier

diffusion lengths on the order of the wire length, ∼90 µm. However, recent work

has shown that Si microwires passivated with an a-SiNx:H layer exhibit minority-

carrier diffusion lengths >> 30 µm.[59] Thus, the minority-carrier diffusion length

may already be sufficiently long for the use of an axial p-n junction. An additional

benefit of the axial p-n junction is that it reduces the area of the p-n junction. As

compared to a radial p-n junction that covers the top 60 µm of a 2 µm diameter

wire, an axial p-n junction in the same wire would have < 1/100th the junction area.

Assuming a diode ideality factor of 1, this translates to an expected increase in the

open-circuit voltage of 120 mV.[50]

One potential challenge to the implementation of an in-situ, axial p-n junction is

the abruptness of the p-n junction that can be created through dopant modulation.
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The Cu/Si alloy is a reservoir for the dopant species and even an abrupt modulation

of the gas composition is not sufficient to produce an abrupt modulation of the dopant

species within the grown wire.[79] Consequently, the dopant modulation will need to

be optimized to create as abrupt a p-n junction as possible to minimize unnecessary

loses in the open-circuit voltage.[80]

Other means of creating a p-n junction with fewer processing steps would be a

thermal diffusion or the deposition of an amorphous Si heterojunction immediately

after wire growth. Both of these options would produce a radial junction that ex-

tended over the length of the wire. As noted in section 6.3.1, this structure is likely to

result in a shunt between the p and n regions (or Si and amorphous Si regions, in the

case of the heterojunction) at the back contact. However, selective etching methods

may allow for sufficient removal of the diffused or deposited layer that a dielectric

infill could then be deposited and used to isolate the p and n regions prior to the

deposition of a back contact.

7.3 Future Technologies

In addition to showing great promise as single-junction solar cells, arrays of Si mi-

crowires appear to be a promising platform for the development of multi-junction

solar cells and water-splitting devices.[81, 82] Multi-junction solar cells often suffer

from material defects incurred as a result of the lattice mismatch between differ-

ent semiconductors. Consequently, semiconductors that are closely latticed-matched

must be chosen. But, the choice of latticed-matched semiconductors limits the num-

ber of junctions that can be used and often results in a less than ideal combination

of bandgaps.

As shown in Figure 7.2, the advantage of the wire geometry for multi-junction

solar cells is that defects induced at the interface between lattice-mismatched semi-

conductors will propagate out of the wire in the radial direction. Additionally, the

small length scale in the radial direction of the wire will limit the amount of strain

that can accumulate before the unconstrained wire surface is reached, thereby min-
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imizing the number of defects that are created. As a result, only a small region of

the cell volume will be photoinactive. By limiting the photoinactive region to a small

region of the wire near the interface(s) between the different semiconductors (where a

photoinactive tunnel junction is already required) wire-array solar cells should allow

for the selection of semiconductors with optimal bandgap spacings. Not surprisingly,

recent work in the field has investigated the various combinations of axial semicon-

ductor heterostructures that can be grown using the VLS-growth method.[83]

Figure 7.2. Schematic of multi-junction wire solar cells and defect

accommodation in the radial direction.

As shown in Figure 7.3, wire-arrays also offer an exciting geometry for water-

splitting applications. One of the main challenges water-splitting devices face is the

discovery of low-cost, earth-abundant catalysts with turnover rates that are suffi-

ciently high to harvest the photon flux of the solar spectrum. Catalysts, such as

Pt, have sufficiently high turnover rates, but are not earth-abundant or cost-effective

enough to be used on a global scale. As an alternative to the discovery of earth-

abundant catalysts with high turnover rates, semiconductor wire arrays can provide

a 10-fold increase in the semiconductor surface area over which water-splitting cat-

alysts can be deposited. By increasing the potential for catalyst loading 10-fold,

semiconductor wire arrays may facilitate the development of water-splitting devices
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for use on the global scale through the use of less costly and more earth abundant

catalysts.

Figure 7.3. Schematic of a wire-array water-splitting device. The

increased surface area of the cell may allow for the use of earth-

abundant catalysts with lower turnover rates than expensive and

rare catalysts like Pt.
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7.4 Conclusions

This thesis has detailed the fabrication and characterization of Si wire-arrays for use

as solar cells. In Chapter 2, we used the vapor-liquid-solid (VLS) growth method

to fabricate arrays of vertically aligned, Si microwires with nominally identical wire

heights and diameters. These structures have proved immensely useful for charac-

terizing and understanding the inherent photovoltaic properties of wire-array solar

cells. In Chapter 3, we used secondary ion mass spectrometry to study the Au con-

centration in Au-catalyzed, Si wires. Our measurements led us to the conclusion that

VLS-catalysts are likely incorporated at their thermodynamic equilibrium concentra-

tion under our growth conditions. This finding motivated a switch to the use of Cu

as the VLS-catalyst. In Chapter 4, we demonstrated that in situ doping using BCl3

could be used to modulate the electrically active dopant concentration from 8 × 1015

cm−3 to 4 × 1019 cm−3 in p-Si microwires, which was critical to the fabrication of

efficient solar cells in the radial p-n junction geometry. In Chapter 5, it was shown

that Cu-catalyzed wires exhibited long (10 µm) minority-carrier diffusion lengths,

as expected from our measurement of the VLS-catalyst incorporation in Chapter 3.

