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C h a p t e r  2                                                                                           

AN ELASTIC PLATE MODEL FOR INTERSEISMIC DEFORMATION IN 

SUBDUCTION ZONES1 

 
2.1 Introduction 

 

At subduction plate boundaries, geodetic data from the interseismic period — decades to 

centuries after a megathrust earthquake — help to delineate regions of the megathrust 

that are not presently slipping and can potentially produce large earthquakes.  Due to both 

observational and theoretical considerations, such data are frequently interpreted using 

simple elastic dislocation models (EDMs).  EDMs are in fact used for interpreting secular 

as well as transient deformation in subduction zones [e.g., Savage, 1983; 1995; Zweck et 

al., 2002; Miyazaki et al., 2004; Hsu et al., 2006].  The most common of the dislocation 

models used for interpreting surface deformation in subduction zones is the backslip 

model [Savage, 1983] (henceforth referred to as the BSM, and depicted schematically in 

the left column of Figure 2-1).  The BSM was originally motivated by the recognition 

that the overriding plate apparently experiences little permanent inelastic deformation on 

the time scales relevant to the seismic cycle (several hundred years) [see, Savage, 1983].  

The BSM accomplishes this zero net strain in the overriding plate by parameterizing 

interseismic fault slip as normal slip, i.e., backslip, on the same patch that also slips in the 

reverse sense during great earthquakes [Savage, 1983].  Therefore, the seismic cycle is 

completely described by two equal and opposite perturbations — abrupt coseismic 

reverse slip cancels cumulative interseismic normal slip (or “backslip”) at the plate 

convergence rate.  Thus, to first order, the interseismic strain field and the sum of 

coseismic and postseismic (afterslip) strain fields must cancel each other, and 

asthenospheric relaxation does not significantly contribute to the interseismic 

deformation field [Savage, 1983, 1995].  Further, it has been shown that the predictions 

of interseismic surface velocities for a two-layered elastic halfspace model (e.g., elastic-
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layer-over-elastic-halfspace) differ by less than 5% from those for a homogeneous 

elastic-halfspace model [Savage, 1998].  Similarly, the effect of gravity on the elastic 

field is also very small (< 2%, see [Wang, 2005]).  In the case of linear elastic-layer-over-

viscoelastic-halfspace models, data for the interseismic period do not require 

asthenospheric relaxation, and can be fit equally well by afterslip downdip of the locked 

zone in an equivalent homogeneous elastic-halfspace model [Savage, 1995]. 

 

Thus, the BSM provides a first-order description of the subduction process on the time-

scale of several seismic cycles (on the order of 103 yrs) using only two parameters — the 

extent of the locked fault interface and the plate geometry (constant or depth—dependent 

fault dip).  To be precise, the BSM as intended by Savage [1983], assumed a mature 

subduction zone — where plate bending and local isostatic effects on the overriding plate 

are compensated by unspecified “complex asthenospheric motions” [Savage, 1983, page 

4985].  These asthenospheric motions are assumed not to play a role in surface 

deformation, and there is no net vertical motion between the two plates at the trench.  

Thus, the BSM as intended by Savage [1983] is purely a perturbation superimposed over 

steady state subduction, with the deformation fields due to coseismic slip (thrust sense) 

and cumulative post-/interseismic-slip (backslip) on the locked portion of the fault 

canceling each other (left column of Figure 2-1 and Figure 2-2).  Therefore, the BSM 

does not include block motion [Savage, 1983, page 4985; and J.C. Savage (personal 

communication, 2009)].  Henceforth, we use BSM to refer to this original model, as 

intended by Savage [1983].  However, subsequent authors have interpreted the relative 

steady state motion illustrated in Figure 1 of Savage [1983] literally, assuming that steady 

state motion implies block-motion (e.g.,Yoshioka et al. [1993], Zhao and Takemoto 

[2000]; Vergne et al. [2001]; Iio et al. [2002; , 2004]; Nishimura et al. [2004]; Chlieh et 

al. [2008a]).  Henceforth, we use pBSM to refer to this popular (mis-) interpretation of 

the BSM with block-motion (middle column of Figure 2-1 and Figure 2-2).  In the 

pBSM, the interseismic backslip perturbation applied to the locked zone is viewed as the 

difference between two elastic solutions: (a) continuous steady state rigid-block motion 

along the plate interface, and (b) continuous aseismic slip along the plate interface 
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Figure 2-1 Comparison of the BSM, the pBSM, and the ESPM.  The trench is defined by the intersection of the free-surface (horizontal solid line) and the 
(upper) dipping line; cross-sectional geometry is assumed to be identical along strike;  Dlock is the depth to the downdip end of the locked megathrust; xlock 
represents the surface projection of the downdip end of the locked megathrust; θ is the dip of the plate interface; H is the plate thickness in the ESPM; xG, 
represents the typical range for the location of the nearest geodetic observation from the trench.  The arrows represent relative motion at the plate boundary. 
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downdip of the locked zone, representing the interseismic strain accumulation process.  

Thus, in the pBSM, the asthenosphere is primarily represented as two rigid fault blocks, 

and strain accumulation is assumed to occur only at the upper boundary of the subducting 

plate, specifically, as steady-slip downdip of the locked zone.  The pBSM is unphysical 

in that on longer time scales, the steady state block motion along the megathrust interface 

between the two converging plates results in net long-term uplift of the overriding plate, 

as well as an unrealistic prediction of zero net strain in the downgoing plate.  Ad hoc 

arguments have been used to simply ignore the vertical component of block motion, 

while including its horizontal component to account for plate convergence.  From the 

perspective of implementation and interpretation, the pBSM is also ambiguous when 

considering non-planar faults — i.e., where one should one impose backslip.  Even 

though the original BSM envisaged by Savage [1983] postulates application of backslip 

directly to the locked interface, irrespective of its geometry, this ambiguity arises in the 

pBSM because assuming block motion along a non-planar interface leads to net 

deformation in the overriding plate over the seismic cycle (upper middle panel of Figure 

2-2), violating the original BSM’s assumption of zero-net deformation there.  As a result, 

several authors have either used a fictitious planar fault tangent to the downdip end of the 

locked zone to apply interseismic backslip [e.g., Simoes et al., 2004; Chlieh et al., 2008], 

or have argued against the use of the BSM for curved fault geometries [e.g., Chlieh et 

al., 2004]. 

 

In order to reconcile a plate view of subduction with observed deformation over the 

seismic cycle, we propose here a plate-like EDM for subduction zones, the ESPM, that 

essentially differs from the BSM as well as the pBSM in the form of the steady state 

solution (right column of Figure 2-1 and Figure 2-2).  The steady state “plate” solution in 

the ESPM is simply the superposition of two parallel dislocation glide surfaces in the 

half-space, representing the top and bottom of the plate. The ESPM is intended to be a 

kinematic proxy for slab driven subduction [e.g., Forsyth and Uyeda, 1975; Hager, 

1984], where the shear strains between the bottom of the downgoing plate and the 

surrounding mantle are approximated by the bottom dislocation glide surface.  So, the 
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Figure 2-2. Comparison of the velocity fields in the half-space for the BSM, the pBSM, and the ESPM. Top row illustrates the interseismic velocity fields 
predicted by the models (solid black line represents the locked zone), and the bottom row shows the imposed “geologic” steady state creep velocity field.  All 
velocities are computed relative to the far-field of the overriding plate (and normalized relative to the plate convergence rate, Vp).  Velocity vectors are drawn to 
the same scale in all panels (yellow vector at bottom left in each panel), relative to the plate convergence rate.  The steady state field for the BSM is only a 
schematic representation of “complex asthenospheric motions” assumed by Savage [1983], and not a computed field.
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ESPM retains the BSM’s mathematical simplicity, while providing more intuition 

regarding the plate bending process.  Because bending is explicitly included in the 

ESPM, the fraction of flexural stresses released continuously over the seismic cycle, fσ, 

as well as plate thickness, H, are two additional parameters in this model.  Our goals here 

are to (a) understand the contribution of flexure to such short-term surface deformation, 

(b) quantify the criteria under which flexural contribution to surface deformation can be 

ignored, as originally postulated by Savage [1983] for the BSM; and (c) obviate the need 

for many of the ambiguities inherent in the pBSM, the popular (mis-) interpretation of the 

BSM.  We will show that the ESPM may not fit currently available geodetic data any 

better than the BSM, but its importance lies in providing additional physical insight into 

the complete elastic deformation field owing to plate flexure at the trench, and why a 

fault interface perturbation model has been so successful in approximating a more 

complicated geodynamic process like plate subduction over the seismic cycle timescale.   

