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Chapter 4

Characteristic exploratory behavior
persists as individual Drosophila
become hungry

4.1 Summary

Here we show early attempts to demonstrate the individuality of adult Drosophila reared

and observed in homogeneous conditions. Using a simple machine vision strategy to

track the movements of single flies within model environments, we describe a char-

acteristic structure in the movements of individuals making up their exploration and

dispersal. The characteristic structure persists over the period of hours and is robust to

systematic shifts in the movement of these flies over this time that are presumably due

to entrained crepuscular activity and changes in their hunger state.

4.2 Introduction

We have previously suggested that hunger overrides the visual and olfactory cues from

food, driving the fruit fly, Drosophila melanogaster, to disperse from inaccessible food
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patches. To describe this movement, which seems largely driven by the animal’s chang-

ing internal physiological state, in terms of behavioral algorithms, we mounted single

cameras above the same environmental chambers previously used and developed a sim-

ple machine vision strategy to reconstruct the 3D trajectory of single, isolated flies mov-

ing within these chambers. We started recording the movements of the flies just after

they had been removed from food, and therefore we captured onto digital video the

change in the behavior as the flies became hungry. Upon analyzing the search move-

ments of flies near a water resource as they shift to exploring and then to exiting from

the chamber to an adjoining chamber, we noticed a surprising non-uniformity in their

movement (see Figure 4.1).

As a starting point to determine whether flies exhibit individualistic exploratory

movement over the period of hours, we learn a function that inputs a quantitative de-

scription of the behavior of a fly during one time period and predicts this description

during another period. We then show for a number of behavioral statistics describing

the movement of exploring flies, that the error in this prediction is significantly lower

than for a control experiment, in which we try to predict the behavior of a fly given the

behavior of a different fly.

Within this terse introduction of the project, we analyze 1 of 4 collected data sets:

(1) 34 males and 34 females over 6 hours that may freely move between the chambers.

We are also working with, but largely do not mention, results from the three other data

sets: (2) 10 females over 6 hours blocked from moving between chambers by a visually

transparent window allowing the flies to see out of the chamber, (3) 16 males and 14

females over 12 hours that are shut within the first chamber with a plug made to appear

as near a possible as more of the chamber wall, effectively acting as a single chamber,

and (4) 12 hours of behavior for 9 females that have been food deprived for 3 hours
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and 9 females that have been food deprived for 12 hours that may pass back and forth

between the connected chambers.
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Figure 4.1: Individual trajectories of iso-
lated, single flies moving within a single
cylindrical chamber for 12 hours. Shown
are the hourly movements of four individ-
ual flies throughout the 12 hour trials (top
to bottom). The trajectories from two flies
come from trials where flies walked for a
medium total distance (444 and 464 me-
ters), whereas the other two come from flies
that had walked two standard deviations
shorter (288 meters) or further (753 meters)
than the medium distance. To help illustrate
the trajectory of a fly, we unwrapped its 3D
positions within the experimental chambers
and report its movement in a flattened repre-
sentation. A patch of agar (blue circle) em-
bedded within the center of floor prevented
flies from dehydrating. The exit (red dot)
leading to a connected second chamber was
blocked during these particular trials.
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4.3 Materials and Methods

4.3.1 Animals and their handling

We performed experiments on 4-day-old adults from a laboratory colony of the fruit fly,

Drosophila melanogaster (Meigen), descended from a wild-caught population of 200

females. We reared, entrained, and tested all flies on a 16 h: 8 h light: dark photoperiod.

Transitions between light and dark were immediate. The light-on phase started at 7AM

PST. We maintained fly stocks at ≈25 ◦C and at a relative humidity of ≈30% on Lewis

food medium in standard 250 mL bottles (Lewis, 1960). We introduced individual flies

from stock vials directly into the experimental chambers with a mouth pipette. The

stock vials were kept within a controlled density of flies containing an equal mixture of

males and females of comparable age, which were provided ad libitum access food.

4.3.2 Long-duration recordings of movement within environmental

chambers

To test the exploratory behavior of individual flies, we introduced single flies fed ad

labitum into the first of a pair of connected environmental chambers where flies could

move freely between the chambers through narrow tubes, as described previously. Each

day we ran two trials, simultaneously observing a single male and a single female.

We switched back and forth each day which pair of chambers contained the male or the

female, and after every experiment, we washed down the chambers with water and dilute

ethanol. All chambers provided access to a 2 mL plug of 0.5% agar that was embedded

into the center of the floor to prevent dehydration. We introduced flies into chambers

at 9AM and started observing their movements immediately, until 4PM or 10PM. Flies
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were free to move back and forth between the adjacent chambers, unless in the particular

trial the exit to the second chamber was blocked. To record the change in behavior as a

fly became hungry, we mounted digital cameras above the first chambers and recorded

the fly’s movement at a rate of 15 s−1 (Fig. 4.2A). To avoid large video files, instead of

saving a full record of their movement, we extracted and saved only the x,y coordinates

of the fly as observed within the 2D image plane (Fig. 4.2B), a corresponding cropped

image containing just the region surrounding the fly for each of these coordinates (Fig.

4.2C), and a single median background image calculated from XXX frames from the

video containing a view of the entire chamber (Straw and Dickinson, 2009). With this

data we have developed software capable of reconstructing a high spatial and temporal

3D representation of the fly’s movement that is cross-indexed to each original video.

