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Abstract

Bayesian sampling has several advantages over conventional optimization approaches

to solving inverse problems. It produces the distribution of all possible models

sampled proportionally to how much each model is consistent with the data and

the specified prior information, and thus images the entire solution space, revealing

the uncertainties and trade-offs in the model. Bayesian sampling is applicable to

both linear and non-linear modeling, and the values of the model parameters being

sampled can be constrained based on the physics of the process being studied and do

not have to be regularized. However, these methods are computationally challenging

for high-dimensional problems.

Until now the computational expense of Bayesian sampling has been too great for it

to be practicable for most geophysical problems. I present a new parallel sampling

algorithm called CATMIP for Cascading Adaptive Tempered Metropolis In Parallel.

This technique, based on Transitional Markov chain Monte Carlo, makes it possible

to sample distributions in many hundreds of dimensions, if the forward model is

fast, or to sample computationally expensive forward models in smaller numbers of

dimensions. The design of the algorithm is independent of the model being sampled,
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so CATMIP can be applied to many areas of research.

I use CATMIP to produce a finite fault source model for the 2007 Mw 7.7 Tocopilla,

Chile earthquake. Surface displacements from the earthquake were recorded by six

interferograms and twelve local high-rate GPS stations. Because of the wealth of

near-fault data, the source process is well-constrained. I find that the near-field

high-rate GPS data have significant resolving power above and beyond the slip

distribution determined from static displacements. The location and magnitude of

the maximum displacement are resolved. The rupture almost certainly propagated at

sub-shear velocities. The full posterior distribution can be used not only to calculate

source parameters but also to determine their uncertainties. So while kinematic source

modeling and the estimation of source parameters is not new, with CATMIP I am

able to use Bayesian sampling to determine which parts of the source process are

well-constrained and which are not.



viii

Contents

Acknowledgements iii

Abstract vi

1 Introduction 1

1.1 Bayesian Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1.2 Prior Distribution . . . . . . . . . . . . . . . . . . . 9

1.1.2 Advantages of Bayesian Techniques . . . . . . . . . . . . . . . 10

1.2 A Brief History of Bayesian Samplers . . . . . . . . . . . . . . . . . . 13

1.2.1 Rejection Method . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Metropolis Algorithm . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Transitional Markov Chain Monte Carlo . . . . . . . . . . . . 20

2 Cascading Adaptive Tempered Metropolis In Parallel: CATMIP 25

2.1 Parallel Adaptive Tempered Metropolis Sampling . . . . . . . . . . . 26

2.2 Cascading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



ix

2.3.1 Multivariate Normal Distributions . . . . . . . . . . . . . . . . 33

2.3.2 Synthetic Finite Fault Models . . . . . . . . . . . . . . . . . . 35

2.3.3 CATMIP vs. TMCMC vs. Metropolis . . . . . . . . . . . . . 37

2.4 CATMIP: A Qualitative Discussion . . . . . . . . . . . . . . . . . . . 42

3 Finite Fault Earthquake Source Models 45

3.1 A Brief History of Finite Fault Modeling . . . . . . . . . . . . . . . . 46

3.2 A Bayesian Finite Fault Parameterization . . . . . . . . . . . . . . . 48

3.2.1 Static Source Model . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Kinematic Source Model . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Choice of Prior Distribution . . . . . . . . . . . . . . . . . . . 51

3.2.4 Implementation of Cascading . . . . . . . . . . . . . . . . . . 54

4 The 2007 Mw 7.7 Tocopilla, Chile Earthquake 56

4.1 Tectonic Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Data and Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Static Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Interlude: Conventional Kinematic Finite Fault Models . . . . . . . . 83

4.5 Kinematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Source Properties of the Tocopilla Earthquake 122

5.1 Inferred Source Characteristics . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Slip Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Peak Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



x

5.4 Super-Shear Rupture Velocity . . . . . . . . . . . . . . . . . . . . . . 131

6 Closing Remarks 134

A CATMIP Implementation and Some Practical Considerations 137



xi

List of Figures

1.1 Variability of earthquake source models for the Landers earthquake . . 2

1.2 Metropolis algorithm schematic . . . . . . . . . . . . . . . . . . . . . . 18

1.3 TMCMC algorithm schematic . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 CATMIP algorithm schematic . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 CATMIP algorithm example . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Sampling a Gaussian distribution . . . . . . . . . . . . . . . . . . . . . 34

2.4 Source-receiver geometry for synthetic static finite fault model . . . . . 35

2.5 Sampling a synthetic static finite fault model . . . . . . . . . . . . . . 36

2.6 Comparison of CATMIP, TMCMC, and Metropolis algorithms . . . . . 38

2.7 Distribution of Markov chain lengths in TMCMC algorithm . . . . . . 39

3.1 Slip coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Prior distribution on slip . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Historical seismicity of the Peru-Chile subduction zone . . . . . . . . . 58

4.2 GPS offsets from daily positions . . . . . . . . . . . . . . . . . . . . . . 61

4.3 East component of 1 Hz GPS time series . . . . . . . . . . . . . . . . . 62

4.4 North component of 1 Hz GPS time series . . . . . . . . . . . . . . . . 63



xii

4.5 Vertical component of 1 Hz GPS time series . . . . . . . . . . . . . . . 64

4.6 InSAR data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Resampled InSAR data . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Velocity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Three models from the posterior distribution . . . . . . . . . . . . . . . 70

4.10 GPS predictions from three models . . . . . . . . . . . . . . . . . . . . 71

4.11 InSAR predictions from the posterior distribution: Part I . . . . . . . . 72

4.12 InSAR predictions from the posterior distribution: Part II . . . . . . . 73

4.13 InSAR predictions from the posterior distribution: Part III . . . . . . . 74

4.14 Evolution of the posterior distribution . . . . . . . . . . . . . . . . . . 76

4.15 Key to model correlation plots . . . . . . . . . . . . . . . . . . . . . . 77

4.16 Model correlation I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.17 Model correlation II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.18 Model correlation III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.19 Model correlation IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.20 Posterior slip distribution from static modeling . . . . . . . . . . . . . 82

4.21 Velocity model for simulated annealing . . . . . . . . . . . . . . . . . . 86

4.22 Teleseismic station map . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.23 Teleseismic P-wave fits for simulated annealing Model 1 . . . . . . . . 87

4.24 Teleseismic P-wave fits for simulated annealing Model 2 . . . . . . . . 88

4.25 Teleseismic P-wave fits for simulated annealing Model 3 . . . . . . . . 88

4.26 Teleseismic SH-wave fits for simulated annealing Model 1 . . . . . . . . 89



xiii

4.27 Teleseismic SH-wave fits for simulated annealing Model 2 . . . . . . . . 89

4.28 Teleseismic SH-wave fits for simulated annealing Model 3 . . . . . . . . 90

4.29 GPS fits for simulated annealing Model 1 . . . . . . . . . . . . . . . . 90

4.30 GPS fits for simulated annealing Model 2 . . . . . . . . . . . . . . . . 91

4.31 GPS fits for simulated annealing Model 3 . . . . . . . . . . . . . . . . 91

4.32 InSAR fits for simulated annealing Model 1 . . . . . . . . . . . . . . . 92

4.33 InSAR fits for simulated annealing Model 2 . . . . . . . . . . . . . . . 93

4.34 InSAR fits for simulated annealing Model 3 . . . . . . . . . . . . . . . 94

4.35 Slip models from simulated annealing . . . . . . . . . . . . . . . . . . . 95

4.36 Rupture evolution from simulated annealing . . . . . . . . . . . . . . . 96

4.37 Three models from the posterior slip distribution . . . . . . . . . . . . 99

4.38 Three models from the posterior kinematic distribution . . . . . . . . . 100

4.39 Rupture evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.40 Source-time function: Part I . . . . . . . . . . . . . . . . . . . . . . . . 102

4.41 Source-time function: Part II . . . . . . . . . . . . . . . . . . . . . . . 103

4.42 Source-time function: Part III . . . . . . . . . . . . . . . . . . . . . . . 104

4.43 GPS predictions from three models . . . . . . . . . . . . . . . . . . . . 105

4.44 InSAR predictions from the posterior distribution: Part I . . . . . . . . 106

4.45 InSAR predictions from the posterior distribution: Part II . . . . . . . 107

4.46 InSAR predictions from the posterior distribution: Part III . . . . . . . 108

4.47 Kinematic GPS predictions from three models . . . . . . . . . . . . . . 109

4.48 Evolution of the posterior distribution . . . . . . . . . . . . . . . . . . 110



xiv

4.49 Evolution of the posterior distribution . . . . . . . . . . . . . . . . . . 111

4.50 Key to model correlation plots . . . . . . . . . . . . . . . . . . . . . . 112

4.51 Model correlation I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.52 Model correlation II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.53 Model correlation III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.54 Model correlation IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.55 Posterior slip distribution from kinematic modeling . . . . . . . . . . . 118

4.56 Zoomed posterior slip distribution from kinematic modeling . . . . . . 119

4.57 Posterior kinematic distribution from kinematic modeling . . . . . . . 121

5.1 Assorted source characteristics . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Slip heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 Location of peak slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Rupture velocity vs. shear-wave velocity . . . . . . . . . . . . . . . . . 133

A.1 Flowchart illustrating operation of the CATMIP algorithm . . . . . . . 141



xv

List of Tables

1.1 Rejection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Metropolis algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 TMCMC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 CATMIP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Cascading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Fault geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Prior distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Fault geometry for simulated annealing . . . . . . . . . . . . . . . . . . 85

4.4 Model regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



xvi



1

Chapter 1

Introduction

In order to the study the physics of earthquakes, we need observations of earthquake

ruptures. But since we cannot directly observe the rupture process at depth, we must

use data collected at the Earth’s surface to develop models of the earthquake source

which can then be used as an input for other studies. However, using limited surface

observations to constrain a possibly complex and heterogeneous source process is a

fundamentally under-determined inverse problem. Thus any change in the inversion

methodology can lead to very different solutions, which limits our ability to infer the

physics of the rupture process from a given source model (Figure 1.1).

The purpose of this work is to explain what Bayesian analysis is, to show why

it is useful for solving geophysical inverse problems, to develop practical Bayesian

methodologies, and to apply these results to the study of earthquake source

mechanisms. In short, Bayesian analysis is important because it allows for imaging

of solution spaces with multiple peaks and valleys; it works for just about any

imaginable problem as it is not restricted by linearity or positivity or any other
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Figure 1.1: Variability of earthquake source models for the Landers earthquake: Small
differences in inversion techniques can lead to large differences in inferred earthquake
slip models. As an example, consider these four published slip models for the
1992 Mw 7.3 Landers, California earthquake (Cohee and Beroza, 1994a; Cotton and
Campillo, 1995; Hernandez et al., 1999; Wald and Heaton, 1994).

common constraints; it does not require the assumption of Gaussian statistics; and it

allows the inclusion of a variety of a priori information. Most importantly, it provides

not one solution but an ensemble of many possible solutions along with a complete

description of the model uncertainty.

Although Bayesian analysis is theoretically a panacea for most inverse modeling

woes, it becomes impracticable for solving large problems with many parameters.
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The number of computations required is simply too large. (In fact, throughout

history, Bayesian techniques have been far more advanced than the computational

power available to implement them.) Add to that the fact that the Monte Carlo

samplers used in Bayesian analysis become less efficient at generating samples in high

dimensions and the problem appears daunting. But I have a partial solution.

By harnessing the power of parallel computing and adding some new twists on

existing sampling methods, I have built a sampling methodology capable of simulating

distributions in hundreds of dimensions (for problems with fast forward models) or

sampling computationally intense low-dimensional problems. Using this methodology,

which I will refer to as CATMIP for Cascading Adaptive Tempered Metropolis In

Parallel, full Bayesian analysis of real geophysical models with large numbers of

parameters is now within our reach. The sampling methodology is independent of

the data and model. So while I used this sampler to produce finite fault earthquake

source models, it can be used for any kind of model.

I will begin by providing for the uninitiated some background on Bayesian techniques,

including its history, mathematical underpinnings, strengths and limitations. Next

the derivation of the CATMIP sampling technique is given. Finally, I will present

models of the 2007 Mw 7.7 Tocopilla, Chile earthquake. This earthquake is an

excellent demonstration problem for Bayesian analysis as it allows us to fuse together

data from multiple sources. The Tocopilla earthquake was located under the Central

Andean Tectonic Observatory (CAnTO) high-rate GPS network. These stations

provide a complete near-field network of both static offsets and kinematic time series
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which can be used as seismograms, although these stations are located only on the

hanging-wall side of the subduction interface. In addition, interferometric satellite

imagery is available from different satellites and flight paths. All together, this

availability of rich and diverse observations makes the Tocopilla earthquake the very

model of a modern major earthquake with plentiful near-field data.

1.1 Bayesian Techniques

There is some debate as to who is the rightful founder of the probability of inference.

Some argue in favor of Pierre-Simon de Laplace who independently derived many

important fundamental results in 1774, and who was perhaps the first to use these

techniques in a scientific context when he employed Bayesian inference for such

applications as estimating the mass of the moon. As an aside, the first person

to use Bayesian inference for geophysical problems is probably Sir Harold Jeffreys

(e.g. Jeffreys , 1931, 1939). But credit for creating the theory of inverse conditional

probabilities is traditionally given to the earlier work of Reverend Thomas Bayes,

and his name has been attached to this field of study for posterity. Bayes never

published a single paper on probability during his life, which at the very least

demonstrates that members of the clergy have less pressure to publish than people

in other professions. His work did not come to light until another clergyman, the

preacher/philosopher/actuary Richard Price to whom Reverend Bayes left his work

in his will, presented Bayes’ results to the Royal Society at the end of 1763 (Stigler ,
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1990).

