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Abstract

This thesis examines flow control and the potentially favorable effects of feedback, associated with

unsteady actuation in separated flows over airfoils. The objective of the flow control is to enhance

lift at post-stall angles of attack by changing the dynamics of the wake vortices. We present results

from a numerical study of unsteady actuation on a two-dimensional flat plate at post-stall angles of

attack at Reynolds number (Re) of 300 and 3000. At Re = 300, the control waveform is optimized

and a feedback strategy is developed to optimize the phase of the control relative to the lift with

either a sinusoidal or the optimized waveform, resulting in a high-lift limit cycle of vortex shedding.

Also at Re = 3000, we show that certain frequencies and actuator waveforms lead to stable (high-lift)

limit cycles, in which the flow is phase locked to the actuation

First, a two-dimensional flat plate model at a high angle of attack at a Re of 300 is considered.

With the sinusoidal forcing, we find that certain phase shifts between the forcing and lift signals

result in very high period-averaged lifts. We design the feedback to slightly adjust the frequency

and/or phase of actuation to lock it to a particular phase of the lift, thus achieving a phase-locked

flow with the maximal period-averaged lift over every cycle of acutation.

With the sinusoidal forcing and feedback, we show that it is possible to optimize the phase of the

control relative to the lift in order to achieve the highest possible period-averaged lift in a consistent

fashion. However, continuous sinusoidal forcing could be adding circulation when it is unnecessary,

or undesirable. Thus we employ an adjoint-based optimization in order to find the waveform (time

history of Uj) that maximizes the lift for a given actuation amplitude. The adjoint of the linearized

perturbed equations is solved backwards in time to obtain the gradient of the lift to changes in

actuation (the jet velocity), and this information is used to iteratively improve the controls.
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Optimal control provides a periodic control waveform, resulting in high lift shedding cycle with

minimal control input. However, if applied in open loop, the flow fails to phase lock onto the optimal

waveform, degrading the lift performance. Thus, the optimized waveform is also implemented in a

closed-loop controller where the control signal is shifted or deformed periodically to adjust to the

(instantaneous) frequency of the lift fluctuations. The feedback utilizes a narrowband filter and an

Extended Kalman Filter to robustly estimate the phase of vortex shedding and achieve phase-locked,

high lift flow states. Feedback control of the optimized waveform is able to reproduce the high-lift

limit cycle from the optimization, but starting from an arbitrary phase of the baseline limit cycle.

Finally, we apply the tools developed and knowledge gained at Re = 300 to a Re of 3000 on

a thin airfoil with a thickness-to-chord ratio of 4%, which were chosen to match the experimental

studies of Greenblatt et al. (2008). We consider more detailed time-dependent aspects of the lift and

corresponding flow fields, particularly the flow structures at the minimum and maximum lift, and

the phase of pulses relative to the lift, in order to more precisely compare different actuated flow

fields and distinguish the differences responsible for higher or lower instantaneous lift, along with

identifying different vortex evolutions. We consider two representative angles of attack, α = 10◦

and 20◦, and investigate the lift enhancement and which combinations of forcing frequency and

duty cycle lead to phase-locked flow. Finally, we show that for certain frequencies and actuator

waveforms, there occur stable limit cycles in which the flow is phase locked to the actuation.
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Chapter 1

Introduction

Micro-air vehicles (MAVs) operate at Reynolds number as low as Re ∼ O(104) and their operating Re

will continue to decrease (Pines & Bohorquez, 2006). Due to operational and weight requirements,

these aircraft have unique designs with low-aspect-ratio wings, when compared to conventional

aircraft. Moreover, these vehicles fly at low speed and often high angles of attack and experience

large perturbations such as wind gusts. Torres & Mueller (2004) have addressed the need for data

on the aerodynamics of low-aspect-ratio wings operating at low Re. Taira & Colonius (2009b)

investigated three-dimensional flows around low-aspect-ratio wings in pure translation at Re of 300

and 500 and observed that the tip effects in three-dimensional flows can stabilize the flow (steady

lift) and also exhibit nonlinear interaction with the shedding vortices (periodic or aperiodic lift

behavior).

However, significant difficulty of achieving high lift-to-drag ratios at low Re have led many to

the pursuit of biologically inspired approaches (Madangopal et al., 2005; Raney & Slominski, 2004)

that mimic, to a certain degree, the flight of small birds and insects. As MAVs become smaller in

size, they share some characteristics with flying animals such as birds and insects. These animals

have low-aspect-ratio wings operating at Re of order 102 to 105, often at post-stall angles of attack.

It has been observed in the flapping flight of bio-flyers that the leading-edge vortex (LEV) is formed

and persists during most of their downstroke (Ellington et al., 1996). This LEV provide additional

spanwise circulation resulting in enhanced lift (Dickinson & Gotz, 1993). The LEV, in fact, accounts

for most of the lift, and synchronization of its shedding appears to be necessary for rapid maneuvers
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(Birch et al., 2004; Birch & H., 2001; Wang, 2000).

In contrast to flapping flight, the objective of this thesis is to investigate the control of vortex

shedding on conventional, purely translating airfoils at low Reynolds number (Re = O(102)− (103))

using unsteady actuation in order to manipulate the LEV and vortex shedding. Previous work

on flow control over an airfoil has used periodic excitation, such as unsteady mass injection and

synthetic jets, to show that the oscillatory addition of momentum can eliminate or delay boundary

layer separation and reattach a separated flow (Glezer & Amitay, 2002; Greenblatt & Wygnanski,

2000), or delay the shedding of the dynamic stall on a rapidly pitching airfoil (Magill et al., 2003).

Unsteady actuation was also shown to change the global dynamics of vortex shedding of post-stall

flow, leading to higher unsteady lift than the natural shedding (Rullan et al., 2006; Wu et al., 1998).

However, most of the studies on post-stall flow control focus on open-loop actuation, but feedback

can be used to change the dynamics of the unsteady shedding to provide even higher lift. For

example, Wu et al. (1998) observed that the highest-lift vortex shedding cycle was not in perfect

frequency lock-in with open-loop forcing; a subharmonic resonance was also excited. Such higher-

lift vortex shedding may not be maintained with conventional open-loop forcing because the flow

does not phase lock with the actuation signal. In such cases, feedback may provide continuous

modification of the control input, according to the response of the flow system, to achieve higher

lift. For example, Pastoor et al. (2008) used a phase-locking feedback strategy with zero-net-mass-

flux actuation to synchronize the detachment of upper and lower shear layers for the turbulent

flow around a D-shaped body, resulting in a 15% drag reduction. A physically motivated phase

controller outperformed other approaches based on open-loop forcing and extremum-seeking feedback

strategies.

The goal of the present study is to develop a closed-loop control of separated flow that uses

vortex-induced lift to achieve lift enhancement aimed at micro air vehicles (MAVs). At Re usually

experienced by MAVs, conventional low-Reynolds-number airfoils perform poorly and some of the

best performing airfoils are cambered flat plates and thin airfoils with a thickness-to-chord ratio of

approximately 5% (Mueller, 1999). Also, at high angles of attack, α > 30◦ once the separation point
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moves upstream to the leading edge, surface curvature or airfoil shape does not play a significant

role on the separated flow dynamics. Thus, in order to study the control of two basic constituents

of unsteady post-stall flow (i.e. leading-edge and trailing-edge vortices) and develop a physically

motivated feedback strategy, we consider a two-dimensional flow, at Re = O(100) to O(1000) over a

flat plate. Even though introducing camber or using Eppler airfoil shape would improve uncontrolled

performance, the flat plate ensures the separation at the leading edge in the post-stall regime and

allows us to avoid additional complications due to the variation of the separation point or curvature

effects of a different airfoil geometry. For the lower range of Re, 300 was selected to be sufficiently

high to ensure forming and shedding of large coherent structures of opposite signs from the leading

and trailing edges, a feature common to fully stalled wings at higher Re. Then the tools developed

and the knowledge gained at Re = 300 is applied to a Re of 3000, closer to MAVs operating condition,

on a thin airfoil with a thickness-to-chord ratio of 4%.

1.1 Background of Flow Control

Flow control can be divided into passive and active control. Passive control utilizes a change in

surface morphology that beneficially modifies the flow dynamics, but is fixed in place and offers

no adaptivity once installed. Vortex generators mounted on airplance wings are one example of

passive control, in which the slender vanes are thought to re-energize the boundary layer and delay

separation resulting in better performance envelopes for ailerons and flaps. On the other hand,

active control injects or withdraws mass or momentum from the flow via slots mounted flush to the

surface and controlled by actuators.

Traditional boundary layer control is achieved through steady suction or blowing which is effective

in increasing lift to drag ratios on airfoils. However steady suction/blowing control has had limited

success due to the complexity of the installed system. Added weight and power requirements often

negate the aerodynamic benefits (Greenblatt & Wygnanski, 2000).

While steady blowing is a tool investigated for more than eight decades, separation control by
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periodic addition of momentum has been a subject of intense research only since the early 1990s.

Its most striking feature is that a control goal, e.g., a specific lift increase, can typically be attained

by orders of magnitude smaller momentum input compared to steady actuation (Greenblatt &

Wygnanski, 2000).

Much of the recent research on flow control has been focused on synthetic jets (Glezer & Amitay

(2002)). Synthetic jets are zero-net mass flux oscillatory control devices that are operated with

lower power requirements than traditional boundary layer control. Such devices are often very small

compared with the length of the body (less than 1% of chord) and are mounted flush with the

surface. An oscillating surface, such as a membrane or piston adds momentum to the boundary

layer, but only utilizes the fluid already contained in the system.

Frequently used parameters to characterize control are the time averaged momentum input and

the excitation frequency. The momentum coefficient, Cµ is defined as the momentum added to the

flow divided by the momentum of the freestream.

Cµ =
ρsu

2
shs

1
2
ρ∞U2

∞c
(1.1)

where the variables ρs, us, hs are the density, velocity and width at the control slot and ρ∞, U∞, c

are the density, velocity, and characteristic length scale of the freestream flow (c=chord length for

flow control over an airfoil). In the case of periodic actuation, unsteady momentum coefficient 〈Cµ〉

is defined by

〈Cµ〉 =
ρs〈us〉

2hs

1
2
ρU∞

2c
(1.2)

and the frequency of oscillation, f is characterized by the reduced frequency

F+ =
fXc

U∞
(1.3)

For the length scale Xc, the length of the separated region or usually the chord length for the flow

separation at the leading edge of an airfoil is used.
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1.2 Open-Loop Control

Recent papers (Glezer & Amitay, 2002; Greenblatt & Wygnanski, 2000) have reviewed a variety of

open-loop unsteady actuation strategies to reattach separated flows on airfoil. For example, Seifert

et al. (1993) used oscillatory blowing to delay flow separation from a NACA0015 airfoil at angles

of attack from α = 12◦ to 14◦. This results in a 68% increase and a 32% decrease in the mean lift

and drag coefficients, respectively. Zhang et al. (2008) used surface perturbation using piezoceramic

actuators on a NACA0012 airfoil to postpone the stall angle by 3◦ and significantly improve the

airfoil performance for 12◦ ≤ α ≤ 20◦.

The effective range of forcing frequencies in separation control has been investigated computa-

tionally and experimentally by many other researchers, where F+ ≈ O(1) can either delay separation

or initiate an earlier flow reattachment (Raju et al., 2008; Greenblatt & Wygnanski, 2000). Seifert

et al. (2004) experimentally studied separation control at Reynolds numbers ranging from 3 × 104

to 4× 107 and observed perturbations needs to be amplified ove the region susceptible to separation

at effective excitation frequencies that generate one to four vortices over the controlled region at all

times, irrespective of Reynolds number. Seifert et al. (2004) indicated that the actuation frequency

couples to and, in fact drives the shedding in the near wake. Actuation at these frequencies leads to

the formation of vortical structures that scale with the length of the separated flow domain, and the

ensuing changes in the rate of entrainment result in a Coanda-like deflection of the separating shear

layer toward the surface of the stalled airfoil, such that the layer vortices are effectively advected

downstream in close proximity to the surface. Similarly, Sosa et al. (2007) used plasma sheet actua-

tors to generate electrohydrodynamic perturbations to the flow around an NACA0015 at Reynolds

numbers of O(105) and found the optimal frequency F+ ≈ 0.4.

At sufficiently high angle of attack, the flow becomes fully separated at the leading edge, leading

to the formation and shedding of large-scale vortical structures; the leading-edge vortex (LEV) and

the trailing-edge vortex (TEV). The shedding of these vortices results in large oscillation of forces

exerted on the airfoil. Unsteady actuation has also been used to change dynamics of the vortex
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shedding from the leading and trailing edges at post-stall α, leading to higher unsteady lift (Rullan

et al., 2006; Wu et al., 1998). With leading edge actuation by means of pulsed vortex generator

jets, Scholz et al. (2008) observed even higher normal forces than in prestall condition when the

actuators were positioned in the region of separation. Using a Reynolds-averaged Navier-Stokes

(RANS) computation of turbulent flow over a two-dimensional NACA0012 airfoil, Wu et al. (1998)

showed that local unsteady forcing near the leading edge can lead to post-stall lift enhancement in

a time-averaged sense. Also, Rullan et al. (2006) and Miranda et al. (2005) considered flow over

sharp-edged airfoils to show that unsteady actuation can provide an average lift increase on the

order of 50%.

1.3 Feedback Control

Feedback control methods are an attractive choice over passive and active open-loop controls in

that the control is continuously modified according to the response of the flow system. A salient

observation from control theory is that open-loop control cannot modify the dynamics of a linear

system, meaning that feedback is required to stabilize a system or alter its fundamental response

to inputs. In addition, feedback control is generally less sensitive to disturbances and uncertainties

than open-loop methods, and adaptive and gain-scheduled controllers can be designed to adjust to

changing flight conditions.

Although most of the references on post-stall flow control focus on open-loop studies, feedback

control methods such as the single-sensor linear feedback control (Berger, 1967; Huang, 1996; Zhang

et al., 2004), optimal (Li et al., 2003) and suboptimal controls (Min & Choi, 1999), and control

based on reduced-order models (Siegel et al., 2006) have been successfully applied in flow over a

cylinder to suppress vortex shedding and stabilize wake unsteadiness (Kim & Bewley, 2007). For

example, Zhang et al. (2004) developed a proportional-integral-derivative controller to suppress the

in-phase vortex shedding and vortex-induced vibration on a spring-supported square cylinder at the

resonance condition leading to an almost complete suppression of vortex shedding.
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Feedback has also been successfully applied in the flow over open cavities to suppress the acoustic

tones to background sound pressure levels (Rowley & Williams, 2006; Kegerise et al., 2007a,b).

For example, Cattafesta et al. (1997) found experimentally that feedback control with piezoelectric

actuators required an order of magnitude of less power than open-loop forcing with the same actuator.

In the area of post-stall flow control, Pinier et al. (2007) experimentally considered a simple

proportional feedback control of turbulent flow over a NACA4412 with leading-edge zero-net-mass-

flux actuators. Pinier et al. (2007) validated the use of low-dimensional modeling techniques for

developing more sophisticated controller designs as a promising solution for real-time flow separation

control.