 

The simplicity of EDMs allows parameters such as the slip distribution on the subduction 

interface during different phases of the seismic cycle to be easily estimated from 

inversions of geodetic data.  It is therefore not surprising that the BSM has been used to 

successfully fit geodetic observations using realistic plate interface geometries [e.g., 

Zweck et al., 2002; Khazaradze and Klotz, 2003; Wang et al., 2003; Suwa et al., 2006].  

Clearly, as the quality of geodetic data as well as our knowledge of the 3D elastic 

structure improves, EDMs can be used to constrain more complicated models [e.g. 

Masterlark, 2003].   However, in spite of their success in fitting geodetic observations, it 

is important to remember that kinematic EDMs such as the ones discussed here fit the 

geodetic data by assuming that all of the observed deformation is due to current fault 

motion, ignoring any bulk relaxation processes [see Wang and Hu, 2006; see review by 

Wang, 2007].  Another disadvantage of purely elastic models is that they cannot model 

topographic evolution on time-scales longer than a few seismic cycles since they cannot 

accommodate monotonically increasing displacements (over geologic time) while 

keeping the stresses bounded.  To the extent that such elastic deformation may provide 

the driving stresses for building permanent topography on the overriding plate, however, 

EDMs could be useful in guiding our intuition for models with inelastic rheologies. Using 
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the ESPM, we demonstrate below the potential for such net surface topographic evolution 

owing to elastic flexure of the subducting plate at the trench.  

 

 

2.2 The Elastic Subducting Plate Model (ESPM) 

 

If the negative buoyancy of subducting plates plays a significant role in mantle 

convection [as suggested originally by Forsyth and Uyeda, 1975; and explored for 

example, in Hager, 1984], then there must be shear tractions and associated shear strain 

between the downgoing slab (“plate”, or “lithosphere”) and the surrounding mantle 

(“asthenosphere”).  We want to encapsulate the effect of such plate-driven subduction on 

the deformation at the surface of the overriding plate during the interseismic time period.  

In order to reconcile the BSM view of subduction along a single fault interface with that 

of subduction of a finite thickness plate at the trench, we propose a more physically 

intuitive and generalized kinematic model – the elastic subducting plate model (ESPM, 

right column of Figure 2-1 and Figure 2-2).  The ESPM is constructed by the 

superposition of solutions for two edge dislocation glide surfaces in an elastic half-space 

that delineate the subducting plate, having a uniform plate thickness that remains 

unchanged as it subducts at the trench (right column of Figure 2-1).  The lower 

dislocation glide surface is a kinematic proxy for the shear strains related to plate-

buoyancy driven subduction.  In fact, such a surface is the simplest way to explicitly 

account for Savage [1983]’s assumption of asthenospheric motions compensating for 

overriding plate deformation — especially for subduction zones that may not be mature, 

and therefore affected by plate flexure at the trench.  By construction, the relative slip 

across the upper and lower plate surfaces of the ESPM is equal in magnitude, but 

opposite in sign.  The principal effect of the lower glide surface (i.e., surface along which 

the lower edge dislocation moves) is to channel material in the “oceanic plate” into the 

“mantle”, relative to a reference frame that is fixed with respect to both the sub-oceanic 

mantle as well as the far-field of the overriding plate (right column of Figure 2-2).  In 

contrast, while the pBSM considers steady state subduction of material down the trench 

via block motion (lower-middle panel of Figure 2-2), usually ad hoc arguments are used 
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to ignore the vertical component of block-motion – resulting in no net subduction of 

material into the mantle.  The BSM does not explicitly model asthenospheric motions 

causing material subduction (left panel of Figure 2-1 and Figure 2-2).   

 

There are two significant assumptions implicit in the construction of the ESPM.  The first 

assumption is that the lithosphere-asthenosphere boundary is sharp (rather than diffuse), 

contrary to expectations from seismic, thermal, and rheological data.  This simplification 

of a sharp lithosphere-asthenosphere boundary may be justified here because over the 

short timescales being considered here relative to mantle convection, surface deformation 

on the overriding plate is relatively insensitive to whether there is a gradient or step-jump 

in velocities across the lower boundary, as long as the same volume of material 

undergoes subduction.  In addition to this kinematic role, the bottom dislocation glide 

also serves to decouple the shallow depths of the half-space (“lithosphere”) from mantle 

depths, so that there are negligible elastic stresses in the region of the half-space that 

would normally be considered to be viscous mantle.  Further, such a sharp lower 

lithospheric boundary is commonly assumed in the parameterization of the flexural 

strength of oceanic lithosphere with an elastic plate thickness, Te [Turcotte and Schubert, 

2001], as well as in viscous plate models for analyzing long-term flexural stresses and 

dissipation in the subducting slab [Buffett, 2006].  Thus, the plate thickness defined in the 

ESPM could also be viewed as a way to parameterize the fraction of volumetric flexural 

stresses that may persist in the subducting lithosphere over the duration of a seismic 

cycle.   

 

The second assumption is that over a single seismic cycle, the underlying “mantle” in the 

ESPM does not undergo significant motion relative to the far-field boundary of the 

overriding plate.  The BSM as motivated by Savage [1983] assumes such motion as being 

part of the “complex asthenospheric motions” not included in that model.  In contrast, by 

including block subsidence of the footwall (or block uplift of the hanging-wall), the 

pBSM predicts net relative vertical motion between the entire “oceanic” block (which 

includes the downgoing plate as well as the mantle) and the “continental” block (lower-

middle panel of Figure 2-2), which is unrealistic.  However, if this net relative uplift were 
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eliminated by an ad hoc correction to only the vertical velocity field of the overriding 

plate, then the pBSM would predict only net horizontal convergence between the 

footwall and the hanging-wall, but with a velocity equal to only the horizontal component 

of block motion.  In addition, given that the pBSM assumes no net deformation in the 

overriding plate over the seismic cycle, there is no “sink” for this converging material — 

thus leading to a physically irreconcilable model that violates mass balance.  In contrast, 

the ESPM satisfies continuity by allowing material to “subduct”, in addition to predicting 

the expected sense and magnitude of relative motion between the two plates to be at the 

plate convergence velocity.  The ESPM can be viewed as the elastic component of 

lithospheric response over the seismic cycle timescale, and does not preclude the 

existence of viscous stresses at mantle depths (in a visco-elastic sense).  In fact, one could 

add a (linear-) viscous mantle convection deformation field to the ESPM field below the 

subducting plate (similar to the layered models mentioned in the previous section), in 

order to introduce a gradient in the deformation field at the bottom boundary of that plate, 

as well as introduce relative motion between the sub-oceanic mantle and the overriding 

plate when integrated over several seismic cycles.  Superposing such a field is no 

different from the asthenospheric motions envisaged by Savage [1983], because while 

such a field introduces long-term relative motion in the mantle underlying both plates, it 

does not affect the short-wavelength deformation field in the vicinity of the trench 

(upper-left panel of Figure 2-2), thereby not changing the predictions of the ESPM over 

the seismic cycle.  