These minority-carrier diffusion lengths indicated that the fabrication of efficient mi-

crowire solar cells should be possible. In Chapter 6, we constructed Si microwire-array

solar cells with open-circuit voltages up to 500 mV, short-circuit current densities up

to 24.3 mA cm−2, and fill factors > 65%, achieving an Air Mass 1.5 Global solar

conversion efficiency of 7.9%. These solar cells used multiple light-trapping features

(Al2O3 particles, a Ag back reflector, and an a-SiNx:H antireflection layer) to en-

sure the efficient collection of light incident on both the wires and the area between

wires. Finally, in Chapter 7, we discussed the potential for further improvements

in Si microwire-array solar cells and for their use as multi-junction solar cells and

in water-splitting devices. Taking the results of this thesis and our previous work,

we believe that Si microwire-array solar cells have the strong potential to reduce the

costs of solar electricity and solar fuels.
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Appendix A

Array and Solar Cell Fabrication

Catalyst Patterning

1. The growth substrates were boron-doped p++-Si (111) wafers, having a resis-

tivity, ρ < 0.001 Ω cm, that were coated with 450 nm of thermal oxide (Silicon

Quest International).

2. Place the wafer on the spinner and turn on the vacuum. Blow off any dust

particles from the wafer surface with a N2 gun. Coat the wafer surface with

MCC Primer 80/20 (Microchem), wait for 10 s, and then spin dry for 30 s at

3000 rpm (acceleration index ACL=100).

3. Coat the wafer with S1813 photoresist (Microchem), and then spin at 3000 rpm

for 1 min (acceleration index ACL=100).

4. Cure on a hotplate at 115 ◦C for 2 mins.

5. Photolithographically pattern the resist using the Karl Suss MA 6 mask aligner.

Expose for ∼10s (exact time will vary with bulb age and should be recalibrated

from time to time) in ’Hard Contact’ mode. For the wire-array solar cells of

Chapter 6, an array of 4-µm-diameter circular holes, on a square lattice with

a 7 µm pitch, was defined in the oxide. This was done by using a photomask

with an array of 3-µm-diameter circular holes, on a square lattice with a 7 µm

pitch, and slightly over-exposing the resist.

6. Place the sample in MF-319 developer (Microchem) for 60s. Check with the

optical microscope that the pattern has come out correctly, and if not adjust

the exposure time accordingly for subsequent patterns.
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7. Cure on a hotplate at 115 ◦C for 15 min.

8. After development of the pattern, the oxide within the patterned holes can be

removed by immersion of the samples for 3 mins in buffered HF (Transene).

The BHF etches the oxide at ∼2 nm/s.

9. Thermally evaporate either Au (Electronic Space Products International, 3N5

purity), Cu (EPSI Metals, 6N purity) or Ni (Electronic Space Products Inter-

national, 4N5 purity). The evaporator settings for each metal are: Au: density

= 19.30 g cm−3, z-ratio = 0.381 Cu: density = 8.93 g cm−3, z-ratio = 0.437 Ni:

density = 8.85 g cm−3, z-ratio = 0.331 and we use tooling factor = 148%. (Note

that the liquid nitrogen cooled stage is required for best results with Ni. Start

LN2 cooling 10 mins before starting to heat the metal to ensure the samples

reach a low enough temp. Note also that with the cooled stage and a tooling

factor of 148%, the quartz crystal monitor overestimates the thickness of the

deposited metal film by roughly a factor of 3). For the wire-array solar cells of

Chapter 6, 600 nm of Cu was deposited.

10. Lift off the resist and excess catalyst by submerging the sample in acetone

and (if necessary) leaving overnight and/or (if necessary) sonication. Rinse

sample in acetone, isopropanol, methanol, and finally DI water before drying

with nitrogen.

Wire Array Growth

1. Cleave the patterned samples to the desired size and transfer to the SiCl4 reac-

tor. For the wire-array solar cells of Chapter 6, 600 nm of Cu was deposited,

the samples were approximately 1.5 cm × 1.5 cm in dimension

2. Anneal the samples at 1000 ◦C for 20 mins under 1 atm of H2 at a flow rate of

500 sccm.
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3. Wire growth was performed by the introduction of SiCl4 (Strem, 99.9999+%),

BCl3 (Matheson, 0.25% in H2), and H2 (Matheson, research grade) at flow rates

of 10, 1.0, and 500 sccm, respectively, for 30 min. Growth rate varies depending

upon catalyst, ∼2-3 µm / min for gold, ∼2-7 µm / min for Cu and Ni. Directions

for operation of the SiCl4 reactor are provided below.

4. Following growth, the tube was purged with N2 at 200 sccm and was allowed

cool to ∼ 650 ◦C over the course of ∼30 min.

A few minor differences are worth noting from our previously published work.[27]

First, removable 1” diameter quartz tubes, dedicated to the individual growth cat-

alysts (Au, Cu and Ni), have been inserted into the 1.5” diameter reactor tube to

reduce catalyst cross-contamination. As a result the reactant flow rates were reduced

by half from 1000 to 500 sccm (H2) and from 20 to 10 sccm (SiCl4) to obtain opti-

mal growth. This reduction in the reactant flow rate is directly proportional to the

decrease in the cross-sectional area of the reactor. Secondly, the grown samples are

cooled in the reactor to a temperature of 750 ◦C over ∼ 10 min prior to removing

the samples from the reactor. This slow cooling step has been added to mitigate any

negative effects on the electrical properties of the wire associated with rapid cooling

from 1000 ◦C.

p-n Junction Definition

1. Following growth the Cu catalyst was removed from the wire arrays by etching

in 5% HF(aq) for 30 s, 6:1:1 by volume H2O:H2O2(30% in H2O):conc. HCl (aq.)

at 75 ◦C for 15 min, and 20 wt % KOH (aq.) at 20 ◦C for 60 s.

2. A conformal SiO2 diffusion-barrier that was 200 nm in thickness was grown via

dry thermal oxidation at 1100 ◦C for 2 h.

3. The wire array samples were then coated with a solution that contained 4.4

g hexamethycyclotrisiloxane (Sigma-Aldrich), 1 g PDMS (Sylgard 184, Dow
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Corning), and 0.10 g of curing agent in 5 ml of dicholoromethane; spun at 1000

RPM for 30 s; and cured at 150 ◦C for 30 min, to produce a 10-20 µm thick

PDMS layer selectively at the base of the wire array.[14]

4. After a quick etch (∼2 s) in a 1:1 mixture of 1.0 M tetrabutylammonium fluoride

in tetrahydrofuran (Sigma-Aldrich) and dimethylformamide (PDMS etch)[76]

and a DI rinse, these partially infilled arrays were immersed for 5 min in BHF,

to remove the exposed diffusion-barrier oxide.

