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Abstract

The thesis consists of a series of results on the theory of orthogonal polynomials on the real

line.

1. We establish Szegő asymptotics for matrix-valued measures under the assumption

that the absolutely continuous part satisfies Szegő’s condition and the mass points satisfy

a Blaschke-type condition. This generalizes the scalar analogue of Peherstorfer–Yuditskii

[PY01] and the matrix-valued result of Aptekarev–Nikishin [AN83], which handles only a

finite number of mass points.

2. We obtain matrix-valued Jost asymptotics for a block Jacobi matrix under an L1-

type condition on parameters, and give a necessary and sufficient condition for an analytic

matrix-valued function to be the Jost function of a block Jacobi matrix with exponentially

converging parameters. This establishes the matrix-valued analogue of Damanik–Simon

[DS06b].

3. The latter results allow us to fully characterize the matrix-valued Weyl–Titchmarsh

m-functions of block Jacobi matrices with exponentially converging parameters.

4. We find a necessary and sufficient condition for a finite gap Herglotz function m to

be the m-function of a Jacobi matrix with the prescribed “distance” from the isospectral

torus Te of periodic Jacobi matrices associated with a given finite gap set e (with all gaps

open). The condition is in terms of meromorphic continuations of the function m to a

natural Riemann surface Se, and the structure of poles and zeros of m.

5. The results from parts 3 and 4 give certain corollaries on the point perturbations of

measures. Namely, we find conditions on when adding or removing a pure point preserves

the exponential rate of convergence of Jacobi parameters. The method applies in the matrix-

valued case of exponential convergence to the free block Jacobi matrix, and in the scalar case

of exponential convergence to a periodic Jacobi matrix. This extends Geronimo’s results
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from [Ger94].

6. We obtain two results on the equivalence classes of block Jacobi matrices: first,

that the Jacobi matrix of type 2 in the Nevai class has An coefficients converging to 1,

and second, that under an L1-type condition on the Jacobi coefficients, equivalent Jacobi

matrices of type 1, 2, and 3 are pairwise asymptotic.
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Chapter 1

Introduction

1.1 Overview

This thesis consists of a number of pairwise closely related results in the theory of orthogonal

polynomials. The joint relation is not so easy to characterize though, and the cumbersome

title is the consequence of this. Let us give a brief overview of the obtained results and the

connections between them.

One of the main topics we will be discussing here is the asymptotic behavior of solutions

of a difference equation of the type

anfn+1(x) + bnfn(x) + an−1fn−1(x) = xfn(x). (1.1.1)

The two settings we will focus on in this paper are the matrix-valued analogue of this and

the scalar case when the sequences {an} and {bn} are periodic. There is a close connection

between the two settings, so as we proceed the transition will be smooth.

The difference equation above of course gives rise to a Jacobi operator, which is an

operator of the type

J =



b1 a1 0

a1 b2 a2
. . .

0 a2 b3
. . .

. . . . . . . . .


(1.1.2)

acting on an `2 space. It is a classical fact that the orthonormal polynomials of the spectral

measure for this operator satisfies the recursion equation (1.1.1). The asymptotic behavior

of these orthonormal polynomials is known as Szegő asymptotics. By now this has been a
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very well-studied topic for the scalar case. For measures having a single interval as their

essential support this was opened with the originating Szegő’s paper [Sze20], and closed

recently by Damanik and Simon, who found necessary and sufficient conditions for the

Szegő asymptotics to hold (see [DS06a] and references therein; see also a discussion in

Section 1.3.2 below). For the extensions of the results in terms of more general supports of

the measures, see papers by Peherstorfer–Yuditski [PY03], Christiansen–Simon–Zinchenko

[CSZa, CSZb], and references therein.

Szegő asymptotics for the matrix-valued case, however, is far less well studied at this

point. This will be our first topic of interest here; for the details and further discussion, we

refer the reader to Section 1.3.2.

Apart from the orthonormal polynomials, there are of course many other solutions to the

recursion (1.1.1). Another natural candidate is the so-called Weyl solution, which is simply

the unique (up to a multiplicative constant) decaying one. We say that Jost asymptotics

holds if this Weyl solution behaves as the Weyl solution for the free Jacobi matrix (which

is, the matrix (1.1.2) with an ≡ 1, bn ≡ 0; for the relevant definitions see Section 1.3.3). If

this is the case, then after a certain normalization, the Weyl solution becomes renamed to

Jost.

It turns out that Szegő asymptotics holds at a given point if and only if so does the

Jost asymptotics, which provides the link to the subject we discussed earlier. Instead of

trying to establish the asymptotics for the most general setting though, we now study the

behavior of the Jost solution when the Jacobi matrix J is exponentially close to being free.

By this we mean that the parameters of J satisfy

|1− a2
n|+ |bn| ≤ CR−2n (1.1.3)

for some R > 1. It turns out that one can relate, in an if-and-only-if fashion, the rate of

exponential convergence R of the parameters and certain analytic properties of the Jost

solution. For the scalar case this was done by Damanik and Simon in [DS06b] (see also

[GC80]). The matrix-valued analogue of these results is the second topic of our interest here,

which is discussed in Section 1.3.3. Jost asymptotics for the matrix-valued case was studied

earlier by Geronimo [Ger82], where he established one of the directions of our if-and-only-if

result (more details are in Section 1.3.3). For the interested reader, there are closely related
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results in the theory of orthogonal polynomials on the unit circle (as opposed to the real

line here) and Schrödinger operators: see [NT89, Sim05] and [CS89, New82], respectively.

Hopefully the use of “asymptotics for orthogonal polynomials” and “exponentially small

perturbations” in the title has become clear by now. We only need to cover the last part

“meromorphic continuations of Herglotz functions”.

Given a Jacobi matrix J as above, let us define the Weyl–Titchmarshm-functionm(z) =∫
R
dµ(x)
x−z , where µ is the spectral measure of J . This is a meromorphic Herglotz function

on C \ ess suppµ (recall that a Herglotz function is a function satisfying Imm(z) ≥ 0 if

Im z ≥ 0).

Using the above result and the connection between the m-function and the Jost solution,

we are able to derive an (if-and-only-if) criterion for a Herglotz function to be the m-

function of a Jacobi matrix satisfying (1.1.3). The central condition here is the existence

of a meromorphic continuation of m through ess suppµ = [−2, 2] to some domain of the

second sheet of a natural hyperelliptic Riemann surface. This is done in Section 1.3.4. This

problem seems not to have been studied before, even in the scalar case, though the methods

of Damanik–Simon paper [DS06b] are all that is needed.

The above correspondence of meromorphic continuations of m-functions and exponential

perturbations of the free Jacobi matrix can be further extended. Note that the free Jacobi

matrix can be viewed as a periodic Jacobi matrix (an+p = an, bn+p = bn for all n) with

period p = 1. Therefore it is natural to consider exponentially small perturbations of a

general p-periodic (scalar) Jacobi matrix and wonder if the m-function behaves in a similar

manner. It turns out it does. Note that the essential spectrum of the spectral measure of

any such matrix is a finite union of closed intervals

ess suppµ = e =
p⋃
j=1

[αj , βj ], αj < βj < αj+1.

In Section 1.3.5 we find a necessary and sufficient criterion for a Herglotz function m to be

the m-function of a Jacobi matrix J that satisfies

dn(J , Te) ≤ CR−2n,

where Te is the isospectral torus of Jacobi matrices with essential spectrum e, and dn is
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an appropriately defined distance analogous to the one in (1.1.3). The central condition

is again the existence of a meromorphic continuation of m through the intervals e to some

domain of a certain hyperelliptic Riemann surface Se. Morally, the closer J is to being

periodic, the larger is the domain of meromorphicity of the m-function. As a special case,

we are able to characterize the m-functions of eventually periodic Jacobi matrices.

The two main tools we use to prove the results of Section 1.3.5 are the formula of

Damanik–Killip–Simon [DKS] that gives the connection to matrix-valued orthogonal poly-

nomials, and the results we obtained in Section 1.3.4. The methods require the condition

that the harmonic measures of intervals of e are equal. Even though in a sense this is a

generic case, this requirement cannot be overcome without completely changing the ma-

chinery. This is left as an open question for now.

The characterizations obtained in Sections 1.3.4 and 1.3.5 give us some consequences

regarding point perturbations of measures. Namely, assume we are given a Jacobi matrix

with the spectral measure µ, and we want to add/remove a pure point to/from the spectrum.

The question is — how badly does the Jacobi matrix get changed? We answer these types

of questions for the cases of exponentially small perturbations of (matrix-valued) free and

(scalar) periodic Jacobi matrices. The perturbed free case, but for the scalar Jacobi matrices

only, was considered by Geronimo in [Ger94] (see also Geronimo–Nevai [GN83]). We list the

obtained results in Section 1.3.6. Note also that the so-called double commutation method

of Gesztesy and Teschl [GT96] gives more or less an explicit formula for the parameters of

the new Jacobi matrix. Using this, one might expect to get similar, if not identical, results,

but again: only for the perturbations of the scalar free case.

Finally, when studying the (Szegő or Jost) asymptotics for matrix-valued orthogonal

polynomials, one has to consider the notion of equivalent and asymptotic Jacobi matrices

(see Definitions 1.3.1 and 1.3.5). In Section 1.3.1 we prove two results in this area. The first

settles a question of Damanik–Pushnitski–Simon [DPS08] by showing that a so-called type

2 block Jacobi matrix in the Nevai class has converging Jacobi parameters. The second

result finds a condition on the Jacobi parameters that ensures that type 1, 2, and 3 Jacobi

matrices are pairwise asymptotic.

The results of Section 1.3.1 appear in [Koz10a], and those of Section 1.3.2 in [Koz10b].

The results of Sections 1.3.3–1.3.6 are still in preparation [Koza, Kozb, Kozc].

The organization of the thesis is as follows. We will start with some basics in Section
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1.2, just enough to make it possible to state the main results, which will be done in Section

1.3. Chapter 2 contains all of the preliminaries that will be used throughout the proofs.

Chapter 3 consists of the actual proofs, as well as the rest of the theorems that did not

make it to the main results. Both Section 1.3 and Chapter 3 are divided into six parts,

corresponding to the topic breakdown we mentioned in this section.

1.2 Basics

1.2.1 Orthogonal Polynomials on the Real Line

We will introduce some basics of orthogonal polynomials on the real line here. We immedi-

ately start with the matrix-valued theory to avoid repetition. The scalar theory is of course

a special case l = 1. We will mention the differences between the scalar and matrix-valued

cases as we proceed.

The proofs of most of the results listed here, along with more details, can be found in

the paper by Damanik–Pushnitski–Simon [DPS08].

Let µ be an l × l matrix-valued Hermitian positive semi-definite finite measure on R of

compact support, normalized by µ(R) = 1, where 1 is the l × l identity matrix. For any

l × l dimensional matrix functions f, g, define

〈〈f, g〉〉L2(µ) =
∫
f(x)∗dµ(x)g(x); (1.2.1)

〈〈f〉〉2L2(µ) = 〈〈f, f〉〉L2(µ) , (1.2.2)

where ∗ is the Hermitian conjugation (just complex conjugation if l = 1). Here we can

regard 〈〈f〉〉L2(µ) as the square root of the non-negative definite matrix 〈〈f, f〉〉L2(µ).

What we have defined here is the right product of f and g, as opposed to the left product∫
f(x)dµ(x)g(x)∗, whose properties are completely analogous.

Measure µ is called non-trivial if || 〈〈f〉〉2L2(µ) || > 0 for all matrix-valued polynomials f .

From now on assume µ is non-trivial. Then there exist unique (right) monic polynomials

PR
n of degree n satisfying

〈〈
PR
n , f

〉〉
L2(µ)

= 0 for any polynomial f with deg f < n.
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For any choice of unitary l × l matrices τn (we demand τ0 = 1), the polynomials

pRn = PR
n

〈〈
PR
n

〉〉−1

L2(µ)
τn (1.2.3)

are orthonormal: 〈〈
pRn , p

R
m

〉〉
L2(µ)

= δn,m1,

where δn,m is the Kronecker δ. Using orthogonality one can show that they satisfy the

(Jacobi) recurrence relation

xpRn (x) = pRn+1(x)A∗n+1 + pRn (x)Bn+1 + pRn−1(x)An, n = 1, 2, . . . , (1.2.4)

where matrices An =
〈〈

pRn−1, xp
R
n

〉〉
L2(µ)

, Bn =
〈〈

pRn−1, xp
R
n−1

〉〉
L2(µ)

are called Jacobi pa-

rameters (with pR−1 = 0, A0 = 1, the relation holds for n = 0 too).

In the exact same fashion, just using the left product instead of right, one can define

the left monic orthogonal polynomials PL
n and left orthonormal polynomials pLn . It is not

hard to see that PL
n(z) = PR

n (z̄)∗ and pLn(z) = pRn (z̄)∗.

We will be using the notation Pn, pn for matrix-valued polynomials, while in the case

l = 1 we will downgrade them to Pn, pn. This will be useful in Section 3.5 since both of

them will be present. Also, whenever we write pn without the sup-index R or L, we will

mean the right orthonormal polynomial pRn .

Note that if l = 1 it is natural to choose τn = 1 in (1.2.3). In particular this gives

pRn = pLn , the Jacobi parameters become real, and An’s positive. This choice of τn’s is not

necessarily the best if l > 1. See Section 1.3.1 for the further discussion.

We can arrange sequences {An}∞n=1, {Bn}∞n=1 (called Jacobi parameters) into an infinite

matrix

J =



B1 A1 0

A∗1 B2 A2
. . .

0 A∗2 B3
. . .

. . . . . . . . .


. (1.2.5)

This is called a block Jacobi matrix if l > 1. If l = 1 then we lose the word “block” and the

Jacobi coefficients An, Bn become an, bn.

If An ≡ 1, Bn ≡ 0 the corresponding (block) Jacobi matrix is called free.
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Conversely, any block Jacobi matrix (1.2.5) with invertible {An}∞n=1 gives rise to a

matrix-valued Hermitian measure µ via the spectral theorem. If l = 1 this establishes

a one-to-one correspondence between all non-trivial compactly supported measures and

bounded Jacobi matrices. If l > 1 the same holds, except now the correspondence is with

the set of equivalence classes of bounded block Jacobi matrices (see Definition 1.3.1). This

has the name of Favard’s Theorem (see [DPS08] for a proof in the matrix-valued case).

Since we will be considering perturbations of the free case in Sections 1.3.2–1.3.4, the

following two classical results will prove to be useful.

Theorem 1.2.1 (Weyl’s Theorem). If An → 1, Bn → 0, then ess suppµ = [−2, 2].

Theorem 1.2.2 (Denisov–Rakhmanov Theorem). Assume µ is a non-trivial l × l matrix-

valued measure on R with associated block Jacobi matrix J of type 3 such that ess suppµ =

[−2, 2] and det
(
dµ(x)
dx

)
> 0 a.e. on [−2, 2]. Then An → 1, Bn → 0.

The first result is trivial, while the second, in the form given here, is proven in [DKS]

(see also [YM01], as well as [Den04, Rak82]).

Define the (Weyl-Titchmarsh) m-function of the measure µ to be the meromorphic in

C \ ess suppµ matrix-valued function

m(z) =
∫
dµ(x)
x− z

. (1.2.6)

Again, we will use the letter m instead of m if l = 1.

Define J (1) to be the “once-stripped” Jacobi matrix with Jacobi parameters {An, Bn}∞n=2,

i.e., the Jacobi matrix of the form (1.2.5) with the first row and column removed. Then the

following holds (the matrix-valued version is due to [AN83]):

A1m(z;J (1))A∗1 = B1 − z −m(z;J )−1. (1.2.7)

1.2.2 Herglotz Functions

Definition 1.2.3. An analytic in C+ ≡ {z : Im z > 0} l × l matrix-valued function m is

called Herglotz if Imm(z) ≥ 0 for all z ∈ C+.
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Here ImT ≡ T−T ∗
2i .

We can also define m on the lower half plane C− by reflection m(z) = m(z̄)∗, so that

Imm(z) ≤ 0 for all z with Im z < 0. In particular the m-function m defined in (1.2.6) is

Herglotz.

We will assume from now on that det Imm(z) is not identically zero, in which case the

inequality in Imm(z) ≷ 0 is everywhere strict (see [GT00, Lemma 5.3]).

The following result is well-known (see, e.g., [GT00, Thm 5.4]).

Lemma 1.2.4. Let m be an l × l matrix-valued Herglotz function. Then there exist an

l × l matrix-valued measure µ on R satisfying
∫

R
1

1+x2dµ(x) < ∞, and constant matrices

C = C∗, D ≥ 0 such that

m(z) = C +Dz +
∫

R

(
1

x− z
− x

1 + x2

)
dµ(x), z ∈ C+. (1.2.8)

The absolutely continuous part of µ can be recovered from this representation by

f(x) ≡ dµ

dx
= π−1 lim

ε↓0
Imm(x+ iε), (1.2.9)

and the pure point part by

µ({λ}) = lim
ε↓0

ε Imm(λ+ iε) = lim
ε↓0

εm(λ+ iε). (1.2.10)

Definition 1.2.5. A discrete m-function is a Herglotz function, m(z), which has an

analytic continuation from C+ to C \ I for some bounded interval I ⊂ R, and satisfies

z ∈ R \ I ⇒ Imm(z) = 0,

m(z) = z−11 +O(z−2) at ∞.

The following is immediate from Lemma 1.2.4.

Lemma 1.2.6. A function m(z) on C+ is a discrete m-function if and only if

m(z) =
∫

R

dµ(x)
x− z

for some probability measure µ on R with bounded support.
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1.2.3 Finite Gap Sets and Surface Se

In this subsection let us assume that µ is finite and its essential support is a finite union of

closed intervals (“finite gap set”)

ess suppµ = e =
g+1⋃
j=1

[αj , βj ], αj < βj < αj+1. (1.2.11)

We will be referring to each of [αj , βj ] (1 ≤ j ≤ g+1) as “bands”, and [βj , αj+1] (1 ≤ j ≤ g)

as “gaps”. The reason for considering such measures is of course because the spectral

measures of compact perturbations of free and periodic Jacobi matrices have their essential

spectrum of this type.

Thenm is a meromorphic function on C\e and it is natural to ask ifm has a meromorphic

continuation through e. Let us introduce a natural Riemann surface that will be used

extensively throughout the paper.

Definition 1.2.7. Assume e is a finite gap set (1.2.11). Define Se to be the be the hyper-

elliptic Riemann surface corresponding to the polynomial
∏g+1
j=1(z − αj)(z − βj).

We will not give the formal definition, which can be found in any textbook. Informally

Se can be described as follows. Denote S+ and S− to be two copies of C ∪ {∞} with a slit

along e (include e as a top edge and exclude it from the lower), and let Se be S+ and S−

glued together along e in the following way: passing from C+ ∩ S+ through e takes us to

C− ∩ S−, and from C− ∩ S+ to C+ ∩ S−. Clearly Se is topologically an orientable manifold

of genus g.

Let π : S → C ∪ {∞} be the “projection map” which extends the natural inclusions

S+ ↪→ C ∪ {∞}, S− ↪→ C ∪ {∞}.

The following notation will be used frequently throughout the paper.

Definition 1.2.8. • Denote by z+ and z− the two preimages π−1(z) of z ∈ C ∪ {∞}

(for z ∈ ∪g+1
j=1{αj , βj}, z+ and z− coincide).

• Let z] be
(
π(z)

)
−

if z ∈ S+, and
(
π(z)

)
+

if z ∈ S−. In order to make this continuous

we make the convention z] = z for z ∈ π−1(e).

• Let m](z) = m(z])∗.
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1.2.4 Periodic Orthogonal Polynomials on the Real Line

For all the proofs, we refer the reader to [Sim].

A (scalar) Jacobi matrix (1.2.5) is called periodic if there exists an integer p ≥ 1 such

that

an+p = an, bn+p = bn for all n (1.2.12)

(with an, bn instead of An, Bn since l = 1). One can also talk about two-sided Jacobi

matrices, which are operators on `2(Z) of the same tridiagonal form as (1.2.5), where we

just extend the indices {an, bn}n∈Z to the whole Z. The same definition of periodicity

(1.2.12) applies to a two-sided Jacobi matrix as well. We will commonly use (an, bn)∞n=1,

(an, bn)n∈Z as a notation for these matrices.

For a one- or two-sided periodic Jacobi matrix one can associate a polynomial of degree

p with real coefficients

∆(z) = Tr

 1∏
j=p

1
aj

 z − bj −1

a2
j 0

 , (1.2.13)

which is called the discriminant of the matrix. Note that this is just the trace of the

update matrix corresponding to the vector (un+1, anun)T , where un is a solution to the

recurrence

zun = anun+1 + bnun + an−1un−1.

It has numerous useful properties, which we list in Section 2.2. The most important

for us here is that it determines the spectrum. It turns out that the spectrum of two-sided

periodic Jacobi matrix is purely absolutely continuous of multiplicity two, and

σ((an, bn)n∈Z) = ∆−1([−2, 2]).

Essential spectrum of one-sided periodic Jacobi matrix is purely absolutely continuous of

multiplicity one and we still have

σess((an, bn)∞n=1) = ∆−1([−2, 2]).
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In fact ∆−1([−2, 2]) is a finite gap set

e ≡
p⋃
j=1

[αj , βj ], αj < βj ≤ αj+1, (1.2.14)

where these intervals are allowed to touch. If some two intervals do touch βj = αj+1, then

this gap [βj , αj+1] is said to be closed, and otherwise it is open. Let g be the number of

open gaps (in other words, e consists precisely of g + 1 disjoint closed intervals), which is

consistent with the notation in the previous section.

Finally, σess((an, bn)∞n=1) \∆−1([−2, 2]) may consist of up to g eigenvalues, at most one

per each open gap.

Denote ρe to be the equilibrium measure of e.

There is an easy criterion for determining when a finite gap set e is the (essential)

spectrum of some periodic Jacobi matrix.

Lemma 1.2.9. Let e be a finite gap set (1.2.14).

• e is the (essential) spectrum of some periodic Jacobi matrix if and only if the equilib-

rium measure of each of the g + 1 disjoint intervals of e is rational.

• e is the (essential) spectrum of some p-periodic Jacobi matrix with all gaps open if

and only if the equilibrium measures of each of the p = g + 1 disjoint intervals of e

are equal (and so equal to 1/p).

• If at least one of the g + 1 disjoint intervals of e has irrational equilibrium measure,

then one can construct an almost periodic Jacobi matrix with essential spectrum e.

We will not go into the the theory of almost periodic Jacobi matrices here ([Sim]).

Now let m be the m-function for a periodic one-sided Jacobi matrix J = (an, bn)∞n=1

defined in (1.2.6). Using the recursion (1.2.7) and the fact J = J (p), we immediately obtain

that m satisfies a certain quadratic equation. After some work one sees that

m(z) =
r(z)±

√
∆2(z)− 4

t(z)
, (1.2.15)

where we choose the branch of square root
√

∆2(z)− 4 = ∆(z)+O(1/∆(z)). Here r(z), t(z)

are some polynomials in z. Going back to (1.2.14), one now sees that m has a meromorphic
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continuation to the full surface Se, the genus g hyperelliptic surface constructed in Definition

1.2.7.

Moreover, m has minimal degree g + 1 (as a topological analytic map Se → C ∪ {∞})

among all meromorphic functions on S that are not of the form f ◦π for some meromorphic

f on C ∪ {∞}. It turns out there is a one-to-one correspondence between all such minimal

meromorphic functions that are Herglotz on S+ with zero at ∞+ and a pole at ∞− and all

periodic Jacobi matrices with the same discriminant ∆.

Each such mimimal Herglotz function is completely determined by the location of its

poles. There are g + 1 of them, one at ∞−, and exactly one on π−1([βj , αj+1]) for each

open gap [βj , αj+1]. Note that π−1([βj , αj+1]) is homeomorphic to a circle S1. Thus the set

of minimal Herglotz functions, and consequently the set of periodic Jacobi matrices with

discriminant ∆, is homeomorphic to (S1)g, a g-dimensional torus.

Definition 1.2.10. The isospectral torus Te of e is the set of periodic Jacobi matrices

with the same discriminant ∆ (and consequently, the same essential spectrum).

We will view Te as a set of {(an, bn)∞n=1} or {(an, bn)n∈Z} depending on the context.

In order to measure closeness of two (one- or two-sided) Jacobi matrices at infinity, let

us introduce the following metric (on
∏∞
j=m(0, R]× [−R,R])

dm((an, bn), (a′n, b
′
n)) =

∞∑
k=0

e−k(|am+k − a′m+k|+ |bm+k − b′m+k|),

and then

dm((an, bn), T ) = inf{dm((an, bn), (a′n, b
′
n)) | (a′n, b′n) ∈ T }

for any set T . Here (an, bn) can be (an, bn)∞n=1 or (an, bn)n∈Z.

1.3 Main Results

1.3.1 Equivalence Classes of Block Jacobi Matrices

Definition 1.3.1. Two block Jacobi matrices J and J̃ are called equivalent if they cor-

respond to the same spectral measure µ (but a different choice of τn’s in (1.2.3)).
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They are equivalent if and only if their Jacobi parameters satisfy

Ãn = σ∗nAnσn+1, B̃n = σ∗nBnσn (1.3.1)

for unitary σn’s with σ1 = 1 (the connection with τj ’s is σn = τ∗n−1τ̃n−1). It is easy to see

that

p̃Rn (x) = pRn (x)σn+1, (1.3.2)

where p̃n are the orthonormal polynomials for J̃ associated with the Jacobi parameters

{Ãn}∞n=1, {B̃n}∞n=1.

Definition 1.3.2. A block Jacobi matrix is of type 1 if An > 0 for all n, of type 2

if A1A2 . . . An > 0 for all n, and of type 3 if every An is lower triangular with strictly

positive elements on the diagonal.

Each equivalence class of block Jacobi matrices contains exactly one matrix of type 1,

2, and 3 (follows from the uniqueness of the polar and QR decompositions, see [DPS08] for

the proof).

Definition 1.3.3. We say that J is in the Nevai class if

Bn → 0, AnA
∗
n → 1.

Note that this definition is invariant within the equivalence class of Jacobi matrices.

Our first result is

Theorem 1.3.4. Assume J belongs to the Nevai class. If J is of type 1, 2, or 3, then

An → 1 as n→∞.

This result was proven in [DPS08] for the type 1 and 3 cases, and was left open for type

2. It is proven here in Section 3.1.

The essence of Theorem 1.3.4 is to show that σ∗nσn+1 → 1, where σn’s are the unitary

coefficients from (1.3.1) for J , J̃ of type 1, 2 or 3. Note however that we are interested in the

asymptotics of the orthonormal polynomials as n→∞, and because of the relation (1.3.2),

it is desirable to know when limn→∞ σn exists. This explains the need of the following

definition.
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Definition 1.3.5. Two equivalent matrices J and J̃ with (1.3.1) are called asymptotic

to each other if the limit limn→∞ σn exists.

Clearly this is an equivalence relation on the class of equivalent Jacobi matrices. Note

that establishing asymptotics for orthonormal polynomials automatically establishes the

corresponding asymptotics for the polynomials corresponding to any Jacobi matrix asymp-

totic to the original one.

We prove the following theorem.