Bayes was interested in the relationship between inverse conditional probabilities. If

you know the probability of event A if event B happens, what is the probability that

event B will happen if you observe event A? Or similarly, how does the probability

of a hypothesis, given some evidence, relate to the probability of that evidence, given

a certain hypothesis? If that seems opaque, let us consider the specific case of data

modeling. When we fit a model to data, we are essentially asking the question:

Which set of model parameters is most likely to have produced the observed data?

(In probability speak this is P(θ|D), the probability of model θ conditional on data

D.) We do not have a direct answer to that question. But we can evaluate the forward

model. Although not normally looked at in this way, a forward model is equivalent

to the probability of the observed data given a model. This is written as P(D|θ), the

conditional probability of D given θ. If a model produces a set of predicted data that

are nothing like the observations, then it is highly unlikely that the proposed model

accurately describes the source of those observations.

But what is the relationship between one conditional probability and its inverse? The

answer is given by Bayes’ theorem.

1.1.1 Bayes’ Theorem

Bayes’ theorem is simple to derive for discrete probabilities. The probabilities of

events A and B each occurring are P(A) and P(B). We define the conditional
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probability that A will occur if B occurs as P(A|B). Let the probability of both

events occurring be P(A∩B). This is the joint probability of A and B. The chances

of both events occurring is the product of the probability of one of the events occurring

and the probability of the other event occurring given that the first event happened.

In other words, P(A ∩ B) = P(A|B) P(B) = P(B|A) P(A). Thus the relationship

between the two conditional probabilities is

P(A|B) =
P (B|A)P (A)

P (B)
(1.1)

We can derive a similar relationship for the distributions of continuous variables X

and Y ,

P (x|Y = y) =
P (y|X = x)P (x)∫
P (y|X = x)P (x)dx

(1.2)

The denominator is known as the evidence. Note that generally it is not necessary

and in fact often impossible to compute the integral in the denominator. Instead, we

use

P (x|y) ∝ P (y|x)P (x) (1.3)

For data modeling, this result looks like

P(θ|D) ∝ P(D|θ) P(θ) (1.4)

This equation says that the probability density function (PDF) describing the
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plausibility of all models, given our observations, is proportional to both the likelihood

of these data, given those models, and the probability of the models themselves.

The probability distribution of the models, P(θ), is the a priori or prior probability

distribution. The left-hand side is the a posteriori or posterior distribution. P(D|θ)

is often called the likelihood.

Notice that the Bayesian model is completely generic. The data, the model, and the

form of the probability distributions are not stated. But it is this generality that

allows for greater specificity. There are no simplifying assumptions. The model can

be linear or nonlinear, smooth, rough, positive, negative, or anything imaginable.

You can apply whatever prior information exists about the physics of the problem to

create a fantastical a priori distribution. You can solve the problem as you believe

the model should be expressed, and not as a simplified mathematical analog.

1.1.1.1 Likelihood

We know that P(D|θ) is the output of our forward modeling. One way to write this

probability is using the L2 norm

P (D|θ) ∝ e−
1
2
[d−g(θ)]T ∗C−1

d ∗[d−g(θ)] (1.5)

for forward model g(θ), and data d which has covariance Cd. This is the probability

distribution for Gaussian prediction errors or the maximum information entropy
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PDF1.

Notice that the likelihood depends on the data errors. As with traditional

optimization approaches, if we under-estimate our errors, we will over-fit the data

(produce a posterior distribution which is too tightly peaked); and if we over-estimate

our errors, we will under-fit the data (produce a posterior distribution which is

too broad). In practice, the data errors may be dwarfed by the errors produced

by the differences between our model and the physics of the real source process,

which is sometimes termed “unmodeled dynamics.” For finite fault earthquake

source processes, possible error sources of this type include having the wrong source

geometry, poorly located hypocenters, an incorrect elastic structure, and simply

parameterizing the earthquake source evolution in a way that is not amenable to

representing the “true” source process. However, it should be noted that Bayesian

sampling can be used to estimate the prediction error in addition to the model being

fit to the data. This is accomplished by casting the error produced by any model

as a combination of a deterministic error, i.e., the error between the data and the

results of the forward model, with a non-deterministic error produced by a random

process. Beck and Katafygiotis (1998) lay out a Bayesian technique in which possible

error sources are described by a probability distribution, and this prediction error is

updated through sampling of the posterior distribution. This is an important but

broad subject which is left to the reader to learn more about.

1See Jaynes (1957a) and Jaynes (1957b) for more on the concept of maximum information
entropy.
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1.1.1.2 Prior Distribution

What exactly is the prior distribution? The prior distribution represents our a priori

knowledge of what the model parameters could be. Bayesian modeling requires the

researcher to evaluate the model (and possibly the data) and state which possible

model values are considered probable. Some feel that Bayesian inference thus

introduces a bias into the problem. Many argue otherwise (e.g. Cox , 1961; Jaynes ,

2003; Loredo, 1990; Tarantola, 2005). I am firmly in the latter camp.

First, it is never wrong to include information in your modeling. If you know

something about what the model looks like based on some a priori information, it

should be included in the modeling process. This becomes apparent if, in the interest

of sticking to Gaussian statistics, you allow your optimization or sampling scheme

to produce models which violate the laws of physics. Second, researchers always use

their knowledge to discriminate between models. It is the rare scientist who publishes

every result they ever obtained, even the ones that are clearly wrong, the ones that

imply that gravity has vanished and pigs are flying.

What are we doing when we dislike a model? We are deciding that, based on our a

priori knowledge, we find it highly unlikely that gravity has vanished or pigs are flying

or whatever it is that seems wrong with the model. If we know that gravity exists,

our model should know that too. And when we make that statement explicitly as

part of the Bayesian modeling process, we let everyone know what our assumptions

are.
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1.1.2 Advantages of Bayesian Techniques

For clarity, when I discuss Bayesian analysis, I refer to methods which produce the

complete posterior distribution P(θ|D). The literature is full of models which are

described as Bayesian but which were derived via optimization. What makes them

“Bayesian” in the eyes of these studies’ authors is that the choice of regularization

in the optimization scheme was based on some rule derived from Bayes’ Theorem

such as the Bayesian Information Criterion (BIC), also called the Schwarz Criterion

(Schwarz , 1978), or the Akaike Information Criterion (AIC) (Akaike, 1974). These

methods have the features and drawbacks common to all optimization techniques and

should not be confused with the Bayesian techniques discussed here.

There are numerous advantages to Bayesian sampling over traditional optimization

methods. The first, and most significant, is that it is a sampling method and not an

optimization method. Unless the problem you are studying is linear, the model with

smallest misfit to the data is just one model in a possibly complex solution space

with multiple minima and complicated topography. So when you use an optimization

scheme and produce the model with minimum misfit, assuming of course that your

optimization scheme was successful in finding the global minimum and not some

local minimum, what exactly have you learned? Is this the only model that best fits

the data? If there are other models that fit the data equally or almost as well, are

they similar to this one or are there other minima in a completely different part of

the solution space? These limitations cannot generally be overcome for optimization
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problems. But with Bayesian sampling, we can produce models from everywhere

in the solution space, with density proportional to their probability. That is, we

naturally produce more models in regions which fit the data better and fewer in regions

with lower probability. We can then analyze these models however we want. We can

plot histograms of the distribution to image the topography of the complete solution

space including the locations and sizes of its minima. We can use the distribution of

samples to calculate errors on the model parameters. In Bayesian analysis, data-fitting

is just the beginning and not the end.

There are advantages to Bayesian analysis even in simple cases. Linear problems

which obey Gaussian statistics lend themselves to least squares analysis only if the

constraints on the model parameters are no more complicated than things such

as Laplacian smoothing and non-negativity constraints. Many geophysical model

designs yield problems that are only invertible with appropriate regularization, and

our choices of regularization are limited by what can be implemented via linear

algebra. For an under-determined problem, we can follow Occam’s razor and decide

that we want to produce the simplest solution. But “simple” can only be defined

linearly in least squares problems. Often “simple” solutions are generated by using

Laplacian smoothing to produce smooth models. But a smoothed least squares

inversion will never produce a point source. Is a point source solution not simple?

It is conceptionally simple; it is spatially simple; but it is not simple according to

our formulation of the problem. Least squares techniques do not lend themselves

to producing sparse solutions. But Bayesian methods can implement the prior
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distribution of your choice.

One limitation shared by both Bayesian and traditional optimization methods is the

model itself. To again use earthquake modeling as an example, any finite fault source

assumes a fault plane geometry and earth structure. However we design our problem,

there will be differences between our assumptions and the true physics of the problem,

and these errors will be mapped into the models that we produce. This mapping is

inescapable. In some ways this limitation underscores just how uninformative it is

to calculate one optimal model from one error-ridden model design. The Bayesian

approach is just as sensitive to design errors; but it yields the complete solution for

a given “model class,” as the model design is sometimes termed in Bayesian methods

(see Beck and Yuen, 2004). Plus, at least in theory, techniques such as model class

selection can be used to evaluate the model design itself, although these methods are

often computationally intractable for geophysical problems.

Unlike traditional optimization methods, trade-offs between model parameters are

not a bad thing in Bayesian sampling. Consider a case in which you are trying to

fit two parameters to some data. Assume the data perfectly constrains the sum

of the parameters, but the parameters are also perfectly anti-correlated and any

values for the parameters are equally acceptable to the data so long as they have

the required sum. Optimization methods cannot handle cases like this, generally

speaking. (A singular value decomposition would be useful in this example for a

linear model.) What is the optimal model when there are infinite models which fit

the data? In fact, there is no optimal model. But when people model these kinds of
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problems they produce solutions through optimization by using some constraint to

produce the smoothest model or the smallest model or something of that ilk. Bayesian

sampling naturally produces the complete solution in the form of an anti-correlated

distribution of samples. You immediately learn that your parameters have large

covariance, a well-defined solution in the form of the sum of the model parameters,

and zero resolution on the value of each independent parameter. That is the full

answer. It is the correct answer.

1.2 A Brief History of Bayesian Samplers

Now that we have derived Bayes’ Theorem and demonstrated why producing the full

posterior probability for a problem is superior to straight optimization, we are left

with one question. How do we produce the posterior distribution? If our problem

had an analytical solution, which is extremely rare, our work would be done. We

could simply write down the answer. Instead we will have to draw samples from the

posterior probability density function (PDF). Sampling from a PDF is different from a

grid search. In a grid search, models are produced from all regions of the model space.

But here we need samples distributed such that their density is proportional to the

posterior PDF. This means we want more samples in regions with higher probability

and fewer samples in regions with low probability.

There are algorithms for directly producing random samples from certain simple

PDFs. For example, the Box-Muller transformation can be used to produce random
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samples from a standard normal distribution. But our goal is to produce samples from

an unknown target PDF. This may sound daunting, but it is in fact quite doable.

Most sampling techniques boil down to using Monte Carlo simulation to produce

random samples from a known distribution (our proposal PDF), re-weighting

those samples according to their probability in the target distribution, and then

probabilistically choosing whether to accept the proposed sample. Eventually, and

possibly with great inefficiency, you will produce samples which are distributed not

according to your proposal PDF but instead distributed accordingly to your target

PDF. But this process requires a lot of computational effort.

The computational expense is why the adoption of Bayesian methods has been so

slow. While the theory has existed at least since Bayes’ 1763 posthumous essay on

probability (Bayes , 1763), it was not of practical use to most eighteenth century

researchers. The first major applications of Monte Carlo simulation is probably the

work of the Metropolis group in the twentieth century. They were working on the

Manhattan project and had access to the best computers of the day. Even today,

the limits of computational power have made most geophysical problems intractable

using conventional sampling techniques.

Before I explain how CATMIP makes large problems tractable, I first present a primer

on some existing sampling techniques. This guide is in no way intended to be a

complete review of the field. It exists merely to introduce the reader to some samplers

they may encounter in their own work and how the principles behind these algorithms
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Table 1.1: Rejection method.

1. Draw a candidate sample y from known distribution g.

2. Generate a sample u from U(0, 1), the uniform distribution on (0,1).

3. If u ≤ f(y)
k·g(y)

, accept y as a sample of f .

4. Return to step 1.

contribute to CATMIP.

1.2.1 Rejection Method

This technique, also known as the acceptance-rejection method, is perhaps the

simplest Monte Carlo sampling technique and dates back to von Neumann (1951). It

is also very inefficient for most practical applications. But its simplicity makes it a

good introduction to the world of sampling.

As with all sampling methods, our goal is to draw samples from a target PDF f(x). In

the rejection method, we begin by producing samples from an easily-simulated, known

distribution g(x). Assume that there is a known constant k such that f(x) ≤ k · g(x)

for all x. Then we can draw samples from f(x) by following the procedure in Table 1.1.

You can see intuitively how this works. We produce random samples from a known

distribution and compare a normalized version of the sample’s probability in the

target distribution to a random variate. If the sample has a large probability in the

target distribution, we are more likely to accept it. If the target PDF assigns a low
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probability to the sample, we are less likely to accept it. And thus we end up with a

set of samples distributed proportionally to our target PDF.

There are several good features to the rejection method. From a theoretical

standpoint, it produces completely independent samples, unlike the Markov Chain

Monte Carlo (MCMC) methods I will present next. From a practical standpoint, it is

completely parallel: the candidate samples are generated completely independently

of each other making it easy to distribute sampling over a large number of computer

processors. However, it is also extremely inefficient. Unless k · g(x) is very close to

f(x), the rejection rate will be large. In practice, we often have no a priori knowledge

of f(x) and thus cannot tune the algorithm appropriately. Also, the efficiency of the

rejection method does not improve as the algorithm runs. After producing a million

samples, you may have a very good idea as to what the posterior PDF looks like. But

the rejection method is no more likely to produce a usable sample after the millionth

iteration than it was after the first.