 

Thus, the ESPM adds only two extra degrees of freedom relative to the BSM — the plate 

thickness, H, and the fraction of flexural stresses released continuously, fσ — while still 

retaining the BSM’s advantages (small number of parameters) for geodetic data 

inversion.   The additional complexity of the ESPM due to these extra parameters is 

compensated by the elimination of ambiguities related to the implementation of the 

pBSM.  By separating the subduction zone into distinct regions that undergo coseismic 

slip (locked megathrust along the upper surface) and interseismic slip (remainder of the 

plate surfaces), the ESPM unambiguously accounts for (a) the expected horizontal 

convergence at the plate-rate between the subducting and overriding plates, (b) a net zero 
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steady state vertical offset between the subducting and overriding plate (integrated over 

many seismic cycles), and (c) deformation due to slip along non-planar megathrust 

interfaces.  As we will show in the next section, the ESPM can also be thought of as a 

more general model that reduces to the BSM under special conditions.   

 

EDMs similar to the ESPM have been adopted in earlier papers on modeling interseismic 

surface deformation in subduction zones.  For instance, Sieh et al. [1999] consider a 

tapered “bird-beak” shaped subducting plate whose thickness reduces to a point at its 

downdip end.  Such a tapered geometry violates mass conservation within the subducting 

plate, given the purely elastic and homogeneous rheology assumed.  Zhao and Takemoto 

[2000] propose a dislocation model for the subduction zone using a superposition of 

steady slip along a planar thrust fault downdip of the locked zone, and reverse slip along 

two lower glide surfaces representing the bottom of the subducting plate before and after 

the trench.  However, they assume that the lower glide surfaces have interseismic 

velocities that are twice that of the upper surface and that the subducting plate thickness 

decreases with depth — both of which are again inconsistent with the conservation of 

mass within the subducting plate.  In contrast, the simpler ESPM assumes a constant, 

depth invariant plate thickness for the downgoing plate, H, as well as identical slip 

velocity magnitudes along both glide surfaces at all times.   

 

We use the 2D elastic dislocation solutions for a dip-slip fault embedded in an elastic 

half-space given by Freund and Barnett [1976], as corrected by Rani and Singh [1992] 

(see also, Tomar and Dhiman [2003] and Cohen [1999]) for computing surface velocities.  

To verify our code, we compared surface velocity predictions using the above 

formulation with those predicted by Okada [1992]’s compilation, for identical plate 

geometries.  We choose the origin to be at the trench, the x-axis to be positive “landward” 

of the trench, and the z-axis to be positive upwards (so depths within the half-space are 

negative).  Dips are positive clockwise from the positive x-axis.  For the vertical surface 

deformation field, uplift is considered positive, and for the horizontal field, arc-ward 

motion is assumed positive.  Although we only consider the plane strain problem here, 

the ESPM can be extended to 3D problems with along-strike geometry variations; 
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however, in this case, flexure associated with along-strike plate-interface curvature (e.g., 

Japan trench between northern Honshu and Hokkaido, or the Arica bend of the 

Peruvian/Chilean trench) may cause additional elastic deformation in the overriding 

plate. 

 

 

2.3 End-member models of the ESPM 

 

For the ESPM, subtracting the steady plate-subduction solution (top-right panel of Figure 

2-1) from that for strain-accumulation during the interseismic (middle-right panel of 

Figure 2-1), we obtain a mathematically equivalent model for the interseismic — the 

BSM (bottom-right panel of Figure 2-1).  Thus, the ESPM provides an alternate but 

kinematically more intuitive framework for deriving the BSM.  Further, in the limiting 

case of the ESPM with zero plate thickness (H=0), the edge dislocation representing the 

horizontal section of the bottom surface of the plate vanishes.  Also, slip along the 

creeping sections of the top and bottom dipping surfaces cancel each other — except 

along the locked megathrust zone, where normal slip (or “backslip”) ensues, irrespective 

of fault geometry (bottom panels of Figure 2-3).  Thus, backslip along the locked 

megathrust can also be understood as the slip prescribed along the bottom surface of a 

“thin” subducting plate, and in this limit, the ESPM is identical to the BSM as motivated 

by Figure 1 of Savage [1983] (left column of Figure 2-1).  In this zero plate thickness 

limit, there is no net deformation in the overriding plate over the seismic cycle, 

irrespective of the plate interface geometry.  In contrast, for the pBSM with a non-planar 

plate interface, since no lower plate boundary is assumed, net deformation in the 

overriding plate is unavoidable owing to steady state slip along a curved interface [e.g., 

Sato and Matsu'ura, 1988; Matsu'ura and Sato, 1989; Sato and Matsu'ura, 1992; 1993; 

Fukahata and Matsu'ura, 2006]).  Thus, when using the BSM (or the pBSM) to invert for 

geodetic data in subduction zones, one is inherently assuming negligible thickness for the 

subducting plate, or continuous relaxation of stresses resulting from plate flexure.  In this 

limit, kinematic consistency requires not only that the two glide surfaces (plate surfaces) 

in the ESPM have the same magnitude of slip, but also identical geometries.   



 2-12

Locked Portion of Glide Plane

B
ac

ks
lip

 M
od

el
 (B

SM
)  

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 B

ur
ie

d 
Fa

ul
t M

od
el

 (B
FM

)

Dlock

Dlock

Dlockθ

θ

θ

H

H >> Dlock

H << Dlock

xlock

H

Dlock

Dlock

Dlock

H θ

θ

θH >> Dlock

H << Dlock

xlock

H

Elastic Subducting Plate M
odel (ESPM

)

 
 
Figure 2-3. Geometric comparison of the ESPM with planar (left column) and curved (right column) 
geometry.  In each column, the top row is the ESPM in the limit of a very thick plate (the BFM); the 
bottom row is the ESPM in the limiting case of negligible plate thickness (the BSM).  Note that the “dip” of 
the curved fault is defined at a point where the plate straightens out.  The dip of the curved fault at the 
trench is assumed to be zero.  Other notation and assumptions are identical to those in Figure 2-1.

 

 

Therefore, when applying the pBSM to subduction zones where the downgoing slab is 

inferred to have a non-planar geometry, the locked megathrust interface — where 

backslip is imposed — should be modeled with the same geometry as that of the bottom 

surface of the downgoing plate directly beneath it (lower-right panel of Figure 2-3).  

While there are several examples of papers that use the actual non-planar interface 

geometry for the BSM [e.g., Zweck et al., 2002; Khazaradze and Klotz, 2003; Wang et 

al., 2003; Suwa et al., 2006], some confusion has been created by the use of a planar 

extension of the deeper portion of a curved subduction interface for modeling backslip 

[e.g., Simoes et al., 2004; Chlieh et al., 2008].  Such a planar fault tangential to the 

interface at the downdip end of the locked zone intersects the free surface arc-ward of the 
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Figure 2-4.  Appropriate application of the BSM to curved faults.  Backslip must be applied to the curved 
interface geometry appropriate for a subduction zone, instead of to its tangent at the downdip end of the 
locked zone.  The curved fault (solid gray line) resembles the subduction thrust interface geometry below 
the island of Nias, offshore of Sumatra (θtop = 3°, θbot = 27°[Hsu et al., 2006]).  The tangent-approximation 
to the curved fault [Chlieh et al., 2004; Simoes et al., 2004; Chlieh et al., 2008] is represented by the dashed 
black line.  The top panel presents the faults in cross-sectional view. x* (= x/DLock) is he dimensionless 
distance perpendicular to the trench; z*(= z/DLock) is the dimensionless depth.  The origin of the 
dimensionless x*-z* system is at the location of the trench axis.  Vertical surface velocity profile, Vz

* 

(middle panel), and horizontal surface velocity profile, Vx
* (bottom panel), are scaled by the uniform plate 

convergence velocity, Vp. 
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trench (“pseudo-trench”, top panel of Figure 2-4).  The surface velocity predictions in the 

far-field due to slip on a curved fault and its tangent planar approximation are nearly 

indistinguishable.  But because of the artificial arc-ward shift in the tangent 

approximation’s “trench”, its predictions of surface deformation differ significantly from 

those for the curved megathrust right above the locked interface (middle and bottom 

panels of Figure 2-4).  An additional concern is the use of entirely different faults for 

coseismic and interseismic displacements.  Savage [1983] explicitly states this notion of 

applying backslip to the megathrust interface, irrespective of its shape.  But as discussed 

earlier, that model’s application by subsequent researchers – possibly arising from the 

pBSM notion of block-motion - have created an apparent ambiguity in the 

implementation of the BSM to non-planar fault geometries.   