Theorem 1.3.6. Assume

∞∑
n=1

[‖1−AnA∗n‖+ ‖Bn‖] <∞. (1.3.3)

Then the corresponding Jacobi matrices of type 1, 2, and 3 are pairwise asymptotic.

Remarks. 1. The condition (1.3.3) doesn’t depend on the choice of the representative of the

equivalence class of equivalent matrices.

2. The proof also shows that any equivalent Jacobi matrix, for which eventually each

An has real eigenvalues, is also asymptotic to type 1, 2, 3.

3. An example of an equivalence class of block Jacobi matrices that fails (1.3.3) and

that has type 1 and type 2 nonasymptotic to each other can be found at the end of Section

3.1.1.

1.3.2 Szegő Asymptotics for Matrix-Valued Measures with Countably

Many Bound States

We are interested in the asymptotic behavior of pn for the measures µ whose essential

support is a single interval. After scaling and translating, we can assume it is [−2, 2]:

ess suppµ = [−2, 2]. (1.3.4)

Let {Ej}Nj=1 be the point masses of µ outside [−2, 2] counting multiplicities (N ≤ ∞).

Aptekarev and Nikishin in [AN83] show that if the absolutely continuous part f(x) = dµ(x)
dx
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satisfies the Szegő condition

∫ 2

−2
(4− x2)−1/2 log(det(f(x)))dx > −∞, (1.3.5)

and N is finite, then there exists limn→∞ z
npn(z + z−1) uniformly on the compacts of D,

and the limit function was constructed more or less explicitly. The scalar case l = 1 (see

Peherstorfer–Yuditskii [PY01]; another approach is the combination of Killip–Simon [KS03]

and Damanik–Simon [DS06a]: see [Sim, Chapter 3]) suggests that N =∞ should not really

spoil the picture as long as the condition

N∑
j=1

(|Ej | − 2)1/2 <∞ (1.3.6)

holds. In fact this condition is necessary if one expects to have the limit limn→∞ z
npn(z +

z−1) to be a Nevanlinna function in D.

Assume that (1.3.4), (1.3.5), and (1.3.6) hold. We prove in Theorem 1.3.7 below that

under these assumptions limn→∞ z
npn(z + z−1) exists uniformly in D and we give a char-

acterization of the limit function. The results are the exact extension to the matrix-valued

case of [PY01], and include [AN83, Thm. 2] as its special case (N <∞).

To prove the result, Aptekarev and Nikishin in [AN83] used an induction on the number

of the point masses of µ, which does not work if there are infinitely many of them. The

approach used here is similar to the one used in [PY01] for the scalar case (which in turn

is an extension of the original Szegő’s proof for the no-bound states problem, see [Sze20]).

Namely, we first construct a Nevanlinna function L(z) (Section 3.2.1), and then consider a

certain inner product which, when handled with care, proves that the limit of znpn(z+z−1)

is indeed L (Section 3.2.2).

Theorem 1.3.7. Let µ satisfy (1.3.4), (1.3.5), (1.3.6). Assume J is of type 2. Then there

exists an analytic in D function L such that

znpn
(
z + z−1

)
→ L(z) uniformly on compacts of D; (1.3.7)

pn(2 cos θ) =

(
e−inθL(eiθ) + einθL(e−iθ))

)
√

2
+ o(1) in L2

(
w(θ)

dθ

2π

)
sense; (1.3.8)

〈〈pn(x)〉〉L2(µs) → 0, (1.3.9)
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where w is

w(θ) = 2π| sin θ| dµ
dx

(2 cos θ) .

Remarks. 1. The limit function L is in fact in the matrix-valued Hardy space H2(D), and

we establish a number of its properties, in particular its multiplicative factorization, see

Section 3.2.1.

2. We will show that the asymptotics holds for type 2 Jacobi matrix. Thus by (1.3.2),

the polynomials p̃n obey Szegő asymptotics if and only if the limit limn→∞ σn exists, i.e., if

and only if matrix J̃ is asymptotic to type 2.

Using results from Section 14 of [DKS] we immediately obtain

Corollary 1.3.8. Assume the Jacobi parameters of J satisfy

∞∑
n=1

[‖1−AnA∗n‖+ ‖Bn‖] <∞. (1.3.10)

Then the associated measure µ satisfies (1.3.4), (1.3.5), (1.3.6), and so the conclusions of

Theorem 1.3.7 hold.

Remarks. 1. As in Theorem 1.3.7 this establishes Szegő asymptotics for the type 2 Jacobi

matrix, as well as for all Jacobi matrices asymptotic to type 2. Therefore by Theorem 1.3.6

Szegő asymptotics holds for matrices of type 1 and 3 (or more generally, for any J̃ the

Ãn-coefficients of which have eventually only real eigenvalues).

2. See also another proof of Corollary 1.3.8 using Jost asymptotics in Theorem 3.3.4.

1.3.3 Jost Asymptotics for Matrix Orthogonal Polynomials

The results of this subsection follow closely the scalar results of Damanik–Simon [DS06b]

(see also [Sim05]). Apart from technical complications, the ideas of the proofs are borrowed

from the mentioned paper.

We are interested in the l × l matrix-valued solutions (fn(E))∞n=0 of

fn+1(E)A∗n + fn(E)(Bn − E1) + fn−1(E)An−1 = 0, n = 1, 2, . . . (1.3.11)

By (1.2.4), one solution of this is fn(E) = pRn−1(E,J ).
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Definition 1.3.9. For any two sequences (vn)∞n=0, (wn)∞n=0 their Wronskian is

Wn(v, w;J ) = vnAnwn+1 − vn+1A
∗
nwn.

If vn(E) and wn(E) both solve (1.3.11), then Wn(vn(E), wn(Ē)∗) is independent of n

(see [DPS08]).

In this subsection we will be considering only J with ess suppµ = [−2, 2], so it will be

convenient to move from C \ [−2, 2] to D via z + z−1 = E.

Definition 1.3.10. The Jost solution, {un(z;J )}∞n=0, is a solution of (1.3.11) with

z−nun(z;J )→ 1 (1.3.12)

as n→∞, where z + z−1 = E.

In general there may or may not be a solution of (1.3.11) satisfying (1.3.12), though

there always exists an `2 (Weyl’s) solution of (1.3.11) for z ∈ D.

Definition 1.3.11. If the Jost solution exists (it is then unique, of course), then the Jost

function is defined to be

u(z;J ) = W (u·(z;J ), pL·−1(z + z−1;J )) = u0(z;J ),

where pLn(z) are left orthonormal polynomials of J .

The last equality here comes from the constancy of the Wronskian.

In Section 3.3 we establish that the Jost solution and Jost function exist for block Jacobi

matrices asymptotic to type 1 under the condition

∞∑
n=1

[||Bn||+ ||1−AnA∗n||] <∞,

and establish a number of their properties. See Theorems 3.3.1, 3.3.6, 3.3.10. Theorem

3.3.1 and parts (iv)–(vi) of Theorem 3.3.6 already appeared in [Ger82]. Apart from that,

the three new main results here deal with the inverse direction.

Theorem 1.3.12. Let u be an analytic function in a disk DR = {z | |z| < R} for some

R > 1, whose only zeros in D lie in (D∩R)\{0} with those zeros all simple (in the meaning
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that the poles of u(z)−1 are simple). For each zero zj in (D ∩ R) \ {0}, let a nonzero

matrix-valued weight wj ≥ 0 be given so that

(i)
∑

j wj + 2
π

∫ π
0 sin2 θ

[
u(eiθ)∗u(eiθ)

]−1
dθ = 1

(ii) Ranwj = keru(zj) for all j.

Then there exists a unique measure dµ for which wj are the weights and u is its Jost function

for some choice of Jacobi matrix from the equivalence class corresponding to dµ. Any such

matrix is of type asymptotic to 1.

Now that we established the existence of the measure µ, we can make the following

definition, and then state the last two main theorems of the section.

Definition 1.3.13. Let u satisfy the conditions of Thereom 1.3.12. Suppose u has a zero

at some 1 > |zj | > R−1, Ranwj = keru(zj). The weight wj is said to be canonical if

zj

z−1
j − zj

wj u(1/z̄j)∗ = −(zj − z−1
j ) lim

z→zj

(z − zj)u(z)−1. (1.3.13)

Theorem 1.3.14. If a polynomial u(z) obeys

(i) u(z) is invertible on (D \ R) ∪ {0};

(ii) all zeros on D ∩ R are simple;

(iii)
∑

j wj + 2
π

∫ π
0 sin2 θ

[
u(eiθ)∗u(eiθ)

]−1
dθ = 1 for some wj ≥ 0, Ranwj = keru(zj) for

each zero zj of u in D ∩ R,

then u is the Jost function for a Jacobi matrix with exponentially converging parameters. It

has 1−AnA∗n = Bn = 0 for all large n if and only if all the weights are canonical.

Theorem 1.3.15. Let u(z) be analytic in DR for some R > 1 and obeys (i), (ii), (iii)

from Theorem 1.3.14. Then u is the Jost function for a Jacobi matrix with exponentially

converging parameters. It has

lim sup
n→∞

(||Bn||+ ||1−AnA∗n||)
1/2n ≤ R−1 (1.3.14)

if and only if all weights for zj with 1 > |zj | > R−1 are canonical.
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Remark. By “exponentially converging parameters” it is meant that they satisfy

lim sup
n→∞

(||Bn||+ ||1−AnA∗n||)
1/2n ≤ r−1

for some r (in general r = minj{|zj |−1}, unless some of the weights are canonical).

1.3.4 Meromorphic Continuations of Matrix Herglotz Functions and Per-

turbations of the Free Case

We will consider measures µ with essential support one interval. By scaling and translating

we can assume that ess suppµ = [−2, 2]. Instead of discussing meromorphic continuations

of m (see (1.2.6)) through (−2, 2) to S[−2,2] (see Definition 1.2.7), it will be convenient to

move C \ [−2, 2] to D (and S[−2,2] to C ∪ {∞}) via the inverse of z 7→ z + z−1, and discuss

the meromorphic continuations of

M(z) = −m(z + z−1) (1.3.15)

from D through ∂D. Note that M is also Herglotz in the meaning that ImM(z) ≷ 0 if

z ∈ C± ∩ D.

The analogue of m] from Definition 1.2.8 is M ](z) = M(z̄−1)∗.

We prove the following result.

Theorem 1.3.16. Let m be a discrete l × l matrix-valued m-function, and M is given by

(1.3.15). Let R > 1. The following are equivalent:

(I) The corresponding to m Jacobi matrix {An, Bn}∞n=1 satisfies

lim sup
n→∞

(||Bn||+ ||1−AnA∗n||)
1/2n ≤ R−1. (1.3.16)

(II) All of the following holds:

(A) M has a meromorphic continuation to DR.

(B) M has no poles on ∂D \ {±1}, and at most simple poles at ±1.

(C) (M(z)−M ](z))−1 has no poles in R > |z| > R−1 except at z = ±1 where there

might be simple poles.
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(D) If M has a pole at zj ∈ {z : R−1 < |z| < 1} and at z−1
j , then

Ran Res
z=zj

M(z) ⊆ ker(M(z−1
j )−M ](z−1

j ))−1, (1.3.17)

Ran Res
z=zj

M(z) ⊆
(

Ran (M(z−1
j )−M ](z−1

j ))−1M(z−1
j )
)⊥

. (1.3.18)

Note that R = ∞ is allowed, in which case in (i) the lim sup becomes lim and equals

0 (the decay of the coefficients is subexponential), while in (ii) M is meromorphic in C.

We can also demand that M is actually meromorphic in C ∪ {∞} (which, of course, is the

same as saying that M is a rational matrix function), in which case (i) becomes (1.3.19).

Therefore we are able to characterize all possible M -functions of eventually-free Jacobi

matrices.

Theorem 1.3.17. Let m be a discrete l × l matrix-valued m-function, and M is given by

(1.3.15). The following are equivalent:

(I) The corresponding to m Jacobi matrix {An, Bn}∞n=1 satisfies

||Bn||+ ||1−AnA∗n|| = 0 for all large n. (1.3.19)

(II) All of the following holds:

(A) M is a rational matrix function.

(B) M has no poles on ∂D \ {±1}, and at most simple poles at ±1.

(C) (M(z) −M ](z))−1 has no poles in C \ {0} except at z = ±1 where there might

be simple poles.

(D) If M has a pole at zj ∈ D and at z−1
j , then

Ran Res
z=zj

M(z) ⊆ ker(M(z−1
j )−M ](z−1

j ))−1, (1.3.20)

Ran Res
z=zj

M(z) ⊆
(

Ran (M(z−1
j )−M ](z−1

j ))−1M(z−1
j )
)⊥

. (1.3.21)

Remarks. 1. Condition (1.3.17)/(1.3.20) implies that (M(z)−M ](z))−1M(z) is analytic at

z−1
j , so (1.3.18)/(1.3.21) makes sense.

2. M can have poles of at most order 1 in D, however not necessarily so in C \ D. In

(D), if M has poles of order 1 at both zj and z−1
j then (1.3.17)–(1.3.18) ((1.3.20)–(1.3.21))
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are equivalent to

Ran w̃j ⊆ Ran (w̃j − z2
j q̃j),

Ran w̃j ∩ Ran q̃j = ∅,

where w̃j = −Resz=zj M(z), q̃j = Resz=z−1
j
M(z) (see Proposition 3.4.1).

3. If l = 1 then (D) is equivalent to the condition that M has no simultaneous singu-

larities at points zj and z−1
j (see Proposition 3.4.1).

4. See also [Ger94, Thm 14] for a somewhat related result on the relation between the

exponential decay of Jacobi parameters and properties of the measure µ (for the scalar l = 1

case).

5. Conditions (A) and (C) can be restated in terms of the meromorphic continuation of

the absolutely continuous density f(2 cos θ) (as a function of eiθ ∈ ∂D) (see Lemma 2.3.1

and the discussion after it). Condition (B) of course just means that there is no point

spectrum of µ on [−2, 2]. Condition (D) depends on both absolutely continuous and pure

point parts of the measure.

1.3.5 Meromorphic Continuations of Finite Gap Herglotz Functions and

Periodic Jacobi Matrices

In this subsection we go back to assuming that µ is a (scalar) measure with ess suppµ

finitely many intervals. Recall the ]-notation from Definition 1.2.8.

Theorem 1.3.18. Let e = ∪pj=1[αj , βj ], αj < βj < αj+1, is such that each [αj , βj ] has equal

harmonic measure (“open gaps case”).

Assume ess suppµ = e, and let m(z) =
∫

R
dµ(x)
x−z . Let R > 1. The following are equiva-

lent:

(i) The associated to µ Jacobi matrix J satisfies

lim sup
n→∞

(dn(J , Te))1/2n ≤ R−1,

where Te is the isospectral torus corresponding to e.

(ii) (a) m has a meromorphic continuation to the region SR,



22

(b) m has no poles on π−1(e), except at π−1(∪pj=1{αj , βj}) where they are at most

simple,

(c) m(z)−m](z) has no zeros in π−1(ER), except at π−1(∪pj=1{αj , βj}) where they

are at most simple,

(d) If m has a pole at z for z ∈ π−1(ER \ e) then z] is not a pole of m.

Here ∆ is the unique polynomial of degree p such that e = ∆−1[−2, 2], and SR = S+∪ (S−∩

ER), where ER is the union of the interiors of the bounded components of ∆−1(x(R∂D)),

where x(z) = z + z−1.

Theorem 1.3.19. Let e = ∪pj=1[αj , βj ], αj < βj < αj+1, is such that each [αj , βj ] has equal

equilibrium measure (“open gaps case”).

Assume ess suppµ = e, and let m(z) =
∫

R
dµ(x)
x−z . The following are equivalent:

(i) The associated to µ Jacobi matrix J satisfies

dn(J , Te) = 0 for all large n,

where Te is the isospectral torus corresponding to e.

(ii) (a) m has a meromorphic continuation to S,

(b) m has no poles on π−1(e), except at π−1(∪pj=1{αj , βj}) where they are at most

simple,

(c) m(z)−m](z) has no zeros in S \ {±∞}, except at π−1(∪pj=1{αj , βj}) where they

are at most simple,

(d) If m has a pole at z for z ∈ π−1(C \ e) then z] is not a pole of m.

Here ∆ as above is the unique polynomial of degree p such that e = ∆−1[−2, 2].

Remarks. 1. Theorems 1.3.18, 1.3.19 for p = 1 and Theorems 1.3.16, 1.3.17 for l = 1 are

identical.

2. Condition (c) says that m(z) 6= m](z) for z ∈ π−1(ER \ e), that Imm(z) 6= 0 for

z in the interior of e, and that the zero of m(z) − m](z) is at most of first order at the

edges. Recalling Lemma 1.2.4, the latter two conditions mean that the density dµ
dx of µ

is nonvanishing on e except at the edges where it might be square root vanishing (recall
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that local coordinates of S at the edges of e are given in terms of
√
z − z0, not z − z0).

Also, by the discussion after Lemma 2.3.1, the conditions (a) and (c) imply that the density

f(x) = dµ
dx has an analytic continuation to π−1(ER) and is non-vanishing except at the band

edges. Condition (b) just says that µ has no pure points in e. However the condition (d) is

influenced by both the absolutely continuous density f and the bound states of µ.

3. Instead of demanding (d) to hold for z ∈ π−1(C \ e) one could demand it also for the

points z ∈ π−1(e \ ∪pj=1{αj , βj}), which, given the convention z] = z (z ∈ π−1(e)), would

simply mean that m has no pole at these points. (b) however also demands that the poles

at the band edges are at most simple.

4. Here is an example how ER evolves as R grows:

-2 -1 1 2 3

-1.5

-1.0

-0.5

0.5

1.0

1.5

Using the results of [Sim, Chapter 5] it is easy to see that ER are precisely the level sets

of the logarithmic potential of the equilibrium measure for e.

1.3.6 Point Perturbations of Measures

The next theorem shows that under the given conditions removing a pure point is a small

perturbation on the Jacobi matrix.

Theorem 1.3.20. Let dµ(x) = f(x)dx+
∑N

j=1wjδ(x−Ej), dµ̂(x) = f(x)dx+
∑N−1

j=1 wjδ(x−

Ej), EN /∈ suppµ̂.

Let (An)∞n=1, (Bn)∞n=1 be Jacobi parameters for µ, and (Ân)∞n=1, (B̂n)∞n=1 be Jacobi

parameters for µ̂. Let R > 1. The following holds true.
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(i) If

lim sup
n→∞

(||Bn||+ ||1−AnA∗n||)
1/2n ≤ R−1, (1.3.22)

then

lim sup
n→∞

(
||B̂n||+ ||1− ÂnÂ∗n||

)1/2n
≤ R−1. (1.3.23)

(ii) If

||Bn||+ ||1−AnA∗n|| = 0 for all large n, (1.3.24)

then

||B̂n||+ ||1− ÂnÂ∗n|| = 0 for all large n. (1.3.25)

Thus in this case removing a pure point is a finite rank perturbation.

The next two theorems deal with adding pure points to the measure. We have to consider

two different cases R−1 ≥ |zN | > 0 and 1 > |zN | > R−1.

Theorem 1.3.21. Let dµ(x) = f(x)dx+
∑N−1

j=1 wjδ(x−Ej), dµ̂(x) = f(x)dx+
∑N

j=1wjδ(x−

Ej), EN /∈ suppµ. Let R > 1 and R−1 ≥ |zN | > 0, where zN + z−1
N = EN , zN ∈ D.

Let (An)∞n=1, (Bn)∞n=1 be Jacobi parameters for µ, and (Ân)∞n=1, (B̂n)∞n=1 be Jacobi

parameters for µ̂. If

lim sup
n→∞

(||Bn||+ ||1−AnA∗n||)
1/2n ≤ R−1, (1.3.26)

then

lim sup
n→∞

(
||B̂n||+ ||1− ÂnÂ∗n||

)1/2n
≤ R−1. (1.3.27)

Theorem 1.3.22. Let dµ(x) = f(x)dx+
∑N−1

j=1 wjδ(x−Ej), dµ̂(x) = f(x)dx+
∑N

j=1wjδ(x−

Ej), |Ej | > 2. Let ∞ ≥ R > 1 and 1 > |zN | > R−1, where zN + z−1
N = EN , zN ∈ D.

Let (An)∞n=1, (Bn)∞n=1 be Jacobi parameters for µ, and (Ân)∞n=1, (B̂n)∞n=1 be Jacobi

parameters for µ̂. Assume

lim sup
n→∞

(||Bn||+ ||1−AnA∗n||)
1/2n ≤ R−1. (1.3.28)

Then

lim sup
n→∞

(
||B̂n||+ ||1− ÂnÂ∗n||

)1/2n
≤ |zN |. (1.3.29)
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Moreover,

(i) If M(z) has no pole at z−1
N then

lim sup
n→∞

(
||B̂n||+ ||1− ÂnÂ∗n||

)1/2n
= |zN |, (1.3.30)

(ii) If M(z) has a first order pole at z−1
N with Resz=z−1

N
M(z) = qN , then

lim sup
n→∞

(
||B̂n||+ ||1− ÂnÂ∗n||

)1/2n
= lim sup

n→∞
(||Bn||+ ||1−AnA∗n||)

1/2n ≤ R−1

(1.3.31)

if and only if wN = −(1 − z2
N )PqNP , where P is the orthogonal projection onto an

invariant subspace of qN . If wN is not of this form, then (1.3.30) holds.

(iii) If M(z) has a pole of order higher than 1 at z−1
N , then

(a) If l = 1 (i.e., we are in the scalar case), then (1.3.30) holds.

(b) If l > 1, then (1.3.31) holds if and only if

RanwN ⊆ ker(M(z−1
N )−M ](z−1

N ))−1, (1.3.32)

RanwN

⊆Ran lim
z→z−1

N

(
(M(z)−M ](z))−1M(z) + (M(z)−M ](z))−1 wN

EN − z − z−1

)⊥
(1.3.33)

Otherwise, (1.3.30) holds.

Remarks. 1. One can also replace (1.3.26)/(1.3.28) and (1.3.27)/(1.3.31) in Theorem 1.3.21/

1.3.22 with (1.3.24) and (1.3.25), respectively. This is of course a different result from just

R =∞ case.

2. In particular these theorems say that if (1.3.22) holds, then adding or removing a pure

point is an exponentially small perturbation. Moreover, if (1.3.24) holds, then removing

a pure point is a finite rank perturbation, while adding is finite rank only under certain

circumstances described in (ii)–(iii).

3. Geronimo [Ger94] (see also [GN83]) proved the scalar analogues of Theorems 1.3.20

and 1.3.21, under the assumption |EN | > |Ej |. On the other hand, he measured the rate of
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exponential decay of parameters in a slightly more general way than by (1.3.22).

4. The limits of both summands on the right-hand side of (1.3.33) exist. It does not

seem possible to express the condition (1.3.33) in a more explicit and better looking form.

The condition “if M(z) has no pole at z−1
N ” in Theorem 1.3.22(i) is something that

generically holds, of course (note also, that given that M does not have a pole at zN , then

the pole at z−1
N can only come from meromorphic extension f(z + z−1) of the absolutely

continuous part f(2 cos θ), see Lemma 2.3.1). In order to add a mass point at such EN to the

spectrum, while preserving the rate of exponential decay of parameters, one has to modify

the absolutely continuous part, as we do in the Theorem 1.3.23 below. Another way of

looking at the next result is that we are modifying the Jost function by û(z) = (zN −z)u(z)

(up to a multiplicative constant) to produce a zero at zN (without producing a pole at z−1
N ).

The scalar equivalent of the result is Geronimo’s [Ger94, Thm 7].

Theorem 1.3.23. Let dµ(x) = f(x)dx +
∑N−1

j=1 wjδ(x − Ej), dµ̂(x) = 1
EN−xf(x)dx +∑N−1

j=1
1

EN−Ej
wjδ(x− Ej) + wNδ(x− EN ), where EN > maxj{Ej}. Let (An)∞n=1, (Bn)∞n=1

be Jacobi parameters for µ, and (Ân)∞n=1, (B̂n)∞n=1 be Jacobi parameters for µ̂.

Assume M is regular at z−1
N . If

lim sup
n→∞

(||Bn||+ ||1−AnA∗n||)
1/2n ≤ R−1 (1.3.34)

and

wN = M(zN )−M(z−1
N ), (1.3.35)

then

lim sup
n→∞

(
||B̂n||+ ||1− ÂnÂ∗n||

)1/2n
≤ R−1. (1.3.36)

Remark. Again, one can replace (1.3.34) and (1.3.36) with (1.3.24) and (1.3.25), respec-

tively. This says that under (1.3.24), we can add a point to the spectrum via a finite rank

perturbation.

Note that to keep the weights positive, we need the restriction EN > maxj{Ej}. There

is also an implicit restriction that (1.3.35) is positive to ensure wN ≥ 0. If EN < minj{Ej},

then the same construction works if we substitute everywhere EN − x and EN − Ej with

x − EN and Ej − EN . If one is willing to allow negative point masses then all these

restrictions can be omitted.
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This settles the question of adding a point mass at EN if there is no pole at M(z−1
N ).

The case of order 1 pole is settled in Theorem 1.3.22(ii), of course. Finally, what if M(z−1
N )

has a pole of order k ≥ 2? This is equivalent to u(z−1
k )−1 having a pole of order k ≥ 2.

In the scalar (including scalar periodic) case one can perform the analogous procedure

û(z) = (z−1
N − z)−ku(z) (equivalent to multiplying the measure by (EN − x)k) to get rid of

the problem at z−1
N while preserving the weights canonical, and then proceed as in Theorem

1.3.23. In the matrix case we would need to divide out in general by a non-diagonal factor

which leads to the nonsymmetric weights ŵj .

Similar results hold for periodic scalar matrices.

Theorem 1.3.24. Let dµ(x) = f(x)dx+
∑N

j=1wjδ(x−Ej), dµ̂(x) = f(x)dx+
∑N−1

j=1 wjδ(x−

Ej), EN /∈ suppµ.

Let (an)∞n=1, (bn)∞n=1 be the Jacobi parameters for µ, and (ân)∞n=1, (̂bn)∞n=1 be the Jacobi

parameters for µ̂. If

J is eventually periodic (with all gaps open),

then

Ĵ is eventually periodic (on the same isospectral torus).

Theorem 1.3.25. Let dµ(x) = f(x)dx+
∑N−1

j=1 wjδ(x−Ej), dµ̂(x) = f(x)dx+
∑N

j=1wjδ(x−

Ej), EN /∈ suppµ.

Let (an)∞n=1, (bn)∞n=1 be the Jacobi parameters for µ, and (ân)∞n=1, (̂bn)∞n=1 be the Jacobi

parameters for µ̂. Assume

J is eventually periodic (with all gaps open). (1.3.37)

Then

lim sup
n→∞

(
dn(Ĵ , Te)

)1/2n
≤ |∆(E)|

2
−
√
|∆(E)|2

4
− 1. (1.3.38)

Moreover,

(i) If m(z) has no pole at (EN )− or has a pole of order ≥ 2 then

lim sup
n→∞

(
dn(Ĵ , Te)

)1/2n
=
|∆(E)|

2
−
√
|∆(E)|2

4
− 1. (1.3.39)
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(ii) If m(z) has a pole of order 1 at (EN )− with Resz=(EN )−m(z) = qN , then

Ĵ is eventually periodic (on the same isospectral torus) (1.3.40)

if and only if wN = qN . Otherwise (1.3.39) holds.

