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Abstract

Collective cell migration is a key process in tissue repair, and in drawing parallels
from complex multi-cellular events such as tumor morphogenesis and embryogenesis.
Mechanisms of wound healing have been studied extensively in vitro. Extracellular
matrix (ECM) is required to support cell migration and ensure rapid coverage of the
wound area. The main challenge in designing biomaterials for tissue repair is to provide
cells with the appropriate biological and mechanical cues. Hence, understanding key cell-

ECM interactions during wound healing is necessary for effective biomaterial design.

Genetic engineering provides a convenient avenue to customize materials for any
given application. The artificial protein-based biomaterials discussed in this work were

derived from fibronectin and elastin. These proteins have a modular design, and have
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material properties that can be fine-tuned according to specific applications. The artificial
extracellular matrix (aECM) proteins prepared by previous members of our laboratory
have been shown to promote attachment of endothelial cells. In this work, we studied

extensively epithelial and fibroblast wound healing behavior on these aECM

biomaterials.

Crosslinked aECM protein films of varying RGD densities have been prepared by
mixing aECM proteins with the RGD cell binding domain with aECM proteins
containing the scrambled RDG sequence. Corneal epithelial wound healing was observed
on aECM films with 100% RGD but not on aECM films with 2.5% RGD. Surprisingly,
we found a five fold difference between the wound closure rates between these surfaces,
but individual cell speeds did not increase significantly. We proposed that the five fold
increase in wound closure rate was determined by the rate of crossing the boundary
between the wound area and the area underneath the cell sheet. Both simulation and
experimental data verified that the rate of boundary-crossing was sufficient to account for

five-fold difference in wound closure rates between 100% RGD and 2.5% RGD surfaces.

Full-length fibronectin domains have also been incorporated to improve the
overall cell binding properties of the aECM proteins. The aECM proteins containing full-
length fibronectin domains were shown to facilitate rapid spreading of Rat-1 fibroblasts.
The aECM protein containing both fibronectin domains 9 and 10 exhibited an increased
binding affinity to the asf; integrin. More importantly, these aECM proteins also
promoted rapid wound closure, which was comparable to that on fibronectin. We showed

that aECM proteins containing full-length fibronectin domains also promoted higher
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phosphorylated levels of focal adhesion kinase (FAK) and extracellular signal-regulated

kinase (ERK), consistent with the faster cell migration and proliferation observed.

To try to understand how cells select wound healing mechanisms, wound healing
of Madin-Darby Canine Kidney (MDCK) epithelial cells were examined in vitro. On
surfaces containing the aECM protein bearing the fibronectin domain 10, characteristic
healing patterns were observed in MDCK wound healing. These patterns are defined by
the formation of leader cells at regular intervals of actomyosin purse strings. The spacing
between consecutive leader cell groups was also found to be independent of the wound
diameter. This spacing however, was found to decrease with increasing myosin II
inhibition. These observations could be explained using a simple force transmission
mechanical model. Consistent with the model predictions, we demonstrated that wounds
with a zigzag geometry biased the selection of the wound healing mechanism along the
wound edge. These zigzag wounds also healed nearly eight fold faster than wounds with

straight edges.
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