Data in this form allow us to confirm the quality of tracking and also provide an efficient

means to extract movie clips of interesting behaviors, or over specified time windows,

for further analysis.
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Figure 4.2: Technology devised to study the movement of Drosophila within a con-
trolled sensory environment. (A) An individual fly is introduced to the first of two
connected chambers, both containing only water. A single camera is mounted above
the first chamber. (B) An example of the 2D position of a fly obtained from digital
video using custom software from the laboratory. (C) Cropped image of the fly from
this video. (D) Binerized threshold image of the fly in C. (E) Cartoon illustrating the
two possible locations for a fly from the perspective of the camera. Ray 1 represents
the possible location of a fly on the underside of the chamber lid (dashed; black arrow);
Ray 2 indicates the true location of the fly in this illustration (solid; gray arrow), which
sits on the chamber floor. (F) Reconstructed trajectory of a fly filmed for 6 hours as it
became hungry (black). We highlighted 10 second segments for all trajectories proceed-
ing exits (red) into the second chamber (green circle). To help visualize and compare
the variability in movement between individual flies, we rotated and unwrapped their
trajectories so that the exit hole is aligned directly opposite from the readers. We made
a vertical slice down the front section of the chamber (dotted line) and then folded the
lid up, the floor down, and walls apart as shown. Note * and ** denote corresponding
sections of wall; see inset and reconstructed trajectory.
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4.3.3 Single-camera strategy for three-dimensional video-tracking

To reconstruct the 3D positions of a fly as it moved throughout a chamber, we calcu-

lated the total pixel area representing a fly from a thresholded image (Fig. 4.2D) for

each cropped image. We used this information together with 2D coordinates to deduce

the location of the fly throughout the length of a video. If the pixel area representing a

fly was greater than a specific computed amount, we would assume that the fly at this

point in time was closer to the camera and therefore on the underside of the chamber

lid; conversely, if the pixel area was less than this amount, we would assume that the

fly was farther from the camera, either on the wall or floor of the chamber (Fig. 4.2E).

Our strategy assumes in accordance with our observations that single flies introduced to

our experimental chambers spent the majority of their time on the surface of the cham-

ber, rather than flying within its volume. From over 1200 hours of video, isolated flies

remained on the surface of the chamber for more than 99% of the time. Using this

strategy, we could build up a fly’s trajectory frame-by-frame over 6 or 12 hours. We

calibrated the projection between the 2D coordinates of a fly and its 3D positions using

known anchor points. The points were assigned within an image of the experimental

chamber corresponding with known positions within the chamber, using a direct linear

transformation (standard DLT). Finally, we estimated the most likely sequence of posi-

tions (lid vs. wall or floor) for the fly between each video image and used this estimate

to reconstruct the trajectory for a fly (Viterbi optimization). For example, the probability

of a fly transitioning between a location on the lid to a location on the wall is quite low

if the fly is in the center of the chamber; this transition is more probable if the fly is on

the lid near the wall. We wrote custom code in Matlab (Mathworks Natick, MA, USA)

for transforming, optimizing, and analyzing all data.
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4.3.4 Quantitative descriptors of exploratory behavior

Each behavioral statistic describes the behavior of a fly during a one-hour interval.

There are 4 types of statistics: those describing the behavior of flies while walking,

flying, searching near water, and dispersing from the chamber through the exit into the

second chamber. In Figures 4.5–4.21, we plot the interval number versus one of vari-

ous statistics for each of the 20 selected flies, and that were sorted based on the total

distance traveled during the 6 hour trial. For each statistic and selected fly, we plot the

interval number versus the statistic value. We plot the raw statistic in part (A) of each

figure. In many of the statistics, we can see temporal dependencies throughout the day.

As the flies grow hungrier with time since last feeding, various measurements of their

locomotor movements increase. Their behaviors then decrease during the middle of the

day, and for the 12 hour trials, the flies’ behavior then increases again around dusk near

the end of the experiment (for example see 4.3). In part (B) of each figure, we plot the

z-scored statistic. That is, we compute the mean and standard deviation for each interval

and statistic over all flies, then plot the number of standard deviations from the mean the

statistic is for a given fly. This manipulation largely removes the temporal dependencies

of the statistic. For some of the statistics analyzed, the statistic is only computed from

a few observed values, and thus will be noisy. For example, Figure 4.4 shows values

on which the noise in a particular statistic depends in (A), and the standard error of the

median-based estimates in (B).

4.3.4.1 Walking statistics

We segment a sequence of a trajectory in which the fly is both (1) in the chamber and

(2) not flying into subsequences in which the fly is walking or stopped using a variant
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Figure 4.3: Movement duration for individuals as they become hungry. Total distance
traversed for isolated, single flies for each successive 10 minute interval over the period
of 12 hours. Collective means for male (blue) and female (red) flies are noted. The
transition from dark (gray boxes) to light are indicated. The green vertical line denotes
2 hours into experiment.

of the Viterbi algorithm (Cormen et al., 2001). We model the probability of a sequence

of walking/stopped states as a first-order, binary hidden Markov model. The intuition

behind the chosen model is as follows. First, there is a higher probability that the fly

will remain in the same state, i.e., either remain walking or stopped, than switch to the

other state. Second, if the fly’s speed in the current frame is small, there is a higher

probability that the fly is stopped than walking. Conversely, if the fly’s speed is high,

there is a higher probability that the fly is walking. We use dynamic programming to

find the sequence of states with globally maximal probability.

More formally, let st = 1 represent the classification of frame t as walking and

st = 0 the classification of frame t as stopped. Using a first-order Markov assumption,

we can write the probability of a sequence of hidden states s1:t for frames 1 through t

given the observed speeds v1:t recursively as

P (s1:t|v1:t) ∝ P(st|st−1)P(vt|st)P(s1:t−1|v1:t−1).
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Figure 4.4: Uncertainty in estimates of per-interval statistics. (A) We histogram the
value on which the noise of various statistics depends. (B) We show the standard error
of the median estimate, assuming the data is normally distributed. In both, infinity
corresponds to intervals with no data available. (B) for comparison we plot the mean
value of the statistic in red (for walking speed, the mean value is 8.5, which is off the
plot). We see that for the rarer events – water visits, return trips to the water – the noise
is high. “inf” stands for infinity and corresponds to n = 0, complete uncertainty.