Remark. Just as in Theorems (1.3.20)–(1.3.22) one can demand lim supn→∞(dn(J , Te))1/2n ≤

R−1, rather than J being eventually periodic, and obtain the exact analogue of the results.

Similarly, one can perform procedures analogous to the one in Theorem 1.3.23 (see also

discussion after the theorem). We omit stating the results since the method should be by

now clear.
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Chapter 2

Prerequisites

2.1 Matrix-Valued Orthogonal Polynomials on the Real Line

We will need some additional results apart from the basics that we introduced in Section

1.2.

Let us define the second kind polynomials by

qRn (z) =
∫

R
dµ(x)

pRn (z)− pRn (x)
z − x

, n = 0, 1, . . . .

It can be shown that qRn are polynomials of degree n − 1 and that they satisfy the same

recurrence relations (1.2.4). For future reference,

pR0 (z) = 1, pR1 (z) = (z −B1)A∗1
−1, (2.1.1)

qR0 (z) = 0, qR1 (z) = A∗1
−1. (2.1.2)

Define also qLn = qRn (z̄)∗.

The resolvent of J has the following block form (see [DPS08, Thm 2.29])

(J − z)−1 =


m qR1 + mpR1 qR2 + mpR2 · · ·

qL1 + pL1 m qL1 pR1 + pL1 mpR1 pL1 qR2 + pL1 mpR2 · · ·

qL2 + pL2 m qL2 pR1 + pL2 mpR1 qL2 pR2 + pL2 mpR2 · · ·
...

...
...

. . .

 (z), (2.1.3)

i.e., its (i, j)-th block entry is qLi−1p
R
j−1 + pLi−1mpRj−1 if i ≥ j, and pLi−1q

R
j−1 + pLi−1mpRj−1

otherwise.
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We will use the following result. This is proven in [Den04] for the scalar case, and

appears in [DPS08] for the matrix-valued case.

Lemma 2.1.1. Let σess(J ) ⊆ [−2, 2]. Then, for every ε > 0, there exists N such that for

n ≥ N , we have that σ(J (n)) ⊆ [−2− ε, 2 + ε].

Assume for the rest of this section, that ess suppµ = [−2, 2], and denote by {Ek}Nk=1

(N ≤ ∞) the eigenvalues outside [−2, 2].

Define

M(z) = −m(z + z−1), z ∈ D,

where m is defined in (1.2.6). Using Lemma 1.2.4, one obtains

ImM(eiθ) = πf(2 cos θ), 0 ≤ θ ≤ π, (2.1.4)

ImM(eiθ) = −πf(2 cos θ), −π ≤ θ ≤ 0. (2.1.5)

Denote

{zk}Nk=1 =
{
z ∈ D

∣∣∣∣ z =
1
2

(
Ek −

√
Ek

2 − 4
)}

=
{
z ∈ D | z + z−1 = Ek

}
, (2.1.6)

enumerated in increasing order of their absolute values (N ≤ ∞). Let us assume each zk is

different, and let nk be the multiplicity of zk + z−1
k as the eigenvalue.

We will be using the so-called C0 Sum Rule from Damanik–Killip–Simon [DKS]. In a

slightly changed form, it looks as follows.

Lemma 2.1.2 (Damanik–Killip–Simon [DKS]). Suppose ess suppµ = [−2, 2] and {zk}Nk=1

be as in (2.1.6). Let

Z(J ) = −1
2

∫ π

−π
log det

ImM(eiθ)
sin θ

dθ

2π
,

E0(J ) = −
N∑
k=1

nk log |zk|,

A0(J ) = − lim
n→∞

n∑
j=1

log det |Aj |.
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If any two of Z, E0,A0 are finite, then so is the third, and

Z(J ) = E0(J ) +A0(J ).

Remarks. 1. Here |T | ≡
√
T ∗T .

2. The minus in the expression for E0(J ) comes from the fact that we chose z ∈ D

in (2.1.6) as opposed to z ∈ C \ D in [DKS].

2.2 More on Periodic Orthogonal Polynomials

We combine properties of the discriminant ∆ (introduced in Subsection 1.2.4) into lemma.

Lemma 2.2.1. Let J be a (one-sided) p-periodic Jacobi matrix, and ∆ its discriminant.

Then

(i) ∆(z) = pp(z) − apqp−1(z), where pj , qj are orthogonal polynomials of the first and

second kind of J .

(ii) ∆(z) = 1
a1...ap

∏p
j=1(z − bj) +O(zp−2).

(iii) • ∆−1([−2, 2]) ⊂ R.

• Let x±1 ≤ x
±
2 ≤ . . . ≤ x±p be the zeros (counting multiplicity) of ∆(λ)∓ 2. Then

x+
p > x−p ≥ x+

p−1 > x−p−1 ≥ x
+
p−2 > x−p−2 ≥ . . . .

• ∆(λ) is strictly increasing on each interval (x−p−2j , x
+
p−2j) and strictly decreasing

on each interval (x+
p−2j−1, x

−
p−2j−2), j = 0, 1, . . .. In particular the p−1 solutions

of ∆′(λ) = 0 are all real and lie one per each gap. If a gap is open then the

corresponding solution lies in its interior.

There is a nice connection between the theory of periodic orthogonal polynomials and

matrix-valued orthogonal polynomials. Note that applying a polynomial of degree p to the

tridiagonal matrix J gives us (2p + 1)-diagonal matrix, which can be viewed as a block

Jacobi matrix (of type 3) with p× p matrix-valued entries.

Let S be the right shift operator on `2(Z). Note that Sp + S−p is the free block Jacobi

matrix with p× p block entries.



32

We will use the following result by Damanik–Killip–Simon, also known by the name

“Magic Formula”.

Lemma 2.2.2 (Damanik-Killip-Simon [DKS]). Let J0 be a p-periodic Jacobi matrix with

discriminant ∆J0 and isospectral torus Te. Let J be any two-sided Jacobi matrix. Then

∆J0(J ) = Sp + S−p ⇔ J ∈ Te.

Moreover we can “perturb” this result if all gaps are open.

Lemma 2.2.3 (Damanik-Killip-Simon [DKS]). Let J0 be a p-periodic Jacobi matrix with

discriminant ∆J0 and isospectral torus Te, such that all gaps of J0 are open (every interval of

e has equal equilibrium measure). Let J be any two-sided Jacobi matrix, and let {An, Bn}n∈Z

be the p× p Jacobi parameters of ∆J0(J ). Then the following are equivalent:

(i) lim supn→∞(dn(J , Te))1/2n ≤ R−1.

(I) lim supn→∞(||1−AnA∗n||+ ||Bn||)1/2n ≤ R−1.

Remark. Since both conditions depend on the behavior of the coefficients at +∞, this result

can also be applied to one-sided Jacobi matrices J .

2.3 More on Herglotz Functions

Let m be a Herglotz function (in fact a discrete m-function in our case). Assume the

corresponding measure µ has ess suppµ = e, a finite gap set. Then m is meromorphic in

(C ∪ {∞}) \ e = S+, and we are interested in conditions under which it has a continuation

through the bands of e. The lemma below clarifies when this happens. The scalar result is

due to Greenstein [Gre60], while the matrix-valued can be found in [GT00].

Lemma 2.3.1. Let m be a matrix-valued Herglotz function with representation (1.2.8).

Then m can be analytically continued from S+ ∩ C+ through an interval I ⊂ R if and only

if the associated measure µ is purely absolutely continuous on I, and the density f(x) = dµ
dx

is real-analytic on I. In this case, the analytic continuation of m into some domain D− of

S− ∩ C− is given by

m(z−) = m(z̄+)∗ + 2πif(π(z)), z ∈ D−,
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where f(z) is the complex-analytic continuation of f to some π(D−).

Thus one can view any result on the continuation of m as the corresponding result on

the continuation of the absolutely continuous part f of µ.

Moreover, now assume that m has some continuation to some neighborhood D of I in S−.

This means that the two extensions into domains D∩C− and D∩C+ have to agree on D∩R.

Note that since limε→0 Imm(x− iε) = −πf(x), we have m(z−) = m(z̄+)∗ − 2πif(π(z)) for

z− ∈ D∩C+. This means that the continuation of f to π(D\R) has f(z+ i0) = −f(z− i0)

for any z ∈ (D ∩ R) \ I. Therefore m has a continuation to some D ⊂ S− if and only if f

can be continued to π−1(D) with f(z+) = −f(z−) (in particular f has to be zero or have

a pole at the edge). Apart from this, this continuation satisfies f ] = f since f is real on

π−1(e).

2.4 Matrix-Valued Functions

Throughout the paper, all meromorphic/analytic matrix functions are assumed to have not

identically vanishing determinant.

The order of a pole of an l × l matrix-valued meromorphic function f is defined to be

the minimal k > 0 such that limz→z0(z − z0)kf(z) is a finite nonzero matrix.

By a zero of a matrix-valued meromorphic function f we call a point at which f−1 has

a pole.

Denote by δj ∈ Cl, 1 ≤ j ≤ l, the column vector having 1 on the j-th position, and 0

everywhere else.

2.4.1 Smith–McMillan Form

We will make use of the so-called (local) Smith-McMillan form (see, e.g., [BGR90, Thm

3.1.1]).

Lemma 2.4.1. Let f(z) be an l × l matrix-valued function meromorphic at z0 with deter-

minant not identically zero. Then f(z) admits the representation

f(z) = E(z) diag ((z − z0)κ1 , . . . , (z − z0)κl)F (z), (2.4.1)
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where E(z) and F (z) are l × l matrix-valued functions which are analytic and invertible in

a neighborhood of z0, and κ1 ≥ κ2 ≥ . . . ≥ κl are integers (positive, negative, or zero).

This immediately gives us the following corollary.

Lemma 2.4.2. Let u be an analytic function at z0 such that z0 is a zero of detu of order

k > 0. Then dim keru(z0) = k if and only if z0 is a pole of u(z)−1 of order 1.

If this is the case, then

ker Res
z=z0

u(z)−1 = Ranu(z0),

Ran Res
z=z0

u(z)−1 = keru(z0).

Proof. Both of the conditions in the if-and-only-if statement are equivalent to saying that

κ1 = . . . = κk = 1, κk+1 = . . . = κl = 0 in the Smith-McMillan form of u(z) at z0. Then note

that both ker Resz=z0 u(z)−1 and Ranu(z0) are equal to E(z0)span {δk+1, · · · , δl}. Similarly,

both Ran Resz=z0 u(z)−1 and keru(z0) are equal to F (z0)−1span {δ1, · · · , δk}.

Definition 2.4.3. (i) An analytic Cl-valued function φ(z) with φ(z0) 6= 0 is called a left

null function for a meromorphic matrix-valued function f at z0 of order k > 0, if

φ(z)T f(z) is analytic at z0 with a zero of order k at z0.

(ii) An analytic Cl-valued function ψ(z) with ψ(z0) 6= 0 is called a left pole function

for a meromorphic matrix-valued function f at z0 of order k > 0, if there exists an

analytic Cl-valued function φ(z) with φ(z0) 6= 0 such that φ(z)T f(z) = (z−z0)−kψ(z).

Note that ψ is a left pole function for f if and only if ψ is a left null function for f−1.

The following is immediate from the definition and will prove to be useful for us.

Lemma 2.4.4. Let f has a local Smith-McMillan form (2.4.1) with κ1 ≥ . . . ≥ κj > 0,

0 > κl−r+1 ≥ . . . ≥ κl. Then

(i) (E(z)−1)T δ1, . . . (E(z)−1)T δj are left null functions for f at z0 of order κ1, . . . , κj,

respectively.

(ii) F (z)T δl−r+1, . . . F (z)T δl are left pole functions for f at z0 of order −κl−r+1, . . . ,−κl,

respectively.
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2.4.2 Matrix Outer Functions

Recall that a scalar analytic function G on D is called outer if it can be recovered from its

boundary values G(eiθ) ≡ limr↑1G(reiθ) by the formula

G(z) = c exp
{∫ π

−π

eiθ + z

eiθ − z
log |G(eiθ)|dθ

2π

}
(2.4.2)

for some constant |c| = 1. Note that it is necessary and sufficient log |G(eiθ)| to be integrable.

The analogue of this is

Lemma 2.4.5 (Wiener–Masani [WM57]). Suppose w(θ) is a non-negative matrix-valued

function on the unit circle satisfying

∫ π

−π
log detw(θ)

dθ

2π
> −∞.

Then there exists a unique matrix-valued H2(D) function G(z) satisfying

G(eiθ)∗G(eiθ) = w(θ), (2.4.3)

G(0)∗ = G(0) > 0, (2.4.4)

log | detG(0)| =
∫ π

−π
log |detG(eiθ)|dθ

2π
. (2.4.5)

This is a well-known result of Wiener–Masani [WM57]. The proof of the uniqueness

part can be found, e.g., in [DGK78].

Equality (2.4.5) implies (see [Rud87, §17.17]) that detG(z) is a scalar outer function,

which implies (by definition) that G(z) is a matrix-valued outer function. It follows from

[Gin64, Thm. 2] (see also [Pot60]) that there exists a Hermitian matrix-valued integrable

function M(θ) such that

TrM(θ) = log |detG(eiθ)| (2.4.6)

and

G(z) = ρ

y∫ π

−π
exp

{
eiθ + z

eiθ − z
M(θ)

dθ

2π

}
, (2.4.7)
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where
y∫ π
−π is the Potapov multiplicative integral (see [Pot60])

y∫ π

−π
exp

{
F (θ)

dθ

2π

}
= lim

∆θj→0

y
n−1∏
j=0

eF (φj)∆θj ,

− π = θ0 ≤ φ0 ≤ θ1 ≤ φ1 ≤ · · · ≤ θn−1 ≤ φn−1 ≤ θn = π.

The arrow above the product sign simply defines the order of the multiplication in the

matrix-valued product. ρ in (2.4.7) is a constant unitary matrix which makes the right-

hand side of (2.4.7) positive-definite at z = 0.

Clearly (2.4.6)–(2.4.7) becomes (2.4.2) if l = 1.

2.4.3 Blaschke–Potapov Products

The Blaschke–Potapov elementary factor is a generalization of scalar Blaschke factors (for

those familiar with the Potapov theory of J–contractive matrix functions: we are considering

the signature matrix J to be just the identity matrix 1):

Bzj ,s,U (z) = U∗



|zj |
zj

zj−z
1−zjz

0 0 0 · · · 0

0
. . . 0 0 · · · 0

0 0 |zj |
zj

zj−z
1−zjz

0 · · · 0

0 0 0 1 · · · 0
...

...
...

. . .

0 0 0 0 · · · 1


U, z ∈ D,

where zj ∈ D, s is the number of the scalar Blaschke factors on the diagonal (0 ≤ s ≤ l),

and U is a unitary constant matrix. Clearly Bzj ,s,U is an analytic in D function with unitary

values on the unit circle.

The well-known result for the convergence of the scalar Blaschke products is still valid

for the matrix-valued case: if
∞∑
k=1

(1− |zk|) <∞,



37

then the product
y
∞∏
j=1

Bzj ,sj ,Uj (z)

converges uniformly on the compacts of the unit disk (see Potapov [Pot60] and Ginzburg

[Gin58] where this is proven even more generally for the operator-valued setting). The limit

function is holomorphic in D with unitary boundary values (see Arov–Simakova [AS76]).

We have freedom here in the choice of the unitary matrices Uj and numbers sj . We will

make use of it in the following lemma.

Lemma 2.4.6. Let {zk}∞k=1 with
∑∞

k=1(1 − |zk|) < ∞ be given, with all zk pairwise dif-

ferent. For any sequence of subspaces Vk ⊆ Cl, there exists a unique product B(z) =
y∏∞
j=1

Bzj ,sj ,Uj (z) for some choice of numbers sk, 0 ≤ sk ≤ l, and unitary matrices Uk, that

satisfies

RanB(zk) = ker Res
z=zk

B(z)−1 = Vk for all k. (2.4.8)

Proof. Easy induction does the job. Let Im (0 ≤ m ≤ l) be the diagonal l × l matrix with

first m diagonal elements 1 and the rest 0, and Bn(z) =
y∏n
j=1 Bzj ,sj ,Uj (z) be the partial

finite product. Assume that we already chose {sk}n−1
k=1 and {Uk}n−1

k=1 so that Bn−1(z) satisfies

ker Res
z=zk

Bn−1(z)−1 = Vk, 1 ≤ k ≤ n− 1.

Observe that this implies (2.4.8) holds for 1 ≤ k ≤ n− 1 as well. Put sn = l−dimVn. Note

that

Bzn,sn,Un(z) = U∗n

(
|zn|
zn

zn − z
1− zzn

Isn + (I − Isn)
)
Un (2.4.9)

and

ker Res
z=zn

B(z)−1 = ker Res
z=zn

Bn(z)−1 = ker IsnUnBn−1(zn)−1.

Note that Bn−1(zn) is invertible (as zn /∈ {z1, . . . , zn−1}), so we can put Un to be any unitary

matrix taking the subspace Bn−1(zn)−1Vn to span{δsn+1 · · · δl}. Note that the choice of Un

is not unique, but the factor Bzn,sn,Un is uniquely defined.
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2.5 Miscellaneous Lemmas

Recall that an infinite product
∏∞
j=1 aj with aj 6= 0 is called absolutely convergent if∑∞

j=1 |1− aj | <∞. We will be needing the following easy statements.

Lemma 2.5.1. (i) If
∏∞
j=1 aj with aj 6= 0 is absolutely convergent then

sup
Λ⊂N

∣∣∣∣∣∣
∏
j∈Λ

aj

∣∣∣∣∣∣ <∞.
(ii) Let an → 0 and

∑∞
j=1 |bj | <∞. Then

n∑
j=0

an−jbj → 0.

Proof. (i) If
∏∞
j=1 aj is absolutely convergent, then so is

∏∞
j=1 |aj |, so without loss of gen-

erality we can assume aj > 0. Then

∏
j∈Λ

aj = e
∑

j∈Λ log aj ≤ e
∑

j∈Λ |aj−1| ≤ e
∑∞

j=1 |aj−1| <∞.

(ii) For any ε > 0 find N such that |aj | < ε for all j ≥ N . Then for n > N :

∣∣∣∣∣∣
n∑
j=0

an−jbj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
N∑
j=0

an−jbj

∣∣∣∣∣∣+ ε

n∑
j=N+1

|bj | ≤

∣∣∣∣∣∣
N∑
j=0

an−jbj

∣∣∣∣∣∣+ ε

∞∑
j=1

|bj | ,

which implies lim supn→∞
∣∣∣∑n

j=0 an−jbj

∣∣∣ ≤ ε∑∞j=1 |bj |, and proves (ii).

Remark. Note that part (ii) works also for the matrix-valued a’s and b’s.

Lemma 2.5.2. There exists a unique l × l matrix W satisfying

WA = B, (2.5.1)

RanW = RanB, (2.5.2)

if and only if kerA ⊆ kerB.

Proof. Straightforward/standard.
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Chapter 3

Proofs

3.1 Equivalence Classes of Block Jacobi Matrices

3.1.1 Proof of Theorems 1.3.4 and 1.3.6

We will be using the following lemma from [Li97]. For self-containment purposes we give a

proof of it in the end of the section.

Lemma 3.1.1 (Li [Li97]). Let φ be the map that takes any invertible matrix T to the unitary

factor U in its polar decomposition T = |T |U , where |T | =
√
TT ∗. Then for any invertible

l × l matrices B,D the following holds

||φ(B)− φ(BD)||HS ≤
√
||1−D−1||2HS + ||1−D||2HS ,

where || · ||HS is the Hilbert–Schmidt norm.

Proof of Theorem 1.3.4. For type 1 and 3, the statement is proven in Damanik–Pushnitski–

Simon [DPS08].

Assume J is of type 2. Denote by Ĵ the type 1 Jacobi matrix equivalent to J . Denote

its Jacobi parameters by Ân, B̂n, and let

An = σ∗nÂnσn+1 (3.1.1)

for some unitaries σn. Since Ân → 1, we get An = σ∗nÂnσn+1 =
(
σ∗nÂnσn

)
σ∗nσn+1 con-

verges to 1 if and only if limn→∞ σ
∗
nσn+1 = 1.
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Denote Qn = A1 . . . An, which is a positive-definite matrix. Note that Q̂n = Â1 . . . Ân =

A1 . . . Anσ
∗
n+1 = Qnσ

∗
n+1, so Qn = |Q̂n| and σn+1 = φ(Q̂n)∗. Here φ is the same as in

Lemma 3.1.1.

Now, Ân+1 → 1 together with Lemma 3.1.1 implies that φ(Q̂n+1)−φ(Q̂n) = φ(Q̂nÂn+1)−

φ(Q̂n)→ 0. Thus, σn+1 − σn → 0, and limn→∞ σ
∗
nσn+1 = 1.

For the type 3 case of Theorem 1.3.6, we will need the following lemma. Recall that the

singular values of a matrix A are defined to be the eigenvalues of |A|.

Lemma 3.1.2. There exists a constant c such that for all l × l matrices A

l∑
j=1

(σj − |λj |) ≤ c
l∑

j=1

(1− σj)2, (3.1.2)

where {λj}lj=1 and {σj}lj=1 are the eigenvalues and singular values of A, ordered by |λ1| ≥

. . . ≥ |λl|, σ1 ≥ . . . ≥ σl ≥ 0, where c depends on l only.

Proof. For sufficiently large matrices A the inequality is clear. It also holds for any compact

set on which the right-hand side of (3.1.2) does not vanish. Therefore, we only need to worry

about neighborhoods of matrices with
∑l

j=1(1− σj)2 = 0, that is, unitary matrices.

Consider any matrix A within distance 1/2 from the unitary group. Let U = φ(A) be

the unitary factor in the polar decomposition of A. Since φ(A) is always the closest unitary

to A (see, e.g., [Bha97]), we get

‖A− U‖ ≤ 1/2 and ‖|A| − 1‖ ≤ 1/2.

The second inequality immediately gives |σj−1| ≤ 1/2, which in turn implies ||λj | − 1| ≤ 1/2

by (3.1.3) below. The following basic facts are well-known (see [Wey49]):

σ1 ≥ |λj | ≥ σl for any j; (3.1.3)

l∏
j=1

|λj | =
l∏

j=1

σj . (3.1.4)
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Let εj = σj − 1, δj = |λj | − 1. Then from (3.1.4),

δl =

∏l
j=1 σj∏l−1
j=1 |λj |

− 1 =

∏l
j=1(1 + εj)−

∏l−1
j=1(1 + δj)∏l−1

j=1(1 + δj)
,

and so

l∑
j=1

(σj − |λj |) =
l∑

j=1

(εj − δj)

=

l−1∏
j=1

(1 + δj)
l∑

j=1
εj −

l−1∏
j=1

(1 + δj)
l−1∑
j=1

δj −
l∏

j=1
(1 + εj) +

l−1∏
j=1

(1 + δj)

l−1∏
j=1

(1 + δj)
.

(3.1.5)

The first-order terms (i.e., those involving only one of ε’s or δ’s) of the numerator cancel

out:
l∑

j=1

εj −
l−1∑
j=1

δj −

1 +
l∑

j=1

εj

+

1 +
l−1∑
j=1

δj

 = 0.

Now note that by (3.1.3), |δj | ≤ |ε1| + |εl|. Using this and |εjεk| ≤ (ε2
j + ε2

k)/2 we can

bound all of the second-order terms (i.e., those with εjεk, εjδk, and δjδk) by c̃
∑l

j=1 ε
2
j ,

where c̃ will depend on l only. All of the higher-order terms can be taken care of by using

|εj | < 1, |δj | < 1 to reduce it to second-order. Finally, the denominator of the right-hand

side of (3.1.5) is bounded below by 1/2l. Therefore, we obtain

l∑
j=1

(σj − |λj |) ≤ c
l∑

j=1

ε2
j = c

l∑
j=1

(1− σj)2,

which proves our lemma.

Lemma 3.1.3. There exists a constant c so that

‖1−A‖ ≤ c‖1− |A|‖ (3.1.6)

for any l × l matrix A with real positive eigenvalues, where c depends on l only.

Proof. By the equivalence of norms, we can prove (3.1.6) for the Hilbert–Schmidt norm

instead. Let λ1 ≥ . . . ≥ λl > 0 be the eigenvalues of A, and let σ1 ≥ . . . ≥ σl > 0 be the
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singular values of A. Note

‖1−A‖2HS = Tr [(1−A)(1−A)∗] = l − 2
l∑

j=1

Reλj + TrAA∗

= l − 2
l∑

j=1

λj +
l∑

j=1

σ2
j ,

‖1− |A|‖2HS = Tr
[
(1− |A|)2

]
= l − 2

l∑
j=1

σj +
l∑

j=1

σ2
j ,

and so ‖1−A‖2HS ≤M‖1− |A|‖2HS holds if and only if

2
l∑

j=1

(σj − λj) ≤ (M − 1)
l∑

j=1

(1− σj)2.

Since λj = |λj |, the previous lemma proves the result.

Proof of Theorem 1.3.6. As in Theorem 1.3.4, let Ân be of type 1, and An of type 2 with the

equivalence (3.1.1). Then keeping the notation of Theorem 1.3.4 and using Lemma 3.1.1,

we have

∞∑
n=1

‖σn − σn+1‖HS =
∞∑
n=1

‖φ(Q̂n−1)− φ(Q̂n)‖HS

≤
∞∑
n=1

√
||1− Â−1

n ||2HS + ||1− Ân||2HS

≤
∞∑
n=1

||1− Â−1
n ||HS +

∞∑
n=1

||1− Ân||HS

≤ (sup
n
||Ân||HS + 1)

∞∑
n=1

||1− Ân||HS

≤ (sup
n
||Ân||HS + 1) sup

n
||(1 + Ân)−1||HS

∞∑
n=1

||1− Â2
n||HS <∞,

since Ân → 1, and so supn ||Ân||HS <∞, supn ||(1 + Ân)−1||HS <∞.

This implies that σn is Cauchy, and so converges.

An alternative indirect way of proving that type 1 and type 2 are asymptotic to each

other is as follows: it is proven in Theorem 1.3.7 that under condition (1.3.3) Szegő asymp-

totics for the type 2 block Jacobi matrix holds. In Theorem 3.3.4 the same fact is obtained
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for the type 1 Jacobi matrix. Therefore (1.3.2) implies that the limit limn→∞ σn exists.

Now assume that Ân is of type 1, and An of type 3 with the equivalence (3.1.1). Since

all eigenvalues of An are real and positive, Lemma 3.1.3 applies, and we get

∞∑
n=1

‖1−An‖ ≤ c
∞∑
n=1

‖1− |An|‖ = c
∞∑
n=1

‖1− Ân‖

since |An| = σ∗nÂnσn by (3.1.1). Now
∑∞

n=1 ||1−Ân|| ≤ supn ||(1+Ân)−1||
∑∞

n=1‖1−Â2
n‖ <

∞, which implies

∞∑
n=1

‖σn − σn+1‖ =
∞∑
n=1

‖1− σ∗nσn+1‖ ≤
∞∑
n=1

‖1−An‖+
∞∑
n=1

‖An − σ∗nσn+1‖

=
∞∑
n=1

‖1−An‖+
∞∑
n=1

‖Ân − 1‖ <∞.