More recently, Ahuja & Rowley (2010) numerically investigated feedback control of two-dimensional

flow over a flat plate at a low Reynolds number and at large angles of attack. Using a reduced-order

estimator, Ahuja & Rowley (2010) were able to suppress stable periodic vortex shedding over a

two-dimensional flat plate at Re = 100. Also, feedback control around a low-aspect-ratio wing at

post-stall angles of attack was numerically investigated by Taira et al. (2010) at a low Reynolds

number of 300 with blowing along the trailing edge. Motivated by the existence of time-periodic

high-lift states under open-loop control with periodic excitation, Taira et al. (2010) considered the

extremum seeking algorithm for designing feedback control to lock the flow onto such high-lift states.

1.4 Overview of Current Work

In this thesis, we first investigate a simple model of a purely translating flat plate at high angle

of attack at a Reynolds number of 300, where strong, periodic vortex shedding occurs. A small

amplitude body force intended to mimic oscillatory mass injection is applied near the trailing edge

in order to modulate the vortex shedding.

Open-loop control with periodic pulsing at the natural shedding frequency is first investigated

for various actuator configurations over a range of angle of attack, α. In certain cases, primarily for

lower α, open-loop forcing results in a phase-locked limit cycle with lift varying at the frequency of
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actuation. For sufficiently high α, however, subharmonic frequencies are excited and a more complex

limit cycle behavior is obtained. The period-averaged lift over one cycle of actuator forcing varies

from cycle to cycle, and it is observed that higher lift is associated with a particular phase shift

between the forcing and the lift. This period-averaged lift can exceed the maximum lift achieved

during the natural shedding cycle, particularly for upstream blowing at the trailing edge during

certain cycles. We show that feedback of the lift signal can be used to phase lock the forcing to

the particular phase shift associated with the highest period-averaged lift. This feedback stabilizes

the high-lift limit cycles that are otherwise unstable with open-loop control. Similar phase-locking

feedback control has been used in the aforementioned study of Pastoor et al. (2008) and by Tadmor

(2004).

Rather than optimizing the phase of the control relative to the lift using only a sinusoidal wave-

form, we investigate the possibility of optimizing the lift using more general (non-sinusoidal) actua-

tion waveforms. We utilize a gradient-based approach that has been used previously in simulations

to reduce the turbulent kinetic energy and drag of a turbulent flow in a plane channel (Bewley et al.,

2001), or to reduce free-shear flow noise (Wei & Freund, 2006). Given the DNS for a particular

actuator waveform, we solve the adjoint of the perturbed linearized equations backward in time to

determine the sensitivity of the lift to the actuator input, and subsequently use this information to

iteratively improve the control.

Optimization provides a periodic waveform with a high lift after a couple of transient periods.

This optimal waveform was not a continuous sinusoid, but a pulsatile waveform roughly in phase

with the maximum lift. However, if the (periodic) optimal waveform is extracted and applied in open

loop, the flow fails to lock on and the subharmonic resonances degrade the performance. A receding

horizon control approach could be used to keep the flow locked on, but since this computed optimal

control requires knowledge of the full flow state, it is not practical for real-time control To overcome

these obstacles, we design a controller that uses the previously developed phase-locking strategy, but

is applied to the more complicated waveforms educed by the optimization. This provides a robust

and practical approach to giving near-optimal performance. Also the feedback is able to phase
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lock an arbitrary waveform at a particular phase shift, enabling us to investigate the lift response

to various control waveform. Motivated by the pulsatile waveform the optimization provided, we

investigate the lift response to pulses of different duty cycles. The feedback is used to enforce the

optimal phase shift (approximately in phase) for each control waveform. We find that the pulse

with a duty cycle of 25% achieves similar average lift enhancement as a continuous sinusoid when

the forcing is in phase with the lift.

Finally, we consider a higher Re of 3000 and investigate the lift response to different waveforms

motivated by the nature of the optimal forcing found at Re = 300. Geometry of flat plate with

a thickness-to-chord ratio of 4% and Re are chosen to match the experiments by Greenblatt et al.

(2008). We consider different frequencies and actuation waveforms with different duty cycles. We

show that for certain frequencies and actuator waveforms, there occur stable limit cycles in which

the flow is phase locked to the actuation. Forcing with duty cycle of 5% is as effective as higher

duty cycles or a continuous sinusoidal. Also, as the duty cycle is increased, the range of forcing

frequencies for the phase-locked limit cycles decreases.

In the next chapter, we present the simulation methodology and the actuation scheme. Results

from sinusoidal forcing will be discussed in Chapter 3. Once the objective of our control is defined,

we formulate an adjoint-based optimization in Chapter 4. Then we design a feedback algorithm

where the optimized waveform is shifted or deformed periodically to adjust to the output frequency

of the flow. We show that the feedback controller achieves as high lift as the optimization, and can

be started from any phase of the natural shedding cycle. Then the feedback control with optimized

waveform is directly compared to the sinusoidal forcing case.

Finally, in Chapter 5, we apply the tools developed and the knowledge gained at Re = 300 to a

Re of 3000, closer to MAVs operating condition, on a thin airfoil with a thickness-to-chord ratio of

4%.
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Chapter 2

Numerical Methods

2.1 Fast Immersed Boundary Method

The numerical scheme used is a fast immersed boundary method developed by Colonius & Taira

(2008), and is briefly described here. Consider the following form of the incompressible Navier-

Stokes equations, based on the continuous analog of the immersed boundary formulation introduced

by Peskin (1972):

∂u

∂t
+ u · ▽u = −▽p+

1

Re
▽2u+

∫

f(ξ)δ(ξ − x)dξ, (2.1)

▽ · u = 0, (2.2)

u(ξ) =

∫

u(x, t)δ(x − ξ)dx = uB, (2.3)

where u, p, and f are the appropriately non-dimensionalized fluid velocity, pressure and surface force

respectively. The force f acts as a Lagrange multiplier that imposes the no-slip boundary condition

on the Lagrangian points ξ, which arise from the discretization of a body moving with velocity uB.

We consider the body to be a stationary flat plate at an angle of attack α; that is, here uB = 0,

except at the actuation points where uB = Uj.

The variables u and x are non-dimensionalized with respect to the freestream velocity U∞ and the

flat plate chord length c, and the Reynolds number is defined as Re = Uc/ν where ν is the kinematic
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viscosity. The other quantities pressure p, force f , and time t are consistently non-dimensionalized

as p/ρU2
∞, f/ρU2

∞c, and U∞t/c, respectively. Equations (2.1 - 2.3) are discretized in space using a

second-order finite-volume scheme on a staggered grid, which results in the following semi-discrete

equations:

M
dq

dt
+Gp−Hf = n(q) + Lq + dc1, (2.4)

Dq = bc2, (2.5)

Eq = 0, (2.6)

where q, p, and f are the discrete velocity flux, pressure, and force respectively. The operator

n(q) is the discretized nonlinear term u · ▽u, L is the discrete Laplacian, and M is the diagonal

mass matrix, which is the identity for a uniform grid. The operators G and D are the discrete

gradient and divergence operators constructed such that G = −DT, and the operators E and H

are interpolation and regularization operators that smear the Dirac delta functions in equation (2.1)

over a few grid points. In order to obtain a symmetric matrix in the Poisson solve obtained on

temporal discretization, theses operators are also constructed such that E = −HT (see Taira &

Colonius (2007) for details). The terms bc1 and bc2 depend on the particular choice of boundary

conditions. For example, for a 2-D flow past a stationary object, uniform flow conditions can be

applied at the inlet and at the lateral walls, and convective boundary conditions can be applied at

the outflow.

Equations (2.4 - 2.6) are then discretized in time using an implicit trapezoidal scheme for the

linear terms and the second-order accurate Adams-Bashforth for the nonlinear terms. The resulting

algebraic equations are solved using a fractional-step algorithm to march the variables forward in

time. The key feature of this technique is that the pressure p and the force f are combined together

as a single Lagrangian multiplier λ = (p, f), which can be obtained by solving a single modified

Poisson equation.
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A fast algorithm of the above immersed boundary method was developed by Colonius & Taira

(2008) by employing a nullspace approach and a multi-domain method for applying the far-field

boundary conditions. The discrete streamfunction s is introduced, which is related to the flux q by

a discrete curl operation C constructed as the nullspace of the divergence D:

q = Cs,where, DC , 0. (2.7)

Thus, the incompressibility condition (2.5) is satisfied at all times. The transpose operator CT

relates the discrete circulation γ to the discrete flux by:

γ = CTq. (2.8)

Pre-multiplying (2.4) by CT eliminates the pressure, since CTG = −CTDT = 0, resulting in a

semi-discrete formulation in terms of the circulation γ:

dγ

dt
+ CTETf̃ = −βCTCγ + CTn(q) + bcγ , (2.9)

ECs = ujet, (2.10)

(2.11)

where a uniform grid is assumed (that is M = I) in (2.4). In (2.9), the discrete Laplacian is

represented by −CTCγ, using the identity ▽2γ = ▽(▽ · γ) − ▽ × (▽ × γ) = −▽ × (▽ × γ); the

constant β = 1/Re∆2, where ∆ is the uniform grid spacing. The nonlinear term n(q) is the spatial

discretization of q × γ. From (2.7) and (2.8), the discrete stream function s and circulation γ can

be related by

s = (CTC)−1γ. (2.12)
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The boundary conditions specified are Dirichlet and Neumann for the velocity components normal

and tangential to the domain boundaries, which for the flow past a flat plate imply a uniform flow

in the far field. With a uniform grid and these boundary condition, the Laplacian CTC can be

diagonalized using the fast Sine transform:

L = CTC = SΛS, (2.13)

where, S is the symmetric operator representing the discrete Sine transform and Λ is a diagonal

matrix containing eigenvalues of CTC. Equations (2.9, 2.10) are then discretized in time, using the

trapezoidal rule for the linear terms and the second-order Adams-Bashforth for the nonlinear terms

to obtain the timestepping scheme:

S(1 +
β∆t

2
Λ)Sγ∗ = (I −

β∆t

2
CTC)γn (2.14)

+
∆t

2
(3n(qn) − n(qn−1)) + ∆tbcγ ,

EC(SΛ−1(1 +
β∆t

2
Λ)−1S)(EC)Tf̃ = ECSΛ−1Sγ∗ − un+1

B , (2.15)

γn+1 = γ∗ − S(1 +
β∆t

2
Λ)−1S(EC)Tf̃ , (2.16)

where the index n represents the fields at time tn = n∆t. The dimension of the Poisson equation

(2.15) to solve for the force f̃ , is much smaller than the corresponding equation to solve for pressure

p required in the scheme resulting from a similar temporal discretization of (2.4-2.6). This results

in an algorithm that is much faster (for stationary bodies) than that resulting from the temporal

discretization of (2.4-2.6).

The above boundary conditions are valid only for a sufficiently large domain, however with a

uniform grid, large domain could result in a large number of grid points. In order to circumvent

this problem, Colonius & Taira (2008) developed a multi-domain approach to apply simple far-field

boundary conditions. The domain around the immersed body is considered to be embedded in a

series of domains, each twice as large as the preceding, with a uniform but a coarser grid having
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the same number of grid points as illustrated in Fig. 2.1. The circulation field on the smallest is

first coarsified or interpolated onto the next larger mesh. The Poisson equation (2.12), with zero

boundary conditions, is solved on the largest domain to obtain the streamfunction. This solution is

then interpolated to obtain the boundary values of the next smaller domain, which are in turn used

as boundary conitions to solve the Poisson equation on the smaller domain. The immersed body

is assumed to be present only in the smallest domain, which consists of a fine mesh in the region

of interest around the body. For the model problem of two dimensional flow past a flat plate, the

typical size of the largest domain is around 40 chord lengths in each direction, and the number of

domains ranges from 3 to 5. The operators for interpolating between different levels of domains

are carefully designed to preserve the total circulation. The cost of the method increases due to

the multi-domain implementation, as the Poisson equation (2.12) is required to be solved at least

once for each domain, however, the overall cost benefit due to the elimination of pressure and use

of the fast Sine transform results in an overall speed-up by an order-of-magnitude over the previous

algorithm of Taira & Colonius (2007).
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Figure 2.1: Multi-domain method to solve the Poisson equation. Figure reproduced with permission

from Colonius & Taira (2008).
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Chapter 3

Sinusoidal Forcing at Re = 300

In this chapter, we first investigate open-loop control at the leading and trailing edges directed

upstream or downstream parallel to the freestream. We find that, for upstream actuation at the

trailing edge, certain phase shifts between the forcing and lift signals result in very high period-

averaged lifts. Thus, we design the feedback in order to adjust the frequency of the actuation

accordingly to keep the phase shift constant and reproduce the high-lift shedding cycles.

3.1 Numerical Method

Simulations of flow over a two-dimensional flat plate at Re = 300 are performed with the immersed

boundary projection method combined with a multi-domain technique (Taira & Colonius (2007);

Colonius & Taira (2008) described in Chapter 2). This method is capable of resolving incompressible

flows over an arbitrarily-shaped body in motion and deformation. Here we employ this method with

the flat plate being stationary. In what follows, all velocities and length scales are nondimensionalized

by the freestream velocity and the chord, U∞ and c, respectively.

The numerical method utilizes a series of overlapping uniform Cartesian grids of differing reso-

lution. The finest grid, encompassing the body, is comprised of a rectangular domain exending to

[−1, 4]× [−1.5, 1.5] in the streamwise (x) and vertical (y) directions with a uniform grid spacing of

0.02 units. The constant time step was 0.004. The coarsest grid extended to [−8, 32] × [−12, 12].

The boundary condition at the outermost grid was that the streamfunction corresponding to the
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difference between the full velocity and a uniform free stream was zero. Selected cases were run

on finer grids and with larger extents to demonstrate convergence and independence to far-field

boundary conditions.

The lift and drag coefficient on the flat plate is defined by

CL =
Fy

1
2
ρU∞

2c
and CD =

Fx

1
2
ρU∞

2c
, (3.1)

where ρ is the freestream density of the fluid and Fy and Fx are lift and drag on the plate, respectively,

obtained by summing over surface forces in y-direction, f̃y or in x-direction, f̃x. Since the force

obtained is normal to the plate and Fy is only the vertical component of the normal force, the

increase of the normal force increases both the lift and drag. As the angle of attack increases, the

drag component of the normal force is increased while the lift component is reduced. For high

angles of attack, this might result in decrease of the lift-to-drag ratio even in the presence of lift

enhancement. However, for the purpose of demonstrating the control algorithm to achieve high lift,

we will pay closer attention to the lift component of the normal force, CL.

In practice, actuators produce a jet-like flow that can lead to complex spatial and temporal

characteristics. However, for the purpose of investigating the control of shedding, we model the

actuation as a point body force regularized across 3 cells in both x− and y−directions with a discrete

delta function (Taira & Colonius, 2009a) and define its strength by specifying the magnitude of its

velocity, Uj in the direction of forcing. In defining the momentum injection added by the forcing,

the width of the actuator is estimated as the grid spacing, ∆x. The momentum coefficient, defined

in Eq. (3.2), is the ratio between the momentum injected by the forcing and that of the freestream.

Cµ =
ρUj(t)

2
∆x

1
2
ρU∞

2c
C′

µ =
ρ〈Uj(t)〉

2∆x
1
2
ρU∞

2c
. (3.2)

The values of Cµ C′
µ reported are based on the average and the root mean square of control input,

Uj(t) and 〈Uj(t)〉, respectively, fixed at 0.5, and the width of the actuator, ∆x = 0.02. This corre-
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Figure 3.1: Schematic of actuation at leading and trailing edge.

sponds to a fixed Cµ of 0.01 for all of the cases considered here. For each actuation location, two

cases of blowing angles are considered, one directed downstream and the other directed upstream as

illustrated in Figure 4.1.