The transition probability P (st|st−1) is set to 0.98 if the state remains the same, st =

st−1, and 0.02 if the state changes st 6= st−1. The likelihood of observing speed vt (in

mm/s), given that the fly is walking, is assumed to be proportional to

P (vt|st = 1) ∝ exp(−(vt − 1)2/(2 · .15)),

that is, proportional to a Gaussian distribution with center 1 mm/s and variance .15

(cm/s)2. The likelihood of observing speed vt (in mm/s), given that the fly stopped, is

assumed to be proportional to

P (vt|st = 0) ∝ exp(−(vt − 0)2/(2 · .005)),

that is, proportional to a Gaussian distribution with center 0 mm/s and variance .05

(cm/s)2.
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The fraction of time walking (fractimewalking) statistic reports the fraction of time

the fly is in the observed chamber that it is classified as walking (Figure 4.5). It is a

unitless quantity. The less time the fly spends in the chamber during the interval, the

noisier this statistic is. If the fly is not in the observed chamber at all during the interval,

then this statistic is completely unknown.

The distance traveled (disttraveled) statistic reports the total distance in centimeters

the fly travels while it is classified as walking in the observed chamber (Figure 4.6). This

value is normalized by the number of seconds the fly is in the observed chamber, thus

the units reported are cm · s−1. The noise in this statistic also depends on the amount of

time the fly spends in the chamber during the interval.

The frequency of walk onsets (freqwalk) is the number of times the fly begins a bout

of walking during the interval, normalized by the number of seconds the fly spends in

the observed chamber (Figure 4.7). The units reported are therefore onsets per second.

If a walking bout crosses the division between two intervals, we choose the interval in

which the middle frame of the bout falls. We follow this policy with all other bout-

related properties. The noise in this statistic also depends on the amount of time the fly

spends in the chamber during the interval.

The mean walking speed (meanwalkspeed) is the mean speed of the fly over all

frames in which the fly is classified as walking in the first chamber (Figure 4.8). The

units reported are centimeters per second. The noise in this statistic depends on the

amount of time the fly spends walking in the observed chamber during the interval.

The median duration of walking bouts (walkdur) is the median duration of sequences

during which the fly is classified as walking while in the chamber (Figure 4.9). This

statistic is reported in seconds. The noise in this statistic depends on the number of

bouts of walking the fly performs in the observed chamber during the interval.
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Figure 4.5: Interval vs. fraction of time walking for selected individuals. We select
20 flies whose ranks based on total distance travelled are evenly spaced. The top left
fly walks the least of all flies and the bottom right fly walks the most of all flies. We
plot the fraction of time walking for each interval, where the interval length is 1 hours.
Missing points indicate intervals for which the statistic cannot be computed. (A) We
plot the interval number vs. the raw statistic, while in (B) we plot the interval number
vs. the number of standard deviations from the mean statistic value for the given interval
(i.e. the data in each interval has been z-scored. In gray, we plot the mean value over all
flies. In light red, we plot the mean value over all female flies. In light blue, we plot the
mean value over all male flies. We plot the value for the selected fly in dark red if it is
female and dark blue if it is male.

The median duration of stop bouts (stopdur) is the median duration of sequences

during which the fly is classified as stopped while in the chamber (Figure 4.10). The

statistic is reported in seconds. The noise in this statistic depends on the number of

bouts of stopping the fly performs in the observed chamber during the interval.

4.3.4.2 Flying statistics

The fraction of time flying (fractimeflying) is the fraction of time the fly is in the chamber

that it is classified as flying, i.e., the fly’s velocity was >0.6 cm/s (Figure 4.11). It is

a unitless quantity. The less time the fly spends in the chamber during the interval, the

noisier this statistic is.
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Figure 4.6: Interval vs. distance traveled for selected individuals. See Figure 4.5 for a
more complete description.
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Figure 4.7: Interval vs. frequency of walk onsets for selected individuals. See Figure
4.5 for a more complete description.
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Figure 4.8: Interval vs. mean speed while walking for selected individuals. See Figure
4.5 for a more complete description.
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Figure 4.5 for a more complete description.
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Figure 4.10: Interval vs. median duration of stop bouts for selected individuals. See
Figure 4.5 for a more complete description.

The frequency of flights (freqflight) is the number of times the fly begins a bout of

flying during the interval, normalized by the number of seconds the fly spends in the

observed chamber (Figure 4.12). The units reported are therefore onsets per second.

The noise in this statistic depends on the amount of time the fly spends in the chamber

during the interval.

The median duration of flights (flightdur) is the median duration of sequences during

which the fly is classified as flying while in the chamber (Figure 4.13). This statistic is

reported in seconds. The noise in this statistic depends on the number of flights the fly

performs in the observed chamber during the interval.

4.3.4.3 Local search near water statistics

We segment the trajectory of a fly into sequences in which it is either visiting or not

visiting the patch of agar, a source of water. A fly is considered visiting the water if it is

≤ 0.1 cm from the water’s edge, or if it is ≤ 0.3 cm from the edge and within 2 frames

from a frame in which the fly is ≤ 0.1 cm from the edge. We based this classification
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Figure 4.11: Interval vs. fraction of time flying for selected individuals. See Figure 4.5
for a more complete description.
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Figure 4.13: Interval vs. median duration of flights for selected individuals. See Figure
4.5 for a more complete description.

from average transit probabilities from 125 flies as they search near the agar (see Figure

4.30). This definition results in an average of 9 visits to the water resource per interval,

with 20% of fly-intervals having no visits to the water.