 

In the limiting case of the ESPM with very large plate thickness (H→∞), the lower glide 

surface is at a large depth below the upper plane, and for a fixed radius of curvature 

(typically a few hundred km), the plate behaves like a planar slab with a sharp kink at the 

trench (left panels of Figure 2-3).  So, the contribution of the bottom glide surface 

reduces to a single dislocation at this kink that is deeply embedded within the half-space.  

Consequently, the contribution of the bottom glide surface has almost negligible 

amplitude and a very broad wavelength, its contribution to the total ESPM surface 

deformation field becomes negligible.  The only contribution to the surface ESPM 

deformation field in this “infinite-thickness” limit comes from the buried thrust fault 

downdip of the locked zone.  Thus, in this limit of “infinite” plate thickness (i.e., for very 

thick plates, as in plate collision zones), the ESPM mathematically reduces to the buried 

fault model (the BFM, top panels of Figure 2-3), which is typically used for modeling 

interseismic surface deformation in continental collision zones [e.g., Vergne et al., 

2001].  The ESPM can therefore be viewed as a more general model for plate 

convergence zones, which reduces to previously developed models for subduction (the 

BSM or pBSM) or collision zones (the BFM) for limiting values of plate thickness (zero 

and infinity, respectively).  
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2.4 Effect of plate flexure on the ESPM surface deformation field 

 

When the plate has non-negligible thickness, H, the ESPM and the BSM differ 

significantly close to the trench due to strains induced by plate flexure.  The differences 

in the predictions of the ESPM and the BSM arise from having the same magnitude of 

relative slip along both surfaces of the downgoing plate, as it subducts at the trench.  As a 

consequence, material at any cross-section of the downgoing plate moves with a uniform 

velocity equal to the plate-convergence rate, resulting in permanent shearing of the 

subducting material passing through the trench.  Henceforth, we use “flexural strain” to 

refer to this shear-dominated strain within the elastic subducting plate as it passes through 

the trench.  The associated “flexural stresses” cause net deformation in the overriding 

plate at the end of each seismic cycle.  So, unless these flexural stresses (a) have 

negligible magnitudes (as when H = 0), or (b) are continuously released in their entirety 

in the shallow portions of subduction zones, the surface velocity predictions of the ESPM 

differ significantly from those of the BSM above the locked megathrust interface (Figure 

2-5).  One might argue that this region of discrepancy in these models’ predictions lies 

over the forearc wedge, and therefore cannot be modeled by a purely elastic model like 

the ESPM.  However, any excess elastic deformation predicted for this zone by the 

ESPM (compared to that of the BSM) can provide insight into the localization of 

incremental inelastic strain accumulation over multiple seismic cycles.  Also, to the 

extent that such net seismic-cycle deformation can contribute to the long-term evolution 

of surface topography in the real Earth, we expect inelastic processes (such as erosion, 

accretion and/or sedimentation) to counter any “runaway” topographic evolution 

resulting from the discrepancy in these models’ predictions.  In addition, the ESPM can 

still be used to infer the short-term elastic component of wedge deformation over the 

duration of a single seismic cycle, especially as ocean-bottom geodetic data become 

available in the near future.   

 

To understand the strain accumulation arising from our assumption of uniform velocity 

for the two ESPM glide surfaces, we need only consider the steady state motion of the 

subducting plate (i.e., without any locked patch).  Such steady state motion results in a 
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Figure 2-5.  Comparison of deformation for the BSM and the ESPM with plates of different thickness, H, 
for a realistic curved fault geometry.  In all panels, the thick gray solid curves represent the BSM, and the 
extent of the locked zone is shaded in yellow.  The blue solid curve coinciding with the BSM surface 
velocities is the ESPM with zero plate thickness. The thick light-blue curve is the surface velocity field due 
to the buried thrust downdip of the locked zone (i.e., the BFM).  The thin dashed red curve coinciding with 
the BFM surface velocity field is the ESPM having an “infinite” plate thickness.  In all cases, the imposed 
uniform slip rate is in the normal sense for the BSM (backslip), and reverse (thrust) sense for the ESPM. 
Panel organization and non-dimensionalization of the plot axes is identical to that in Figure 2-4.  
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uniform cross-sectional velocity for material being transported within the subducting 

plate, and is identical to flexural shear folding, where individual layers within the plate do 

not undergo changes in either their thickness or length (similar to folding a deck of cards 

[see Suppe, 1985; Twiss and Moores, 1992]).  Material moving through each layer 

undergoes only a change in direction as it bends through the trench during the 

interseismic time period (bottom-right panel of Figure 2-2).  This kinematic, volume-

conserving assumption leads to runaway deformation of the plate beyond the trench. 

 

Within the framework of dislocations embedded in an elastic half-space, there are two 

equivalent approaches to simulating flexural stress release as the plate subducts at the 

trench: 

a) Applying an additional uniform velocity gradient within the plate — whose 

magnitude varies continuously along its length depending on the local curvature — 

that extends material near the top surface of the plate, and compresses material near 

the bottom surface as the plate subducts at the trench.  This gradient is therefore zero 

for the planar sections of the plate before the trench and after straightening out in the 

upper mantle.  

b) Allowing slip at the axial hinges across which the plate successively bends as it 

subducts, so as to rotate planes that were perpendicular to the top and bottom surface 

of plate before subduction remain so after subduction.   

 

We first consider releasing the flexural stresses in the ESPM by superimposing a velocity 

gradient within the plate — which is equivalent to assuming that the subducting slab 

behaves as a thin viscous or elastic plate in flexure [Turcotte and Schubert, 2001].  This 

approach is a bit arbitrary when applied to a planar interface geometry as its curvature is 

infinite at the trench and zero otherwise.  So, we illustrate this approach using a curved 

plate geometry.  We want plane sections that are normal to the top and bottom surface of 

the incoming plate to remain so as it bends through the trench and straightens out in the 

upper mantle.  We assume that the material at the centerline (or the neutral-axis) of the 

incoming plate passes through the trench without a change in speed, Vp.  Material above 
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the centerline accelerates as it passes through the trench relative to Vp, in proportion to its 

“radial” distance from this centerline: 

V = Vp

R p
r , (1) 

where, Rp is the radius of curvature of the centerline as it passes through the bend, and r 

is the distance normal to the centerline profile.  This would ensure that the rectangular 

patch in Figure 2-6(a) remains rectangular as it passes through the trench.  So, the speeds 

for the top and bottom surfaces of the plate would be: 

 

Vtop = Vp

R p
Rtop = Vp

R p
(Rp + H

2 ) = Vp 1+ HC p

2( )= Vp 1+ δV
Vp( ),   and 

Vbot = Vp

R p
Rbot = Vp

R p
(Rp − H

2 ) = Vp 1− HC p

2( )= Vp 1− δV
Vp( )

 (2) 

 

where Rtop and Rbot refer to the local radii of curvature for the top and bottom surfaces of 

the plate, H is the plate thickness, and Cp is the plate curvature.  Cp is equal to zero for the 

straight sections in the ESPM.  So, the velocity corrections apply only to the curved 

section of the subducting plate.  For radius of curvature, Cp, equal to 250 km (which is 

roughly the value used for all the curved profiles in this paper), and an elastic plate 

thickness, H, of 50 km for the subducting lithosphere, the velocity correction, (δV/Vp), 

equals 10%.  We verified that the surface velocity field predicted by the ESPM with these 

velocity corrections is identical to that predicted by the BSM.  Therefore, as long as the 

plate geometry has finite curvature, adding velocity corrections to the finite thickness 

ESPM (H > 0) generates a model with no net deformation of the overriding plate (the 

BSM).  Since the resulting surface deformation field due to this visco-elastic 

approximation looks identical to that for the kinematically equivalent plastic 

approximation (discussed next), we do not show separate plots for this approach here.  