This shows that σn is Cauchy, and so converges.

Example 1. Let Dk =
(

(k+1)/k 0
0 1

)
for k ≥ 1. Note that Dk → 1.

Pick some unitary τ , and define the sequence Ân as follows: Â1 = τ∗D1τ , Â2 = D1,

Â3 = D−1
1 , Â4 = D2, Â5 = D3, Â6 = D−1

3 , Â7 = D−1
2 , Â8 = D4, and so on: we define Âk’s

for 2j ≤ k < 2j+1 in terms of further and further chunks of sequence Dk as

Â2j = D2j−1 , . . . , Â3·2j−1−1 = D2j−1,

Â3·2j−1 = D−1
2j−1

, . . . , Â2j+1−1 = D−1
2j−1 .

Note that Ân > 0, i.e., the sequence corresponds to a block Jacobi matrix of type 1. Using

the notation from Section 2, let Q̂n = Â1 . . . Ân. Then

Q̂2j−1 = Â1, Q̂3·2j−1−1 = Â1D2j−1 . . . D2j−1 = Â1D1,

and σ2j = φ(Q̂2j−1)∗ = 1, σ3·2j−1 = φ(Q̂3·2j−1−1)∗ = φ(τ∗D1τD1)∗. Now choose τ such that

φ(τ∗D1τD1) is not positive definite. This gives that limn→∞ σn doesn’t exist, i.e., type 1

and type 2 are not asymptotic to each other.

Of course, the reason is that (1.3.3) fails here:
∑
‖1−AnA∗n‖ diverges as

∑ 1
n .



44

3.1.2 Proof of Li’s Lemma

Proof of Lemma 3.1.1. Let B = UΣV ∗ and BD = Ũ Σ̃Ṽ ∗ be the singular value decom-

positions of B and BD (i.e., U, Ũ , V, Ṽ are unitary, and Σ, Σ̃ are positive and diagonal).

Denote
Y = Ũ∗(B −BD)V = Ũ∗UΣ− Σ̃Ṽ ∗V,

Z = U∗(B −BD)Ṽ = ΣV ∗Ṽ − U∗Ũ Σ̃.

Then

Y − Z∗ = (Ũ∗U − Ṽ ∗V )Σ + Σ̃(Ũ∗U − Ṽ ∗V ) = XΣ + Σ̃X, (3.1.7)

where X = Ũ∗U − Ṽ ∗V . On the other hand,

Y − Z∗ = Ũ∗(B −BD)V − Ṽ ∗(B∗ −D∗B∗)U

= Σ̃Ṽ ∗(D−1 − 1)V − Ṽ ∗(1−D∗)V Σ = Σ̃E − FΣ,
(3.1.8)

where E = Ṽ ∗(D−1 − 1)V , F = Ṽ ∗(1 − D∗)V . Note that Σ and Σ̃ are diagonal, and

therefore, the solution of (3.1.7)=(3.1.8) is

xij =
σ̃iieij − fijσjj
σjj + σ̃ii

,

where X ≡ (xij), E ≡ (eij), F ≡ (fij), Σ ≡ (σij), Σ̃ ≡ (σ̃ij). Note that σjj > 0 and σ̃ii > 0,

and thus by the Schwarz inequality,

|xij |2 ≤
σ2
jj + σ̃2

ii

(σjj + σ̃ii)2
(|eij |2 + |fij |2) ≤ |eij |2 + |fij |2,

which implies

||X||2HS ≤ ||E||2HS + ||F ||2HS = ||1−D−1||2HS + ||1−D||2HS .

Finally, note that φ(B) = UV ∗ and φ(BD) = Ũ Ṽ ∗, so ||φ(B)−φ(BD)||HS = ||ŨXV ∗||HS =

||X||HS , and we are done.
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3.2 Szegő Asymptotics for Matrix-Valued Measures with Count-

ably Many Bound States

We will need a couple of facts about the product we defined in (1.2.1). By 〈〈f, g〉〉L2 , with

the sub-index just L2 , we will mean the product with respect to the Lebesgue measure on

the real line or the unit circle, depending on the context.

Lemma 3.2.1. Let L2(1 dθ
2π ) be the space of all matrix-valued functions, each entry of which

is a scalar L2( dθ2π )-function.

(a) The following formulae

‖f‖L2,1 ≡
(∫ π

−π
‖f(θ)‖2 dθ

2π

)1/2

,

‖f‖L2,2 ≡
∥∥∥∥∫ π

−π
f(θ)∗f(θ)

dθ

2π

∥∥∥∥1/2

= || 〈〈f, f〉〉L2 ||1/2

define two equivalent (semi)norms on L2(1 dθ
2π ):

‖f‖L2,2 ≤ ‖f‖L2,1 ≤ l1/2‖f‖L2,2.

(b) For any f, g ∈ L2,

‖〈〈f, g〉〉L2‖ ≤ l‖f‖L2,2‖g‖L2,2.

(c) If f ∈ L2(1 dθ
2π ), then its n-th matrix Fourier coefficient

〈〈
einθI, f

〉〉
L2 → 0 as n→∞.

Proof. (a) The first inequality is obvious. The second follows from

‖f‖2L2,1 =
∫ π

−π
‖f(θ)‖2 dθ

2π
≤
∫ π

−π
Tr(f(θ)∗f(θ))

dθ

2π
= Tr

(∫ π

−π
f(θ)∗f(θ)

dθ

2π

)
≤ l‖f‖2L2,2.

(b) Using Hölder, and the equivalence from (a), we get

‖〈〈f, g〉〉L2‖ ≤
∫ π

−π
‖g(θ)‖ ‖f(θ)‖dθ

2π
≤ ‖f‖L2,1‖g‖L2,1 ≤ l‖f‖L2,2‖g‖L2,2.

(c) Follows by looking at each entry separately.

We start by constructing L which we hope to be the limiting function.
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3.2.1 Construction of the Limit Function L

Let J be the type 2 Jacobi matrix corresponding to µ, and let pn be the orthonormal

polynomials for J .

Let ν = Sz(µ|[−2,2]) be the image measure on ∂D of µ|[−2,2] under the mapping θ 7→

2 cos θ:
∫ π
−π g(2 cos θ)dν(θ) =

∫ 2
−2 g(x)dµ(x) for measurable g’s. This is what is called the

Szegő mapping. Let the Lebesgue decomposition of ν be

dν(θ) = w(θ)
dθ

2π
+ dνs.

Then

w(θ) = 2π| sin θ|f(2 cos θ), (3.2.1)

and so (1.3.5) implies ∫ π

−π
log detw(θ)

dθ

2π
> −∞.

Therefore Lemma 2.4.5 applies, so there exists a matrix-valued outer H2(D)-function

G(z) such that

w(θ) = G(eiθ)∗G(eiθ), (3.2.2)

G(0)∗ = G(0) > 0, (3.2.3)

log | detG(0)| =
∫ π

−π
log |detG(eiθ)|dθ

2π
. (3.2.4)

Denote wk to be the weight of µ at zk + z−1
k :

wk = µ(zk + z−1
k ).

Note that the condition (1.3.6) is equivalent to

N∑
k=1

nk log |zk| > −∞, (3.2.5)

where zk and nk are defined in (2.1.6). Now apply Lemma 2.4.6 to obtain the Blaschke–
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Potapov product B(z) =
y∏∞
j=1 Bzj ,sj ,Uj (z) (by (3.2.5) it converges) satisfying

ker Res
z=zk

(
B(z)−1G(z)

)
= kerwk for all k. (3.2.6)

Indeed, note that G(zk) is invertible for any k (since detG is outer, it can’t vanish in D),

so we can apply Lemma 2.4.6 with Vk = G(zk)−1 kerwk.

Define for z ∈ D,

L(z) =
1√
2
G(z)−1B(z)V, (3.2.7)

where V is a constant unitary such that L(0) > 0.

Let us rewrite the statement of Theorem 1.3.7 in a slightly more general way.

Theorem 3.2.2. Let µ satisfy (1.3.4), (1.3.5), (1.3.6). Assume J is of type 2, and let J̃

be any equivalent to it matrix with Jacobi parameters (1.3.1) and orthonormal polynomials

p̃n (1.3.2). Assume σ = limn→∞ σn exists. Then

znp̃n
(
z + z−1

)
→ L(z)σ uniformly on compacts of D; (3.2.8)

p̃n(2 cos θ) =
1√
2

(
e−inθL(eiθ) + einθL(e−iθ))

)
σ + o(1) in L2

(
w(θ)

dθ

2π

)
sense;

(3.2.9)〈〈
p̃n(x)

〉〉
L2(µs)

→ 0, (3.2.10)

where w is defined in (3.2.1).

The limit function L has a factorization (3.2.7), where G is the unique H2(D)-function

satisfying (3.2.2)–(3.2.4) (and thus has the form (2.4.6)–(2.4.7)), B is a Blaschke–Potapov

product, V is a constant unitary matrix. We have

ker Res
z=zk

L(z)−1 = kerwk for all k;

L(0) > 0.

Remarks. 1. We will show that the asymptotics holds for type 2 Jacobi matrix. Thus

by (1.3.2), the polynomials p̃n obey Szegő asymptotics if and only if the limit limn→∞ σn

exists, so this condition is also necessary.
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2. The equivalent way of writing (3.2.9) is

G(eiθ)p̃n(2 cos θ) =
1√
2

(
e−inθB(eiθ) + einθG(eiθ)G(e−iθ)−1B(e−iθ)

)
V σ + o(1)

in L2

(
1
dθ

2π

)
sense.

3.2.2 Proof of Theorem 1.3.7

Proof. The beginning of the proof follows closely the proof of the Lemma in [PY01]. Denote

s(eiθ) = G(eiθ)G(e−iθ)−1,

and consider the following expression. Expanding the product and using (3.2.2), we get

0 ≤
〈〈
G(eiθ)p̃n(2 cos θ)− 1√

2

(
e−inθB(eiθ) + einθs(eiθ)B(e−iθ)

)〉〉2

L2

+
〈〈

p̃n(x)
〉〉2

L2(µs)

=
∫ π

−π
p̃n(2 cos θ)∗w(θ)p̃n(2 cos θ)

dθ

2π
+
〈〈

p̃n(x)
〉〉2

L2(µs)
+

1
2

〈〈
e−inθB(eiθ) + einθs(eiθ)B(e−iθ)

〉〉2

L2

−
√

2 Re
〈〈
G(eiθ)p̃n(2 cos θ), e−inθB(eiθ) + einθs(eiθ)B(e−iθ)

〉〉
L2
, (3.2.11)

where by ReT we mean T+T ∗

2 .

First of all,

∫ π

−π
p̃n(2 cos θ)∗w(θ)p̃n(2 cos θ)

dθ

2π
+
〈〈

p̃n(x)
〉〉2

L2(µs)
=
〈〈

p̃n(x)
〉〉2

L2(µ)
= 1. (3.2.12)

Now, observe that

s(eiθ)∗s(eiθ) = G(e−iθ)−∗G(eiθ)∗G(eiθ)G(e−iθ)−1

= G(e−iθ)−∗w(θ)G(e−iθ)−1 = G(e−iθ)−∗w(−θ)G(e−iθ)−1 = 1.

Thus

1
2

〈〈
e−inθB(eiθ) + einθs(eiθ)B(e−iθ)

〉〉2

L2
= 1 + Re

〈〈
e−inθB(eiθ), einθs(eiθ)B(e−iθ)

〉〉
L2

= 1 +
∫ π

−π
e2inθB(eiθ)∗s(eiθ)B(e−iθ)

dθ

2π
= 1 + o(1)

(3.2.13)
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since the function k(θ) = B(eiθ)∗s(eiθ)B(e−iθ) satisfies
∫ π
−π k(θ)∗k(θ) dθ2π = 1, so by parts

(a) and (c) of Lemma 3.2.1, its Fourier coefficients converge to the zero matrix.

Note that for any function g on the unit circle we have

〈〈
G(eiθ)p̃n(2 cos θ) , s(eiθ)g(e−iθ)

〉〉
L2

=
∫ π

−π
p̃n(2 cos θ)∗G(eiθ)∗G(eiθ)G(e−iθ)−1g(e−iθ)

dθ

2π

=
∫ π

−π
p̃n(2 cos θ)∗w(θ)G(e−iθ)−1g(e−iθ)

dθ

2π

=
∫ π

−π
p̃n(2 cos θ)∗w(−θ)G(e−iθ)−1g(e−iθ)

dθ

2π

=
∫ π

−π
p̃n(2 cos θ)∗G(e−iθ)∗ g(e−iθ)

dθ

2π

=
∫ π

−π
p̃n(2 cos θ)∗G(eiθ)∗ g(eiθ)

dθ

2π
=
〈〈
G(eiθ)p̃n(2 cos θ), g(eiθ)

〉〉
L2
,

so the third term on the right-hand side of (3.2.11) becomes

Re
〈〈
G(eiθ)p̃n(2 cos θ), e−inθB(eiθ) + einθs(eiθ)B(e−iθ)

〉〉
L2

= 2 Re
〈〈
G(eiθ)p̃n(2 cos θ), e−inθB(eiθ)

〉〉
L2
. (3.2.14)

Lemma 3.2.3. Let p̃n(x) = rnx
n + . . . (in other words, rn = (Ã∗1)−1 · · · (Ã∗n)−1 ). Then rn

are uniformly bounded (with respect to the operator norm).

Proof. On the one hand, by (3.2.12),

∥∥∥G(eiθ)p̃n(2 cos θ)
∥∥∥
L2,2
≤ ‖

〈〈
p̃n(x)

〉〉2

L2(µ)
‖1/2 = 1. (3.2.15)

On the other, by Lemma 3.2.1(a) and subharmonicity of ‖h(·)‖2,

∥∥∥G(eiθ)p̃n(2 cos θ)
∥∥∥
L2,2
≥ l−1/2

∥∥∥G(eiθ)p̃n(2 cos θ)
∥∥∥
L2,1

= l−1/2

(∫ π

−π

∥∥∥h(eiθ)
∥∥∥2 dθ

2π

)1/2

≥ l−1/2‖h(0)‖ = l−1/2‖G(0)rn‖,

where h(z) ≡ G(z)
[
znp̃n

(
z + 1

z

)]
is analytic in D. G(0) is invertible, so rn are uniformly

bounded.

The next lemma will allow us to compute the right-hand side of (3.2.14).
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Lemma 3.2.4. Let rn be as in the previous lemma. Then

〈〈
e−inθB(eiθ), G(eiθ)p̃n(2 cos θ)

〉〉
L2

= B(0)−1G(0)rn + o(1). (3.2.16)

Proof. The partial products BN (z) converge to B(z) uniformly on compacts of D. This im-

plies that each Fourier coefficient of B(eiθ)−BN (eiθ) goes to 0 as N →∞. Since ‖B‖L2,2 =

‖BN‖L2,2 = 1, weak convergence implies the norm convergence ‖B(eiθ)−BN (eiθ)‖L2,2 → 0.

Using (3.2.15) and Lemma 3.2.1(b), we can find N ∈ N such that

∥∥∥〈〈e−inθ(B(einθ)−BN (e−inθ)), G(eiθ)p̃n(2 cos θ)
〉〉

L2

∥∥∥
≤ l‖B(eiθ)−BN (eiθ)‖L2,2‖G(eiθ)p̃n(2 cos θ)‖L2,2 < ε (3.2.17)

holds for any n ∈ N. By Lemma 3.2.3, we can also assume that for this N ,

‖B(0)−1G(0)rn −BN (0)−1G(0)rn‖ < ε (3.2.18)

also holds for any n. Now, BN (eiθ)∗ = BN (eiθ)−1, so

〈〈
e−inθBN (eiθ) , G(eiθ)p̃n(2 cos θ)

〉〉
L2

=
∫ π

−π
einθBN (eiθ)−1G(eiθ)p̃n(2 cos θ)

dθ

2π

=
∫
∂D
BN (z)−1G(z)p̃n

(
z +

1
z

)
zn

dz

2πiz

= BN (0)−1G(0)rn +
N∑
k=1

Res
z=zk

(
BN (z)−1G(z)

)
p̃n(Ek)zn−1

k .

(3.2.19)

By the construction, (3.2.6) holds, which implies ker Resz=zk

(
BN (z)−1G(z)

)
= kerwk =

kerw1/2
k , which allows us to write Resz=zk

(
BN (z)−1G(z)

)
= Skw

1/2
k for some matrix Sk.

Thus,

∥∥∥∥∥
N∑
k=1

Res
z=zk

(
BN (z)−1G(z)

)
p̃n(Ek)zn−1

k

∥∥∥∥∥ ≤ sup
1≤k≤N

‖Sk‖
N∑
k=1

‖w1/2
k p̃n(Ek)‖ |zk|n−1. (3.2.20)

But ‖w1/2
k p̃n(Ek)‖ = (‖p̃n(Ek)∗wkp̃n(Ek)‖)1/2 ≤ ‖

〈〈
p̃n(x)

〉〉
L2(µ)

‖ = 1. Since N was fixed,

this proves that the right-hand side of (3.2.20) goes to 0 when n→∞. Combining (3.2.17),
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(3.2.18), (3.2.19), and (3.2.20), we obtain (3.2.16).

Now, plugging (3.2.12), (3.2.13), (3.2.14), and (3.2.16) into (3.2.11), we obtain

0 ≤ 21− 2
√

2 Re
(
B(0)−1G(0)rn

)
+ o(1). (3.2.21)

Observe that (3.2.21) holds for any initial choice of unitaries σn in (1.3.1). Let pn(x) =

κnx
n + . . . (in other words, κn = (A∗1)−1 · · · (A∗n)−1 > 0). Then (1.3.2) gives rn = κnσn+1.

For each n, pick unitary σn+1 such that B(0)−1G(0)rn = B(0)−1G(0)κnσn+1 is positive-

definite. Then (3.2.21) gives

√
2B(0)−1G(0)κnσn+1 ≤ 1 + o(1). (3.2.22)

Denote Hn ≡
√

2B(0)−1G(0)rn > 0. Let {η(n)
s }ls=1 be the eigenvalues of Hn in non-

increasing order. η(n)
s > 0 for any n, s. Then (3.2.22) implies

lim sup
n→∞

η(n)
s ≤ 1 (3.2.23)

for each s = 1, . . . , l.

On the other hand, let us compute the determinant of Hn. By (2.4.9) and (2.4.5),

log detB(0)−1G(0) = −
∑
k

nk log |zk|+
∫ π

−π
log | detG(eiθ)|dθ

2π
,

and by Lemma 2.1.2,

lim
n→∞

n∑
j=1

log det |Ãj |+
∑
k

nk log |zk| =
1
2

∫ π

−π
log det

ImM(eiθ)
sin θ

dθ

2π

=
1
2

∫ π

−π
log det

πf(2 cos θ)
| sin θ|

dθ

2π
=

1
2

∫ π

−π
log det

w(θ)
2 sin2 θ

dθ

2π

=
∫ π

−π
log |detG(eiθ)|dθ

2π
− l

4π

∫ π

−π
log
(
2 sin2 θ

)
dθ

=
∫ π

−π
log |detG(eiθ)|dθ

2π
+
l

2
log 2.

(3.2.24)
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Now note that

log det rn = −
n∑
j=1

log det Ã∗j = −
n∑
j=1

log det |Ãj |+ log det ρn

for some unitary matrix ρn. However, Hn > 0, so det ρn must be 1 as otherwise log detHn =
l
2 log 2 + log detB(0)−1G(0) + log det rn cannot be real. Thus we obtain

log detHn =
l

2
log 2 + log detB(0)−1G(0) + log det rn

=
l

2
log 2−

∑
k

nk log |zk|+
∫ π

−π
log |detG(eiθ)|dθ

2π
−

n∑
j=1

log det |Ãj | → 0

by (3.2.24). Thus limn→∞ detHn = 1. Together with (3.2.23) this implies limn→∞ η
(n)
s = 1

for each s, and so Hn → 1. This proves κnσn+1 → 2−1/2G(0)−1B(0). But |κnσn+1| = κn

(here temporarily |T | ≡
√
TT ∗ instead of

√
T ∗T ), so

κn → 2−1/2
∣∣G(0)−1B(0)

∣∣ = L(0).

Also, σn → V ∗.

Thus for the chosen σ’s, the right-hand side of (3.2.21) goes to the zero matrix. This

implies

∥∥∥∥G(eiθ)p̃n(2 cos θ)− 1√
2

(
e−inθB(eiθ) + einθs(eiθ)B(e−iθ)

)∥∥∥∥
L2,2

→ 0

and 〈〈
p̃n(x)

〉〉2

L2(µs)
→ 0.

Taking into account that pn(x) = p̃n(x)σ∗n+1 and σn → V ∗, we get

∥∥∥∥G(eiθ)pn(2 cos θ)− 1√
2

(
e−inθB(eiθ) + einθs(eiθ)B(e−iθ)

)
V

∥∥∥∥
L2,2

→ 0

and

〈〈pn(x)〉〉2L2(µs) → 0.
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This proves (3.2.9)–(3.2.10) for the type 2 case. To prove (3.2.8), by Lemma 3.2.1(b),

∥∥∥∥〈〈 e−inθ

1− eiθz̄
1, G(eiθ)pn(2 cos θ)− 1√

2

(
e−inθB(eiθ) + einθs(eiθ)B(e−iθ)

)
V

〉〉
L2

∥∥∥∥
≤ l√

1− |z|2

∥∥∥∥G(eiθ)pn(2 cos θ)− 1√
2

(
e−inθB(eiθ) + einθs(eiθ)B(e−iθ)

)
V

∥∥∥∥
L2,2

→ 0

(3.2.25)

uniformly on compacts of D. On the other hand,

〈〈
e−inθ

1− eiθz̄
1, G(eiθ)pn(2 cos θ)− 1√

2
e−inθB(eiθ)V

〉〉
L2

=
∫ π

−π

einθ

1− e−iθz

(
G(eiθ)pn(2 cos θ)− 1√

2
e−inθB(eiθ)V

)
dθ

2π

= znG(z)pn(z + z−1)− 1√
2
B(z)V,

(3.2.26)

and

〈〈
e−inθ

1− eiθz̄
1,

1√
2

(
einθs(eiθ)B(e−iθ)

)
V

〉〉
L2

→ 0 uniformly on compacts of D (3.2.27)

by Lemma 3.2.1(c). Together, (3.2.25), (3.2.26) and (3.2.27) give

znpn
(
z + z−1

)
→ L(z) uniformly on compacts of D.

Thus we proved (3.2.8)–(3.2.10) for the type 2 case. The result for any J̃ asymptotic to

type 2 follows immediately from p̃n(x) = pn(x)σn+1.
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3.3 Jost Asymptotics for Matrix-Valued Orthogonal Polyno-

mials

In this section we will be using notation

J (k) =



Bk+1 Ak+1 0

A∗k+1 Bk+2 Ak+2
. . .

0 A∗k+2 Bk+3
. . .

. . . . . . . . .


, J̃k =



B1 A1 0

A∗1 B2 A2

0 A∗2
. . . . . .
. . . . . . . . .

A∗k−1 Bk Ak 0

0 A∗k 0 1

0 0 1 0
. . .

. . . . . .



.

Recall that we introduced the M -functions M(z) = −m(z+ z−1). Denote M (k)(z) to be

the M -function corresponding to J (k) (in particular M (0) = M). Then the relation (1.2.7)

takes form

An+1M
(n+1)(z)A∗n+1 =

(
z +

1
z

)
1−Bn+1 −M (n)(z)

−1
(3.3.1)

for z ∈ D, n ≥ 0.

Since M (n)(z)/z = 1 +O(z) at z = 0, this gives

(
M (n)(z)

z

)−1

= 1−Bn+1z − (An+1A
∗
n+1 − 1)z2 +O(z3). (3.3.2)

3.3.1 Jost Function via the Geronimo–Case Equations

3.3.1.1 Jost function for eventually free Jacobi matrices

First we will show existence and derive some properties of the Jost solution and the Jost

function for the matrices J̃k. Clearly we can construct a unique solution un(z; J̃k) which

solves (1.3.11) for J̃k and satisfies un(z; J̃k) = zn1 if n ≥ k + 1, where z + z−1 = E.

Since uk(z; J̃k) = zkA−1
k , taking the Wronskian at n = k, we find,

u(z; J̃k) = zkpLk (z + z−1; J̃k)− zk+1A∗kp
L
k−1(z + z−1; J̃k).
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This suggests to define

gn(z) = zn
(
pLn
(
z + z−1;J

)
− zA∗npLn−1

(
z + z−1;J

))
(3.3.3)

and

cn(z) = znpLn
(
z + z−1;J

)
. (3.3.4)

Clearly gn is a polynomial in z of degree at most 2n, and cn of degree exactly 2n. The

equation (3.3.3) can be written as

gn(z) = cn(z)− z2A∗ncn−1(z). (3.3.5)

Since pLn(z;J ) = pLn(z; J̃k) for n ≤ k, we have

gn(z) = u(z; J̃n). (3.3.6)

Multiplying by zn+1 the recursion relation for left orthogonal polynomials (we will start

writing pn(z) instead of pn(z;J ) when J is clear from the context)

An+1p
L
n+1

(
z +

1
z

)
+
(
Bn+1 −

(
z +

1
z

)
1
)

pLn

(
z +

1
z

)
+A∗np

L
n−1

(
z +

1
z

)
= 0

and using (3.3.5), we get

An+1cn+1(z) =
(
z21− zBn+1

)
cn(z) + gn(z). (3.3.7)

Combining (3.3.5) and (3.3.7), we obtain

An+1gn+1(z) =
(
z2
(
1−An+1A

∗
n+1

)
− zBn+1

)
cn(z) + gn(z). (3.3.8)

The recursion equations (3.3.7) and (3.3.8) with the initial conditions g0(z) = c0(z) = 1

are called the Geronimo-Case equations. They can also be written in the form

 cn+1

gn+1

 = Vn+1

 cn

gn

 , (3.3.9)
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where Vn is the 2l × 2l matrix

Vn(z) =

 A−1
n 0

0 A−1
n

 z21− zBn 1

z2(1−AnA∗n)− zBn 1

 . (3.3.10)

Since u = gn if Ak = 1, Bk = 0 for k ≥ n+ 1, it is straightforward to see the following

theorem holds.

Theorem 3.3.1. Let AkA∗k − 1 = Bk = 0 for k ≥ n+ 1 (i.e., J = J̃n), then u(z;J ) is a

polynomial. Moreover:

• if AnA∗n 6= 1, then deg(u) = 2n;

• if AnA∗n = 1, but Bn 6= 0, then deg(u) = 2n− 1.

Proof. By (3.3.6), u(z;J ) = gn(z), and then (3.3.8) gives

u(z;J ) = A−1
n

[(
z2 (1−AnA∗n)− zBn

)
cn−1(z) + gn−1(z)

]
.

Since deg gk ≤ 2k and deg ck = 2k, we obtain each statement of the theorem by induction.

3.3.1.2 The general case

Just as in [DS06b], we will be making one of the three successively stronger hypotheses on

the Jacobi coefficients:
∞∑
n=1

[||Bn||+ ||1−AnA∗n||] <∞ (A1)

∞∑
n=1

n [||Bn||+ ||1−AnA∗n||] <∞ (A2)

||Bn||+ ||1−AnA∗n|| ≤ CR−2n for some R > 1 (A3)

and study properties of the Jost function for each case.