The fraction of time near the water (fractimenearwater) is the fraction of frames the

fly is in the chamber that it is classified as near the water resource (Figure 4.5). It is a

unitless quantity. The noise in this statistic depends on the amount of time the fly spends

in the chamber during the interval.

The frequency of visits to water (freqvisitwater) is the number of continuous se-

quences of frames in which the fly is classified as visiting the water, normalized by the

number of seconds the fly spends in the observed chamber (Figure 4.6). The units re-

ported are therefore sequences per second. The noise in this statistic depends on the

amount of time the fly spends in the chamber during the interval.

The median duration of visits to water (watervisitdur) is the median duration of

sequences during which the fly is classified as near the water resource (Figure 4.7).

This statistic is reported in seconds. The noise in this statistic depends on the number

of times the fly visits the water resource during the interval.
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Figure 4.14: Interval vs. fraction of time near water for selected individuals. See Figure
4.5 for a more complete description.

The median time between visits to water (timebtnwater) is the median duration of

sequences which begin when the fly leaves the water resource and end when the fly

returns to the water resource (Figure 4.8). As with other types of sequences, if a return

trip crosses the division between two intervals, we choose the interval in which the

middle frame of the trip falls. This statistic is reported in seconds. The noise in this

statistic depends on the number of return trips to the water resource during the interval,

which of course is related to the number of times the fly visits the water resource.

The median length of the walking path between visits to water (pathlengthbtnwater)

is the median distance traveled in uninterrupted sequences that begin when the fly leaves

the water resource and end when the fly returns to the water resource (Figure 4.9). By

uninterrupted, we mean that the fly does not leave the chamber or fly during the return

trip, as we cannot measure the distance traveled during these periods. This statistic is

reported in centimeters. The noise depends on the number of uninterrupted return trips.
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Figure 4.15: Interval vs. frequency of visits to water for selected individuals. See Figure
4.5 for a more complete description.
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Figure 4.16: Interval vs. median duration of visits to water for selected individuals. See
Figure 4.5 for a more complete description.
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Figure 4.17: Interval vs. median time between visits to water for selected individuals.
See Figure 4.5 for a more complete description.
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Figure 4.18: Interval vs. median length of walking path between visits to water for
selected individuals. See Figure 4.5 for a more complete description.
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Figure 4.19: Interval vs. fraction of time in chamber for selected individuals. See Figure
4.5 for a more complete description.

4.3.4.4 Dispersal from chamber statistics

The fraction of time in the chamber (fractimeinchamber) is the fraction of the interval

the fly spends in the main, observed chamber (Figure 4.19). This is a unitless quantity.

The noise in this statistic depends only on the interval length. The classification of when

flies left the chamber was primarily based on when the pixel area of a thresholded video

image dropped to zero (see Figure 4.32), and (see Figure 4.33 for details).

The frequency of exits from the observed chamber (freqexits) is the number of times

the fly exits the interval, normalized by the number of seconds the fly spends in the

interval (Figure 4.20). The units reported are therefore onsets per second. The noise

in this statistic depends on the amount of time the fly spends in the chamber during the

interval.

The median duration of exploration bouts (awaydur) is the median duration of visits

to the second, unobserved chamber. This statistic is reported in seconds. The noise in

this statistic depends on the number of times the fly visits the second chamber.
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Figure 4.20: Interval vs. frequency of exits from chamber for selected individuals. See
Figure 4.5 for a more complete description.
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Figure 4.21: Interval vs. median duration of exploration bouts for selected individuals.
See Figure 4.5 for a more complete description.
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4.3.5 Training algorithms and strategy for predicting behaviors

For a given statistic and a given interval, we learn a function that inputs the values of this

statistic for a subset of the remaining intervals and predicts the value of this statistic in

the given interval. For example, we learn a function that inputs the 5-D vector consisting

of the distance traveled in intervals 1–3 and 5–6, and outputs an estimate of the distance

traveled in interval 4. We do this for each statistic and each of the 6 intervals in the

6-hour experiment. We also consider different lengths of buffers between the input and

predicted intervals. A buffer length of 0 intervals corresponds to predicting the given

interval using all the remaining intervals. A buffer length of 1 interval corresponds to

predicting the given interval using all remaining intervals except for those adjacent to

the given interval (e.g., predicting interval 4 from intervals 1–2 and 6). More generally,

a buffer length of n intervals corresponds to predicting the given interval using all re-

maining intervals except those within n+1 intervals of the given interval. The larger the

buffer, the less data we have to predict the given interval, thus we expect our estimates

to be less accurate. However, we consider these larger buffers to demonstrate that the

individuality effects can be seen over larger time frames.

We use a form of regularized linear regression to learn the predictor function. Let

xij represent the input statistic vector for statistic i and fly j, and the predicted interval,

and yij the true value of statistic i and fly j for the current predicted interval. Any linear

predictor of yij given xij can then be represented as

f(xij) = c>i xij + ci0,

where ci is a constant vector of coefficients and ci0 is a constant offset for statistic i and

all flies. For ease of notation, let us append the input data vector xij with an element
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that is always 1, and fold the constant offset ci0 into the vector of coefficients ci.

In ordinary linear regression, we choose the coefficients ci that minimize the mean-

squared error:

Jo(ci) =
1

n

n∑
j=1

(
c>i xij − yij

)2
,

where the sum is over the data for the n flies in the training set.