5. The PDMS was then completely removed by etching for 30 min in PDMS etch.

A 10 min piranha etch (3:1 aq. conc. H2SO4:H2O2) was performed to remove

residual organic contamination.

6. After etching the wires for 5 s in 10% HF (aq), thermal P diffusion was per-

formed using solid source CeP5O14 wafers (Saint-Gobain, PH-900 PDS) at 850

◦C for 10 min (As-Grown and Scatterer) or 15 min (PRS) under an N2 ambient,

to yield a radial p-n junction in the wire regions unprotected by the thermal

oxide.

7. A 30 s etch in BHF was used to remove the surface dopant glass.

Device Fabrication and Contacting

The As-Grown cell was fabricated as follows:

1. After p-n junction fabrication, the wire array was heated to 150 ◦C on a hot

plate, and mounting wax (Quickstick 135, South Bay Tech.) was melted into

the array.

2. Excess wax was removed from the array using a glass coverslip.

3. The mounting wax was then etched in an O2 plasma (400 W, 300 mTorr) until

the wire tips were sufficiently exposed for electrical contacting (30-90 min).
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4. After etching with BHF for 30 s, 150 nm of indium tin oxide [0.0007 Ω cm] was

sputtered (48 W, 3 mTorr, 20:0.75 sccm Ar:10% O2 in Ar) through a shadow

mask, to serve as a transparent contact to the n-type shell of the Si microwires,

thereby defining the area of the microwire solar cells.

5. Contact to the p-type core of the Si microwires was established through the

p++-Si substrate by scribing a Ga/In eutectic onto the back side of the growth

wafer. The backside of the p++-Si substrate was then placed onto a piece of Cu

tape, which was mounted to a glass microscope slide for structural support. An

alligator clip was then used to make electrical contact to the Cu tape, and thus

the base of the wire array during electrical measurements.

Fabrication of the Scatterer cell was performed identically to that of the As-Grown

cell, except that prior to infilling with wax, Al2O3 light-scattering particles (0.08 µm

nominal-diameter, South Bay Technology) were added to the wire array.

1. The wire-array was placed face-up in a flat-bottomed glass centrifuge tube and

∼ 3 mL of an ethanolic dispersion of the particles (∼0.3 mg/ml) were added.

Centrifugation (∼3000 RPM) for 5 min was used to drive the particles to the

base of the wire-array.

Fabrication of the PRS cell was performed identically to that for the Scatterer

cell, except that prior to the addition of the Al2O3 particles, an a-SiNx:H passivating

layer and a Ag back reflector were added to the cell.

1. After p-n junction fabrication, the wire arrays were etched for 5 min in BHF,

to completely remove the remaining oxide diffusion barrier.

2. A standard clean was then performed (10 min in 5:1:1 by volume H2O:H2O2(30%

111



in H2O): NH4OH(15% in H2O) at 75 ◦C, 30 s in BHF, 10 min in 6:1:1 by volume

H2O:H2O2(30% in H2O):conc. HCl (aq.) at 75 ◦C, 30 s in BHF).

3. An a-SiNx:H layer (∼140 nm thick at the wire tip and ∼60 nm thick at the wire

base) was then deposited using plasma-enhanced chemical vapor deposition, as

described previously.[15]

4. The a-SiNx:H was etched for 15 s in BHF, prior to the deposition of a total of

1 µm planar-equivalent of Ag via thermal evaporation (two successive 500 nm

evaporations at two different specimen-tilt angles (± ∼5 degrees) with sample

rotation, to ensure continuous coverage of the growth substrate). The array was

then infilled with ∼5 µm of PDMS using a process similar to the one described

above. This PDMS etch barrier allowed the Ag at the wire tips and sidewalls to

be selectively removed by etching for 6.5 min in 8:1:1 methanol: NH4OH(15%

in H2O): 30 wt.% aq. H2O2. A thin layer (∼40 nm) of SiO2 was then sputtered

to improve the incorporation of the Al2O3 particles. The Al2O3 scattering

elements, mounting wax, and ITO were then added as described above.

SiCl4 CVD System Operating Instructions

These instructions are not intended to be a substitute for being trained by an

experienced user. If there are any problems or questions, please contact Morgan

Putnam (x3657 or 612-703-5201 (cell)) or Daniel Turner-Evans (x2380 or 203-671-

1338 (cell)).

Reactor Location: 251 Thomas J. Watson Laboratories of Applied Physics, Cali-

fornia Institute of Technology

1. Check the temperature readings on the Eurotherm controllers.

(a) If no one has been using the system, zones 1, 3, and 5 should be at 0 ◦C.

These three control the left, center, and right segments of the tube fur-

nace, respectively. If you need to change the tube liner for your material,
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do so now (see end for instructions). Set them to your process temper-

ature (typically 1000 ◦C). Do not set the tube temperature above 1100

◦C the furnace was originally designed for MOCVD processes and may

be damaged by very high temperature settings.

(b) Zones 2 and 4 should be 90 ◦C at all times. They control the heating tape

on the tubing leading from the SiCl4 bubbler to the tube furnace, and the

heating tape on the SiCl4 MFC, respectively. The tubing needs to be at

90 ◦C to prevent condensation, and the MFC needs to be at 120 ◦C to

prevent condensation.

(c) Zone 6 is a second readout of the temperature of the tubing, just upstream

of the quartz tube. It doesnt control anything and therefore does not need

to be set.

(d) Zone 7 controls the temperature of the SiCl4 bubbler. It should be at 50

◦C if the reactor is not being used. Set zone 7 to 80 ◦C for growth.

(e) Give the system at least 30 mins to reach a stable operating temperature.