Note that we have the following:

Lemma 3.3.2. If the Jacobi parameters satisfy (A1), and J is of type asymptotic to 1,

then the product
y∏∞
n=1 An converges, and the limit is an invertible matrix. Moreover,∏∞

n=1 ||A−1
n || <∞ and

∏∞
n=1 ||An|| <∞, and the products converge absolutely.



57

Proof. Assume J is of type 1, i.e., An = A∗n > 0. Then
∏∞
n=1 ||A−1

n || <∞ follows from

∞∑
n=1

|1− ||A−1
n ||| ≤

∞∑
n=1

||1−A−1
n || ≤

∞∑
n=1

||A−1
n || ||1−An||

≤ sup
j
||A−1

j ||
∞∑
n=1

||1−A2
n|| ||(1 +An)−1||

≤ c
∞∑
n=1

||1−A2
n|| <∞,

(3.3.11)

where we can bound ||A−1
n || and ||(1 + An)−1|| uniformly since J is in the Nevai class, so

An → 1, so (1 +An)−1 → 1
21.

The bound for
∑∞

n=1 |1− ‖An‖| is analogous.

Note that we also showed that
∑∞

n=1 ||1− An|| <∞. It is proven in [Tre99] that given

this, the limit
y∏∞
n=1 An exists and is invertible.

Now let J̃ be any matrix satisfying (A1) asymptotic to type 1, satisfying (1.3.1). Then
y∏N

n=1 Ãn =
y∏N

n=1 AnσN+1 also has an invertible limit.

Define gn and cn by (3.3.7) and (3.3.8) with the initial conditions g0(z) = c0(z) = 1.

Lemma 3.3.3. Assume J is of type 1.

(i) Let (A1) hold. Then uniformly on compacts K of D \ {±1} ≡ E,

sup
n∈N,z∈K

||cn(z)||+ ||gn(z)|| <∞. (3.3.12)

(ii) Let (A2) hold. Then

sup
n∈N,z∈D

||gn(z)|| <∞, (3.3.13)

sup
n∈N,z∈D

||cn(z)||
1 + n

<∞. (3.3.14)

(iii) Let (A3) hold. Let K be any compact subset of z ∈ {z | |z| < R} ≡ DR with

r = supz∈K |z| > 1. There exists some constant C such that for all z ∈ K

||cn(z)||+ ||gn(z)|| ≤ C [max(1, r)]2n . (3.3.15)
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In each of these cases the limit

g∞(z) = lim
n→∞

gn(z)

exists, uniformly on compacts of the corresponding region: E for (A1), D for (A2), and DR

for (A3). g∞ is continuous there, and analytic in the interior.

Proof. (i) Define the norm

∣∣∣∣∣∣
∣∣∣∣∣∣
 A

B

∣∣∣∣∣∣
∣∣∣∣∣∣ = ||A|| + ||B|| for any l × l matrices A,B, and let

||V ||in for any 2l× 2l matrix V be the induced operator norm. Taking (3.3.9) into account,

the estimates (3.3.12) and (3.3.15) will be proved if we show the corresponding results for

||Vn(z) . . . V1(z)||in. Observe that for z 6= ±1,

 z21 1

0 1

 = L(z)

 z21 0

0 1

L(z)−1,

where

L(z) =

 1 1
1−z2 1

0 1

 , L(z)−1 =

 1 − 1
1−z2 1

0 1

 .

So denoting

Fn = L(z)−1

 −zBn 0

z2(1−AnA∗n)− zBn 0

L(z),

we obtain from (3.3.10),

Vn =

 A−1
n 0

0 A−1
n

L(z)

 z21 0

0 1

+ Fn

L(z)−1

= L(z)

 A−1
n 0

0 A−1
n

 z21 0

0 1

+ Fn

L(z)−1

since L(z) and

 A−1
n 0

0 A−1
n

 commute.
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Then we get that for any z, z 6= ±1,

‖Vn . . . V1‖in ≤ ‖L(z)‖in ‖L(z)−1‖in [max(1, |z|)]2n×

×
n∏
j=1

||A−1
j ||

n∏
j=1

(
1 + ‖L(z)‖in ‖L(z)−1‖in

(
||Bj ||+ ||1−AjA∗j ||

))
. (3.3.16)

By Lemma 3.3.2, we can bound
∏n
j=1 ||A

−1
j ||.

For any compactK of E, supz∈K‖L(z)‖in ‖L(z)−1‖in <∞, so taking supremum in (3.3.16)

over z ∈ K and using (A1) we obtain

sup
n∈N,z∈K

||cn(z)||+ ||gn(z)|| = M <∞

for some constant M .

(ii) Note that by Lemma 2.5.1(i), we have

sup
Λ⊂N

∏
j∈Λ

||A−1
j || = p <∞.

Let us show inductively that

||gn(z)|| ≤
n∏
j=1

||A−1
j ||

n∏
j=1

[
1 + j(||Bj ||+ ||1−AjA∗j ||)

]
and

||cn(z)|| ≤ (n+ 1)
n∏
j=1

||A−1
j ||

n∏
j=1

[
1 + j(||Bj ||+ ||1−AjA∗j ||)

]
.

For n = 0 the inequalities are trivial. Now, if these inequalities hold for n then us-

ing (3.3.7) and (3.3.8):

||gn+1(z)|| ≤ ||A−1
n+1||

n∏
j=1

[
(n+ 1)(||Bn+1||+ ||1−An+1A

∗
n+1||) + 1

]
×

×
n∏
j=1

||A−1
j ||

n∏
j=1

[
1 + j(||Bj ||+ ||1−AjA∗j ||)

]
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and

||cn+1(z)|| ≤ ||A−1
n+1||

n∏
j=1

[(n+ 1)(1 + ||Bn+1||) + 1]×

×
n∏
j=1

||A−1
j ||

n∏
j=1

[
1 + j(||Bj ||+ ||1−AjA∗j ||)

]
≤ (n+ 2)

n+1∏
j=1

||A−1
j ||

n+1∏
j=1

[
1 + j(||Bj ||+ ||1−AjA∗j ||)

]
.

By Lemma 3.3.2,
∏∞
n=1 ||A−1

n || is absolutely convergent, so (A2) implies (3.3.13) and (3.3.14).

(iii) Since ||gn|| and ||cn|| are subharmonic functions, by the maximum principle we need

to prove the estimate (3.3.15) for the circle |z| = r. This follows immediately from (3.3.16).

Note that this property does not really require (A3), just (A1) (the existence of the limit

however will).

Now to show the convergence of gn, note that by (3.3.8),

||gn+1(z)− gn(z)|| = ||A−1
n+1

(
z2
(
1−An+1A

∗
n+1

)
− zBn+1

)
cn(z) +

(
A−1
n+1 − 1

)
gn(z)||

≤

[
sup
j
||A−1

j || [max(1, r)]2n (||Bn||+ ||1−AnA∗n||) + ||1−A−1
n+1||

]
×

× sup
n∈N,z∈K

(||cn(z)||+ ||gn(z)||) . (3.3.17)

Since we are in the type 1 situation, we can use the same reasoning as in (3.3.11) to get

||1 − A−1
n+1|| ≤ c‖1 − An+1A

∗
n+1‖, and then (3.3.17), together with the estimates in (i),

(ii), and (iii), gives
∑∞

n=0 ||gn+1(z) − gn(z)|| < ∞ uniformly on compacts of E, D, DR,

respectively. This proves the existence and analyticity/continuity properties of g∞.

As a consequence we obtain Szegő asymptotics of the orthonormal polynomials in the

unit disk (compare with Corollary 1.3.8).

Theorem 3.3.4. Assume (A1) holds, i.e.,
∑∞

n=1 [||Bn||+ ||1−AnA∗n||] <∞, and let J be

of type 1. Then uniformly on compacts of D the limit

lim
n→∞

znpLn
(
z + z−1

)
(3.3.18)

exists, and is equal to 1
1−z2 g∞(z).
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Proof. Note that by Lemma 2.5.1,
∏∞
n=1 ||A−1

n || is absolutely convergent, so by Lemma

2.5.1(i), we have

sup
Λ⊂N

∏
j∈Λ

||A−1
j || = p <∞. (3.3.19)

Let K be any compact of D, and M = supn∈N,z∈K ||cn(z)||+ ||gn(z)||. By the Geronimo–

Case equations,

||cn −A−1
n gn−1 − z2A−1

n cn−1|| ≤M‖A−1
n ‖‖Bn‖ ≤Mp‖Bn‖.

Repeating this, we get

||cn −A−1
n gn−1 − z2A−1

n A−1
n−1gn−2 − z4A−1

n A−1
n−1cn−2||

≤Mp‖Bn‖+ |z|2M‖A−1
n ‖‖A−1

n−1‖‖Bn−1‖

≤Mp‖Bn‖+ |z|2Mp‖Bn−1‖.

(3.3.20)

Iterating it further, we get

||cn − fn|| ≤Mp

n∑
j=1

|z|2(n−j)‖Bj‖, (3.3.21)

where

fn = A−1
n gn−1 +z2A−1

n A−1
n−1gn−2 + . . .+z2(n−1)A−1

n A−1
n−1 . . . A

−1
1 g0 +z2nA−1

n A−1
n−1 . . . A

−1
1 c0.

By Lemma 2.5.1(ii) the right-hand side of (3.3.21) goes to zero. Finally, note that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

y
∞∏

k=n+1

Ak g∞
1− z2n

1− z2
− fn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ p

n−1∑
j=0

|z|2(n−1−j)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

y
∞∏

k=n+1

Ak g∞ −A−1
n A−1

n−1 . . . A
−1
j+1gj

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤ p2
n−1∑
j=0

|z|2(n−1−j)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

y
∞∏
k=1

Ak g∞ −A1 . . . Ajgj

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ .

(3.3.22)

By Lemma 3.3.2, the product
y∏∞
k=1 Ak converges, and by Lemma 2.5.1(ii) the right-hand

side of (3.3.22) goes to zero. Easy to see that the convergence in (3.3.21) and (3.3.22) is

actually uniform. Thus we established limn→∞ cn = 1
1−z2 g∞.
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Remark. Another way of showing this is to use the analogous arguments to [Sim, Lemma

3.7.5] to show that Szegő asymptotics (i.e., (3.3.18)) at z ∈ D holds if and only if the Jost

asymptotics does (i.e., (3.3.28)), so that Theorem 3.3.6 implies Theorem 3.3.4.

Denote the limit function g∞(z) of Lemma 3.3.3 as u(z;J ) and call it the Jost function

(in Theorem 3.3.6 below we will show that it is indeed the case). Lemma 3.3.3 establishes

the existence of the Jost function for the type 1 situation only. The next theorem says that

the Jost function exists if and only if the Jacobi matrix is asymptotic to type 1.

Theorem 3.3.5. Let J with Jacobi parameters (An)∞n=1, (Bn)∞n=1 be of type 1 and satisfy

(A1). Let J̃ with Jacobi parameters (Ãn)∞n=1, (B̃n)∞n=1 be equivalent to J , i.e,

Ãn = σ∗nAnσn+1, (3.3.23)

B̃n = σ∗nBnσn (3.3.24)

for some unitary 1 = σ1, σ2, σ3, . . . Then the Jost function for J̃ exists if and only if

limn→∞ σn exists, in which case

u(z; J̃ ) = lim
n→∞

σ∗n u(z;J )σ1. (3.3.25)

Proof. We prove inductively that g̃n = σ∗n+1gnσ1 and c̃n = σ∗n+1cnσ1. For n = 0 this is

trivial, and assuming this holds for n, we prove it for n+ 1:

g̃n+1(z) = Ã−1
n+1

[
g̃n(z) +

(
z2
(
1− Ãn+1Ã

∗
n+1

)
− zB̃n+1

)
c̃n(z)

]
= σ∗n+2A

−1
n+1σn+1

[
σ∗n+1gn(z)

+
(
z2
(
1− σ∗n+1An+1A

∗
n+1σn+1

)
− zσ∗n+1Bn+1σn+1

)
σ∗n+1cn(z)

]
σ1

= σ∗n+2A
−1
n+1

[(
z2
(
1−An+1A

∗
n+1

)
− zBn+1

)
cn(z) + gn(z)

]
σ1 = σ∗n+2gn+1(z)σ1,

and similarly for c̃n+1 = σ∗n+2cn+1σ1. The limit limn→∞ gn(z) exists by Lemma 3.3.3, so

limn→∞ g̃n(z) exists if and only if exists the limit limn→∞ σn, in which case u(z; J̃ ) =

limn→∞ σ
∗
n u(z;J )σ1.

Assume J is a Jacobi matrix asymptotic to type 1, and let its Jacobi parameters sat-

isfy (A1), (A2), or (A3). Then so do the parameters of J (k) for all k, and thus u(z;J (k))

exists in E, D, DR, respectively (which will be called “the appropriate region” in what fol-
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lows). We define the Jost solution (in Theorem 3.3.6 below we will show it is indeed the

Jost solution defined earlier) by

un(z;J ) = znu(z;J (n))A−1
n . (3.3.26)

Observe that by (the arguments of) Theorem 3.3.5, the Jost solutions of equivalent

Jacobi matrices are related via

uk(z; J̃ ) = lim
n→∞

σ∗n uk(z;J )σk.

Recall that m(z) =
∫

1
x−zdµ(x) and M(z) = −m(z + z−1;J ). For each discrete eigen-

value Ej of J outside [−2, 2], let zj ∈ D be such that zj + zj
−1 = Ej , and denote

w̃j = − limz→zj (z − zj)M(z), wj = µ(Ej) = − limE→Ej (E − Ej)m(E) = (z−1
j − zj)z

−1
j w̃j

(wj , w̃j ≥ 0).

In the next theorem and until Section 3.5 by g](z) we denote the function g(1/z̄)∗.

Theorem 3.3.6. Assume J is a Jacobi matrix asymptotic to type 1, and let its Jacobi

parameters satisfy (A1), (A2), or (A3).

(i) un(z;J ) in the appropriate region satisfies

un+1(z;J )A∗n + un(z;J )(Bn − (z + z−1)1) + un−1(z;J )An−1 = 0, n = 1, 2, . . . .

(3.3.27)

(ii) In the appropriate region,

lim
n→∞

z−nun(z;J ) = 1. (3.3.28)

(iii) For z ∈ D,

u(z;J (1)) = z−1u(z;J )M(z;J )A1. (3.3.29)

(iv) The only zeros of u(z;J ) in D are at real points zj with zj + z−1
j ≡ Ej a discrete

eigenvalue of J . Each pole of u(z;J )−1 in D is of order 1, and the order of zj as a

zero of detu(z;J ) equals to the multiplicity of Ej as an eigenvalue of J . Moreover,

keru(zj ;J ) = Ranwj = Ran w̃j . (3.3.30)
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(v) The only poles of u(z;J )−1 in ∂D are possible ones at ±1, in which case they are of

order 1.

(vi) M(z;J ) has a continuation from D to D \ {±1}, which is everywhere finite and in-

vertible on ∂D \ {±1}, and

ImM(eiθ) = sin θ
[
u(eiθ;J )∗u(eiθ;J )

]−1
. (3.3.31)

(vii) The following recurrence holds:

u(z;J (2)) = z−1u(z;J (1))A−1
1 ((z + z−1)1−B1)A∗1

−1A2 − z−2u(z;J )A∗1
−1A2.

Now assume (A3) holds.

(viii) If (A3) holds, then M can be extended meromorphically to {z | |z| < R}, and

M(z) = M ](z) + (z − z−1)
[
u](z;J )u(z;J )

]−1
, R−1 < |z| < R. (3.3.32)

(ix) For each zj with R−1 < |zj | < 1,

w̃ju(1/z̄j ;J )∗ = −(zj − z−1
j ) Res

z=zj

u(z;J )−1, (3.3.33)

in particular,

keru(1/z̄j ;J )∗ ⊆ ker Res
z=zj

u(z;J )−1 = Ranu(zj ;J ). (3.3.34)

Remarks. 1. Part (vi) shows that if (A1) holds then there is no point spectrum in [−2, 2].

2. Part (vii) shows that if u(z;J ) and u(z;J (1)) are analytic, then so is u(z;J (n)) for

any n. This is why the inductive argument for the inverse direction works.

Proof. (i) Note that since ũ(z;Jl) = gl(z;J ) → u(x;J ), it suffices to show (3.3.27) for

J ≡ J̃l.

Let vn(z; J̃l) be the “old” definition of Jost solution, i.e., the solution of (3.3.27) for

J ≡ J̃l such that vn(z; J̃l) = zn for large n. Note that by (3.3.6) v0(z; J̃l) = gl(z; J̃l) =

limk→∞ gk(z; J̃l) = u0(z; J̃l), where the middle equality comes from (3.3.8).
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Since J (k) shifts indices by k, and zn = z−k(zn+k), we have for all n ≥ 1 and k ≥ 1,

vn

(
z;
[
J̃l
](k)
)

= z−kvn+k

(
z; J̃l

)
.

For n = 0, the difference equation (3.3.27) then gives

v0

(
z;
[
J̃l
](k)
)

= z−kvk

(
z; J̃l

)
Ak,

and so

vk

(
z; J̃l

)
= zkv0

(
z;
[
J̃l
](k)
)
A−1
k = zku0

(
z;
[
J̃l
](k)
)
A−1
k ≡ uk

(
z; J̃l

)
.

(ii) It follows from (3.3.17) that

||u(z;J (n))− 1|| ≤
∞∑
j=0

||gj+1(z;J (n))− gj(z;J (n))||

≤ sup
k
||A−1

k || sup
k∈N,z∈K

(
||ck(z;J (n))||+ ||gk(z;J (n))||

)
×

×
∞∑

j=n+1

[
[max(1, r)]2n

(
||Bj ||+ ||1−AjA∗j ||

)
+ ||1−A−1

j+1||
]
.

(3.3.35)

Now, assuming J is of type 1, we can bound ||1 − A−1
j || ≤ c||1 − AjA

∗
j ||, and then

Lemma 3.3.3 gives the convergence of the right hand side of (3.3.35).

If J̃ is of type asymptotic to 1, then by Theorem 3.3.5 we get

lim
k→∞

z−kuk(z; J̃ ) = lim
k→∞

lim
n→∞

σ∗n z
−kuk(z;J )σk = lim

n→∞
σ∗n lim

k→∞
σk = 1.

(iii) By [DPS08, Thm 2.16(iii)], we get u1(z;J ) = −u0(z;J )m(z + z−1;J ), hence

u(z;J (1)) = z−1u1(z;J )A1 = z−1u(z;J )M(z;J )A1.

(iv) Observe that if M(z;J ) is regular at z, then u(z;J ) is invertible at z. Oth-

erwise we can pick an eigenvector f with f∗u(z;J ) = 0 and see that f∗u1(z;J ) =

f∗u(z;J )M(z;J ) = 0, and then f∗un(z;J ) = 0 for all n from (3.3.27). This would

contradict (ii).
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Thus the only possible zeros are at zj ’s with zj + z−1
j = Ej being an eigenvalue of J .

Let qk be the multiplicity of Ej as an eigenvalue of J (k). By Lemma 2.1.1, σ(J (N)) ⊂

[−2− ε, 2 + ε] for sufficiently big N , so qn = 0 for all n ≥ N . Since qN = 0, M(z;J (N)) is

regular at zj , and then the arguments above show that u(z;J (N)) is invertible at zj . Now let

us prove the statement about zeros of the determinant inductively assuming we know it for

N,N−1, . . . , n+1. By [DPS08, Thm 2.28], detM(z;J (n)) has zero of order qn+1−qn at z =

zj , and then (3.3.29) gives detu(z;J (n)) = zn detu(z;J (n+1)) detM(z;J (n))−1 detA−1
n+1

has zero of order qn+1 − (qn+1 − qn) = qn at z = zj . Thus detu(z;J ) has zero of order q0

at z = zj .

Hence dim keru(zj ;J ) ≤ q0. However,

0 = lim
z→zj

(z − zj)u(z;J (1)) = z−1
j u(zj ;J ) lim

z→zj

(z − zj)M(z;J )A1 = z−1
j u(zj ;J )w̃jA1,

which implies Ran w̃j ⊆ keru(zj ;J ). Then q0 = dim Ran w̃j ≤ dim keru(zj ;J ) ≤ q0, which

means Ran w̃j = keru(zj ;J ). Ran w̃j = Ranwj is obvious.

Since dim keru(zj ;J ) = q0 and detu(z;J ) has zero of order q0 at z = zj , by Lemma 2.4.2

the order of the pole of u(z;J )−1 at z = zj cannot be bigger than 1.

(v) If z ∈ ∂D, then un(z;J ) and un(z−1;J ) solve the same Jacobi equation, and so

the Wronskian Wn(u·(z;J );u·(z̄−1;J )∗) is constant. By (ii), the Wronskian at infinity is

limn→∞ un(z)Anun+1(z)∗−un+1(z)A∗nun(z)∗ = (z−1−z)1, while evaluating it at zero gives

u0(z)u1(z)∗ − u1(z)u0(z)∗ = (z−1 − z)1,

or

Im
[
u1(eiθ)u0(eiθ)∗

]
= sin θ 1. (3.3.36)

This implies that for θ 6= 0, u0(eiθ;J ) is invertible.

To prove that the poles at ±1 are at most of order 1, just note that using (3.3.31) (which

is proven in (vi)), the absolutely continuous part of µ is

f(2 cos θ) = π−1
∣∣∣ImM(eiθ)

∣∣∣ = π−1 |sin θ|
[
u(eiθ)∗u(eiθ)

]−1
,
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and then in order for

∫ 2

−2
f(x)dx = 2

∫ π

0
sin θ f(2 cos θ)dθ =

2
π

∫ π

0
sin2 θ

[
u(eiθ)∗u(eiθ)

]−1
dθ

to be finite, we must have that the pole of u(z)−1 at ±1 is at most of order 1.

(vi) By u1(z;J ) = u(z;J )M(z;J ), for θ 6= 0,

ImM(eiθ) = Imu(eiθ)−1u1(eiθ) = Im
(
u(eiθ)−1u1(eiθ)

[
u(eiθ)∗u(eiθ)∗

−1
])

= u(eiθ)−1 Im
[
u1(eiθ)u(eiθ)∗

]
u(eiθ)∗

−1
= sin θ

[
u(eiθ)∗u(eiθ)

]−1
(3.3.37)

by (3.3.36).

(vii) This part follows immediately from (3.3.26) and (i). One can also obtain this using

(iii) and (3.3.1) only.

(viii) By (iii), M is meromorphic in the region where u’s are analytic. Note that (3.3.32)

at z = eiθ is (3.3.31). Thus if we define M̂(z) = M ](z) + (z − z−1)
[
u](z;J )u(z;J )

]−1 for

1 < |z| < R, then M(z) = M̂(z) on ∂D, and (3.3.32) follows by analytic continuation.

(ix) Note that J (1) also satisfies (A3), and so u(z;J (1)) is analytic in DR. Combining

(3.3.29) and (3.3.32) we obtain

u(z;J (1)) = z−1u(z;J )
[
M ](z) + (z − z−1)

[
u](z;J )u(z;J )

]−1
]
A1, R−1 < |z| < R.

Analyticity of u(z;J (1)) at z−1
j means that the residues must cancel out:

0 = lim
z→z−1

j

(z − z−1
j )u(z;J )M ](z) + lim

z→z−1
j

(z − z−1
j )(z − z−1)

[
u](z;J )

]−1

= u(z−1
j ;J ) lim

z→zj

(z−1 − z−1
j )M(z̄)∗ + (z−1

j − zj) lim
z→zj

(z−1 − z−1
j ) [u(z̄;J )∗]−1

=
1
z2
j

u(z−1
j ;J )w̃∗j +

1
z2
j

(zj − z−1
j )[ lim

z→zj

(z − zj)u(z;J )−1]∗,

which gives (3.3.33).

The rightmost equality of (3.3.34) comes from Lemma 2.4.2. The containment part of

(3.3.34) follows immediately from (3.3.33).

We also see
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Lemma 3.3.7. Assume J is a Jacobi matrix asymptotic to type 1, and let its Jacobi

parameters satisfy (A1), (A2), or (A3). Then uniformly on the compacts of the appropriate

region,

u(z;J (n))→ 1,

M(z;J (n))→ z1,

where u(n) and M (n) are the Jost function and the M -function, respectively, for the n times

stripped operator J (n).

Proof. Note that M (n)(z) = zu(z;J (n))−1u(z;J (n+1))A−1
n+1 = A−1

n un(z;J )−1un+1(z;J ).

But An → 1 and z−nun(z) → 1 uniformly on compacts of the appropriate region by

(3.3.28). This and (3.3.26) give the result.

To end this section, we get the following result for free as a corollary from Theorems

3.3.6, 3.3.4, and Corollary 1.3.8. The scalar analogue is proven in Killip–Simon [KS03, Thm

9.14].

Theorem 3.3.8. Let J be of type asymptotic to type 1 and satisfies (A1). Then u(z;J )

has the following factorization:

u(z;J ) = UB(z)O(z),

where U is a constant unitary matrix, B(z) is a matrix-valued Blaschke-Potapov product

with zeros at {zj}, and O(z) is a matrix-valued outer function, uniquely defined from the

conditions
O(eiθ)∗O(eiθ) = sin θ

(
ImM(eiθ)

)−1
,

O(0) = O(0)∗ > 0,

log
∣∣∣detO(eiθ)

∣∣∣ =
∫ π

−π
log
∣∣∣detO(eiθ)

∣∣∣ dθ
2π
.

(3.3.38)

In particular, u has trivial singular inner part.

Remarks. 1. That the outer factor O can be uniquely defined from the conditions (3.3.38),

as long as (3.3.39) holds, is Lemma 2.4.5.

2. O has an integral representation (2.4.6)–(2.4.7) in terms of Potapov multiplicative

integral.
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Proof. By Theorem 3.3.4 u(z;J ) = (1− z2)L(z), where L(z) = limn→∞ z
npn(z + z−1). By

Corollary 1.3.8, L(z) is an H2(D) function with no singular inner part. Since 1 − z2 is a

bounded outer function, u is an H2(D) function with no singular inner part as well.

By (3.3.31), u(eiθ;J )∗u(eiθ;J ) = sin θ
(
ImM(eiθ)

)−1, and so (3.3.38) has to hold. Note

that ∫ π

−π
log det

[
sin θ(ImM(eiθ))−1

] dθ
2π

> −∞ (3.3.39)

is equivalent to ∣∣∣∣∫ 2

−2
(4− x2)−1/2 log det f(x)dx

∣∣∣∣ dθ2π
<∞, (3.3.40)

which is indeed finite given (A1) (see [DKS, Section 14]).

3.3.2 The Inverse Direction

Now we start with an analytic function u and seek to construct a measure such that u is its

Jost function. We do this in Subsection 3.3.2.1. In the proof of Theorem 1.3.12 however, we

appeal to the results later in the section. Note that this theorem is never used in Subsections

3.3.2.2 and 3.3.2.3 (i.e., we are never assuming that u is actually the Jost function for µ).

In Subsections 3.3.2.2 and 3.3.2.3 we derive the exponential decay of the Jacobi parameters

of µ, proving Theorems 1.3.14 and 1.3.15. Subsection 3.3.2.4 is just a restatement of the

results in terms of the so-called perturbation determinants.