1.2.2 Metropolis Algorithm

The Metropolis algorithm (Metropolis et al., 1953) is perhaps the most fundamental

MCMC sampler; countless other samplers are simply variations on it. While its

method and implementation are straightforward, the mathematical proofs behind the

Metropolis algorithm in particular, and MCMC sampling in general, are surprisingly

obscure. For an accessible introduction to the Metropolis algorithm, I recommend
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Chib and Greenberg (1995). For more information about MCMC sampling, see Robert

and Casella (2004) and Liu (2008).

The Metropolis algorithm takes the rejection method and places it in the context of

a Markov process. As in the rejection method, we generate samples from a proposal

distribution and then probabilistically decide whether to accept each candidate

sample. Our proposal density (the PDF we use to generate candidate samples)

depends on the current state of the process. Where, in the rejection method, we

generated samples from the state-free distribution g(x), our proposal PDF will now

be q(x, y) where x is the current sample and y is the candidate sample.

There are few constraints on the form of the proposal PDF used in the Metropolis

algorithm other than that q(x, y) = q(y, x), i.e., the probability of moving from x to

y is the same as transitioning from y to x. But even the symmetry requirement has

been relaxed in later samplers such as the Metropolis-Hasting algorithm (Hastings ,

1970). Metropolis et al. (1953) used q(x, y) = q′(y − x). Equivalently, we could say

that y = x + z where z ∼ q′(y − x). This produces a random walk through model

space. While any distribution of the form q′(y−x) can be used to generate candidates,

the most popular choice is the multivariate normal distribution.

Using our proposal PDF and an arbitrary initial sample x0, we can then generate

samples following the procedure in Table 1.2. If the candidate sample has higher

target probability than the current sample, we accept it. If it has lower probability,

we still might accept it depending on the value of our random variate u. So while
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Table 1.2: Metropolis algorithm.

• For i = 1, 2, ..., N

1. Draw z ∼ q′ and compute a candidate sample y = xi−1 + z.

2. Generate a sample u from U(0, 1), the uniform distribution on (0,1).

3. Compute α(x, y) = min{ f(y)
f(xi−1)

, 1}.

4. If u ≤ α, xi = y. Otherwise xi = xi−1.

better models are always accepted, worse models may be accepted too, allowing the

random walk to move between the peaks of a multimodal posterior PDF.

Figure 1.2: Metropolis algorithm schematic: This cartoon illustrates how the
Metropolis algorithm produces samples through a random walk. Rejected samples
are shown in gray. When a candidate sample is rejected, the current sample in the
Markov chain is duplicated, and numbers indicate the frequency of duplicated models.
Compare to Figure 1.3 and Figure 2.1.

This behavior illustrates the difference between probabilistic sampling, grid searches,

and traditional optimization methods. On one extreme, we have gradient methods

which will always transition to a better model and never transition to a worse
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model. They will converge to the nearest minimum even if it is not the global

minimum. MCMC samplers transition to worse models with probability proportional

to the candidate sample’s likelihood. Even if the Markov chain is engulfed in a

local maximum, the sampler will eventually accept a poor model outside of that

maximum, and from there travel in a random walk to any maximum. (Note that while

optimization attempts to minimize the misfit to the data given some set of constraints,

this translates to trying the maximize the posterior probability in Bayesian analysis.)

On the other extreme, we have grid search methods which sample equally from all

parts of the model space and waste much computational effort in areas which do

not produce usable models. But MCMC samplers produce samples with density

proportional to their probability. If a region of model space produces models that

are twice as probable as those of another region, then the sampler will spend twice

as much time in that region.

In comparison to the rejection method, there are several advantages to the Metropolis

algorithm. We have eliminated any need for the typically unknown normalization

factor in Bayes’ Theorem. More importantly, we now have the freedom to choose a

tailor-made proposal PDF for each candidate sample. However, we are not guaranteed

efficient sampling. If q(x, y) is not properly chosen, the rejection rate could be

large. Conversely, if the acceptance rate is too high, successive samples will be highly

correlated with each other. Inter-sample correlation is one of two main theoretical

disadvantages to MCMC methods. The other is that MCMC methods only converge

to the target distribution after some number of initial samples, but there is no way
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to know how many samples are needed to satisfy the “burn-in period.”

As with the rejection method, the Metropolis algorithm does not gain in efficiency

as it runs. Plus, we have exchanged the perfect parallelism of the rejection method

for an entirely serial Markov chain. Several parallel adaptations of the Metropolis

algorithm have been devised which involve mixing multiple Markov chains together,

not to mention the many algorithms that use the Metropolis algorithm in conjunction

with other bells and whistles such as tempering or annealing. It is one of these that

we explore next.

1.2.3 Transitional Markov Chain Monte Carlo

The transitional Markov chain Monte Carlo (TMCMC) method of Ching and Chen

(2007) offers several improvements over traditional MCMC techniques. To motivate

the algorithm, let us consider a series of intermediate PDFs, f(θ|D)m, which start

from our a priori distribution P(θ) and converge to our target distribution P(θ|D):

f(θ|D)m ∝ P(θ) P(D|θ)βm (1.6)

m = 0, 1, ...,M

0 = β0 < β1 < β2 < ... < βM = 1

If βm = 0, then f(θ|D)m ∝ P(θ), and we can directly simulate f(θ|D)m by drawing

samples of our prior. If βm = 1, then f(θ|D)m is our Bayesian posterior.
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For each stage m, we can generate samples of fm+1 by resampling fm. The probability

of choosing a specific sample of fm, θm,k, is proportional to

w(θm,k) =
P(θm,k) P(D|θm,k)

βm+1

P(θm,k) P(D|θm,k)βm
= P(D|θm,k)

βm+1−βm (1.7)

After resampling fm, we have fewer unique samples of fm+1 than we had of fm.

But we can use MCMC sampling to replace our duplicate models with new samples.

Perhaps the single most important innovation in the TMCMC algorithm is the use

of an adaptive proposal density in the Metropolis algorithm. Specifically, Ching and

Chen (2007) used a Gaussian proposal density with covariance matrix

Σm = c2

N∑
i=1

w(θi)∑N
i=1 w(θi)

(θi − θ̄)(θi − θ̄)T (1.8)

θ̄ =
N∑

i=1

w(θi)θi/
N∑

i=1

w(θi)

A little discussion of the preceding is required. I have normalized w in Equation 1.8.

Due to a typographical error, it appears unnormalized in both Ching and Chen (2007)

and Muto and Beck (2008). c is an arbitrary factor which Ching and Chen (2007)

set to 0.2. Also somewhat arbitrary is the cooling schedule. Ching and Chen (2007)

picked βm+1 such that COV (w) = 1 where COV denotes the coefficient of variation

and is the ratio of the standard deviation of w to the mean of w. Equivalently, Cheung

(2009) suggested that βm+1 should be chosen so that the number of unique samples

after resampling, the effective sample size (ESS), was 1
2
N . The TMCMC algorithm
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Table 1.3: TMCMC algorithm.

1. Set m = 0. Generate N samples θ0,1...θ0,N of the prior PDF f0 = P(θ).

2. Set m = m + 1. Choose βm such that the COV [w] = 1.

3. Calculate Σm.

4. For k = 1...N , draw a sample θ̄(m−1) from θm−1,1...θm−1,N with probability
w(θm−1,k). Use the Metropolis algorithm with N(0, Σm) as the proposal PDF
to append a new sample to the chain of models which has θm−1,k as its starting
model.

5. Repeat steps 2 to 4 until βM = 1 is reached.

is summarized in Table 1.3.

There are two significant advantages to this algorithm. First, we are always sampling

from a distribution which is approximately the equilibrium distribution, keeping

our acceptance rate tolerable even in high dimensions. Second, we calculate the

proposal PDF from our current best estimate of the posterior distribution. From

an algorithmic standpoint, this also helps to keep our acceptance rate reasonably

high. But from a modeling standpoint, we are now freed from many constraints

on model parameterization. Volumes have been written on choosing the correct

parameterization and coordinate systems to avoid trade-offs and covariance. However,

the TMCMC algorithm uses a proposal PDF based on the current best estimate of

the model covariance. Thus if two parameters trade off with each other, the sampler

automatically takes large steps in the direction in which they co-vary and small steps

in directions with low covariance. Of course, this technique is most efficient when the

model covariance is approximately Gaussian, or at least linear. In this way, we also
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finally have achieved a sampler which “learns” from previous samples. At each cooling

step, the algorithm uses information from the previous stage to optimize sampling.

There is still one severe limitation to the TMCMC algorithm. It is not parallel. For

high-dimensional problems, which require enormous numbers of samples, stochastic

simulation is only tractable if done in parallel.

Finally, there is a theoretical problem underlying the TMCMC algorithm. Ching

and Chen (2007) assume stationarity for all f(θ|D)m, and thus ignore the “burn-in”

period of MCMC sampling. But this is a false assumption. At any cooling step, we

have at best reached stationarity with the target distribution, f(θ|D)m. We then

resample with probability w, yielding a set of samples which is approximately, but

not exactly, distributed according to f(θ|D)m+1, and thus we are not at stationarity

with our new target distribution. Therefore, there will be a burn-in period which is

ignored in the TMCMC algorithm.
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Resampling

Figure 1.3: TMCMC algorithm schematic: This cartoon illustrates one complete
cooling stage of the TMCMC algorithm. The five samples from βm are resampled
and then the Metropolis algorithm is run to replace the unique samples lost through
resampling. Numbers indicate the frequency of each model after resampling. The five
red samples comprise the posterior distribution for βm+1. The algorithm is plotted
with a 100% acceptance rate for simplicity. Compare to Figure 1.2 and Figure 2.1.
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Chapter 2

Cascading Adaptive Tempered
Metropolis In Parallel: CATMIP

I now introduce a new solution for efficient sampling of high-dimensional models,

which I call CATMIP for Cascading Adaptive Tempered Metropolis In Parallel. It is

not intended to be the last word in MCMC simulation. My goal is simply to produce

a useful methodology for Bayesian analysis of finite fault earthquake source models.

But as a byproduct, this technique can be used for many geophysical problems.

I begin with the combination of tempering and resampling used in TMCMC. I

then introduce a different Metropolis sampling scheme and parallelize the algorithm.

The additional sampling increases CATMIP’s exploration of the model space. With

sufficiently long Markov chains, our final distribution will come from samples taken

after the burn-in period, unlike TMCMC. Finally, I develop a method for integrating

different data sets and parameter spaces. I refer to this process as cascading.

Cascading increases the efficiency of sampling when the model fuses together

multiple data sets that are dependent on different model parameters, especially when



26

combining multiple forward models of different computational costs. For kinematic

earthquake source models, we will encounter both of these situations. The static data

depend on the final slip distribution only, while kinematic data contain information

about the time history of the source process. Furthermore, the static forward model is

much faster and simpler than the full kinematic forward model. This will be discussed

in more detail in Section 2.2 and Section 3.2.

2.1 Parallel Adaptive Tempered Metropolis

Sampling

Following Ching and Chen (2007), I sample from a series of intermediate distributions:

f(θ|D)m ∝ P(θ) P(D|θ)βm (2.1)

m = 0, 1, ...,M

0 = β0 < β1 < β2 < ... < βM = 1

For each stage m, I calculate a new “temperature” βm+1. Any annealing schedule

can be employed. I use the criterion of Ching and Chen (2007) that COV (wm) = 1

where wm is a vector of weights given by

wm =
P(θm) P(D|θm)βm+1

P(θm) P(D|θm)βm
= P(D|θm)βm+1−βm (2.2)
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I then resample the current set of models {θm} according to the probability

distribution wm to produce {θ̂m}. Note that {θ̂m} will likely contain duplicate

samples. Each sample θ̂m of {θ̂m} is then used as the seed for one of N instances of

the Metropolis algorithm each of which has a chain length of Nsteps. These samplers

are run in parallel, and the final model from each Markov chain is collected to make

{θm+1}. The proposal density for the Metropolis sampler is q(x, y) = N(x, Σm) where

Σm = c2
m

N∑
i=1

w(θi)∑N
i=1 w(θi)

(θi − θ̄)(θi − θ̄)T (2.3)

θ̄ =
N∑

i=1

w(θi)θi/
N∑

i=1

w(θi)

cm = a + bR where R is the acceptance rate of the Metropolis sampling and a and b

are arbitrary constants (Matthew Muto, personal communication). Thus we rescale

our proposal density by the acceptance rate of our sampler. When the acceptance rate

is higher, we increase the size of our random walk steps, allowing greater exploration

of the model space. When our acceptance rate decreases, we take smaller steps to

increase the chances that a candidate model will be accepted. For the performance

tests and earthquake modeling presented here, I use a = 1
9

and b = 8
9
.

In the original TMCMC algorithm, the purpose of the Monte Carlo sampling was

simply to “jitter” the samples so that we did not have repeated models, and the

length of each random walk chain was proportional to the probability of its seed

model. This results in very little exploration of the model space. TMCMC also

keeps all of the samples including the ones from the burn-in period. I have replaced
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Table 2.1: CATMIP algorithm.

1. Set m = 0. Generate N samples {θ0} = {θ1...θN} of the prior PDF f0 = P(θ).

2. Set m = m + 1. Choose βm such that the COV [w] equals some target value.

3. Calculate Σm and cm.

4. Draw N samples from {θm−1} with probability w. The set of resampled
models is {θ̂m−1}.

5. Use each resampled model θ̂m−1 in {θ̂m−1} as the seed for generating Nsteps

models from the Metropolis algorithm with proposal density Σm.

6. {θm} is comprised of the final model from each Markov chain. Thus the total
number of samples is unchanged.

7. Repeat steps 2 to 6 until βM = 1 is reached.

this part of the algorithm with independent runs of the Metropolis algorithm using

Markov chains of length Nsteps. In TMCMC, if after resampling a particular model

has been chosen five times, those five copies of the model are replaced with the

five models generated from running the Metropolis algorithm for five steps. In my

version, the five models are used as the seeds for five independent instances of the

Metropolis algorithm where each Markov chain is Nsteps long. The five seed models

are then replaced with the final model from each Markov chain. The expectation is

that, with these changes, we have improved CATMIP’s chance of visiting new parts

of the model space and decreased our inter-sample correlation while eliminating the

effects of the burn-in period. CATMIP’s more robust sampling comes at the cost of

increasing the number of model evaluations made over the lifetime of the algorithm

by approximately a factor of Nsteps. But since each Markov chain is run in parallel,
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this algorithm is extremely efficient when distributed over many computer processors.