3.2 Results

In this section, uncontrolled flow is first described followed by results from open-loop control with

periodic pulsing for various actuator configurations over a range of α.

3.2.1 Uncontrolled Flow

For the translating flat plate at Re = 300, steady attached flow is observed for α < 10◦. At α = 10◦,

the flow is observed to be separated but remains steady. The flow undergoes a Hopf bifurcation

between angles of attack of 12◦ and 15◦, Colonius et al. (2006) after which vortex shedding occurs

with natural shedding frequency, ωn, which varies from 3.65 at α = 15◦ to 1.39 at α = 50◦. Using

the vertical projection of the airfoil to the freestream, we find that ωn can be scaled, for α ≥ 30◦,

to a Strouhal number of St = fnc sin(α)/U∞ ≈ 0.2, where fn = ωn/(2π). This agrees with the wake

Strouhal number for vortex shedding behind two-dimensional bluff bodies (Roshko, 1961; Bearman,

1967; Griffin, 1978). The unsteady shedding cycle consists of vortices of opposite signs alternately

shed from the leading and trailing edges, creating periodic oscillations in the lift and drag. As α is

increased, larger vortex structures are formed, inducing a larger amplitude of oscillation in the force
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exerted on the plate. For α ≥ 30◦, the vortex structure on the suction side of the plate is observed

to be created from the leading edge and can be viewed as a transient LEV, or, similarly, a dynamic

stall vortex (DSV) that occurs during a rapid pitch up. Maximum lift is found when the LEV is

brought down to the suction side of the plate as it grows in strength. The lift decreases as the new

vortex structure of the opposite sign is formed at the trailing edge. This trailing-edge vortex (TEV)

pushes up the LEV sitting on the suction side of the plate, and finally halts its growth causing it to

pinch-off and shed into the wake.

3.2.2 Open-loop control

In order to investigate the effect of unsteady blowing on these vortex shedding cycles, we first

consider open-loop control using periodic pulsing with different blowing angles at the leading and

trailing edge of the plate. The nondimensional jet velocity is set as Uj = Ūj + U ′
j sin(ωft), where

Ūj = 0.5 and U ′
j = 0.5. Since this study is focused on maximizing lift from shedding of the coherent

vortex structures rather than the suppression of shedding or separation, ωf is initially chosen to be

the natural shedding frequency for each α, at which the unsteady shedding of the large coherent

vortex structure will likely be amplified the most (Glezer et al., 2005; Amitay & Glezer, 2002). In

the next two sections we examine leading and trailing edge actuation, respectively.

3.2.2.1 Leading-edge actuation

Figure 3.3 shows the lift coefficient with actuation at the leading edge directed downstream (top)

and upstream (bottom). In each figure, the uncontrolled flow (baseline) is overlaid in grey with its

average in dashed grey and its maximum and minimum bounding the shaded region. Squares show

the minimum and maximum of the lift signal whose overall average is shown in the circles in between.

For cases where the lift is not phase locked to the forcing signal, variation in the period-averaged

lift (averaged over each actuation period) is also plotted with an error bar.

Blowing downstream provides extra momentum at the leading-edge in addition to that of the

freestream. This amplifies the unsteady shedding of vortex structures, resulting in larger magnitudes
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α = 10◦ α = 15◦ α = 20◦

(a) Vorticity flowfield at α = 10◦, 15◦, and 20◦

α = 30◦ α = 40◦ α = 50◦

(b) Vorticity flowfield at α = 30◦, 40◦, and 50◦

Figure 3.2: Vorticity and streamlines of translating flat plate at different angle of attack, α at
Re = 300.
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of the lift fluctuations. The forced flow exhibits higher maximum lift but also lower minimum lift,

below that of the baseline flow. As a result, blowing downstream does not significantly benefit the

overall average lift.

However, when the actuation is directed upstream, the resulting amplification of the unsteady

shedding has a more positive effect on the average lift. For α < 25◦, the flow locks onto the forcing

2 ∼ 3 periods after the actuation is initiated. However at higher α, the flow fails to lock onto the

forcing frequency and displays a more complicated limit cycle, with subharmonics of the forcing

frequency also excited. An example is shown in Figure 3.4, at α = 50◦ where each subharmonic

limit cycle consists of several periods with a different period-averaged lift. Figure 3.4 also shows the

lift as a function of the jet velocity, and shows that the actuation produces the highest lift when

Uj is in phase with the CL (maximum CL when Uj is maximum). However, the succeeding period

becomes slightly out of phase and the lift decreases. Each period within the subharmonic limit cycle

is observed to be associated with a particular phase shift, φ, between the forcing signal and the lift,

yielding a particular period-averaged lift. The actuation period associated with the highest average

lift is plotted in a thicker line. At each α, there is a particular φ, resulting in the highest average lift

over an actuation period. If the feedback allows us to accordingly adjust the frequency of actuation

to phase lock the flow at these φ, then we could repeatedly produce the highest average lift period.

This feedback design will be revisited later.

It might be counter-intuitive that upstream actuation at the leading edge achieves such a lift

enhancement and performs better than downstream actuation. However, experiments at Reynolds

number of the order of 3×105 by Rullan et al. (2006) demonstrated that unsteady blowing upstream,

parallel to the chord at the leading-edge of a sharp-edged, circular arc airfoil at various α beyond

stall leads to averaged pressure distribution that resulted in higher lift than that of the baseline flow.

They achieved lift increase as high as 30% with momentum coefficient of Cµ
′ = Cµ/ sin(α) ≈ 1%,

scaled with the vertical projection of the airfoil and the actuation pulsating at the shedding frequency

of the airfoil.
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Figure 3.3: Leading-edge actuation: maximum and minimum lift (�) and its average over time (◦)
for downstream (left) and upstream (right) actuation. Average of the baseline case is plotted in
dashed grey and shaded region is bounded by its maximum and minimum. Actuation is applied
at the natural shedding frequency, ωf = ωn. For cases where the flow is not phase locked to the
forcing signal, variation in period-averaged lift over each actuation period is plotted with error bar
to indicate the range of values over a subharmonic limit cycle.
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Figure 3.4: Lift as a function of time (a) and jet velocity (b) with upstream actuation at the leading
edge (LE, upstream) at the natural shedding frequency (ωf = ωn) for α = 50◦.



24

3.2.2.2 Trailing-edge actuation

In Figure 3.5, the lift performance of the open-loop actuation at the natural shedding frequency at

the trailing edge is investigated in a similar manner as in Figure 3.3. Blowing downstream exerts a

negative effect on the average lift, yielding a lower minimum lift than that of the baseline flow with

a similar maximum lift. However, when the forcing is directed upstream, the forced flow displays a

significant lift enhancement. The forcing excites the vortex shedding cycle even for α below the Hopf

bifurcation. For α ≤ 15◦, the flow locks onto the forcing after 2 ∼ 3 periods. However, for α ≥ 20◦,

the subharmonic resonance is excited. This is similar to the observation with upstream blowing

at the leading edge, but the subharmonic resonance is excited at a lower α for the trailing-edge

actuation than that for the leading-edge actuation.

Each period within the subharmonic limit cycle is again observed to be associated with a partic-

ular φ, resulting in a particular period-averaged lift. We denote the φ associated with the highest

period-averaged lift at each α as φbest. Particularly at α = 30◦, 40◦, and 50◦, φbest was observed

to be approximately −0.25, −0.05, and 0.0 radians, respectively. For trailing-edge actuation, the

period-averaged lift at high α is, in many cases, greater than the maximum lift occurring in the

baseline flow. This suggests a greater potential for the trailing-edge feedback actuation to sustain

the flow with the highest period-averaged lift. Consequently, we would obtain a phase-locked flow

that has an average lift as high as the maximum lift of the baseline flow (or even higher).

In general, blowing upstream at both the leading and trailing edges create significant enhance-

ment in the average lift. However, blowing upstream at the trailing edge provides a larger increase

in lift than that of the leading-edge actuation. These findings are similar to observations made

by Huang et al. (2004) who investigated the effect of blowing and suction control at various loca-

tions on the upper surface of a NACA0012 airfoil. They considered steady blowing and suction at

Re = 5× 105 and α = 18◦ and demonstrated that blowing at the leading edge directed downstream

exerts a negative effect, decreasing lift and increasing drag at the same time, but suction increases

lift by creating a larger and lower pressure zone on the airfoil’s upper surface. They also observed
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that the actuation near the trailing-edge on the upper surface, 0.8c from the leading edge, improves

lift and drag characteristics by manipulating the circulation of the TEV.

In order to understand the lift-enhancing mechanism of upstream actuation at the trailing edge,

we compare the vorticity contours at the time of maximum lift for the cases of baseline and upstream

actuation at the trailing edge, for 40◦ in Figure 3.8. Actuation feeds extra circulation to the TEV

which induces a stronger downwash near the trailing edge. As a result, the vortex structure on the

suction side is pulled down closer to the plate and the backflow near the trailing edge is reduced.

Particularly at α = 40◦, this delays the interference of the newly forming TEV with the LEV residing

on the suction side. It also lengthens the duration over which the vortex structure is formed from

the leading edge. These results also agree with the observations that the period associated with the

highest lift within a subharmonic cycle in Figure 3.5(b) has a longer period than that of the baseline

flow. This might indicate that there exists a forcing frequency below ωn, at which the flow becomes

phase locked to the forcing at a higher lift than that of the baseline flow.

Thus, we next investigate the possibility of the existence of shedding cycles that are phase locked

to the open-loop forcing signal. Figure 3.9 shows the lift response to the variation in open-loop

forcing frequency for 20◦ ≤ α ≤ 50◦, above which upstream actuation at ωf = ωn fails to phase lock

the flow.

Over a range of frequency below ωn, the flow is phase locked to the actuation with its average

lift near the maximum period-averaged lift of the flow actuated at ωf = ωn. As we go deeper into

stall by increasing α, the domain of attraction for the phase-locked limit cycle decreases, and finally

at α = 50◦, actuation failed to phase lock the flow over the range of forcing frequencies considered.

Figure 3.10 shows the corresponding phase shift, φ, over this range of ωf that achieves a phase-

locked flow for α = 30◦. Recall that the subharmonic cycle (excited with upstream blowing at ωn)

consists of several actuation periods with a distinct φ associated with a particular period-averaged

lift. Also, its highest period-averaged lift is associated with φ = φbest ≈ −0.25. As ωf is decreased

below ωn, the flow phase locks onto one of those periods observed in the subharmonic limit cycle at

α = 30◦. As ωf is decreased further, the flow is phase locked onto different periods with different



26

φ, closer to φbest with higher average lift. Finally, at ωf/ωn ≈ 0.87, the actuation is able to lock

the flow at the best period achieved with forcing at ωn. This indicates that each phase-locked limit

cycle of the vortex shedding could be characterized by its frequency and the phase shift, yielding a

particular maximum, minimum, and average lift.

If the feedback allows us to adjust the frequency of the actuation accordingly to keep the phase

shift between the forcing signal and the lift constant (for example at φ = φbest), we should be able to

reproduce the high-lift shedding cycles over a wide range of α. Thus in order to achieve the desired

phase-locked shedding cycle, we feedback lift into the controller, whose details are described in the

next section.

3.3 Closed-loop control

Open-loop periodic forcing can lead to limit cycles with a high average lift, but with a decreasing

domain of attraction as α increases. Our goal with closed-loop control is to obtain forced limit cycles

with the maximum average lift. This involves stably maintaining limit cycles that are not stable

without feedback.

Since the actuated flows with the highest average lift seem to be characterized by a distinct phase

shift of the forcing relative to the lift at each α, we feedback CL in an attempt to phase lock the flow

at these high-lift states. Direct feedback of CL with appropriate gain would only allow us to force

the flow to be in-phase with Uj. However, since the observed best phase shifts between CL and Uj

are negative, shifting direct feedback signal requires us to know the lift of the forced flow a priori.

Instead, we assume that the lift signal being fed back is approximately sinusoidal. In such cases lift
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Figure 3.5: Trailing-edge actuation: see Figure 3.3 for a description.
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Figure 3.6: Lift with upstream actuation at the trailing-edge at it natural shedding frequency
(ωf = ωn), for α = 50◦.
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y

Figure 3.7: Vorticity contour at the time of maximum lift for baseline (thin) and upstream actuation
(thick) at the trailing edge at the natural shedding frequency (ωf = ωn). Dashed and solid lines
represent counterclockwise and clockwise vorticity.
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Figure 3.8: Vorticity contour at the time of maximum lift for baseline (black) and upstream actuation
(red) at the trailing edge at the natural shedding frequency (ωf = ωn).
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Figure 3.9: Trailing-edge actuation: maximum and minimum lift (�), average lift (◦), and period-
averaged lift (error bar) over a range of open-loop forcing frequency, ωf . Maximum and minimum
lift of baseline (- - -) case is shown as a reference.
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Figure 3.10: Trailing-edge actuation: phase shift of the forcing signal, Uj, relative to the lift signal,
CL, for phase-locked flows, over a range of open-loop forcing frequency, ωf (α = 30◦).
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Figure 3.11: Feedback control configuration.

can be expressed as

CL(t) = a0 +AL cos(ωit+ θ),

= a0 + a1 cos(ωit) + b1 sin(ωit). (3.3)

Assuming that AL and θ are slowly varying in time, we can estimate a1 and b1 to be the Fourier

mode over a moving window,

a1(t) =
2

Ti

∫ t

t−Ti

L(t′) cos(ωit
′) dt′, (3.4)

b1(t) =
2

Ti

∫ t

t−Ti

L(t′) sin(ωit
′) dt′, (3.5)

ωi =
2π

Ti

. (3.6)

Then we feedback a phase-shifted version of this demodulated lift signal as the jet velocity, Uj with
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appropriate gain, Kp,

Uj(t) = a0 +Kp(a1(t) cos(ωit+ φi) + b1(t) sin(ωit+ φi)), (3.7)

where a0 is the average value of the output Uj, which can be prescribed as 0.5 to fix Cµ = 0.01. We

also adjust Kp continuously, such that the rms amplitude of Uj remains steady and similar to that

of open-loop control, i.e. Uj varies from 0 to 1.

The configuration of our feedback control is shown in Figure 3.11. Lift is fed back to the controller

which has two parameters: demodulation frequency, ωi, and the desired phase shift φi. The controller

outputs a sinusoidal Uj that is phase shifted relative to the dominant frequency of the lift signal.

The flow system outputs CL, which has a frequency ωo and a phase shift φo relative to the input

signal Uj.

If CL is phase-locked to Uj, the frequency of Uj will always be the same as the frequency of CL.

However, if the demodulation frequency, ωi is not equal to the frequency of the lift signal, ωo, then

φo will be different from φi (unless ωo = ωi in which case φo = φi). Thus, it is necessary to add an

integral part to the algorithm to adjust ωi, such that,

ωk+1
i = ωk

i + β(ωk
o − ωk

i ). (3.8)

We can adjust ωi until it reaches ωo, and thus obtain the exact desired phase shift and allow the

frequency content to be determined only by the flow. Then we have a robust compensator to explore

different limit cycles that are phase locked at various φ at different α.