Throughout this section let u be an analytic function in DR for some R > 1 satisfying

the conditions of Theorem 1.3.12. Note that by (2.1.4)–(2.1.5) and (3.3.31) the absolutely

continuous part f(x) of µ is forced to be f(2 cos θ) = π−1 |sin θ|
[
u(eiθ)∗u(eiθ)

]−1, and its

singular part to be pure point with some weights wj at Ej = zj + z−1
j , where zj are zeros

of u in D. By Theorem 3.3.6(iv), wj must satisfy the condition (ii) of Theorem 1.3.12.

Assuming also (i), this µ is a probability measure. Its M -function satisfies (2.1.4), so

ImM(eiθ) = sin θ
[
u(eiθ)∗u(eiθ)

]−1
(3.3.41)

holds. Just as in the proof of Theorem 3.3.6(viii), we can extend M meromorphically to

DR and see that

M(z) = M ](z) + (z − z−1)
[
u](z)u(z)

]−1
, R−1 < |z| < R.
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Let J with Jacobi parameters (An)∞n=1, (Bn)∞n=1 be the type 1 Jacobi matrix for dµ.

Define inductively

u(n+1)(z) = z−1u(n)(z)M (n)(z)An+1; (3.3.42)

An+1M
(n+1)(z)A∗n+1 =

(
z +

1
z

)
1−Bn+1 −M (n)(z)

−1
. (3.3.43)

Then M (n) is the M -function for J (n) and, by an easy induction,

M (n)(z) = M (n)](z) + (z − z−1)
[
u(n)](z)u(n)(z)

]−1
, R−1 < |z| < R, (3.3.44)

holds.

3.3.2.1 Proof of Theorem 1.3.12

For reader’s convenience let us restate the theorem.

Theorem 3.3.9. Let u be an analytic function in a disk DR for some R > 1, whose only

zeros in D lie in (D∩R) \ {0} with those zeros all simple. For each zero zj in (D∩R) \ {0},

let a nonzero matrix-valued weight wj ≥ 0 be given so that

(i)
∑

j wj + 2
π

∫ π
0 sin2 θ

[
u(eiθ)∗u(eiθ)

]−1
dθ = 1,

(ii) Ranwj = keru(zj) for all j.

Then there exists a unique measure dµ for which wj are the weights and u is its Jost function

for some choice of Jacobi matrix from the equivalence class corresponding to dµ. Any such

matrix is of type asymptotic to 1.

Remark. It is clear that any two matrices having u as its Jost function are asymptotic to

each other, and moreover, related by J̃ = UJU−1, where U is an l × l block diagonal

unitary U = σ1 ⊕ σ2 ⊕ σ3 ⊕ . . ., where σn are unitary with σ1 = 1 and limn→∞ σn = 1

(which is a stronger condition than just being asymptotic).

Proof. The results of this section show that ||Bn|| and ||1 − AnA∗n|| decay exponentially

(with the rate r−2n, where r could be only slightly larger than 1). Thus the Jost function

ũ exists and is analytic in Dr. Consider

g(z) = ũ(z)u(z)−1. (3.3.45)
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We want to prove g is analytic and nonvanishing. Since u−1 has a first order pole at zj ,

ũu−1 is analytic at zj if and only if

ũ(zj) Res
z=zj

u(z)−1 = 0, (3.3.46)

which is equivalent to the condition Ran Resz=zj u(z)−1 ⊆ ker ũ(zj). However by Lemma

2.4.2, Ran Resz=zj u(z)−1 = keru(zj), which equals to Ranwj by the condition (ii). By

Theorem 3.3.6(iv), Ranwj = ker ũ(zj), and (3.3.46) follows.

g(z) is analytic at ±1 by the following arguments. By (3.3.31) and (3.3.41),

u(±1)∗u(±1) = ũ(±1)∗ũ(±1).

This implies keru(±1) = ker ũ(±1) (since kerT = kerT ∗T ), and then identical arguments

as for zj ’s show that g(z) is analytic at ±1.

Thus we have proved g is analytic on a neighborhood of D, and switching the roles of u

and ũ, we obtain that g is also non-vanishing there.

Now,

g(z)∗g(z) = [u(z)−1]∗ũ(z)∗ũ(z)u(z)−1 = sin θ [u(z)−1]∗[ImM(eiθ)]−1u(z)−1

= [u(z)−1]∗u(z)∗u(z)u(z)−1 = 1.

So g(z)∗g(z) is analytic and invertible on D and unitary on ∂D, which implies (e.g., by the

Schwarz reflection) that g(z) ≡ v0 for some constant unitary v0. Thus, u(z) = v∗0ũ(z). Then

Theorem 3.3.5 implies that u is the Jost function for the Jacobi matrix with parameters

(A1v0, v
∗
0A2v0, v

∗
0A3v0, . . .), (B1, v

∗
0B2v0, v

∗
0B3v0, . . .).

3.3.2.2 Proof of Theorems 1.3.14 and 1.3.15 for the case of no bound states

In this subsection we prove Theorems 1.3.14 and 1.3.15 for the case when µ has no bound

states. Thus these theorems take the following form.

Theorem 3.3.10. Let u(z) be a polynomial obeying

(i) u(z) is nondegenerate on D \ {±1};

(ii) if ±1 are zeros, they are simple;
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(iii) 2
π

∫ π
0 sin2 θ

[
u(eiθ)∗u(eiθ)

]−1
dθ = 1.

Then u is the Jost function of a Jabobi matrix with

1−AnA∗n = Bn = 0 for all large n. (3.3.47)

Theorem 3.3.11. Let u(z) be analytic in DR for some R > 1 and obeys (i)–(iii) from

Theorem 3.3.10, then u is the Jost function of a Jacobi matrix with

lim sup
n→∞

(||Bn||+ ||1−AnA∗n||)
1/2n ≤ R−1. (3.3.48)

Remark. We denoted (An)∞n=1, (Bn)∞n=1 to be the type 1 Jacobi coefficients for dµ. u will

be the Jost function for a different Jacobi matrix (asymptotic to it). However (3.3.47) and

(3.3.48) are invariant within the class of equivalent Jacobi matrices.

Note that (3.3.42) and (3.3.43) define u(n) and M (n), which are in general meromorphic

functions in DR. We will show below that u(n) are actually analytic. Let us first prove the

following lemma.

Lemma 3.3.12. Let u(n) and M (n) be given by (3.3.42) and (3.3.43). Then u(n) has no

zeros on ∂D except possibly at {±1}, in which case they are simple.

Proof. Since (3.3.44) holds, we obtain

f (n)(2 cos θ) = π−1
∣∣∣ImM (n)(eiθ)

∣∣∣ = π−1| sin θ |
[
u(n)(eiθ)∗u(n)(eiθ)

]−1
,

where f (n) is the density of the spectral measure µ(n) of J (n). Since
∫ π
−π | sin θ|f

(n)(2 cos θ)dθ ≤

µ(n)(R) ≤ 1, we get the result.

Now we can obtain analyticity of u(n) for n ≥ 1.

Theorem 3.3.13. If u is analytic in DR and nonvanishing on D\{±1} with at most simple

zeros at ±1, then the same is true of each u(n).

Proof. We use induction on n. The inductive hypothesis will be to assume

(a) u(n) is analytic in DR,

(b) u(n) is invertible on D \ {±1},
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(c) u(n) has at most simple zeros at ±1,

(d) M (n) has no poles in D \ {±1},

(e) M (n) has at most simple poles at ±1,

(f) (M (n))−1 has no poles in D \ {±1},

(g) (M (n−1))−1 has at most simple poles at ±1.

Let us check the base case n = 0. (a)–(c) are given. That M has no poles in D follows

from the fact that µ has no eigenvalues outside [−2, 2], and no poles of M on ∂D \ {±1}

corresponds to the absence of the point spectrum in (−2, 2). Also, no point spectrum at

±2 implies limε↓0 εm(±2 + iε) = 0 which translates to limz→±1(z ∓ 1)2M(z) = 0. Thus we

established (d) and (e).

Observe that M cannot have zeros on (−1, 0) ∪ (0, 1) since this would correspond to∫ 2
−2

dµ(x)
x−z being noninvertible at some |z| > 2. On {z ∈ D | Im z > 0} we have ImM(z) > 0,

so M is invertible. Same for {z ∈ D | Im z < 0}. Finally, M is also invertible on ∂D \ {±1}

since ImM is invertible there by (3.3.41). Thus M−1 has no poles in D \ {±1}, i.e., (f)

holds.

(g) is vacuous for n = 0.

Now assume that (a)–(g) hold for n, and let us show they hold for n+ 1 as well. By (d)

M (n) is meromorphic on DR with poles possible only in {z | 1 < |z| < R} ∪ {±1}. Using

M (n)(z) = M (n)](z) + (z − z−1)
[
u(n)](z)u(n)(z)

]−1
, R−1 < |z| < R, (3.3.49)

we see the following:

(i) M (n) has a pole at zk, 1 < |zk| < R, only if u(n)(zk) is not invertible, since u(n)](zk)

is invertible by (b) and M (n)](zk) is regular by (d). Then (3.3.42) and (3.3.49) imply

u(n+1)(zk) = z−1
k u(n)(zk)M (n)](zk)An+1 + (1− z−2

k )[u(n)](zk)]−1An+1

is regular.

(ii) Assume M (n) has a pole at ±1. By (c) and (e), u(n) and M (n) have at most order 1
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poles at ±1, so let

Res
z=1

M (n)(z) = T, (3.3.50)

Res
z=1

u(n)(z)−1 = C. (3.3.51)

From the definition of M (n), the matrix T must be Hermitian. Easy to see,

Res
z=1

M (n)](z) = −T ∗ = −T,

Res
z=1

u(n)](z)−1 = −C∗,

and then computing residues of both sides of (3.3.49) gives

2T = −2CC∗. (3.3.52)

Now, by (3.3.42),

Res
z=1

u(n+1)(z) = lim
z→1

(z − 1)u(n+1)(z) = u(n)(1)TAn+1 = −u(n)(1)CC∗An+1 = 0,

since RanC = keru(n)(1) (by Lemma 2.4.2). Hence u(n+1) is regular at z = ±1.

This proves part (a) of the inductive step.

u(n+1) is invertible on D \ {±1} since u(n) is invertible and (M (n))−1 has no poles (by

(b) and (f)). This establishes (b).

(c) is obtained in Lemma 3.3.12.

(d) for n+ 1 follows from (3.3.43) and (f) for n.

(f) for n+ 1 follows by the exact same arguments as for n = 0 before.

(g) follows from M (n)(z)−1 = z−1An+1u
(n+1)(z)−1u(n)(z) and Lemma 3.3.12.

Finally, (e) follows from (3.3.43) since we just established that M (n)(z)−1 has at most

simple poles at ±1.

Note that ess suppµ = [−2, 2] with det f(x) > 0 on (−2, 2), and so Denisov–Rakhmanov

theorem (Lemma 1.2.2) implies that J is in the Nevai class. By Theorem 1.3.4 we obtain

An → 1, Bn → 0. This means that J (n) converges in norm to the free block Jacobi matrix,
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which implies that resolvents converge:

M (n)(z)→ z1 uniformly on compacts of D. (3.3.53)

Now combine (3.3.42) and (3.3.44) to get

u(n+1)(z) = (1− z−2)(u(n)](z))−1An+1 + z−2u(n)(z)N ]
n(z)An+1, (3.3.54)

where Nn(z) = M (n)(z)/z, N ]
n(z) = zM ](z).

Let us fix any R1 with 1 < R1 < R. Given any L2(1 dθ
2π ) function on R1∂D, define

|||f |||R1 =
(∫ π

−π

∣∣∣∣∣∣(P+f)(R1e
iθ)
∣∣∣∣∣∣2 dθ

2π

)1/2

,

where P+ is the projection in L2(1 dθ
2π ) onto {einθ}∞n=1, and || · || is the Hilbert-Schmidt norm

till the end of this section. In particular, if f is analytic in DR,

|||f |||R1 =
(∫ π

−π

∣∣∣∣∣∣f(R1e
iθ)− f(0)

∣∣∣∣∣∣2 dθ
2π

)1/2

.

Now note that since (u(n)])−1 is analytic in (C∪{∞})\D, P+((1−z−2)(u(n)](z))−1An+1) =

0. For the same reasons, P+(z−2u(n)(0)N ]
n(z)An+1) = 0. Thus

P+(u(n+1)) = P+

(
z−2(u(n)(z)− u(n)(0))N ]

n(z)
)
An+1.

Since P+ is a projection on L2, using submultiplicativity of the Hilbert-Schmidt norm

we get

|||u(n+1)|||R1 ≤ R−2
1 |||u

(n)|||R1 ||An+1|| sup
|z|=R1

||N ]
n(z)||,

which by induction gives

|||u(n+1)|||R1 ≤ R−2n
1 |||u|||R1

 n∏
j=1

||Aj+1|| sup
|z|=R1

||N ]
j (z)||

 . (3.3.55)

Now since ||Aj || → 1 and sup|z|=R1
||N ]

j (z)|| ≤ sup|z|≤R−1
1
||M (j)(z)/z|| → 1 by (3.3.53),
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we get that for any ε > 0 there exists a constant cε such that n∏
j=1

||Aj+1|| sup
|z|=R−1

1

||Nj(z)||

 ≤ cε(1 + ε)2n,

and so

|||u(n+1)|||R1 ≤ Cε(R1 − ε)−2n (3.3.56)

for some new constant Cε.

Proof of Theorem 3.3.10. Since u is a polynomial, then taking n and R1 sufficiently large

in (3.3.55), one can see that |||u(n)|||R1 = 0, which implies u(n)(z) = u(n)(0). Then by the

condition (iii) of the theorem, u(n)(z) = 1, and so f (n)(2 cos θ) = π−1| sin θ| is free, that is,

1−AnA∗n = Bn = 0 for all large n.

Remark. One can be more careful and relate the degree of u to the maximal n where

1−AnA∗n = Bn = 0 is violated, just as in Theorem 3.3.1.

Proof of Theorem 3.3.11. Define sn(z) = u(n)(z)u(n)(0)−1 − 1. Note that by Szegő asymp-

totics (Theorem 1.3.7), the limit znpn(z+ z−1) exists. In particular at z = 0 this gives that

there exists limn→∞A1 . . . An ≡ K, with K invertible. Then u(n)(0) = u(0)A1 . . . An →

u(0)K is bounded in norm from above and below away from 0. Then

|||sn|||R1 ≤ |||u(n)|||R1 ||u(n)(0)−1|| ≤ Cε(R1 − ε)−2n

for some new constant Cε. Using Cauchy formula, one easily obtains from this

||sn(z)|| ≤ C̃ε(R1 − ε)−2n uniformly in DR1−2ε. (3.3.57)

Now note that by (3.3.42)

M (n)(z)
z

= u(n)(z)−1u(n+1)(z)A−1
n+1 = u(n)(0)−1(1 + sn(z))−1(1 + sn+1(z))u(n)(0),
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and so

sup
|z|≤1/2

∣∣∣∣∣
∣∣∣∣∣M (n)(z)

z
− 1

∣∣∣∣∣
∣∣∣∣∣ ≤ sup

|z|≤1/2

∣∣∣∣∣∣u(n)(0)−1(1 + sn(z))−1u(n)(0)− 1
∣∣∣∣∣∣

+ sup
|z|≤1/2

∣∣∣∣∣∣u(n)(0)−1(1 + sn(z))−1sn+1(z)u(n)(0)
∣∣∣∣∣∣ .

The second term can be made exponentially small simply by using (3.3.57), while the first

is ∣∣∣∣∣∣u(n)(0)−1(1 + sn(z))−1u(n)(0)− 1
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣u(n)(0)−1

∞∑
j=0

sn(z)ju(n)(0)− 1

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣∣∣∣u(n)(0)−1

∞∑
j=1

sn(z)ju(n)(0)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ ||u(n)(0)−1|| ||u(n)(0)|| ||sn(z)||
1− ||sn(z)||

which is also uniformly exponentially small. Thus

sup
|z|≤1/2

∣∣∣∣∣
∣∣∣∣∣M (n)(z)

z
− 1

∣∣∣∣∣
∣∣∣∣∣ ≤ Ĉε(R1 − ε)−2n.

Using this, (3.3.2), and the Cauchy formula, we obtain

||Bn||+ ||1−AnA∗n|| ≤ Ĉε(R1 − ε)−2n.

Since R1 < R and ε > 0 were arbitrary, we obtain (3.3.48).

Note that instead of 1/2 we could have taken any constant smaller than R1 − ε here.

Therefore we have shown that M (n)(z)→ z1 uniformly on compacts of DR.

3.3.2.3 Proof of Theorems 1.3.14 and 1.3.15 for the general case

Recall Definition 1.3.13 of canonical weight: wj is canonical if

w̃j u(1/z̄j)∗ = −(zj − z−1
j ) lim

z→zj

(z − zj)u(z)−1, (3.3.58)

where as before wj = (z−1
j − zj)z

−1
j w̃j . As clear from the calculation in Theorem 3.3.6(ix),

the weight is canonical if and only if u(1)(z) is regular at z−1
j .



78

Lemma 3.3.14. Assume u(z) and u(1)(z) are analytic in DR. Then for any n ≥ 2, u(n)(z)

is analytic in DR.

Proof. Note that part (vii) of Theorem 3.3.6 can be proved using only (3.3.29) and (3.3.1).

Therefore (3.3.42) and (3.3.43) allow us to conclude that

u(n+2)(z) = z−1u(n+1)(z)A−1
n+1

(
(z + z−1)1−Bn+1

)
A∗n+1

−1An+2 − z−2u(n)(z)A∗n+1
−1An+2,

which proves our statement (easy to see that z = 0 in fact is not causing any troubles

here).

Remark. What this lemma says is that if all the weights of u are canonical, then they are

automatically canonical for every u(n).

For the inductive step in this case we will need the following result.

Lemma 3.3.15. If u and M satisfy

(a) keru(ξ) = Ran Resz=ξM(z) for all ξ ∈ D;

(b) all poles of u−1 in D ∩ R are simple,

then the same is true for all u(n) and M (n).

Proof. Assume both conditions hold for u(n) and M (n).

Take any ξ ∈ D. Note that in the Smith–McMillan form (Lemma 2.4.1) of u(n) at z = ξ

each power κj of (z − ξ)κj must be 0 or 1 by (b). Thus

u(n)(z) = E(z)

 (z − ξ)1s 0

0 1l−s

F (z),

where 1j is the j×j identity matrix. Now since M (n+1) can have only first order poles in D,

it means that M (n) can have only first order zeros/poles in D. Then the Smith–McMillan

form of (M (n))−1 at ξ is

M (n)(z)−1 = G(z)


(z − ξ)1p 0 0

0 1q 0

0 0 1
z−ξ1l−p−q

H(z).
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Observe that E(z), F (z), G(z), H(z) are analytic and invertible in a neighborhood of ξ.

Now note that

keru(n)(ξ) = F (ξ)−1span{δ1, . . . , δs},

and

Ran Res
z=ξ

M (n)(z) = H(ξ)−1span{δ1, . . . , δp}.

Then the condition (a) implies that s = p, and that span{δ1, . . . , δp} is an invariant subspace

of the matrix V ≡ H(ξ)F (ξ)−1. Thus

V =

 V11 V12

0 V22

 ,

where V11 is an (invertible) p× p matrix, V22 is an (invertible) (l− p)× (l− p) matrix, and

V12 is an s× (l − p) matrix.

By (a) u(n+1)(z) is analytic at ξ. Now consider u(n+1)(z)−1 at z = ξ. We want to show

the following limit is finite:

lim
z→ξ

(z − ξ)u(n+1)(z)−1 = A−1
n+1 lim

z→ξ
(z − ξ)M (n)(z)−1u(n)(z)−1

= A−1
n+1G(ξ) lim

z→ξ
(z−ξ)


(z − ξ)1p 0 0

0 1q 0

0 0 1
z−ξ1l−p−q

V


1
z−ξ1p 0 0

0 1q 0

0 0 1l−p−q

E(ξ)−1.

(3.3.59)

But  (z − ξ)1p 0

0 1l−p

 V11 V12

0 V22

 1
z−ξ1p 0

0 1l−p

 =

 V11 (z − ξ)V12

0 V22

 ,
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which means that (3.3.59) is equal to

A−1
n+1G(ξ) lim

z→ξ
(z − ξ)


1p 0 0

0 1q 0

0 0 1
z−ξ1l−p−q

 Ṽ


1p 0 0

0 1q 0

0 0 1l−p−q

E(ξ)−1

= A−1
n+1G(ξ)


0p 0 0

0 0q 0

0 0 1l−p−q

 Ṽ E(ξ)−1, (3.3.60)

where Ṽ =

 V11 0

0 V22

 . This establishes (b) for u(n+1) for ξ ∈ D ∩ R. The fact that ±1

is at most first order pole of (u(n+1))−1 is already proved in Lemma 3.3.12.

To show that (a) holds for u(n+1), note that by Lemma 2.4.2 (which applies since we

already know that (u(n+1))−1 has at most simple pole),

keru(n+1)(ξ) = keru(n)(ξ)M (n)(ξ)An+1 = Ran Res
z=ξ

A−1
n+1

(
M (n)(z)−1u(n)(z)−1

)
,

and by (3.3.43),

Ran Res
z=ξ

M (n+1)(z) = Ran Res
z=ξ

A−1
n+1M

(n)(z)−1.

By the calculations (3.3.59)–(3.3.60) above, it is easy to see that both of these spaces

are equal to

RanA−1
n+1G(ξ)


0p 0 0

0 0q 0

0 0 1l−p−q

 .

This gives us the analogue of Theorem 3.3.13.

Lemma 3.3.16. If u is analytic in DR, satisfies (a)–(b) of Lemma 3.3.15, and all the

weights with 1 > |zj | > R−1 are canonical, then the same is true of each u(n).

Proof. The arguments of Theorem 3.3.13, together with the result of Lemma 3.3.15, give

the result. Note that condition (a) ensures analyticity of u(1) at zj , and canonic weights
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ensure analyticity of u(1) at z−1
j . The weights for u(n) for n ≥ 1 are canonical by Lemma

3.3.14.

Proof of Theorem 1.3.14. If some of the weights are not canonical then u(1) is not entire,

and so 1−AnA∗n = Bn = 0 cannot hold for all large n.

Now assume all the weights are canonical. Then all u(n)’s are entire by Lemma 3.3.16.

For r sufficiently large, (3.3.54) implies

sup
|z|≤r
||u(n+1)(z)|| ≤ O(1)

(
1 + r−2 sup

|z|≤r
||u(n)(z)||

)
,

which inductively shows that if u is a polynomial then u(n) is a polynomial with

deg u(n) ≤ max{0,deg u− 2n}.

Then u(N) is a constant for some large N . By Lemma 3.3.15, M (N) has no poles, and so

(3.3.44) implies that u(N) satisfies the condition (iii) of Theorem 3.3.10 (as well as conditions

(i) and (ii), of course). This implies 1−AnA∗n = Bn = 0 for all large n.

Proof of Theorem 1.3.15. If some of the weights with 1 > |zj | > R−1 are not canonical then

u(1) is not analytic at {z−1
j }, and so lim supn→∞ (||Bn||+ ||1−AnA∗n||)

1/2n ≤ R−1 cannot

hold.

Assume now that all the weights with 1 > |zj | > R−1 are canonical. Then all u(n)’s are

entire by Lemma 3.3.16.

Now let us fix R1 and R2 with 1 < R2 < R1 < R. By Lemma 2.1.1 there exists N such

that zeros of u(n) in D all lie in {z ∈ C : R−1
2 < |z| < 1} for every n ≥ N . This means

that (u(n)])−1 and N ]
n are analytic in (C ∪ {∞}) \ DR2 , where Nn is defined in (3.3.45).

Now the arguments after (3.3.45) work without changes and prove that (3.3.56) holds. This

estimate was the only ingredient that was used in the proof of Theorem 3.3.11. This proves

Theorem 1.3.15 for the general case.
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3.3.2.4 Results in terms of the perturbation determinant

Assuming the Jost function exists, define the perturbation determinant by

L(z) = u(z)u(0)−1.

Clearly, L(0) = 1. Note that by (3.3.29) and u(n)(0)→ 1 ((3.3.56)) we have

u(0) =

x
n∏
n=1

A−1
n .

We can reformulate Theorems 3.3.10 and 3.3.11 as follows.

Theorem 3.3.17. Let L(z) be a polynomial obeying

(i) L(z) is nondegenerate on D \ {±1};

(ii) if ±1 are zeros, they are simple;

(iii) L(0) = 1.

Then L is the perturbation determinant for some Jacobi matrix (asymptotic to type 1), and

each such matrix obeys 1−AnA∗n = Bn = 0 for all large n.

Theorem 3.3.18. Let L(z) be analytic in {z | |z| < R} for some R > 1 and obeys (i)–

(iii) from Theorem 3.3.17, then L is the perturbation determinant for some Jacobi matrix

(asymptotic to type 1), and each such matrix has

lim sup
n→∞

(||Bn||+ ||1−AnA∗n||)
1/2n ≤ R−1.

Remarks. 1. It is clear from the proof that the corresponding measure in the above two

theorems (as well as in the two theorems below) is not uniquely defined, but all possible

dγ’s are related by dγ1 = v∗dγ2v for constant unitaries v.

2. In other words, every two Jacobi matrices having the same perturbation determinant

are related by J̃ = UJU−1, where U is an l×l block diagonal unitary U = σ1⊕σ2⊕σ3⊕. . .,

where σn are unitary with limn→∞ σn = 1, and σ1 is allowed to be different from 1.
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Proofs. Pick any unitary σ and let u(z) = L(z)
√
Hσ, where

H =
2
π

∫ π

0
sin2 θ

[
L(eiθ)∗L(eiθ)

]−1
dθ ≥ 0.

Then
2
π

∫ π

0
sin2 θ

[
u(eiθ)∗u(eiθ)

]−1
dθ = 1,

and so Theorems 3.3.10, 3.3.11 apply.

Now assume there are bound states.

Lemma 2.5.2 implies that if ker f(1/z̄j)∗ ⊆ ker Resz=zj f(z)−1, then there exists a unique

matrix w̃j solving

w̃jf(1/z̄j)∗ = −(zj − z−1
j ) Res

z=zj

f(z)−1, (3.3.61)

Ran w̃j = Ran Res
z=zj

f(z)−1 (3.3.62)

(compare it with (3.3.34) and (3.3.30)). Observe that if the zeros f at zj ’s are simple

then by Lemma 2.4.2 Ran Resz=zj f(z)−1 = ker f(zj) and ker Resz=zj f(z)−1 = Ran f(zj).

Hence we obtain the following results.

Theorem 3.3.19. A polynomial L(z) is the perturbation determinant for some Jacobi ma-

trix with 1−AnA∗n = Bn = 0 for all large n if and only if it obeys

(i) L(z) is nondegenerate on (D \ R) ∪ {0};

(ii) all zeros on D ∩ R are simple;

(iii) kerL(1/z̄j)∗ ⊆ RanL(zj) for each zero zj in D, and the unique solution corresponding

to (3.3.61)–(3.3.62) is Hermitian and nonnegative;

(iv) L(0) = 1.