The basic CATMIP algorithm is given in Table 2.1 and illustrated in Figure 2.1.

The behavior of the CATMIP algorithm while sampling a biased mixture of

two-dimensional Gaussians is shown in Figure 2.2.

2.2 Cascading

To handle even larger sample spaces, I use an approach I call “cascading”, which

allows us to model a subset of the data and model parameters and then apply that

posterior PDF to the full problem. (This technique should not be confused with the

completely unrelated but similarly named approach of Tarantola (2005).) Consider a

case in which we have two data sets D1 and D2. D1 informs only model parameters

θ1 while D2 informs both θ1 and additional model parameters θ2. We can write our

a posteriori distribution as

P(θ|D) ∝ P(θ) P(D|θ)

∝ P(θ1) P(θ2) P(D1|θ1) P(D2|θ1, θ2)

∝ [P(θ1) P(D1|θ1)] P(θ2) P(D2|θ1, θ2)

∝ P(θ1|D1) P(θ2) P(D2|θ1, θ2) (2.4)

Thus the full a posteriori distribution is proportional to the posterior distribution of
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Resampling

Figure 2.1: CATMIP algorithm schematic: This cartoon illustrates one complete
cooling stage of the CATMIP algorithm. The five samples from βm are resampled
and then an instance of the Metropolis algorithm is run for each of the resulting
samples. Numbers indicate the frequency of each model after resampling. The five
red samples comprise the posterior distribution for βm+1. The algorithm is plotted
with a 100% acceptance rate for simplicity. Compare to Figure 1.2 and Figure 1.3.
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Figure 2.2: CATMIP algorithm example: As outlined in Box 2.1, the CATMIP
algorithm begins by directly sampling the prior distribution (row 1). A new value
for β is calculated and the distribution is resampled (column 1). The covariance of
samples and acceptance rate is used to design a proposal PDF (column 2) for use
in the Metropolis algorithm (column 3). The final samples from each Markov chain
comprise the new PDF (column 4). In this example, the target distribution is the
sum of two Gaussians, one of which has a factor of three greater amplitude than the
other, with a uniform prior distribution.
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Table 2.2: Cascading.

1. Sample P(θ|D)m ∝ P(θ1) P(θ2) P(D1|θ1)
βm , 0 ≤ βm ≤ 1.

2. Sample P(θ|D)n ∝ P(θ1) P(θ2) P(D1|θ1) P(D2|θ1, θ2)
αn , 0 ≤ αn ≤ 1.

the first set of data and parameters. Note that no approximations or simplifications

have been made in arriving at this result.

We can incorporate Equation 2.4 into our tempering scheme by rewriting our

transitional distributions as

P(θ|D)m,n ∝ P(θ) P(D|θ)m,n = P(θ1) P(θ2) P(D1|θ1)
βm P(D2|θ1, θ2)

αn (2.5)

To sample this distribution, simply follow the steps in Box 2.2.

I will return to the cascading technique and how it relates to finite fault earthquake

source models in Section 3.2.

2.3 Performance Tests

In this section, I will present the results of synthetic tests designed to determine the

computational cost and expected results of CATMIP. Before applying the sampler to

real data where the earthquake source process is unknown, or even synthetic analogs

of the finite fault problem where model resolution is limited, I first explore how many
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samples it takes to reproduce a known high-dimensional probability distribution.

Then I test the ability of CATMIP to sample a static finite fault model using synthetic

data. Finally, I compare CATMIP to TMCMC and the Metropolis algorithm.

2.3.1 Multivariate Normal Distributions

We start with a simple problem: an n-dimensional Gaussian target distribution with

a uniform a priori distribution. The results of this test for increasing numbers of free

parameters is shown in Figure 2.3. For each dimensional space, I plot the quality of

the posterior distribution for different numbers of Markov chains and varying lengths

of those chains. The misfit between the mean of the target distribution and the mean

of the posterior distribution is quantified by the model variance reduction (VR),

V R = [1− ‖mtarget −mest‖2
2

‖mtarget‖2
2

] · 100% (2.6)

where mtarget is the mean of the target distribution, mest is the mean of the samples,

and ‖‖2
2 denotes the square of the L2 norm.

There are several conclusions we can draw from Figure 2.3. The variation in the total

number of model evaluations made over the lifetime of the algorithm, which includes

the number of cooling stages as well as the number of Markov chains, N , and their

lengths, Nsteps, is small compared the range of N and Nsteps under consideration.

Thus the density of sampling does not much affect the cooling schedule. Although
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Figure 2.3: Sampling a Gaussian distribution: The number of samples required to
reproduce a given distribution increases greatly with increasing numbers of model
parameters. This is called the Curse of Dimensionality. Symbol colors denote the
difference, quantified by the model variance reduction, between the mean of the target
distribution and the mean of samples produced by CATMIP for a multivariate normal
distribution as a function of the number of samples N and the length of Markov
chains Nsteps, with contour lines representing equal numbers of model evaluations per
cooling step. The size of the symbols represents the total number of model evaluations
over the lifetime of the algorithm including all cooling stages from the prior to the
posterior.
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the number of model evaluations needed to reproduce the target distribution for the

higher-dimensional cases considered is large, it is not computationally intractable.

And we can see that when the posterior distribution is on the cusp of being

under-sampled, we may or may not reproduce the target distribution. Also, longer

chain lengths tend to improve the quality of the solution. This may explain why

CATMIP outperforms TMCMC when we compare them head-to-head (Section 2.3.3).

2.3.2 Synthetic Finite Fault Models
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Figure 2.4: Source-receiver geometry for synthetic static finite fault model : Synthetic
three-component GPS data were calculated for each of the stations denoted by
triangles. The surface projection of the fault plane is shown with a thick black
line. The fault has a strike of 0◦ and a dip of 18◦. The depth to the top of the fault
is 40 km. The assumed data uncertainty is 1 cm. Sampling results are shown in
Figure 2.5.

Next, I look at the results of using CATMIP to produce a slip model using a dense

network of synthetic GPS observations. This a synthetic version of the static finite

fault modeling that I will introduce in Section 3.2 and then apply to the 2007 Mw 7.7

Tocopilla, Chile earthquake in Chapter 4. Since the slip distribution consists of two
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Figure 2.5: Sampling a synthetic static finite fault model : The left column shows
the slip distributions used to create the synthetic surface displacements for each
performance test. The quality of the output of CATMIP sampling is shown in the
middle column. The mean of the posterior distribution for the CATMIP run with the
largest number of samples is shown in the right column. The source-receiver geometry
for this test is mapped in Figure 2.4.
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components of motion on each fault patch, the total number of free parameters in each

synthetic model is twice the number of fault patches. The source-receiver geometry

for this performance test is shown in Figure 2.4.

Figure 2.5 shows that as the number of patches in the fault model increases, the

number of samples required to reproduce the input slip distribution increases. At some

point, the quality of the solution begins to decline, not because of undersampling,

but because the patch size has become so small that the data can no longer resolve

the model given this source-receiver geometry. When model resolution is lost, the

displacements on neighboring patches begin to trade off with each other. The mean

of all of these possible models results in a smoother slip distribution than the input

model. This is not an incorrect result. Our data do not resolve the slip on each

patch, so the posterior PDF for each patch is no longer highly peaked. There are

many possible solutions which satisfy our data and, in real applications, we should

consider all of these models.

2.3.3 CATMIP vs. TMCMC vs. Metropolis

Finally, I compare CATMIP to TMCMC and the Metropolis algorithm. Loosely

based on Example 2(VIII) in Ching and Chen (2007), I run all three samplers with a

prior distribution of U(−2, 2) and a target distribution which is a biased mixture of
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Figure 2.6: Comparison of CATMIP, TMCMC, and Metropolis algorithms : (Top)
Marginal distribution for mixture of six-dimensional Gaussians. (Bottom) Marginal
distribution for mixture of ten-dimensional Gaussians. See text for details.
Distributions are normalized to have the same peak amplitude.
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Figure 2.7: Distribution of Markov chain lengths in TMCMC algorithm: This is the
distribution of Markov chain lengths from the final resampling in the TMCMC run
with 20,000 samples for a mixture of ten-dimensional Gaussians (Figure 2.6). Over
20% of the models are in Markov chains of length one.

six-dimensional Gaussians:

0.1N(µ1, σ) + 0.9N(µ2, σ) (2.7)

µ1 =

[
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

]
µ2 = −µ1

σ = 0.1I

Both CATMIP and TMCMC are run with a target COV of 1. All three samplers were
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set up so that they would produce approximately the same number of samples of the

posterior distribution. But this is not precise because both CATMIP and TMCMC

choose the cooling schedule dynamically, and TMCMC chooses the Markov chain

lengths as well. The Metropolis algorithm was run for 55,000 samples. TMCMC was

run with 5,000 samples; it took 11 cooling steps to complete, for a total of 55,000

samples over the lifetime of the algorithm, although only the 5,000 samples from the

last cooling step are usable. CATMIP was run with 500 Markov chains, each with a

length of 10 steps, or 5,000 samples per cooling step; it completed in 10 cooling steps,

for a total of 50,000 samples over the lifetime of the algorithm.

Because in TMCMC not all of the samples are updated at each cooling step, the

total number of model evaluations per cooling step is smaller than the total number

of samples. So to compare the performance of the three samplers for a given

computational expense, I ran TMCMC, tallied the total number of forward model

evaluations over its lifetime, and then ran CATMIP and the Metropolis algorithm

with sampling parameters such that the total number of forward model evaluations

in each run would be approximately the same as for the TMCMC algorithm.

For the next experiment, I increased to ten the number of dimensions in the target

distribution. TMCMC was run with 20,000 samples. The algorithm completed

after 16 cooling steps with a total of 184,271 forward model evaluations. I ran

CATMIP with 1,000 Markov chains, each with a length of 16 steps. The run finished

after 12 cooling steps during which the forward model was evaluated 181,000 times.

The Metropolis algorithm was run for 181,000 steps, the same number of model
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evaluations as CATMIP. For both this test and the last, the proposal distribution for

the Metropolis algorithm is the same as the proposal distribution for the final cooling

step (β = 1) of CATMIP and the Markov chain seed sample is 0.

The marginal distributions for one dimension of the target distribution are shown in

Figure 2.6. For CATMIP, I plot the results if all samples from the last cooling step are

used as well as if only the last sample from each Markov chain is kept. The Metropolis

algorithm has difficulty with the multimodal distribution, and becomes trapped in

the main peak of the target PDF for the six-dimensional case, and becomes trapped

in the less probable peak in the ten-dimensional test. (Of course, given enough

samples, the Metropolis random walk would eventually find the other peak in both

cases.) TMCMC and CATMIP image both peaks of the distribution. Both do a

good job of recovering the relative bias between the two peaks in the six-dimensional

example, but TMCMC fails to reproduce the relative probability of the two peaks

in the ten-dimensional problem. Overall, CATMIP can better reproduce the target

distribution with less computational expense.

Since the CATMIP and TMCMC runs in Figure 2.6 were done with the same

cooling scheme, resampling, prior distributions, similar numbers of samples, the

better performance of CATMIP must be due to the different implementation of the

Metropolis algorithm. In TMCMC, the length of each Markov chain is proportional

to the likelihood of its seed model. Notice in Figure 2.7 that more than 20% of

all Markov chains have a length of one, and are not updated after resampling. No

Markov chain has a length greater than ten steps (and only four chains are that long)
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while, in the corresponding CATMIP run, all instances of the Metropolis algorithm

are run for 16 steps. TMCMC does very little exploration of the solution space and

relies on tempering and resampling to reach the posterior distribution; the Metropolis

algorithm contributes very little to the solution. But CATMIP uses the Metropolis

algorithm to more extensively random walk through the solution space in addition to

utilizing tempering and resampling. Even though this additional MCMC sampling

makes CATMIP more computationally expensive than TMCMC for a given number

of samples, CATMIP can produce better results than TMCMC with fewer samples,

making it overall computationally cheaper than TMCMC.

2.4 CATMIP: A Qualitative Discussion

Let us put aside the math and performance tests for a little while, and discuss

qualitatively what CATMIP is and how it works. It has embedded in it the Metropolis

algorithm (Metropolis et al., 1953). The Metropolis algorithm is the figurative

grandfather of just about every Markov Chain Monte Carlo (MCMC) method in

existence. It uses a random walk to explore the model space and probabilistically

chooses whether or not to take a proposed step based on the probability associated

with the candidate sample, i.e., the probability of the proposed new location in model

space.

CATMIP and TMCMC belong to a class of samplers which use tempering. This

approach is similar to simulated annealing optimization (Kirkpatrick et al., 1983;
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Cerny , 1985) except that simulated annealing does not produce probabilistically

distributed samples. Because we start with a broad posterior distribution and

then slowly “cool” it to the true distribution, it is easier for the sampler to find

all of the peaks of the posterior distribution. This is why the CATMIP and

TMCMC algorithms out-performed the Metropolis algorithm at sampling a mixture

of Gaussians. Although its origins are unclear, the use of tempering in Bayesian

sampling dates back at least to Marinari and Parisi (1992).

Both CATMIP and TMCMC employ resampling. This produces a behavior similar to

genetic algorithms (e.g. Holland , 1992) in that “less fit” Markov chains (those which

have lower posterior probability) are killed off in favor of more probable models.

Looked at in this manner, the samples in CATMIP’s genetic pool reproduce through

replication (resampling) and mutation (random walking) but do not cross-breed.

While the Markov chains do not mix with each other, information from all Markov

chains is combined to calculate the model covariance and proposal density.