2. Check that the liquid level in the NaOH scrubber is between 10 and 14 gallons

if not, contact the current guru and wait until the problem is rectified before

continuing. Plug in the scrubber pump and ensure that it is functioning (it

should be audible).

3. Note the base pressure in the furnace tube. Close the vacuum line (top valve).

4. After the reactor has reached your desired temperature, vent the system with

N2. Monitor the pressure reading. When it reaches about 730 Torr (which takes

about 5 mins), open the clamp on the quick flange (QF) connection at the end

of the steel three way connection.

5. Remove the quartz boat, load your sample into it, and push the boat back into

the furnace.
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6. Replace the QF cap and tighten the clamp.

7. Open the process line (bottom valve), and monitor the pressure (ensure that

the pressure stays constant at ∼735 Torr).

8. Turn off the N2, turn on the H2 (500 sccm at the current time).

9. Wait for 20 mins for the sample and boat to reach a uniform temperature.

During this time adjust the SiCl4 and BCl3 setpoints to your desired values.

(10 sccm for SiCl4 at the current time)

10. When ready to begin growth, switch on the SiCl4 and BCl3, wait 10 s and then

open the blue valves downstream of the SiCl4 and BCl3 MFCs. Ensure that the

SiCl4 and BCl3 flow rates reach the desired set points.

11. Wait for the desired growth time.

12. Turn off the H2, SiCl4 and BCl3. Close the blue valves just downstream of the

SiCl4 and BCl3 MFCs.

13. Close the process line (bottom valve).

14. ENSURE THAT THE PROCESS LINE IS CLOSED (bottom valve). (Always

ensure that the process line is closed before opening the vacuum line to prevent

a closed loop between the vacuum pumps inlet and outlet which could result in

a small H2 explosion.)

15. Open the vacuum line (top valve), slowly, monitoring the pressure. If the pres-

sure does not drop, close the vacuum line again and make sure that the process

line is fully closed. If you wish, you may leave the N2 flowing for 30 sec to a

few minutes to fully purge the system.

16. Lower the reactor temperature set-points (Zones 1, 3 and 5) to 750 ◦C. (A slow

cooling to 750 ◦C was chosen to ensure reproducible results and to allow for

possible outdiffusion of impurities.
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17. Wait for 1-2 mins, the pressure should be within a few tenths of a Torr of the

initial vacuum pressure. Close the vacuum line (top valve).

18. Switch on the N2 and bring the tube back to atmospheric pressure. When the

pressure reaches about 730 Torr (which takes about 5 mins), open the tube.

19. BE SURE NOT TO MELT THE PYREX WHEN REMOVING YOUR SAM-

PLE. (The quartz tube gives way to pyrex before connecting to the steel QF

connections at either ends). Use the quartz rod to pull the boat all the way

into the steel three-way connection. Note the boat may overhang the quartz

tube liner slightly but should not be touching the steel. Finally, after waiting

at least 2 minutes, draw the quartz boat onto the quartz boat holder.

20. Replace the QF cap and tighten the clamp.

21. Turn off the N2. Open the vacuum line (top valve) to pump down the system.

Ensure the pressure returns to a value similar to the initial base pressure.

22. Set the temperatures back to their idle set points (zones 1, 3, and 5 at 0 ◦C,

and zone 7 at 50 ◦C).

23. Update the excel spreadsheet.

24. Unplug the NaOH scrubber pump.

Changing the tube liner:

1. Close the vacuum line (top valve).

2. Vent the system with N2. Monitor the pressure reading. When it reaches about

730 Torr (which takes about 5 mins), open the clamp on the quick flange (QF)

connection at the end of the steel three way connection.

3. Take out the old tube liner, slide it into the appropriately labeled bag, and

store it on the back of the reactor. Obtain the tube liner necessary for your

conditions and insert it into the furnace.
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4. Replace the QF cap and tighten the clamp.

5. Turn off the N2

6. Open the vacuum line (top valve), slowly, monitoring the pressure. If the pres-

sure does not drop, close the vacuum line again and make sure that the process

line is fully closed.

A.1
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Appendix B

Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry Analysis

General Notes:

First and foremost, for any one interested in using secondary ion mass spectrom-

etry (SIMS), I highly recommend reading Secondary Ion Mass Spectrometry by Wil-

son, Stevie and Magee.[37] It is an excellent introduction to SIMS, covering in detail

the optimization of analysis conditions, sources of experimental error, and the quan-

tification of data, as well as discussing number of specific applications. Additionally,

it serves as a wonderful reference guide with an abundance of useful appendices.

Secondly, the Cameca NanoSIMS 50-L is a highly complex instrument, which can

only be conquered through a detailed understanding of instrument operation and the

patience of a zen master. Though I can not claim to fully posses either of these, Yunbin

Guan who runs Caltech’s Center for Microanalysis does. For a typical SIMS session,

Yunbin would first optimize the primary and secondary ion beams for my samples.

Optimization of the ion beams is the most challenging aspect of obtaining good data

when working with the NanoSIMS. After the ion beams had been optimized, I would

take over and start collecting data. However, I did learn a fair bit of ion beam

optimization and instrument trouble shooting, both of which were required during

data collection to maintain optimal analysis conditions. While some notes on these

procedures can be found in my notebooks, Alex Gagnon has complied a detailed list

of user instructions for working with the Cameca NanoSIMS 50-L, which can be found

here: http://caltechnanosims.pbworks.com/nanoSIMS50L-Instructions-Main.
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Sample Preparation: The Si-wire-coated Ge wafers and the Cu and B,P stan-

dards were mounted on Al disks B.1, which were then mounted into the NanoSIMS

sample holder.

Figure B.1. Optical image of Si-wire-coated Ge wafers (6 perimeter

samples) and of Cu and B,P standards (two center samples) mounted

onto an Al disk.