Theorem 3.3.20. Let L(z) be analytic in {z | |z| < R} for some R > 1. L(z) is the pertur-

bation determinant for some Jacobi matrix with lim supn→∞ (||Bn||+ ||1−AnA∗n||)
1/2n ≤

R−1 if and only if it obeys (i), (ii), (iv), and (iii) for every zj with 1 > |zj | > R−1.
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Proofs. Denote vj to be the nonnegative solutions of (3.3.61)–(3.3.62) corresponding to 1 >

|zj | > R−1. For the rest of zj ’s pick any nonnegative vj . Let w̃j = σ∗H−1/2vjH
−1/2σ ≥ 0,

wj = (z−1
j − zj)z

−1
j w̃j , and u(z) = L(z)

√
Hσ, where σ is any unitary matrix, and

H =
∑
j

(z−1
j − zj)z

−1
j vj +

2
π

∫ π

0
sin2 θ

[
L(eiθ)∗L(eiθ)

]−1
dθ ≥ 0.

Then ∑
j

wj +
2
π

∫ π

0
sin2 θ

[
u(eiθ)∗u(eiθ)

]−1
dθ = σ∗H−1/2HH−1/2σ = 1.

Moreover, w̃j solves (3.3.61)–(3.3.62) with f replaced by u for every 1 > |zj | > R−1. This

means that the condition (iii) of Theorem 1.3.14/1.3.15 holds, and all the weights for zj with

1 > |zj | > R−1 are canonical. Thus Theorems 1.3.14/1.3.15 apply and we are done.

3.4 Meromorphic Continuations of Matrix Herglotz Func-

tions and Perturbations of the Free Case

3.4.1 Proof of Theorems 1.3.16 and 1.3.17

Proof of Theorem 1.3.16. (I)⇒(II) Assume (I) holds. (A) follows from Theorem 3.3.6 (viii).

(B) follows from Theorem 3.3.6 (vi) and (v). (C) is immediate from (3.3.32).

Now let us show (D). First of all, it is a straightforward calculation to see that for any

F with a first order pole,

Res
z=z̄−1

0

F ](z) = − 1
z̄2

0

(Res
z=z0

F (z))∗. (3.4.1)

Since u(z;J ) is analytic at z−1
j , then using (3.3.32),

0 = Res
z=z−1

j

u(z;J ) = (z−1
j − zj) Res

z=z−1
j

u](z;J )−1(M(z−1
j )−M ](z−1

j ))−1,

which implies

Ran (M(z−1
j )−M ](z−1

j ))−1 ⊆ ker Res
z=z−1

j

u](z;J )−1. (3.4.2)

Now, ker Resz=z−1
j
u](z;J )−1 = ker Resz=zj u(z;J )−1∗ = Ranu(zj ;J )∗ = keru(zj ;J )⊥ =

Ran w̃j⊥ = Ran Resz=zj M(z)⊥, and Ran (M(z−1
j )−M ](z−1

j ))−1 = ker(M(z−1
j )−M ](z−1

j ))−1

since M is Hermitian on the real line. This gives (1.3.17).
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Note that (M(z) −M ](z))−1M(z) = 1 + (M(z) −M ](z))−1M ](z) is analytic at z−1
j

since (M(z)−M ](z))−1M ](z) is analytic at z−1
j by (1.3.17).

Now, by (3.3.29), u(z;J )M(z) must be analytic at z−1
j . Then using (3.3.32),

0 = Res
z=z−1

j

u(z;J )M(z) = (z−1
j − zj) Res

z=z−1
j

u](z;J )−1(M(z)−M ](z))−1M(z),

which implies Ran (M(z−1
j )−M ](z−1

j ))−1M(z−1
j ) ⊆ ker Resz=z−1

j
u](z;J )−1 = Ranu](z−1

j ;J ) =

Ran w̃j⊥, which is (1.3.18).

(II)⇒(I) Now assume (A)–(D) holds. Because of (A), M has only finitely many poles

{zj} in D, all of which are real and simple since M is Herglotz (see [GT00]). Let w̃j =

−Resz=zj M(z).

Now we construct a function u as described in Theorem 3.3.10 and the remarks after it.

First, there exists an outer function O satisfying (3.3.38) by the Wiener–Masani theorem

(Lemma 2.4.5) since Szegő’s condition (3.3.39) trivially holds. Then form a matrix-valued

Blashcke product B =
∏
j Bzj ,sj ,Uj with sj = dim Ran w̃j , where we pick unitary matrices

Uj so that kerB(zj)O(zj) = Ran w̃j (this can be done inductively just as in Lemma 2.4.6).

Now put u(z) = B(z)O(z), which is an H2(D)-function.

Define

û(z) = (z − z−1)u](z)−1(M(z)−M ](z))−1, 1 < |z| < R. (3.4.3)

Since by contruction u(eiθ)∗u(eiθ) = sin θ(ImM(eiθ))−1, we have û(eiθ) = u(eiθ), where

the values of u, û on ∂D are meant in the sense of nontangential limits. Now note by (C),

sin θ(ImM(eiθ))−1 is continuous, and therefore supz∈∂D ||u(z)|| <∞. By the Smirnov maxi-

mum principle for matrix-valued functions (see [Gin67]), supz∈D ||u(z)|| ≤ supz∈∂D ||u(z)|| <

∞, i.e., u is bounded on D. Note that u−1 is bounded on a neighborhood of any point of

∂D \ {±1}, and then so is û by (3.4.3). Therefore Schwarz reflection principle allows us to

conclude that û is a meromorphic continuation of u. Since u is bounded on D, ±1 must be

removable singularities.

Note that by (B), M(z)−M ](z) in regular on ∂D \ {±1} with at most simple poles at

±1. Therefore (3.4.3) proves that u has no zeros on ∂D \ {±1} with at most simple zeros

at ±1.

Thus u satisfies all of the conditions of Theorem 1.3.12 (with wj = (z−1
j − zj)z

−1
j w̃j),
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and it’s clear that the unique measure µ of Theorem 1.3.12 is the measure corresponding to

M . In order to apply Theorem 1.3.15 we need to show that u is analytic (rather than just

meromorphic) in DR, and that the weights for those zj with 1 > |zj | > R−1 are canonical.

(3.4.3) shows that singularities of u can only happen at z−1
j , in which case they are

simple poles. Note that (1.3.17) can be rewritten as

Ran (M(z−1
j )−M ](z−1

j ))−1 =
(

ker(M(z−1
j )−M ](z−1

j ))−1
)⊥
⊇ Ran w̃j⊥ = keru(zj)⊥

= Ranu(zj) = Ranu](z−1
j ) = ker Res

z=z−1
j

u](z)−1,

(3.4.4)

where in the second-to-last equality we used (3.4.1). This and (3.4.3) imply

Res
z=z−1

j

u(z) = (zj − z−1
j ) Res

z=z−1
j

u](z)−1(M(z−1
j )−M ](z−1

j ))−1 = 0,

i.e., there is no pole at zj , i.e., u is analytic in DR.

By the remark after (3.3.58) we will establish that all the weights are canonical if we

show that u(1)(z) = z−1u(z)M(z)An+1 is analytic at z−1
j . This is what (1.3.18) is for.

First of all, note that Ran Resz=z−1
j
M ](z) = Ran Resz=zj M(z) (just use (3.4.1) and

w̃j = w̃∗j ), so (1.3.17) implies that (M(z)−M ](z))−1M(z) = 1 + (M(z)−M ](z))−1M ](z)

is analytic at z−1
j . This justifies that the use of the expression in (1.3.18). Now note that

(1.3.18) can be rewritten as

Ran (M(z−1
j )−M ](z−1

j ))−1M(z−1
j ) ⊆ Ran w̃j⊥ = ker Res

z=z−1
j

u](z)−1, (3.4.5)

which implies that u](z−1
j )−1(M(z−1

j ) −M ](z−1
j ))−1M(z−1

j ) is analytic. By (3.4.3) this is

u(z−1
j )M(z−1

j ).

Theorem 1.3.15 applies, giving (1.3.16).

Proof of Theorem 1.3.17. That (I) implies (II) is clear from (3.3.29) and the fact that u

and u(1) are polynomials.

Assume (II) holds. Then, going through the proof of the previous theorem, note that

u is entire and by (3.4.3) grows at most polynomially. Therefore it is a polynomial, and so

Theorem 1.3.14 applies.
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In the remarks after Theorems 1.3.16 and 1.3.17 we mentioned that condition (D) can

be restated in a better-looking form in some special cases. Let us prove it here.

Proposition 3.4.1. • If M has a pole of the first order at z−1
j then (D) is equivalent

to

Ran w̃j ⊆ Ran (w̃j − z2
j q̃j), (3.4.6)

Ran w̃j ∩ Ran q̃j = ∅, (3.4.7)

where w̃j = −Resz=zj M(z), q̃j = Resz=z−1
j
M(z).

• If l = 1, then (D) is equivalent to the condition that M has no simultaneous singular-

ities at points zj and z−1
j .

Proof. If M has a first order pole at z−1
j , then we can apply Lemma 2.4.2 to the analytic

function (M −M ])−1 and see that (1.3.17) can be rewritten as

Ran w̃j ⊆ Ran Res
z=z−1

j

M(z)−M ](z) = Ran (q̃j −
1
z2
j

w̃j), (3.4.8)

where we used (3.4.1) and the fact that and w̃j and q̃j are Hermitian.

Now note that (1.3.18) is equivalent to

0 = Res
z=z−1

j

u(z;J )M(z) = u(z−1
j ;J ) Res

z=z−1
j

M(z),

which means

Ran q̃j ⊆ keru(z−1
j ;J ) = Ran Res

z=z−1
j

u(z;J )−1 = Ran Res
z=z−1

j

(M(z)−M ](z))u](z;J )

= Ran (q̃j −
1
z2
j

w̃j)u(zj ;J )∗ = Ran q̃ju(zj ;J )∗

(3.4.9)

where we successively used here: Lemma 2.4.2, (3.3.32), (3.4.1), and (3.3.30). Finally, note

that (3.4.9) is equivalent to ker q̃j ⊆ keru(zj ;J )q̃j , i.e., Ran q̃j ∩ keru(zj ;J ) = ∅, which is

(3.4.7) by (3.3.30).

Now let l = 1, and assume M pole of order 1 at zj ∈ D (it cannot have higher order

poles there), and of order k ≥ 1 at z−1
j . Then limz→z−1

j
(1− M](z)

M(z) ) is finite, so limz→z−1
j

(1−
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M](z)
M(z) )−1 is nonzero (and it actually cannot be infinite by (1.3.17)). Therefore the right-

hand side of (1.3.18) becomes
(

Ran limz→z−1
j

(1− M](z)
M(z) )−1

)⊥
= {0}. But the left-hand

side is C, a contradiction.

3.5 Meromorphic Continuations of Finite Gap Herglotz Func-

tions and Periodic Jacobi Matrices

3.5.1 Notation

Denote by S = Se to be the (genus p − 1) Riemann surface corresponding to J , and by

R = S[−2,2] the (genus 0) Riemann surface corresponding to ∆(J ) (i.e., the hyperelliptic

surface corresponding to z2 − 4). We will denote both projections S → C ∪ {∞} and

R → C ∪ {∞} by the same symbol π.

Denote SR = S+ ∪ (S− ∩ ER), where ER is the union of the interiors of the bounded

components of ∆−1(x(R∂D)), where x(z) = z + z−1. Also, RR = R+ ∪ (R− ∩ FR), where

FR is the interior of the bounded component of x(R∂D) (ellipse).

Let m be the meromorphic in S+ ⊂ Se m-function of J , and m∆ to be the meromorphic

in R+ m-function of the block Jacobi matrix ∆(J ) with p × p matrix entries. Let µ and

µ∆ be the spectral measures for J and ∆(J ).

As in Definition 1.2.8, let z] be
(
π(z)

)
−

if z ∈ S+ and
(
π(z)

)
+

if z ∈ S− with the

convention z] = z for z ∈ π−1(e). Similarly let λ] be
(
π(λ)

)
−

if λ ∈ R+ and
(
π(z)

)
+

if λ ∈ R− with the convention λ] = λ for λ ∈ π−1([−2, 2]). Let m](z) = m(z]) and

m
]
∆(λ) = m∆(λ])∗.

Let {γj}p−1
j=1 be the p − 1 real solutions ∆′(z) = 0 (they are indeed all real by Lemma

2.2.1). Denote also ζj = ∆(γj), and {ξj}Nj=1 to be all of the preimages ∆−1(ζj) (so the set

{ξj}Nj=1 contains all γj ’s and finitely many of other points).

It will be convenient to defineR1 ⊂ R as the union ofR+∩C+, R−∩C− and the interval

[−2, 2] ⊂ R+ between them. Similarly let R2 ⊂ R be the union of R− ∩C+, R+ ∩C− and

the interval [−2, 2] ⊂ R− between them. Clearly R1, R2 are simply-connected subsets of

R that have only ±2 as common points.

Denote the p inverse functions of ∆ by fj defined in C+ ∪ C− ∪ [−2, 2] (to avoid the

critical points of ∆, which are all in (−∞,−2)∪ (2,∞)): ∆(z) = λ⇒ z = fj(λ). In fact let
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us also define f̃j to be the function on R1 ∪R2 to S defined from the conditions

π ◦ f̃j = fj ,

f̃j(λ) ∈ S+ if λ ∈ R+,

f̃j(λ) ∈ S− if λ ∈ R−.

Finally, extend f̃j to (−∞,−2) ∪ (2,∞) on R+ and R− by demanding it to be continuous

“from above” (i.e., f̃j(z0) = limR+∩C+3z→z0 f̃j(z) for z0 ∈ R+ ∩ [(−∞,−2) ∪ (2,∞)] and

f̃j(z0) = limR−∩C+3z→z0 f̃j(z) for z0 ∈ R− ∩ [(−∞,−2) ∪ (2,∞)]). By doing this we are

ensured that all p of the preimages (counting multiplicities) ∆−1(λ) are counted in by

π(f̃j(λ)), 1 ≤ j ≤ p for any λ.

Define ∆̃ from S to R in the analogous way:

π ◦ ∆̃ = ∆,

∆̃(z) ∈ R+ if z ∈ S+,

∆̃(z) ∈ R− if z ∈ S−.

3.5.2 Lemmas

Lemma 3.5.1. For λ ∈ R+,

m(f̃l(λ)) =

(∆(J )− λ)−1
∏
j 6=l

(J − fj(λ)) δ1, δ1

 . (3.5.1)

Proof. Since (x− fl(λ))−1 = (∆(x)− λ)−1
∏
j 6=l(x− fj(λ)), we obtain

(J − f̃l(λ))−1 = (∆(J )− λ)−1
∏
j 6=l

(J − fj(λ)) for λ ∈ R+ (3.5.2)

(note also that
∏
j 6=l(J − fj(λ)) is a finite-banded matrix, so the multiplication on the

right-hand side is well-defined). Recalling (2.1.3), we obtain the result.

Note that (3.5.2) allows one to extend m using the m∆, but not vice versa since we
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cannot invert the operator on the right. There is a trick that will help us, though.

Lemma 3.5.2. For λ ∈ R+,

m∆(λ)(S11 + pR1 (λ)S21) +A−1
1
∗S21

=
p∑
j=1


q0 + p0m q1 + p1m · · · qp−1 + pp−1m

q1 + p1m q1p1 + p2
1m · · · qp−1p1 + pp−1p1m

...
...

. . .
...

qp−1 + pp−1m qp−1p1 + pp−1p1m · · · qp−1pp−1 + p2
p−1m

 (f̃j(λ)), (3.5.3)

where Sij is the (i, j)-th p× p block entry of ∆′(J ), and pj , qj are the first and second kind

polynomials for J .

Proof. Sum the equalities (3.5.2) from l = 1 to p:

p∑
l=1

(J − f̃l(λ))−1 = (∆(J )− λ)−1
p∑
l=1

∏
j 6=l

(J − fj(λ)). (3.5.4)

Note that
p∑
l=1

∏
j 6=l

(x− fj(λ)) = ∆′(x) (3.5.5)

(to see this, just differentiate
∏p
j=1(x − fj(λ)) = ∆(x) − λ with respect to x). Therefore∑p

l=1

∏
j 6=l(J − fj(λ)) = ∆′(J ). Recall (2.1.3), and write out the first p × p block of the

left-hand side of (3.5.4) and of the product on the right-hand side of (3.5.4). We obtain

RHS of (3.5.3) = m∆(λ)S11 + (qR1 (λ) + m∆(λ)pR1 (λ))S21.

Since qR1 (λ) = A∗1
−1, we obtain (3.5.3).

Lemma 3.5.3. If m and m∆ have meromorphic continuations to SR and RR, respectively,
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then for λ ∈ π−1(FR),

[
m∆(λ)−m

]
∆(λ)

]
(S11 + p1(λ)S21) =

p∑
j=1

[
m(f̃j(λ))−m](f̃j(λ))

]
×

×


1 p1(fj(λ)) · · · pp−1(fj(λ))

p1(fj(λ)) p2
1(fj(λ)) · · · p1(fj(λ))pp−1(fj(λ))

...
...

. . .
...

pp−1(fj(λ)) p1(fj(λ))pp−1(fj(λ)) · · · p2
p−1(fj(λ))

 . (3.5.6)

Proof. Immediate from the previous lemma.

Lemma 3.5.4. The following holds:

det(S11 + p1(λ)S21) = c1

p−1∏
j=1

(λ−∆(γj)), (3.5.7)

ker(S11 + p1(λ)S21) = span{v1(λ), · · · , vp(λ)}⊥, (3.5.8)

where vj(λ) = (1, p1(fj(λ)), · · · , pp−1(fj(λ)))∗. In particular S11 + p1(λ)S21 is singular if

and only if λ = ∆(γj), j = 1, · · · , p− 1, and these zeros are simple.

Proof. Note that by (2.1.1), S11 + p1(λ)S21 = S11 + (λ1 − B1)A∗1
−1S21 = S11 + (λ1 −

T11)T−1
21 S21, where Sij and Tij are the p× p blocks of ∆′(J ) and ∆(J ), respectively.

Take any µ ∈ C, and let û(µ) = (1, p1(µ), . . . , pj(µ), . . .)∗, u1(µ) = (1, p1(µ), . . . , pp−1(µ))∗,

u2(µ) = (pp(µ), pp+1(µ), . . . , p2p−1(µ))∗. Then û∗J = µû∗ in the formal sense (since û /∈ `2).

This gives û∗∆(J ) = ∆(µ)û∗ and û∗∆′(J ) = ∆′(µ)û∗ in the formal sense. This implies

u∗1T11 + u∗2T21 = ∆(µ)u∗1 ⇒ u∗1T11T
−1
21 + u∗2 = ∆(µ)u∗1T

−1
21 ,

u∗1S11 + u∗2S21 = ∆′(µ)u∗1,

which gives that

u∗1[S11 + (λ− T11)T−1
21 S21] = u∗1[∆′(µ) + (λ−∆(µ))T−1

21 S21].

This shows that u1(µ) is an eigenvector of [S11 + (λ − T11)T−1
21 S21]∗ if λ = ∆(µ), and it is

actually in the kernel if µ = γj . Note that T−1
21 S21 is a matrix with 0’s on and below the
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main diagonal with positive elements right above it, which implies that the degree of the

polynomial det(S11 + (λ1− T11)T−1
21 S21) is p− 1. This establishes (3.5.7).

Now note that we just showed that each vj(λ), 1 ≤ j ≤ p, is an eigenvector of [S11 +

(λ− T11)T−1
21 S21]∗. Then

ker(S11 + p1(λ)S21) =
(
Ran [S11 + (λ− T11)T−1

21 S21]∗
)⊥ = span{v1(λ), · · · , vp(λ)}⊥.

In the last equality the inclusion ⊆ follows from the fact that eigenvectors lie in the range,

and the inclusion ⊇ follows by counting the dimensions (note that the system of vectors

{(1, p1(zj), · · · , pp−1(zj))}kj=1 is linearly independent if and only if all the points zj are

distinct: easy use of Vandermonde and the fact that pn is of degree n).

Finally, the zeros at ∆(γj) are simple by Lemma 2.4.2.

Remark. It is clear from the proof that Lemma 3.5.4 is a just a special case of the following

fact: for any polynomials r1, r2 of degrees k1 > k2, det(S11+(λ1−T11)T−1
21 S21) = c

∏k2
j=1(λ−

r1(ζj)), where Sij and Tij are the k1 × k1 blocks of r2(J ) and r1(J ), respectively, and ζj

are the zeros of r2.

Lemma 3.5.5. The following holds:

det(RHS of (3.5.6)) = c2

p−1∏
j=1

(λ−∆(γj))
p∏
j=1

(
m(f̃j(λ))−m](f̃j(λ))

)
.

If λ = ∆(γk) and all of m(f̃j(λ)),m](f̃j(λ)) are regular and (pairwise) not equal, then the

zero of the RHS of (3.5.6) at λ is simple and its kernel is equal to span{v1(λ), · · · , vp(λ)}⊥,

where vj(λ) = (1, p1(fj(λ)), · · · , pp−1(fj(λ)))∗.

Proof. Let αj = m(f̃j(λ)) − m](f̃j(λ)). The determinant on the RHS of (3.5.6) can be

computed as follows:

det

 n∑
j=1

αj [pk−1(fj(λ))ps−1(fj(λ))]pk,s=1

 = det

 n∑
j=1

αjpk−1(fj(λ))ps−1(fj(λ))

p
k,s=1


= det

(
[αjpk−1(fj(λ))]pk,j=1 [ps−1(fj(λ))]pj,s=1

)
=
(

det [ps−1(fj(λ))]pj,s=1

)2
p∏
j=1

αj . (3.5.9)
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Since pj is of degree j, it is easy to see that det [ps−1(fj(λ))]pj,s=1 is just reduced to the

Vandermonde determinant, and so (3.5.9) equals to

p∏
j=1

αj
∏
j<s

(fj(λ)− fs(λ))2 =
p∏
j=1

αj

p∏
j=1

p∏
s=1
s 6=j

(fj(λ)− fs(λ)).

Now observe that
∏p
s=1s 6=j(fj(λ)−fs(λ)) = ∆′(fj(λ)) by (3.5.5), and so the last expression

equals to

p∏
j=1

αj

p∏
j=1

∆′(fj(λ)) = c2

p∏
j=1

αj

p∏
j=1

p−1∏
s=1

(fj(λ)− γs) = c2

p∏
j=1

αj

p−1∏
s=1

(λ−∆(γs)),

where c2 is the leading coefficient of ∆′.

That any vector orthogonal to {v1(λ), · · · , vp(λ)} must be in the kernel is clear since

the j-th row of the matrix in (3.5.6) is obtained from its first row by multiplication

by pj−1. Then counting the dimensions we convince ourselves that the kernel is indeed

span{v1(λ), · · · , vp(λ)}⊥. Each zero is simple by Lemma 2.4.2.

Damanik–Killip–Simon derive the following explicit formula relating the determinant of

the density dµ∆
dx of µ∆ and the density dµ

dx of µ (see [DKS, Prop 11.1]). In our notation it

looks as follows:

det
[
dµ∆(λ)
dλ

]
=

1
αpp

p∏
j=1

a2p−2j
j

p∏
j=1

dµ

dx
(fj(λ)),

where αp is the leading coefficient of ∆. The next lemma then looks natural. Note that if

we take λ ∈ e in the lemma, we obtain the formula above.

Lemma 3.5.6. If m and m∆ have meromorphic continuations to SR and RR, respectively,

then for λ ∈ π−1(FR),

det
(
m∆(λ)−m

]
∆(λ)

)
= c

p∏
j=1

(
m(f̃j(λ))−m](f̃j(λ))

)
, (3.5.10)

where c = 1
αp

p

∏p
j=1 a

2p−2j
j , where αp is the leading coefficient of ∆.

Proof. The previous three lemmas gives the result up to a multiplicative constant. The

value of the constant must of course be equal to the constant obtained by Damanik, Killip,

and Simon [DKS, Prop 11.1].



94

The following lemma is a bit messy to prove, but will make our life so much easier.

Lemma 3.5.7. Let a0 > 0, b0 ∈ R, and let J (−1) = (an, bn)∞n=0 be the Jacobi matrix

obtained from J = (an, bn)∞n=1 by adding one column and one row with the corresponding

parameters a0, b0. Let m and m(−1) be the m-functions of J and J (−1). If m satisfies (ii)

of Theorem 1.3.18 (of Theorem 1.3.19), then so does m(−1).

Moreover, for any ε > 0 one can add finitely many {aj , bj}0j=−k+1 to form the Jacobi

matrix J (−k) = (an, bn)∞n=−k+1 satisfying

(†) m(−k) does not have poles at any (ξj)± and band edges;

(‡) for any two poles z1, z2 of m(−k) in SR−ε, ∆̃(z1) 6= ∆̃(z2), ∆̃(z]1) 6= ∆̃(z2).

Remark. It seems k = 1 should be sufficient, but would overcomplicate the proof for no

reason.

Proof. By the recursion

a2
0m(z) = −z + b0 −m(−1)(z)

−1
(3.5.11)

we can extend m(−1) to the same domain as m (so m(−1) satisfies (ii)(a) of Theorem 1.3.18),

and then

m(z)−m](z) =
m(−1)(z)−m(−1)](z)
m(−1)(z)m(−1)](z)

for z ∈ π−1(ER). (3.5.12)

Assume m(−1)(z) has a pole at an interior point of e. Then (3.5.11) implies that that m

is real at this point, which violates (ii)(c). Assume m(−1)(z) has a pole of order k ≥ 2 at a

band edge. Then m(−1)](z) has the same order pole at this point, and then (3.5.12) implies

that m−m] has a zero of order at least 2k− k ≥ 2, contradicting (ii)(c) for m. Thus m(−1)

satisfies (ii)(b).

Assume m(−1)(z) and m(−1)](z) are both finite and m(−1)(z)−m(−1)](z) = 0, for some

z not at a band edge. Then (3.5.12) implies that m violates (ii)(c) or (ii)(d) of Theorem

1.3.18, a contradiction. Thus m(−1) satisfies (ii)(c) for z not at a band edge.

Assume m(−1) is finite and nonzero at a band edge. Then so is m(−1)], and then (3.5.12)

shows that m(−1) −m(−1)] has at most first order pole there. Now let m(−1) have a zero

of order k ≥ 1 there. Then (3.5.11) shows that necessarily k = 1. But then m] has order

1 pole at this band edge with the leading coefficient being negative of that of m (
√

∆2 − 4

changes sign when we change sheets). This shows that m(−1) −m(−1)] has nonzero leading
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coefficient near the first order term, i.e., has first order zero too. Lastly, assume m(−1) has

a pole at a band edge. We showed that then this pole is simple. Again, m] has a first order

pole with the leading coefficient being negative to that of m, and so m−m] still has a pole,

and therefore does not vanish. Thus m(−1) satisfies (ii)(c).

Finally, assume m(−1)(z) and m(−1)](z) both have a pole at z ∈ π−1(ER). Then by

(3.5.11) m(z) = m](z) = b0−π(z)
a2

0
, which means that m violates (ii)(c). Therefore m(−1)

satisfies (ii)(d).

Let us prove the “moreover” part now. Note that all the poles of m(−1) occur at the

points where a2
0m(z) = b0 − z. Denote the finite number of distinct poles of m in SR−ε by

{zj}Kj=1. Let M1 = maxj |zj |. Choose small δ > 0 such that the δ-neighborhoods Uδ(zj) of

these points are disjoint and inside SR−ε. Choose M2 > 0 to be larger than the supremum

of |m(z)| over all z in SR−ε not in these neighborhoods. Fix any small
√
δ/M2 > a0 > 0.