Figure 3.12 investigates the sensitivity of the lift and the frequency of the forced phase-locked

limit cycles to the changes in the phase shift, φ at α = 40◦ and 50◦. Feedback was able to phase

lock the flow at any desired phase shift after 2 ∼ 5 periods over a wide range of −0.5 ≤ φ ≤ 0.5.

At α = 40◦, as shown in figure 3.12(a), FB1 corresponds to the limit cycle phase-locked to the

actuation at φbest. However, the phase shift that achieved the highest average lift was not φbest. An
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even higher-lift limit cycle was achieved near zero phase shift, resulting in as high as 83% increase

in the average lift coefficient. A broad range of φ (-0.28≤ φ ≤0.06) resulted in average lift that

was higher than the maximum lift of the baseline flow, that is more than 45% in the average lift

enhancement. At α = 50◦, the highest average lift occurred near zero phase shift, and over a range

of φ, −0.3 ≤ φ ≤ 0.16 the actuation achieved at least 25% enhancement over the average lift of the

natural flow. At both α’s, a larger range of negative phase shift contributed more to lift enhancement

than the positive phase shift. Particularly at α = 40◦, there was a sharp decrease in the lift after

φ = 0.06 whereas the lift decrease was more gradual at the negative phase shift. In other words,

having most of the control effort prior to the maximum lift (negative phase shift) does not penalize

the average lift significantly. However, having the control peak after the maximum lift (positive

phase shift) can significantly degrade the lift performance. Thus, forcing seems more effective as

the newly forming LEV is pulled down by the TEV (lift-increasing phase). On the other hand,

forcing seems the least effective after the maximum lift occurs; when the LEV sits closest to the

plate and is pushed away by the growing TEV (lift-decreasing phase). As φ approaches 0.5 or -0.5

(out of phase), the forced flow results in the average lift similar to that of an unforced flow, but

with a slightly smaller magnitude of oscillation in lift coefficient. This sensitivity of the lift to the

control effort during different phases of the vortex shedding cycle (particularly lift-increasing and

-decreasing phases) will be revisited in the context of optimized waveform in the next Chapter.

Recall in Figure 3.9(c), we observe a very small domain of attraction near ωf ≈ 0.8 for the phase-

locked limit cycle and the resulting limit cycle has a positive phase shift, φ ≈ +0.3. However, the

phase-locked limit cycles achieved by this feedback have a wide range of frequencies, varying from

0.8 to 0.95 with the corresponding phase shifts ranging from −0.5 to 0.5. These limit cycles were not

achieved by any of the forcing frequencies of the open-loop control in Figure 3.9(c). The feedback

algorithm results in phase-locked limit cycles that are not attainable by the open-loop forcing.

Figure 3.13 compares the lift signal of the two limit cycles; the best open-loop case at α = 40◦,

denoted as OL1 in Figure 3.9(c) and the corresponding feedback case, denoted as FB1 in Figure 3.12.

With open-loop control at fixed ωf , the flow seems to lock onto the actuation at the higher average
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lift cycle during earlier periods, with its phase shift closer to φbest. But after a few periods, φ

drifts away from φbest and the flow eventually locks onto the lower average lift cycle. On the other

hand, the feedback compensator prevents φ from drifting away and sustains the phase at φbest

producing higher average lift than the open-loop control. Thus, we can conclude that this feedback

algorithm stabilizes the limit cycle with a significant lift enhancement that cannot be obtained with

the open-loop control.

To ensure that the feedback is still required to sustain the achieved phase-locked limit cycle, FB1

is investigated further. Feedback is turned off after the phase-locked limit cycle has been achieved

for a long time, and the forcing signal is continued with the open-loop forcing at a fixed frequency,

ωf , as shown in Figure 3.14. This behavior of unstable phase relationship has also been shown with a

open- and closed-loop control model of an oscillating cylinder wake by Tadmor et al. (2004). Notice

that when the forcing signal is continued with the actuation of ωf = ωo,OL1
, the flow drifts back to

the previous open-loop limit cycle. When it is continued with actuation oscillating at ωf = ωo,FB1
,

the average frequency of the previous feedback output signal, the flow displays a loss of phase-locking

to this forcing frequency and it displays a pulling-out phenomenon. These results indicate that the

feedback compensator was adjusting its forcing corresponding to the change of output frequency

from the flow, and that the feedback is still required to sustain the flow at the high-lift limit cycle.

The feedback algorithm stabilizes the limit cycle with a significant lift enhancement that is not

attainable by the open-loop forcing. Furthermore, even with careful tuning of the forcing frequency,

open-loop forcing cannot sustain this high-lift limit cycle. Thus, the feedback achieves high-lift

unsteady flow states that cannot be achieved or sustained without it.
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Figure 3.12: Maximum and minimum lift (�) and its average over time (◦) (top) and frequency
(bottom) of phase-locked limit cycles at different phase-shift, φo, for (a) α = 40◦ and (b) 50◦.
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Figure 3.14: Continuation of feedback control case in figure 3.13 with open-loop control of ωf .
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Chapter 4

Optimized waveform at Re = 300

With the sinusoidal forcing and feedback, we showed that it is possible to optimize the phase of the

control relative to the lift in order to achieve the highest possible period-averaged lift in a consistent

fashion. However, continuous sinusoidal forcing could be adding circulation when it is unnecessary,

or undesirable. For example, we showed in Sect. 3.3 that the control is more effective prior to the

maximum lift than during the lift-decreasing phase. Thus, in this chapter, we use an adjoint-based

optimization in order to find the waveform (time history of Uj) that maximizes the lift for a given

actuation amplitude. The adjoint of the linearized perturbed equations is solved backwards in time

to obtain the gradient of the lift to changes in actuation (the jet velocity), and this information

is used to iteratively improve the control. Optimal control provides a periodic control waveform,

resulting in a high lift shedding cycle with minimal control input. However, if applied in open loop,

the flow fails to phase lock onto the optimal waveform, degrading the lift performance. Thus, we

also design a controller that uses the previously developed phase-locking strategy, but is applied to

the more complicated waveforms educed by the optimization. This feedback control of the optimized

waveform is able to reproduce the high-lift limit cycle from the optimization, but started from an

arbitrary phase of the baseline limit cycle. Motivated by the observation that the optimal waveform

is close to a pulse, we investigate the response to pulses of different duty cycles. This is enabled by

having a feedback strategy that allows us to lock the desired waveform onto the flow.
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4.1 Numerical Method

Simulations of flow over a two-dimensional flat plate at Re = 300 and an angle of attack of 40◦ are

performed with the immersed boundary projection method combined with a vorticity-streamfunction

multi-domain technique (Taira & Colonius, 2007; Colonius & Taira, 2008). We model the actuation

as unsteady velocity boundary conditions φ = Uj applied at the control point (trailing edge) C .

For clarity, the incompressible viscous flow equations ((2.9) and (2.10)) is presented here in

operator form by (4.2) and (4.3). The control is implemented as a velocity boundary conditions

φ(x, t) applied at the actuation points C shown in Figure 4.1. In the case of our interest, control is

a function only of time, and φ(x, t) = φ(t) = Uj(t), which is the prescribed velocity at the actuation

point.

Three vector fields are first defined: the flow state q, the flow perturbation state q′, and the

adjoint state q∗:

q =

(

γ

f̃

)

, q′ =

(

γ′

f̃ ′

)

, q∗ =

(

γ∗

f̃∗

)

. (4.1)

where q is a vector of flow variables and the motivation for introducing q′ anad q∗ will be obvious

later in the control derivation.

For clarity, all differential equations are written in operator form in this section. Incompressible

viscous Navier-Stokes equation can be written in operator form as

N (q) = Fφ (4.2)

where the (nonlinear) operator N (q) is

N (q) =

(dγ
dt

+ CTETf̃ + βCTCγ − CTn(q) − bcγ
ECs

)

. (4.3)

γ is the discrete circulation and f̃ = [f̃x f̃y]
T is a vector of surface forces on the Lagrangian body

points applied to satisfy the no-slip condition for a stationary body points or the prescribed velocity
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for the actuation points. The vector F = [Fγ Ff̃ ]T allocates the control action. Thus Fγ = 0

and Ff̃ has a single non-zero entry that corresponds to the actuator location associated with the

appropriate element of the surface force, f̃ .

Ω
α

C

U∞

φ

Figure 4.1: Schematic of upstream actuation at the trailing-edge.

4.2 Adjoint-based Optimization

We compute the optimal control over a time horizon, using the receding-horizon approach (Bewley

et al., 2001). The procedure is simlar to previous studies (Bewley et al., 2001; Wei & Freund, 2006)

and is only outlined briefly here.

4.2.1 Adjoint-based Optimization: Cost Functional and Sensitivity

To maximize lift, we define a cost functional to be minimized

J = −

∫ t1

t0

∫

Ω

f̃2
y (φ(t), x, t) dx dt + Cw

∫ t1

t0

∫

C

φ2(t) dx dt, (4.4)

where t0 and t1 are the start and end times of the optimization horizon and Ω is the surface of the

body (see Figure 4.1). φ is the control input, in this case φ(t) = Uj(t). Again, f̃y is the y component

of forces on the plate calculated in the immersed boundary projection method. The first term is the

total squared lift over the optimization horizon. The second term penalizes the actuator amplitude

in order to keep Cµ to a value commensurate with the open-loop control discussed previously. The

control weight, Cw, is determined by trial and error and is held fixed throughout the optimization.

Consider the linearized perturbation J ′ to the cost functional J resulting from an arbitrary
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perturbation φ′ to the control φ. The quantity J ′ may be defined by a limiting process as the

Fréchet differential (Vainberg, 1964) of the cost functional J with respect to φ such that

J ′ , lim
ǫ→0

J (φ+ ǫφ′) − J (φ)

ǫ
,

∫ t1

t0

∫

Ω

DJ (φ)

Dφ
φ′ dx dt. (4.5)

In the case of our cost functional as in (4.4), this sensitivity of the cost functional J ′ resulting from

a control perturbation φ′ may be written as

J ′ = −

∫ t1

t0

∫

Ω

2(f̃y(φ(t), x, t))f̃ ′
y dx dt+ Cw

∫ t1

t0

∫

C

2φ(t)φ′ dx dt, (4.6)

where f̃ ′
y is the Fréchet differential of φ as defined in the following subsection.

4.2.2 Adjoint-based Optimization: Formulation

Now consider the linearized perturbation q′ to the flow q resulting from a perturbation φ′ to the

control φ. The quantity q′ may be defined by the limiting process of a Frechet differential such that

q′ , lim
ǫ→0

q(φ + ǫφ′) − q(φ)

ǫ
. (4.7)

We take q′ to be the still unknown perturbation to a solution q of the flow equation due to a control

perturbation φ′. Mathematically, this means that

N (q + q′) = F(φ + φ′) (4.8)

where the notation for the term on the right-hand side indicates that the vector F multiplies the

scalar φ+φ′. Linearizing (4.8) in q′, or equivalently taking the differential of the governing equation

(4.2), yields

N ′(q)q′ = Fφ′. (4.9)
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The operator N ′(q)q′ is linear in q′, though N ′(q) is itself a nonlinear function of q. Using the

same Inner product defined as (A.4) in Appendix A,

〈c, d〉 =

∫ t1

t0

∫

γc · (C
TC)−1 · γd dx dt+

∫ t1

t0

∫

f̃c · f̃d dx dt, (4.10)

c =

(

γc

f̃c

)

, d =

(

γd

f̃d

)

, (4.11)

consider the following identity

〈N ′(q)q′,q∗〉 = 〈q′,N ∗(q)q∗〉 + b, (4.12)

where the operation N ∗(q)q∗ is a linear operation on the adjoint field q∗ and the operator N ∗(q) is

itself a function of the solution q of the Navier-Stokes problem. The boundary term b is eliminated by

choosing appropriate boundary and initial conditions for the adjoint problem. Causality eliminates

the time boundary term at the inital time t = t0: there can be no perturbation to the flow (i.e.

q′ = 0) due to the control before the control is applied. The condition at the end time t = t1 is

eliminated by simply starting with q∗ = 0 at t = t1 and solving the adjoint system backward in time.

Integration by parts may be used to move all differential operations from q′ on the left-hand side of

(4.12) to q∗ on the right-hand side, resulting in the same adjoint operator derived in Appendix A:

N ∗(q) =

(

− dγ∗

dt
+ CTETf̃∗ + βCTCγ∗ − (CTC)nL(γ0)

Tqa

ECf̃∗

)

. (4.13)

We can now choose a source term F∗ for our adjoint system

N ∗(q)q∗ = F∗, (4.14)
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so that the adjoint solution provides the gradient DJ /Dφ. We start by substituting (4.9) and

(4.23) into (4.12) with b = 0, which becomes,

〈Fφ′,q∗〉 = 〈q′,F∗〉. (4.15)

Comparing (4.15) with (4.6) and (4.5), we would like to obtain

〈q′,F∗〉 =

∫ t1

t0

∫

Ω

2(f̃y(φ(t), x, t))f̃ ′
y dx dt, (4.16)

so that

〈Fφ′,q∗〉 =

∫ t1

t0

∫

Ω

DJ (φ)

Dφ
φ′ dx dt+ Cw

∫ t1

t0

∫

Ω0

2φ(t)φ′ dx dt. (4.17)

The adjoint source term F∗ that gives (4.16) is

F∗
γ = 0, F∗

f̃x
= 0, F∗

f̃y
= 2(f̃yφ(t), x, t), (4.18)

and (4.6) and (4.5) becomes,

J ′ ,

∫ t1

t0

∫

Ω

DJ (φ)

Dφ
φ′ dx dt =

∫ t1

t0

∫

Ω0

(2Cwφ(t) + Ff̃ · f̃∗)φ′ dx dt. (4.19)

Then, by (4.17) the gradient becomes

g(φ) =
DJ (φ)

Dφ
= 2Cwφ(t) + Ff̃ · f̃∗. (4.20)

4.2.3 Adjoint-based Optimization: Numerical Implementation

At each iteration of the optimization, we modify the controls according to

φk+1(t) = φk(t) + rg(φk)(t), (4.21)
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where g(φ) is the gradient of the cost function with respect to the controls, and r is the generalized

distance determined iteratively (using Brent’s line minimization) to minimize the cost function. g(φ)

is found by solving

g(φ) = Ff̃ · f̃∗ + 2Cwφ, (4.22)

where f̃∗ are the force unknowns in the linearized adjoint equations (Ahuja & Rowley, 2008)

N ∗(q) q∗ = F∗. (4.23)

Here q∗ are the adjoint variables (discrete circulations and forces) and F∗ is given by

F∗ = [F ∗
γ F ∗

f̃
]T = [0 2f̃y]

T. (4.24)

The adjoint operator requires the full flow field from the (forward) Navier-Stokes simulation (2.1-2.3)

at every time step. However, in order to save memory, we saved the flow solution only every few

time steps and used a linear interpolation in time. Several test cases were done with a different

number of time steps skipped, including a case where the solution was saved at every time step, and

no significant differences were noted between them.

All optimizations used zero control (φ = 0) for the first iteration (k = 1) on each optimization

horizon. At each iteration, we required roughly ten full Navier-Stokes simulations to perform the

line minimization (to find r).