The main difference between CATMIP and TMCMC is in how the Metropolis

algorithm is employed. In TMCMC, the more probable models are assembled into

longer Markov chains. In CATMIP, more probable models spawn more Markov chains,

leading to a concentration of multiple chains in regions of high probability. In some

ways the TMCMC approach is more firmly in the realm of evolutionary computation

because better models have more offspring than worse models. CATMIP is more

similar to the Neighbourhood algorithm (Sambridge, 1999a,b) which is not a Bayesian

sampler but which explores the solution space by concentrating sampling in regions
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which produce better models.
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Chapter 3

Finite Fault Earthquake Source
Models

We now turn our attention to the geophysical problem I want to solve, namely

producing finite fault earthquake source models using Bayesian sampling. Over the

last decade or so, there has been a tremendous increase in the data available to

constrain the source processes of earthquakes. High-rate GPS networks have become

more common and, if an earthquake is located near stations of this type, we can use

their time series as high-quality displacement seismograms (e.g. Miyazaki et al., 2004;

Ji et al., 2004; Hartzell et al., 2007; Bilich et al., 2008). Satellite radar interferometry

has blossomed, yielding spatially dense sampling of the entire surface displacement

field. Putting all these data together allows us to study the details of the slip evolution

of earthquakes as never before. And by determining the kinematics of the rupture

process, we can unravel the underlying physics. The physics of earthquakes is mostly

beyond the scope of what I will be presenting, although I will discuss some applications

of Bayesian finite fault modeling in Chapter 5. But it is important to realize finite
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fault earthquake source models are more than an end in themselves.

3.1 A Brief History of Finite Fault Modeling

Researchers have been producing finite fault models for many years now. An

exhaustive review of the existing literature cannot be included here, and review papers

have been written on the subject (e.g. Ide, 2007). But I want to discuss a few notable

existing modeling techniques.

The finite fault source model is at its root linear. An observed slip distribution

can be represented by the linear combination of many dislocations with different

locations, orientations, strengths, and origin times. But the physics of the problem

dictate that the constraints on these source parameters are not linear. Some of these

constraints can be written to fit into a least squares framework; for example, backslip

can be avoided by using non-negative least squares. And thus the combination of

non-negative least squares and Laplacian smoothing is often sufficient to produce

static slip models. But the main difficulty with a linear approach to kinematic finite

fault modeling lies in imposing causality on the temporal evolution of slip.

We expect rupture to propagate across a fault plane, triggering slip as it goes. The

least restrictive interpretation of this statement is that slip at a particular point cannot

occur before the stress change has propagated to that location. The more restrictive

interpretation is that slip begins when the propagation front arrives at said point.
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But there is no simple linear constraint that expresses either of these statements.

This does not mean that there are not linear causal finite fault source models.

Hartzell and Heaton (1983) produced a finite fault model of the 1979 Imperial Valley

earthquake via least squares inversion by fixing the rupture velocity in their model

and allowing slip to occur in prescribed time windows. Similarly, Cohee and Beroza

(1994a) used a fixed rupture velocity to model the 1992 Landers earthquake, with

either one dislocation per fault patch or slip in three time windows, by using a

combination of linear and linearized inversions. Kikuchi and Kanamori (1982) used

a fixed rupture velocity in their modeling methodology but allowed for complex

source-time functions. These are reasonable modeling choices for an optimization

approach because source dimension is known to trade-off with rupture velocity. In

the Bayesian approach, we do not worry about these trade-offs.

The non-linear optimization approach of Ji et al. (2002) allows for simultaneous

solution of variable rupture velocity and source-time functions. There are several

large caveats that go along with this technique. One is that the optimization

employs simulated annealing, a process which is almost as computationally intensive

as Bayesian analysis, yet has all of the disadvantages of optimization. Another is

that while Ji et al. (2002) do solve for the source-time function and rupture velocity

independently, the source-time parameterization may be over-simplified, and it is very

difficult to enforce causality in this optimization scheme.
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3.2 A Bayesian Finite Fault Parameterization

Here I will discuss the particular finite fault parameterization I use in my modeling.

For Bayesian sampling we need a model with a tractable number of free parameters,

a fast forward model, and a prior distribution. Let us take these issues in order.

As the name suggests, a finite fault earthquake source model consists of the history

of an earthquake source (its spatial and temporal evolution) over a fault surface of

finite extent. Thus we must determine all faulting parameters at many points in

space. There is not much flexibility when choosing the number of points or patches

in your model. It is mostly determined by the spatial resolution of your data and

the frequency content of the kinematic data being used. So our only option is to

describe the rupture source at each patch with as few parameters as possible. In an

attempt to balance computational and sampling cost with reasonable flexibility in

the source model, we use four faulting parameters per patch: slip in two directions,

rupture velocity, and source duration.

3.2.1 Static Source Model

Because Bayesian sampling will require that we compute the forward model millions

or billions of times, it is necessary to design the forward problem so that it can be

evaluated as quickly as possible. The static model is entirely linear. We simply

evaluate (d − G ∗ m)T ∗ C−1
d ∗ (d − G ∗ m) where m is a vector containing the two
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components of slip on each patch, G is a matrix of Green’s functions, d is a vector of

observed surface displacements, and Cd is the covariance of d. Except in the case of

very large amounts of data and model parameters, the forward model is quite fast if

you pre-compute C−1
d from Cd.

In addition to the parameters describing the slip model itself, we must also introduce

several nuisance parameters. InSAR data measure the change in line-of-sight distance

between the satellite and the ground. They are interferograms measuring changes in

phase, and by necessity they contain an arbitrary constant offset in derived surface

displacements. Furthermore, slight ambiguities in the satellite’s orbit commonly

manifest themselves as spurious ramp-like displacement fields. Thus, for each

interferogram used, I also solve for three parameters (a, b, and c) which fit a ramp to

the InSAR data in the form a + bx + cy where x and y are the locations of the data

in local Cartesian coordinates.

3.2.2 Kinematic Source Model

The kinematic model similarly includes a linear combination of fundamental Green’s

functions, although these Green’s functions are vectors of time series instead of scalar

values. However, we must also convolve our basis functions with the source-time

function of each patch (which we parameterize as a triangle with rise τr) and time-shift

them based on the spatial distribution of rupture velocities, Vr. There is no method

of convolution that is sufficiently fast for our purposes. So we pre-compute a set
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of Green’s functions for each source-receiver pair and a wide variety of possible

source-time functions. For each forward model evaluation, we simply make a linear

combination of the appropriate pre-computed synthetic sources.

To determine how much to time-shift each source in our model, we must map our

hypocenter location and rupture velocity field to initial rupture times at each patch.

This mapping can be done quickly and efficiently using the Fast Sweeping Algorithm

(Zhao, 2005), a level-set method which uses a Godunov upwind difference scheme

(Rouy and Tourin, 1992) for solving the Eikonal equation,

|∇u(x)| = f(x), x ∈ Rn, f(x) > 0

u(x) = 0, x ∈ Γ ⊂ Rn (3.1)

where u(x) is the first arrival time at x of a wavefront which initiates at Γ and

propagates with normal velocity 1
f(x)

. f(x) = 1
Vr(x)

for our earthquake source model.

(We can also use a variable hypocenter and solve for the distribution of possible

hypocenter locations as part of our modeling, although the models presented in the

following chapter use a fixed hypocenter.)

The kinematic model has one triangular source-time per patch while rupture velocity

is allowed to freely vary. This is almost the opposite approach to Kikuchi and

Kanamori (1982) who used a complex source-time function with a fixed rupture
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velocity. Cohee and Beroza (1994b) concluded, somewhat unsurprisingly, that the

former approach does a better job of recovering the rupture velocity of the source at

the expense of doing a worse job at estimating rise time; but they also found that

source models which can only rupture once do a better job at estimating the seismic

moment. And while the results of single-window and multiple-window models, in the

terminology of Cohee and Beroza (1994b), are fairly similar in quality, the quality of

the solution will be poor unless the slip distribution is constrained by independent

data. This should not be a problem for the models in Chapter 4 because there is an

abundance of static surface displacements which can be used to determine the slip

distribution.

3.2.3 Choice of Prior Distribution

Finally, we must design a prior distribution to use with our model. The hypocenter

location and ramp parameters may be assumed to be normally distributed. But we

know very little a priori about the distribution of source-time functions or rupture

velocities. So for lack of a better model, we use uniform priors on those parameters.

In fact, the one source parameter we truly know well is the seismic moment tensor.

This does not tell us anything about the distribution of slip; but it tells us something

about the total amount of slip. We also have a good idea of the overall slip direction,

or rake, based on teleseismic observations. To turn these observations into a prior

distribution of slip, we use a rotated coordinate system with one axis, U‖, aligned

with the teleseismic rake direction, and the other axis, U⊥, perpendicular to the rake
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Figure 3.1: Slip coordinate system: The Bayesian finite fault parameterization uses
components of slip, U⊥ and U‖, which lie in the fault plane but are orthogonal to
each other. U⊥ is aligned with the direction of hanging-wall motion given by the rake
angle, λ

direction (Figure 3.1). The prior on U⊥ is a Gaussian with zero mean; we allow some

variation in the rake but assume it should be minimal. Our prior on slip in the U‖

direction is the Dirichlet distribution which is applicable to problems where a finite

number of states must sum to a specified value (see e.g. Gelman et al., 2004). Thus

the total moment for each sample of the prior is pre-determined. However, we do not

use a constant value of moment for all samples. Instead, we assume that there is a

Gaussian uncertainty on the catalog magnitude for the earthquake. For each a priori

sample we draw a magnitude from a Gaussian distribution and then generate random

slips on each patch using the Dirichlet distribution so that the total slip equals the

proposed magnitude (Figure 3.2). After drawing samples of the prior distribution,
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Figure 3.2: Prior distribution on slip: We describe the magnitude of the earthquake by
a normal distribution centered on the catalog magnitude for the event (top left). This
yields a log-normal distribution for scalar seismic moment (top right). We then use the
Dirichlet distribution to translate the distribution of total moment for the earthquake
into a distribution of slip on each patch, and we assume that this slip is aligned with
the rake direction of the earthquake (bottom left). The earthquake is allowed to slip
in two directions, and the distribution on slip in the direction perpendicular to the
rake direction is assumed to be Gaussian (bottom right). The distributions plotted
here are the same as for the Tocopilla earthquake study (Table 4.2).
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we do not impose the Dirichlet prior on succeeding cooling steps. Instead, we use a

one-sided semi-infinite uniform prior probability: we allow any positive value for U‖,

but forbid large amounts of back-slip. The minimum allowed slip value is less than

zero to avoid under-sampling small slip values due to the hard bound on minimum

U‖.

Note that for efficiency we rotate our Green’s functions into our (U⊥, U‖) coordinates

thus obviating the need to transform the forward model for each likelihood evaluation.

It should also be noted that the Dirichlet distribution is not the best or only prior

distribution for slip. But it is a probability distribution that satisfies our requirements

that the slip on each patch be in the forward rake direction (U‖ ≥ 0), and that the

total slip satisfies the moment the of the earthquake.

3.2.4 Implementation of Cascading

Because I have both kinematic and static data, I can take advantage of the cascading

technique. As the static data depend on the slip parameters and the InSAR nuisance

parameters only, we can use a Bayesian static model as a prior distribution for a

full kinematic model which also includes rupture velocity, slip duration, and possibly

hypocenter location. Let us call our static parameters (slip and InSAR ramps) θs and

our kinematic-only parameters (rupture velocity, rise time, and hypocenter location)
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θk. The full model θ = [θs, θm] can be written as

P(θ|D) ∝ P(θs|Ds) P(θk|Dk, Ds) = P(θs) P(θk) P(Ds|θs)
β P(Dk|θk, θs)

α (3.2)

When fusing static and kinematic earthquake data into a single source model, I solve

the static problem first. Then, through cascading, I use the posterior distribution

from modeling the static data to make the prior distribution for the full kinematic

problem. This significantly decreases the computational cost in two ways. First, I

can treat the model as two problems: one which has half as many free parameters

and one which has a small solution space when compared to the full problem without

cascading. Second, I can explore the solution space of the slip distribution using only

the static forward model, which is significantly faster than the full kinematic forward

model. For the models presented in the following chapter, it takes about 0.005 seconds

to evaluate the static forward model, while the kinematic forward model requires

approximately 0.03 seconds more, for a total of around 0.035 seconds to evaluate the

joint probability P(θs|Ds) P(θk|Dk, Ds).
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Chapter 4

The 2007 Mw 7.7 Tocopilla, Chile
Earthquake

4.1 Tectonic Setting

My demonstration earthquake for Bayesian finite fault modeling is the 2007 Mw 7.7

Tocopilla, Chile earthquake. The Peru-Chile subduction zone is a complex,

seismically active region which seems to exhibit different behaviors in different regions.

Its great seismic productivity is in large part due to the high Nazca-South America

convergence rate, approximately 68 mm/yr in northern Chile (Norabuena et al., 1998).

The largest earthquake ever recorded is the Mw 9.5 great 1960 Chile earthquake.

North of that rupture, the subduction interface has historically failed in magnitude 7

and 8 events (Figure 4.1). Barazangi and Isacks (1976) suggested that the subduction

zone is split into five segments, with the moderately dipping southern Ecuador,

southern Peru-northern Chile, and southern Chile segments separated by shallowly

dipping segments in north-central Peru and central Chile. The shallowly dipping
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segments are marked by a notable lack of Quaternary volcanism.

Even finer regional segmentation of the subduction interface appears to exist. Lomnitz

(2004) points out that the 1906 M 8.6 Valparaiso earthquake only ruptured part of

what was then a seismic gap, with the rest of the seismic gap failing in the 1928 M 8.4

Talca earthquake. Similarly, the 2007 Mw 7.7 Tocopilla, Chile earthquake extends

north from the 1995 Mw 8.1 Antofagasta earthquake, with the Mejillones Peninsula

marking the termination of both ruptures (Loveless et al., 2009). Von Huene

and Ranero (2003) theorize that the Mejillones Peninsula is just one of several

seaward-dipping blocks in the region which may form barriers to seismic rupture,

although it has been observed to slip aseismically (Pritchard and Simons , 2006).