Good sample preparation required two things. First and most importantly, the

samples must be positioned level (± 250 µm) with each other and with the height

of the NanoSIMS sample holder. The samples must be positioned level with each

other because the secondary ion extraction efficiencies (and thus the RSFs) are sensi-

tively dependent on the ion extraction distance (the distance between the sample and

the secondary ion extraction optics, typically 300-400 µm) Variations in the sample

height can be accounted for by adjusting the position of the NanoSIMS holder in

the NanoSIMS, but to minimize the amount of secondary ion beam tuning between

samples, it was best to keep variations in the sample height as small as possible. The

samples must be positioned level with the height of the NanoSIMS sample holder as

the NanoSIMS sample holder has a limited translation range of 800 µm.

To ensure that the wafers were level and flush with the surface of the SIMS sample
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holder (not shown, but into which the Al disk was loaded), two different depths were

milled into the Al disk. Two depths were necessary to accommodate the difference in

wafer thickness between the Ge wafers and the Cu and B,P standards.

To ensure that the samples were as level with each other and with the surface

of the NanoSIMS sample holder as possible, I measured the wafer thickness and the

thickness of compressed carbon tape with calipers to determine the depth to which

to mill the Al disk. As seen in B.1, two depths were necessary to accommodate the

difference in wafer thickness between the Ge wafers and the Cu and B,P standards.

The second component of good sample preparation was the production of sam-

ples with minimal out-gassing, so that the the 10−10 Torr pressure range required for

sample analysis could be reached. As a result, carbon tape could be used for sample

mounting, while Ag paste could not.

Sample Analysis:

The following are a few brief notes on sample analysis:

1. Reducing the primary ion beam current will lead to improved spatial resolution

(reduced beam diameter). However, reducing the primary ion beam current also

reduces the sample sputtering rate and correspondingly the secondary ion count

rates. Under our analysis conditions (where we were operating near the detec-

tion limit), one thus had to carefully consider the trade-off between improved

spatial resolution and reduced secondary ion count rates. In general, the best

practice was to spend at lesat one day optimizing the primary and secondary

ion beams before attempting to collect data.

2. Our best analysis conditions allowed us to produce well-defined sputtered vol-

umes, with a cross-sectional area quite close to the 1 µm × 1 µm rastered area,

as seen in Figure B.2. It is estimated that under these conditions, a Cs+ primary

ion beam with a 14 pA beam current had a ∼200-300 nm beam diameter.

3. Wires for analysis were centered beneath the primary ion beam by using a light

121



pre-sputter to generate Si− secondary ions which could then be visualized using

the real-time-imaging software.

4. When trying to align single wires beneath the primary ion beam two challenges

arose.

(a) First, the NanoSIMS (which has down to 30 nm spatial resolution) has a

sample stage that moves in 1 µm increments. Thus, centering a 2 µm di-

ameter wire directly beneath the primary ion beam often required was not

straightforward. In order to achieve stage translations < 1 µm, multiple 1

µm stage translations were made in quick succession to take advantage of

motor hysteresis to produce stage translations of a fraction of a micron.

(b) Secondly, centering the wire based upon the Si− secondary ion image

from the real-time-imaging (RTI) software, often led to slightly off-center

profiling. Thus, it was often necessary to determine the offset of the RTI

image and correct for this offset when aligning. (It was easy to tell during

SIMS analysis whether the primary ion beam was centered on the wire by

monitoring the Si and Ge counts during a run. If the wire was slightly off-

center, the Ge counts would begin to rise and the Si counts would begin

to fall in a gradual manner before the time necessary to sputter to the

back surface of the wire had elapsed.

Measuring the Cu Concentration: Attempts were made to measure the Cu

concentration in Cu-catalyzed Si microwires. However, even on the planar control

standards the secondary ion count rates for Cu, P and B using the O− primary ion

beam were too low for quantitative analysis. This was surprising as the Si secondary

ion count rates were sufficiently high that based upon the literature RSFs for Cu,

P, and B in Si[37], we would have expected to have sufficiently high secondary ion
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Au Standard 

1 µm 

Figure B.2. Sputtered volume produced by an optimally focused

Cs+ primary ion beam with a 14 pA beam current, using a 1 µm ×

1 µm rastered area

count rates. (The literature RSF’s used an O2
+ primary ion beam , but I have been

told by Steve Smith at EAG Labs that the type of O primary ion beam should not

drastically alter the RSFs.)

Data Analysis:

Relative Sensitivity Factor: The calculated RSFs are either the 197Au− in

28Si− RSF or the 197Au− in 30Si− RSF depending upon the Si ion species measured.

To report the calculated RSFs in the same basis, we have chosen to report the 197Au−

in Si RSF, which can be obtained by taking the calculated 197Au− in 28Si− RSF or

the 197Au− in 30Si− RSF and dividing by the isotopic abundance of the Si isotope.

The relative sensitivity factor (RSF) for 197Au− in Si was determined to be 1.8 × 1022

atoms cm−3 for the un-etched wires, 1.0 × 1022 atoms cm−3 and 0.75 × 1022 atoms

cm−3 for the Au-etched wires, and 0.5 × 1022 atoms cm−3 for the KOH-etched, Au-

etched wires (un-rastered analysis conditions, see below). The literature value of

the RSF for Au in Si is reported to be 1.0 × 1022 atoms cm−3.[37] Although the
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difference in the RSFs for the un-etched and KOH-etched, Au-etched wires are large,

they are within reason given that the ion extraction efficiency (and hence the RSF)

can depend sensitively on the sample height in the Cameca NanoSIMS-50L, due to its

very short extraction distance ∼ 0.4 ± 0.05 mm. Additionally, error is introduced into

the calculation of the RSF through the measurement of the depth of the sputtered

area. The error in this measurement was greatest for the un-etched wires and the

KOH-etched, Au-etched wires, due to the more diffuse primary beam and un-rastered

analysis conditions, respectively.