Optimization was done over a horizon T = [t0, t1], where the horizon, T , is long enough to

overcome transient effects, but limited by the computational effort to perform all the required

iterations and to tune the control weight. We found for this problem that after about two periods

the controls converged to an approximately periodic signal with each period corresponding to a

vortex shedding cycle. A horizon of 6 periods gave the results presented below, and tests showed

that the results were not very sensitive as the horizon was varied from about 5 to 8 periods. Once

the iteration of the optimization converges, the control near the end of each optimization horizon
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Figure 4.2: Schematic of receding-horizon predictive control. First the optimization of controls are
performed on horizon [t0, t1]. Each iteration of optimization gives the update on control. Once
the convergence of the control on the optimization is achieved, the flow is ‘advanced’ some portion
Ta of the period T , and controls near the end of the optimization horizon are discarded and the
optimization is begun anew on horizon [t0 + Ta, t1 + Ta].

(transient of adjoint simulation) is discarded and the optimization is begun anew. This process is

depicted in Figure 4.2.

4.2.4 Adjoint-based Optimization: Results

Optimization results in a periodic control waveform after a couple of transient periods. As shown

in Figure 4.5, this periodic optimal waveform is not sinusoidal, but rather composed of two distinct

pulses per shedding cycle. The larger, later pulse is roughly in phase with the maximum lift. This

result will be further discussed in Sect. 4.4 after feedback is designed to achieve the highest-lift,

phase-locked shedding cycle with a given optimal or sinusoidal control waveform. Different values

of control weight, Cw, result in a periodic control waveform with similar features, but with different

average control input, thus different values of Cµ. For example, Cw = 0.3 gives the results shown

in Figure 4.5 where Cµ is about two times lower than that used for the sinusoidal forcing, but

comparable lift is achieved. It should be noted that, although we cannot be assured that this is

a global optimal, we observed similar results with different values of control weight and different

initial controls (zero, constant, or sinusoid).
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4.3 Feedback

Optimization provides a periodic control waveform after a couple of transient periods. While it

is straightforward to extract a single period of the optimal waveform, the performance can be

significantly degraded if this is applied to the plate in open loop as shown in Figure 4.4. Depending

on the precise state of the flow upon initiation of forcing, the flow fails to lock onto the optimal

waveform or locks on with a different phase than the optimal controller. Moreover, initial transients

and subharmonic resonances further degrade the performance. Thus in this section, we design a

practically implementable feedback algorithm to achieve phase lock between the lift and the optimal

control waveform deduced from the adjoint-based algorithm in the previous section.

For example, we may decompose the optimal control waveform as

φoptimal(t) = A0 +

Nk
∑

k

[Ak cos(kωt) +Bk sin(kωt)]

= A0 +

Nk
∑

k

[Ak cos(kθ(t)) +Bk sin(kθ(t))], (4.25)

where Nk is the number of harmonics retained and ω is the fundamental frequency of the optimal

waveform. We used Nk = 10 which provided a reasonable representation (less than 5% deviation

from the original optimized waveform).

In order to implement this optimal waveform with a consistent phase difference between each of

the harmonics, instantaneous phase information of the lift signal is required. The frequency of the

lift signal is tracked with an Extended Kalman Filter (EKF) to estimate the phase, θ(t) for use in

Eq. 4.25. To improve the EKF phase estimate, a narrowband filter is first used on the lift cycle to

obtain a more nearly sinusoidal signal as input to the EKF. The EKF frequency estimate is then

used to tune the filter to avoid introducing phase lag. The overall feedback algorithm is illustrated

in Figure 4.3.
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First, we perform a narrowband filtering of the lift according to

ωi = 2π/Ti, (4.26)

a1(t) =
2

Ti

∫ t

t−Ti

CL(t′) cos(ωit
′) dt′, (4.27)

b1(t) =
2

Ti

∫ t

t−Ti

CL(t′) sin(ωit
′) dt′, (4.28)

y(t) = a1(t) cos(ωit) + b1(t) sin(ωit). (4.29)

The filtered lift, y(t) retains the dominant frequency, initially estimated as ωi, and filters out higher

harmonics. Next, y(t) is modeled as a pure sinusoid

ŷ(t) = â sin(θ̂(t)), (4.30)

θ̂(t) = ω̂ot, (4.31)

where θ̂ is estimated with the EKF; values for noise processes are chosen in the EKF so that the

algorithm converges in a few cycles. Our implementation of the EKF follows closely the description

in Tadmor (2004) and Pastoor et al. (2008) and is described in Appendix B.

When computing y(t), the initial estimate for ωi is updated with the estimate ω̂o, the frequency

estimated by the EKF, and we write

φoptimal(t) = A0 +

Nk
∑

k

[Ak cos(k(θ̂(t) − θdesired(t))) +Bk sin(k(θ̂(t) − θdesired(t)))], (4.32)

where θdesired is an additional (specified) phase shift relative to the lift signal.

Also, note that this feedback controller can be simply implemented for the sinusoidal waveform

by setting Nk = 1, A1 = 0, and A0 = B1 = 0.5 for Cµ = 0.01.
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Figure 4.3: Schematic of feedback.

4.4 Results of Optimized Feedback Control

As shown in Figure 4.4, feedback control of the optimized waveform is able to reproduce the high-lift

limit cycle that the optimization achieved, but starting from an arbitrary phase of the baseline limit

cycle. The feedback system converges to something very close to the previous solution after 4 to 5

periods, and is indistinguishable after about 10 cycles.

Figure 4.5 compares a few periods of the optimal control signal (Uj(t)) and the resulting lift

coefficient. The results are plotted against the closed-loop controlled case with a sinusoidal waveform

where this compensator phase locked the flow at a limit cycle associated with the highest average lift

at a given Cµ = 0.01. The optimized control is not sinusoidal, but rather composed of two distinct

pulses per shedding cycle. The larger, later pulse is roughly in phase with the maximum lift. In

Figure 4.6, we overlay the vorticity contours at the minimum and maximum lift for the baseline and

sinusoidal forcing and compare vorticity contours for the optimized control to the sinusoidal forcing

in Figure 4.7. Maximum lift is found when the LEV is brought down to the suction side of the plate
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Figure 4.4: Comparison between open-loop control case (grey) and the feedback control case (black)
with optimized waveform (Nk = 10) at α = 40◦.

as it grows in strength. The lift decreases as the new vortex structure of the opposite sign is formed

at the trailing edge. Minimum lift occurs as this TEV pushes up the LEV sitting on the plate, and

finally halts its growth causing it to pinch-off and shed into the wake.

For both sinusoidal and optimized control, the primary effect of actuation is to create extra

vorticity which is fed into the TEV as the vortices are alternately being formed and shed. After

the first local minimum lift, as the new LEV is being formed, both waveforms start to feed extra

circulation at the trailing edge, leading to more definite pinch off of the LEV at the following global

minimum lift. The magnitude of actuation increases as the growing LEV (lift is increasing) is pulled

down by the growing TEV, and finally reaches its peak near the maximum lift. The corresponding

TEV is strengthened and caused to shed from the trailing edge, thereby allowing the LEV to grow

larger. This results in more vertically elongated TEV that induces stronger downwash near the

trailing edge, causing the LEV to sit closer to the plate, leading to higher lift compared to the

baseline.

The flow field for the optimized control does not look very different from the sinusoidal forcing.

However, in the optimized control, the short pause between the two pulses slows down the growth

of the TEV momentarily. This separates the TEV into two structures connected by a thin vortex
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sheet. The effect of the dip between the two pulses will be investigated further with the feedback

control later in this section.

The most distinct feature of the optimized control compared to sinusoidal forcing is the gradual

increase in φ during the most of the cycle followed by a more rapid decrease after its peak. A

gradual addition of circulation alters the formation of the TEV such that it interferes minimally

with the natural formation of LEV and only acts as a downwash to push the LEV closer to the

plate. Immediately after the maximum lift, the forcing is turned off sharply. This phase of the

shedding cycle is where the optimized control achieves similar magnitude of lift with minimal control

input compared to the sinusoidal control. Since the shedding of the LEV is probably unavoidable

in two-dimensional flow (no spanwise flux of vorticity in z-direction) after the maximum lift has

been achieved, letting it shed naturally may be the most energy efficient. For the periods shown

in Figure 4.5, optimized control resulted in an average lift and drag coefficients of CL,ave = 2.50

and CD = 2.06, corresponding to the average lift-to-drag ratio of CL/CD=1.20 with Cµ = 0.005

and C′
µ = 0.010. With sinusoidal waveform, the feedback achieved CL = 2.25 and CD = 1.83

(CL/CD = 1.20) with Cµ = C′
µ = 0.010. Compared to baseline flow (CL = 1.35, CD = 1.20, and

CL/CD = 1.104), optimized control resulted in more than 85% increase in average lift. Figure 4.8

compares the average lift values from the optimized control to the results from the feedback controlled

cases with sinusoidal waveform where the compensator phase locked the flow at a limit cycle with

the highest average lift at different values of Cµ. At Cµ below 0.0065, the lift performance of the

sinusoidal control decreases sharply and approaches close to the average lift of the natural flow at

Cµ = 0.005. However, optimized control is able to produce high lift even at low Cµ = 0.0025.

The feedback controller now allows us to phase-lock an essentially arbitrary waveform, and we

can utilize this fact to investigate which features of the optimized waveform are critical to high

lift. In Figure 4.9, we demonstrate the effect of smoothing the optimal waveform by retaining fewer

harmonics in the Fourier expansion. Using Nk = 4, for example, smoothes out the dip between the

two highest maxima, but has little impact on the lift achieved. This indicates that, during this phase

of the shedding cycle, the sensitivity of the first term (lift-maximizing term) in Eq. 4.4 to the change
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Figure 4.5: Comparison of optimized control (–) with closed-loop sinusoidal forcing(–) at α = 40◦.
Maximum and minimum lift of baseline (- - -) case is shown as a reference.
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Figure 4.6: Vorticity contour at the (a) minimum and (b) maximum lift for baseline (black) and
sinusoidal actuation (blue). Dashed and solid lines represent counterclockwise and clockwise vortic-
ity.

in φ is small compared to the second term (control-penalizing term). The short pause between the

two pulses may be just an energy-saving feature of the optimal control.

Figure 4.10 investigates the sensitivity of the lift performance of the phase-locked limit cycles

to the changes in the phase shift, θdesired with the optimal control (Nk = 10). Feedback is able

to phase lock the flow at any desired phase shift after 3 ∼ 5 periods over a wide range of θdesired.

Due to pulse-like feature of the optimal waveform, the lift is quite sensitive to changes in the phase

shift, with the average lift dropping below the maximum lift of the baseline with 20◦ phase changes.

Because the optimized waveform rapidly decreases immediately after its peak, forcing with the peak
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Figure 4.7: Vorticity contour at the (a) minimum and (b) maximum lift for sinusoidal actuation
(blue) and optimized actuation (red). Dashed and solid lines represent counterclockwise and clock-
wise vorticity.
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Figure 4.8: Average lift of optimized control (�) and closed-loop sinusoidal forcing (◦) at different
values of Cµ at α = 40◦. For the optimized control, different values of the control weight, Cw is used
in (4.4), resulting in corresponding values of Cµ as shown.
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Figure 4.9: Comparison between feedback control cases with optimized waveform at α = 40◦:
Nk = 10 (dashed) and Nk = 4 (solid).
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Figure 4.10: Maximum and minimum lift (�) and average lift (◦) of phase-locked limit cycles at
different phase shift with optimized waveform (Nk = 10) at α = 40◦. Maximum and minimum lift
of baseline (- - -) case is shown as a reference.

prior to the maximum lift (at negative phase shift) impacts the lift significantly. Also, positive phase

shift penalizes the lift performance since the magnitude of g(φ) (sensitivity of the cost functional,

Eq. 4.4 to changes in control, φ) is small during the lift-decreasing phase; thus, control is not as

effective. As the phase shift approaches ±180◦ (out of phase), the forced flow results in the average

lift similar to that of an unforced flow.

4.5 Sinusoidal Pulse

The optimization provided a pulsatile waveform roughly in phase with the maximum lift. The

optimized waveform features a slow increase prior to its maximum and sharply drops to zero control
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afterwards. Control is mostly important as the new vortex is formed as the lift is increasing, and

when the maximum lift is achieved, control could be counterproductive.

Motivated by the pulsatile waveform the optimization provided, we investigate the lift response

to pulses of different duty cycles. We define the duty cycle as a percentage of the width of a sinusoidal

waveform to the period of actuation. Thus, a duty cycle of 100% gives a continuous sinusoidal used

in the previous sections and a duty cycle of 50% results in a sinusoidal waveform with its width that

is half the actuation period. Figure 4.11 investigates the effect of this sinusoidal pulse by decreasing

its duty cycle while keeping its maximum or its average the same. With each waveform of different

average Uj or maximum Uj, the feedback was used to phase lock the flow at a limit cycle with a

different phase shift, and the highest average lift was observed when the forcing was in phase with the

lift for all cases considered, which is shown in the figure. By decreasing the duty cycle of a sinusoidal

pulse, we were able to achieve high lift with much smaller Cµ than continuous sinusoidal forcing

(DC=100%). It is interesting to note that a duty cycle of 62.5% resulted in higher lift than 100%

even though the average Uj was decreased by almost 40%. This might be due to higher magnitude of

dUj/dt near its maximum resulting in more effective pinch off of the LEV letting subsequent LEV to

form. We find that the sinusoidal pulse with its duty cycle as small as 25% achieves similar average

lift enhancement as a continuous sinusoid when the forcing is in phase with the lift. However, smaller

duty cycles were not able to sustain the lift enhancement and result in a similar average lift of the

baseline flow.

By keeping average Uj constant, we can decrease the duty cycle further without sacrificing the

lift performance.



54

Cµ

C
L
,a
v
e

baseline,min

baseline,max

0 1

0 0.002 0.004 0.006 0.008 0.01

0

1

1

2

3

(a) Constant maximum Uj

duty cycle (DC, %)

C
L
,a
v
e

baseline,min

baseline,max

0 1

0 25 50 75 100

0

1

2

1

2

3

(b) Constant average Uj

Figure 4.11: Sinusoidal pulses of different widths with either a constant maximum (blue) or average
(green) Uj. Duty cycle is defined here as a percentage of the width of a sinusoidal waveform to the
period of actuation. Thus, a duty cycle of 100% gives a continuous sinusoidal waveform (black).
The feedback was used to phase lock the flow near zero phase shift. This phase shift results in the
highest average lift for all cases considered. For the optimized control (red), different values of the
control weight were used in each optimization to result in different values of Cµ as shown.
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Figure 4.12: Sinusoidal pulse with constant maximum (blue) and average (green) Uj. Circles and
x-marks indicate higher and lower average CL, respectively, than the maximum lift achieved by
baseline shedding cycle.
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Chapter 5

Control at Re = 3000

At Re=300, the optimal waveform was not a continuous sinusoidal, but rather pulsatile. In fact, we

showed that a sinusoidal pulse whose width is as small as 25% of the actuation period (duty cycle

of 25%) resulted in a similar lift enhancement as a continuous sinusoidal (duty cycle of 100%), when

the control was nearly in phase with the lift in both cases. In this chapter, we investigate the nature

of this optimal forcing waveform at a higher Re of 3000. Particularly, we consider the lift response

to the sinusoidal pulses with different widths compared to the actuation period (duty cycle).