 

We next consider releasing flexural stresses via slip along planar axial hinges of folding 

as the plate subducts through the trench (the “plastic” formulation of flexure), which is 

equivalent to adding localized plastic deformation within the subducting plate.  In order 

to conserve the thickness of the plate as it bends at the trench, the hinge must bisect the 

angle between the horizontal and bent sections of a planar subduction interface, or 
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Figure 2-6. Kinematics of plate bending. (a) Bending of the plate at the trench for the ESPM with linear 
fault interface geometry; Motion of subducting material through the trench results in shearing as indicated 
by the shaded area.  Axial hinges of folding can be kinematically represented by dislocations, across which 
incoming material in the plate experiences a change in direction, but not in magnitude.  (b) Bending of the 
plate at the trench for the ESPM with a non-planar (or curved) fault interface geometry.  The curved 
interface is represented by a number of linear segments having different slopes, and the number of hinges 
corresponds to the number of planar segments representing the discretization.  (c) Velocity vector diagram 
showing required slip rate on an axial hinge to kinematically restore strains due to bending at the hinge. 
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between adjacent sections of a non-planar interface, whose dip changes with increasing 

depth (Figure 2-6(a) and (b)).  Although the axial hinge plane does not experience 

relative displacement across itself, it can be shown that the deformation gradient tensor 

associated with this plane is identical to that of a fault experiencing relative displacement 

across that plane, especially at distances larger than the radius of curvature of the fold 

hinge [Souter and Hager, 1997].  A curved fault can be thought of as bending along a set 

of such axial hinge planes, whose number depends on the discretization of the non-planar 

fault profile (Figure 2-6(b)).  As the discretization of the fault profile becomes finer, 

correspondingly more hinges are required to accurately model flexural strains.  Axial 

hinges help relax the accumulated flexural stresses by allowing the transport of material 

from the vicinity of the trench down the subducting plate in a kinematically consistent 

way (Figure 2-6(c)) – resulting in a thrust sense of slip across each axial hinge with the 

magnitude, 

  

Δv = 2Vp sin( Δθ
2 ), (3) 

 

where, Δv is the relative slip required to exactly compensate for plate flexural strains at 

the hinge, and Δθ is the same as in Equation 1.  Again, in the limiting case of a curved 

fault, this reduces to,  

 

Δv ≈ VpΔθ . (4) 

 

 Figure 2-6(a) geometrically illustrates this flexural strain for a planar fault interface 

characterized by a single discrete bend in the subduction plate.  Since the two glide 

surfaces have the same slip rate, the gray rectangular volume in that figure is sheared into 

a parallelogram after completely passing through the trench.  The accumulated shear 

strain due to bending (represented by the hachured zone in Figure 2-6(a)) is proportional 

to the difference in path lengths for the top and bottom edges of the rectangle at the upper 

and lower dislocations (Figure 2-6(a)): 
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εxz = 2H tan( Δθ
2 )

H
= 2tan( Δθ

2 ), (5) 

 

where εxz is the shear strain, and Δθ is the change in dip angle at the trench.  Similarly, a 

curved geometry can be thought of as a series of infinitesimally small bends in the plate 

(Figure 2-6(b)).  In this case, the incremental strain due to each such bend can be 

calculated from Equation 1, in the limit of infinitesimally small Δθ: 

 

Δεxz ≈ 2( Δθ
2 ) = Δθ , (6) 

 

which is identical to pure shear.  In this case, the local rate of strain accumulation along 

the curved plate is given by:  

pp
s

p
s

xz
p

xz CV
s

V
s

V
dt

d =
Δ
Δ=

Δ
Δ=

→Δ→Δ 00

θεε
, (7) 

 

where Vp is the long-term plate convergence velocity, t is time, s is the arc-length along 

the curved profile, and Cp is the local curvature of the profile, as in Equation 2.  So, the 

strain rate in the slab is proportional to the convergence velocity and curvature in this 

purely kinematic model.  Because this derivation was based on fixing the geometry of the 

plate, the strain rate obtained above is equivalent to that derived for viscous plates by 

Buffett [2006], or bending of thin plates by Turcotte and Schubert [2001], except for a 

factor of distance from neutral axis (since we have assumed uniform velocity here).   

 

Henceforth, we use “flexural field” to denote the deformation field resulting from either 

the velocity corrections or the axial hinges for a steadily slipping plate with no locked 

zone on the subduction thrust interface (Figure 2-7(a) and Figure 2-8(a)).  Subtracting the 

surface velocity field due to either of the flexural fields from that for the ESPM having a 

locked zone results in the BSM surface velocity field (Figure 2-7(b) and Figure 2-8(b)).  

It is important to note that the plate interface geometry has a very strong effect on the 

shapes of the surface velocity profiles of the flexural field.  For the planar interface, both 

the horizontal and vertical surface velocity profiles indicate that the frontal wedge of the 
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(a) (b)

 
 
Figure 2-7. The surface deformation field for the ESPM for a planar plate geometry: (a) the ESPM with no locked zone is equivalent to the long-term, 
steady state plate motion (solid black line).  The surface velocity field due to the axial hinge (thin dashed gray line) cancels the effect of plate flexure at 
the trench (thin solid black line), resulting in net zero long-term strain accumulation over the seismic cycle (thick solid black line).  (b) Effect of a single 
axial hinge on the ESPM with a locked megathrust fault.  Again, note that the ESPM predicts the correct sense of motion for the oceanic plate.  The sum 
of the ESPM (thin solid black line) and axial hinge (thick dotted gray line) velocity fields — shown as the thick dashed black line — exactly equals that 
for the equivalent BSM (thick solid gray line).  Panels and plot axes are as described in Figure 2-4. 
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(a) (b)

0

 
 
Figure 2-8. Surface deformation field for the ESPM for curved plate geometry: (a) the ESPM with no locked zone is equivalent to the long-term, steady 
state plate motion (solid black line).  The axial hinges or velocity gradient corrections are introduced at positions corresponding to the discretization 
resolution of the curved fault.  The surface velocity field due to axial hinges or a velocity gradient (thin dashed gray line) cancels the effect of plate 
flexure at the trench (thin solid black line), resulting in net zero long-term strain accumulation over the seismic cycle (thick solid black line).  Note that 
the peak uplift due to the bending of a curved plate is shifted arc-ward in comparison to the peak for the planar geometry (Figure 2-7).  (b) Effect of the 
plate flexural field (axial hinges or velocity gradient corrections) on the ESPM with a locked megathrust fault.  The sum of the ESPM (thin solid black 
line) and axial hinge (thick dotted gray line) velocity fields — shown as the thick dashed black line — exactly equals that for the equivalent BSM (thick 
solid gray line).  Panels and plot axes are as described in Figure 2-4. 
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overriding plate — immediately adjacent to the trench — undergoes net compression 

(bottom two panels of Figure 2-7(a)).  The horizontal surface velocity profile for the 

curved interface is “ramp-like” — but shows more subdued strain rates (flatter slope) 

near the trench compared to the planar case (bottom panel of Figure 2-8(a)).  In contrast, 

the vertical surface velocity profile for the curved interface predicts subsidence adjacent 

to the trench, strains having the opposite sense to those for the planar case (middle panel 

of Figure 2-8(a)), and attains a maximum value directly above the straightening of the 

plate interface at depth (compare the top and middle panels of Figure 2-8(a)).   