Because we had limited amounts of data compared to the amount of noise in the

statistics, particularly for statistics such as the median water visit duration, we used a

regularized form of linear regression. First, we z-score the inputs xij and outputs yij

using the mean and standard deviation computed from the training set only. That is,

we subtract the training set sample mean and divide by the training set sample standard

deviation for each statistic and interval. This manipulation takes into account much of

the temporal dependencies of the statistics. Note that z-scoring the data is itself a linear

transformation, thus it would not affect the results of ordinary linear regression. Let xij

and yij now represent the z-scored data. The linear regression can then be thought of

as a weighted mean of the statistics for the given intervals. We will most likely want to

give higher weights to intervals closer to the predicted interval, or perhaps to give lower

weights to intervals that are less reliable. Based on the assumption that the coefficients

for different statistics but the same interval will be somewhat similar, we consider the

following regularized criterion:

Jr(c1, ..., cm) =
1

m

m∑
i=1

1

n

n∑
j=1

(
c>i xij − yij

)2
+ λ

1

m

m∑
i=1

(
ci −

1

m

∑
k

cm
k=1

)2

.

There are two differences between this regularized criterion, Jr, and the ordinary least-

squares criterion, Jo. First, this criterion is a function of the coefficients for all the
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statistics, rather than just one statistic. Thus, we are solving for the coefficients for all

statistics simultaneously. The first term in Jr is the same as the first term in Jo, except

that we are summing over all the statistics. The second difference between Jr and Jo

is the inclusion of the second term, the regularization term. This term penalizes differ-

ences between a coefficient vector for one statistic and the mean over all statistics. The

constant λ weights the data term and the regularization term. We only experimented

with setting λ = 1. To improve robustness to outliers, we threshold all inputs and

training outputs at 3 standard deviations. Figure 4.34 shows the coefficients learned

using ordinary linear regression in (A) and regularized linear regression in (B) for the z-

scored data. Figure 4.35 shows a comparison of the mean-squared error for regularized

linear regression to other regression algorithms. We compare to linear and quadratic re-

gression with the ordinary least-squares criterion, quadratic regression for the proposed

regularized criterion, and linear and quadratic regression using iteratively reweighted

least-squares with the bisquare weighting function, implemented with the robustfit

function in Matlab. The regularized linear regression was usually the best performing

method, and the most reliable when training data was scarce, particularly in data sets

with smaller numbers of flies, not reported here.

While Jo can be minimized by a simple matrix inversion for each statistic, Jr is

slightly more difficult to minimize, as the coefficients for all statistics must be simulta-

neously selected. However, Jr is convex, so we can choose an arbitrary initialization,

perform a gradient descent, and be guaranteed to find the global optimum. We ini-

tialize with the ordinary least-squares regression coefficients. At each iteration of our

algorithm, we hold the coefficients for all statistics except one constant, then find the

optimal values for the coefficient vector for this single statistic. For efficiency, we order

the statistics whose coefficients we will optimize based on their sum-squared error (Jo).
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The optimal ci for fixed {ck,k 6= i} can be found in closed form as

ci =

(
1

N
X>i Xi + λ

(
1− 1

M

)
IP×P

)−1
(

1

N
X>i yi + λ

1

M

∑
k 6=i

ck

)
.

Here P is the dimensionality of the input vector xij,Xi is theN×P matrix in which row

j is x>ij , yi is the N × 1 vector in which element j is yij , and IP×P is the P ×P identity

matrix. Note that most of the quantities involved do not change from one iteration to

another, thus the iterative optimization is efficient.

Many of the statistics are often undefined, e.g., if the fly does not spend any time in

the observed chamber, or the fly does not perform a certain behavior. If we remove all

flies for which the statistic for some interval is undefined, then we will lose a lot of data.

Instead, we only remove flies for which the predicted interval and statistic is undefined,

and set the undefined input statistics to the sample mean over the training data.

In all our experiments, we use hold-one-out cross validation. That is, we learn the

regression coefficients from all flies except one, then compute the error on this held-out

fly. We do this for each fly and therefore learn a different regressor for each fly. In this

way, we keep the training and test data independent for all parts of the learning.

4.3.6 Control data

To see the effects of individuality on the regression error, we create semi-synthetic data

sets which should not have any effects of individuality. Within each interval, we ran-

domly permute the identities of the fly. For example, we may end up with statistics for

fly 10 in interval 1, fly 29 in interval 2, fly 7 in interval 3, etc. To control for effects due

to gender, we only permute identities within gender. Thus, the fly identities chosen for

a given vector will all have the same sex as the identity in the first interval.
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4.4 Results

4.4.1 Behavioral statistics of individual flies persist over time

Figures 4.22–4.25 graphically compare the true statistics with the predictions from the

learned regressors. We plot the true versus predicted statistics for each fly for selected

statistics, intervals, and buffer sizes. Each point on each plot corresponds to one fly. The

x-axis corresponds to the true statistic, while the y-axis corresponds to the prediction

from the learned regressor. Each figure corresponds to a different statistic. These statis-

tics were chosen to span the range of normalized, mean-squared generalization error for

buffer length = 0 intervals. Part (A) corresponds to the real data. Part (B) corresponds

to the semi-synthetic control data; however, note that we generated 20 control sets for

these plots, thus there are 20 times more points in the control plots. The left column

(i) corresponds to buffer length = 0 intervals; the right column (2) corresponds to buffer

length = 3 intervals. We plot the true versus predicted statistics for intervals 1, 2, 5, and

6, for these are the only intervals that can be predicted for buffer length = 3 intervals.