4.2 Data and Green’s Functions

There are numerous data available for the Tocopilla earthquake because it ruptured

beneath the Central Andean Tectonic Observatory (CAnTO) GPS network from

which we obtained both static offsets and high-rate time series that can be used

in kinematic modeling (Figures 4.2, 4.3, 4.4, and 4.5). Two tracks from each of three

different kinds of InSAR imagery are available: ascending ALOS data, descending

normal-swath and ascending wide-swath ENVISAT data (Figure 4.6). GPS data from

the CAnTO GPS network were processed into daily positions and 1 Hz time series by

Jeff Genrich. Both data sets were made with IGS refined orbits (Dow et al., 2009),

GAMIT and GLOBK software, and were not sidereally filtered. Independent daily
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Figure 4.1: Historical seismicity of the Peru-Chile subduction zone: The location of
the 2007 Tocopilla earthquake is shown with a star.
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positions were made by averaging 30 second epoch regional solutions. The 1 Hz time

series were processed with TRACK software using IGS station AREQ in Arequipa,

Peru as a reference.

The ALOS and normal-swath Envisat interferograms were created with ROIPAC

processing software. Initial processing of the wide-swath interferograms was done by

Eric Fielding. The orientation and depth of the fault plane are derived from the

work of Francisco Ortega (Table 4.1). Nina Lin provided corrections for tropospheric

errors using the method of Lin et al. (2010). The corrected interferograms were then

resampled using the technique of Lohman and Simons (2005) (Figure 4.7). Static and

kinematic Green’s functions were calculated using frequency-wavenumber integration

(Zhu and Rivera, 2002) for a local 1-D tomographic velocity model (Husen et al.,

1999) (Figure 4.8).

For static modeling, I used all six resampled interferograms and GPS offsets derived

from the daily positions. The resampling process calculates a data covariance matrix

for the output data points. To estimate the uncertainties in the GPS data, I calculated

the variance (relative to a linear tectonic displacement model) of the daily time series

during a seismically inactive period. I first made a preliminary GPS-only model which

I used to forward-predict the radar data and calculate a residual displacement field.

I then fit a ramp to the residual displacements, and used the resulting model values

and uncertainties to estimate standard deviations for the Gaussians that I then used

as prior distributions in my final static modeling. For the kinematic model, I used

the same prior distributions and, through cascading, the posterior slip distributions
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Table 4.1: Fault geometry.
Parameter Prior distribution

Strike 5◦

Dip 20◦

Rake 99◦

Epicenter (−22.33◦,−70.16◦)
Source Depth 41 km

from the static model. The kinematic data are the horizontal components of the 1 Hz

GPS time series, as the vertical components are too noisy to be usable. I filtered

these time series using a causal butterworth low pass filter with a corner period of 3

seconds and arbitrarily assume a data variance of 1 cm2. The earthquake epicenter

comes from Delouis et al. (2009). The different data sets are not weighted relative to

each other in the joint kinematic modeling.

4.3 Static Model

As discussed in Section 3.2, the static model consists of two components of slip for

each fault patch as well as 18 InSAR nuisance parameters, for a total of 498 free

parameters. The prior distributions used for this model and the following kinematic

model are given in Table 4.2.

After completing the CATMIP algorithm, our solution is not a single model but

an enormous ensemble of samples of the posterior probability distribution. This is a

completely different result from traditional optimization methods. Our main goal now

is to analyze the posterior distribution to learn about the family of models which are
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Figure 4.2: GPS offsets from daily positions : The star marks the location of the
earthquake hypocenter.
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Figure 4.3: East component of 1 Hz GPS time series.
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Figure 4.4: North component of 1 Hz GPS time series.
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Figure 4.5: Vertical component of 1 Hz GPS time series.
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Figure 4.6: InSAR data: (Top) InSAR satellite flight paths. The footprint of each
scene is shown by the colored rectangles, with arrows showing the corresponding
satellite flight path for ascending (left) and descending (right) tracks. (Bottom) Dates
that radar imagery was captured relative to the date of the Tocopilla earthquake.
Horizontal lines, labeled with the satellite name and track number, show the time
elapsed between the first and second scene in each interferometric pair. The dashed
vertical line marks the day of the Tocopilla earthquake.
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Figure 4.7: Resampled InSAR data: Six InSAR interferograms were used in this
model. The original data were resampled using the method of Lohman and Simons
(2005), and it is the resampled data points that were used in the modeling.
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Table 4.2: Prior distributions : The prior distributions used in the static and kinematic
models.

Parameter Prior distribution
Magnitude Normal distribution: µ = 7.7, σ = 0.5
Slip Parallel Dirichlet distribution: α = 1, slip ≥ −1 m

Slip Perpendicular Normal distribution: µ = 0 m, σ = 0.5 m
Rise Time Uniform distribution: 0.25 s ≤ τr ≤ 7.75 s

Rupture Velocity Uniform distribution: 0 km/s < Vr ≤ 8 km/s
InSAR Ramp 1: T103a 3 Normal distributions:

a + bx + cy (µ, σ)
a (0, 190.292)
b (0, 39.6504)
c (0, 154.065)

InSAR Ramp 2: T104a 3 Normal distributions:
a + bx + cy (µ, σ)

a (0, 504.560)
b (0, 72.9119)
c (0, 523.016)

InSAR Ramp 3: T96d 3 Normal distributions:
a + bx + cy (µ, σ)

a (0, 18.0386)
b (0, 9.51263)
c (0, 14.4670)

InSAR Ramp 4: T368d 3 Normal distributions:
a + bx + cy (µ, σ)

a (0, 43.9352)
b (0, 20.8235)
c (0, 24.8122)

InSAR Ramp 5: T361a 3 Normal distributions:
a + bx + cy (µ, σ)

a (0, 28.9768)
b (0, 7.60256)
c (0, 36.4127)

InSAR Ramp 6: T89a 3 Normal distributions:
a + bx + cy (µ, σ)

a (0, 32.9630)
b (0, 2.44874)
c (0, 30.6867)

Hypocenter Normal distribution:

(along-strike, down-dip)
µ = (130.5 km, 49.5 km)
σ = (0 km, 0 km)



68

0

10

20

30

40

50

60

70

80

D
e
p
th

 (
k
m

)

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80
0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80
0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80
0 1 2 3 4 5 6 7 8 9 10

Vp (km/s)
Vs (km/s)
Density (gm/cm3)

Figure 4.8: Velocity model : The P-wave and S-wave velocities, vp and vs, are from
Husen et al. (1999). The density in gm

cm3 is given by ρ = 0.77 + 0.32 · vp. The P-wave
and S-wave quality factors are Qα = 1500 and Qβ = 600, respectively.

consistent with the data and the specified prior information. Let us begin by looking

at some statistics of the posterior distribution, in particular three models: the model

with the greatest posterior probability (this is called the maximum a posteriori or

MAP), the mean of all models, and the median of all models. (Note that the MAP

is a particular sample from the posterior distribution while the mean and the median

are models statistically derived from the ensemble of samples.) Each of these three

models has a reasonable slip distribution (Figure 4.9). If any of these models were

the solution produced by an optimization algorithm, we would probably consider it

a successful run of the numerical solver.

The MAP model has several separate asperities in a narrow band while the mean

and median of the distribution are slightly smoother. All three models are very
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similar. All three fit the data well (Figures 4.10, 4.11, 4.12, and 4.13). In the MAP

model, there are several patches near the edge of the fault with significant amounts

of slip. (This pattern is commonly found in finite fault models made with traditional

optimization methods.) It is possible that this slip is a real feature of the earthquake

source process; but more likely it is simply extra model complexity which helps fit

noise in the data, or real data signal which is inconsistent with our source model

design, or simply a random fluctuation in the model parameters. If it is the latter, we

would expect these extra slip patches to have different amounts of slip or be located

in different parts of the fault with each new model. This is what we see. While the

MAP model has several of these random patches, they average out and disappear

in the mean and median models. So we can infer that these slips are not persistent

features of the earthquake source process.

We must be careful when evaluating these individual models (the MAP, the mean,

and the median) because they are just that: individual models. If the posterior

is broad or has multiple peaks, the MAP may be misleading. Similarly, if the

posterior distribution is not Gaussian, the mean and median of the distribution may

be meaningless values. To truly understand the shape of the solution space, we have

to look at the posterior distribution itself.

Given the full distribution, we can answer many questions about the source model.

For example, how well resolved is the slip on a given patch? Figure 4.14 shows that

the posterior distribution is very different from our prior distribution. So the data

are informative. The distribution on the U⊥ component of slip is highly peaked and
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Figure 4.9: Three models from the posterior distribution: These are the MAP (top),
mean (middle) and median (bottom) models of the posterior distribution. The
magnitude of slip is shown with color and the arrows indicate the direction of slip.
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Figure 4.10: GPS predictions from three models : The predicted static displacements
from the MAP, mean, and median of the posterior distribution are compared to the
GPS offsets. The surface projection of the fault plane is shown with a thick black
line.
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Figure 4.11: InSAR predictions from the posterior distribution: Part I : The predicted
static displacements in cm from the MAP of the posterior distribution are compared
to the InSAR data.
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Figure 4.12: InSAR predictions from the posterior distribution: Part II : Same as
Figure 4.11 for the mean of the posterior distribution.
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Figure 4.13: InSAR predictions from the posterior distribution: Part III : Same as
Figure 4.11 for the median of the posterior distribution.
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near zero, so the slip direction is clearly close to the a priori rake direction. Both

components of slip have Gaussian-looking posteriors, explaining the similarity in the

MAP, mean, and median models. However, the distribution on the U‖ component

of slip is broad, indicating that its value is not as well resolved, most likely due

to trade-offs with neighboring patches. This brings us to our next logical question:

What is the model covariance of our posterior distribution? I present the correlation

between one patch and all other patches in Figures 4.16, 4.17, 4.18, and 4.19. We

see that, for the U⊥ component of slip, there is very little correlation between the

given patch and its neighbors, while there is significant anti-correlation for the U‖

component of slip. This may be why the posterior distribution on U⊥ is tighter than

the distribution on U‖. Together, these observations show that the direction of slip is

well-resolved, but the data have less power to resolve the magnitude of slip on each

patch.

Finally, let us consider the complete distribution of 480 slip values as a whole.

Figure 4.20 shows two contour lines. One contour circumscribes the region of the

model space which contains 95% of all samples in the posterior distribution, the other

contains 67% of all models. We can see that the rake direction is well-constrained.

And we can also see that neighboring patches trade-off with each other leading

to a range of possible slip amplitudes on each patch. But overall, the solution is

well-constrained. The rupture area is definitely confined to a narrow band elongated

in the north-south direction with the greatest slip at the southern end.

Figure 4.20 encapsulates almost the entire solution space. It shows the distribution of
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Figure 4.15: Key to model correlation plots : The model correlations with respect
to each of the patches marked with Roman numerals are presented in Figure 4.16
through Figure 4.19.

slip on each patch, and thus the variance on each component slip and the covariance

between the two components of slip on each path. (The patch-to-patch model

covariance was explored in Figures 4.16, 4.17, 4.18, and 4.19). For each model

parameter, it shows all possible values of that parameter which are consistent with

the data.

Using surface observations to infer a slip distribution at depth is an under-determined

process. Figure 4.20, with its uncertainties and trade-offs in slip, is the complete finite

fault solution. A single slip model produced through optimization is just one sample

from this solution space.
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Figure 4.16: Model correlation I : The correlation between the patch marked with a
diamond and all other patches: U⊥ (top), U‖ (bottom).
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Figure 4.17: Model correlation II : The correlation between the patch marked with a
diamond and all other patches: U⊥ (top), U‖ (bottom).
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Figure 4.18: Model correlation III : The correlation between the patch marked with a
diamond and all other patches: U⊥ (top), U‖ (bottom).



81

0

50

100

k
m

0 50 100 150 200

km

0

50

100

k
m

0 50 100 150 200

km

-1

0

1

C
o
rr
e
la
ti
o
n

Figure 4.19: Model correlation IV : The correlation between the patch marked with a
diamond and all other patches: U⊥ (top), U‖ (bottom).
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Figure 4.20: Posterior slip distribution from static modeling : Two contour lines are
drawn for each patch. Each contour illustrates the range of slip values which contain
67% and 95% of all posterior models. The patches at the corners illustrate the range
of slip values found in the prior distribution. The background grayscale intensity of
each patch is the mean of the slip distribution for that patch. Locations of GPS
stations are indicated by triangles.
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4.4 Interlude: Conventional Kinematic Finite

Fault Models

Before I delve into the Bayesian kinematic modeling of the Tocopilla earthquake,

I want to show the types of source models that can be produced with existing

methods. I present three models created with the simulated annealing optimization

method of Ji et al. (2002) using teleseismic waveforms, static GPS offsets, and the

two descending ENVISAT interferograms. The velocity model, data processing, and

fault geometry are very similar to the Bayesian static model (Table 4.3, Figure 4.21).

The solution is regularized to match a predetermined moment of 5.7 · 1027 dyne*cm

and the slip distribution is spatially smoothed. Spatial smoothing is necessary to

eliminate solutions with oscillating slip distributions (Harris and Segall , 1987; Du

et al., 1992). The moment constraint is used because this joint inversion technique

is prone to producing solutions with both reasonable rise times and rise times which

are so long that the dislocations on those patches do not radiate seismically, and by

this method the solution attempts to reconcile differences between the seismic and

static data. But such a source process is physically unlikely assuming that both data

sets are of a good quality and the static data is not contaminated by post-seismic

deformation.