 

Thus, irrespective of the geometry of the downgoing plate, adding either flexural 

deformation field to that for the finite thickness ESPM (H > 0, and having a locked zone) 

yields predictions identical to that for the ESPM with H = 0 (i.e., the BSM).  This 

equivalence between the ESPM having a finite plate thickness (H ≠ 0) and the BSM 

implies that if the “volumetric” flexural stresses are released continuously and 

aseismically in the shallow parts of the subduction zone during the interseismic period, 

then the surface deformation due to both BSM and the ESPM are identical for any plate 

thickness and shape (curvature).  If these stresses are released in the deeper parts of the 

subduction zone (depth » H) — episodically or continuously — we expect net surface 

topography to persist after each cycle.  But in the real Earth, we would expect such 

topographic buildup to be modulated by gravity and limited by processes like accretion, 

sedimentation, and/or erosion in the frontal wedge of the overriding plate.  In this 

equilibrium scenario, the support for near-trench flexural stresses would eventually 

generate surface topography that is stable after each seismic cycle.  So, even when 

flexural stresses are released at depths (> 100 km), the interseismic velocity fields from 

the ESPM and the BSM should be nearly identical.  In all the above cases, it is 

appropriate to use the BSM as a simple mathematical approximation to the ESPM.  

However, within the context of an elastic Earth, the ESPM is still the kinematically more 

realistic model to interpret the pBSM.  The only scenario where the ESPM and the BSM 

(or pBSM) surface velocity predictions differ would be when part or all of the flexural 

stresses not released continuously in the shallow parts of the subduction zone (e.g., 
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normal faulting in the forebulge of the subducting plate) — and in this case, it is more 

appropriate to adopt the ESPM.   

 

 

2.5 Comparison of the ESPM and the BSM surface displacements 

 

As noted in the previous section, Flexural stresses near the trench cause the ESPM field 

to be more compressive than the BSM stress field — resulting in larger surface uplift 

rates above the downdip end of the locked megathrust interface.  This compression is 

enhanced with either increasing plate thickness or plate curvature.  For typical H/Dlock 

ratios and curvatures found in most subduction zones, a measurable difference exists 

between the BSM and the ESPM surface velocity fields (> 5 mm/yr, for a typical 

subducting plate velocity of 5 cm/yr) up to a distance of approximately five to six times 

the locking depth (Figure 2-5).  Intuitively, we expect that in the real Earth, the tip of the 

frontal wedge adjacent to the trench may not deform in a purely elastic manner.  But even 

in this region, deformation predicted by the ESPM can be considered as the purely elastic 

component of the total deformation field within the overriding plate during a seismic 

cycle, and as the driving force for inelastic deformation — and the discrepancy between 

the ESPM and the BSM (or the pBSM) at a horizontal distance of one interseismic 

locking depth from the trench can still be as large as ~ 100% in the verticals and ~ 15% in 

the horizontals.   

 

As plate thickness increases, this zone of significant difference between these two models 

broadens for both horizontals and verticals.  The location of the zero vertical velocity 

(commonly referred to as the “hingeline”) for a thick plate shifts trenchward by as much 

as 20% from its location for the BSM (middle panel of Figure 2-5).  However, the 

locations of the peak in vertical velocity profile or the break in slope of the horizontal 

velocity profile show negligible dependence on plate thickness.  Increasing plate 

thickness results in a nearly uniform increase in the horizontal strain-rate profile, 

resulting in a long-wavelength upward tilt of the horizontal surface velocity field relative 

to the far-field boundary of the overriding plate (middle and bottom panels of Figure 
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2-5).  Thus, a larger plate thickness enhances the non-uniform differences between the 

vertical surface velocity profiles of the ESPM and the BSM, in contrast to causing only a 

subtle change in slope between their horizontal surface velocity profiles.  Therefore, 

vertical surface velocities are the key to differentiating between the ESPM and the BSM 

— i.e., for estimating the minimum elastic plate thickness for a given subduction 

interface geometry.  Owing to the sensitivity of hingeline location to plate thickness, 

vertical velocities are clearly important in constraining the arc-ward extent of the locked 

megathrust.   

 

Hence, to characterize both the degree of coupling and minimum elastic plate thickness, 

it is best to use both horizontal and vertical velocity data for geodetic inversions.  Perhaps 

most importantly, the uncertainties in the measured vertical velocities on land must be 

small (< 1 cm/yr) — which is possible with current processing methods for regions 

having good geodetic data coverage over long periods of time (e.g., > 13 years of 

continuous GPS coverage in Japan) — and/or ocean bottom geodetic surveys are 

required.  Of course, we must also be confident that these vertical velocities are only due 

to elastic processes, and not due to inelastic effects like subduction erosion [Heki, 2004].  

Therefore, given the current uncertainty of geodetic data and their location with respect to 

the trench, unless a thick lithosphere or a shallow locking depth can be inferred from 

other kinds of data (e.g. seismicity, gravity signature associated with plate flexure, 

seismic reflection, etc.), the BSM is as good a model as the ESPM.  But the ESPM still 

provides not only a generalized framework for deriving, implementing, and interpreting 

the BSM, but also a fundamental understanding of why the BSM (or pBSM) has been so 

successful in interpreting interseismic geodetic data in subduction zones.  This generality 

is an important feature of the ESPM, regardless of whether geodetic data can, at present, 

distinguish the predictions of this model from that of either the BSM or the BFM. 
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2.6 Elastic stresses and strains in the half-space 

 

Subduction is ultimately governed by the negative buoyancy of the downgoing slab 

[e.g., Elsasser, 1971; Forsyth and Uyeda, 1975].  The kinematic assumptions used here 

assume that the dynamics of subduction do not change significantly during time-scales 

relevant to seismic cycles (< 104 yr), and therefore the convergence velocity between the 

subducting and overriding plates, and the geometry of the subduction interface are 

relatively constant over this time period.   

 

Viewing the BSM (or pBSM) as an end-member model of the ESPM clarifies some of 

the concerns of Douglass and Buffett [1995; 1996] regarding the former model.  By 

definition, all glide surfaces in the ESPM creep aseismically (at a steady rate) during the 

interseismic period, continuously loading the locked megathrust as well as surrounding 

regions in the overriding plate.  The burgers vector — which is the displacement of the 

edge-dislocation representing the bottom of the locked fault over one seismic cycle — 

accumulates steadily over the glide surfaces bounding the plate until a megathrust event.  

Therefore, the ESPM provides a natural explanation for the slip-rate dependence of stress 

along the locked zone even though there is no relative slip across that portion of the 

interface.  It must be noted that both the BSM and the pBSM also consider the locked 

zone to be at rest during the entire inter-seismic period because of the superposition of 

steady-creep and backslip on the fault.  In fact, as noted earlier, in the ESPM view of the 

BSM, “backslip” is actually the creep along the bottom surface of the plate, as well as 

equal to the creep directly downdip of the locked zone.   