Analysis Conditions: Rastered Analysis Conditions: Using a 16 keV Cs+ pri-

mary ion beam and a 1 µm2 rastered area, a 10 pA beam current produced a sputter

rate of 0.9 nm/s for the radially profiled, un-etched wires. A slightly larger beam

current of 14 pA was used for the radially profiled, Au-etched wires and produced

sputter rates of 2.7 nm/s. The three-fold increase in the sputter rate from the un-

etched to the Au-etched radial analyses is a combination of the increased primary ion

beam current and a reduction in the sputtered area. The reduction in the sputtered

area was a result of the realization of a more optimum beam focus for the Au-etched

analyses. For the Au-etched, axially profiled wires the sputter rate was 5 nm/s. The

two-fold increase in the sputter rate from the radially profiled to the axially profiled,

Au-etched wires may be related to the sputtering of the sidewall of the axially pro-

filed wires, as shown in Figure 3.7c. Elimination of the sidewall of the wire would

mean that atoms could be sputtered from the wire laterally, thereby increasing the

sputtering rate.

Un-Rastered Analysis Conditions: For the KOH-etched wires (Fig. 3.6 and

Fig. B.4c) the 16 keV Cs+ primary ion beam was not rastered and the sputtered

secondary ions were not electronically gated. A beam current of 2.9 pA was used,

which resulted in a sample sputtering rate of 1.1 nm/s and a sputtered area of 0.5

µm2. Finally, the 28Si secondary ion was measured instead of the 30Si secondary ion.

Exponential Decay: A simple model produces a decay in the Au concentration

similar to the decay observed for the un-etched wires. The primary ion beam was

more diffuse for the un-etched wires than for the Au-etched wires. This resulted in
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a sputtered volume with more rounded edges than the sputtered volume shown in

the paper. An approximation for this sputtered volume can be obtained by defining

a sputtering region with a high sputtering rate, sputtering region 1 (SR1), and a

sputtering region with a low sputtering rate, sputtering region 2 (SR2), as shown in

Figure B.3a. By setting the exponential decay length for the 197Au count rate equal

to 60 nm for both SR1 and SR2 and choosing the sputtering rate and sputtering area

of SR1 to be 10 times greater than the sputtering rate and sputtering area for SR2, a

decay in the 197Au count rate which is similar to that observed for the un-etched wires

is calculated (Figure B.3b). The exponential decay length for SR2 appears greater

than 60 nm because the 197Au count rate is graphed against the depth of SR1. Note

that the 60 nm exponential decay length used in this model is the average of the

observed exponential decay lengths for the Au-etched wires.

(b)(a)

Figure B.3. (a) Cross-sectional sketch of the sputtered volume. (b)

Au concentration versus depth for Sputtering Region 1, Sputtering

Region 2, and the summation of Sputtering Regions 1 and 2.

Au-Etch: In our procedure, the wire arrays were exposed to Buffer HF Im-

proved (Transene Inc.) for 30 s, rinsed in 18 MΩ cm resistivity deionized (DI) water,

immersed in a 9:1 gold etchant TFA (an aqueous solution of I2 and KI; Transene

Inc.):HCl (37%, aq) mixture for 20 min, and rinsed in a 1 M HCl (aq) solution. Ar-

rays were then washed in 18 MΩ cm resistivity DI water and dried in a stream of

N2.
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KOH Etch: A KOH etch was performed after the Au-etch to remove Si from the

surface of the wire. Arrays were placed in Buffered HF Improved (Transene Inc.) for

10 s to remove the native oxide and then dipped in a 50 wt.% KOH solution at 55◦C

for 2-3 s to etch the Si. Ellipsometry was done on a silicon(100) on insulator wafer to

estimate that ∼ 20 nm of Si had been removed during the KOH etch. After etching,

a few of the measured wires still exhibited an increased Au concentration near the

surface of the wire. We attribute this to a lack of uniform etching across the array.

It should be noted that the Au etch was performed for 45 min instead of 20 min (as

for the Au-etched wires). However, the increased surface Au concentration was still

present after the 45 min Au etch.

Secondary Ion Count Rates: Figure B.4 provides the secondary ion count

rates as a function of depth for the Au-etched, radially and axially profiled wires and

for the KOH-etched, radially profiled wires. A comparison between the Au-etched,

radially and axially profiled wires, reveals the 30Si count rate was almost an order of

magnitude greater for the radially profiled wires. This difference in 30Si count rates is

suspected to result from a difference in sample height and a corresponding change in

the ion extraction efficiency. As mentioned in the RSF section above, the RSF may

be affected by a change in ion extraction efficiency. Thus the axial results, whose

30Si count rate differed from the Au standards 30Si count rate, should be understood

to have a larger uncertainty than the radial results whose 30Si count rate was quite

similar to the Au standards 30Si count rate.

When comparing Fig. B.4a and Fig. B.4c, note that Fig. B.4a reports a count rate

for 30Si secondary ions, while Fig. B.4c reports a count rate for 28Si secondary ions.

Because the 28Si to 30Si ratio is ∼ 30, similar count rates for 28Si and 30Si secondary

ions represent a large difference in the amount of Si sampled. This explains why a 1

cps 197Au count rate produces a Au concentration of ∼ 5 × 1015 atoms cm−3 from

the secondary ion count rates in Figure B.4a, and the same 1 cps 197Au count rate

produces a Au concentration of ∼ 1 × 1017 atoms cm−3 from the secondary ion count

rates in Figure B.4c.
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(a)

(b)

30Si

30Si

Radial:  Au-etched Wire

Radial:  KOH-etched Wire(c)

28Si
Wire-

Substrate
Interface

74Ge

197Au

Axial:  Au-etched Wire

Wire-
Substrate
Interface

74Ge

197Au

197Au

Figure B.4. Secondary ion count rates for (a) a radially profiled

VLS-grown, Si wire, (b) an axially profiled VLS-grown, Si wire, and

(c) a radially profiled, KOH-etched, Au-etched, VLS-grown, Si wire.