So that we could use the same axes for each statistic and interval, we plot the number

of standard deviations from the mean on each axis. If predictions were perfect, the data

points would lie on the line of slope 1 through (0,0). We see that the real data does in-

deed look correlated for the well-predicted statistics, but less-so for the poorly predicted

statistics. The buffer length = 0 data also looks more correlated than the buffer length =

3 data. In all the control plots, we see no correlation.

We can quantitatively compare the accuracy of the predictions for the real data to

the accuracy for the control data. We measure error as the square-root of the mean-

squared error (the square-root of Jo). So that errors on the different statistics can be

directly compared, we normalize the error by the standard deviation of the statistic and
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interval over all flies. In these normalized units, the standard deviation of the data is

1, hence the error of always predicting the mean statistic for an interval will be 1. The

expected hold-one-out, cross-validation performance of the mean statistic for flies in

the training set will be slightly more than 1. In Figure 4.26 (A), we plot the normalized

square-root of the mean-squared error for the real and control data for each statistic. The

x-axis corresponds to the statistic and the y-axis to the error. We plot the per-interval

error (thin lines) as well as the mean error over all intervals (thick lines). Each plot

corresponds to a different buffer length, with (i) corresponding to buffer length = 0 and

(v) corresponding to buffer length 5. We generated 100 sets of control data. We observe

that the error for the control data is indeed near 1 for all statistics and intervals – thus it

is not performing better than just the sample mean – the statistics from other intervals

are not useful for predicting the statistic for a given interval. For many statistics, the

error for the real data is less than 1. The statistics on the x-axis are ordered by the mean

error over all intervals for buffer length = 0 (i).

We can determine whether the error for the real data is significantly less than the

error for the control data by computing the fraction of randomly generated control sets

that have an error as good as the real data. This is an empirical measure of the probability

of achieving the error computed for the real data regressors if there were no effect of

individuality. This p-value is plotted in Figure 4.26 (B). The x-axis again corresponds

to the statistic and the y-axis to the log p-value. The gray horizontal line corresponds

to p = .05. We see that for many of the statistics, the effects of individuality are highly

significant.

If the real data produces regressors with significantly less error than the control data,

then we have observed the effects of individuality. That is, a positive result indicates an

effect. Conversely, a negative result does not necessarily imply that there is no effect of
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Figure 4.22: True vs. predicted distance traveled. Each axis corresponds to a different
interval, where the interval length is 1 h. Each point corresponds to a fly. Male flies are
plotted in blue, females in red. For each fly, we plot the true distance traveled versus
the distance traveled predicted by the regression (measured in standard deviations from
the mean). In the perfect regression, all points would be along the diagonal. In A–B,
we create this plot for the real data. Each column corresponds to a different number of
buffers maintained between the predicted and predicting intervals. In C–D, we create
these plots for control data created by randomly permuting the identities independently
in each interval (preserving sex). For each of the 5 control sets, we learn a regressor as
with the real data, and plot the true control vs. the predicted control.

individuality for the statistic. No significant difference could result from three possible

cases. First, there could be a true lack of an effect of individuality. Second, it could

be that regularized linear regression does not fit the data well. Finally, it could be that

there is too much noise and not enough data to accurately learn the regressor (or, a

combination of the latter two). In particular, the errors greater than 1 correspond to

overfitting the data, and are evidence that there is not enough data to overcome noise

and learn a proper fit. To determine which of these cases apply, one would need to

repeat the experiment with larger numbers of flies.
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Figure 4.23: True vs. predicted frequency of walk onsets. See Figure 4.22 for a more
complete description.
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Figure 4.24: True vs. predicted frequency of exits from chamber. See Figure 4.22 for a
more complete description.
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Figure 4.25: True vs. predicted median duration of exploration bouts. See Figure 4.22
for a more complete description.
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Figure 4.26: Mean squared-error for real and control data for interval length = 1 h.
Each row of plots corresponds to a different numbers of buffers maintained between
the predicted and predicting intervals. In the left column, we plot the square root of
the mean squared error between the true and predicted behavioral statistic. For each
statistic, we normalize the error by the standard deviation of the statistic so that errors
are comparable between different statistics. Because of this normalization, a regressor
that always predicts the mean statistic will have a mean normalized error of 1 (horizontal
magenta line). The red lines correspond to the randomly permuted data, all other lines
correspond to the real data. The thin lines correspond to the errors for single intervals,
while the thick lines correspond to the mean over all intervals. Note that there are many
thin red lines because we plot 100 control sets. In the right column, we plot the log of the
fraction of the 100 control set errors that are less than the real errors. This is an empirical
estimate of the probability that we would observe an error as low or lower than the real
residual if the behavioral statistic was independent of identity. As in the left column,
the thin lines correspond to per-interval p-values, while the thick line corresponds to the
mean over all intervals. The magenta line corresponds to p = 0.05.
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4.4.2 Dimensionality reduction analysis

We used principal component analysis (PCA) to examine what structures in the data

may be used to predict a given behavioral statistic. For each of the 12-most predictable

statistics (for buffer length = 0), we examine the 6-dimensional vector composed of the

per-interval statistics (e.g. element 1 is the distance traveled in the first hour, element 2

is the distance traveled in the second hour, ...). We perform PCA on the z-scored data

set consisting of these 6-D vectors for all flies (thresholding outliers at 3 standard devi-

ations) to find the 6-D directions of greatest variance.

Figure 4.27 shows the results. For each statistic, there are three plots. In the top row,

we plot the projection of the per-interval statistics on the first two principal components,

the highest variance 2-D linear subspace. For no statistic do we see clearly clusterable

data.