 

Another concern of Douglass and Buffett [1995; 1996] was that given the boundaries of 

the half-space are at infinite distance in EDMs, the tractions along the bottom of the 

overriding plate (“hanging-wall”) are equal but opposite in sense, on either side of the 

dislocation tip (i.e., the downdip end of the locked zone).  Within the kinematic context 

of EDMs, we can make a rough estimate of the strain (and stress) perturbations 

introduced by BSM during a seismic cycle.  Typical plate convergence rates are of the 

order of cm/yr with the maximum convergence having a value of the order of 10 cm/yr 
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(10-1 m/yr).  This long-term slip velocity divided by the typical width of the locked patch 

of the order of 100 km (105 m) should give us the an estimate of the magnitude of strains 

and stresses in the elastic half-space owing to the presence of the edge dislocation 

representing the locked patch.  The above calculations yield a typical strain-rate of 

several μ-strain/yr, which, when multiplied by a typical value of shear modulus for 

crustal rocks (10s of GPa), gives stress rates of the order of 10 kPa/yr.  Thus, over a 

typical megathrust earthquake recurrence interval of 300 yrs, the accumulated stress on 

the locked patch reaches 3 MPa, equivalent to the average stress drop in inter-plate 

earthquakes [Kanamori and Anderson, 1975].  In addition to the BSM strain field, the 

ESPM introduces additional strains associated with material transport down the 

subducting plate.  Observations and theoretical estimates constrain the radius of curvature 

for subducting plates to ~ 200 km [Conrad and Hager, 1999, and references therein].  

From Equation 3, we can calculate the additional flexural strain rate introduced by the 

ESPM to be of the order of 0.1 μ-strain/yr, (1/10th of the BSM’s interseismic strain 

accumulation rate) which causes a mean surface velocity perturbation of roughly 10% of 

the BSM’s field (Figure 2-5, Figure 2-7, and Figure 2-8).  In contrast, both plate flexure 

theory [Turcotte and Schubert, 2001] and thin-plate finite-strain theory [e.g., Seth, 1935] 

predict plate bending stresses that are of the order of several 100  MPa —1 GPa over 

mantle-convection time-scales.  Therefore, the ESPM (as well as the BSM) introduces 

stress perturbations during the seismic cycle that are much smaller than the long-term 

stress field associated with plate tectonics.  Thus, as Savage [1996] argued for the BSM, 

when this plate-tectonic stress field is added back to that for the BSM, the correct sense 

of absolute stress is restored all along the bottom of the overriding plate. 

 

The flexural fields discussed in the previous sections help counter the bending strain 

perturbation from the ESPM, either partially or in full.  The key to estimating the ESPM 

plate thickness, H, then is identifying what fraction of the flexural stresses associated 

with the above perturbation is released episodically in the shallow part of the subduction 

zone.  If we can estimate a plate thickness from interseismic geodetic data ignoring this 

fraction — that is, assume that all of the flexural stresses are only released episodically in 

the shallow portion of the subduction zone — then we will end up with the minimum 
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effective plate thickness required by such data.  Otherwise, this fraction can also be 

estimated as an additional ESPM parameter during inversion.  Thus, depending on 

whether other kinds of data warrant the determination of a fractional flexural stress 

release (fσ), the ESPM can be used for inverting interseismic geodetic data with only one 

(H), or two (H, and fσ) additional parameters compared to the BSM. 

 

 

2.7 Discussion  

 

Our capacity to resolve between the BSM and the ESPM, and therefore, the characteristics 

of plate flexural stress relaxation, depends on whether there are geodetic observations close 

to the trench [xGPS < xlock, see Figure 2-1].  Typically, GPS stations are on the overriding 

plate at distances much larger than xlock from the trench, where both the ESPM and the 

BSM predict nearly identical velocities.  However, if highly accurate vertical geodetic data 

are available on the surface of the overriding plate, at distances less than xlock from the 

trench — and if we are confident that this data reflects elastic processes — then we would 

be able to discriminate between the surface deformation fields predicted by these two 

models if: (a) subducting plate thickness in the ESPM is large, and/or (b) the plate 

geometry has a large curvature near the trench, and (c) if the volumetric strain associated 

with plate bending is released episodically in the shallow portions of the subduction zone 

(< 100 km depth).  Even in this case, there will be a trade-off between the actual plate 

thickness and the fraction of flexural stresses released episodically in the shallow portion of 

the subduction zone.  Therefore, we will only be able to estimate a minimum plate 

thickness from even a very accurate and dense network of geodetic observation stations.  

However, if the flexural strain is released continuously in the shallow parts of the 

subduction zone, or released at larger than ~ 100 km depth — in which case the release 

occurs too deep to have an effect on the surface deformation of the overriding plate — then 

the surface velocity fields predicted by the ESPM and the BSM are nearly identical to each 

other and the latter may be a better model to use because it has two fewer parameters to 

estimate.   
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Potential areas where the subduction zone geometry is favorable for testing the ESPM 

include: Nankai Trough underneath Kii Peninsula [e.g., Hacker et al., 2003 (Figure 3)], 

Costa Rica Trench, south of the Nicoya peninsula [e.g., Hacker et al., 2003 (Figure 4)], 

Peru-Chile Trench from Equador through Peru [e.g., Gutscher et al., 2000 (Figures 3, 

5, and 10)], northern Chile [e.g., ANCORP Working Group, 2003 (Figure 7)], and 

perhaps, Sumatra [e.g., Chlieh et al., 2008a].  

 

Based on the typical radius of curvature of most subducting slabs, the current distribution 

of geodetic observations as well as their accuracy, and the surface velocity field 

predictions above, the ESPM is a relevant model for subduction zones wherever H/Dlock ≥ 

2 — that is, either the locked zone is constrained to be shallow (for instance, from 

thermal modeling [Oleskevich et al., 1999]) or the downgoing slab can be inferred to be 

thick (say > 50 km) based on sea-floor age at the trench [e.g., Fowler, 1990; Turcotte 

and Schubert, 2001].  In contrast, the ESPM with H/Dlock ≤ 1 is indistinguishable from the 

BSM, even though the latter may over-predict the extent of the locked zone by roughly 

10 km (leading to similar discrepancies in xlock); in this case, the BSM may be a better 

model to use because of its simplicity.  These requirements immediately exclude the 

following: Nankai Trough (because of the small curvature of the Phillippine Sea plate, 

with shallow dip < 15° [Park et al., 2002]), Tohoku, Japan Trench (inferred to have very 

deep locking depth [Suwa et al., 2006]); and Sumatra (because the inferred locking depth 

is not shallow (30–55 km [Subarya et al., 2006])).  The most promising of the above 

subduction zones for future investigations to discriminate the ESPM from the BSM (or 

the pBSM) are: Nicoya peninsula, Costa Rica (shallow seismogenic zone and strong slab 

curvature [DeShon et al., 2006]); and Northern Chile in the vicinity of the Mejillones 

peninsula (possibly shallow locking depth, and strong plate curvature [ANCORP 

Working Group, 2003; Brudzinski and Chen, 2005]).  Of course if ocean bottom geodetic 

stations are successfully installed in the future [see for instance, Gagnon et al., 2005], 

then many of the above subduction zones might be more amenable to application of the 

ESPM.   
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To the extent that net deformation remaining after a seismic cycle may contribute 

incrementally to the long term surface topography of the overriding plate, Figure 2-8(a) 

(middle panel) points to another important consequence of elastic plate flexure.  For a 

realistic curved subduction megathrust interface, the peak in the vertical surface velocity 

field due to plate flexure has a magnitude of < 5% of the long-term plate convergence rate 

(for plate thickness of < 100 km), and occurs at distances of approximately 75–150 km arc-

ward of the trench.  The location of the peak uplift rate is independent of the plate 

thickness, but depends strongly on plate curvature.  The purely elastic ESPM cannot 

accumulate such long-term inelastic strain, but it can still provide a measure of where such 

deformation could occur in the overriding plate over several seismic cycles.  In the real 

Earth, we expect such runaway elastic deformation to be continuously modulated by 

gravity, inelasticity, accretion, sedimentation, and erosion, resulting in near-equilibrium 

surface topography.  So, if even a small fraction of this peak surface uplift rate arising from 

elastic flexure promotes inelastic deformation in the real earth, then stable islands, or 

coastal uplift [e.g., Klotz et al., 2006] could occur at such distances over the long-term.  We 

illustrate this flexural effect for the Sumatran subduction zone (Figure 2-9, with interface 

geometry as described in [Hsu et al., 2006]).  The location of the peak uplift rate is at a 

distance of ~ 100 km, irrespective of plate thickness (bottom panel of Figure 2-9), and 

corresponds roughly to the location of the islands in the forearc — as discerned by the 

along-strike averaged, trench perpendicular bathymetric profile (middle panel of Figure 

2-9). 