With optimization approaches, we spend a lot of time worrying about the amount

of smoothing to use in the inversion scheme. Use too little smoothing, and the

inversion will over-fit the data by producing a very rough slip model. Use too much
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smoothing, and the solution will under-fit the data. Our knowledge of the physics of

the earthquake source process does not tell us a priori how rough the solution should

be. Uniform slip is a perfectly valid source model. But so is a model with highly

heterogeneous slip due to the material properties of the fault or the stress distribution

on the fault, among other reasons. We may be able to discriminate between reasonable

and unreasonable source models, but we cannot know how smooth the slip distribution

of an earthquake should be. Thus another advantage of the Bayesian approach is

that we do not need to specify a model roughness. We will sample all possible models

including smooth models and rough models and we will determine the distribution

of possible slip distributions that fit the data without fixing the roughness of the

solution a priori.

Each of the three models presented here has different smoothing weights, and the

choice of weights is arbitrary (Table 4.4). All three models produce good fits to the

data (Figure 4.23 through Figure 4.34). But are these the appropriate data fits?

Should we decrease the smoothing and increase the fit to the data?

All three inversions produce reasonable source models (Figures 4.35 and 4.36) and are

consistent with published solutions (e.g. Delouis et al., 2009; Loveless et al., 2009).

But each model has different amounts of slip at the edge of the fault. Are these

features real or are they attempts by the numerical solver to fit complexity in the

data that may be signal or may be noise? As discussed in the previous section,

individual models may contain random model fluctuations that disappear when you

look at the average of all possible models.
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Table 4.3: Fault geometry for simulated annealing.
Parameter Prior distribution

Strike 0◦

Dip 18◦

Epicenter (-22.2018, -70.1411)
Source depth 52 km

Hypocenter (along strike, down-dip) (139.5 km, 76.5 km)

Table 4.4: Model regularization.
Model Moment Constraint Slip Smoothing

1 0.3 0.1
2 0.3 0.02
3 0.1 0.02

This ambiguity illustrates why Bayesian analysis is so useful for finite fault modeling.

With optimization methods, we have no way of evaluating the uncertainty associated

with these solutions or finding which other models might fit the data. These three

solutions are models which fit the data, and should be accepted as possible source-time

histories for the Tocopilla earthquake. But we do not know if these solutions are

representative of the whole solution space. If they are similar to each other, it may

because because the data constrain the source process well, or it could be that all

three solutions are from the same peak in a complex solution space with multiple

peaks. If they are dissimilar, it could be because the data have little resolving power

and the solution space is broad, or it could be because the solution space has many

tight peaks and each model comes from a different region of the solution space. In

order to image the solution space, we will have to create a fully Bayesian source

model.
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Figure 4.21: Velocity model for simulated annealing : vp and vs are a variation on the
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Figure 4.23: Teleseismic P-wave fits for simulated annealing Model 1 : Data are
plotted in black, synthetics in red. The bottom and top numbers on the left are
the distance and azimuth of each station in degrees. To the right is the maximum
displacement in microns.
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Figure 4.24: Teleseismic P-wave fits for simulated annealing Model 2 : See Figure 4.23
for description.
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Figure 4.25: Teleseismic P-wave fits for simulated annealing Model 3 : See Figure 4.23
for description.
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Figure 4.26: Teleseismic SH-wave fits for simulated annealing Model 1 : See
Figure 4.23 for description.
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Figure 4.27: Teleseismic SH-wave fits for simulated annealing Model 2 : See
Figure 4.23 for description.
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Figure 4.28: Teleseismic SH-wave fits for simulated annealing Model 3 : See
Figure 4.23 for description.
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Figure 4.29: GPS fits for simulated annealing Model 1 : Data are plotted in black.
Synthetics are shown in white. Hypocenter is marked with a star.
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Figure 4.30: GPS fits for simulated annealing Model 2 : Data are plotted in black.
Synthetics are shown in white. Hypocenter is marked with a star.

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

JRGN

MCLA

VLZL

CTLR

CDLC

SRGD

CBAA

CJNT

CRSC

PMEJ

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

Observed

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

Model

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

10 cm

-72˚ -70˚ -68˚

-24˚

-22˚

-20˚

0

200

400
slip (cm)

-2000

-1000

0

1000

2000

3000

4000

5000
 Elevation(m)

Figure 4.31: GPS fits for simulated annealing Model 3 : Data are plotted in black.
Synthetics are shown in white. Hypocenter is marked with a star.
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Figure 4.32: InSAR fits for simulated annealing Model 1 : Displacements are in cm.
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Figure 4.33: InSAR fits for simulated annealing Model 2 : Displacements are in cm.
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Figure 4.34: InSAR fits for simulated annealing Model 3 : Displacements are in cm.
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Figure 4.35: Slip models from simulated annealing : Slip is shown with color. Contour
lines indicate location of the rupture front. The hypocenter is marked with a star.
(Top) Model 1, (middle) Model 2, (bottom) Model 3.
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Figure 4.36: Rupture evolution from simulated annealing : Rise time is shown with
color. Contour lines indicate location of the rupture front. The hypocenter is marked
with a star. (Top) Model 1, (middle) Model 2, (bottom) Model 3.



97

4.5 Kinematic Model

We now come to the ultimate challenge: creating a fully Bayesian kinematic

earthquake source model. I used the cascading technique described in Section 2.2 and

Section 3.2 to produce a posterior distribution from kinematic GPS data, static GPS

offsets, and six interferograms. The prior distributions are the same as in Table 4.2,

but the samples of the prior slip distribution and InSAR nuisance parameters are

given by the posterior distribution of the static model (Section 4.3).

Let us again start with individual samples from the posterior distribution. The

maximum a posteriori (MAP), mean, and median of the posterior distribution are

plotted in Figures 4.37 and 4.38. The temporal evolution of the rupture is shown in

Figure 4.39, and the evolution of slip on each patch is shown in Figures 4.40, 4.41,

and 4.42. The posterior slip distribution from joint static and kinematic modeling

is very similar to that of the static model although slightly more compact. The

rupture expands smoothly with any complexity occurring in regions without slip and

thus little constraint on the source time history. The displacements from these three

models are compared to the static data in Figures 4.43, 4.44, 4.45, and 4.46; the

quality of fit is not worse than for the static-only model, which is not surprising

considering how similar the joint slip distribution is to the static distribution. The

synthetic time series from the MAP, mean, and median models are compared to the

observed high-rate GPS displacements in Figure 4.47. Overall, the fits are excellent

although the model fails to reproduce some of the finer details in the data; but it



98

is unclear whether this is real signal or noise. This lack of high-frequency content

is more pronounced for the mean and median models which are smoother than the

MAP.

Let us now examine the probability distributions and answer the same questions we

posed for the static model. How well is the distribution of model parameters on a given

patch resolved? The answer is in Figures 4.48 and 4.49. Notice that because we have

used the cascading method, the prior slip distribution is the posterior distribution

from the static model while the prior distributions for rise time and rupture velocity

are uniform distributions. Despite the already well-resolved static slip distribution,

the addition of the kinematic data increases our model resolution because we have an

abundance of near-field data. The joint posterior distribution on U‖ is shifted relative

to the prior distribution from the static model, but this change must be beyond the

resolution of the static data since the joint posterior fits the static data well. For

both rupture velocity and rise time, the posterior distribution is nearly Gaussian,

relatively well-constrained, and significantly narrower than the prior distribution,

which indicates that the model is well-resolved by the data.

The patch-to-patch correlation, or trade-off, is plotted in Figures 4.51, 4.52, 4.53,

and 4.54. The only model parameters which show poor spatial resolution is the

rake-parallel component of slip and, for some patches, the rupture velocity. For all

other model parameters, the given patch is independent of its neighbors.
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Figure 4.37: Three models from the posterior slip distribution: These are the MAP
(top), mean (middle) and median (bottom) models of the posterior slip distribution.
The magnitude of slip is shown with color and the arrows indicate the direction of
slip.
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Figure 4.38: Three models from the posterior kinematic distribution: These are the
MAP (top), mean (middle) and median (bottom) models of the posterior rupture
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Figure 4.39: Rupture evolution: Snapshots of the MAP model are plotted for different
points in time. All times are relative to the origin time.
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Figure 4.43: GPS predictions from three models : The predicted static displacements
from the MAP, mean, and median of the posterior distribution are compared to the
static GPS data. The surface projection of the fault plane is shown with a thick black
line.
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Figure 4.44: InSAR predictions from the posterior distribution: Part I : The predicted
static displacements in cm from the MAP of the posterior distribution are compared
to the InSAR data.
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Figure 4.45: InSAR predictions from the posterior distribution: Part II : Same as
Figure 4.44 for the mean of the posterior distribution.
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Figure 4.46: InSAR predictions from the posterior distribution: Part III : Same as
Figure 4.44 for the median of the posterior distribution.
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Figure 4.47: Kinematic GPS predictions from three models : The predicted time series
from the maximum a posteriori (MAP), mean, and median models are compared to
the high-rate GPS data. Displacements are in cm.
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Figure 4.48: Evolution of the posterior distribution: Comparison of the prior slip
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in Figure 4.52 (patch II in Figure 4.50). The prior distributions on slip are the
posterior distributions from the static model. The prior distributions on rise time
and rupture velocity are uniform. This is the same patch as is plotted in Figure 4.14.
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Figure 4.49: Evolution of the posterior distribution: Same as Figure 4.48 for the patch
in Figure 4.54 (patch IV in Figure 4.50).
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Figure 4.50: Key to model correlation plots : The model correlations with respect
to each of the patches marked with Roman numerals are presented in Figure 4.51
through Figure 4.54.
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Figure 4.51: Model correlation I : The correlation between the patch marked with a
diamond and all other patches: U⊥ (top), U‖ (row two), τr (row three), Vr (bottom).
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Figure 4.52: Model correlation II : The correlation between the patch marked with a
diamond and all other patches: U⊥ (top), U‖ (row two), τr (row three), Vr (bottom).
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Figure 4.53: Model correlation III : The correlation between the patch marked with a
diamond and all other patches: U⊥ (top), U‖ (row two), τr (row three), Vr (bottom).
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Figure 4.54: Model correlation IV : The correlation between the patch marked with a
diamond and all other patches: U⊥ (top), U‖ (row two), τr (row three), Vr (bottom).
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Finally, we will examine the complete slip distribution as shown in Figure 4.55 and a

zoomed-in version of the same plot in Figure 4.56. What is immediately apparent is

that the dense network of high-rate GPS stations does a good job of constraining the

slip distribution. The kinematic posterior slip distribution is highly peaked, more so

than the static-only posterior distribution (Figure 4.20). The rupture area is smaller,

and slip is accumulated in well-defined asperities.
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Figure 4.55: Posterior slip distribution from kinematic modeling : Two contour lines
are drawn for each patch. Each contour illustrates the range of slip values which
contain 67% and 95% of all posterior models. The patches at the corners illustrate
the range of slip values found in the prior distribution. The background grayscale
intensity of each patch is the mean of the slip distribution for that patch. Locations
of GPS stations are indicated by triangles.



119

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-69˚-69˚-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

0

1

2

3
S

lip
 (

m
)

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

1 m

2 m

3 m

4 m

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

95%

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

67%

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

-71˚

-71˚

-70˚

-70˚

-69˚

-69˚

-23˚ -23˚

-22˚ -22˚

Figure 4.56: Zoomed posterior slip distribution from kinematic modeling : Two contour
lines are drawn for each patch. Each contour illustrates the range of slip values which
contain 67% and 95% of all posterior models. The patches at the corners illustrate
the range of slip values found in the prior distribution. The background grayscale
intensity of each patch is the mean of the slip distribution for that patch. Locations
of GPS stations are indicated by triangles.
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Figure 4.57 shows the complete posterior distribution for rupture velocity and rise

time. Rupture velocity may be, in general, better resolved than rise time since the

posterior distribution is slightly broader along the rise time axis in Figure 4.57. Both

rupture velocity and rise time are better constrained on patches with significant

amounts of slip, which is not surprising since, if there is little slip on a patch, then

that patch does not contribute much to observed kinematic surface displacements.

Neither rupture velocity nor rise time seem to be correlated with either the amount

of slip or the roughness of the slip distribution.
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Chapter 5

Source Properties of the Tocopilla
Earthquake

So far I have derived a new sampling method for Bayesian analysis, used it to

produce a source model for the 2007 Tocopilla, Chile earthquake, and analyzed the

posterior probability distribution to understand the features and uncertainties in the

source model. This is a new way of looking at finite fault source models. But slip

distributions are not the ultimate objective. They are best used as inputs to help

answer questions about the physics of the source process. And because we have

not one model, but instead a complete ensemble of all possible models which are

consistent with the data, we can use the entire distribution to calculate bounds on

derived source parameters.
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Figure 5.1: Assorted source characteristics : Probability distributions for rupture
area, seismic moment, static stress change, elastic strain energy release and moment
magnitude for the Tocopilla earthquake.
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5.1 Inferred Source Characteristics

Several source parameters such as static stress change are difficult to estimate because

they are based not on any actual observation of the quantity being estimated, but

instead are derived from other models and observations. The Bayesian approach

does nothing to ameliorate these problems. But since Bayesian analysis produces

an ensemble of many source models, we can use these probability distributions to

calculate the range of possible values for any source parameter. As an example, I

consider four quantities.

First, is the scalar seismic moment of the earthquake, which is given directly by our

posterior slip distribution. For a fault with rigidity µ, area A and average slip ū, the

moment is

M0 = µAū (5.1)

Second, I look at moment magnitude (Kanamori , 1977),

Mw =
log M0

1.5
− 10.73 (Moment in dyne*cm) (5.2)

Third, there is static stress drop for a rectangular dip-slip fault of length L and width

w in a Poisson medium (Kanamori and Anderson, 1975),

∆σ =
8

3π
µ

ū

w
(5.3)
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This can be rewritten as

∆σ =
8

3π

M0

A
3
2√
R

(5.4)

where R = L
w

is the aspect ratio of the rupture.