In a and c, the vertical, grey band corresponds to the Si wire / Ge

substrate interface. The 28Si (30Si) and 74Ge count rates are referred

to the left-hand y-axis, while the 197Au count rate is referred to the

right-hand y-axis.
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Appendix C

Scanning Photocurrent Microscopy

Contact Deposition: The contact deposited first (the ohmic Al w/ 1% Si contact

with the exception of one device) was ∼ 1.5 µm thick such that wires would remain

attached to the substrate during resist lift-off, while the contact deposited second

(the rectifying MIS contact with the exception of one device) was ∼ 0.3 µm thick to

ensure conformal coverage of the wire surface.

LLI estimation:

Measured Photocurrent: The maximum measured photocurrent of the Si wire

device is in good agreement with the measured photocurrent of the laser. The max-

imum photocurrent measured during a SPCM scan of a typical Si wire device was

2.9 nA. Accounting for the 0.60 external quantum yield of the photodiode at 650 nm

(the laser wavelength), the measured photocurrent of the laser was 12 nA. Thus we

find a maximum external quantum yield of 0.24, which is reasonable for our Si wire

devices.

Variation of the Extracted Effective Minority-Carrier Diffusion Length:

Examining the transverse photocurrent intensity in Fig. 5.3c, the photocurrent in-

tensity is found to be larger along the wire sidewalls than in the wire center. This

variation in the photocurrent intensity is thought to arise from greater optical incou-

pling of the laser illumination at the wire sidewall. Since the effective minority-carrier

diffusion length, Ln,eff , is dependent upon the broad-area illumination intensity, the

increased optical incoupling of the laser illumination may be producing the observed

difference in the Ln,eff extracted from photocurrent cross-sections between the wire

center and the wire sidewall if a fraction of the laser illumination is incoupled into a
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Table C.1. Calculation of the optical carrier generation density un-

der laser illumination.

Laser (λ = 650 nm)

Measured Isc (A) 1.2 × 10−8

Illuminated Area (cm−2) 7.9 × 10−9

Jsc (A cm−2) 1.5 × 100

Io = Jsc/q (photons cm−2 s−1) 9.4 × 1018

α (cm−1) 3.1 × 103

GL= -dI/dz = αIoe
−αz (photons

cm−3 s−1)

2.9 × 1022

Ln,eff (cm) 1.1 × 10−3

Dn (cm2 s−1) 1.9 × 101

Lifetime (s) 5.7 × 10−8

n’=p’=GL τ eff (cm−3) 1.7 × 1015

Wire Doping (cm−3) 1 × 1017

guided wave mode within the Si wire. The existence of guided wave modes within the

Si wires is known[50] and not unexpected given the similarity in structure between a

Si wire in air and an optical fiber.
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Table C.2. Calculation of the optical carrier generation density un-

der broad-area illumination.

Broad-Area Illumination

Measured Isc (A) 8.7 × 10−5

Illuminated Area (cm−2) 6.4 × 10−5

Jsc (A cm−2) 1.4 × 100

Io = Jsc/q (photons cm−2 s−1) 8.6 × 1018

Partitioning white light (T = 3200 K) into seven bins

λ (nm) 966 732 599 441 377 343 297

Fraction of

Spectrum

0.595 0.298 0.088 0.016 0.0015 0.0015 0.0002

α (cm−1) 760 1.7 × 103 5.7 × 103 4.9 × 104 3.7 × 105 1.1 × 106 1.9 × 106

GL= -dI/dz = αIoe
−αz (photons

cm−3 s−1)

4.1 × 1022

Ln,eff (cm) 1.1 × 10−3

Dn (cm2 s−1) 1.9 × 101

Lifetime (s) 5.7 × 10−8

n’=p’=GL τ eff (cm−3) 2.3 × 1015

Wire Doping (cm−3) 1 × 1017
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Appendix D

Si Microwire-Array Solar Cells

Characterization: Dark and light current-voltage measurements were performed on

a probe station with a 4-point source-measure unit (Keithley 238). Contact to the

ITO top contact was made with a micromanipulator-controlled Au-coated tungsten

probe tip. Simulated solar illumination was provided by a 1000 W Xe arc lamp with

air mass (AM 1.5G) filters (Oriel), calibrated to 1-sun illumination by an NREL-

traceable Si reference cell (PV Measurements, Inc.). Spectral response measurements

were performed in an overfilled geometry using chopped (30 Hz) illumination from a

300 W Xe arc lamp coupled to a 0.25 m monochromator (Oriel) that provided ∼2

nm spectral resolution. The specimen photocurrent was normalized (by area) to that

of a 3 mm-diameter calibrated photodiode, to determine the external quantum yield.

The signals were measured with independent lock-in detection of the sample and cal-

ibration channels. Scanning photocurrent microscopy measurements were performed

using a confocal microscope (WiTEC) in a light-beam-induced current (LBIC) config-

uration described previously.[44] Scanning photocurrent microscopy (SPCM) images

were formed by rastering each device beneath a ∼1.0 µm-diameter laser spot (λ =

650 nm) while recording the short-circuit current (0 V bias) under otherwise dark

conditions. Multiple 90 µm x 90 µm SPCM images were manually stitched together

and post-processed to determine the active cell area using image processing software

(Image J).

Voc and FF : Tables D.1, D.2 and D.3 provide the Voc and FF for all of the

fabricated As-Grown, Scatterer, and PRS solar cells. (These tables include the Voc

and FF for solar cells whose area was not measured by SPCM.) As seen in Table D.3

below, the Voc and FF were remarkably consistent for the PRS solar cells. The Voc
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and FF were also consistent between the best Scatterer (Tbl. D.2) and As-Grown

(Tbl. D.1) solar cells, however some cells with lower Voc and FF were observed. For

the As-Grown solar cells, obvious fabrication defects (cracking of the mounting wax

prior to ITO deposition) may have resulted in the larger variation in cell performance.