In the middle row, we plot the error of the projections onto increasing numbers of

principal components. As emphasized in Figure 27, we see that the usefulness of the

first principal component corresponds with predictability of behavior statistics based on

individuality (Figure 4.26).

In the bottom row, we show the directions of the first and second principal com-

ponents. For all the statistics plotted, the first principal component is flat across all

intervals, implying that the first principal component represents the average value of

the statistic across all intervals. Thus, for instance for the distance traveled statistic, the

highest-variance direction corresponds with the average distance traveled in all intervals

some flies walk far and some flies do not. In addition, for all the statistics, the second

principal component increases nearly monotonically with time. To emphasize the sim-

ilarities between statistics, we flip the sign of the component to be increasing it is the
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monotonicity of the change that is relevant. At interval 3 and below, the coefficient is

usually negative, while above it is positive. Thus, the second principal component cor-

responds to how the statistic increases or decreases with time, implying that flies differ

in how their behaviors change over time. In addition, the coefficients seem to level off

in the last 23 intervals, perhaps relating to the change in behavior due to hunger.

Based on the observation that the first and second principal components for different

statistics are similar, we found the average first and second principal components (where

signs are set as above). We project the data onto these 2 principal components for each

statistic, resulting in 24-dimensional vectors. We repeated the analysis in Figure 4.27 on

this new 24-dimensional data set. That is, we performed PCA on these statistics of all

12 plotted behavior statistics. The results are shown in Figure 4.29. As in Figure 4.27,

the first plot shows the projection of the 24-dimensional data on the first two combined

principal components, that is, the highest variance 2-D linear subspace of the combined

data. Again, we see no clear clusters. Male flies appear to be more extreme in the first

dimension, and female flies more extreme on the second dimension. In the second plot,

we show the error of the projections onto increasing numbers of principal components.

In the third and fourth plots, we show the directions of the first 3 principal compo-

nents. The sign is chosen so that the mean element is positive. The third plot shows the

elements of the combined principal component corresponding to the first per-statistic

principal components, while the fourth plot shows the elements of the combined princi-

pal component corresponding to the second per-statistic principal components. We can

attempt to interpret the first combined principal component; the second and third have

no obvious interpretations. We see that the first combined principal component is close

to 0 for all the second per-statistic components, and the absolute weight of the first per-

statistic component decreases with the error of the regression. For most of the behavior
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statistics, the weight is positive. The statistics with positive weight correspond to those

we associate with an active fly (with the exception of the fraction of time near the water,

which has a small but positive weight). The two negative weight statistics fraction of

time in the observed chamber and median stop duration, would be associated with a

more sedentary fly. Thus, we can interpret the first principal component as a measure of

how active the fly is.
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Figure 26: Principal component analysis per statistic. For each statistic, in the top row we plot the projection of the 6-D vector
of per-interval statistics onto the first 2 principal components. There is a point for each fly; males are plotted in blue, females
in red. In the middle row, we plot the error (square root of the average sum-squared error) of the reconstruction of the z-scored
per-interval statistic vector with varying numbers of principal components. N. components = 0 corresponds to just using the
mean, while N. components = 6 corresponds to using all principal components, and thus will always have error = 0. In the
bottom, we plot the first (black) and second (green) principal components. For many of the statistics, the first component is an
average over all intervals, while the second measures change in the statistic over the trial. We flip the sign of the first principal
component so that its average element is positive, and the second principal component so that the last element is bigger than
the first element to emphasize these trends.
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Figure 4.27: Principal component analysis per statistic. For each statistic, in the top
row we plot the projection of the 6-D vector of per-interval statistics onto the first 2
principal components. There is a point for each fly; males are plotted in blue, females
in red. In the middle row, we plot the error (square root of the average sum-squared
error) of the reconstruction of the z-scored per-interval statistic vector with varying
numbers of principal components. N. components = 0 corresponds to just using the
mean, while N. components = 6 corresponds to using all principal components, and thus
will always have error = 0. In the bottom, we plot the first (black) and second (green)
principal components. For many of the statistics, the first component is an average over
all intervals, while the second measures change in the statistic over the trial. We flip
the sign of the first principal component so that its average element is positive, and the
second principal component so that the last element is bigger than the first element to
emphasize these trends.
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Figure 4.28: Decrease in reconstruction error by including the first principal compo-
nent. For each statistic, we compute the decrease in error between the mean-based
reconstruction and the one-dimensional principal component reconstruction. The statis-
tics are sorted by error in the regression for buffer length = 1 (see Figure 4.26). Note
that the decrease in error decreases monotonically as regression error increases.

Figure 4.29: Principle component analysis of first 12 statistics combined. Following
the observation that the first and second principal components for the first 12 statistics
were similar, we found the average first and second principal component over all plotted
statistics. We projected the per-interval vectors for each of these 12 statistics onto these
first two mean principal components, resulting in 68 flies × 24-dimensional vectors.
We then performed the same analysis as in Figure 4.27 on these new vectors. In the
first plot, we show the projection onto the first two principal components. There is a
point for each fly; male flies are blue, female are red. In the second plot, we show the
error (square root of the average sum-squared error) of the reconstruction with varying
numbers of principal components. In the third and fourth plot, we illustrate the first 3
principal components. The third plot shows the principal component elements for the
elements derived from the first per-statistic principal component. The fourth plot shows
the principal component elements for the elements derived from the second per-statistic
principal component.
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4.5 Discussion

Behavioral flexibility is often proposed as an adaptation that allows individuals to maxi-

mize their fitness within the multifaceted environments an animal may encounter over its

lifetime (Dingemanse and Réale, 2005). However, it has been reported that the majority

of the time individuals exhibit very limited behavioral plasticity (Sih et al., 2004a,b) and

also that animals exhibit consistent differences in their reaction towards the same sen-

sory stimuli in their local environment (See references within (Dingemanse and Réale,