There are many ways to attempt to derive an estimate of static stress drop from a slip

model, and Equation 5.3 is perhaps the crudest method. The main difficultly arises

in trying to geometrically interpret the slip pattern since the stress drop changes

with the size and shape of the rupture. Das (1988) said that static stress drop is

fairly independent of the slip distribution as long as the average stress drop for the

different slip distributions were similar, which indicates that the relationship between

average slip and average stress drop for smooth slip distributions may be reliable

even for faults with multiple asperities. Madariaga (1979) argued that when there

are multiple asperities, the stress drop scales on the order of the ratio of the area of the

asperity to the total fault area, so that for a given moment and rupture area, faults

with slip concentrated in multiple asperities have higher stress drop that faults with

a smooth distribution of slip. And Rudnicki and Kanamori (1981) found that while

strong asperities embedded in slip zones can produce locally large stress drops, the

average stress drop over the entire slip zone is approximately equal to that inferred

for an isolated fault.

Fourth, there is ∆W0, the energy available to power the earthquake fracture and to

radiate seismically. It can also be described as the minimum elastic strain energy

drop, or the strain energy released if the stress drop is complete (Kanamori , 1977),
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and thus it can be estimated from the static stress drop by the expression

∆W0 =
∆σ

2µ
M0 (5.5)

The posterior slip distribution includes slip near the edge of the fault, as we commonly

find in traditional optimization techniques. But because we have employed Baysian

sampling to generate the full posterior distribution, we know that for this earthquake,

the slip near the edge of the model is within our model uncertainty. This is evidence

that constraints which enforce sparsity in the solution (i.e., require a spatially compact

rupture) may be useful in at least the context of optimization, if not also Bayesian

analysis. I discuss this now because the scalar seismic moment is proportional to the

area of the earthquake rupture. If we assume, for a particular sample of the posterior,

that the area of the rupture is all patches with slip, even negligible slip, our estimate

of the scalar seismic moment will be large.

As a crude a posteriori investigation of the effects of sparseness on the earthquake

model and the inferred properties of the source process, I calculated the four

parameters listed above for three thresholds of slip: all patches with any slip, only

the patches whose slips are least 10% of the maximum slip for each model, and only

the patches whose slips are at least 20% of the maximum slip. Inspection of the slip

models indicate that the aspect ratio of the rupture is approximately 3, and this is

the value that I use for the purposes of calculating the static stress drop.
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The distributions for all four of the above source properties for each slip threshold

are shown in Figure 5.1 along with the distribution of rupture area for the three slip

thresholds. As we include more fault patches in our calculations, the total moment

increases and the distribution of rupture area tightens, until, when we allow all patches

with any slip, the only possible rupture area is the entire area of the fault. Of course,

this is an arbitrary end point. If we has used a fault model that was larger or smaller,

we would have a distribution that converged to that area instead. However, changing

our slip threshold by as much as 20% does not have much of an effect on the inferred

source parameters. So a sparsity constraint might not affect our results very much.

Since our posterior slip distributions were normally distributed, each of these derived

source parameters is Gaussian. And since our slip distribution was well-constrained,

the apparent uncertainties in each of these source characteristics are relatively small.

5.2 Slip Heterogeneity

As illustrated in Section 4.4, different smoothing choices in the traditional

optimization approach lead to different solutions, and it is unclear which model is

best. For fast optimization methods, the effects of different smoothing weights can be

explored using bootstrap techniques. But this is not feasible with simulated annealing

because it is computationally expensive. With Bayesian sampling, we can explore the

roughness of the possible slip models a posteriori. My metric for slip heterogeneity is
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Figure 5.2: Slip heterogeneity : The roughness of the posterior slip distributions for
the static and kinematic models are compared to the three models presented in
Section 4.4. The model roughness is quantified by the L2 norm of the Laplacian
of the spatial distribution of slip ‖∇2u‖2 (top), and log10 ‖∇2u‖2 (bottom).
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Figure 5.3: Location of peak slip: The variability in the magnitude of the maximum
dislocation is shown with histograms. Patches are colored by the number of samples
for which that patch is the location of the largest slip. (Top) Linear scaling shows that
the location of the peak slip is well-constrained to one of two asperities and is most
likely in the southern asperity. (Bottom) Logarithmic scaling reveals the existence of
a few more possible locations of peak slip, although there are few samples associated
with these models, and thus their probability is low.
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the L2 norm of the spatial Laplacian of slip u,

‖∇2u‖2 = ‖∇ · ∇u‖2 = ‖∂2u

∂x2
+

∂2u

∂y2
‖2 (5.6)

This type of smoothing is commonly used in earthquake source inversions (e.g. Harris

and Segall , 1987; Du et al., 1992). So by plotting the distribution of slip roughness

from the posterior distribution, we can see how the models produced by Bayesian

sampling compare to those from traditional optimization techniques. The results are

shown in Figure 5.2.

Overall, the distribution of slip models from the kinematic sampling are smoother

than the distribution of static slip models. The three simulated annealing models

are significantly smoother than the distribution of kinematic models from Bayesian

sampling. Only Model 2 and Model 3 of Section 4.4 begin to approach the slip

distribution seen in the MAP, mean, and median Bayesian models, and thus it is

not surprising that only the spatial roughness of those models is consistent with

the Bayesian posterior distributions. The mean and median of the static posterior

distribution are much smoother than the models which comprise the posterior

distribution. In the kinematic case, the roughness of the MAP, mean, and median of

the posterior are similar to the samples in the distribution. Relative to the kinematic

model, the static data have limited ability to resolve the slip on each patch. This

leads to trade-offs between the model parameters, and each individual model is rough.

However, when these models are averaged together to compute the mean or median,
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the resulting model is much smoother than the individual samples without significant

decrease in the ability of the model to fit the static data. As we saw in Figure 4.48, the

kinematic data have additional resolving power relative to the static data. There are

fewer trade-offs between slip on neighboring patches, leading to smoother individual

samples of the posterior and a distribution whose mean and median are about as

rough as the samples themselves.

5.3 Peak Slip

Another benefit of Bayesian analysis over traditional optimization methods is the

ability to assess the robustness of a particular feature in the slip model. As an

example, I look at the location and magnitude of the largest dislocation (Figure 5.3).

For the posterior distribution in its entirety, the peak slip is 3.015± 0.2733 m. So the

magnitude of the maximum slip is quite well-constrained. The location of the peak

slip is also fairly well-constrained, although there is more uncertainty here. There are

two modes. The less probable mode has the peak slip in the northern asperity. But

the vast majority of models has the peak slip in the southern asperity.

5.4 Super-Shear Rupture Velocity

One important question in earthquake seismology is: Which, if any, earthquake

ruptures propagate at super-shear velocities? There are several source models for



132

various earthquakes, such as the 1999 Mw 7.2 Duzce, Turkey earthquake, which

include super-shear rupture (e.g. Bouchon et al., 2001; Konca et al., 2010). Of course,

each of these finite fault models is one possible solution to an under-determined inverse

problem. There are other solutions where the rupture velocity remains sub-shear (e.g.

Utkucu et al., 2003; Umutlu et al., 2004). The important question is: How likely is it

that these earthquake ruptures exceeded the shear-wave velocity and in what part of

the rupture process did it occur? Of course, I cannot answer this question here. But

I can estimate the likelihood that the rupture velocity of the Tocopilla earthquake

exceeded the shear-wave velocity.

Consider Figure 5.4. There are few patches where a significant fraction of the models

exceed the shear-wave velocity, β. Nowhere does Vr greatly exceed β, and thus any

possible appearace of super-shear behavior is probably well within the uncertainty in

the velocity model. I would say that this rupture was not super-shear.
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Chapter 6

Closing Remarks

In geophysics, and especially in earthquake seismology, most of the inverse problems

we deal with are under-determined. If you come away with nothing else from

this work, I hope you will appreciate why Bayesian analysis is a more appropriate

way to handle these problems than traditional optimization approaches. Regardless

of its utility, Bayesian analysis has until now simply not been a practical option

for geophysical modeling. It is too computationally intensive for problems with a

large number of free parameters or problems whose forward models are themselves

expensive to calculate. I therefore designed and implemented a parallel sampling

technique, CATMIP, which allows us to tackle problems as complex as kinematic

finite fault modeling. It is worth emphasizing that while I have used this algorithm

to produce earthquake source models, the sampling algorithm is independent of the

forward model, and can be used for any inverse problem.

I have done much to make the CATMIP algorithm as efficient as possible and to

take advantage of parallel computing infrastructure. So while my sampling technique
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makes large-scale Bayesian modeling possible, it is only possible with the use of

thousands of processors working in parallel. But as more computing facilities are

built, I anticipate that more researchers will be able to utilize these methods.

Applying my new Bayesian sampling technique to the 2007 Tocopilla, Chile

earthquake, I find that the dense near-field data lead to a well-constrained source

model. The slip distribution is compact and localized in a few asperities. The

rupture front expanded fairly homogeneously, but most of slip occurred south of

the hypocenter near the Antofagasta peninsula.

The work presented here represents an initial application of Bayesian analysis to

finite fault earthquake source models. There is much more work that can be done in

this field. The models presented here use a simple parameterization of the earthquake

source process. More elaborate models could be made which allow for the propagation

of multiple rupture fronts. A multi-scale parameterization could be tried in order

to obtain the best spatial resolution permitted by the data. The model could be

expanded to additionally solve for the source geometry and location. And, perhaps

most importantly of all, a Bayesian analysis of the error structure could be done to

learn about the effects of unmodeled dynamics on our posterior distribution.

The goal of any slip model is to explain the physics of the source process. In the

future, this is the field that will see the greatest reward from Bayesian analysis

of earthquakes. The earthquake source process details needed to determine the

dynamics of the rupture are often beyond the resolution of the available data. While
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this limitation cannot be avoided, with Bayesian analysis we can use the posterior

probability distribution to quantify the likelihood of a particular rupture behavior.

The results I have presented are just the beginning. The exciting part comes next,

when researchers use the posterior distributions from Bayesian earthquake models

to probabilistically constrain the physics of the earthquake source rupture. We will

never be able to resolve the details of the source process more than the data allow.

But at least with Bayesian techniques, we can determine what we do and do not

know, and how well everything is resolved.
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Appendix A

CATMIP Implementation and
Some Practical Considerations

In the development of the CATMIP algorithm, there were many false starts and

deadends. Most of the details are too small, unimportant, and dull to discuss here.

But what follows is a catalog of some points to keep in mind if you ever find yourself

building a Bayesian sampler.

• While all of the Monte Carlo algorithms discussed here have been written in

terms of the probability of various distributions, it is straightforward to frame

them in terms of log-likelihoods, ln(P). In high dimensional simulations, you

will want to use log-likelihoods. If you are multiplying the probabilities of

hundreds of parameters, each of which has a value between zero and one (and

usually much closer to zero than one), you will find that their product quickly

becomes zero to working precision.

• These numerical issues apply to other computations as well. While Σm
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(Equation 2.4) is by definition a symmetric positive-definite matrix, the process

of calculating Σm may yield something which is close to having those properties

but does not quite. Any small errors in Σm can be handled by replacing Σm

with 1
2
(Σm + ΣT

m), or in more extreme cases by calculating the singular value

decomposition of Σm and removing insignificant singular values.

• It is rather involved to compute Σm as it requires calculating the mean of the

ensemble of models and the variance of each model from that mean. Although

this calculation is only made once per cooling step, for large problems, efficiency

requires that we do this work in parallel.

• In any Bayesian sampling, most of the work is spent on repeatedly evaluating

the forward model. Anything you can do to speed up the forward model pays

enormous dividends. One simple example: if you have a data covariance matrix,

do not invert the matrix every time you evaluate [d− g(m)]T ∗C−1
d ∗ [d− g(m)].

Pre-compute and store C−1
d .

• The second best target for improving the speed of sampling is the random

number generators. If you are generating your candidate samples from a

multivariate normal distribution, your random number generator is inverting

your covariance matrix Σm. For a large-scale problem with hundreds of model

parameters, and thus a proposal covariance matrix which has thousands of

elements or more, you do not want to invert that matrix for every candidate

sample in every Markov chain. It is better to write your own random number

generator which accepts Σ−1
m or to pre-compute all of the random numbers you
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will need.

• One algorithm not discussed here is the modified Metropolis algorithm (Au and

Beck , 2001), which was developed to draw samples from small failure-probability

regions. In this algorithm, rather than compare your current model x =<

x1...xn > to candidate model y =< y1...yn >, you first compare x to

y(1) =< y1, x2, ...xn >. If you accept this model, your next candidate is

y(2) =< y1, y2, x3...xn >, y(2) =< x1, y2, x3...xn > otherwise. This approach

increases the likelihood that your current model will be updated, but the total

number of model evaluations is increased by a factor of n. In high-dimensional

simulations, the modified Metropolis algorithm is popular because it increases

the acceptance rate. This algorithm should not be mixed with TMCMC,

CATMIP, or any algorithm which uses an adaptive proposal PDF. By updating

the model one parameter at a time, you erase the increased efficiency that comes

from producing models with the correct model covariance.

• For high-dimensional problems, it may be beneficial to replace any probabilities

you have (particularly those in your prior distribution) with unnormalized

distributions so as to avoid numerical underflow. This change will not affect

the sampling process. In the Metropolis algorithm and its progeny, the absolute

value of any probability is unimportant. We always evaluate the ratio of

probabilities.
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The problems you find in Bayesian sampling generally fall into the categories

exemplified above. There are issues of numerical underflow and overflow. Insignificant

calculations, such as random number generation, may become time drains for very

large problems. And none of this will be of any use unless you can make your forward

model fast enough that the sampling process will complete in a reasonable length of

time.

My CATMIP implementation is written in the C programming language using the

GNU Scientific Library. Parallel communication is performed using the Message

Passing Interface (MPI) protocols. A schematic of my program is presented in

Figure A.1.
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