Now let b0(t) = M1 + M2 + t for t ≥ 0. For each such a0, b0(t) let m(−1)(a0, b0(t)) be the

m-function of J (−1) = (an, bn)∞n=0. Note that if z is not in one of Uδ(zj) or Uδ(b0(t)+), then

z cannot be a pole of m(−1)(a0, b0(t)). Indeed, for such z, |a2
0m(z)| ≤ δ < |b0 − z|. Note

that a2
0m(z) + z around each zn is locally kj-to-1 (where kj ≥ 1 is the order of the pole

at zj). Therefore assuming t is large enough, we will have precisely kj distinct solutions

to a2
0m(z) + z = b0(t) (they are distinct since zj itself cannot be a solution), i.e., there are

precisely kj distinct first order poles of m(−1)(a0, b0(t)) in each Uδ(zj). Finally, for large

enough t there will be exactly one solution to a2
0m(z) = b0(t) − z in Uδ(b0(t)+) (note that

for large t, b0(t) is not in ER, and we can ignore Uδ(b0(t)−)). Indeed, m is monotonically

increasing to zero as R 3 z → +∞. Therefore for large t, a2
0m(z) = b0(t) − z will have

exactly one real solution in Uδ(b0(t)). Since any pole of m(−1) on S+ must be real, we do

not have to worry about nonreal poles in Uδ(b0(t)).

Thus there are precisely 1 +
∑K

j=1 kj first order poles of m(−1)(a0, b0(t)) in SR−ε, which

are distinct for any t large enough. Denote the locations of these poles by zj(t) (note each

zj(t) is a continuous function).

The restriction (†) requires only b0(t) 6= a2
0m((ξj)±) + ξj , and b0(t) 6= a2

0m(αj) + αj ,

b0(t) 6= a2
0m(βj) + βj , which excludes only finite number of allowable b0(t). Choosing any

other b0(t) therefore produces J (−1) satisfying (†) and having only first order poles in SR−ε.

Thus without loss of generality we may assume that m already satisfies (†) and has only

first order poles in SR−ε.
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In particular, kj = 1. Now there will be precisely K + 1 poles of m(−1), one in each

Uδ(zj), 1 ≤ j ≤ K, and one in Uδ(b0(t)).

Assume that δ is small enough so that ∆̃(Uδ(zj)) ∩ ∆̃(Uδ(zn)) = ∅ provided ∆̃(zj) 6=

∆̃(zn), and ∆̃(Uδ(zj)]) ∩ ∆̃(Uδ(zn)) = ∅ provided ∆̃(z]j) 6= ∆̃(zn). Then if (‡) holds for m

for some zj , zn, then it will still hold for the corresponding poles of m(−1).

Now assume that (‡) does not hold for m, say for the poles z1 and z2. Without loss of

generality we may assume ∆̃(z1) = ∆̃(z2) ≡ λ0 (the case ∆̃(z]1) = ∆̃(z2) can be treated in

the same way). If we pick the coefficients a0 and b0(t) so that m(−1)(a0, b0(t)) satisfies (‡)

for the corresponding poles in Uδ(z1) and Uδ(z2), then we can keep repeating this procedure

to get rid of all “resonances”.

Suppose that no matter what t is, t→∞, the condition (‡) fails for m(−1)(a0, b0(t)) at

z1(t) and z2(t), where z1(t), z2(t) are the unique solutions of a2
0m(z) = b0(t)− z in Uδ(z1),

Uδ(z2), respectively. This implies ∆̃(z1(t)) = ∆̃(z2(t)) =: λ(t). This means that we can

choose different branches f1, f2 of ∆−1 (note that we are avoiding critical points since (†)

holds) such that

a2
0(m(f̃1(λ(t)))−m(f̃2(λ(t)))) = f2(λ(t))− f1(λ(t)).

By analytic continuation we in fact obtain

a2
0(m(f̃1(λ))−m(f̃2(λ))) = f2(λ)− f1(λ).

for all λ in a neighborhood of λ0.

This may in fact happen. However choose now any 0 < a′0 < a0. Either we get rid of

the resonance for this a′0 and some b0(t), or we again obtain

a′0
2(m(f̃1(λ))−m(f̃2(λ))) = f2(λ)− f1(λ)

for all λ in a neighborhood of λ0. The last two equalities imply f2(λ) − f1(λ) ≡ 0 giving

the contradiction.

For the other direction we will use the following result, which is the analogue of Lemma

3.3.7.
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Lemma 3.5.8. Assume lim supn→∞(dn(J ,J 0))1/2n ≤ R−1, where J0 is a (one-sided) p-

periodic Jacobi matrix in Te. Let m(n) be the m-function of J (n) and m0 be the m-function

of J 0. Then m(np)(z)→ m0(z) as n→∞ for any z ∈ SR.

Remark. In fact, the convergence is uniform on compacts with respect to the spherical dis-

tance on the Riemann sphere.

Proof. Note that J (np) → J 0 in norm since (J 0)(np) = J 0. This also gives us ∆(J (np))→

∆(J 0).

Let us write m(J ) to mean the m-function of a Jacobi matrix J evaluated at a point

z ∈ S, the dependence on which we will omit for convenience. Let us also write m∆(J ) to

mean the (matrix-valued) m-function of a block Jacobi matrix J evaluated at ∆̃(z) ∈ R.

Let also m0 be the m-function of J 0, evaluated at z, and m0
∆ be the m-function of the

free block Jacobi matrix (−λ±
√
λ2−4

2 1), evaluated at ∆̃(z).

Let us write (3.5.1) as m(J ) = g(m∆(∆(J )), {aj}Nj=1, {bj}Nj=1), where g is a continu-

ous function that takes one p × p matrix-valued parameter and 2N real parameters (here

{aj}Nj=1, {bj}Nj=1 are the first Jacobi parameters of the matrix J ). Indeed, the right-hand

side of (3.5.1) depends on m∆(∆(J )), the first orthogonal polynomial p1 of ∆(J ) and on the

first column of the product
∏
j 6=l(J −fj(∆(z))). The latter two objects are smooth functions

(in fact polynomials) of first N Jacobi parameters {aj}Nj=1, {bj}Nj=1 of J , for N sufficiently

large (N = 2p should suffice). This proves that if Jk → J and m∆(∆(Jk)) → m∆(∆(J ))

then m(Jk)→ m(J ).

By Lemma 3.3.7 we have m∆(∆(J )(n)) → m0
∆ for λ ∈ RR. Note that ∆(J (np)) 6=

∆(J )(n). However, ∆(J (np)) and ∆(J )(n) differ only in the first block entry, which implies

∆(J (np))(1) = ∆(J )(n+1). Thus

m∆(∆(J (np))(1)) = m∆(∆(J )(n+1))→ m0
∆.

Taking J = J 0 in the last expression produces m∆(∆(J 0)(1)) = m0
∆. Therefore

m∆(∆(J (np))(1))→ m∆(∆(J 0)(1)).

Now use (3.5.11): the first Jacobi parameters of ∆(J (np)) converge to the first Jacobi

parameters of ∆(J 0), which implies that m∆(∆(J (np)))→ m∆(∆(J 0)) if ∆(z) is a regular
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point of m∆(∆(J 0)). This gives us m(J (np)) → m(J 0) by continuity of g, for all z such

that ∆(z) is regular for m∆(∆(J 0)).

In fact, note that the convergence m∆(∆(J (np))(1))→ m∆(∆(J 0)(1)) is given by Lemma

3.3.7 to be uniform on compacts (m∆(∆(J 0)(1)) is analytic). Therefore

m(J (np)) = g

((
(B(np)

0 −∆(z)−A(np)
0 m∆(∆(J (np))(1))A(np)

0
∗
)−1

, {aj}Nj=1, {bj}Nj=1

)

is just some rational function of finitely many uniformly convergent analytic functions. It

means that m(J (np)) is a sequence of meromorphic functions that converges to m(J 0)

uniformly (on compacts) with respect to the spherical distance. In particular if m(J 0) has

a pole at z, then m(J (np))→∞.

3.5.3 Proof of Theorems 1.3.18 and 1.3.19

Proof of Theorem 1.3.18. (ii)⇒(i) Passing from m to m(−1) in Lemma 3.5.7, we may assume

that m itself satisfies (†) and (‡).

We want to apply Theorem 1.3.16 to ∆(J ).

(II)(A) holds by (ii)(a) and Lemma 3.5.2, and analytic continuation. Indeed, for any

λ ∈ RR, f̃j(λ) ∈ SR, so all we need to check is continuity along (−∞,−2] ∪ [2,∞) in R−.

Let η ∈ (2,∞) \ {ζj}, where ζj are the images of zeros of ∆′, and consider

lim
R−∩C+3λ→η−

m∆(λ)− lim
R−∩C−3λ→η−

m∆(λ). (3.5.13)

Note that even though limR−∩C+λ→η− f̃j(λ) is not equal to limR−∩C−3λ→η− f̃j(λ) in general,

we however still have

{
lim

R−∩C+λ→η−
f̃j(λ)

}
1≤j≤p

=
{

lim
R−∩C−3λ→η−

f̃j(λ)
}

1≤j≤p
= {(fj(η))−}1≤j≤p (3.5.14)

as sets (these points just get permuted). Then (3.5.3) shows that (3.5.13) is zero. Finally,

there cannot be essential singularities at {ζj} and {±2} since limits of m∆ at these points

from each of the half-planes exist, so by Casorati–Weierstrass the singularities must be

removable or poles. Therefore (II)(A) holds.

(ii)(b) implies that ∆(J ) has no pure points on e, which gives (II)(B).

Assume (II)(C) does not hold, and there is a pole of
[
m∆(λ)−m

]
∆(λ)

]−1
at λ0 ∈
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π−1(ER \∪pj=1{αj , βj}). By symmetry, we can assume λ0 ∈ R+. Without loss of generality,

let λ0 ∈ R+ ∩ (C+ ∪ R). By (3.5.6), the poles of
[
m∆(λ)−m

]
∆(λ)

]−1
may come only from

the inverse of the right-hand side of (3.5.6).

Assume first that f̃j(λ0) are all regular points for m and m]. Then the RHS of (3.5.6)

is regular at λ0, so its determinant must be zero. By Lemma 3.5.5 and (ii)(b), λ0 = ∆(γj)

for some j.

Then [
m∆(λ)−m

]
∆(λ)

]−1
= (S11 + p1(λ)S21)F (λ)−1,

where F is the right-hand side of (3.5.6). By Lemma 3.5.4, F−1 has a simple pole at λ0, so

Res
λ=λ0

[
m∆(λ)−m

]
∆(λ)

]−1
= (S11 + p1(λ0)S21) Res

λ=λ0

F (λ)−1.

But using Lemmas 2.4.2, 3.5.5, and 3.5.4 we get Ran Resλ=λ0 F (λ)−1 = kerF (λ0) =

ker(S11+p1(λ0)S21), which implies Resλ=λ0

[
m∆(λ)−m

]
∆(λ)

]−1
= 0, i.e.,

[
m∆(λ)−m

]
∆(λ)

]−1

is regular at λ0.

Now assume that z0 = f̃k(λ0) for some k is a pole for m or m] (without loss of generality,

let it be pole for m]). By Lemma 3.5.7(‡), every other m(f̃j(λ0)),m](f̃j(λ0)) is regular. By

Lemma 3.5.7(†), λ0 6= ∆(γj) for any j. Therefore S11 + p1(λ0)S21 is invertible. Let n ≥ 1

be the order of the pole of m] at z0. By Lemma 3.5.3 m∆(λ) − m
]
∆(λ) has a pole of order

k at λ0 (use the fact that ∆′(z0) 6= 0). Let its Smith-McMillan form be

m∆(λ)−m
]
∆(λ) = E(λ) diag ((λ− λ0)κ1 , . . . , (z − z0)κl)F (λ)

with κ1 ≥ κ2 ≥ . . . ≥ κl = −k. By Lemma 3.5.6 (and (ii)(b)), det(m∆(λ)−m
]
∆(λ)) has also

a pole of order k. Therefore κ1+. . .+κl−1 = 0. Note that (λ−λ0)k[m∆(λ)−m
]
∆(λ)] has rank

1 by (3.5.6) (as each matrix [pk−1(fj(λ))ps−1(fj(λ))]pk,s=1 is of rank 1 and S11 + p1(λ0)S21

is invertible). Therefore κl−1 > −k.

Assume 0 > κl−1 > −k. Then by Lemma 2.4.4 there exists an analytic Cl-valued

function φl−1 such that φl−1(λ0) 6= 0 and (λ−λ0)−κl−1φl−1(λ)T (m∆(λ)−m
]
∆(λ)) = ψl−1(λ)

is analytic at λ0 with ψl−1(λ0) 6= 0. Now plug this into (3.5.6). We claim that in fact

lim
z→z0

(λ− λ0)−κl−1φl−1(λ)T (m∆(λ)−m
]
∆(λ)) = 0.
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The reason is that m(f̃k(λ0)) − m](f̃k(λ0)) has a pole of order k > −κl−1, which forces

φl−1(λ0)T to be in the kernel of [pk−1(z0)ps−1(z0)]pk,s=1. But any otherm(f̃j(λ0))−m](f̃j(λ0))

(j 6= k) is regular, so each of those terms vanish too. Therefore we conclude ψl−1(λ0) = 0,

a contradiction.

We showed that κl−1 ≥ 0. Since κ1 + . . .+κl−1 = 0 and κ1 ≥ κ2 ≥ . . . ≥ κl−1, we obtain

κ1 = κ2 = . . . = κl−1 = 0, which implies that
[
m∆(λ0)−m

]
∆(λ0)

]−1
is regular.

Finally we need to show that there are at most simple poles of
[
m∆(λ)−m

]
∆(λ)

]−1

at λ0 = ±1. Let k be the number of the simple zeros of m(f̃j(λ0)) − m](f̃j(λ0)), and

let the corresponding indices be j1, . . . , jk. There are no poles of m at f̃j(λ0) by (†), so

m − m] is analytic there. Repeating the arguments of Lemma 3.5.5, one sees that ker-

nel of the right-hand side of (3.5.6) is span [{v1, · · · , vp} \ {vj1 , · · · , vjk}]
⊥, where vj =

(1, p1(fj(λ0)), · · · , pp−1(fj(λ0)))∗. Since vj are linearly independent, we see that the dimen-

sion of the kernel is precisely k. Since the determinant of the right-hand side has a zero of

order k at λ0 (Lemma 3.5.5), we conclude that its inverse has a simple pole (Lemma 2.4.2).

This establishes that m∆ satisfies (II)(C).

Finally, let us check (II)(D). Assume m∆ has a pole at (λ0)+ and (λ0)− for some λ ∈

C \ [−2, 2]. By the part (†) of Lemma 3.5.7, λ0 6= ∆(γj) for any j. This implies that

S11 + p1(λ0)S21 is invertible, and so the pole of m∆((λ0)+) must have come from a pole of

m(fj((λ0)+)) or m](fj((λ0)+)) for some j. Similarly, the pole of m∆((λ0)−) comes from a

pole of m(fk((λ0)−)) or m](fk((λ0)−)) for some k. This violates the condition (‡) of Lemma

3.5.7.

Thus we are in position to apply Theorem 1.3.16. Therefore ∆(J ) satisfies (I) which

implies (i) by Lemma 2.2.3.

(i)⇒(ii) The condition (i) implies (I) holds for ∆(J ) by Lemma 2.2.3, which in turn

implies (II)(A)–(D) hold by Theorem 1.3.16.

(ii)(a) holds by Lemma 3.5.1 and analytic continuation. Indeed, for each l, 1 ≤ l ≤ p,

it allows us to meromorphically extend m to (the interior of) the region f̃l(FE) of S−. The

only thing we need to check is that the extension is continuous on the boundaries of these

regions, i.e., on (∆−1((−∞, 2] ∪ [2,∞)))−. Take some z0 there, different from the band
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edges and ξj ’s, and let λ0 = ∆̃(z0). Without loss of generality let us assume that

lim
R−∩C+3λ→λ0

f̃1(λ) = lim
R−∩C−3λ→λ0

f̃2(λ).

Then using (3.5.14), we obtain

{
lim

R−∩C+λ→η−
f̃j(λ)

}
1≤j≤p,j 6=1

=
{

lim
R−∩C−3λ→η−

f̃j(λ)
}

1≤j≤p,j 6=2

= {(fj(η))−}1≤j≤p \ {z0}.

Then (3.5.1) (and the fact that J −xj commute for different j’s) shows that m has the same

limit at z0 when approaching from regions f̃1(FE) and f̃2(FE). Finally, the singularities

at ξj and band edges must be either removable or poles again by Casorati–Weierstrass

arguments. Thus we established (ii)(a).

If (ii)(b) did not hold, then eigenvalues of J in e would produce eigenvalues of ∆(J ) in

[−2, 2], which would contradict (II)(B).

Now let us show (ii)(c) and (ii)(d). Observe that (i) implies that that there exists a peri-

odic Jacobi matrix J 0 in Te such that dn(J ,J 0)→ 0. Thus lim supn→∞(dn(J ,J 0))1/2n ≤

R−1 and we can apply Lemma 3.5.8. Now if (ii)(c) or (ii)(d) fails at a point z ∈ π−1(ER \ e)

then m(z) = m](z) (where we allow ∞ = ∞) implies m(n)(z) = m(n)](z) for every n by

(3.5.11). This implies m0(z) = limn→∞m
(n)(z) = limn→∞m

(n)](z) = m0](z), a contradic-

tion.

Now assume that Imm(z) = 0 for some z in the interior of e. Then by (3.5.11), every

m(n) is also real at this point. This implies that m0(z) is real, which is impossible (e.g., by

(1.2.15)).

Finally assume that (m(z) − m](z))−1 has a pole of order k ≥ 2 at some band edge

z0 ∈ π−1(∪pj=1{αj , βj}). At z0, (S11 +pR1 (∆(z0))S21) is invertible by Lemma 3.5.4, and then

Lemma 3.5.2 implies that m∆ has a pole of order k ≥ 2 at ±2. This contradicts to the

condition (II)(C) of Theorem 1.3.16.

Proof of Theorem 1.3.19. (i)⇒(ii) The condition that dn(J , Te) = 0 for all large n implies

that ∆(J ) is eventually free by the Magic Formula. Then Theorem 1.3.17 implies that m∆

has a meromorphic continuation to the whole surface R. Then Lemma 2.4.2 allows us to

extend m to the whole S as well. Parts (b), (c), and (d) are already proven in the previous
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theorem.

(ii)⇒(i) The result is obtained by following the proof of the previous theorem, but

applying Theorem 1.3.17 instead of Theorem 1.3.16 (note that m∆ has full meromorphic

continuation to R by (ii)(a) and Lemma 3.5.2).

3.6 Point Perturbations of Measures

3.6.1 Perturbations of the Matrix-Valued Free Case

Remark. It is clear, that the Jost functions in Theorem 1.3.20 are related by û(z) =

B−1
zN ,sN ,UN

(z)u(z)(1−wN )−1/2, where BzN ,sN ,UN
is an appropriately constructed elementary

Blaschke-Potapov factor, and û(z) = BzN ,sN ,UN
(z)u(z)(1+wN )−1/2 in Theorems 1.3.21 and

1.3.22. Thus instead of using Theorem 1.3.16, one can use Theorem 1.3.14 to get a (simpler)

proof of Theorems 1.3.20 and 1.3.21.

Proof of Theorem 1.3.20. (i) Applying Theorem 1.3.16, we get that M satisfies the condi-

tions (A), (B), (C), (D). Note that the M -function of the Jacobi matrix (Ân)∞n=1, (B̂n)∞n=1

equals M̂(z) = M(z) + 1
EN−z−z−1wN . Thus the condition (A) of Theorem 1.3.16 for M

implies the condition (A) for M̂ . (B) is clear. Note also that (M̂(z) − M̂ ](z))−1 =

(M(z) − M ](z))−1, so (C) is automatic. Finally, let us check the condition (D) for M̂

at a point zj (for 1 ≤ j ≤ N − 1 since zN is not a pole of M̂). (1.3.20) is immediate since

Ran Res
z=zj

M̂(z) = Ran Res
z=zj

M(z). (3.6.1)

To prove (1.3.21) observe that

Ran (M̂(z−1
j )− M̂ ](z−1

j ))−1M̂(z−1
j )

= Ran

(
(M(z−1

j )−M ](z−1
j ))−1M(z−1

j ) + (M(z−1
j )−M ](z−1

j ))−1 1
EN − zj − z−1

j

wN

)
= Ran (M(z−1

j )−M ](z−1
j ))−1M(z−1

j ), (3.6.2)
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where the last equality comes from

Ran

(
(M(z−1

j )−M ](z−1
j ))−1 1

EN − zj − z−1
j

wN

)
⊆ Ran (M(z−1

j )−M ](z−1
j ))−1

⊆ Ran (M(z−1
j )−M ](z−1

j ))−1M(z−1
j ), (3.6.3)

where we used (3.4.4) and (3.4.5) in the last inclusion. Therefore (3.6.1) and (3.6.2) imply

(1.3.18) for M̂ , and so Theorem 1.3.16 gives the result.

(ii) follows by the exact same argument using Theorem 1.3.17 instead of Theorem 1.3.16.

Proof of Theorem 1.3.21. Now M̂(z) = M(z) − 1
EN−z−z−1wN and exactly the same argu-

ments work.

Proof of Theorem 1.3.22. Again, M̂(z) = M(z)− 1
EN−z−z−1wN , and the only possible issue

is checking the condition (II)(D) of Theorem 1.3.16 for M̂ at z = zN .

(i) We establish (1.3.30) if we show that (1.3.17)–(1.3.18) fails at zN . If M has no

pole at z−1
N , then M̂(z) − M̂ ](z) = M(z) −M ](z) is regular at z−1

N , and so ker(M̂(z−1
j ) −

M̂ ](z−1
j ))−1 = {0}. Therefore if (1.3.17) holds then wN = 0, a contradiction.

(ii) Assume (1.3.31) holds. Then zN is canonical (for M̂), and so (3.4.6)–(3.4.7) hold

for M̂ at z = z−1
N . One easily sees that w̃N ≡ −Resz=zj M̂(z) = z2

N

1−z2
N
wN , and q̃N ≡

Resz=z−1
N
M̂(z) = qN + 1

1−z2
N
wN . Therefore (3.4.6)–(3.4.7) amount to RanwN ⊆ Ran qN

and RanwN ∩ Ran (qN + wN/(1 − z2
N )) = ∅. Now write −(1 − z2

N )qN = (−(1 − z2
N )qN −

wN ) + wN and pre- and post-multiply by P , the orthogonal projection onto RanwN , to

obtain −(1− z2
N )PqNP = PwNP = wN . Clearly RanwN is invariant for qN .

Conversely, if wN is not of this form, then RanwN ⊆ Ran qN and RanwN ∩ Ran (qN +

wN/(1− z2
N )) = ∅ cannot hold, so zN is not canonical for M̂ . This implies (1.3.30).

(iii) Part (b) is just (1.3.17)–(1.3.18) for M̂ .

Now if l = 1, then by Proposition 3.4.1, the equations (1.3.17)–(1.3.18) are equivalent

to saying that there are no singularities at zN and z−1
N . But if the order of the pole of M

at z−1
N is bigger than 1, then M̂ also has a pole at z−1

N . M̂ has a first order pole at zN as

well (as all Ej are assumed to be distinct). Therefore zN cannot be canonical for M̂ .
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Proof of Theorem 1.3.23. Let us use the Jost functions approach, rather than the M -

functions one.

Let us renormalize dµ̂(x) to be

dµ̂(x) =
1

EN − x
Hf(x)Hdx+

N−1∑
j=1

1
EN − Ej

HwjHδ(x− Ej) +HwNHδ(x− EN ),

where H ≥ 0 is

H =

∫ 2

−2

1
EN − x

f(x)dx+
N−1∑
j=1

1
EN − Ej

wj + wN

−1/2

,

so that dµ̂ has the total weight 1 (this does not change the Jacobi parameters).

Note that M has no singularity at zN (as µ({EN}) = 0), and recall the equality

M(z) = M ](z) + (z − z−1)
[
u](z)u(z)

]−1
.

This implies that M being regular at z−1
N is equivalent to u(z−1

N ) being invertible.

Using Theorem 1.3.12, one sees that the Jost fucntion for µ̂ is û(z) = zN−z√
zN
u(z)H−1.

Indeed, we just need to check the boundary values recover the absolutely continuous part

of µ̂ correctly:

sin θ
π

û(eiθ)−1û(eiθ)∗−1 =
sin θ
π

zN
(zN − eiθ)(zN − e−iθ)

Hu(eiθ)−1u(eiθ)∗−1H

=
zN

(zN − eiθ)(zN − e−iθ)
Hf(2 cos θ)H

=
1

EN − 2 cos θ
Hf(2 cos θ)H = f̂(2 cos θ).

In order to apply Theorem 1.3.15, we just need to show that zj ’s are canonical for 1 ≤ j ≤ N .

Ran ŵj = ker û(zj) is straightforward. Now we need to check the equality (1.3.13) for û

and ˜̂wj ≡ z2
j

1−z2
j
µ̂({Ej}). Substituting the expressions for û and ˜̂wj , and using the fact that

(1.3.13) holds for u and w̃j we get canonicity of zj for 1 ≤ j ≤ N − 1. For zN , we see that

(1.3.13) is equivalent to

z2
N

1− z2
N

HwNH
zN − 1/zN√

zN
H−1u(z−1

N )∗ = −(zN − z−1
N )
√
zNHu(zN )−1, (3.6.4)
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which reduces to

wN = (zN − z−1
N )u(zN )−1u(z−1

N )∗−1,

since u(z−1
N ) is invertible by assumption. Finally, note that the last expression is (1.3.35)

by (3.3.32).

3.6.2 Perturbations of the Scalar Periodic Case

Proof of Theorem 1.3.24. Since J is eventually periodic, m satisfies (ii)(a)–(d) of Theorem

1.3.19. Then note that m̂(z) = m(z) − wN
EN−z and m̂(z) − m̂](z) = m(z) − m](z), which

implies that m̂ satisfies (ii)(a)–(c). (ii)(d) is also satisfied since m had a pole at (EN )+,

which means there was no pole at (EN )−. Therefore m̂ has a pole at (EN )− and not at

(EN )+.

Proof of Theorem 1.3.25. If m has no pole at (EN )− then m̂(z) = m(z) + wN
EN−z has poles

at both (EN )+ and (EN )−, which means that (ii)(d) fails for m̂ at z = EN . Therefore

the largest radius R that we can take in Theorem 1.3.18 can be found from |∆(E)| =

R+R−1 (since EN is real). This gives that the right-hand side of (1.3.38) is R−1, which is
|∆(E)|

2 −
√
|∆(E)|2

4 − 1.

Similarly, if m has a pole of order ≥ 2, then the poles cannot cancel out, and m̂(z) =

m(z) + wN
EN−z has poles at both (EN )+ and (EN )−.

Finally, if m has a pole of order 1, then the condition (d) holds at z = EN if and only

if the residues of m and wN
EN−z at (EN )− cancel out, i.e., qN = wN .
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