2005)). In order to observe the degree of behavioral plasticity and the consistency of

differences of an individual’s behavior to the same environmental stimuli, we introduced

single flies that were reared and handled in a similar manner into homogenous model

environments, and observed their movement over the period of hours. We were par-

ticularly interested in the exploratory movement patterns of individuals in relation to

a source of water and the exit into an adjacent chamber. We quantified various basic

measures of walking and flying that contribute to exploration, and also several higher-

order measures of the the flies’ exploratory movements. We tested the following predic-

tions: (1) would individuals show markedly different degrees of exploration?, (2) would

the difference an individual’s exploration persist over time?, and (3) would the various

measures of exploration be independent and thus not merely a consequence of a more

general phenomena such as activity level?

We report significant differences among individuals in their exploratory movements.

The differences among individuals were apparent in our raw observations of their move-

ment, e.g., the position of each fly throughout the time course of the experimental trial

(see Figure 4.1), or the total distance traversed during each successive 10 minute in-

ternal (see Figure 4.3). The differences among individuals were also salient in simple
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per-frame statistics describing their walking and flying movements (see Figures 4.5–

4.13), and in higher-order quantitative descriptions of their exploratory and dispersal

behaviors, e.g., search near water and movements that resulted in leaving the chamber

(see Figures 4.14–4.21).

At the time of writing up this dissertation, we have only examined the 6-hour data

set. Within this data set, the characteristic structure in exploratory movements of in-

dividuals that were observed was stable for greater than over 5 hours in all behavioral

descriptors observed except in the following measurements: (1) the fraction of time

flies spent flying (fractimeflying), two related measurements of local search near water:

(2) the time flies spend between water visits (timebtnwater) and (3) the travel length of

movement between water visits (pathlengthbtnwater), and also two measurements re-

lated to dispersal from the chamber: (4) the number of exits from the chamber (freqex-

its) and (5) the total time spent in outside the chamber (awaydur). It is likely, however,

that these measurements would exhibit persist characteristic structure if we had a larger

sample size, for these five descriptors of exploratory behavior are made up of the other

descriptors that did exhibit persistent structure, and also there was a significant amount

of error observed in the measurements of these descriptors due to some movements

quantified by descriptors never or very infrequently occurring. Finally, from our the

dimensionality reduction, we suggest that many of differences seemed related and were

due to activity and a component related to time of day (see Figures 4.27,4.28,4.29).
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4.6 Supplementary materials
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Figure 4.30: Collective transit probabilities and individual local searching movements
near a source of water. (A) Collective transit probabilities for 125 flies on the floor of
chambers near a source of water (green circle). (B) Illustrations to help visualize the
flattened projection for displaying the individual movements of flies near water shown
in C and also to show the cross-section transect (red) for the probability histogram in
D. (C) To help illustrate the trajectory of a fly, we unfold its 3D positions within the
experimental chambers and report its movement in a flattened representation. A patch of
agar (green circle) embedded within the center of floor prevented flies from dehydrating.
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Figure 4.31: Tactile and visual cues are salient features of the exit leading between
chambers. Collective transit probabilities for flies on the wall of chambers when the exit
is (A) blocked, (B) covered with transparent material allowing light to pass through, (C)
open to a second connected chamber, and (D) rotated 180 degrees, for all trials from
A-C. Histograms of the transit probabilities calculated from one centimeter horizontal
and vertical strips (gray bars, as denoted in A) are shown above and on the side of each
panel.
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Figure 4.32: Graphic illustrating the classification of exits from a chamber. (A) Flies
were nominated as exiting the chamber at a particular image frame when at that frame
the pixel area of the binerized difference between the image and its corresponding back-
ground image dropped to zero. (B) Example image frames for a fly just proceeding to
an exit (filled green circle in A) and just after returning from the second chamber (open
circle in A). (C) Proportion of classified exits from total number of candidate exits as a
function of the shortest time away that constitutes an exit. A fly was required to have
left the chamber for at least 30 second to be considered an exit; this criteria, in one
particular data set, restricted the number of leaving events that were classified as exits
to 860/1222.
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Figure 4.33: Frequency histogram of distances from known 3D exit locations for can-
didate exits events. Candidate exits initially classified by pixel area were excluded if
their distance was greater than 25 mm from the center of the known exit location (red
line; red circle within inset). False exits were rare, e.g., 66/1222 for a particular set of
trials, and generally due to an adaptive thresholding error when a fly had exited and was
currently outside the chamber.
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Figure 4.34: Coefficients of regressors learned. Each plot corresponds to a different
statistic. The x-axis describes to which input vector element the coefficient corresponds,
either the constant offset 1 or the statistic for one of the input intervals. The y-axis
corresponds to the value of the coefficient for that input element. There is a line for each
of the intervals predicted. The dashed lines and X’s indicate intervals that are not input.
The buffer length for these regressions is 0. (A) shows the coefficients learned with
ordinary linear regression, while (B) shows the coefficients learned with regularized
linear regression.
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Figure 4.35: Comparison of different learning algorithms. Each plot shows the square
root of the mean squared error between the true and predicted behavioral statistic, as in
Figure 4.26. Each color corresponds to a different type of learning algorithm/regression
criterion optimized. The thick lines show the mean error over all intervals for a par-
ticular regression type, and the thin lines show the minimum and maximum over all
intervals for a particular regression type. Each plot corresponds to a different buffer
length: (A) buffer length = 1 intervals, (B) buffer length = 3 intervals, (C) buffer length
= 5 intervals.