Greenblatt et al. (2008) performed a series of experiments on a flat-plate airfoil and an Eppler

E338 airfoil at Reynolds numbers (3000 ≤ Re ≤ 50, 000), in which dielectric barrier discharge (DBD)

plasma actuators were employed at the leading edges to effect flow control. The DBD actuator was

calibrated in a quiescent environment (U∞ = 0) and generated wall-parallel flow at the leading edges

with relatively small magnitude of wall-normal velocities. Using this model, Greenblatt et al. (2008)

found the optimum reduced frequencies F+ for generating poststall lift were approximately between

0.4 and 1.0, which resulted in an increase in maximum lift coefficient of 0.4 to 0.8 at high post-stall

angles of attack.

In this chapter, we consider the same geometry and Reynolds number, a flat plate with a

thickness-to-chord ratio of 4% at Re = 3000, as Greenblatt et al. (2008), in an attempt to bet-

ter understand the effects of control on the dynamics of vortex shedding, and to apply the tools and

knowledge gained at the lower Reynolds number of 300 in the last two chapters. Greenblatt et al.

(2008) focused on the long-time average lift and explained the effect of control using representative
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snapshots of smoke visualization. In this chapter, we consider more detailed time-dependent aspects

of the lift and corresponding flow fields, particularly the flow structures at the minimum and max-

imum lift, and the phase of pulses relative to the lift. This allows us to more precisely compare

different actuated flow fields and distinguish the differences responsible for higher or lower instan-

taneous lift, along with identifying different vortex evolutions. Finally, we show that for certain

frequencies and actuator waveforms, there occur stable limit cycles in which the flow is phase locked

to the actuation.

For a range of angles of attack, Greenblatt et al. (2008) observed the greatest lift enchancement

over a range of frequencies 0.4 < F+ < 0.6. Control resulted in a 50% increase in lift at angles of

attack greater than about 20 degrees, with results at α ≤ 10◦ showing at most equivalent lift to the

baseline case.

In our simulations, we therefore consider two representative angles of attack, α = 10◦ and 20◦.

5.1 Numerical Method

Simulations of flow over a two-dimensional flat plate at Re = 3000 are performed with the immersed

boundary projection method combined with a multi-domain technique (Taira & Colonius, 2007;

Colonius & Taira, 2008) described in Chapter 2. In what follows, all velocities and length scales are

nondimensionalized by the freestream velocity and the chord, U∞ and c, respectively. The finest grid,

encompassing the body, is comprised of a rectangular domain exending to [−0.5, 2.5]× [−0.9, 0.6] in

the streamwise (x) and vertical (y) directions with a uniform grid spacing of 0.005 units (∆x = ∆y =

0.005). The constant time step was 0.0005. The coarsest grid extended to [−8, 32]× [−12, 12]. The

coarsest grid extended to [−2, 10]× [−3.6, 2.4]. Selected cases were run on finer grids (∆x = 0.00375)

and with larger extents (twice the coarsest grid) to demonstrate convergence and independence to

far-field boundary conditions.

In the previous chapters at Re = 300, we modeled the actuation by specifying the jet velocity at

the actuation point as part of the boundary conditions on the body, and the force needed to satisfy
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that specified velocity was calculated in the simulation. In order to mimic the plasma actuator used

in the experiments, we introduce a specified body force expressed as

fact = f̂actδ(x− x0)φcontrol(t) (5.1)

to the right-hand side of the momentum equation, equation 2.1. Here f̂act prescribes the strength and

the direction of the actuator and φcontrol(t) is a control waveform described below. The location of

the actuator is specified with (x0, y0). In the computation, the Dirac delta function, δ(), is replaced

by a discrete delta function, δ̄() proposed by Roma et al. (1999) that regularizes the singularity

across 3 cells in both the x- and y-directions in the following manner:

δ̄ =































1
6∆x

[

5 − 3 |x|
∆x

−
√

−3(1 − |x|
∆x

)2 + 1

]

for 0.5∆x ≤ |x| ≤ 1.5∆x,

1
3∆x

[

1 +
√

−3( x
∆x

)2 + 1
]

for |x| ≤ 0.5∆x,

0 otherwise.

(5.2)

The function is shown here for the x-direction with a mesh width of ∆x. This delta function is also

used in the immersed boundary projection method to represent the immersed boundary.

We place the actuation at the leading edge directed parallel to the plate towards the trailing

edge as illustrated in Figure 5.1. The actuation is positioned 3∆x = 0.015 from the leading edge

in the normal direction to the plate, since the peak of the wall-parallel velocity profile produced by

DBD plasma actuation in Greenblatt et al. (2008) was observed at 0.015c.

In order to add the right magnitude of fact in order to generate the steady peak jet velocity

comparable to the freestream velocity, we first simulate the sinusoidal blowing at different frequencies

with prescribed fact in an initially quiescent free space. Once steady state is achieved, the velocity

at the center of the forcing is selected as the characteristic velocity Uj. For example, |fact| = 0.1

corresponds to Uj = Uj,max = 0.5 and Cµ = 0.01.

In the experiments, Greenblatt et al. (2008) modulated a high frequency (5kHz) signal with

a rectangular waveform at F+, thus a duty cycle of 100% results in a steady forcing with just a
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high frequency component. However, the goal of this chapter is to investigate the lift response to

different waveforms motivated by the nature of the optimal forcing found at Re = 300, i.e. pulses

of different widths compared to a continuous sinusoid. Thus, we define a duty cycle as percentage

of the width of a sinusoidal waveform to the period of actuation, so that a duty cycle of 100% refers

to a continuous sinusoidal forcing. Even though the resulting representations of the waveforms are

different at high duty cycles, at low duty cycles, the difference becomes less significant. AtDC = 5%,

the resulting sinusoidal forcing could be a reasonable representation of a rectangular waveform used

in the experiments.

Once |fact| is determined to generate a desired velocity at the center of the forcing, φcontrol(t)

is a actuation waveform that varies from 0 to 1. We first decompose the sinusoidal-pulse waveform

with a specified duty cycle as

φcontrol(t) = A0 +

Nk
∑

k

[Ak cos(kωt) +Bk sin(kωt)]

= A0 +

Nk
∑

k

[Ak cos(kθ(t)) +Bk sin(kθ(t))], (5.3)

where Nk is the number of harmonics retained and ω is the fundamental frequency of the optimal

waveform. We used Nk = 50 which provided a reasonable representation (less than 5% deviation

from the perfect sinusoidal pulse for all the duty cycles considered). Then, we march along φcontrol

with θ(t) = 2π/Tcontrol ∗ t where Tcontrol = 1/F+ is the period of actuation.

Also, note that (5.3) becomes a continuous sinusoidal waveform (duty cycle, DC = 100% in

Figure 5.2) by setting Nk = 1, A1 = 0, and A0 = B1 = 0.5. Figure 5.2 shows an example of the

sinusoidal pulses.
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Figure 5.1: Schematic of flat plate of thickness-to-chord ratio of 4% and actuation at the leading
edge.
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Figure 5.2: Sinusoidal pulse waveform, Uj(t) and phase, θ(t) with duty cycle, DC = 5% (red), 50%
(blue), 100% (black). θ(t) = 2π is a period of every pulse. Duty cycle is defined here as a percentage
of the width of a sinusoidal waveform to the period of actuation. Thus, a duty cycle of 100% gives
a continuous sinusoidal waveform (black).
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5.2 Uncontrolled flow

Figure 5.3 shows computed lift coefficients over a range of α and the experimental data of Greenblatt

et al. (2008) and of Alam et al. (2010) (with Re = 5, 000 and 10, 000). Even though the computations

display a similar trend as the experiments, the magnitude of lift in the two-dimensional simulation

is almost twice as high as that of the experiments. Later simulations of the same geometry and Re

by Schneider et al. (2008) also overpredicted the lift by a similar magnitude as in our case at high

angles of attack.

Of course, the experiments used finite-aspect-ratio models, (AR=3.0 for Greenblatt et al. (2008)

and 2.7 for Alam et al. (2010)). Both experiments (Greenblatt et al., 2008; Alam et al., 2010) used

endplates to try to enforce two-dimensional flow. It has been noted that accurate measurements

of lift or drag with endplates and small aspect ratio models are difficult to obtain at low Reynolds

numbers because of the interaction between the thick boundary layers on the endplates and the flow

around the wing, which results in a three-dimensional flow along the span of the model (Mueller,

1999). Mueller (1999) investigated the effect of endplates on two-dimensional measurements by

considering two different models (3-piece model and 2-piece model). With the 3-piece model, the

middle section of the airfoil was free to move between two other sections of the same airfoil and the

two other sections were fixed to the endplates in the wind tunnel. A small gap was present between

the end models and the center piece, which was connected to the force balance, so that the center

piece adjusts itself to where the flow is more two-dimensional and the force measurements were less

effected by the corner flow at the endplates. This 3-piece model gave forces closer to 2-dimensional

results, resulting in higher lift than the 2-piece model that was used in Greenblatt et al. (2008) and

Alam et al. (2010). Mueller (1999) found that these end effects become more significant as Reynolds

number was decreased, resulting in difference in lift by up to a factor of two at Re ≈ 20, 000.

Figure 5.4 shows the time history and power spectrum of the baseline flow at α = 10◦ and α = 20◦.

The lift histories are analyzed with a Fourier transform to detect any dominant shedding frequencies.

Also, streaklines and vorticity of representative instances of the baseline flow in Figure 5.6 and
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Figure 5.5 show examples of the shedding cycles at α = 10◦ and 20◦, respectively. At α = 10◦, the

shedding occurs with a dominant shedding frequency (periodic) at F+ = 0.65. Since the Strouhal

number is defined with the projected chord length to the freestream and St and F+ are related by:

F+ = fc/U∞, St = fc sin(α)/U∞, St = F+sin(α), (5.4)

this corresponds to Strouhal number of St = F+ sin(α) ≈ 0.11.

However at α = 20◦, there are several recognizable frequencies, one at F+ = 0.2 and another at

F+ = 0.4, which corresponds to St ≈ 0.14. At Re = 300, we observed a very organized periodic

vortex shedding at high angles of attack. However at Re = 3000, the separated shear layer becomes

unstable and smaller vortices form as a result of this instability. The fluctuations in the lift due to

the shear layer instability are intermittent, leading to a broadly smeared power spectrum with no

dominant peak at α = 20◦. The flow exhibits shear-layer instability at both the leading and trailing

edges leading to chaotic lift cycles as shown in Figure 5.5. The flow field clearly shows separation

from the leading edge and subsequent rollup of the shear layer into distinct vortices.

In the simulation, the flow field displays strong roll up of trailing-edge vortex, leading to vicious

interaction with the vortices from the leading edge near the plate’s surface. However, the flow

field in Greenblatt’s experiments show more separated flow without a distinct trailing edge vortices,

although there seems to be Kelvin-Helmholtz vortices in the separating shear layer at the trailing

edge. This may be due to the three-dimensionality in the unforced flow from the corner flow of

endplates in the experiments. Also, since the smoke was introduced upstream of the leading edge

in the experiments, it may not clearly capture roll up of shear layers at the trailing edge. We show

later that there is a much better correspondence in the forced flow.

5.3 Actuation at α = 10
◦

We first consider the actuation at an angle of attack of α = 10◦. In Figure 5.7 we compare the

streaklines of the controlled flow (at F+ = 0.42) at an instant of time to the smoke visualization
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Figure 5.3: Average lift coefficient of the baseline flow, comparing results here with experimental
data by Greenblatt et al. (2008) at Re = 3, 000 and by Alam et al. (2010) at Re = 5, 000 and 10, 000.

of Greenblatt et al. (2008). This frequency corresponds to the maximum lift enhancement observed

in any of the experimental conditions. Figure 5.7(b) was selected from a series of snapshots within

a periodic shedding cycle from the simulations to match the experimental smoke visualization.

In Figure 5.8, we also present the streaklines and vorticity field at the moment of minimum and

maximum lift and time corresponding to the maximum of the input waveform to the actuator. The

time history of the lift and the input waveform is presented in Figure 5.9. By contrast with the

baseline (uncontrolled) flow, the forced flow is in very good visual agreement with the experiments.

It seems likely that the uniform actuation across the span of the wing forces more two-dimensional

flow structures.

Greenblatt et al. (2008) presented Figure 5.7(a) as a representative snapshot of best lift enhance-

ment at α = 10◦ and noted that the control produces a long, relatively high aspect-ratio bubble in

the streamwise direction on the upper surface. Although this is also the case in our simulation (Fig-

ure 5.7(b)), we find that the corresponding lift is not at the maximum at this instant. The control

is applied shortly after the shown phase (Figure 5.8(c)). The control pinches off the long bubble

and allows a LEV to form and the maximum lift is achieved (Figure 5.8(b)). Also, throughout the

shedding cycle, the trailing-edge vortex rolls up, not at the trailing edge, but more downstream in
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Figure 5.4: Lift and power spectrum of baseline flow at α = 10◦ (black) and α = 20◦ (red).
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(a) Greenblatt et al. (2008): baseline at α = 10◦
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(b) Present simulation: baseline at α = 10◦
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Figure 5.5: (a) Smoke-visualization by Greenblatt et al. (2008), and (b) streaklines and (c) vorticity
field from present simulation of baseline flow (α = 10◦).
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(a) Greenblatt et al. (2008): baseline at α = 20◦
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(b) Present simulation: baseline at α = 20◦
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Figure 5.6: (a) Smoke-visualization by Greenblatt et al. (2008), and (b) streaklines and (c) vorticity
field from present simulation of baseline flow (α = 20◦).
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(a) Greenblatt et al. (2008) (DC = 5%, F = 0.42)
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Figure 5.7: (a) Smoke-visualization by Greenblatt et al. (2008) and (b) streaklines of fluid particles
of actuated flow with DC = 5%, F = 0.42 (α = 10◦).

the wake. The main difference between the baseline and controlled flow seems to be maintaining

negative vorticity near the plate’s surface during most of the shedding cycle to minimize interference

from the trailing-edge vortex.

Figure 5.10 investigates the dependence of controlled limit cycles on forcing frequencies F+ at

two different duty cycles (DC = 5% and 100%). Rectangular pulse was used with DC = 5%

(see actuation profile in Figure 5.9) and a continuous sinusoidal waveform was used for DC = 100%

cases. Pulses with duty cycle of 5% phase locked the flow over the forcing frequencies 0.4 ≤ F+ ≤ 1.5

whereas continuous sinusoidal (DC = 100%) phase locked the flow over 0.6 ≤ F+ ≤ 2.2. Obviously,

as the duty cycle is varied, the harmonic content of the forcing waveform is changed. ForDC = 100%,

the input is sinusoidal, while, in the limit as DC goes to zero, the forcing is a train of impulses. For

low frequency near F+ < 0.5, the higher harmonics of the pulses seem to have stabilizing effect,

whereas they seem to have destabilizing effect for high frequency F+ > 1.5.

It is interesting to note that for continuous sinusoidal forcing (DC = 100%) at high frequency

F+ near 1.8, the flow is stabilized near its minimum lift. Figure 5.11 and Figure 5.12 shows an
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Figure 5.8: Streaklines (top) and vorticity field (bottom) at (a) minimum and (b) maximum lift and
(c) maximum pulse with DC = 5% and F+ = 0.42 (α = 10◦).
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Figure 5.9: Time history of lift and Uj of actuated flow at F+ = 0.42 with DC = 5% (α =
10◦). Dashed lines indicate the moment of minimum (min) and maximum (max) lift and time
corresponding to the maximum of the input waveform to the actuator (pulse).

example of the time history and flow field of the phase-locked flow at high frequency actuation at

F+ = 1.9. At this high frequency, the pulses generate a train of small vortices that advect down the

plate surface without mutual interactions.