 

Thus, plate bending could be a plausible driving mechanism for forearc uplift phenomena 

— such as the presence of forearc islands or coastal uplift — in young, evolving 

subduction zones, even if only a fraction of the flexural strain after each seismic cycle is 

inelastic.  While such forearc uplift phenomena have been predicted by layered elastic-over 

viscoelastic models [e.g., Sato and Matsu'ura, 1988; Matsu'ura and Sato, 1989; Sato and 

Matsu'ura, 1992; 1993; Fukahata and Matsu'ura, 2006], they include many more 

parameters related to erosion, accretion, and sedimentation, with much larger uncertainties.  

In addition, the long-term deformation in these models was shown by the above authors to 

be entirely attributable to only the portion of the fault interface  
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Figure 2-9. Comparison of predicted surface velocity profiles from the elastic plate bending flexural field 
[bottom panel, for plate thicknesses of 25 (dashed gray), 50 (gray), and 100 km (black)], with that of the 
long-term along-strike averaged trench-perpendicular topographic profile (middle panel, with error bars in 
blue) for the Sumatran subduction zone (top panel, and inset map).  Note that the location of the peak 
uplift-rate is independent of plate thickness, Hslab (bottom panel).  The trench profile in the map is from 
Bird [2003], and the rectangle indicates the zone of along-strike averaging of the plate geometry (top panel) 
as well as bathymetry (middle panel).  The geometry of the mean plate interface profile (top panel, only 
Hslab=100 km is shown) is similar to that assumed in [Hsu et al., 2006], and attains a dip of 30° at a depth of 
~27 km below the islands.  Note the correspondence in the location of the peak values in the middle and 
bottom panels.  See text for details.  
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embedded in the upper elastic layer (of thickness H), which results in a surface 

deformation field that is qualitatively similar to that of the steady state component of the 

ESPM with plate thickness, H.  The advantage of the ESPM is that only a single 

parameter (fσ) is required to determine the potential locations of permanent deformation, 

and therefore much more conducive to geodetic inversions. 

 

 

2.8 Conclusions 

 

The ESPM can be thought of as a kinematic proxy for slab-buoyancy-driven subduction.  

The derivation of the ESPM provides a kinematically consistent and physically more 

intuitive rationale for why the BSM works so well for interpreting current interseismic 

geodetic data, especially for young, evolving subduction zones.  The BSM can be viewed 

as an end-member model of the ESPM, in the limiting case of zero plate thickness.  The 

BSM is also an end-member model of the ESPM having a finite plate thickness, if all of 

the stresses associated with these plate flexural strains are either released continuously in 

the shallow portion of the subduction zone, or released deeper in the subduction zone (> 

100 km depth).  So, the current practice of fitting available interseismic geodetic data 

using the BSM is in effect using the ESPM, but assuming either (a) a negligible elastic 

plate thickness, or (b) that all flexural stresses are released continuously during bending 

or at depth.  Only in the case where these plate flexural stresses are not released 

continuously in the shallow parts of the subduction zone, can the deformation field of the 

ESPM be distinguished from that of the BSM.  In this case, the differences between the 

surface velocity fields predicted by the two models is measurable within a few locking 

depths of the trench, and our ability to discriminate between them is limited by lack of 

geodetic observations above the locked patch in most subduction zones.   

 

Unlike the pBSM, the ESPM, by definition, yields the correct sense and magnitude of 

horizontal velocities on the surface of the downgoing plate before it subducts into the 

trench, as well as zero net steady state block uplift of the overriding plate — primarily 

because volume conservation is integral to its formulation.  Therefore, unlike the pBSM, 
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the ESPM does not require ad hoc steady state velocity corrections.  The ESPM 

eliminates ambiguities associated with the application of the pBSM to non-planar 

geometries by providing a kinematically consistent framework in which to do so.  For 

plates with curved geometry, the equivalent BSM should have backslip applied along the 

corresponding curved subduction interface (Figure 2-3, and as explicitly stated by Savage 

[1983]), and not along the tangent plane to this curved interface at depth.   

 

Characterizing the ESPM requires the estimation of at most two additional parameters 

(plate thickness, and fraction of flexural stresses released), which can potentially be 

inverted for in subduction zones that have an H/Dlock ratio equal to 2 or greater.  If we 

assume all flexural stresses are only released episodically in the shallow part of the 

subduction zone, then this elastic thickness is a minimum plate thickness over the 

seismic-cycle timescale — as seen by geodetic data.  If the BSM is used for the inversion 

instead of the ESPM, it would predict a wider locked zone compared to the ESPM, 

assuming that the fault geometry is well constrained.  In order to discriminate between 

the ESPM and the BSM, we must use both the horizontal and vertical surface velocity 

fields.  As the data quality, duration, and coverage improve in the future — especially 

station density near the trench, say with the deployment of GPS stations on islands or 

peninsulas close to the trench or on the ocean bottom — inversion for the ESPM 

parameters can provide an independent estimate for a minimum elastic thickness of the 

subducting plate, and perhaps even its along-strike variation.   
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Table 2-1. Notation 
 
εxz Shear-strain 
dεxz/dt Shear strain rate 
θ,θdip  Planar fault/plate interface dip 
θbot Dip at the bottom of the locked zone for a curved plate interface  
Δθ Change in interface dip from one curved segment to the next 
Dlock,, dlock Depth of locking along the megathrust interface 
Cp Local curvature of the centerline of the plate 
fσ Fraction of flexural stresses released episodically at shallow depths 
H Thickness of the subducting plate in the ESPM 
Rbot Local radius of curvature for the bottom surface of the plate 
Rp  Local radius of curvature for the centerline of the plate 
Rtop Local radius of curvature for the top surface of the plate 
s Arc-length along the plate interface, or fault-width 
slock Width of locked plate interface 
Te Elastic plate thickness in plate flexure models 
δV Velocity perturbation to be added to (subtracted from) the centerline plate 

velocity 
Vbot Velocity at the bottom surface of the plate 
Vp Plate convergence velocity 
Vtop Velocity at the top surface of the plate 
Vx

* Horizontal surface velocity normalized by plate rate 
Vz

* Vertical surface velocity normalized by plate rate 
x Horizontal coordinate, positive landward, or away from the trench  
x* Horizontal coordinate, normalized w.r.t. locking depth 
xGPS, (min/max) Distance range from the trench to the nearest geodetic observation 
xhinge Distance from the trench to the location of zero vertical surface velocity  
xlock Distance between trench and surface projection of the downdip end of the 

locked zone 
xmax Distance from trench to the location of the peak in the vertical surface 

velocity field 
z Vertical coordinate, positive upward (depths are therefore, negative) 
z* Vertical coordinate, normalized w.r.t. locking depth 
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