Between cells with similar performance (within each respective cell type), we attribute

much of the variation in FF to the observed variations in the probe tip to ITO contact

resistance.

Table D.1. As-Grown Cells (Voc and FF )

Sample Voc(mV) FF(%)

C4R2 401 59.3

C4R3 209 44.9

C4R4 452 61.4

C4R5 257 42.2

C4R6 478 59.1

C3R2 419 43.0

C3R3 339 52.0

C3R4 474 66.2

C3R5 453 65.8

C3R6 485 68.4

C2R3 482 69.4

C2R4 492 70.1

C2R5 484 71.6

C2R6 429 59.1

C1R6 463 54.4
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Table D.2. Scatterer Cells (Voc and FF )

Sample Voc(mV) FF(%)

C1R1 477 61.7

C2R1 429 54.8

C3R1 387 53.5

C4R1 475 61.4

C1R2 498 67.5

C2R2 503 68.6

C3R2 481 54.3

C4R2 475 65.1

C1R3 497 64.9

C2R3 486 60.4

C3R3 505 68.8

C2R4 499 68.0
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Table D.3. PRS Cells (Voc and FF )

Sample Voc(mV) FF(%)

C2R1 491 59.3

C3R1 487 61.2

C4R1 488 59.7

C5R1 485 61.9

C2R2 497 61.0

C3R2 493 60.8

C4R2 495 61.1

C5R2 489 60.0

C2R3 499 63.3

C3R3 497 63.0

C4R3 495 62.9

C5R3 493 61.5

C2R4 504 62.6

C3R4 494 64.5

C4R4 502 62.5

C5R4 501 61.5

C2R5 503 66.1

C3R5 500 67.2

C4R5 498 65.4

C5R5 497 62.6

C2R6 502 63.4

C3R6 499 63.3

C4R6 489 61.0

C5R6 485 64.3
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Transparent Dielectric: Ideally, a flexible, transparent, dielectric would have

been used in the Si microwire-array solar cells fabricated in Ch. 6. Three such materi-

als were considered for use: polydimethylsiloxane (PDMS); polyethylenevinylacetate

(PEVA); and hot glue (a mixture of PEVA and wax). Though these materials were

not successfully implemented in a wire-array solar cell, knowledge was gained towards

the future fabrication of flexible wire-array solar cells.

Given our previous work with PDMS infilled Si microwire arrays[14] and their use

as photoelectrochemical cells,[78] PDMS was the first dielectric infill we examined for

use in a solid-state solar cell. One immediate difficulty with the choice of PDMS as an

infill was the removal of excess PDMS from the top of the wire arrays (not necessary

for the photoelectrochemical cell, as it was only partially infilled with PDMS). A

dry-etch selective for PDMS over Si is not know to exist, and selective wet chemical

etches proved difficult to control. However, as a result of the variation in the wire

height across an array, regions with near optimal infill of PDMS could be obtained

(not shown.)

An equally important challenge to the use of PDMS as a dielectric infill (and likely

many flexible infills) was obtaining an electrical contact to the TCO once deposited

on the PDMS. As can be seen in Figure D.1a, attempts to place an electrical probe

onto the TCO resulted in compression of the PDMS layer beneath the TCO and

fracture of the TCO. Consequently, it was not possible to obtain a good electrical

contact to the TCO. A metal contact pad (∼ 1µm-thick) was evaporated on top of

the TCO in an attempt to prevent the fracture of the TCO during the contacting

process (not shown), but no improvement in the electrical contact was observed. The

TCO also appears to have fractured in areas that had not been probed, as seen in

Figure D.1b. It is not known whether this second type of fracturing prevented the

TCO from functioning as a continuous contact layer.

Seeking to use a less mechanically elastic (but still flexible) polymer than PDMS

and a polymer that could be etched without etching Si, we examined ethylenevinylac-

etate (EVA). EVA is already used in commercial solar cell production as a transparent

encapsulant and exhibits no photo-degrading over the 25-year warranty of a commer-
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(a)

(b)

Figure D.1. SEM images of a wire array infilled with PDMS and

coated with ITO. (a) Indentations in the PDMS and cracking of the

ITO layer after attempts at establishing an electrical contact with a

metallic probe tip. (b) High magnification SEM image of a wire tip

exhibiting cracks in the ITO.
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cial solar module. However unlike PDMS, EVA did not lend itself to the spin-coating

deposition process. As seen in Figure D.2, surface tension led to the formation of

regions filled to the wire tips with EVA and regions devoid of EVA. Increasing the

concentration of EVA in the solvent (dicholoromethane) clearly led to a more uni-

formly infilled wire array, however the solution used in Figure D.2b was near the

solubility limit.

Concurrent to my work with PDMS and PEVA, Dr. Michael Walter had shown

that hot glue (a mixture of PEVA and wax) could be used to infill the wire arrays,

as can be seen in Figure D.3. The hot glue yielded a less uniform infill than the

mounting wax (Fig. D.3, Fig. 6.9), though in some areas the uniformity of the hot

glue was comparable with uniformity of the mounting wax (not shown.)

Solar cells fabricated using hot glue as the transparent dielectric infill had a high

Voc, but exhibited a low FF and inconsistent Jsc, likely due to failure of the TCO

layer under mechanical pressure from the electrical probe tip. However, the ability

to make an electrical contact to TCO deposited on hot glue and the ability to peel-

off wire arrays using hot glue, suggest that hot glue be strongly considered as the

dielectric infill in flexible solar cells.
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(a)

(b)

Figure D.2. SEM images of wire-arrays infilled with ethyleneviny-

lacetate (EVA.) (a) 0.6 g 70% VA EVA dissolved in 4 mL di-

choloromethane and spin-coated at 2000 rpm for 60s (b) 0.6 g 70%

VA EVA dissolved in 2 mL dicholoromethane and spin-coated at

2000 rpm for 60s.
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Figure D.3. SEM image of a wire array infilled with hot glue.
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