5.4 Actuation at α = 20
◦

We now consider actuation at an angle of attack of 20◦. The average lift increase over a range of

forcing frequencies with a duty cycle of 5% is compared to the results by Greenblatt et al. (2008) in

Figure 5.13. We examine the long time averaged lift increment since this is what was presented in

Greenblatt et al. (2008). For 0.4 ≤ F+ ≤ 0.7, the simulations produce a flow that is phase locked to

the actuation. For these phase-locked shedding cycles, the resulting average-lift increase is consistent

with that of Greenblatt’s. For other forcing frequencies, the actuation is exciting a lower frequency

response that is modulating the vortex shedding, leading to aperiodic lift response and a larger lift

oscillation. Even though the data shown in Figure 5.13 represent a long time average (t ≈ 150), it is

still less than half as long as Greenblatt’s average over t > 400. This could explain the fluctuations

in the average lift for chaotic limit cycles that are present in Figure 5.13.

Streaklines of the controlled flow at an instant of time are compared to the smoke visualization

snapshot of optimal control at F+ = 0.42 by Greenblatt et al. (2008). The similarity between the two
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Figure 5.10: Sinusoidal pulse with (a) DC = 5% and (b) 100% (α = 10◦). Squares represent the
maximum and minimum lift, and circles represent overall average lift. The period-averaged lift once
per cycle of actuation is plotted in gray(∗), and the flow is observed to be periodic (phase-locked)
when these collapse to a single point (meaning they are the same each cycle).
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Figure 5.11: Time history of lift and Uj of actuated flow at F+ = 1.9 with DC = 100% (α = 10◦).
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Figure 5.12: Streaklines (top) and vorticity field (bottom) at (a) minimum and (b) maximum lift
with DC = 100% and F+ = 1.90 (α = 10◦).
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Figure 5.13: Average lift increase over a range of forcing frequency at α = 20◦ with 5% duty cycle
(DC) compared to the results by Greenblatt et al. (2008).

is quite remarkable. Again, the coherent actuation along the entire span appears to reduce the effect

of the three-dimensionality. Greenblatt et al. (2008) presented Figure 5.14(a) as a representative

snapshot of optimal control to explain the effect of control, namely that the shear layer at the leading

edge rolls up into a vortex that attaches to the airfoil surface. By examining visualizations at different

phases of actuation, we find that the comparable instantaneous flow field actually corresponds to near

the minimum lift in our simulation (Figure 5.15(a)). As the leading-edge vortex (LEV) grows bigger,

it is kept closer to the plate due to the strong downwash from the shed trailing-edge vortex (TEV).

The control (a short pulse) pinches off the LEV, immediately allowing the next LEV to form. The

resulting vortices, with their cores nearly equidistant, stay closer to the plate’s surface and produce a

low pressure region that increases the lift, resulting in the maximum lift (Figure 5.15(b)). Compared

to the baseline flow field, the control (short pulses in this case) seems to act as a pinch-off mechanism

of the LEV and enforces regular formation of each subsequent LEV. This maintains several vortices

on the plate for most of the shedding cycle, pushing newly forming TEV downstream to the wake.

Finally, this process prevents these newly forming TEV from pushing the LEV up, but rather uses

downwash from the TEV in the wake to keep the vortices from the leading edge closer to the plate’s

surface.

We find that, while low frequency actuation enhances lift by keeping two to three vortices on the
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x

y

0 1 2

−0.5

0

0.5

(b) Present (DC = 5%, F = 0.40)

Figure 5.14: (a)Smoke-visualization by Greenblatt et al. (2008) and (b) streaklines of fluid particles
of actuated flow with DC = 5%, F = 0.40 (α = 20◦).

plate’s surface, with minimum interference from the TEV, high frequency actuation does not provide

enough time for a sufficiently large LEV to form, but instead generates a train of smaller vortices.

This results in less of the aforementioned favorable influence on the formation of the TEV, but leads

to nonlinear interaction of these small vortices with the TEV near the plate. Thus, actuation at

high frequency tends to generate more chaotic lift response and large lift oscillations.

The effect of varying the duty cycle is examined in Figure 5.16, which shows the period-averaged

lift over each cycle of actuation as F+ is varied. First, we observe that the range of forcing frequencies

that produce phase-locked limit cycles decreases as duty cycle is increased. At 50% duty cycle, only

forcing at F+ = 0.6 led to a phase-locked limit cycle. Also, for high duty cycles (DC ≥ 50%) we

observe a period doubling in the lift’s response to high forcing frequency, 1.0 . F+ . 1.4. For these

cases, the response was periodic at half the frequency of the forcing frequency, thus each shedding

cycle occurs over two forcing cycles.

Of the various frequencies and duty cycles considered, we find that a phase-locked response
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Figure 5.15: Streaklines (top) and vorticity field (bottom) at (a) minimum and (b) maximum lift
with DC = 5% and F+ = 0.40 (α = 20◦).

occurred when forced at F+ = 0.6, or its first harmonic at F+ = 1.2 for DC ≥ 50%. In the latter

case, the vortex shedding cycle still occurred at F+ = 0.6. It is interesting to note that this F+ = 0.6

corresponds to St = 0.2 which agrees with the wake Strouhal number for vortex shedding behind

two-dimensional bluff bodies.

In the region of forcing frequencies with a phase-locked response, similar lift enhancment is

observed with duty cycle of 5% and 50%, which is consistent with the results by Greenblatt et al.

(2008). It was also observed from the results at Re = 300 that a pulsatile waveform resulted in

higher lift than a continuous sinusoidal forcing (holding Ujet constant). This is consistent with the

observations by Amitay & Glezer (2006) at Re = 3.1 × 105 that the separated flow over a stalled

airfoil is receptive to pulses of very short duration compared to the the shedding period.

We now examine the phase-locked response at F+ = 0.5 and F+ = 0.6 in more detail. Figure 5.17

compares time histories of lift response that are phase-locked at F+ = 0.5 and the corresponding
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streaklines and vorticity are shown in Figure 5.18 and Figure 5.19, respectively. Flow fields at the

minimum lift are similar for the cases shown. However, the flow fields at the maximum lift display

different LEV structures on the plate’s surface. Actuation at F+ = 0.50 with DC = 5% pinches off

the LEV about halfway between the minimum and maximum lift, resulting in approximately equal

distance between the pinched-off vortex and the newly forming LEV. For actuation at F+ = 1.0

with DC = 50% and 100%, each shedding cycle consists of two forcing cycles, with the first actuation

peak at the minimum lift, and the second actuation peak shortly before the maximum lift. At the

minimum lift, as the new vortex is forming at the leading edge, the first pulse separates it into two

distinct structures, and the following pulse forces them to pinch off as a vortex pair. A short time

later, maximum lift is achieved as a vortex pair and the newly forming vortex together produce a

low pressure region on the plate’s surface to enhance the lift.

Figure 5.20 compares time histories of limit cycles that are phase-locked at F+ = 0.6 and the

corresponding streaklines and vorticity fields are shown in Figure 5.21 and Figure 5.22, respectively.

By comparing the lift history for the different duty cycles, several observations can be made. First,

the actuation profile in Figure 5.20(d) (F+ = 1.20 with DC = 100%) contains an extra pulse

over each shedding period than the actuation profile in Figure 5.20(b) (F+ = 0.60 with DC =

50%). However, this extra pulse did not affect periodicity of the shedding cycle nor change its lift

characteristics, i.e. minimum, maximum, and average lift. Although the extra pulse generates a

vortex pair near the leading edge, the streaklines over the vortex pair (Figure 5.20(d)) are similar

to the streaklines over the single vortex in Figure 5.20(b).

Also, forcing at F+ = 0.6 with DC = 5% resulted in phase-locked response (Figure 5.20(a)),

whereas, the extra pulse that exists in F+1.20 (with the same DC = 5%) destabilizes the lift limit

cycle and leads to an aperiodic response. Forcing at F+ = 1.2 stabilized the lift limit cycle only

with DC > 50%, indicating that the pulse cannot be too narrow in order to result in stable limit

cycle. Since dynamics of the vortex pairing resulting from period doubling can be more sensitive to

disturbances than a single vortex, pulses might need to be gradual (smooth) for the vortices to have

the same dynamics over every shedding period. Also, the pulses cannot seem be too broad in order
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Figure 5.16: Sinusoidal pulse with DC =5%, 10%, 50%, and 100% (α = 20◦). Squares represent the
maximum and minimum lift, and circles represent overall average lift. The period-averaged lift once
per cycle of actuation is plotted in gray(∗), and the flow is observed to be periodic (phase-locked)
when these collapse to a single point (meaning they are the same each cycle).

to effectively pinch off the vortices, since actuating at F+ = 0.6 resulted in phase-locked limit cycles

only for DC < 100%.
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Figure 5.17: Time history of lift of actuated flow phase-locked at F+ = 0.5 (α = 20◦).
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Figure 5.18: Streaklines of actuated flow phase-locked at F+ = 0.5 (α = 20◦).
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Figure 5.19: Vorticity field of actuated flow phase-locked at F+ = 0.5 (α = 20◦).
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Figure 5.20: Time history of lift of actuated flow phase-locked at F+ = 0.6 (α = 20◦).
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Figure 5.21: Streaklines of actuated flow phase-locked at F+ = 0.6 (α = 20◦).
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Figure 5.22: Vorticity field of actuated flow phase-locked at F+ = 0.6 (α = 20◦).
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Chapter 6

Conclusions

In this thesis, we examined flow control and the potentially favorable effects of feedback, associated

with unsteady actuation in separated flows over airfoils. We presented results from a numerical

study of unsteady actuation on a two-dimensional flat plate at post-stall angles of attack at Reynolds

number of 300 and 3000. At Re = 300, with a sinusoidal forcing, we showed that the highest-lift

vortex shedding cannot be maintained with conventional open-loop forcing because the flow does not

phase lock with the actuation signal. We designed our physically motivated phase controller to show

that the feedback may provide continuous modification of the control input according to the response

of the flow system to achieve higher lift. Also, rather than optimizing the phase of the control

relative to the lift using only sinusoidal waveform, we investigated the possibility of optimizing the

lift using more general (non-sinusoidal) actuation waveforms using a gradient-based approach. This

optimization over a finite horizon resulted in a periodic waveform, however, implementing in open

loop was fragile to disturbances and sensitive to different initial conditions. In order to overcome

this obstacle, we designed a controller that uses the previously developed phase-locking strategy, but

was applied to the more complicated waveforms educed by the optimization. This provided a robust

and practical approach to giving near-optimal performance. Moreover, the optimal waveform was

not sinusoidal, but more pulse-like. Using the feedback strategy, we showed that a sinusoidal pulse

whose width is as small as 25% of the actuation period (duty cycle of 25%) resulted in a similar

lift enhancement as a continuous sinusoidal (duty cycle of 100%), when the control was nearly in

phase with the lift in both cases. Finally, we considered a higher Re of 3000 and investigate the lift
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response to different waveforms motivated by the nature of the optimal forcing found at Re = 300.

We considered different frequencies and actuation waveforms with different duty cycles. We showed

that for certain frequencies and actuator waveforms, there occur stable limit cycles in which the flow

is phase locked to the actuation. Forcing with duty cycle of 5% was as effective as higher duty cycles

or a continuous sinusoidal. Also, as the duty cycle was increased, the range of forcing frequencies

for the phase-locked limit cycles decreased.

6.1 Control at Re = 300

6.1.1 Sinusoidal Forcing

Open-loop control at the leading and trailing edges directed upstream or downstream parallel to

the freestream was investigated. In general, forcing at its natural shedding frequency, ωf = ωn,

resulted in larger oscillations in the magnitude of force on the plate. The increase of the force on

the plate also results in the increase of both lift and drag coefficients since they are only the vertical

and horizontal component of the force vector, respectively. However, we only considered the lift

component for the purpose of demonstrating the control algorithm to achieve high vortex-induced

force on the plate. Upstream actuation at both leading and trailing edges led to the enhancement of

average lift. However, lower average lift was observed when the actuation was directed downstream,

parallel to the flow. The most effective lift enhancement was observed with upstream actuation at

the trailing edge. This upstream actuation increases the local velocity gradient which increases the

magnitude of circulation feeding into the vortical structure generated from the edge. In the case

of trailing-edge actuation, this induces a stronger downwash near the trailing edge and the LEV is

pulled down closer to the plate as a result.

The hydrodynamics were phase locked to the actuation at lower angle of attack, α. However,

at sufficiently high α (α ≥ 30◦ for trailing-edge actuation and α ≥ 20◦ for leading-edge actuation),

actuation led to the excitation of a subharmonic resonance. The subharmonic limit cycle consisted

of several periods with a different period-averaged lift over each actuation period. When the forcing
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signal was at a particular phase shift relative to the lift signal (in-phase at α = 50◦), it was observed

that the actuation achieved the highest period-averaged lift. However, the succeeding period became

slightly out of phase and the lift decreased.

The highest period-average lift within the subharmonic limit cycle was higher than the average

lift of any phase-locked flow with open-loop forcing. Particularly with upstream actuation at the

trailing edge, this period-averaged lift was higher than the maximum lift obtained during natural

shedding. We also observed that if the forcing frequency was adjusted slightly from the value

associated with the natural vortex shedding, it was possible to obtain a phase-locked response that

matched individual cycles of the subharmonic response. This suggested that feedback might be

useful to slightly adjust the frequency and or phase of actuation to lock it to a particular phase of

the lift, thus achieving a phase-locked flow with the maximal period-averaged lift over every cycle

of acutation.

Thus, we feedback lift in order to output a sinusoidal forcing with a specified phase shift relative

to the lift signal. This feedback compensator was able to phase lock the flow at the desired vortex

shedding limit cycle that was not sustainable with any of the open-loop periodic forcing. The

feedback achieved the highest-lift limit cycle near zero phase shift, with as high as 83% increase in

the average lift coefficient (twice the lift increase of open-loop forcing at ωn). This feedback should

provide a greater robustness with respect to disturbances, such as changes in flight conditions, since

it provides a continuous modification of the forcing relative to the measured lift.

6.1.2 Optimization of the Control Waveform

With the sinusoidal forcing and feedback, it proved possible to optimize the phase of the control

relative to the lift in order to achieve the highest possible period-averaged lift in a consistent fashion.

However, it was unclear whether the sinusoidal waveform itself was optimal. Some investigators

have suggested that more pulsatile forcing can achieve the same benefit with lower energy input. In

order to investigate the effect of the waveform, we developed a gradient-based (adjoint) approach

to optimize the control waveform. The cost function was chosen to maximize the lift force on the
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plate, while penalizing the control effort. The optimization was performed with a receding horizon

approach. The resulting optimized waveform was not sinusoidal, but more pulse-like, with each

period composed of two distinct pulses (a primary, as well as a smaller earlier pulse). The most

distinct feature of the optimal control is a gradual increase in the forcing φ during most of the cycle,

followed by a more rapid decrease after its peak. This minimal control effort after the maximum

lift, combined with the short pause between the two pulses provides more energy-efficient control

than sinusoidal forcing. As a result, the optimal control achieved comparable lift with about half

the value of Cµ as the sinusoidal waveform.

6.1.3 Feedback Control with the Optimized Waveform

Optimal control provides a periodic control waveform. However, if applied in open loop, the flow fails

to phase lock onto the optimal waveform, degrading the lift performance. We designed a feedback

algorithm to obtain phase-locked limit cycles. Using a Fourier representation of the optimized

waveform, φoptimal, the control parameterizes the waveform in terms of its phase θ(t), allowing the

feedback to march along φoptimal(θ) with consistent phase difference between each of its harmonics.

The control consists of the following steps : 1. A narrowband filter is used on the lift cycle to obtain

a more nearly sinusoidal signal. 2. The filtered lift signal is used as input to a frequency tracking

Extended Kalman Filter (EKF) to estimate the phase, θ̂(t) of the lift signal. 3. The EKF frequency

estimate is used to tune the filter to avoid introducing phase lag. 4. Finally, the phase estimate θ̂(t)

from EKF is used to march along φoptimal.

Feedback control of the optimized waveform was able to reproduce the high-lift limit cycle from

the optimization, but starting from an arbitrary phase of the baseline limit cycle. Also, it allowed us

to phase lock an essentially arbitrary waveform, thus enabling us to investigate the sensitivity of the

flow to the phase shift and other features of the optimized waveform. By using fewer harmonics in the

Fourier expansion of the optimized waveform, we demonstrated that smoothing the dip between the

two pulses has little impact on the lift performance; this characteristic is more of an energy-saving

feature. We also showed that the phase-locked limit cycle with optimized waveform was sensitive
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to changes in the phase shift, θdesired from 0◦. The sharp decrease in lift performance with negative

phase shift is due to the steep drop in the optimized waveform after its peak. The lift penalty with

positive phase shift indicates that the forcing is less effective after the maximum lift has occurred.

Motivated by the pulsatile waveform the optimization provided, we investigated the lift response

to sinusoidal pulses of different duty cycles (percentage of the width of a sinusoidal waveform to

the actuation period). The feedback was used to enforce the optimal phase shift (approximately

in phase) for each control waveform. A sinusoidal pulse with a duty cycle of 25% achieved similar

average lift enhancement as a continuous sinusoid when the forcing was in phase with the lift.

6.2 Control at Re = 3000

We next considered a higher Re of 3000 and investigated the nature of the optimal waveform we

found at Re = 300, particularly sinusoidal pulses with different widths compared to the actuation

period (duty cycle). The geometry of a flat plate with thickness of 0.04c and Re = 3000 were chosen

in order to match the experimental studies of Greenblatt et al. (2008). A body force was placed at

the leading edge directed parallel to the plate towards the trailing edge. The spatial and temporal

characteristics of the body force were calibrated in order to mimic the plasma actuator used in the

experiments. We considered two representative angles of attack, α = 10◦ and 20◦, and investigated

the response of the flow to different forcing frequencies and different control waveforms.

For both angles of attack, the optimal forcing frequency was observed to be F+ ≈ 0.4 which is

consistent with Greenblatt et al. (2008). Even though the lift and the streaklines of the baseline

flow displayed differences due to the three-dimensional effect of the endplates in the experiments

by Greenblatt et al. (2008) , uniform actuation over the span seemed to generate a more two-

dimensional flow in the experiments, leading to better visual agreement of the controlled flow than

for the baseline case.

Greenblatt et al. (2008) focused on the long-time average lift and explained the effect of control

using representative snapshots of smoke visualization. Here, we have used the simulation data to
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examine the time-dependent structures in the flow field, particularly the flow structures occuring at

the moments of minimum and maximum lift, and the phase of pulses relative to the lift. The main

difference observed between the baseline and the controlled flow was that the control maintained

several vortices on the plate’s surface during most of the shedding cycle, pushing newly forming TEV

downstream to the wake. We found that the lift-enhancing mechanism of the control at Re = 3000

is similar as in Re = 300. First, interference from the TEV near the plate’s surface is minimized

by forcing the TEV to form, not at the trailing edge, but more downstream in the wake; second,

downwash from the TEV in the wake is utilized to keep the vortices from the leading edge close to

the plate’s surface.

For α = 10◦, we varied the forcing frequencies F+ and considered two different control waveforms

corresponding to different duty cycles (DC = 5% and DC = 100%) of actuation. Duty cycle was

defined as percentage of the width of a sinusoidal waveform to the period of actuation. Therefore,

at DC = 5%, the waveform is essentially a train of pulses, while at DC = 100%, it is a continuous

sinusoid.

For low frequency actuation F+ < 0.5, the more pulsatile waveforms had a stabilizing influence,

and reducing the duty cycle (making the waveform more pulsatile) resulted in phase-locked flow,

while more sinusoidal waveforms resulted in a chaotic response. The opposite was true at high

frequencies, where the pulsatile waveforms led to an aperiodic response, while sinusoidal forcing led

to a phase-locked flow, albeit one with no lift enhancement (in a time-averged sense). In fact, at

F+ = 1.8, the DC = 100% waveform resulted in a flow that was nearly steady, with only very

small lift fluctuations around a value similar to the minimum lift occuring in the baseline vortex

shedding cycle. The flow field in this case consisted of a regular array of 3-4 small vortices uniformly

convecting downstream along the plate.

For α = 20◦, we also varied the forcing frequencies F+ and considered a range of control wave-

forms corresponding to different duty cycles (DC) of actuation.

With DC = 5%, the flow was phase locked to the actuation for 0.4 ≤ F+ ≤ 0.7. We observed

that the increasing duty cycles (from 5% to 100%) decrease the range of forcing frequencies with
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phase-locked limit cycles. Also, for high duty cycles (DC ≥ 50%) we observed a period doubling

in the lift’s response to high forcing frequency, 1.0 . F+ . 1.4. For these cases, the response was

periodic at half the frequency of the forcing frequency (0.5 ≤ F+ ≤ 0.7), thus each shedding cycle

occurs over two forcing cycles. The resulting flow field displayed formation of vortex pair acting as

a lifting body on the plate’s surface (however, resulted in similar lift as phase-locked flow forced at

its shedding frequency, 0.5 ≤ F+ ≤ 0.7).

Of the various frequencies and duty cycles considered, we found that a phase-locked response

occurred when forced at F+ = 0.6, or its first harmonic at F+ = 1.2 for DC ≥ 50%. In the latter

case, the vortex shedding cycle still occurred at F+ = 0.6.

Also, we found that the flow is susceptible to pulses with a very short duration (duty cycle of

5% of shedding period), as effective as continuous sinusoidal, which is consistent with the results by

Greenblatt et al. (2008) This is also consistent with the results at Re = 300 where the optimized

waveform of pulsatile control resulted in even higher lift than a continuous sinusoidal forcing.

6.3 Recommendations for Future Work

Here, we comment on the possible continuation of the research presented in this thesis.

First, the feedback compensator developed in Chapter 4 can be applied to Re = 3000. Prelimi-

nary study of feedback with a rectangular waveform with a duty cycle of 5% as actuation waveform

shows that the feedback was not able to maintain any desired phase shift. However, we found in

Chapter 5 that the pulse cannot be too narrow in order to result in a stable limit cycle. Feedback

with a higher duty cycle or smoothed waveform such as a sinusoidal pulse can result in more sta-

ble performance. Different control waveforms (varying duty cycles) can be investigated with the

feedback in an attempt to phase lock the flow at the desired phase shift that is not attainable with

open loop forcing. Also, the gradient-based approach developed in Chapter 4 can be extended to

this Re of 3000 to optimize the control waveform and the frequency more directly. Different control

objective such as minimizing lift fluctuation or maximizing lift-to-drag ratio can be investigated.
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The presented analysis can also be extended to study the control of three-dimensional separated

flows around low-aspect-ratio wings. Taira & Colonius (2009b) have shown that the aspect ratio

and angle of attack are found to have a large influence on the stability of the wake profile and the

force experienced by the low aspect-ratio wing. Also, they observed that the tip effects in three-

dimensional flows can stabilize the flow and also exhibit nonlinear interaction with the shedding

vortices. In this study of two-dimensional flow, we found that the sensitivity of the lift to the

actuation was minimal after the maximum lift is achieved (lift decreasing phase) at each shedding

cycle, and letting the LEV shed naturally was the most energy efficient. In the presence of the tip

effect in three-dimensional flows, the spatial gradient of actuation in z-direction could be beneficial

to initiate spanwise transport of vorticity through the tip. The use of the adjoint analysis alone

will be useful in identifying effective actuator placement. Full adjoint-based optimization can be

used to optimize both the spatial and temporal actuation profile. It would be interesting to see if

the spanwise transport of vorticity through the tip vortex can be utilized to stabilize the leading-

edge vortex close to the wing’s surface, as in the flapping flight of bio-flyers. Of course, similar

control studies can be performed on flows around non-rectangular wings, such as semicircular or

delta-shaped planforms. Furthermore, demonstrating the robustness of the feedback controller will

prove useful for the implementation of the controller on an actual micro air vehicle that operates

under constant perturbations.
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Appendix A

Appendix A

A.1 Derivation of Linearized and Adjoint Equations

With the pre-computed steady state (γ0, q0), the linearized equations are the same as equations

(2.9, 2.10) with the nonlinear term n(q) replaced by its linearization about the steady state, and is

denoted by nL(γ0)γ = q0 × γ + q × γ0 where the flux q is related to γ by (2.8). Thus, the linearized

equations are:

dγ

dt
+ CTETf̃ = −βCTCγ + CTnL(γ0)γ (A.1)

ECs = ujet. (A.2)

(A.3)

The boundary conditions for the linearized equations are bcγ = 0 on the outer boundary of the

largest computational domain.

Inner product is defined as:

〈c, d〉 =

∫ ∫

γc · (C
TC)−1 · γd dx dt +

∫ ∫

f̃c · f̃d dx dt (A.4)

c =

(

γc

f̃c

)

d =

(

γd

f̃d

)

(A.5)
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in order to result in the adjoint equations which differ from the linearized equations only in the

nonlinear term and is thus convenient for numerical implementation. The inner product defined is

the standard L2-inner product weighted with the inverse-Laplacian operator.

Let (ζ, ψ) be the weighting functions corresponding to (γ, f̃). Then, using the inner product

defined in equation (A.4), the weak form of (A.1, A.2) is:

∫ T

0

∫

Ω

ζ · (CTC)−1(
dγ

dt
+ CTETf̃ + βCTCγ − CTnL(γ0)γ) dx dt

+

∫ T

0

∫

Ω

ψ · ECs dx dt = 0. (A.6)

Integrating by parts with respect to t and rearranging terms,

∫ T

0

∫

Ω

γ ·

(

− (CTC)−1 dζ

dt
+ (CTC)−1CTETψ + βζ − ((CTC)−1CTnL(γ0))

Tζ

)

dx dt

+

∫ T

0

∫

Ω

f̃

(

EC(CTC)−1ζ

)

dx dt+ 〈γ, ξ〉

∣

∣

∣

∣

T

0

= 0. (A.7)

For linearization about stable steady states, γ → 0, as T → ∞, and if the adjoint equations are

integrated backwards in time, ζ(t = 0) → 0. So, the last term on the left hand side of equation

(A.7) vanishes identically. If equation (A.7) is to hold for all values of γ and f̃ , we get the following

adjoint equations hold:

−
dζ

dt
+ CTETψ = −βCTCζ + (CTC)nL(γ0)

Tqa (A.8)

ECξ = 0 (A.9)

where ξ = (CTC)−1ζ and qa = Cξ can be thought of as the weighting functions corresponding to

the streamfunction s and the flux q respectively. Now, equations (A.10, A.11) have the same form

as (2.1, 2.2) except for the nonlinear term. Thus, the same time-integration scheme can be used for

both, with the appropriate (linearized) nonlinear terms.
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dζ

dt
+ CTETψ = −βCTCζ + (CTC)nL(γ0)

Tqa (A.10)

ECξ = 0 (A.11)

where the variables ζ, ξ, and ψ are the duals of the discrete circulation γ, stream function s, and

body force f̃ , respectively, and qa = Cξ is the dual of flux q. The adjoint of the linearized nonlinear

term is (CTC)nL(γ0)
Tqa, which can be shown to be a spatial discretization of ▽ × (γ0 × qa) −

▽2(q0 × qa). Since equation (A.10) differs from (A.1) only in the last term on the right hand side,

the numerical integrator for the adjoint equations can be obtained by a small modification to the

linearized equations solver.
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Appendix B

Appendix B

B.1 Extended Kalman Filter

The extended Kalman filter (EKF) is a tool for estimating the state of a system which is described

by a nonlinear state space model. The EKF state estimates are an approximation to the mean of the

conditional density of the state {xk} given the measurements {y0, ..., yk}. The EKF is derived by

linearizing the signal model about the current predicted state estimate and then using the Kalman

filter on this linearized system to calculate a gain matrix. The gain matrix, along with the nonlinear

signal model and new siganl measurements, is used to produce the filtered state estimate and then

an estimate of the state at the next time instant.

Given a nonlinear system

xk+1 = f(xk) + wk (B.1)

yk = h(xk) + vk, (B.2)

with smooth vector fields f and h. The disturbance w and noise v are assumed to be mutually

independent, zero mean Gaussian processes, with covariance matrices Qk = E(wkw
T
k ) and Rk =

E(vkv
T
k ). The objective is to reconstruct the state x from the sensor reading y. Dynamics state and

observation estimates are distinguished by a hat: x̂k and ŷk

The state of the EKF is represented by two variables, namely the estimated state x̂ and the error
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covariance matrix P , which is a measure of the estimated accuracy of the state estimate. The EKF

has the following two distinct phases.

Measurement update

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)) (B.3)

Pk|k = (I −KkHk)Pk|k−1 (B.4)

Time update

x̂k+1|k = f(x̂k|k) (B.5)

Pk+1|k = FkPk|kF
T
k +Qk (B.6)

where Kk is the optimal Kalman gain

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1, (B.7)

Hk is the Jacobian of the output equation evaluated with the predicted state

Hk =
∂h

∂x

∣

∣

∣

∣

x=x̂k|k−1

, (B.8)

and Fk is the Jacobian of the dynamical system evaluated with the current state estimate

Fk =
∂f

∂x

∣

∣

∣

∣

x=x̂k|k

. (B.9)

and x̂k|k is the estimate of the state at time k and x̂k+1|k is the prediction of the state at time k+1

using all the observations up to and including yk. The matrices Pk|k and Pk+1|k are approximations

of the respective state estimate error covariances.
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In our application, filtered lift on the plate (input signal to the EKF) is approximated by a sine

function y(t) = a0 +a1 sin(θ(t)). We assume a dynamical model with four states; frequency ω, phase

θ, offset a0, and amplitude a1, Thus, the state of the system becomes

x =

























ω

θ

a0

a1

























. (B.10)

Filtered lift signal is then described by the output equation

yk = h(xk) = x3,k + x4,k sin(x2,k), (B.11)

and a state-space model for the temporal evolution is provided by

xk+1 =

























1 0 0 0

∆t 1 0 0

0 0 0.001 0

0 0 0 1

























xk + wk. (B.12)

In this application, the covarience matrices for the disturbance and the noise are set to be

R = 1 and Q =

























0.25 0 0 0

0 0.00001 0 0

0 0 0.001 0

0 0 0 1

























(B.13)

and initial filter states are set to x̂0 = [1.5, 0, 0, 0]T and P0 = 0.
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